

Fachbereich Biologie, Chemie, Pharmazie

Zur Chemie der ersten wohl definierten Tellurin- und Stibonsäure

Dissertation zur Erlangung des akademischen Grades des Doktors der Naturwissenschaften (Dr. rer. Nat.)

eingereicht im Fachbereich Biologie, Chemie, Pharmazie der Freien Universität Berlin

Malte Hesse

aus Berlin

Januar 2009

Die vorliegende Arbeit wurde auf Anregung und unter Anleitung von Prof. Dr. Jens

Beckmann zwischen November 2005 und Januar 2009 am Institut für Chemie und

Biochemie an der Freien Universität Berlin angefertigt.

1. Gutachter: Prof. Dr. Jens Beckmann

2. Gutachter: Prof. Dr. Konrad Seppelt

Disputationsdatum: 04.05.2009

Danksagung

Zuallererst möchte ich mich bei Prof. Dr. Jens Beckmann für die Überlassung des Themas und die großartige Betreuung und Zusammenarbeit während der ganzen Zeit bedanken.

Herrn Prof. Dr. Konrad Seppelt danke ich für die Anfertigung des zweiten Gutachtens.

Den Mitarbeitern der Einrichtungen und Serviceabteilungen der FU Berlin danke ich für ihr Engagement bei administrativen Aufgaben, der Aufnahme von Spektren, Durchführung der Elementaranalysen, Anfertigung von Glasgeräten, technischen Unterstützung und vielem mehr.

Frau Irene Brüdgam danke ich für die sehr gründliche Durchführung vieler Kristallstrukturanalysen und dafür, dass sie immer ein paar Tipps parat hatte.

Von besonderer Bedeutung war die in der ganzen Zeit sehr angenehme Arbeitsatmosphäre, für die ich mich bei allen ehemaligen und aktuellen Arbeitsgruppenmitgliedern und vielen weiteren Doktoranden des Instituts bedanken will. Insbesondere möchte ich mich bei Marian Grassmann, Jens Bolsinger, Alexandra Schütrumpf, Pamela Finke, Michal Wiecko und Maxie Hesse für die gute und immer angenehme Zusammenarbeit bedanken.

Besonders möchte ich mich bei meiner Frau Maxie bedanken, die ich in dieser Zeit schätzen und lieben gelernt habe und die mit ihrer Geduld und ihrem Verständnis sehr zum Gelingen dieser Arbeit beigetragen hat.

Meinen Eltern gebührt der größte Dank! Die mit ihrer ständigen Unterstützung, seit meiner Kindheit einen erheblichen Anteil an meinem Studium und dem Gelingen dieser Arbeit haben.

Inhaltsverzeichnis

1	Einleitung	1
2	Aufgabenstellung	11
3	Ergebnisse und Diskussion	15
3.1	SupermesityIteIlurverbindungen	16
3.2	<i>m</i> -Terphenyltellurverbindungen	30
3.3	<i>m</i> -Terphenylantimonverbindungen	59
4	Zusammenfassung (Summary)	72
5	Experimenteller Teil	75
6	Anhang	93
7	Verzeichnisse	22

1 Einleitung

Im Jahre 1774 lernte Lavoisier den englischen Chemiker Joseph Priestley kennen. Dieser hatte festgestellt, dass beim Verbrennen von Quecksilberoxid Gase entweichen, die er "Feuerluft" nannte. Lavoisier fand durch eigene Experimente heraus, dass es sich bei den Gasen um einen Stoff handelt, der ein Bestandteil von Luft und Wasser ist. Er nannte diesen Stoff *Oxygenium* (Sauerstoff) und entdeckte das Prinzip der Oxidation. Statt bisher "Vitriolöl" hieß die aus Vitriol (Eisensulfat) hergestellte Säure nun "acide sulphurique" (Schwefelsäure). Die Schwefelsäure gehört damit zu den am längsten bekannten Säuren überhaupt. Seither wurden die Sauerstoffverbindungen der meisten Elemente ausgiebig erforscht.¹ Auch die Sauerstoffverbindungen und die Sauerstoffsäuren der 5. und 6. Hauptgruppe sind seit langer Zeit bekannt und fast seit Anbeginn der Chemie in den Lehrbüchern zu finden.

Im 19. Jahrhundert wurde damit begonnen, die Organoelementoxide der *p*-Block-Elemente zu erforschen. Die Organosauerstoffsäuren der leichten *p*-Block-Elemente wie Boronsäuren, Alumoxane, Siloxane, Phosphin- und Phosphonsäuren oder Sulfin- und Sulfonsäuren sind vollständig charakterisierte Verbindungen. Auch die schwereren Homologen der 4. Periode, wie die Germanoxane, die Arson- und Seleninsäure, sind bekannte, wohl definierte Verbindungen (Abbildung 1), die vielseitige Anwendungen gefunden haben.

Boronsäuren reagieren mit Alkoholen unter Abspaltung von Wasser zu Boronsäureestern, was zu ihrer ersten Anwendung, dem Schutz und Derivatisierung von 1,2- und 1,3-Diolen, führte. Des Weiteren sind Boronsäuren wichtige Edukte für Palladium katalysierte Suzuki-Kreuzkupplungen.

Die Alumoxane werden als Cokatalysatoren bei den Ziegler-Natta-Katalysatoren neuer Generation eingesetzt.

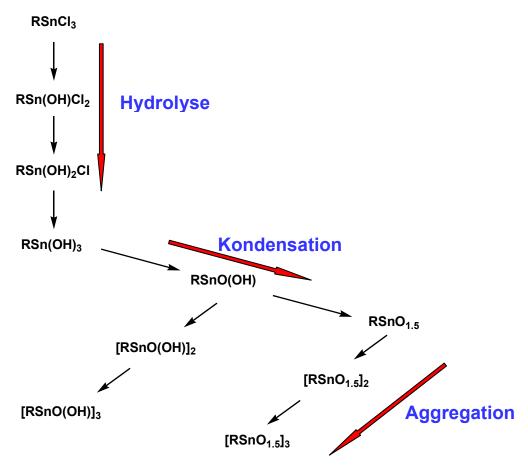
Abbildung 1: Beispiele für Monoorganoelementsauerstoffverbindungen einiger Elemente bis zur 4. Periode.

Die Darstellung der Siloxane erfolgt durch die Hydrolyse von Organohalosilanen R_nSiHal_{4-n} , wobei Organosilanole $R_nSi(OH)_{4-n}$ als Zwischenstufen gebildet werden. Diese kondensieren dann zu den entsprechenden Polyorganosiloxanen, die allgemein als Silikone bezeichnet werden. Silikone haben ein weites Anwendungsgebiet, vom Baustoff bis zur Medizin.

Die Organophosphonsäuren sind organische Derivate der Phosphorsäure. Auch die Organophosphonsäuren besitzen ein breites Anwendungsgebiet. Die Phenylphosphonsäure PhP(O)(OH)₂ wird beispielsweise als Katalysator bei der Herstellung von Harzen und als Stabilisator für Kunststoffe verwendet.

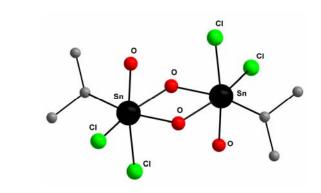
Sulfonsäuren lassen sich durch Sulfochlorierung mit anschließender Hydrolyse darstellen. Die Anionen der Sulfonsäuren werden als anionische Tenside in Reinigungsmitteln eingesetzt. Auch viele Farbstoffe enthalten Sulfonatgruppen. Eine spezielle Anwendung finden polymere Sulfonsäuren in Ionentauschermaterialien.

Die Hydrolyse von Organohalogermanen R_nGeX_{4-n} (x = F, Cl, Br, I) führt, wie bei den Organohalosilanen, zu den entsprechenden Germanolen $R_nGe(OH)_{4-n}$, die dann zu den Organogermanoxanen kondensieren. Im Unterschied zu den Organosilanolen lässt sich


die Hydrolyse bei den Organogermanolen durch Reaktion mit den entsprechenden Halogenwasserstoffen wieder umkehren.²

Anfang des 20. Jahrhunderts konnte Salvarsan[®] [(4-HO-,3-NH₂-C₆H₄)As]₂ (n = 2 - 5), erfolgreich in der Krebstherapie eingesetzt werden und begründete damit die moderne Chemotherapie.³

Verhältnismäßig wenig ist hingegen noch immer über Organoelementoxide der schwereren *p*-Block-Elemente der 5. Periode bekannt. Dies ist wohl darauf zurückzuführen, dass selbst einfache Verbindungen, wie z. B. *n*-Butylstannonsäure (BuSn(O)OH)_n, Diphenylzinnoxid (Ph₂SnO)_n, Phenylstibonsäure [PhSb(O)(OH)₂]_n oder Phenyltellurinsäure [PhTe(O)OH]_n, sich nicht weiter charakterisieren ließen, weil sie amorphe, wahrscheinlich polymere in den gängigen Lösungsmitteln unlösliche Verbindungen sind. Durch das Prinzip der kinetischen Stabilisierung gelang es jedoch in den letzten Jahren, eine Reihe von definierten Organoelementoxiden des Zinns, Tellurs und Antimons mit sperrigen, organischen Resten herzustellen und zu charakterisieren.


Die Tendenz der Organostannanole zur Kondensation unter Bildung von Organostannoxanen wächst mit abnehmender Zahl der organischen Reste. Sie ist insgesamt geringer als die der Organogermanole. Die zinngebundenen Sauerstoffatome bilden starke Brücken aus. Demgemäß sind die meisten Triorganozinnhydroxide R_3SnOH (R = Alkyl- oder Arylrest) in Lösung dimer und im Festkörper polymer aufgebaut. Die meisten Diorganozinndihydroxide $R_2Sn(OH)_2$ (R = Alkyl- oder Arylrest) bilden Organopolystannone ($R_2SnO)_n$, die sich zu Doppelketten zusammenschließen.⁴

Im Gegensatz zu Tri- und Diorganylzinnhalogeniden, bei denen die im Verlauf der Hydrolyse gebildeten Reaktionsprodukte bis auf einige wenige Ausnahmen chemisch und strukturell weitgehend gesichert sind, ist über die entsprechenden Reaktionen der Monoorganozinntrihalogenide (RSn X_3 ; X = CI, Br, I) vergleichsweise wenig bekannt. Es ist davon auszugehen, dass die Monoorganozinntrihalogenide bis zum Erreichen der formalen Endstufe der Monoorganozinntrihydroxide RSn(OH) $_3$ ihre Halogenatome stufenweise abgeben (Schema 1).

Schema 1: Allgemeines Hydrolyseschema von Monoorganozinntrichloriden RSnCl₃.

Die Hydrolyse von *i*-Propylzinntrichlorid *i*-PrSnCl₃ führt je nach Reaktionsbedingungen zur Bildung verschiedener Produkte, die sich durch ihren Hydrolysegrad unterscheiden. Kristallographisch untersuchte Produkte umfassen *i*-PrSn(O)(OH)Cl₂·H₂O, (*i*-PrSn)₉O₈(OH)₆Cl₅·6 DMSO und [(*i*-PrSn)₁₂O₁₄(OH)₆]Cl₂ (Abbildung 2). Gemeinsames Merkmal aller Strukturen ist die Hypervalenz der Zinnatome, die entweder penta- oder hexakoordiniert vorliegen. ^{5,6,7}

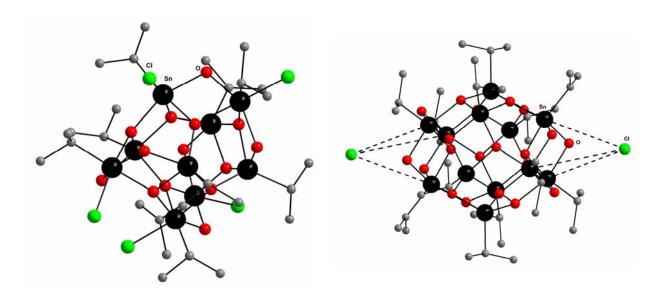


Abbildung 2: Röntgenstrukturen von i-PrSn(O)(OH)Cl₂·H₂O, (i-PrSn)₉O₈(OH)₆Cl₅·6DMSO und [(i-PrSn)₁₂O₁₄(OH)₆]Cl₂.

Die Hydrolyse des Tris(trimethylsilyl)methylzinntrichlorids [(Me₃Si)₃C]₃SnCl₃ mit Wasser lieferte das trimere Monoorganostannonsäurechlorid {[(Me₃Si)₃C]₃Sn(O)Cl}₃ als Hauptprodukt und als Nebenprodukt die erwartete Monoorganostannonsäure {[(Me₃Si)₃C]₃Sn(O)OH}₃ (Abbildung 3). Die Ausbeute der Monoorganostannonsäure ließ sich durch Umsetzung des Zinnsäurechlorids mit Lithiumhydroxid LiOH in siedendem Hexan noch steigern, was darauf hindeutet, dass die Zinn-Chlor-Bindung hydrolyseunempfindlicher als erwartet ist. Die Molekülstruktur der Monoorganostannonsäure bildet über Sn-O-Sn-Brücken einen sechsgliedrigen Sn₃O₃-Ring.⁸

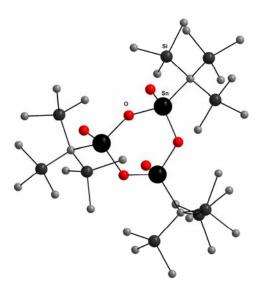


Abbildung 3: Molekülstruktur der Monoorganostannonsäure {[(Me₃Si)₃C]₃Sn(O)OH}₃.

Die Tendenz zur Ausbildung hyperkoordinierter Strukturen kann bei Stannoxanen durch organische Reste verhindert werden. Die noch größere Umsetzung von Tris(trimethylsilyl)methylzinntribromid [(Me₃Si)₃C]₃SnBr₃ mit Natriumoxid liefert den Tris(trimethylsilyI)methylzinn-Sauerstoff-Cluster {[(Me₃Si)₃C]₃Sn}₄O₆, welcher eine Adamantanstruktur mit tetraedrisch koordinierten Zinnatomen aufweist (Abbildung 4).9 Dieser kann formal als ein Anhydrid der entsprechenden Stannonsäure aufgefasst werden.

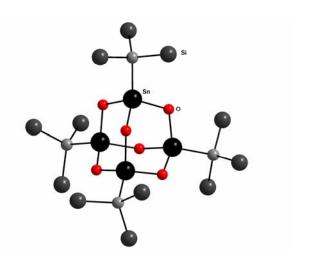


Abbildung 4: Molekülstruktur von {[(Me₃Si)₃C]₃Sn}₄O₆.

Obwohl Diorganotelluroxide zu den am längsten bekannten metallorganischen Tellurverbindungen zählen, sind bisher nur wenige Exemplare dieser Verbindungsklasse strukturell charakterisiert worden. Die Synthese des Diphenyltelluroxids Ph₂TeO wurde von Lederer bereits im Jahr 1912 veröffentlicht. In dieser Struktur liegt das

Diphenyltelluroxid Ph_2TeO als asymmetrisches, über sekundäre Wechselwirkungen verbrücktes Dimer vor, in dem die formalen Te-O-Doppelbindungen leicht verlängert sind. Die zu Diphenyltelluroxid Ph_2TeO analoge Verbindung Di-p-methoxyphenyltelluroxid (p-MeOC $_6H_4$) $_2TeO$ zeigt dagegen völlig andere Strukturmerkmale. Hier liegt das Diorganotelluroxid im Festkörper als Polymer mit einer alternierenden Sequenz von Te-O-Einfachbindungen vor (Abbildung 5).

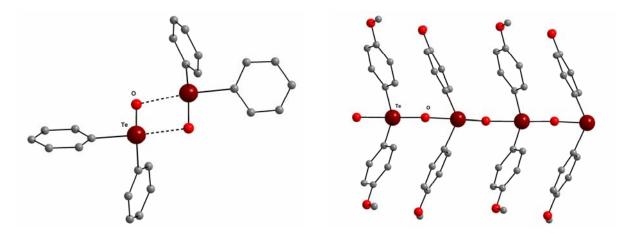


Abbildung 5: Molekülstrukturen von Ph₂TeO und (*p*-MeOC₆H₄)₂TeO.

Die Hydrolyse von Monoorganotellurtrihalogeniden RTe X_3 (R = Alkyl, Aryl; X = Cl, Br, I) führte zu amorphen in den gängigen Lösungsmitteln unlöslichen, wahrscheinlich oligooder polymeren Monoorganotellurinsäuren [RTe(O)OH]_n, die sich nicht weiter charakterisieren ließen. ¹³

Die bisher einzige Ausnahme dazu stellt das erst kürzlich publizierte erste molekulare Monoorganotelluroxan [Li(THF)₄]{(*i*-PrTe)₁₂O₁₆Br₄[Li(THF)Br]₄}Br}·2THF dar, das unerwartet bei einem Versuch, Isopropylhex-1-ynyltellurid herzustellen, als Hydrolyse-produkt in geringen Ausbeuten erhalten wurde (Abbildung 6).¹⁴ Obwohl eine direkte Synthese für diese Verbindung bislang nicht bekannt ist, deutet dieser Monoorganotelluroxan-Cluster auf eine ähnlich interessante und vielseitige Chemie mit abwechslungsreichen Strukturmotiven hin, wie sie für Zinn bereits gefunden wurden.

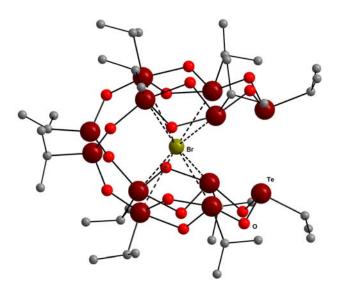


Abbildung 6: Ausschnitt der Röntgenstruktur von [Li(THF)]{(*i*-PrTe)₁₂O₁₆Br₄[Li(THF)Br]₄Br}·2THF.

Die Tendenz zur Ausbildung hyperkoordinierter Strukturen lässt sich auch bei den Organo-Sauerstoff-Antimonverbindungen beobachten.

Für das Triphenylantimonoxid konnten zwei unterschiedliche Strukturtypen identifiziert werden. Es kann sowohl als asymmetrisches Dimer (Ph₃SbO)₂¹⁵ mit zwei unterschiedlich langen Sb-O-Bindungen, als auch als eindimensionales Polymer (Ph₃SbO)_n¹⁶ mit identischen Sb-O-Bindungen vorliegen (Abbildung 7).

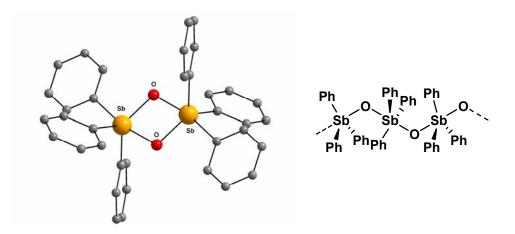


Abbildung 7: Molekülstruktur des dimeren (Ph₃SbO)₂ und EXAFS-Struktur des polymeren (Ph₃SbO)_n.

Die Oxidation von Bis-di-o-toloylstiban (o-Tol $_2$ Sb) $_2$ mit Luftsauerstoff führt zur Bildung der tetrameren Clusterverbindung (o-Tol $_2$ Sb) $_4$ O $_6$ (Abbildung 8). Auch in dieser Verbindung liegen die Antimonatome hyperkoordinert vor.

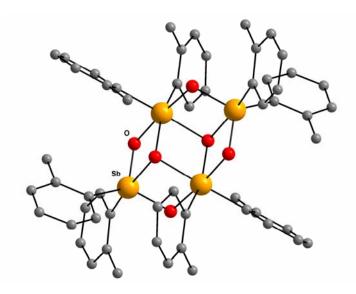
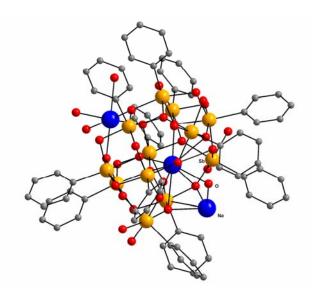
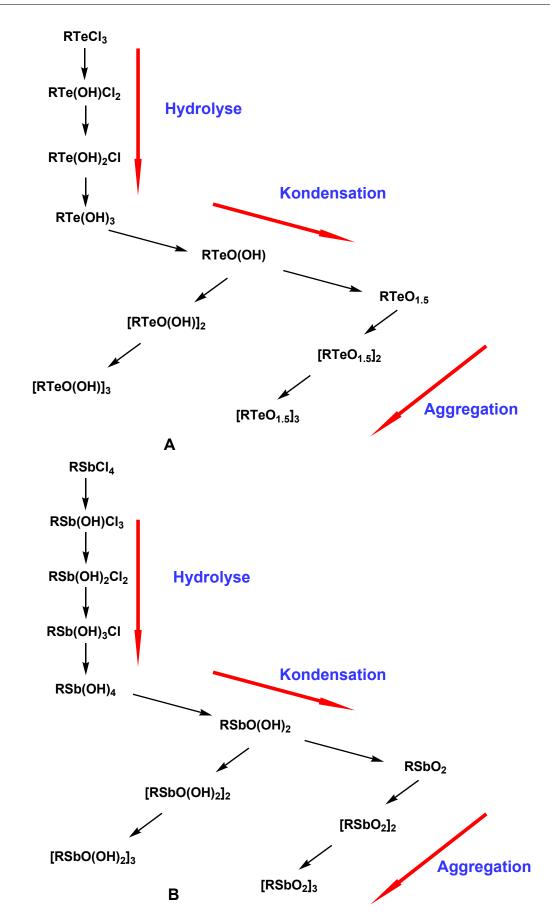



Abbildung 8: Molekülstruktur von (o-Tol₂Sb)₄O₆.

Die Erfolge des Salvarsans® [(4-HO-,3-NH₂-C₆H₃)As]_n (n = 3-5)] in der Chemotherapie führten auch zu der Erforschung der analogen Stibonsäuren.³ Im Rahmen dieser Studien wurde schon vor über 100 Jahren die erste Phenylstibonsäure [PhSb(O)(OH)₂]_n durch die Hydrolyse von Phenylantimon(V)tetrachlorid als amorphes Pulver erhalten. ¹⁸ Molekulargewichtsbestimmungen und ¹²¹Sb-Mößbauerspektren konnten einen hohen Polymerisationsgrad und eine trigonal-bipyramidale Struktur für die Phenylstibonsäure [PhSb(O)(OH)₂]_n aufzeigen. ¹⁹ Dies erklärt die schlechte Löslichkeit in allen gängigen Lösungsmitteln. Bei der Umsetzung der Phenylstibonsäure mit Mangan(II)acetat in Acetonitril unter solvothermalen Bedingungen konnte vor kurzem als Nebenprodukt eine Natriumverbindung der Phenylstibonsäure erhalten und kristallographisch untersucht werden. Die Molekülstruktur des Natrium-Antimon-Clusters [Na₂₁(PhSb)₄₈O₁₁₄]·46H₂O·4CH₃CN zeigt als sich wiederholende Einheit einen [Na₄(PHSb)₁₆O₃₆]-Käfig (Abbildung 9). Dies lässt darauf schließen, dass es unter diesen Bedingungen zu einer Verringerung des Polymerisationsgrads kommt. ²⁰

 $Abbildung \ 9: \qquad \text{Ausschnitt der Molekülstruktur von } \ [\text{Na}_{21}(\text{PhSb})_{48}O_{114}] \cdot 46H_2O \cdot 4CH_3CN.$


2 Aufgabenstellung

Ziel dieser Arbeit ist die Synthese und Charakterisierung der ersten wohl definierten Tellurin- RTe(O)OH und Stibonsäure RSb(O)(OH) $_2$ durch die basische Hydrolyse geeigneter Aryltellur(IV)trichloride bzw. Arylantimon(V)tetrachloride. Bei diesen Strukturuntersuchungen stehen Fragen zur Natur der Element-Sauerstoff-Bindung (Doppelbzw. Einfachbindungen oder sekundäre Wechselwirkungen) und zum Auftreten von Hypervalenz der p-Block-Elemente im Mittelpunkt.

Der Polymerbildung bei der Hydrolyse der Monoorganotellur(IV)trihalogenide RTeX₃ und Monoorganoantimon(V)tetrachloride RSbX₄ soll durch die kinetische Stabilisierung des Tellurs und Antimons mit geeigneten sterisch anspruchsvollen organischen Liganden entgegengewirkt werden.

Bei der basischen Hydrolyse dieser sterisch anspruchsvollen Monoorganotellur(IV)-trihalogenide RTeX₃ und Monoorganoantimon(V)tetrahalogenide RSbX₄ kann es während des Reaktionsverlaufs prinzipiell zu einer Abstufung der Reaktivität in Abhängigkeit der Abgangsgruppe X kommen, so dass die Möglichkeit besteht, Produkte mit unterschiedlichem Hydrolysegrad zu isolieren. Mit dem Einsetzen der Hydrolyse laufen voraussichtlich zur gleichen Zeit sowohl Kondensations- als auch Aggregationsprozesse ab, so dass sich die genaue Struktur der Produkte nicht pauschal voraussagen lässt. Sie mag sogar in großem Maße vom sterischen Anspruch der organischen Reste abhängen.

Ein allgemeines Hydrolyseschema mit einer Vielzahl an möglichen Hydrolyseprodukten der Monoorganotellur(IV)trihalogenide RTeX₃ und Monoorganoantimon(V)tetrahalogenide RSbX₄ ist in Schema 2 abgebildet.

Schema 2: Allgemeines Hydrolyseschema der (A) Monoorganotellur(IV)trichloride und der (B) Monoorganoantimon(V)tetrachloride.

Für die Synthese sperriger Organometallverbindungen findet sich in der Literatur eine Vielzahl von sterisch anspruchsvollen Organolithiumverbindungen, die an schwere *p*-Block-Elemente gebunden werden können bzw. schon gebunden wurden (Abbildung 10).²¹

Abbildung 10: Sterisch anspruchsvolle Lithiumorganyle.

Im Rahmen dieser Arbeit sollen das 2,4,6-Tri-*tert*-butylphenyllithium (Supermesityllithium) und das 2,6-Dimesitylphenyllithium (*m*-Terphenyllithium) zur kinetischen Stabilisierung verwendet werden.

Supermesitylligand Mes* fand bereits mehrere Anwendungen Koordinationschemie der Neben- sowie der Hauptgruppenmetalle. Es gelang erstmals eine P-P-Doppelbindung mit dem stabilen Bis(2,4,6-tri-tert-butylphenyl)diphosphin Mes*P=PMes* herzustellen und vollständig zu charakterisieren.²² Des Weiteren konnten mit dem Supermesitylligand Mes* die ersten stabilen monomeren Dihalogenide mit Elementen der dritten Hauptgruppe REX₂ (E = Al, Ga, In; X = Cl, Br) synthetisiert werden.²³ In der Gruppe der Chalkogene konnten unter anderem das Bissupermesityldiselenid Mes*SeSeMes*24 und zahlreiche Supermesitylselenyl(pseudo)halogenide des Typs Mes*SeX_n (mit X = F^{25} , Cl^{26} , Br^{26} , I^{27} und CN^{26} , n = 1 und 3) dargestellt werden. Auch in die Koordinationschemie des Tellurs wurde der Supermesitylligand bereits eingeführt. Du Mont und Mitarbeiter konnten 1984 das Bissupermesitylditellurid Mes*TeTeMes* darstellen. Ausgehend von dieser Verbindung gelang es, erste oxidative Additionen mit Iod und Brom an diesem Ditellurid durchzuführen, die zum SupermesityItellurenyI(II)bromid Mes*TeBr und SupermesityItellurenyI(II)iodid führten Mes*Tel.30,49

In der Literatur ist eine Vielzahl verschiedener Terphenylliganden beschrieben, die sich vor allem in der Wahl der Substituenten an den *ortho*-Phenylgruppen unterscheiden

(Abbildung 10). Mit dem sterisch extrem anspruchsvollen Bis(2,6-bis(2,4,6-triisopropyl-phenyl) phenyl) phenylliganden, abgekürzt als Trip-Terphenylliganden $2,6-Trip_2C_6H_3$, konnte die erste Verbindung mit einer Chrom-Chrom-Fünffachbindung stabilisiert werden $(2,6-Trip_2C_6H_3Cr)_2$. Auch in der Chemie der Hauptgruppenmetalle wurden bereits Terphenylliganden verwendet. So konnte mit dem 2,6-Dimesitylphenylliganden eine Reihe von Verbindungen mit Pentel-Doppelbindungen des Typs m-TerE=Em-Ter $(E=P, As, Sb \ und Bi)$ dargestellt werden. Bis heute sind nur wenige Terphenyltellurverbindungen bekannt. Mit dem Trip-Terphenylliganden konnten die Trip-Terphenyltellurenyl(II)(pseudo)halogenide 2,6-Trip $_2C_6H_3$ Tel und 2,6-Trip $_2C_6H_3$ TeN $_3$ dargestellt werden.

3 Ergebnisse und Diskussion

Zunächst sollen die sterisch anspruchsvollen Monoorganotellur(IV)trihalogenide RTeX₃ nach den in der Literatur bekannten Reaktionswegen gebildet werden. Dazu müssen sterisch anspruchsvolle Organolithiumverbindungen synthetisiert und anschließend mit elementarem Tellurpulver umgesetzt werden. Dabei bilden sich als Zwischenstufe Lithiumorganotellurate, die *in situ* durch Luftsauerstoff zu Diorganoditelluriden oxidiert werden.³⁰ Die Diorganoditelluride dienen als stabile Ausgangsverbindungen für die oxidativen Additionsreaktionen der entsprechenden Halogene oder synthetischen Äquivalente wie z. B. Sulfurylchlorid. Dabei sollte auch untersucht werden, ob es prinzipiell möglich ist, mit Hilfe der sterisch anspruchsvollen Liganden Monoorganotellurenyl(II)halogenide RTeX zu isolieren und zu charakterisieren (Schema 3). Gewöhnlich sind RTeX instabile Verbindungen, die sich spontan durch Disproportionierung oder Aggregationsreaktionen zersetzen.^{31,32,33}

Te
$$\xrightarrow{\text{RLi}}$$
 2 RTeLi $\xrightarrow{\text{O}_2}$ RTeTeR $\xrightarrow{\text{X}_2}$ $\left[\begin{array}{c} 2 \text{ RTeX} \end{array}\right]$ $\xrightarrow{\text{2 RTeX}_3}$ 2 RTeX₃

R = Mes*, m-Ter $\qquad \qquad \text{X = SO}_2\text{Cl}_2, \text{Br}_2, \text{I}_2$

Schema 3: Allgemeine Syntheseroute zur Herstellung von Monoorganotellur(IV)trihalogeniden RTeX₃.

Die Addition von Halogenen an die Diorganoditelluride RTeTeR liefert als stabile Produkte die Monoorganotellur(IV)trihalogenide RTeX₃.

3.1 SupermesityItellurverbindungen

Optimierte Synthese von Bissupermesitylditellurid (Mes*Te)₂ (1)

Die Synthese zum Bissupermesitylditellurid (Mes*Te)₂ geht von dem kommerziell erhältlichen 1,3,5-Tri-*tert*-butylbenzol Mes* aus. Die Bromierung gelingt nach der von D. E. Pearson entwickelten Methode, der die elektrophile Substitution in Trimethylphosphat als Lösungsmittel durchführte.³⁴ Das Trimethylphosphat reagiert mit dem gebildeten Bromwasserstoff so schnell zu Methylbromid, dass die Reaktion quasi in einer bromwasserstofffreien Umgebung stattfindet, wodurch es zu keiner Substitution einer *tert*-Butylgruppe kommen kann.

Das Supermesitylbromid wird in das Supermesityllithium überführt, welches dann mit Tellur zur Reaktion gebracht wird. Dabei bildet sich intermediär Lithiumsupermesityltellurat Mes*TeLi, welches durch Oxidation mit Luftsauerstoff in das Bissupermesitylditellurid (Mes*Te)₂ (1) überführt wird (Schema 4).

Schema 4: Darstellung des Bissupermesitylditellurids (Mes*Te)₂ (1).

Du Mont und Mitarbeiter erhielten das Mes*Li durch eine Transmetallierung mit *n*-Butyllithium, welches vor der Umsetzung mit Tellurpulver isoliert werden musste, um eine Folgereaktion von Lithiumsupermesityltelluorat Mes*TeLi mit Butylbromid zu vermeiden.^{35,30} Um eine Isolation der empfindlichen Lithiumspezies zu umgehen, verwenden wir Lithiumgranulat und 4,4`-Di-*tert*-butylbiphenyl als Einelektron-Transfer-

Katalysator.³⁶ Diese Methode ermöglicht es uns, das Bissupermesitylditellurid (Mes*Te)₂ (**1**) in einer Eintopfreaktion unter milden Bedingungen (Raumtemperatur) ausgehend von 1,3,5-Tri-*tert*-butylbenzol Mes* in guten Ausbeuten zu synthetisieren.

SupermesityItellurhalogenide

Im Gegensatz zu den Monoorganotellur(IV)trihalogeniden sind Monoorganotellurenyl(II)halogenide RTeX (R = Alkyl und Aryl; X = F, Cl, Br, I) wenig untersucht. Die meisten RTeX, wie z. B. Phenyltellurenyl(II)bromid, werden *in situ* durch oxidative Additionen eines Äquivalents des entsprechenden Halogens an Monoorganoditelluride (RTe)₂ oder durch eine Synproportionierungsreaktion von (RTe)₂ und Monoorganotellurtrihalogeniden RTeX₃ erhalten. 10

Schema 5: Bildung von Monoorganotellurenyl(II)halogeniden.

Schulz und Klar beschrieben eine Reihe von metastabilen Organotellurenyl(II)-halogeniden RTeX (z. B. R = Ph, 4-MeOC₆H₄, 4-PhC₆H₄; X = Br, I), mit kleineren organischen Substituenten. Ihnen wurden aufgrund ihrer geringen Löslichkeit in den meisten organischen Lösemitteln polymere Strukturen zugeschrieben. Phenyltellurenyl(II)chlorid PhTeCl und Phenyltellurenyl(II)bromid PhTeBr sind nur metastabil und disproportionieren schnell zu Diorganotellur(IV)dichloriden Ph₂TeX₂ (X = Cl, Br) und elementarem Tellur. Phenyltellurenyl(II)iodid PhTel zyklisiert dagegen unter normalen Bedingungen zu der tetrameren Verbindung (PhTel)₄, dessen viergliedrige Ringstruktur durch Einkristallröntgendiffraktometrie aufgeklärt werden konnte. Phalogenierung von Phenyldiselenid (PhSe)₂ mit Cl₂ und Br₂ ergab analoge Selentetramere (PhSeX)₄ (X = Cl, Br), während die Reaktion mit I₂ einen Charge-Transfer-Komplex Ph₂Se₂I₂ mit zweikerniger Struktur und sekundären Selen-lod-Kontakten lieferte (Schema 6). Phalogenierung (Ph.4) and Phalogenierung von Phenyldiselenid Etruktur und sekundären Selen-lod-Kontakten lieferte (Schema 6).

Schema 6: Tetramere Strukturen von PhTel, PhSeCl, PhSeBr und Ph₂Se₂l₂.

Bei Raumtemperatur stabile Monoorganotellurenyl(II)halogenide RTeX sind im Allgemeinen durch inter- 39,42,43,44,45 oder intramolekulare 46,47,48 Donorfunktionen elektronisch stabilisiert. Kinetisch stabilisierte RTeX sind bis heute sehr selten. Bisher konnten nur drei Monoorganotellurenyl(II)iodide RTeI vollständig charakterisiert werden [R = 2,6-(2,4,6-i-Pr $_3$ C $_6$ H $_2$) $_2$ C $_6$ H $_3$ ^{49,48}; 2,4,6-t-Bu $_3$ C $_6$ H $_2$ ^{49,50}; (PhMe $_2$ Si) $_3$ C^{51,52}].

Das Supermesityltellurenyl(II)chlorid Mes*TeCl (2) wird durch die Umsetzung von Bissupermesitylditellurid (Mes*Te)₂ (1) mit einem Äquivalent Sulfurylchlorid SO₂Cl₂ und durch eine Synproportionierung des Bissupermesitylditellurids (Mes*Te)₂ (1) mit einem Äquivalent Supermesityltellur(IV)trichlorid Mes*TeCl₃ (3) quantitativ erhalten (Schema 7). Die Bildung des Supermesityltellurenyl(II)chlorids muss in einem Donorlösungsmittel wie THF, Ether oder Schwefelkohlenstoff erfolgen.

$$t\text{-Bu}$$
 $t\text{-Bu}$
 $t\text{-Bu}$

Schema 7: Synthesewege zur Darstellung von Mes*TeCl (2) und Mes*TeBr (3).

Versuche, Verbindung **2** in einem nicht koordinierenden Lösungsmittel, wie z. B. Hexan zu synthetisieren, schlugen fehl. Bei Temperaturen über 15°C zersetzt sich das Mes*TeCl (**2**) auch in Donorlösungsmitteln und es entsteht ein Gemenge, aus dem Supermesitylditellurid (Mes*Te)₂ isoliert werden konnte. Lösungen des Supermesityltellurenyl(II)chlorids Mes*TeCl (**2**) bleiben in Donorlösungsmitteln in verschlossenen Schlenkgefäßen bei –15°C für mehrere Wochen unverändert. Aus diesen Lösungen wird Supermesityltellurenyl(II)chlorid Mes*TeCl (**2**) in Form von dunkelblauen kristallinen Nadeln erhalten. Einmal isoliert, ist Verbindung **2** nur noch schwer löslich.

Das lässt auf eine hohe Gitterenergie schließen. Diese lässt sich durch die supramolekulare Verknüpfung der einzelnen Moleküle von Verbindung 2 erklären (Abbildung 11). Das 125 Te-NMR-Spektrum von Supermesityltellurenyl(II)chlorid Mes*TeCl (2) zeigt ein Signal bei δ = 1179.4 ppm, welches im Bereich von Supermesityltellurenyl(II)iodid Mes*Tel (δ = 1162 ppm) liegt. Nachdem es gelungen ist, das Supermesityltellurenyl(II)chlorid Mes*TeCl (δ) zu synthetisieren, sollte ebenfalls die bereits bekannte, aber kristallographisch nicht untersuchte Bromverbindung gebildet werden.

Die Bildung des Supermesityltellurenyl(II)bromids Mes*TeBr (3) gelingt nach der von Du Mont und Mitarbeitern beschriebenen Synthese durch Addition eines Äquivalents Brom an Bissupermesitylditellurid (Mes*Te)₂ (1), wodurch Verbindung 3 als dunkelblauer kristalliner Feststoff erhalten wird (Schema 7).⁴⁹ Das ¹²⁵Te-NMR-Spektrum von Supermesityltellurenyl(II)bromid zeigt ein Signal bei δ = 1170.3 ppm, welches in der Größenordnung der Signale des Mes*TeCl und des Mes*Tel liegt.⁴⁸ Die Molekülstrukturen der Verbindungen 2 und 3 sind in Abbildung 11 dargestellt. Verbindung 2 kristallisiert in der monoklinen Raumgruppe *C2/c* mit acht Formeleinheiten in der Elementarzelle. Verbindung 3 kristallisiert in der orthorhombischen Raumgruppe $P2_12_12_1$ mit vier Formeleinheiten in der Elementarzelle.

Die Molekülstruktur von Supermesityltellurenyl(II)bromid Mes*TeBr (3) ist isotyp zu der des SupermesityItellurenyI(II)chlorids Mes*TeCl (2), lediglich die Te1-Br1-Bindungslänge liegt mit 2.532(4) Å wie erwartet zwischen den Bindungslängen des Supermesityltellurenyl(II)chlorids Mes*TeCl (2) mit 2.384(1) Å und des Supermesityltellurenyl(II)iodids Mes*Tel mit 2.7181 (6) Å.50 Die kleinen Cl1-Te1-C10 und Br1-Te1-C10 Winkel von 93.41(8)° und 93.60(5)° sind vergleichbar mit dem des Supermesityltellurenyl(II)iodids Mes*Tel von 95.75(8)°.50 Die Te1-Atome des Supermesityltellurenyl(II)chlorids Mes*TeCl (2) und des SupermesityItellurenyl(II)bromids Mes*TeBr (3) weichen von der Phenylringebene um 0.248 Å und 0.243 Å ab. Die Winkel C11-C10-Te1 und C15-C10-Te1 mit 118.98(19) und 118.81(20)° weichen nur sehr gering von den idealen 120° ab. Im Kristallgitter sind einzelne Moleküle von Verbindungen 2 und 3 über sekundäre Te-CI-Wechselwirkungen bzw. mit einem Te1-Cl1a-Abstand von 3.677(1) (Symmetriecode: a = 1+x, y, z) und einem Te1-Br1a-Abstand von 3.592(3) Å (Symmetriecode: a = 1+x, y, z) zu eindimensionalen Polymeren miteinander verknüpft (Abbildung 11).

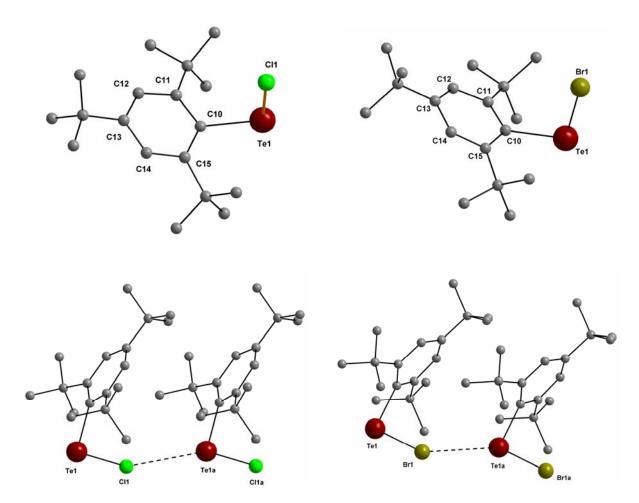


Abbildung 11: Molekülstrukturen von Verbindungen **2** und **3**. Ausgewählte Bindungslängen (Å) und -winkel (°): **2**) Te1-Cl1 2.384(1), Te1-Cl0 2.134(3), Cl1a-Te1 3.677(1), Cl1-Te1-Cl0 93.41(8), Cl1-Cl0-Te1 119.0(2), Cl5-Cl0-Te1 118.8(2), Cl3-Cl0-Te1 160.0(1)); (Symmetriecode: a = 1+x, y, z); (Symmetriecode: a = -1x, y, z). **3**) Te1-Br1 2.532(4), Te1-Cl0 2.1361(18), Br1-Te1a 3.592(3), Cl0-Te1-Br1 93.60(5), Cl5-Cl0-Te1 118.87(13), Cl1-Cl0-Te1 118.98(13); (Symmetriecode: a = 1+x, y, z).

Die sekundäre Wechselwirkungen von Te1-Cl1a und Te1-Br1a erinnern an die Wechselwirkungen von Iod und Chlor in α - und β -lodchlorid I-Cl. ⁵³ Im Gegensatz zu der Struktur von α - und β -I-Cl, in denen zusätzlich zu den I-Cl Wechselwirkungen auch I-I-Wechselwirkungen vorhanden sind, gibt es in den Verbindungen 2 und 3 keine Te-Te-Wechselwirkung. Das Supermesityltellurenyl(II)chlorid Mes*TeCl (2), das im Rahmen dieser Arbeit synthetisiert wurde, ist das erste vollständig charakterisierte Monoorganotellurenyl(II)chlorid. Die Supermesityltellurenyl(II)halogenide Mes*TeBr (3) und -iodid Mes*Tel wurden bereits synthetisiert und charakterisiert, wobei nur für das Mes*Tel eine Molekülstruktur bekannt war. ^{49,50} Im Festkörper liegen sowohl das Mes*TeCl (2), Mes*TeBr (3) wie auch das Mes*Tel als monomere Verbindungen vor, die nur über sekundäre Te-X-Wechselwirkungen (X = Cl, Br, I) miteinander verbunden sind.

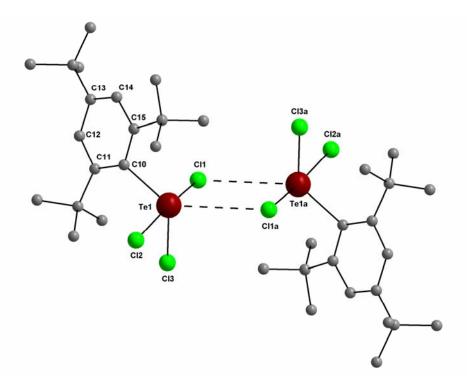
Die Synthese des Supermesityltellur(IV)trichlorids Mes*TeCl₃ (**4**) gelingt durch die Chlorierung von Bissupermesitylditellurid (Mes*Te)₂ (**1**) mit drei Äquivalenten Sulfurylchlorid SO₂Cl₂ in koordinierenden Lösungsmitteln wie THF, Diethylether oder Schwefelkohlenstoff. Man erhält Verbindung **4** in nahezu quantitativer Ausbeute als hellgelben kristallinen Feststoff. Wird die Reaktion in nicht koordinierenden Lösungsmitteln wie Hexan durchgeführt, gelingt die Bildung des gewünschten Supermesityltellur(IV)trichlorids Mes*TeCl₃ (**4**) nicht.

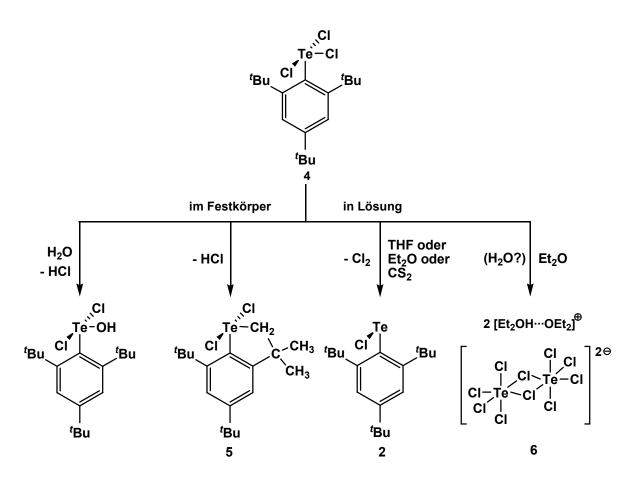
Die Chlorierung erfolgt in zwei Stufen. Erst findet die oxidative Spaltung der Te-Te-Bindung durch ein Äquivalent SO₂Cl₂ statt, anschließend die Oxidation der Te-Atome in die Oxidationsstufe IV durch zwei weitere Äquivalente SO₂Cl₂ (Schema 8).

$$t\text{-Bu}$$
 $t\text{-Bu}$
 $t\text{-Bu}$

Schema 8: Darstellung von Supermesityltellurtrichlorid Mes*TeCl₃ (4).

Verbindung **4** zeigt im 125 Te-NMR-Spektrum ein Signal bei δ = 1791.0 ppm, das im Vergleich zu dem Signal von Phenyltellurtrichlorid PhTeCl₃ (δ = 917 ppm in C₆D₆) ins Tieffeld verschoben ist. ⁵⁴ Das Supermesitytellur(IV)trichlorid kristallisiert in der triklinen Raumgruppe $P\bar{1}$ mit zwei Formeleinheiten in der Elementarzelle. Die Molekülstruktur von **4** ist in Abbildung 12 dargestellt.




Abbildung 12: Molekülstruktur von **4**.

Ausgewählte Bindungslängen (Å) und -winkel (°): Te1-Cl1 2.504(2), Te1-Cl2 2.484(2), Te1-Cl3 2.330(3), Te1-Cl1a 3.5698(3), Te1-C10 2.178(8), Cl1-Te1-C10 83.71(9), Cl2-Te1-Cl0 98.21(9), Cl3-Te1-Cl0 116.82(9), Cl1-Te1-Cl2 168.96(3), Cl1-Te1-Cl3 84.68(4), Cl2-Te1-Cl3 84.76(4), C11-C10-Te1 127.1(2), C15-C10-Te1 109.1(2), C13-C10-Te1 157.6(2); (Symmetricode: a = -x, -y, 1-z).

Die Geometrie des Telluratoms im Supermesityltellur(IV)trichlorid Mes*TeCl₃ (4) lässt sich am besten als verzerrt trigonal-bipyramidal beschreiben. Der Supermesitylligand, ein Chloratom (Cl₃) und das freie Elektronenpaar am Tellur nehmen die äquatorialen Positionen ein. Die beiden axialen Positionen werden von zwei weiteren Chloratomen (Cl₁, Cl₂) besetzt. Die Bindung zu dem äquatorialen Chloratom Te₁-Cl₃ ist mit 2.330(3) Å signifikant kürzer als die zu den axialen Chloratomen Te₁-Cl₁ und Te₁-Cl₂ mit 2.504(2) Å und 2.484(2) Å. Der geringe Unterschied in der Bindungslänge der beiden axialen Chloratome kommt durch eine sekundäre Cl-Te-Wechselwirkung mit einem Cl₁-Te₁a-Abstand von 3.569(13) Å (Symmetriecode: a = -x, -y, -z) zustande. Durch diese sekundären Wechselwirkungen werden zwei unabhängige Moleküle des Supermesityltellur(IV)trichlorids (4) über ein kristallographisches Inversionszentrum zu einem Dimer verbrückt. Im Festkörper bilden viele Monoorganotellur(IV)trichloride RTeCl₃ eine intermolekulare Koordination der Chloratome aus, wodurch sich bei kleineren organischen Resten polymere Strukturen ausbilden.⁵⁵

Im Gegensatz zu allen bisher veröffentlichten Monoorganotellur(IV)trihalogeniden ist das Te1-Atom von Verbindung 4 nicht koplanar mit dem Phenylring. Der Abstand des

Te1-Atoms zur Phenylringebene beträgt 0.248 Å. Das ist auf eine starke Abstoßung des anorganischen Teils des Supermesityltellur(IV)trichlorids Mes*TeCl₃ (4) mit den beiden tert-Butylgruppen ortho-Position des Supermesitylliganden zurückzuführen. in Zusätzlich kommt es zu einer Abstoßung des Cl3-Atoms durch eine tert-Butylgruppe des Liganden, welche die Abweichung der Winkel C11-C10-Te1 und C15-C10-Te1 von den idealen 120° zu 127.13(23)° und 109.12(22)° erklärt. Diese Abweichung von der idealen Geometrie ist wahrscheinlich der Grund für die hohe Reaktivität des SupermesityItellur(IV)trichlorids Mes*TeCl₃ (4). Die meisten in der Literatur beschriebenen Monoaryltellur(IV)trihalogenide sind moderat luftund temperaturstabile Verbindungen.⁵⁶ Das Supermesityltellur(IV)trichlorid Mes*TeCl₃ (4) ist dagegen metastabil und zeigt vier unterschiedliche Zerfallswege in Abhängigkeit vom Aggregatzustand und der Gegenwart von Wasser (Schema 9).

Schema 9: Die vier Zerfallswege des Supermesityltellur(IV)trichlorids (4) Mes*TeCl₃.

Bei einem Versuch Verbindung **4** herzustellen wurde von S. Heitz in der AG Beckmann das *trans*-Supermesityltellurhydroxydichlorid Mes*TeCl₂OH erhalten.⁵⁷ Hier zeigt sich ebenfalls eine Abweichung des Telluratoms von der idealen Phenylringebene von 0.189 Å, die jedoch kleiner ist als bei Verbindung **4**, was auf den kleineren Radius des

Sauerstoffatoms zurückgeführt werden kann. Diese verringerte Wechselwirkung in Mes*TeCl₂OH mit den *tert*-Butylgruppen des Liganden ist vermutlich die Triebkraft der Hydrolyse.

Wird das SupermesityItellur(IV)trichlorid Mes*TeCl₃ (4) für mehrere Tage bei Raumtemperatur unter Argon aufbewahrt, entfärbt es sich unter Bildung des bizyklischen Diorganotellur(IV)dichlorids 5,7-Di-tert-butyl-hydro-3,3-dimethylbenzol-[b]tellurophen-1,1-dichlorid (5). Die Bildung von Verbindung 5 kann als eine intramolekulare radikalische Reaktion des Cl3-Atoms mit einer Methylgruppe einer in ortho-Position gebundenen tert-Butylgruppe unter HCl-Eliminierung betrachtet werden. Dabei kommt es zur Knüpfung einer Te-C-Bindung. Die Lebensdauer des Supermesityltellur(IV)trichlorids Mes*TeCl₃ (4) kann durch Erniedrigung der Temperatur auf 0°C und der Lagerung in einem dynamischen Vakuum verlängert werden. Vor allem die zweite Beobachtung lässt darauf schließen, dass es einen autokatalytischen Effekt des gebildeten HCl gibt, der die Reaktion von Verbindung 4 zu Verbindung 5 beschleunigt. Eine große Tendenz des Supermesitylliganden zu intramolekularen Ringschlüssen wurde bereits früher an Dichloriden der Pniktogenverbindungen RECl₂ (E = P, As, Sb) beobachtet.⁵⁸ Das bizyklische Diorganotellurdichlorid **5** ist nur schlecht in den meisten organischen Lösungsmitteln löslich. Das ¹²⁵Te-NMR Spektrum zeigt ein Signal bei δ = 1107.0 ppm, welches im Bereich anderer Diorganoditelluride wie Me₂TeCl₂ $(\delta = 1218 \text{ ppm})$ und Et₂TeCl₂ $(\delta = 1090 \text{ ppm})$ liegt.⁵⁴ Die Molekülstruktur von Verbindung 5 ist in Abbildung 13 dargestellt. Verbindung 5 kristallisiert in der monoklinen Raumgruppe P2₁/c mit zwei Formeleinheiten und einem Molekül Ethanol in der Elementarzelle.

Die Molekülstruktur des bizyklischen Diorganotellurdichlorids **5** zeigt eine trigonalbipyramidale Geometrie mit der erwarteten Anordnung der Liganden. In Verbindung **5** ist das Te1-Atom weitgehend koplanar zum Phenylring, mit einer maximalen Abweichung von der idealen Ebene von 0.036 Å. Die Bildung einer nahezu koplanaren Verbindung und der damit einhergehende Energiegewinn kann als die Triebkraft für die Bildung des bizyklischen Diorganotellurdichlorids **5** aus dem Supermesityltellur(IV)-trichlorid Mes*TeCl₃ (**4**) angesehen werden. In der Elementarzelle sind zwei Moleküle Verbindung **5** *via* sekundärer Te-Cl-Wechselwirkungen mit einem Te1-Cl1a-Abstand von 3.358(1) Å (Symmetriecode: a = -x, -y, -z) über ein kristallographisches Inversionszentrum zu einem Dimer verknüpft.

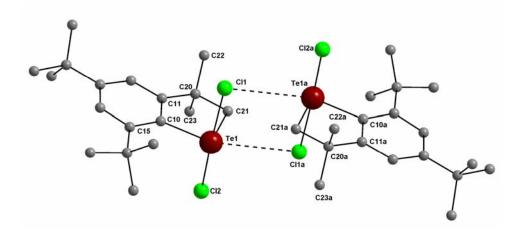


Abbildung 13: Molekülstruktur von **5**.

Ausgewählte Bindungslängen (Å) und -winkel (°): Te1-Cl1 2.584(8), Te1-Cl2 2.482(8), Te1-Cl1a 3.358(1), Te1-C21 2.106(2), Te1-C10 2.103(2), Cl1-Te1-C10 88.66(4), Cl2-Te1-C10 92.36(4), C21-Te1-C10 85.73(7), Cl1-Te1-Cl2 174.32(2), Cl1-Te1-C21 86.31(6), Cl2-Te1-C21 88.19(6), C11-C10-Te1 110.07(13), C15-C10-Te1 126.97(11), C13-C10-Te1 170.36(9); (Symmetriecode: a = -x, -y, -z).

Die Reaktivität von Supermesityltellur(IV)trichlorid Mes*TeCl₃ (**4**) in Lösung unterscheidet sich erheblich von der im Feststoff. Wird über Lösungen von Verbindung **4** in THF, CS₂ oder Et₂O in einem Schlenkgefäß trockenes Argon geleitet, findet am Mes*TeCl₃ eine reduktive Eliminierung von Cl₂ statt, so dass sich Supermesityltellurenyl(II)chlorid Mes*TeCl (**2**) bildet (Schema 9). Zwischen Mes*TeCl₃ (**4**) und Mes*TeCl (**2**) besteht ein von der Chlorkonzentration abhängiges Redoxgleichgewicht. Daraus folgt, dass sich durch erneute Addition von SO₂Cl₂ an Mes*TeCl (**2**) wieder das Mes*TeCl₃ (**4**) bilden lässt (Schema 8).

Wird eine Lösung von SupermesityItellur(IV)trichlorid Mes*TeCl₃ (**4**) in Diethylether für mehrere Tage bei -15°C in Gegenwart eines kleinen Überschusses an SulfuryIchlorid SO₂Cl₂ aufbewahrt, bildet sich ein gelber kristalliner Feststoff der mittels Einkristallröntgendiffraktometrie als ein Dekachloroditellurat-Anion mit protoniertem Ether-Kation als Gegenion [(Et₂O)₂H]₂[Te₂Cl₁₀] (**6**) identifiziert wurde. Der genaue Mechanismus der Bildung von Verbindung **6** ist ungeklärt. Eine ähnliche Verbindung [(Ph₃PO)₂H]₂[Te₂Cl₅] ebenfalls mit dem Dekachloroditellurat-Anion, bildet sich bei der Umsetzung von Triphenylphosphin mit Tellurtetrachlorid in Anwesenheit von Luftfeuchtigkeit.⁵⁹ Ein möglicher Mechanismus, bei dem eine oxidative Spaltung der Te-C-Bindung durch SulfuryIchlorid eine wichtige Rolle spielt, bedingt die Bildung von Tellurtetrachlorid (TeCl₄) in einem ersten Schritt. Dieses würde dann mit Ether, Wasser und Chloridionen zu Verbindung **6** reagieren. Die Molekülstruktur von Verbindung **6** ist in Abbildung 14

dargestellt. Verbindung **6** kristallisiert in der orthorhombischen Raumgruppe *Fddd* mit acht Formeleinheiten in der Elementarzelle.

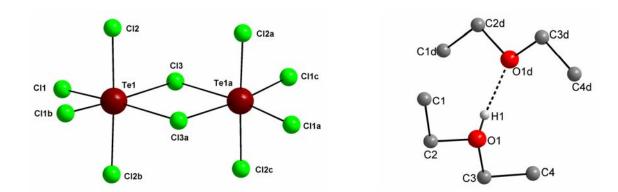


Abbildung 14: Molekülstruktur von $\bf 6$. Ausgewählte Bindungslängen (Å) und -winkel (°): Te1-Cl1 2.386(6), Te1-Cl3 2.804(7), Te1-Cl2 2.495(1), O1-H1 0.723(2), H1-O1 1.722(4), O1-O1d 2.439(6), Cl1-Te1-Cl1b 92.70(1), Cl1-Te1-Cl2 89.83(1), Cl1-Te1-Cl2b 88.40(1), Cl1-Te1-Cl3 92.03(1), Cl1-Te1-Cl3a 173.43(1), Cl2-Te1-Cl2b 177.44(1), Cl2-Te1-Cl3 87.06(1), Cl2-Te1-Cl3a 94.86(1), Te1-Cl3-Te1a 96.37(1), Te1-Cl3a-Te1a 96.37(1); (Symmetriecode a = 1.25-x, 0.25-y, z); (Symmetriecode b = 1.25-x, y, 1.25-z); (Symmetriecode d = 0.75-x, 0.25-y, z).

Die Molekülstruktur des $[Te_2Cl_{10}]^{2-}$ -Anions ist der aus der bereits bekannten Verbindung $(Ph_3PO)_2H_2[Te_2Cl_{10}]$ sehr ähnlich. Das $[Et_2O-H\cdots OEt_2]^+$ -Kation der Verbindung **6** beinhaltet ein Proton, das eine asymmetrische Wasserstoffbrückenbindung zu einem zweiten Ethermolekül ausbildet. Die Bildung eines solchen Kations wurde schon früher mit anderen Gegenionen beschrieben. Die Bindungsparameter der Wasserstoffbrückenbindung sind mit H1-O1 0.723(2) Å, H1···O1d 1.722(4) Å, O1···O1d 2.439(6) Å, O1-H1···O1d 171.66(2)° (Symmetriecode: a = 0.75-x, -0.25-y, z) fast identisch mit den schon in der Literatur beschriebenen und liegen im Bereich einer mittelstarken Wasserstoffbrückenbindung.

Die Bildung des Supermesityltellur(IV)tribromids Mes*TeBr₃ sollte analog der Synthese des Supermesityltellur(IV)trichlorids Mes*TeCl₃ (**4**), durch eine oxidative Addition von drei Äquivalenten Brom an das Supermesitylditellurid (Mes*Te)₂ (**1**) erfolgen. Durch die langsame Zugabe des Broms zu einer auf 0°C abgekühlten Lösung von (Mes*Te)₂ (**1**) kann die oxidative Addition eins Äquivalents Brom durch eine Blaufärbung der Lösung beobachtet werden. Nach der Addition der gesamten drei Äquivalente Brom färbt sich die Lösung gelb. Beim Einengen dieser Lösung oder Erwärmen auf Raumtemperatur, tritt eine spontane Zersetzung ein, wodurch sich die Lösung entfärbt und sich ein schwarzer amorpher Feststoff bildet (Schema 10).

Schema 10: Versuchte Bildung von Mes*TeBr₃.

Schon im Supermesityltellur(IV)trichlorid Mes*TeCl₃ (**4**) führte die Wechselwirkung der Chloratome mit den *tert*-Butylgruppen des Liganden zu einer unerwartet hohen Reaktivität dieser Verbindung. Bei der analogen Bromverbindung Mes*TeBr₃ sollte diese Wechselwirkung aufgrund der größeren Bromatome noch ausgeprägter sein. Die daraus resultierende noch größere Reaktivität dieser Verbindung könnte der Grund dafür sein, dass sich das Mes*TeBr₃ nicht synthetisieren ließ.

Hydrolyse von Supermesityltellur(IV)trichlorid Mes*TeCl₃ (4)

Das Supermesityltellur(IV)trichlorid Mes*TeCl₃ (**4**) wurde mit Alkalilaugen verschiedener Konzentrationen hydrolysiert. Dabei entfärbte sich das hellgelbe Mes*TeCl₃ **4** und es bildeten sich farblose armorphe Feststoffe, die nahezu unlöslich waren. Die hohe Reaktivität des Supermesityltellur(IV)trichlorids Mes*TeCl₃ (**4**) und die damit verbundene Zersetzung auch unter inerten Bedingungen haben gezeigt, dass der Supermesitylligand, trotz des großen sterischen Anspruchs, nicht die gewünschte kinetische Stabilisierung am Telluratom zeigt, durch die eine Oligo- bzw. Polymerisation der Monoorganotelluroxane verhindert werden sollte.

Die Verwendung von Di-*tert*-butylzinnoxid (*t*-Bu₂SnO)₃ als Sauerstoffquelle ermöglicht es, die Menge an Sauerstoffatomen in der Reaktionsmischung genau einzustellen. Dies ist mit wässrigen Alkalilaugen nur schwer möglich. Das Di-*tert*-butylzinnoxid (*t*-Bu₂SnO)₃ ist außerdem in den gängigen organischen Lösungsmitteln löslich, wodurch ein Zwei-

Phasen-System vermieden wird. Die Umsetzung des Mes*TeCl₃ **4** mit (*t*-Bu₂SnO)₃ in THF lieferte ein zweikerniges Stannatelluroxan der Zusammensetzung [Mes*Te(O)O-Sn*t*-Bu₂Cl] (**7**) (Schema 11). Eine Supermesityltellurinsäure konnte auch durch Änderungen der Stöchiometrie nicht erhalten werden.

$$t\text{-Bu}$$
 $t\text{-Bu}$ $t\text{-$

Schema 11: Bildung des Stannatelluroxan Mes*Te(O)O-Snt-Bu₂Cl (7).

Verbindung **7** kristallisiert als farbloser Feststoff. Das 125 Te-NMR-Spektrum des zweikernigen Stannatelluroxans Mes*Te(O)O-Sn*t*-Bu₂Cl (**7**) zeigt ein Signal bei δ = 1748.6 ppm, das 119 Sn-NMR-Spektrum ein Signal bei δ = -128.3 ppm. In beiden NMR-Spektren ist eine $^2J(^{125}$ Te-O- 119 Sn)-Kopplung von 196 Hz zu beobachten, die 83 Hz größer ist als die $^2J(^{125}$ Te-O- 119 Sn)-Kopplung der Verbindung [(p-MeOC₆H₄)₂Te(OSn*t*-Bu₂CO₃]₂ mit 113 Hz. 62

Die Molekülstruktur von Verbindung 7 ist in Abbildung 15 dargestellt. Verbindung 7 kristallisiert in der monoklinen Raumgruppe P2₁/n mit vier Formeleinheiten in der Elementarzelle. Die Molekülstruktur von Verbindung 7 zeigt, dass sich das Telluratom mit den Sauerstoffatomen, dem Zinn- und Chloratom, in einer Ebene befindet. Das Zinnatom bildet mit dem Telluratom und den beiden Sauerstoffatomen eine E₂O₂ (E = Te, Sn) viergliedrige Ringstruktur. Die Bindungen des Telluratoms zu den beiden Sauerstoffatomen Te1-O1 und Te1-O2 sind mit 1.855(6) Å und 1.885(7) Å nahezu identisch. Im Gegensatz dazu ist die Sn1-O1-Bindung mit 2.248(6) Å signifikant länger als die Sn1-O2-Bindung mit 2.084 Å. Dies lässt auf eine sekundäre Wechselwirkung des O1-Atoms zu dem Sn1-Atom schließen. Das 119Sn-NMR-Signal von 7 liegt mit δ = -128.3 ppm näher an dem des tetrakoordinierten Zinnatoms von (t-Bu₂SnO)₃ mit $\delta = -83.3$ ppm als an denen der hyperkoordinierten Zinnatome in $[(p-MeOC_6H_4)_2Te(OSnt-Bu_2CO_3]_2$ mit $\delta = -258.3$ ppm. ^{62,63}

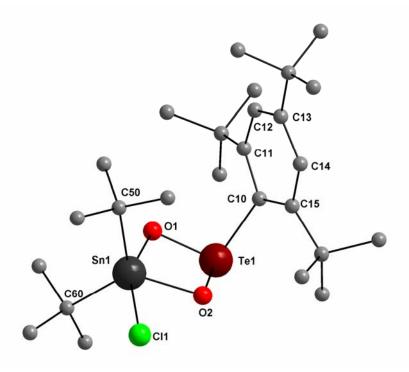


Abbildung 15: Molekülstruktur von **7**.

Ausgewählte Bindungslängen (Å) und -winkel (°): Te1-C10 2.140(1), Te1-O1 1.855(6), Te1-O2 1.885(7), Sn1-O1 2.248(6), Sn1-O2 2.084(7), Sn1-Cl1 2.462(3), Sn1-C50 2.17(1), Sn1-C60 2.177(11), O1-Te1-O2 86.4(3), O1-Te1-C10 97.2(3), O2-Te1-C10 100.0(3), Te1-O1-Sn1 98.1(3), Te1-O2-Sn1 103.0(3), O2-Sn1-C50 118.6(4), O2-Sn1-C60 118.0(4), C50-Sn1-C60 122.5(4), O2-Sn1-O1 72.4(3), C50-Sn1-O1 97.3(4), C60-Sn1-O1 90.4(4), O2-Sn1-Cl1 82.8(2), C50-Sn1-Cl1 96.0(4), C60-Sn1-Cl1 99.6(4), O1-Sn1-Cl1 155.0(1).

Dies deutet darauf hin, dass das Zinnatom in Verbindung 7 in Lösung nicht hyperkoordiniert vorliegt. Im Festkörper lässt sich die Geometrie um das Sn1-Atom am besten als verzerrte trigonale Bipyramide beschreiben. Dabei nehmen das O1-Atom und das Cl1-Atom die axialen Positionen und das C50-Atom, C60-Atom und das O2-Atom die äquatorialen Positionen ein. Wie bei allen zuvor beschriebenen Supermesityltellurverbindungen befindet sich auch das Telluratom in Verbindung 7 nicht in der idealen Phenylringebene, sondern hat zu ihr einen Abstand von 0.298 Å.

3.2 *m*-Terphenyltellurverbindungen

Die Hydrolyse des Supermesityltellur(IV)trichlorids Mes*TeCl₃ (**4**) führte nicht wie erhofft zu den gewünschten charakterisierbaren Monoorganotelluroxanen. Dies ist auf die Wechselwirkung der Chloratome mit den *tert*-Butylgruppen des Liganden zurückzuführen. Das bewog uns dazu, das sterisch noch anspruchsvollere 1,3-Dimesitylphenyl (*m*-Terphenyl) als Ligand zu verwenden.

Bis-m-terphenylditellurid (m-TerTe)₂ (8)

Das 1,3-Dimesitylphenyl wird als 2,6-Dimesitylphenyllithium *m*-TerLi in die Koordinationschemie der Hauptgruppenmetalle eingeführt.⁶⁴ Durch eine Lithiierung des 1,3-Dimesitylphenyliodids *m*-Terl kann das *m*-TerLi leicht erhalten werden. Das 1,3-Dimesitylphenyliodid *m*-Terl wird aus kommerziell erhältlichen Brommesitylen und 1,3-Dichlorbenzol in einer Eintopfreaktion nach einer von H. Hart und Mitarbeitern beschriebenen Methode synthetisiert (Schema 12).⁶⁵

Schema 12: Synthese des Bis-*m*-terphenylditellurids (8).

Das Bis-*m*-terphenylditellurid (*m*-TerTe)₂ (**8**) lässt sich durch Umsetzung des *m*-TerLi mit elementarem Tellurpulver in THF und anschließender Oxidation durch Luftsauerstoff darstellen (Schema 12). Anschließende Soxhletextraktion mit Toluol liefert das Bis-*m*-terphenylditellurid (**8**) als schwarzen mikrokristallinen Feststoff.

Das Bis-m-terphenylditellurid (m-TerTe)₂ (**8**) ist ein temperatur- und luftstabiler Feststoff, der sich gut in Toluol löst. In anderen gängigen organischen Lösungsmitteln wie THF, Et₂O und Hexan ist es nur mäßig löslich. In Dichlormethan kommt es an Luft zu einer langsamen Zersetzung unter Bildung von m-Terphenyltelluroxychlorid (m-TerTe(O)Cl)₂ (**16**), welches später noch genauer besprochen wird.

Das 125 Te-NMR-Spektrum von Bis-*m*-terphenylditellurid (*m*-TerTe)₂ (**8**) zeigt ein Signal bei δ = 322.2 ppm, welches gut zu dem Bereich des Signals von Bis(2,6-bis(2,4,6-triiso-propylphenyl)phenylditellurid (2,6-Trip₂C₆H₃Te)₂ mit δ = 332 ppm passt. 48

Die Molekülstruktur von Verbindung 8 ist in Abbildung 16 dargestellt. Verbindung 8 kristallisiert in der monoklinen Raumgruppe $P2_1/c$ mit vier Formeleinheiten in der Elementarzelle.

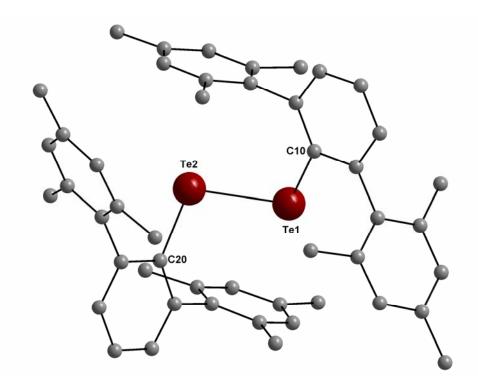


Abbildung 16: Molekülstruktur von **8**.

Ausgewählte Bindungslängen (Å) und -winkel (°): Te1-C10 2.152(4), Te2-C20 2.144(3), Te1-Te2 2.711(1), Te2-C20 2.144(3), C10-Te1-Te2 103.23(8), C20-Te2-Te1 102.96(8), C10-Te1-Te2 123.1(1).

Die Molekülstruktur des Bis-*m*-terphenylditellurids (*m*-TerTe)₂ (**8**) zeigt zwei Telluratome, die über eine Tellureinfachbindung miteinander verbunden sind. Die Te-Te-Bindung liegt mit 2.711(1) Å im Bereich einer Te-Te-Einfachbindung und lässt sich gut mit der Bindungslänge des Supermesitylditellurids von 2.713 Å vergleichen. Der Torsionswinkel entlang der Te-Te-Bindung beträgt 123.1(1)° und ist damit signifikant

größer als der im Bissupermesitylditellurid (Mes*Te)₂ (**1**) mit 92.1°. Dies ist auf den größeren Raumanspruch des *m*-Terphenylliganden zurückzuführen. In dieser Anordnung greifen die Mesitylgruppen der *m*-Terphenylliganden wie "Zahnräder" in die Lücken des gegenüberliegenden Liganden. Dies führt zu einer sehr großen sterischen Abschirmung der Te-Atome, ohne dass es zu einer Abstoßung zwischen den Te-Atomen und den Mesitylgruppen kommt.

m-Terphenyltellurhalogenide

Die Halogenierungen des Bis-m-terphenylditellurids (m-TerTe)₂ (**8**) mit einem Äquivalent Brom oder Sulfurylchlorid ergaben überraschenderweise die gemischtvalenten m-Terphenyltellurenyl(II)halogenide m-TerX₂TeTem-Ter (X = CI (**9**); X = Br (**10**)) in nahezu quantitativer Ausbeute als blaue bzw. grüne kristalline Substanzen. Die Reaktion von (m-TerTe)₂ (**8**) mit einem Äquivalent lod lieferte m-Terphenyltellurenyl(II)-iodid m-TerTel (**11**) als grünen kristallinen Feststoff (Schema 13).

Schema 13: Darstellung der *m*-Terphenyltellurenyl(II)halogenide (**9–11**)

Die m-Terphenyltellurenyl(II)halogenide (**9–11**) zeigen keine Wechselwirkungen mit den in *ortho*-Position vorhandenen Mesitylgruppen des m-Terphenylliganden, weshalb alle Telluratome der von uns synthetisierten m-Terphenyltellurverbindungen sich in der Phenylringebene des Liganden befinden. Im Gegensatz zu den Supermesityltellurenyl(II)halogeniden Mes*TeX (X = Cl (**2**), X = Br (**3**)), besteht zwischen den m-Terphenyltellur(IV)trihalogeniden m-TerTeX $_3$ und den m-Terphenyltellurenyl(II)halogeniden m-Terp

geniden kein von der Halogenkonzentration abhängiges Redoxgleichgewicht, so dass die m-Terphenyltellurenyl(II)halogenide nicht durch eine Halogenabspaltung aus den m-TerTeX $_3$ erhalten werden können. Die m-Terphenyltellurenyl(II)halogenide (**9–11**) lösen sich bereitwillig in den meisten organischen Lösemitteln.

Zeitgleich zu dieser Arbeit konnte von H. Poleschner und K. Seppelt das strukturell sehr ähnliche gemischt-valente Phenyltellurenyl(II)bromid PhBr $_2$ TeTePh durch die Addition von einem Äquivalent Brom an Diphenylditellurid (PhTe) $_2$ dargestellt werden. Dessen Schmelzpunkt und rot-braune Farbe erinnert an die Verbindung, die bereits von Schulz und Klar beschrieben wurde. Bei -40°C zeigt das 125 Te-NMR Spektrum (d $_8$ -Toluol) von PhBr $_2$ TeTePh zwei gleich intensive breite Signale bei δ = 1291.0 ppm und δ = 823.7 ppm, die darauf hindeuten, dass die Molekülstruktur in Lösung erhalten bleibt. Bei Raumtemperatur konnte jedoch kein Spektrum von dem gemischt-valenten Phenyltellurenyl(II)bromid PhBr $_2$ TeTePh erhalten werden, was auf einen dynamischen Austauschprozess in Lösung hinweist.

Das 125 Te-NMR Spektrum (CDCl₃) von m-Terphenyltellurenyl(II)bromid m-TerBr₂TeTem-Ter (**10**) zeigt nur eine scharfe Resonanz bei δ = 1683.8 ppm. Dies deutet darauf hin, dass Verbindung **10** beim Auflösen eine reversible, wahrscheinlich entropiebegünstigte Umlagerungsreaktion zum m-TerTeBr (**10a**) eingeht (Schema 14). Offensichtlich sind die Te-Br und Te-Te-Bindungen auf der Laborzeitskala kinetisch labil.

Schema 14: Umlagerungsreaktion des gemischt-valenten m-Terphenyltellurenyl(II)bromids m-TerBr₂TeTem-Ter (**10**).

Die Verbindungen **9** und **10** können als schwerere Homologe des gemischt-valenten Trifluormethylsulfuryl(II)fluorids $F_3CF_2SSCF_3$ aufgefasst werden. Das $F_3CF_2SSCF_3$ bildet sich während der Disproportionierung von Trifluormethylsulfuryl(II)fluorid F_3CSF in Bistrifluormethyldisulfid $(F_3CS)_2$ und Trifluormethylschwefeltrifluorid F_3CSF_3 und ist das einzige bis heute bekannte organische Derivat des $F_3SSF.^{67}$

Im Bestreben, die relative Stabilität der monomeren Spezies REX, der gemischtvalenten zweikernigen Spezies RX₂EER und der Disproportionierungsproduke REX₃ und REER (E = S, Se, Te; X = F, Cl, Br, I) der Chalkogenhalogenide, abzuschätzen, wurden von H. Poleschner und K. Seppelt *ab initio* Rechnungen an geeigneten Modellverbindungen mit R = CH₃ durchgeführt. Die Ergebnisse sind in Tabelle 1 zusammengestellt. Unter allen Halogeniden der Chalkogene zeigen die Monoorganotellurenyl(II)halogenide H₃CTeCl und H₃CTeBr die größte Tendenz, eine Dimerisierungsreaktion einzugehen und H₃CCl₂TeTeCH₃ (Δ E₁ = -12.58 kcal mol⁻¹) bzw. H₃CBr₂TeTeCH₃ (Δ E₁ = -11.11 kcal mol⁻¹) zu bilden. Die alternativen Disproportionierungsreaktionen sind weniger begünstigt (Δ E₂ = -8.72 und -6.93 kcal mol⁻¹). In allen verbleibenden Fällen ist die Triebkraft für Umlagerungsreaktionen offensichtlich zu klein (Δ E₁, Δ E₂ > -10 kcal mol⁻¹). Dies erklärt die Stabilität von monomeren Monoorganotellurenyl(II)iodiden und Monoorganoselenyl(II)halogeniden. He propositionierungsreaktionen die Verbleibenden He propositionierungsre

Des Weiteren ergaben die Rechnungen eine größere Tendenz zu einer Dimerisierungsreaktion für die Monoorganotellurenyl(II)chloride RTeCl als für die Monoorganotellurenyl(II)bromide RTeBr. Damit kann die unterschiedliche Anzahl der Signale in den 125 Te-NMR-Spektren des m-Terphenyltellureny(II)chlorids m-TerCl₂TeTem-Ter (9) und des m-Terphenyltellurenyl(II)bromids m-TerTeBr (10a) erklärt werden.

Tabelle 1: Nullpunktenergie-korrigierte Reaktionsenergie pro Chalkogenatom der Dimerisierung ΔE_1 (erster Wert) und Disproportionierung ΔE_2 (zweiter Wert) von H_3CEX (E = S, Se, Te; X = F, Cl, Br, I) in kcal mol^{-1} .

2 H ₃ CEX — H ₃ CX ₂ EECH ₃ + 2 ΔE ₁							
3 H ₃ CEX → H ₃ CEX ₃ + H ₃ CEECH ₃ + 3 ΔE ₂							
	F	CI	Br	1			
S	-11.93	-2.19	-1.13	0.05			
	-13.40	-0.87	-0.06	0.27			
Se	-14.42	-6.12	-4.50	-2.56			
	-14.22	-3.22	-1.82	-4.00			
Те	-19.44	-12.58	-11.11	-8.29			
	-18.74	-8.72	-6.93	-4.44			

Das gemischt-valente m-Terphenyltellurenyl(II)chlorid m-TerCl₂TeTem-Ter (**9**) wird durch die Addition von einem Äquivalent Sulfurylchlorid SO₂Cl₂ an Bis-m-terphenylditellurid (m-TerTe)₂ (**8**) als blauer kristalliner Feststoff erhalten (Schema 13). Das ¹²⁵Te-NMR Spektrum von m-TerCl₂TeTem-Ter (**9**) zeigt drei Signale bei δ = 1375.9 ppm (Integral 37%), δ = 1090.4 ppm (Integral 26%) und δ = 1027.3 ppm (Integral 37%). Dies deutet auf einen dynamischen Austauschprozess zwischen der gemischt-valenten Spezies m-TerCl₂TeTem-Ter (**9**) und einer monomeren Spezies m-TerTeCl hin.

Das UV-Spektrum (Et₂O, 0.1 mmol) des *m*-Terphenyltellurenyl(II)chlorids (**9**) hat ein Absorptionsmaximum bei λ_{max} = 534 nm.

Die Molekülstruktur von Verbindung **9** ist in Abbildung 17 dargestellt. Verbindung **9** kristallisiert in der triklinen Raumgruppe $P\bar{1}$ mit vier Formeleinheiten in der Elementarzelle.

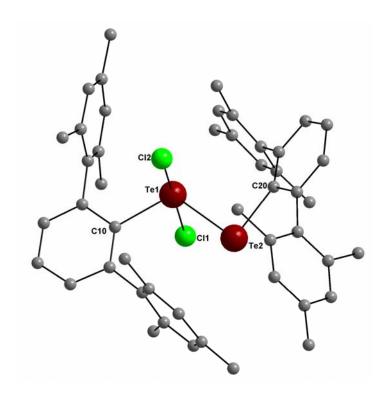


Abbildung 17: Molekülstruktur von **9**.

Ausgewählte Bindungslängen (Å) und -winkel (°): Te1-C10 2.159(5), Te1-Cl1 2.498(5), Te1-Cl2 2.536(4), Te1-Te2 2.759(6), Te2-C20 2.149(5), C10-Te1-Te2 109.4(1), C20-Te2-Te1 96.4(1), Cl1-Te1-C10 86.7(1), Cl1-Te1-Te2 89.25(3), Cl2-Te1-C10 91.8(1), Cl2-Te1-Te2 86.08(3), Cl2-Te1-Cl1 174.33(4), C10-Te2-C20 154.7(2).

Die Te-Te-Bindungslänge von Verbindung **9** ist mit 2.759(6) Å etwas länger als die der Ausgangsverbindung (*m*-TerTe)₂ (**8**) mit 2.711(1) Å, während die durchschnittlichen Te-

Cl-Bindungslängen von 2.517(5) Å gut mit denen von Diphenyltellurdichlorid Ph₂TeCl₂ von 2.505(3) Å übereinstimmen.⁶⁹

Im Gegensatz zum Supermesityltellurenyl(II)chlorid Mes*TeCl (**2**) gibt es in Verbindung **9** keine intermolekularen Te-Cl-Wechselwirkungen, was auf die gute Abschirmung der *m*-Terphenylliganden hindeutet.

Das gemischt-valente m-Terphenyltellurenyl(II)bromid m-TerBr₂TeTem-Ter (**10**) wird durch die Addition von einem Äquivalent Brom an Bis-m-terphenylditellurid (m-TerTe)₂ (**8**) als grüner kristalliner Feststoff erhalten (Schema 13).

Das UV-Spektrum (Et₂O, 0.1 mmol) von *m*-Terphenyltellurenyl(II)bromid m-TerBr₂TeTem-Ter (**10**) hat ein Absorptionsmaximum bei λ_{max} = 559 nm, welches dicht an dem Absorptionsmaximum des m-Terphenyltellurenyl(II)chlorids (9) liegt. Diese ähnlichen Absorptionsmaxima sind mit der Beobachtung im Einklang, dass beide Verbindungen in Lösung die gleiche blaue Farbe besitzen. Das m-TerBr₂TeTem-Ter (10) besitzt im Feststoff eine grüne Farbe. Der Farbwechsel beim Lösen von m-Terphenyltellurenyl(II)bromid (10) lässt auf einen starken Lösungsmitteleffekt schließen und deutet ebenfalls darauf hin, dass sich das m-TerBr₂TeTem-Ter (10) (gemischt-valente Anordnung im Festkörper) in Lösung zum *m*-TerTeBr (**10a**) (Anordnung in Lösung) umlagert (Schema 14).

Die Molekülstruktur von Verbindung **10** ist in Abbildung 18 dargestellt. Verbindung **10** kristallisiert in der monoklinen Raumgruppe $P2_1/n$ mit vier Formeleinheiten in der Elementarzelle.

Die Molekülstruktur des m-TerBr $_2$ TeTem-Ter ($\mathbf{10}$) ist fast identisch zu der des m-TerCl $_2$ TeTem-Ter ($\mathbf{9}$). Die Te-Te-Bindungslänge von $\mathbf{10}$ ist mit 2.7835(11) Å etwas länger als die der Ausgangsverbindung (m-TerTe) $_2$ ($\mathbf{8}$) mit 2.711(1) Å und der des m-TerCl $_2$ TeTem-Ter ($\mathbf{9}$) mit 2.759(6) Å, während die durchschnittlichen Te-Br-Bindungslänge mit 2.695(2) Å gut mit denen des Diphenyltellurdibromids Ph $_2$ TeBr $_2$ mit 2.6818(3) Å übereinstimmt. Wie bei Verbindung $\mathbf{9}$ gibt es auch bei Verbindung $\mathbf{10}$ keine intermolekularen Te-Br-Wechselwirkungen.

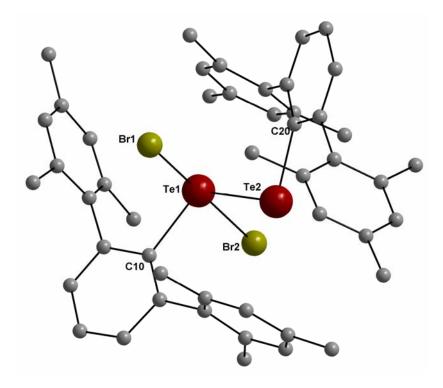


Abbildung 18: Molekülstruktur von **10**.

Ausgewählte Bindungslängen (Å) und -winkel (°): Te1-C10 2.186(9), Te1-Br1 2.701(2), Te1-Br2 2.,693(2), Te1-Te2 2.784(1), Te2-C20 2.156(9), C10-Te1-Te2 109.2(2), C20-Te2-Te1 98.6(2), Br1-Te1-C10 87.8(2), Br1-Te1-Te2 87.53(3), Br2-Te1-C10 91.2(2), Br2-Te1-Te2 85.67(3), Br2-Te1-Br1 172.43(4), C10-Te2-C20 155.0(4).

Die Reaktion von Bis-m-terphenylditellurid (m-TerTe) $_2$ (8) mit einem Äquivalent Iod lieferte m-Terphenyltellurenyl(II)iodid m-TerTel (11) als grüne kristalline Substanz (Schema 13). Das 125 Te-NMR Spektrum von m-TerTel (11) zeigt nur ein Signal bei δ = 1018.0 ppm, welches bestätigt, dass m-TerTel (11) im Gegensatz zu m-TerCl $_2$ TeTem-Ter (9) und m-TerBr $_2$ TeTem-Ter (10) sowohl in Lösung als auch im Festkörper als Monomer vorliegt (Schema 13). Das stimmt wiederum gut mit den Ergebnissen der ab initio Rechnungen überein. Das UV-Spektrum (Et $_2$ O, 0.1 mmol) von m-Terphenyltellurenyl(II)iodid m-TerTel (11) hat ein Absorptionsmaximum bei λ_{max} = 622 nm, das sich deutlich von den Absorptionsmaxima der Verbindungen 9 und 10 unterscheidet.

Die Molekülstruktur von Verbindung **11** ist in Abbildung 19 dargestellt. Verbindung **11** kristallisiert in der monoklinen Raumgruppe $P2_1/n$ mit vier Formeleinheiten in der Elementarzelle.

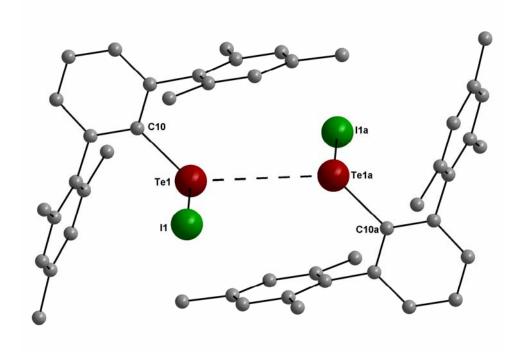


Abbildung 19: Molekülstruktur von **11**.

Ausgewählte Bindungslängen (Å) und -winkel (°): C10-Te1 2.130(5), Te1-I1 2.676(1), Te1···Te1a 4.057(2), C10-Te1-I1 98.58(7); (Symmetriecode a = 1-x, -y, 1-z).

Im Festkörper bilden je zwei Moleküle von m-TerTel (11) ein zentrosymmetrisches Dimer, welches überraschend durch gleichatomige sekundäre Te···Te-Wechselwirkungen mit einem Abstand von 4.057(2) Å assoziiert vorliegt. Im Gegensatz dazu zeigt von den wenigen bisher bekannten Aryltellurenyl(II)halogeniden das Supermesityltellurenyl(II)iodid Mes*Tel sowohl sekundäre Te···I als auch gleichatomige I···I-Wechselwirkungen, während das Supermesityltellurenyl(II)chlorid Mes*TeCl (2) und das SupermesityItellurenyI(II)bromid Mes*TeBr (3) nur sekundäre Tellur-Halogen-Wechselwirkungen aufweisen. 50 Im Kristallgitter von Chlorfluorid (CIF) konnten ähnliche sekundäre, gleichatomige Cl···Cl-Wechselwirkungen beobachtet werden. 70 Die kürzlich erfolgte Synthese und vollständige Charakterisierung der Tritelluridanionen (RTe)3- $(R = Ph, CF_3)$ und des verwandten Diiodotelluridanions $(I_2TeCF_3)^-$ sowie ihre Ähnlichkeit zum Triiodidion I₃-, haben gezeigt, dass die RTe-Gruppierung einen erheblichen Pseudohalogencharakter aufweist.⁷¹

Die m-Terphenyltellur(IV)trihalogenide m-TerTeX $_3$ (X = CI (**12**); X = Br (**13**)) werden durch Addition von drei Äquivalenten des jeweiligen Halogens oder synthetischen Äquivalents an das Bis-m-terphenylditellurid (m-TerTe) $_2$ (8) erhalten (Schema 15). Sie können ebenfalls durch Addition von zwei Äquivalenten des jeweiligen Halogens oder

synthetischen Äquivalents aus den *m*-Terphenyltellurenyl(II)halogeniden erhalten werden.

Mes
$$X$$

Te X

Mes X

Mes X

Te X

Mes X

Mes

Schema 15: Bildung der m-Terphenyltellurtrihalogenide [X = Cl (12); X = Br (13)] und des Charge-Transfer-Komplexes (14).

Genau wie bei dem Supermesityltellur(IV)trichlorid Mes* $TeCl_3$ (4) reagieren die m-Terphenyltellur(IV)trihalogenide mit dem Bis-m-terphenylditellurid (8) in einer Synproportionierungsreaktion zu den m-Terphenyltellurenyl(II)halogeniden (9–11) (Schema 16).

Schema 16: Synproportionierung der *m*-Terphenyltellur(IV)halogenide (**12–14**) zu den entsprechenden *m*-Terphenyltellurenyl(II)halogeniden (**9–11**).

Die Chlorierung und Bromierung des Bis-m-terphenylditellurids (m-TerTe) $_2$ ($\mathbf{8}$) ergab die erwarteten m-Terphenyltellur(IV)trichloride m-TerTeCl $_3$ ($\mathbf{12}$) und m-Terphenyltellur(IV)-tribromide m-TerTeBr $_3$ ($\mathbf{13}$) in nahezu quantitativer Ausbeute. Die Iodierung ergab überraschenderweise nicht das m-Terphenyltellur(IV)triiodid m-TerTel $_3$, sondern den m-Terphenyltellurenyl(II)iodid-Iod-Charge-Transfer-Komplex m-TerTeI $_3$ ($\mathbf{14}$).

Interessanterweise bilden sich auch bei den *m*-Terphenyltellur(IV)trihalogeniden, wie bei den *m*-Terphenyltellurenyl(II)halogeniden, durch den nicht erwarteten *m*-Terphenyltellurenyl(II)iodid-Iod-Charge-Transfer-Komplex strukturell unterschiedliche Verbindungen. Das konnte auch bei der Bildung der Dimesityltellurdihalogenide beobachtet werden. Durch die Addition von Sulfurylchlorid SO₂Cl₂ oder Brom an das Dimesityltellurid Mes₂Te bilden sich die trigonal-bipyramidalen Verbindungen Dimesityltellur(IV)dichlorid Mes₂TeCl₂ und das Dimesityltellur(IV)dibromid Mes₂TeBr₂, bei der Addition von Iod, der Charge-Transfer-Komplex Mes₂Te···I₂.⁷²

Durch DFT-Rechnungen konnte gezeigt werden, dass es in Abhängigkeit des sterischen Anspruchs des organischen Rests sowie des Chalkogens und des verwendeten Halogens zur Ausbildung unterschiedlicher Strukturen kommt.⁷²

Wird das Bis-2,4,6-triphenylphenylditellurid $(2,4,6-Ph_3C_6H_2Te)_2$ mit lod umgesetzt, bildet sich analog zu Verbindungen **12** und **13** das 2,4,6-Triphenylphenyltellur(IV)triiodid 2,4,6-Ph₃PhTel₃ mit einer trigonal bipyramidalen Struktur.⁷⁷ Der Raumanspruch des 2,4,6-Triphenylphenyl-Liganden im 2,4,6-Ph₃C₆H₂Tel₃ ist geringer als der des von uns verwendeten *m*-Terphenylliganden und scheint gerade ausreichend zu sein, damit sich der *m*-Terphenyltelluriodid-Iod-Charge-Transfer-Komplex *m*-TerTel···l₂ (**14**) bildet.

Das m-Terphenyltellur(IV)trichlorid m-TerTeCl₃ (**12**) erhält man durch Umsetzung des Bis-m-Terphenylditellurids (m-TerTe)₂ (**8**) mit drei Äquivalenten Sulfurylchlorid SO₂Cl₂ in THF oder Diethylether als schwach gelben, kristallinen Feststoff (Schema 15).

Das m-TerTeCl₃ **12** zeigt im 125 Te-NMR-Spektrum ein Signal bei δ = 1345.8 ppm, welches im Vergleich zum Signal des Phenyltellur(IV)trichlorids PhTeCl₃ (δ = 917 ppm in C₆D₆) ins Tieffeld verschoben ist; allerdings nicht so weit, wie das Signal des Supermesityltellur(IV)trichlorids Mes*TeCl₃ (**4**) mit δ = 1791.0 ppm. 54

Die Molekülstruktur von Verbindung **12** ist in Abbildung 20 dargestellt. Verbindung **12** kristallisiert in der monoklinen Raumgruppe $P2_1/n$ mit vier Formeleinheiten in der Elementarzelle.

In der Molekülstruktur des m-Terphenyltellur(IV)trichlorids m-TerTeCl₃ (**12**) sind zwei Moleküle über sekundäre Te-Cl-Wechselwirkungen mit einem Cl1-Te1a Abstand von 3.379(1) Å (Symmetriecode a = 1-x, 1-y, -z) zu einem Dimer verbunden. Die Geometrie um das Te-Atom lässt sich am besten als eine verzerrte trigonale Bipyramide beschreiben, wobei das Cl1-Atom und das Cl2-Atom die axialen Positionen und der m-Terphenylligand, das Cl3-Atom und das freie Elektronenpaar, die äquatorialen

Positionen einnehmen. Wie bei dem schon beschriebenen Mes*TeCl₃ **4** ist die Bindung zu dem äquatorialen Chloratom Te1-Cl3 mit 2.3140(9) Å signifikant kürzer als die zu den axialen Chloratomen Te1-Cl1 und Te1-Cl2 mit 2.5047(9) Å und 2.466(1) Å. Der geringe Unterschied in den Bindungslängen der beiden axialen Chloratome kommt durch die sekundäre Cl1-Te1a-Wechselwirkung zustande.

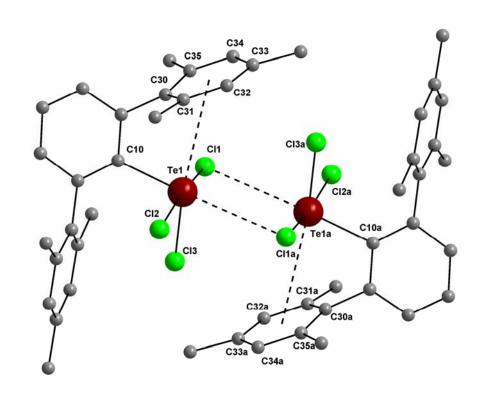


Abbildung 20: Molekülstruktur von **12**.

Ausgewählte Bindungslängen (Å) und -winkel (°): Te1-Cl1 2.5047(9), Te1-Cl2 2.466(1), Te1-Cl3 2.3140(9), Te1-Cl1a 3.379(1), Te1-Cl0 2.159(3), C10-Te1-Cl1 90.01(8), C10-Te1-Cl2 92.58(8), C10-Te1-Cl3 104.69(9), Cl1-Te1-Cl2 170.67(4), Cl1-Te1-Cl3 84.77(4), Cl2-Te1-Cl3 85.91(4); (Symmetriecode a = 1-x, 1-y, -z).

Es fällt auf, dass die Molekülstrukturen der Verbindungen **4** und **12** nahezu identische Geometrien und Bindungslängen aufzeigen, wenn die organischen Liganden vernachlässigt werden. Auch im Tellurtetrachlorid TeCl₄ ist das Telluratom formal trigonal-bipyramidal koordiniert und besitzt zwei sekundäre Te-Cl-Wechselwirkungen, wodurch vier TeCl₄-Einheiten zu einem Tetramer verknüpft werden.⁷³

Die Geometrie der Monoorganotellur(IV)trichloride RTeCl₃ (R = Mes* ($\mathbf{4}$); R = m-Ter ($\mathbf{12}$)) lässt sich formal aus der Struktur des TeCl₄ ableiten, indem ein Chloratom gegen den jeweiligen organischen Liganden ausgetauscht wird. Durch den großen Raumanspruch der Liganden wird in Verbindung $\mathbf{4}$ und $\mathbf{12}$ die weitere Aggregation zu Tetrameren verhindert.

In Verbindung **12** ist eine Menshutkin-Wechselwirkung zwischen dem freien Elektronenpaar des Te1-Atoms und den π -Systemen der Mesitylgruppe (Schwerpunkt (C30-C35)···Te2 3.5189(4) Å) des Liganden vorhanden. Solche schwachen Wechselwirkungen von Hauptgruppenmetallen mit aromatischen π -Systemen werden, im Gegensatz zu den Nebengruppenmetallen, nur selten beobachtet.⁷⁴

Das m-Terphenyltellur(IV)tribromid m-TerTeBr₃ (**13**) bildet sich analog zu Verbindung **12** durch Addition von drei Äquivalenten Brom an Bis-m-terphenylditellurid (TerTe)₂ (**8**) (Schema 15).

Das m-TerTeBr $_3$ 13 zeigt im 125 Te-NMR-Spektrum ein Signal bei δ = 1243.8 ppm und liegt damit, wie erwartet, zwischen den Signalen des m-TerTeCl $_3$ 12 und des m-TerTeI····l $_2$ 14. Die Molekülstruktur von Verbindung 13 ist in Abbildung 21 dargestellt. Verbindung 13 kristallisiert in der monoklinen Raumgruppe $P2_1/n$ mit vier Formeleinheiten in der Elementarzelle. Die Molekülstruktur des m-Terphenyltellur(IV)tribromids m-TerTeBr $_3$ (13) ist isostrukturell zu der des m-TerTeCl $_3$ 12.



Abbildung 21: Molekülstruktur von **13**.

Ausgewählte Bindungslängen (Å) und -winkel (°): Te1-Br1 2.6867(13), Te1-Br2 2.6397(11), Te1-Br3 2.4759(6), Te1-Br1a 3.5131(8), Te1-C10 2.162(2), C10-Te1-Br1 91.344(5), C10-Te1-Br2 94.67(5), C10-Te1-Br3 105.59(6), Br1-Te1-Br2 170.785(11), Br1-Te1-Br3 84.84(3), Br2-Te1-Br3 86.82(3); (Symmetriecode a = -x, -y, -z).

Den m-Terphenyltellurenyl(II)iodid-lod-Charge-Transfer-Komplex m-TerTel···l₂ (**14**) erhält man durch Addition von drei Äquivalenten lod an Bis-m-terphenylditellurid (m-TerTe)₂ (**8**) als metallisch glänzenden, kristallinen Feststoff. Dieser ist im Transmissionslicht des Mikroskops rot und im reflektierenden Tageslicht metallisch grün gefärbt (Pleochromismus)(Abbildung 22).

A B

Abbildung 22: Kristalle des m-Terphenyltellurenyliodid-lod-Charge-Transfer-Komplexes m-TerTel····l₂ (**14**) im (A) Auflicht und (B) Transmissionslicht.

Der m-TerTel···l $_2$ -Komplex **14** zeigt im 125 Te-NMR-Spektrum ein Signal, dessen Verschiebung stark von dem verwendeten Lösungsmittel abhängt. Im 125 Te-NMR-Spektrum findet man eine chemische Verschiebung von δ = 945.6 ppm (C_6D_6) bzw. von δ = 905.1 ppm (CDCl $_3$). Das UV-Spektrum von **14** in Toluol zeigt ein Absorptionsmaximum bei λ_{max} = 497 nm. Dieses liegt im Bereich des Absorptionsmaximums von elementarem lod mit einem Absorptionsmaximum von λ_{max} = 492 nm. Allerdings ist im UV-Spektrum von Verbindung **14** keine Feinaufspaltung zu erkennen, was darauf schließen lässt, dass die Charge-Transfer-Bindung auch in Lösungen vorhanden ist. Die Molekülstruktur von Verbindung **14** ist in Abbildung 23 dargestellt. Der Komplex **14** kristallisiert in der monoklinen Raumgruppe $P2_1/n$ mit vier Formeleinheiten in der Elementarzelle.

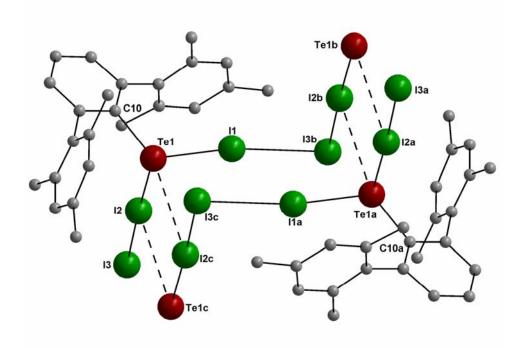


Abbildung 23: Ausschnitt der Molekülstruktur von **14**.

Ausgewählte Bindungslängen (Å) und -winkel (°): C10-Te1 2.148(5), Te1-I1 2.741(8), Te1-I2 2.839(9), I2-I3 3.003(10), I1-I3b 3.296(9), Te1···I2c 3.684(1), I1-Te1-I2 91.72(2), Te1-I2-I3 177.16(2), Te1-I1-I3b 170.97(2), I1-I3b-I2b 85.43(2); (Symmetriecode a = -x, -y, -z); (Symmetriecode b = -1+x, y, z); (Symmetriecode c = 1-x, -y, 1-z).

Die Kristallstruktur des m-Terphenyltellurenyl(II)iodid-lod-Charge-Transfer-Komplexes m-TerTel····l $_2$ (**14**) lässt sich am besten als eindimensionales Koordinationspolymer beschreiben, das aus alternierenden Sequenzen von ····Te-I-I-I-Verknüpfungen besteht. Benachbarte eindimensionale Verknüpfungen liegen über Te····I-Wechselwirkungen mit einem Abstand von 3.684(1) Å assoziiert vor, während sekundäre I····I Kontakte nicht beobachtet werden. Die primären Te-I-Bindungslängen von 2.741(8) Å und 2.839(9) Å sind etwas länger als die des m-Terphenyltellurenyl(II)iodids m-TerTel (**11**) von 2.676(1) Å. Die I-I-Bindungslängen liegen mit 3.003(10) Å und 3.296(9) Å zwischen den intermolekularen und intramolekularen Bindungsabständen in molekularem lod (2.715 Å bzw. 3.496 Å).²

Die zwei Te-I-I-Winkel sind nahezu linear, während die I-I-I- und die I-Te-I-Winkel nahezu rechtwinkelig sind. Genau wie die Struktur des *m*-TerTel **11** an die des I₃⁻ erinnert, lässt sich der Charge-Transfer-Komplex **14** mit dem I₅⁻ vergleichen. Das zeigt, dass die RTe-Gruppierung einen erheblichen Pseudohalogencharakter aufweist.

Die erste wohl definierte m-Terphenyltellurinsäure

Die kinetisch kontrollierte basische Hydrolyse von m-Terphenyltellur(IV)trichlorid m-TerTeCl₃(**12**) liefert als vollständiges Hydrolyseprodukt das μ_2 -sauerstoffverbrückte zweikernige m-Terphenyltelluroxyhydroxid, das als m-Terphenyltellurinsäure [m-TerTe(O)(OH)]₂ (**15**) aufgefasst werden kann, in guten Ausbeuten (Schema 17).

Schema 17: Darstellung der *m*-Terphenyltellurinsäure (**15**).

Die Molekülstruktur der m-Terphenyltellurinsäure [m-TerTe(O)(OH)]₂ (15) zeigt eine asymmetrische viergliedrige Te₂O₂-Ringstruktur mit einer exozyklischen OH-Gruppe. Die Differenz in den Bindungslängen der äquatorialen und axialen endozyklischen Te-O-Bindungslängen in der m-Terphenyltellurinsäure [m-TerTe(O)(OH)]₂ (**15**) [Te1-O1(aq.) = 1.897(5) Å und Te1-O1a(ax.) = 2.143(5) Å] beträgt 0.246(5) Å. Zum Vergleich ist in dem bereits beschriebenen (Ph₂TeO)₂ die Diskrepanz zwischen den äquatorialen und axialen Te-O-Bindungslängen [Te-O(äg.) = 1.89(1) Å und Te-O(ax.) = 2.55(1) Å] mit 0.66(1) Å signifikant größer. Dies bedeutet, dass im (Ph₂TeO)₂ zwei Ph₂TeO Monomere über schwache sekundäre Wechselwirkungen verbunden sind. nur Durch Molekulargewichtsbestimmungen osmometrische konnte für die *m*-Terphenyltellurinsäure $[m\text{-TerTe}(O)(OH)]_2$ (15) ein Assoziationsgrad von 1.6 gefunden werden. Dieser Assoziationsgrad zeigt, dass die m-Terphenyltellurinsäure [m-TerTe(O)(OH)]₂ (15) in Toluollösungen bei 60°C nicht komplett als Dimer vorliegt, sondern ein Gleichgewicht zwischen Monomer m-TerTe(O)(OH) dem und dem Dimer $[m\text{-TerTe}(O)(OH)]_2$ vorhanden ist (Schema 18).

Schema 18: Gleichgewicht zwischen monomerer und dimerer *m*-Terphenyltellurinsäure (15).

Von P. Finke wurden in ihrer Diplomarbeit die monomeren und dimeren Strukturen der Organochalkogensäuren PhE(O)OH (E = S, Se, Te) mittels DFT-Berechnungen optimiert. Dabei wurden drei grundsätzlich verschiedene Dimertypen, "H-Brücken-Dimer", "OH-*trans*-Dimer" und "Ph-*trans*-Dimer", untersucht (Schema 19).

Die erste mögliche Dimerisierung, die Ausbildung von Wasserstoffbrücken ("H-Brücken-Dimer"), wird von den Säuren der Elemente der 3. und 4. Periode bevorzugt. Für das schwerere Homologe die Phenyltellurinsäure PhTe(O)OH konnte hingegen die experimentell gefundene Struktur des μ_2 -Oxo-verbrückten Dimers ("OH-*trans*-Dimer ") bestätigt werden. Die intermolekularen Bindungen in dem viergliedrigen Te₂O₂-Ring haben wahrscheinlich einen ionischen und einen hypervalent-kovalenten Anteil des Typs $n(O) \rightarrow \sigma^*(E-O_{ax})$.

Schema 19: Mögliche Dimerstrukturen der Chalkogensäuren PhE(O)OH.

Die m-Terphenyltellurinsäure [m-TerTe(O)(OH)] $_2$ (15) wird durch eine basische Hydrolyse in einem Zwei-Phasen-System aus Toluol und wässriger 0.5 M NaOH gebildet. Aus Ethanol wird 15 als farbloser kristalliner Feststoff erhalten. Die m-Terphenyltellurinsäure [m-TerTe(O)(OH)] $_2$ (15) löst sich gut in Toluol, DCM und

heißem Ethanol, aber nur schlecht in THF oder Diethylether. Das 125 Te-NMR-Spektrum der m-Terphenyltellurinsäure [m-TerTe(O)(OH)] $_2$ (15) zeigt ein Signal bei δ = 1403.4 ppm.

Das IR-Spektrum zeigt eine scharfe Bande bei \tilde{v}_{OH} = 3590 cm⁻¹, die bestätigt, dass es sich bei dem exozyklischen Sauerstoffatom um eine Hydroxygruppe handelt, die keine Wasserstoffbrückenbindung eingeht (Abbildung 24).

Die Molekülstruktur der m-Terphenyltellurinsäure [m-TerTe(O)(OH)] $_2$ (**15**) ist in Abbildung 25 dargestellt. Verbindung **15** kristallisiert in der monoklinen Raumgruppe $P2_1/n$ mit zwei Formeleinheiten in der Elementarzelle.

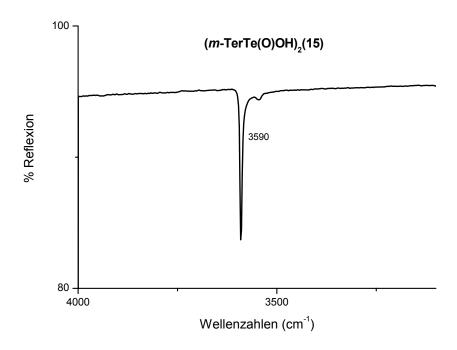


Abbildung 24: IR-Spektrum der *m*-Terphenyltellurinsäure (**15**).

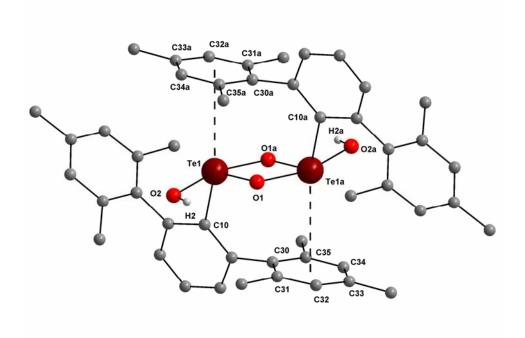


Abbildung 25: Molekülstruktur von **15**.

Ausgewählte Bindungslängen (Å) und -winkel (°): Te1-O1 1.897(5), Te1-O1a 2.143(5), Te1-O2 2.232(4),Te1-(Schwerpunkt C30a-C35a) 3.3989(7); Te1-C10 2.151(6), O1-Te1-O1a 76.5(2), O1-Te1-C10 108.4(2), O1a-Te1-C10 89.3(2), O1-Te1-O2 86.0(2), O1a-Te1-O2 161.2(2), C10-Te1-O2 89.68(2), Te1-O1-Te1a 103.5(2); (Symmetriecode a = -x, -y, 1-z)

Die Molekülstruktur der Tellurinsäure zeigt als zentrale Einheit die zuvor beschriebene asymmetrische viergliedrige Te_2O_2 -Ringstruktur. Das Telluratom ist trigonal-bipyramidal koordiniert, wobei das freie Elektronenpaar, das C10-Atom und das O1-Atom, die äquatorialen Positionen einnehmen und das O2-Atom und das O1a-Atom (Symmetriecode a = -x, -y, 1-z) die beiden axialen Positionen. Gut zu erkennen ist die vollständige Abschirmung des anorganischen Kerns durch die voluminösen m-Terphenylliganden, durch die eine weitere Aggregation verhindert wird.

Genau wie bei den m-Terphenyltellur(IV)trihalogeniden m-TerTeX $_3$ (X = CI (**12**); X = Br (**13**)) sind in der m-Terphenyltellurinsäure [m-TerTe(O)(OH)] $_2$ (**15**) zwei Menshutkin-Wechselwirkung zwischen dem freien Elektronenpaar der Telluratome und den π -System der Mesitylgruppe [Schwerpunkt (C30a-C35a)···Te1 Abstand 3.399(1) Å und Schwerpunkt (C50a-C51a)···Te1 Abstand 3.365(1) Å] des Liganden vorhanden.

Bei der basischen Hydrolyse der m-Terphenyltellur(IV)trihalogenide m-TerTeX $_3$ (X = CI (12); X = Br 13)) und des m-Terphenyltellurenyl(II)iodid-Iod-Charge-Transfer-Komplexes m-TerTeI···I $_2$ (14) konnten die μ_2 -sauerstoffverbrückten zweikernigen m-Terphenyltelluroxyhalogenide [m-TerTe(O)X] $_2$ (X = CI (16); Br (17), I (18)) als Zwischenstufen isoliert

werden. Die Ausbildung solcher Telluroxyhalogenide mit einer viergliedrigen Te_2O_2 -Ringstruktur konnte auch bei der Hydrolyse von 2,4,6-Triphenylphenyltellur(IV)triiodid (2,4,6-Ph₃C₆H₂Tel₃) und 2,4,6-Triphenylphenyltellur(IV)tribromid (2,4,6-Ph₃PhTeBr₃) beobachtet werden.⁷⁷

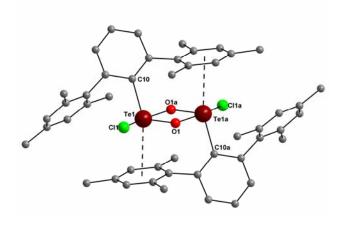
Gezielt können die m-Terphenyltelluroxyhalogenide [m-TerTe(O)X] $_2$ (X = CI (16); Br = (17); I = (18)) durch eine kinetisch kontrollierte basische Hydrolyse der Verbindungen 12–14, die nach einer Stunde beendet wird, synthetisiert werden (Schema 20). Des Weiteren bilden sie sich aus etherischen Lösungen der m-Terphenyltellureny(II)halogenide (9–11), wenn sie an Luft gehandhabt werden, durch Oxidation des Luftsauerstoffs als farblose bzw. gelbe amorphe Feststoffe. Allerdings lässt sich nur das m-Terphenyltelluroxychlorid [m-TerTe(O)Cl] $_2$ (16) aus DCM/Hexan kristallisieren (Schema 20). Das [m-TerTe(O)Br] $_2$ (17) und das [m-TerTe(O)I] $_2$ (18) lassen sich, wenn sie einmal ausgefallen sind, nicht mehr in Lösung bringen. Sie müssen direkt aus den Toluol-Mutterlösungen kristallisiert werden.

Auffällig ist, dass die Lösung des gemischt-valenten m-Terphenyltellurenyl(II)bromids m-TerBr $_2$ TeTem-Ter ($\mathbf{10}$) am oxidationsempfindlichsten ist und sie schon nach wenigen Minuten vollständig zum [m-TerTe(O)Br] $_2$ ($\mathbf{17}$) oxidiert wird. Lösungen des gemischt-valenten m-Terphenyltellurenyl(II)chlorids m-TerCl $_2$ TeTem-Ter ($\mathbf{9}$) sind mehrere Stunden und Lösungen des m-Terphenyltellurenyl(II)iodids m-TerTel ($\mathbf{11}$) mehrere Tage an Luft stabil.

Formal können die m-Terphenyltelluroxyhalogenide [m-TerTe(O)X]₂ (**16–18**) als die entsprechenden Säurehalogenide der Tellurinsäure aufgefasst werden.

Die m-Terphenyltelluroxyhalogenide [m-TerTe(O)X] $_2$ (16–18) sind thermodynamisch stabile Verbindungen, die aus den verschiedensten Disproportionierungsreaktionen oder Oxidationsreaktionen erhalten werden konnten (Schema 20).

Schema 20: Bildungswege der *m*-Terphenyloxyhalogenide (**16–18**).


In allen m-Terphenyltelluroxyhalogeniden [m-TerTe(-O)X] $_2$ (16–18) ist das Telluratom trigonal-bipyramidal koordiniert und alle besitzen die viergliedrige Te $_2$ O $_2$ -Ringstruktur als zentrales Strukturmotiv. Die Unterschiede in den äquatorialen und axialen endozyklischen Te-O-Bindungslängen der m-Terphenyltelluroxyhalogenide [m-TerTe(O)X] $_2$ (16–18) sowie der m-Terphenyltellurinsäure [m-TerTe(O)(OH)] $_2$ (15) sind in Tabelle 2 zusammengefasst.

Die Unterschiede in der relativen Asymmetrie der endozyklischen E-O-Bindungen zeigen zusammenfassend, dass das Bestreben, sich zu der oben beschriebenen viergliedrige Ringstruktur zu assoziieren, in folgender Reihe (Ph₂TeO)₂ $[m\text{-TerTe}(O)(OH)]_2$ (15) << $[m\text{-TerTe}(O)CI]_2$ (16) << $[m\text{-TerTe}(O)I]_2$ (18) [m-TerTe(O)Br]₂ (17) zunimmt. Das m-Terphenyltelluroxychlorid [m-TerTe(O)Cl]₂ besitzt eine höhere Symmetrie in der viergliedrigen Te₂O₂-Ringstruktur die m-Terphenyltellurinsäure [m-TerTe(O)(OH)]₂ (**15**). Durch den Austausch des exozyklischen axialen Sauerstoffliganden der Tellurinsäure [m-TerTe(O)(OH)] $_2$ (**15**) mit einem Halogenatom kommt es zu einer Verkürzung der Te1-O1a-Bindung. Eine solche Verkürzung einer Metall-Sauerstoff-Bindung eines axialen Sauerstoffliganden in einer trigonal-bipyramidalen Struktur konnte auch schon bei dem trigonal-bipyramidalen [R_3 Sn(OAr)Cl] $^-$ beobachtet werden. 78

Tabelle 2: Bindungslängen aller hier besprochenen Verbindungen mit einer viergliedrigen Te₂O₂ Ringstruktur.

Bindung	[<i>m</i> -TerTe(O)Cl] ₂ (16)	[<i>m</i> -TerTe(O)Br] ₂ (17)	[<i>m</i> -TerTe(O)l] ₂ (18)	[<i>m</i> -TerTe(O)(OH)] ₂ (15)	(Ph ₂ TeO) ₂
Te1-O1	1.912(4) Å	1.918(3) Å	1.921(4) Å	1.897(5) Å	1.89(1) Å
Te1-O1a	2.098(4) Å	2.088(2) Å	2.105(3) Å	2.143(5) Å	2.55(1) Å
Differenz	0.186(4) Å	0.17(3) Å	0.184(4) Å	0.246(5) Å	0.66(1) Å

Die Molekülstrukturen der m-Terphenyltelluroxyhalogenide [m-TerTe(O)X]₂ (**16–18**) sind in Abbildung 26 dargestellt. Verbindung **16** kristallisiert in der monoklinen Raumgruppe $P2_1/n$ mit zwei Formeleinheiten in der Elementarzelle. Die Verbindungen **17** und **18** kristallisieren in der triklinen Raumgruppe $P\overline{1}$. Verbindung **18** enthält 1.5 Formeleinheiten und ein Molekül Toluol in der Elementarzelle. Die Molekülstrukturen von **16–18** sind alle strukturell sehr ähnlich und unterscheiden sich nur in den Te-X-Bindungslängen. Sie nehmen erwartungsgemäß von der Te-Cl-Bindung (2.478(2) Å) über die Te-Br-Bindung (2.677(1) Å) zur Te-l-Bindung (2.8668(6) Å) zu.

16

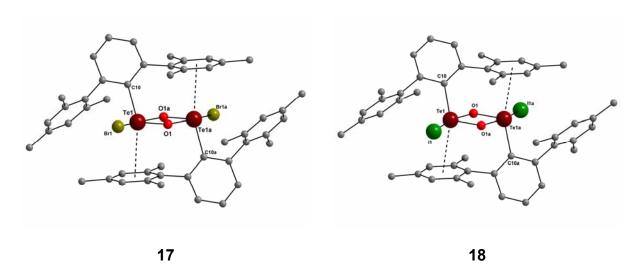


Abbildung 26: Molekülstrukturen von 16–18.

Ausgewählte Bindungslängen (Å) und -winkel (°):

(**16**) Te1-O1 1.912(4), Te1-O1a 2.098(4), Te1-Cl1 2.478(2), Te1-Cl0 2.141(6), O1-Te1-O1a 77.5(2), O1-Te1-Cl0 107.0(2), O1a-Te1-Cl0 91.3(2), O1-Te1-Cl1 83.7(1), O1a-Te1-Cl1 160.4(1), C10-Te1-Cl1 88.8(2), Te1-O1-Te1a 102.5(2); (Symmetriecode: a = 2-x, 1-y, 1-z).

(17) Te1-O1 1.918(3), Te1-O1a 2.088(2), Te1-Br1 2.677(1), Te1-C10 2.146(4), O1-Te1-O1a 77.2(1), O1-Te1-C10 105.7(1), O1a-Te1-C10 93.2(2), O1-Te1-Br1 83.4(1), O1a-Te1-Br1 160.2(1), C10-Te1-Br1 88.5(1), Te1-O1-Te1a 102.9(2); (Symmetriecode: a = 1-x, -y, 1-z).

(18) Te1-O1 1.921(4), Te1-O1a 2.105(3), Te1-I1 2.8668(6), Te1-C10 2.146(6), O1-Te1-O1a 76.8(2), O1-Te1-C10 103.3(2), O1a-Te1-C10 94.6(2), O1-Te1-I1 84.3(1), O1a-Te1-I1 161.1(1), C10-Te1-I1 89.5(2), Te1-O1-Te1a 103.1(2); (Symmetriecode: a = 1-x, -y, 1-z).

Reaktivität der *m*-Terphenyltellurinsäure (15)

Die *m*-Terphenyltellurinsäure [*m*-TerTe(O)(OH)]₂ (**15**) stellt ein schwereres Homologes der Monorganoselenin- und Monoorganosulfinsäuren dar. Es liegt nahe, eine Organoelementsauerstoffsäure wie die *m*-Terphenyltellurinsäure [*m*-TerTe(O)(OH)]₂ (**15**) mit Basen umzusetzen, um eine Deprotonierung der Hydroxy-Gruppe zu erreichen. Dazu wurde die [*m*-TerTe(O)(OH)]₂ (**15**) in ersten Versuchen mit wässrigen NaOH-Lösungen verschiedener Konzentrationen umgesetzt. Es konnte jedoch keine Reaktion beobachtet werden. Auch in einem Zwei-Phasen-System mit Toluol konnte keine Reaktion herbeigeführt werden. Die Umsetzung mit Natriumhydrid hat die erwünschte Deprotonierung der Hydroxy-Gruppe zur Folge und liefert das achtkernige Natrium-*m*-terphenyltellurat Na₄(*m*-TerTeO₂)₄ (**19**) (Schema 21).

Schema 21: Darstellung des Natrium-*m*-terphenyltellurats Na₄(*m*-TerTeO₂)₄ (**19**).

Das Natrium-m-terphenyltellurat Na₄(m-TerTeO₂)₄ (**19**) wird zunächst als farbloser amorpher Feststoff erhalten, der aus THF/Acetonitril kristallisiert werden kann. Das ¹²⁵Te-NMR-Spektrum von Verbindung **19** zeigt ein Signal bei δ = 1698 ppm. Dieses Signal liegt dicht bei dem Signal des m-Terphenylstannatelluroxans [(m-TerTe)₂(t-Bu₂Sn)₂O₅] (**20**) mit δ = 1698.4 ppm, was sich mit einer ähnlichen Geometrie um das Telluratom erklären lässt.

Die Molekülstruktur von Verbindung **19** ist in Abbildung 27 dargestellt. Verbindung **19** kristallisiert in der tetragonalen Raumgruppe $I\overline{4}$ mit zwei Formeleinheiten in der Elementarzelle.

In der Molekülstruktur des Natrium-m-terphenyltellurats Na $_4$ (m-TerTeO $_2$) $_4$ (**19**) werden vier Na(m-TerTeO $_2$)-Einheiten über primäre und sekundäre Te-O- und Na-O-Wechselwirkungen zu einem Tetramer verknüpft. Gut zu erkennen ist die vollständige Abschirmung des anorganischen Kerns durch die m-Terphenylliganden. In dem anorganischen Kern sind vier Tellur-, vier Natrium- und acht Sauerstoffatome enthalten.

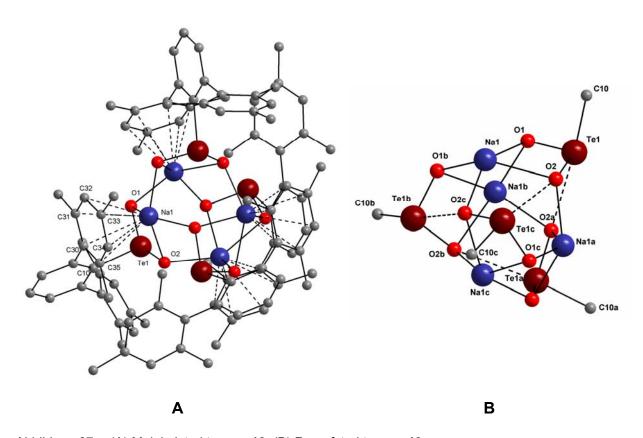


Abbildung 27: (A) Molekülstruktur von **19**. (B) Rumpfstruktur von **19**. Ausgewählte Bindungslängen (Å) und -winkeln (°): Te1-O1 1.837(3), Te1-O2 1.853(3), Te1-O2a 3.184(3), Te1-C10 2.163(4), Na1-O1 2.453(4), Na1-O2 2.556(3), Na1-O1b 2.556(2), Te1-O2c 2.352(2), Na1-(Schwerpunkt C30-C35) 2.519(2), O1-Te1-O2 98.9(1), O1-Te1-C10 98.0(1), O2-Te1-C10 102.7(1), O2-Te1-O2a 82.1(1), O1-Te1-O2a 76.1(1), O2a-Te1-C10 173.0(1), Te1-O1-Na1 97.9(1), Te1-O2-Na1 93.8(1), O2-Na1-O1 68.0(1), O1-Na1-O2c 142.9(1), O1-Na1-O1b 89.1(1), Na1-O2-Na1a 108.5(1), Na1-O1-Na1b 77.5(1). (Symmetriecodes: a = -x, 1-y, z; b = -0.5+y, 0.5-x, 1.5-z; c = 0.5-y, 0.5+x, 1.5-z).

Die Natrium- und die Telluratome besetzen die Ecken von zwei ineinander geschobenen Tetraedern, die μ_3 -Oxo verbrückt sind. Die Koordination der Telluratome lässt sich am besten als trigonal-bipyramidal beschreiben, wobei die O1- und O2-Atome die äquatorialen und das C10- und das O2c-Atom die axialen Positionen besetzen. Die Natriumatome sind quadratisch-pyramidal koordiniert, wobei die Spitze der Pyramide durch eine η_6 -Koordination einer Mesitylgruppe des m-Terphenylliganden besetzt wird (Abbildung 27). Den Natriumatomen fehlt zu ihrer sonst üblichen oktaedrischen Geometrie eine zweite axiale Koordination, die sich in Verbindung **19** im Zentrum des

Clusters befinden müsste. Auffällig sind die im Rahmen des Fehlers identischen Te-O1-und Te-O2-Bindungslängen mit 1.837(3) und 1.853(3) Å, die durch die Delokalisierung der negativen Ladung über die beiden Sauerstoffatome erklärt werden können. Die Telluratome werden zusätzlich zu den beiden äquatorialen Sauerstoffatomen noch von einem O2-Atom einer benachbarten m-TerTeO2Na-Einheit koordiniert. Der Abstand dieser sekundären Wechselwirkung ist mit Te1-O2c = 3.184(3) Å wesentlich länger als die Bindung zu den äquatorialen O1- und O2-Atomen. Die O2-Atome sind durch die zusätzliche sekundäre Wechselwirkung (3+1) koordiniert.

Vierkerniger Stannatelluroxan-Cluster [(m-TerTe)₂(t-Bu₂Sn)₂O₅] (20)

In der Literatur sind nur sehr wenige Sn-O-E-Cluster (E = schweres p-Block-Element) beschrieben.⁷⁹ Organozinnsauerstoff-Cluster und -Polymere haben in den letzten Reihe von interessanten Eigenschaften gezeigt, die in den Jahren eine Materialwissenschaften Anwendung gefunden haben.⁸⁰ In früheren Arbeiten in der AG Beckmann wurde beobachtet, dass Lösungen von Di-tert-butylzinnoxid (t-Bu₂SnO)₃ und Di-p-anisoltelluroxid (p-MeOC₆H₄)₂TeO Kohlendioxid (CO₂) aus der Luft binden und dabei das molekulare, tetranukleare Stannatelluroxan [(p-MeOC₆H₄)₂Te(OSnt-Bu₂CO₃]₂ bilden. 62 Das Kohlendioxid CO2 wird heute als einer der Hauptverursacher des "Treibhauseffekts" angesehen, weshalb ein großes Interesse an der Bindung des Kohlendioxids durch metallorganische Verbindungen besteht. Deshalb sollte die CO₂-Fixierung Stannatelluroxan $[(p-MeOC_6H_4)_2Te(OSnt-Bu_2CO_3]_2$ genauer in dem untersucht werden. Dabei konnten die beiden Stannatelluroxane (p- $MeOC_6H_4)_2TeO(Snt-Bu_2OH)_2O$ und $[(p-MeOC_6H_4)_2TeOSnt-Bu_2O]_2$ isoliert werden (Schema 22).81

Schema 22: Strukturen der Stannatelluroxane $[(p-MeOC_6H_4)_2Te(OSnt-Bu_2CO_3]_2, (p-MeOC_6H_4)_2TeO(Snt-Bu_2OH)_2O$ und $[(p-MeOC_6H_4)_2TeOSnt-Bu_2O]_2.$

In der Hoffnung weitere interessante Tellur-Zinn-Sauerstoff-Cluster zu erhalten, wurde die m-Terphenyltellurinsäure [m-TerTe(O)(OH)]₂ **15** mit 2 /₃ Äquivalenten (t-Bu₂SnO)₃ bildete sich das molekulare vierkernige Stannatelluroxan umgesetzt. Dabei (m-TerTe)₂(t-Bu₂Sn)₂O₅ (**20**) als farbloser kristalliner Feststoff (Schema 23). Verbindung **20** kann auch durch die Umsetzung des *m*-Terphenyltellur(IV)trichlorids (**12**) mit einem Äguivalent (t-Bu₂SnO)₃ erhalten werden. Wird das m-TerTeCl₃ (12) mit ¹/₃ Äguivalent (t-Bu₂SnO)₃ umgesetzt, kommt es nur zum Austausch von zwei Chloratomen durch ein Sauerstoffatom, wodurch das *m*-Terphenyltelluroxychlorid [*m*-TerTe(O)Cl]₂ (**16**) erhalten wird (Schema 20). Verbindung 20 zeigt im 125Te-NMR-Spektrum ein Signal bei δ = 1614.5 ppm und im 119 Sn-NMR-Spektrum ein Signal bei δ = -253.3 ppm. Die ¹¹⁹Sn-Verschiebung Bereich der Verschiebung des [(p-MeOC₆H₄)₂ liegt im Te(OSnt-Bu₂CO₃]₂ mit δ = -258.3 ppm, die ¹²⁵Te-Verschiebung ist dagegen im Vergleich zu der des $[(p-MeOC_6H_4)_2Te(OSnt-Bu_2CO_3]_2$ mit $\delta = 1194$ ppm ins Tieffeld verschoben, was auf eine unterschiedliche Koordination der Te-Atome zurückzuführen ist. In Verbindung 20 ist das Telluratom vierfach und in dem Stannatelluroxan [(p-MeOC₆H₄)₂Te(OSnt-Bu₂CO₃]₂ fünffach koordiniert.⁶²

Schema 23: Bildung des molekularen vierkernigen Stannatelluroxans [(*m*-TerTe)₂(*t*-Bu₂Sn)₂O₅] (**20**).

In dem 119 Sn-NMR-Spektrum sind eine 2J (119 Sn-O- 117 Sn)-Kopplung von 528 Hz und eine 2J (119 Sn-O- 125 Te)-Kopplung von 32 Hz zu beobachten. Im 125 Te-NMR-Spektrum ist die 2J (125 Te-O- 119 Sn)-Kopplung von 32 Hz aufgrund der Halbwertsbreite des Signals von 41 Hz nicht zu erkennen.

Die Molekülstruktur von Verbindung **20** ist in Abbildung 28 dargestellt. Verbindung **20** kristallisiert in der monoklinen Raumgruppe C2/c mit acht Formeleinheiten in der Elementarzelle. Die beiden m-Terphenylliganden bilden einen Käfig, in dem sich der Clusterteil befindet, der im Kristall systematisch fehlgeordnet vorliegt (siehe Anhang).

Die Tellur-, Zinn- und Sauerstoffatome in Verbindung **20** bilden einen [3,3,1]-Bizyklus. Die Koordination der Telluratome lässt sich am besten als tetraedrisch beschreiben. Damit kommt es zu einem Wechsel der Koordination des Telluratoms im Vergleich zur m-Terphenyltellurinsäure [m-TerTe(O)(OH)] $_2$ (**15**), in dem das Telluratom trigonal-pyramidal koordiniert ist.

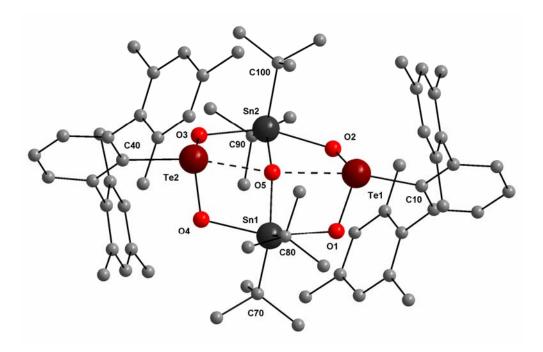


Abbildung 28: Molekülstruktur von **20**.

Ausgewählte Bindungslängen (Å) und -winkel (°): Te1-O1 1.864(11), Te1-O2 1.867(9), Te1-O5 2.586(6), Te1-C10 2.193(9), Te2-O3 1.869(11), Te2-O4 1.871(11), Te2-O5 2.581(7), Te2-C40 2.177(12), Sn1-O1 2.167(12), Sn1-O4 2.167(9), Sn1-O5 2.009(7), Sn1-C80 2.225(16), Sn1-C70 2.104(15), Sn2-O2 2.16(1), Sn2-O3 2.148(12), Sn2-O5 2.006(7), Sn2-C90 2.076(14), Sn2-C100 2.258(17), Te1-O1-Sn1 111.9(6), Te1-O2-Sn2 111.2(5), Te1-O5-Te2 163.8(3), O1-Te1-C10 98.1(4), O2-Te1-C10 96.2(4), O1-Te1-O2 105.4(5), O1-Sn1-O4 155.5(4), O1-Sn1-O5 79.363(4), O1-Sn1-C80 98.2(5), O1-Sn1-C70 93.0(5), Sn1-O5-Sn2 146.247(4), Te2-O4-Sn1 110.8(5), Te2-O3-Sn2 112.5(5), O4-Te2-C40 96.9(4), O3-Te2-C40 98.6(5), O4-Te2-O3 105.0(4), O3-Sn2-O2 156.6(4), O3-Sn2-O5 79.4(3), O3-Sn2-C90 94.2(5), O3-Sn2-C100 121.8(7).

Die Zinnatome sind in Verbindung 20 trigonal-bipyramidal koordiniert, wobei die Anordnung der Liganden nach der Regel von Bent erfolgt, so dass die beiden axialen Positionen von den Sauerstoffatomen eingenommen werden. Die äquatorialen Positionen werden jeweils durch die zwei tert-Butylgruppen und das O5-Atom eingenommen. Die Bindung zu den axialen Sauerstoffatomen ist erwartungsgemäß mit Sn-O(ax.) = 2.16(1) Å etwas länger als die Bindung zu dem äquatorialen Sauerstoffatom mit Sn-O(äq.) 2.00(1) Å. Die Zinnatome in der Clusterverbindung 20 Vergleich erfahren im zum Di-tert-butylzinnoxid $(t-BuSnO)_3$ eine Koordinationszahlerhöhung und sind damit hyperkoordiniert. Die gleiche Hyperkoordination der Zinnatome durch zwei *tert*-Butylgruppen und drei Sauerstoffatome findet man auch im $[(p-\text{MeOC}_6H_4)_2\text{Te}(\text{OSn}t-\text{Bu}_2\text{CO}_3]_2$, welches die sehr ähnlichen ¹¹⁹Sn-NMR-Verschiebungen von δ = -253.3 ppm und δ = -258.3 ppm aufzeigen. ⁶² Im Zentrum des Stannatelluroxans **20** befindet sich das O5-Atom, das durch zwei im Rahmen des Fehlers identische Einfachbindungen Sn-O5 = 2.00(1) Å an die beiden Zinnatome gebunden ist. Das O5-Atom bildet außerdem zwei sekundäre Wechselwirkungen zu den Telluratomen mit einem Abstand von Te-O5 = 2.85(1) Å aus.

3.3 *m*-Terphenylantimonverbindungen

Optimierte Synthese von *m*-Terphenylantimontetrachlorid *m*-TerSbCl₄ (21)

Zur Darstellung einer molekularen Stibonsäure muss in einem ersten Schritt das m-Terphenylantimon(V)tetrachlorid m-TerSbCl₄ (21) gebildet werden. In seiner berichtet В. Wettig der AG Bachelorarbeit aus Beckmann vom m-Terphenylantimon(V)tetrachlorid (21) zum ersten Mal.84 Im Rahmen dieser Arbeit wurde die Synthese mehrfach optimiert. Die Synthese des m-Terphenylantimon(V)tetrachlorids m-TerSbCl₄ geht von dem kommerziell erhältlichen Antimontrichlorid SbCl₃ aus, das in einer Salzmetathese mit m-Terphenyllithium m-TerLi zu dem m-Terphenylantimon(III)dichlorid m-TerSbCl₂ umgesetzt wird.⁸² Dieses wird mit Sulfurylchlorid zu dem m-Terphenylantimon(V)tetrachlorid m-TerSbCl₄ (21) umgesetzt (Schema 24).

Schema 24: Synthese von *m*-Terphenylantimon(V)tetrachlorid (**21**).

Die erste wohl definierte *m*-Terphenylstibonsäure (22)

Die kinetisch kontrollierte basische Hydrolyse des m-Terphenylantimontetrachlorids m-TerSbCl₄ (**21**) in einem Zwei-Phasen-System aus Toluol und 0.1 M NaOH lieferte als vollständiges Hydrolyseprodukt das m-Terphenylantimonoxydihydroxid [m-TerSb(O)(OH)₂]₂ (**22**), das als m-Terphenylstibonsäure aufgefasst werden kann (Schema 25).

Schema 25: Stufenweise Hydrolyse des *m*-Terphenylantimon(V)tetrachlorids (21).

Verbindung **22** löst sich gut in allen gängigen organischen Lösungsmitteln. Das IR-Spektrum zeigt für die *m*-Terphenylstibonsäure [*m*-TerSb(O)(OH)₂]₂ (**22**) ein Signal mit \tilde{v}_{OH} = 3563 cm⁻¹, das zwei Schultern bei \tilde{v}_{OH} = 3583 cm⁻¹ und \tilde{v}_{OH} = 3546 cm⁻¹ besitzt. Die breite Bande bei \tilde{v}_{OH} = 3330 cm⁻¹ lässt sich den äquatorialen OH-Gruppen der O3-Atome zuordnen, da diese im Kristall Wasserstoffbrückenbindungen zu einem fehlgeordneten THF-Molekül eingehen (Abbildung 29).

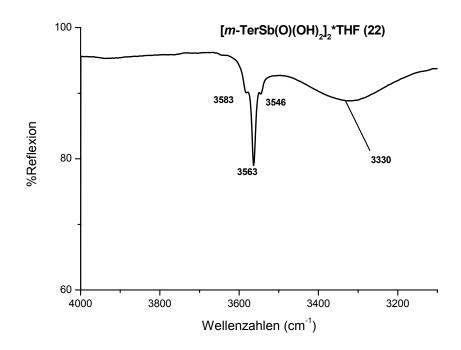


Abbildung 29: IR-Spektrum der röntgenographisch vermessenen Kristalle der m-Terphenylstibonsäure [m-TerSb(O)(OH)₂]₂·THF (**22**).

Die Molekülstruktur von **22** ist in Abbildung 30 dargestellt. Die Stibonsäure kristallisiert in der triklinen Raumgruppe $P\bar{1}$ mit einer Formeleinheit in der Elementarzelle, an die ein fehlgeordnetes THF-Molekül über eine Wasserstoffbrückenbindung gebunden ist.

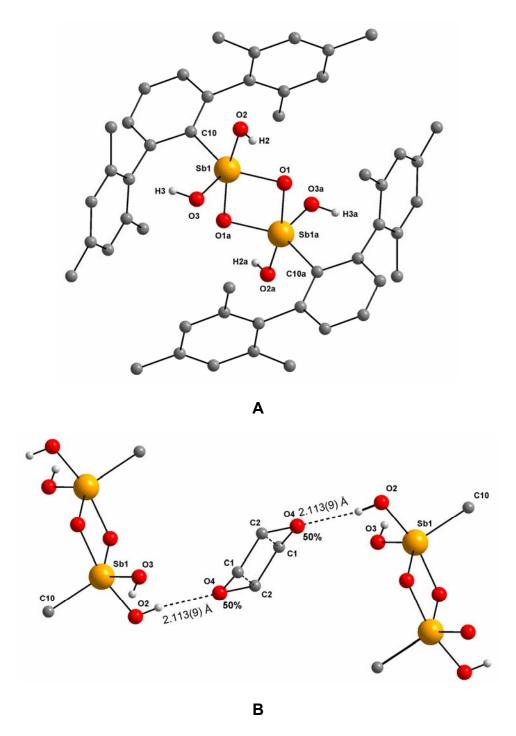


Abbildung 30: (A) Molekülstruktur von **22**. (B) Kristallstruktur von **22** mit fehlgeordnetem THF. Ausgewählte Bindungslängen (Å) und -winkel (°): Sb1-O1 1.913(2), Sb1-O1a 2.035(2), Sb1-O2 1.940(3), Sb1-O3 1.917(3), Sb1-C10 2.136(3), O1-Sb1-O3 118.4(1), O1-Sb1-O2 91.9(1), O3-Sb1-O2 87.8(1), O1-Sb1-O1a 78.1(1), O2-Sb1-O1a 165.7(1), O3-Sb1-O1a 88.1(1), O1-Sb1-C10 125.6(1), O1a-Sb1-C10 94.9(1), O2-Sb1-C10 99.2(1), O3-Sb1-C10 115.1(1), Sb1-O1-Sb1a 102.0(1); (Symmetriecode: a = 2-x, 2-y, 1-z).

Die Molekülstruktur der m-Terphenylstibonsäure [m-TerSb(O)(OH) $_2$] $_2$ (22) zeigt wie die m-Terphenyltellurinsäure (15) eine asymmetrische viergliedrige Sb $_2$ O $_2$ -Ringstruktur mit zwei exozyclischen OH-Gruppen. Das Antimonatom in Verbindung 22 ist trigonal-

bipyramidal koordiniert, wobei der *m*-Terphenylligand, das O1-Atom und das O3-Atom, die äquatorialen und das O2-Atom und das O1a-Atom (Symmetriecode: a = 2-x, 2-y, 1-z) die axialen Positionen einnehmen. In der *m*-Terphenylstibonsäure $[m-TerSb(O)(OH)_2]_2$ **(22)** unterscheiden sich die äquatorialen und axialen endozyklischen Sb-O-Bindungslängen [Sb1-O1(äg.) = 1.913(2) Å und Sb1-O1a(ax.) = 2.035(2) Ål nur um 0.122(2) Å, was gut mit dem Bereich der Sb-O-Bindungslängen des $(Ph_3SbO)_2$ [Sb-O(äq.) = 1.928(3) Å und Sb-O(ax) = 2.071(4) Å] übereinstimmt. Die Diskrepanz zwischen den äquatorialen und axialen Te-O-Bindungslängen ist in der *m*-Terphenyltellurinsäure $[m\text{-TerTe}(O)(OH)]_2$ (15) $[\text{Te1-O1}(\ddot{a}q.) = 1.897(5) \text{ Å und Te1-}$ O1a(ax.) = 2.143(5) Å1 mit 0.246(5) Å signifikant größer. Dies spiegelt sich auch in der osmometrischen Molekulargewichtsbestimmung wieder, bei der ein Assoziationsgrad in Toluollösungen bei 60°C von 2.0 gefunden wurde. Dies lässt darauf schließen, dass die m-Terphenylstibonsäure [m-TerSb(O)(OH)₂]₂ (22), im Gegensatz zur m-Terphenyltellurinsäure (15), auch in Lösung als Dimer vorliegt.

Von P. Finke wurden in ihrer Diplomarbeit, neben den schon beschriebenen Strukturen der Organochalkogensäuren PhE(O)OH (E = S, Se, Te), auch die Strukturen der Organopentelsäuren PhE(O)(OH)₂ (E = P, As, Sb) mittels DFT-Berechnungen optimiert. Dabei wurden drei grundsätzlich verschiedene Dimertypen, "H-Brücken-Dimer", "OH-*trans*-Dimer" und "Ph-*trans*-Dimer", untersucht (Schema 26). Die erste mögliche Dimerisierung, die Ausbildung von Wasserstoffbrücken ("H-Brücken-Dimer"), wird von den Säuren der Elemente der 3. und 4. Periode bevorzugt. Für das schwerere Homologe, die Phenylstibonsäure [PhSb(O)(OH)₂]₂, konnte hingegen, genau wie für die Phenyltellurinsäure [PhTe(O)(OH)]₂, die experimentell gefundene Struktur des μ_2 -Oxoverbrückten Dimers ("OH-*trans*-Dimer") bestätigt werden. Die intermolekularen Bindungen in dem viergliedrigen Sb₂O₂-Ring haben wahrscheinlich ebenfalls einen ionischen und einen hypervalent-kovalenten Anteil des Typs $n(O) \rightarrow \sigma^*(E-O_{ax})$.

Schema 26: Mögliche Dimerstrukturen der Organopentelsäuren PhE(O)(OH)₂.

Frühere Versuche in unserer Arbeitsgruppe, eine wohl definierte Stibonsäure durch die basische Hydrolyse von m-Terphenylantimon(III)dichlorid m-TerSbCl $_2$ mit anschließender Oxidation zu erhalten, lieferten als kinetisch stabilste Verbindung das (m-TerSb III Cl) $_2$ O. Zusätzlich konnten noch die gemischt-valenten Antimon-Sauerstoff-Cluster (m-TerSb $^V)_2$ (ClSb $^{III})_4$ O $_8$ und (m-TerSb $^V)_4$ (HOSb $^{III})_2$ O $_{14}$ isoliert werden, die durch Spaltungen von Sb III -C-Bindungen gebildet wurden. In Erwartung, dass die m-Terphenyl-Sb V -Bindung stabiler gegenüber einer basischen Hydrolyse sein sollte, wurde das m-Terphenylantimontetrachlorid m-TerSbCl $_4$ (21) synthetisiert und in ersten Versuchen hydrolysiert, aus denen einmalig das m-Terphenylantimonoxyhydroxychlorid isoliert werden konnte. Reaktionsbedingungen waren in allen Hydrolyse-experimenten identisch, was darauf hindeutet, dass die C-Sb V -Bindung stabiler gegenüber einer basischen Hydrolyse ist als die C-Sb III -Bindung.

Genau wie bei *m*-Terphenyltellur(IV)trichlorid *m*-TerTeCl₃ (**12**) lässt sich durch das vorzeitige Beenden der Hydrolyse das unvollständig hydrolysierte *m*-Terphenylantimonoxyhydroxychlorid *m*-TerSb(O)(OH)Cl (**23**) darstellen (Schema 25).

Reaktivität der *m*-Terphenylstibonsäure (22)

Als die Stibonsäure das erste Mal dargestellt wurde, sollte sie analog zu der Tellurinsäure aus Ethanol umkristallisiert werden. Dazu wurde der Feststoff aus der Toluolphase nach der Hydrolyse von *m*-TerSbCl₄ in Ethanol aufgenommen und zum Sieden erhitzt. Dabei kam es zur Veresterung einer axialen OH-Gruppe der Stibonsäure und es wurde der *m*-Terphenylstibonsäuremonoethylester [*m*-TerSb(O)(OH)OEt]₂ (24) erhalten. Verbindung 24 lässt sich auch gezielt quantitativ durch Erhitzen der Stibonsäure in Ethanol erhalten (Schema 27).

Schema 27: Veresterung zum Stibonsäuremonoethylester [m-TerSb(O)(OH)OEt]₂·EtOH (24).

Das IR-Spektrum des m-Terphenylstibonsäuremonoethylesters [m-TerSb(O)(OH)OEt]₂ (**24**) zeigt ein Signal bei $\tilde{v}_{OH} = 3554 \text{ cm}^{-1}$. Die Molekülstruktur von Verbindung **24** ist in Abbildung 31 dargestellt. Verbindung **24** kristallisiert in der monoklinen Raumgruppe C2/c mit zwei Formeleinheiten in der Elementarzelle.

Die Ethylgruppen der Esterfunktion an den O2-Atomen zeigen eine Fehlordnung, so dass für jedes C1- und C2-Atom nur eine Population von jeweils 50 % vorhanden ist. Auf die Abbildung der zweiten Anordnung der fehlgeordneten Ethylgruppen wurde aus Übersichtlichkeitsgründen verzichtet. Die Ethylgruppen sind vermutlich nicht an Packungseffekten der einzelnen Stibonsäuremonoethylestermoleküle beteiligt, so dass sie genügend Raum zur Rotation und Schwingung besitzen.

Die Bindungslängen und -winkel des Stibonsäuremonoethylesters $[m\text{-TerSb}(O)(OH)OEt]_2$ (24) sind denen der m-Terphenylstibonsäure $[m\text{-TerSb}(O)(OH)_2]_2$ (22) sehr ähnlich.

Abbildung 31: Molekülstruktur von **24**. Ausgewählte Bindungslängen (Å) und -winkel (°): Sb1-O1 1.932(9), Sb1-O1a 2.033(4), Sb1-O2 1.939(6), Sb1-O3 1.921(8), Sb1-C10 2.155(7),O2-C1 1.53(2), O1-Sb1-O3 111.7(2), O1-Sb1-O2 92.2(2), O3-Sb1-O2 90.7(2), O1-Sb1-O1a 78.4(2), O2-Sb1-O1a 170.0(2), O3-Sb1-O1a 89.6(2), O1-Sb1-C10 133.3(2), O1a-Sb1-C10 95.3(2), O2-Sb1-C10 93.8(2), O3-Sb1-C10 114.4(1), Sb1-O1-Sb1a 101.6(2), Sb1-O2-C1 128.5(8); (Symmetriecode: a = 0.5-x, 1.5-y, -z).

Es wurde versucht, die m-Terphenylstibonsäure [m-TerSb(O)(OH) $_2$] $_2$ (22) mit Natriumhydroxid zu deprotonieren. Im Unterschied zur Darstellung der Stibonsäure wurde die Deprotonierung in einer Suspension von [m-TerSb(O)(OH) $_2$] $_2$ (22) in wässriger 1 M NaOH durchgeführt und nicht in einem Zwei-Phasen-System aus wässriger NaOH und Toluol (Schema 28).

Schema 28: Darstellung des sechkernigen Natrium-Antimon-Sauerstoff-Clusters $[(m\text{-TerSb})_2(O)_2(OH)_5Na\cdot H_2O]_2$ (25).

Der so erhaltene Feststoff wurde in Toluol aufgenommen und die Lösung zur Kristallisation eingeengt. Die Einkristallröntgenstrukturanalyse zeigte, dass sich ein sechkerniger Natrium-Antimon-Sauerstoff-Cluster $[(m\text{-TerSb})_2(O)_2(OH)_5\text{Na}\cdot H_2O]_2$ (25) gebildet hatte (Schema 28). Es kommt nicht wie erwartet zu einer Deprotonierung der Hydroxy-Gruppen, sondern ein Molekül NaOH addiert sich formal an ein Antimonatom, so dass die Koordinationszahl von fünf auf sechs erhöht wird. Die Molekülstruktur von Verbindung 25 ist in Abbildung 32 dargestellt. Verbindung 25 kristallisiert in der monoklinen Raumgruppe $P2_1/n$ mit vier Formeleinheiten in der Elementarzelle.

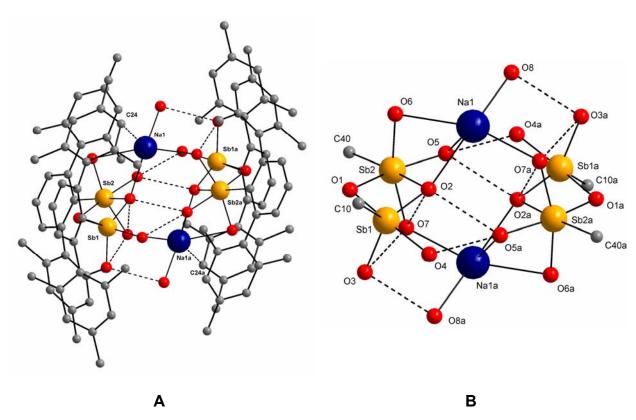


Abbildung 32: (A) Molekülstruktur von 25. (B) Rumpfstruktur von 25. Ausgewählten Bindungslängen (Å) und -winkeln (°): Sb1-O1 1.993(4), Sb1-O2 1.934(5), Sb1-O3 1.947(6), Sb1-O4 1.947(6), Sb1-C10 2.137(8), Sb2-O1 1.996(4), Sb2-O2 2.117(4), Sb2-O5 1.962(4), Sb2-O6 1.979(6), Sb2-O7 2.003(6), Sb2-C40 2.194(6), Na1-O5 2.464(7), Na1-O6 2.554(6), Na1-O7a 2.447(6), Na1-O8 2.327(9), Na1-C24 2.95(1), 2.720(7),O3···O7 2.743(7),O2···O5a 3.196(6), O3...O8a O4···O5a 2.820(6), O3-Sb1-O1 87.7(2), O3-Sb1-O2 119.2(2), O3-Sb1-O4 87.5(2), O3-Sb1-C10 114.7(2), O4-Sb1-O1 166.2(2), O4-Sb1-O2 91.1(2), O4-Sb1-C10 92.0(2), O1-Sb1-C10 101.8(2), O1-Sb1-O2 80.0(2), O2-Sb1-C10 126.1(2), Sb1-O1-Sb2 101.4(2), Sb1-O2-Sb2 99.2(2), O1-Sb2-O2 75.7(1), O1-Sb2-O5 161.5(2), O1-Sb2-O6 92.5(2), O1-Sb2-O7 95.1(2), O1-Sb2-C10 98.7(2), O2-Sb2-O5 86.0(2), O2-Sb2-O6 84.8(2), O2-Sb2-O7 83.4(2), O2-Sb2-C10 174.4(2), O5-Sb2-O6 83.4(2), O5-Sb2-O7 85.0(2), O5-Sb2-C40 99.6(2), O6-Sb2-O7 164.0(2), O6-Sb2-C40 95.6(3), O7-Sb2-C40 97.2(3), O2-Na1-O5 68.6(2), O2-Na1-O6 66.6(2), O2-Sb2-O8 162.6(2), O2-Sb2-O7a 95.6(2), O2-Sb2-C24 93.6(2), O5-Na1-O6 62.9(2), O5-Na1-O8 94.2(2), O5-Na1-O7a 107.9(2), O5-Na1-C24 148.0(2), O6-Na1-O8 108.1(2), O6-Na1-O7a 161.8(2), O6-Na1-C24 85.9(2), O8-Na1-O7a 87.7(2), O8-Na1-C24 102.7(2), O7a-Na1-C24 99.8(2), Sb2-O7-Na1a 123.0(2). (Symmetriecode: a = 1-x, 2-y, 1-z).

Die Molekülstruktur des [(*m*-TerSb)₂(O)₂(OH)₅Na·H₂O]₂ (**25**) zeigt zwei *m*-Terphenylstibonsäureeinheiten, die durch zwei NaOH-Moleküle über primäre Sb2-O5-Na1-O7a-Bindungen und mehrere O-H···O-Wasserstoffbrückenbindungen miteinander zu dem sechskernigen Natrium-Antimon-Sauerstoff-Cluster verbunden sind. In dem Cluster **25** sind fünf symmetrieunabhängige Wasserstoffbrückenbindungen enthalten, deren Bindungslängen von O2··· O5a mit 2.720(7) Å bis O3···O7 mit 3.196(6) Å reichen und damit im Bereich von schwachen Wasserstoffbrückenbindungen liegen.⁶¹

Die Zuordnung, welches der Sauerstoffatome zu einer Hydroxy-Gruppe gehört und welches ein verbrückendes Sauerstoffatom darstellt, gestaltete sich schwierig. Bei den Sauerstoffatomen, die sich in den viergliedrigen μ_2 -Sb $_2$ O $_2$ -Ringen befinden (O1 und O2), handelt es sich höchstwahrscheinlich um verbrückende Sauerstoffatome. Bei den O3-, O4-, O5-, O6- und O7-Atomen könnte es sich um Hydroxy-Gruppen handeln. Das O7-Atom stellt dabei eine zusätzliche Hydroxy-Gruppe im Vergleich zur m-Terphenylstibonsäure (22) dar, die durch die Verbrückung der NaOH-Moleküle zustande kommt. Bei dem O8-Atom muss es sich auf Grund der Ladungsbilanz um ein Wassermolekül handeln.

Das IR-Spektrum von Verbindung **25** zeigt mehrere OH-Schwingungsbanden (Abbildung 33).

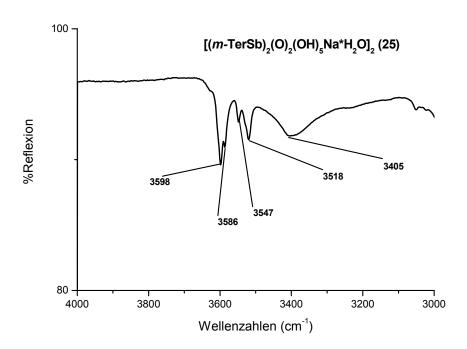


Abbildung 33: IR-Spektrum von Verbindung 25.

Eine Zuordnung der Schwingungsbanden zu expliziten Hydroxy-Gruppen des Clusters ist nicht möglich. Die breite Bande bei \tilde{v}_{OH} = 3405 cm⁻¹ bestätigt, dass Wasserstoffbrückenbindungen in **25** vorhanden sein müssen.

Durch die Verbrückung der NaOH-Moleküle erfahren die Sb2-Atome eine zusätzliche Bindung, wodurch sie in diesem Cluster verzerrt oktaedrisch koordiniert sind. Dabei steht das O2-Atom *trans* zu dem C40-Atom des Liganden. Die restlichen Positionen des Oktaeders nehmen die O1-, O5-, O6- und O7-Atome ein.

Die Geometrie des Sb1-Atoms gleicht der des Antimonatoms in der m-Terphenylstibonsäure [m-TerSb(O)(OH) $_2$] $_2$ (22) und lässt sich am besten als verzerrt trigonalbipyramidal beschreiben, wobei die äquatorialen Positionen von den O2-, O3- und C10- und die axialen Positionen von den O4- und O1-Atomen besetzt werden. Die Antimonatome Sb1 und Sb2 werden durch zwei Sauerstoffatome zu der schon bekannten viergliedrigen Ringstruktur verknüpft. Die Bindungen zum Sb1 sind mit Bindungslängen von Sb1-O1 = 1.993(4) Å und Sb1-O2 = 1.934(5) Å kürzer als die zum Sb2 mit Bindungslängen von Sb2-O1 = 1.996(4) Å und Sb2-O2 = 2.117(4) Å. Dies könnte an der unterschiedlichen Koordination der beiden Antimonatome liegen.

Die Natriumatome werden durch die C24-Atome von zwei Mesitylgruppen der m-Terphenylliganden η_1 -koordiniert (C24-Na1 = 2.95(1) Å), wodurch sie eine verzerrt oktaedrische Geometrie besitzen. Dabei steht das C24-Atom des Liganden trans zu dem O5-Atom. Die restlichen Positionen des Oktaeders nehmen die O2-, O6-, O8- und O7a-Atome (Symmetriecode: a = 1-x, 2-y, 1-z) ein.

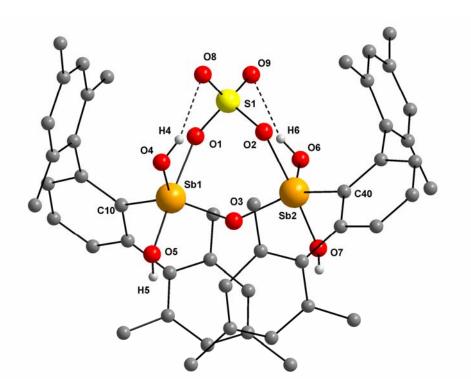

Die m-Terphenylstibonsäure [m-TerSb(O)(OH)₂]₂ (**22**), gelöst in Toluol, wurde in einer Zwei-Phasen-Reaktion mit wässriger konz. H₂SO₄ umgesetzt. Durch anschließendes Trennen der Phasen und Einengen des Toluols konnte der sechsgliedrige Antimon-Schwefel-Cluster [m-TerSb(OH)₂]₂(O)SO₄ (**26**) erhalten werden. Die Bildung von Verbindung **26** wird durch die Kondensation eines μ_2 -Sauerstoffatoms und dessen Austausch gegen ein Sulfation erreicht (Schema 29).

Abbildung 34:

Molekülstruktur von 26.

Schema 29: Darstellung des sechsgliedrigen [m-TerSb(OH)₂]₂(O)SO₄ (26).

Die Molekülstruktur von Verbindung 26 ist in (Abbildung 34) dargestellt. Verbindung 26 kristallisiert in der triklinen Raumgruppe P1 mit zwei Formeleinheiten in der Elementarzelle.

Ausgewählte Bindungslängen (Å) und -winkel (°): Sb1-O1 2.119(5), Sb1-O3 1.915(5), Sb1-O4 1.902(5), Sb1-O5 1.926(6), Sb1-C10 2.126(7), Sb2-O2 2.111(5), Sb2-O3 1.912(4), Sb2-O6 1.903(6), Sb2-O7 1.923(6), Sb2-C40 2.125(7), S1-O1 1.528(4), S1-O2 1.538(7), S1-O8 1.424(7), S1-O9 1.428(7), O8···H4 2.157(6), O9···H6 2.152(6), O1-Sb1-O3 86.4(2), O1-Sb1-O4 87.9(2), O1-Sb1-O5 176.3(2), O1-Sb1-C10 88.3(2), O4-Sb1-O3

112.3(2), O4-Sb1-O5 90.9(2), O4-Sb1-C10 125.2(2), O5-Sb1-O3 90.9(2), O5-Sb1-C10 95.2(3), O3-Sb1-C10 122.0(2), Sb1-O3-Sb2 135.2(3), O3-Sb2-O2 86.4(2), O3-Sb2-O6 112.3(2), O3-Sb2-O7 90.8(2), O3-Sb2-C40 122.2(2), O2-Sb2-O6 88.3(2), O2-Sb2-O7

176.1(2), O2-Sb2-C40 88.3(2), O6-Sb2-O7 90.4(2), O6-Sb2-C40 125.0(2).

Die Molekülstruktur des sechsgliedrigen Rings [m-TerSb(OH)₂]₂(O)SO₄ (26) leitet sich aus der Struktur der m-Terphenylstibonsäure [m-TerSb(O)(OH)2]2 (22) ab, in der eine μ_2 -Sauerstoffbrücke durch das Sulfation ersetzt wurde. Dadurch bildet die Sulfatgruppe mit den beiden Antimonatomen und dem O3-Atom einen sechsgliedrigen Sb₂SO₃-Ring. Zusätzlich zu den Sb1-O1- und den Sb2-O2-Bindungen ist das Sulfation noch zusätzlich über zwei intramolekulare Wasserstoffbrückenbindungen mit einem Donor-Akzeptorabstand von O8···O4 mit 2.901(8) Å und O9···O6 mit 2.894(9) Å an den Stibonsäurerest gebunden. Das IR-Spektrum von Verbindung **26** zeigt zwei Banden, eine scharfe bei $\tilde{\nu}$ OH5; OH7 = 3565 cm⁻¹ und eine stark verbreiterte bei $\tilde{\nu}$ OH6; OH4 = 3369 cm⁻¹, welche den freien bzw. den Wasserstoffbrücken-gebundenen OH-Gruppen zugeordnet werden können (Abbildung 35).

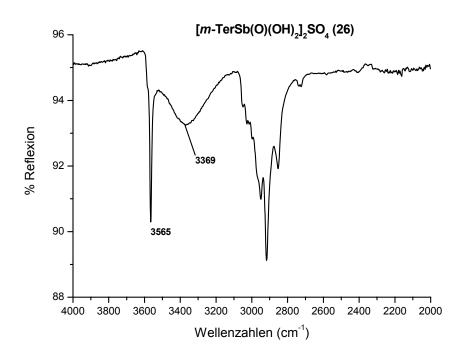


Abbildung 35: IR-Spektrum von Verbindung 26.

Die beiden Wasserstoffbrückenbindungen liegen mit einem durchschnittlichen Donor-Akzeptorabstand von 2.898(8) Å im Bereich mittelstarker Wasserstoffbücken. ⁶¹ Zusätzlich zu dem verbrückenden Sulfation werden die beiden Antimonatome Sb1 und Sb2 wie in der Stibonsäure (22) durch eine μ_2 -Sauerstoffbrücke miteinander verbunden. In der Molekülstruktur von 26 ist gut zu erkennen, dass der sperrige m-Terphenylligand das anorganische Zentrum abschirmt. Die Geometrie der beiden Antimonatome ist verzerrt trigonal-bipyramidal. Die O3-, O4- und C10-Atome nehmen die äquatorialen und das O1- und O5-Atom die axialen Positionen um das Sb1-Atom ein. Die O3-, O6-

und C40-Atome nehmen die äquatorialen und das O2- und O7-Atom die axialen Positionen um das Sb2-Atom ein.

4 Zusammenfassung (Summary)

Im Rahmen dieser Arbeit wurde die erste wohl definierte m-Terphenyltellurinsäure und *m*-Terphenylstibonsäure [*m*-TerSb(O)(OH)₂]₂ $[m-TerTe(O)(OH)]_2$ (15) (22)dargestellt und vollständig charakterisiert. Die Molekülstrukturen der m-Terphenyltellurinsäure [m-TerTe(O)(OH)]₂ (15) und der m-Terphenylstibonsäure $[m-TerSb(O)(OH)_2]_2$ (22) zeigen asymmetrische viergliedrige E_2O_2 (E = Te, Sb) Ringstrukturen mit einer bzw. zwei exozyklischen OH-Gruppen. Im Gegensatz dazu sind die entsprechenden Phosphon- und Arsonsäuren RE(O)(OH)₂ (E = P, As), sowie die Sulfin- und Seleninsäuren RE(O)(OH) monomolekulare Verbindungen mit tetraedrisch koordinierten Zentralatomen E, polaren (formalen) E=O-Doppelbindungen und E-OH-Gruppen, die normalerweise im Festkörper via intermolekulareren Wasserstoffbrückenbindungen assoziiert sind. Wie bereits für die 14 Gruppe beobachtet werden konnte, findet eine qualitative Änderung der Strukturen auch innerhalb der 15. und 16. Gruppe statt.

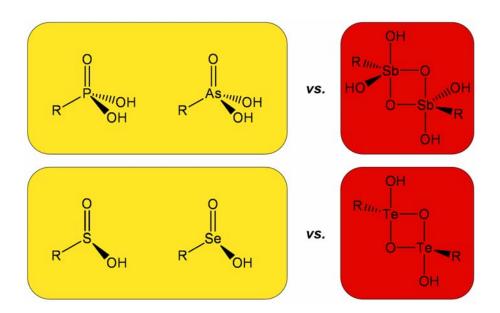


Abbildung 36: Organoelementsäuren der 5. und 6. Hauptgruppe.

Die Reaktivität der Verbindungen **15** und **22** wurde exemplarisch untersucht. Dabei konnten unter anderem ein erstes achtkerniges Natrium-*m*-terphenyltellurat Na₄(*m*-TerTeO₂)₄ (**19**) und ein sechskerniger Natrium-Antimon-Sauerstoff-Cluster [(*m*-TerSb)₂(O)₂(OH)₅Na·H₂O]₂ (**25**) synthetisiert und vollständig charkterisiert werden.

Auf dem Weg zur Synthese der m-Terphenyltellurinsäure [m-TerTe(O)(OH)] $_2$ (15) konnten einige der ersten Monoorganotellurenyl(II)halogenide, das Supermesityl-

tellurenyl(II)chlorid Mes*TeCl (**2**) und die überraschenderweise gemischt-valenten Verbindungen m-Terphenyltellurenyl(II)chlorid m-TerCl₂TeTem-Ter (**9**) und m-Terphenyltellurenyl(II)bromid m-TerBr₂TeTem-Ter (**10**) synthetisiert und vollständig charakterisiert werden.

Summary

In this work the synthesis and full characterisation of the first well-defined m-Terphenyltellurinic acid [m-TerPhenyltellurinic acid [m-TerSb(O)(OH)₂]₂ (**22**) is presented.

X-ray structure analysis shows that the usually observed change of the coordination behaviour of the *p*-block elements from period 4 to 5 is consistent with the results found for the organoelementoxides of tellurium and antimony within this work.

The molecular structures of the tellurinic $[m\text{-TerTe}(O)(OH)_2]_2$ (15) and stibonic acid $[m\text{-TerSb}(O)(OH)_2]_2$ (22) comprise asymmetric four-membered E_2O_2 (E = Te, Sb) ring structures with one or two exocyclic OH groups.

By contrast, all phosphonic and arsonic acids $RE(O)(OH)_2$ (E = P, As) as well as sulfinic and seleninic acids RE(O)(OH) (E = S, Se), are well-defined molecular compounds with tetrahedrally coordinated central atoms E, polar (formal) E=O double bonds and E-OH groups that are usually involved in intermolecular hydrogen bonding in the solid state.

Furthermore some of the first aryltellurenyl halides have been synthesized and fully characterised, namely the supermesityltellurenyl(II)chloride Mes*TeCl (2) and unexpected the mixed valent m-terphenyltellurenyl(II)chloride m-TerCl₂TeTem-Ter (9) and m-terphenyltellurenyl(II)bromide m-TerBr₂TeTem-Ter (10).

5 Experimenteller Teil

Allgemeines

Arbeitstechnik

Die Handhabung luft- und feuchtigkeitsempfindlicher Substanzen erfolgte nach üblichen *Schlenk*-Methoden in ausgeheizten Reaktionsgefäßen unter Argon als Schutzgas. Feststoffe wurden im Allgemeinen in einer *Glove*-Box der Firma *M. Braun* um- und abgefüllt. Flüssigkeiten, Lösungen und Lösungsmittel wurden unter einer Argon-Schutzgasatmosphäre aufbewahrt. Vorrats- und Reaktionsgefäße wurden über Schlauch-Verbindungen an Hochvakuumapparaturen angeschlossen, auf Maximal-vakuum (ca. 0.1 Pa) gebracht und mit Argon (Reinheitsgrad 4.6) gefüllt.

Literaturbekannte Verbindungen und Ausgangsreagenzien

Folgende Verbindungen wurden nach literaturbekannten Methoden synthetisiert oder entstammen Arbeitskreisbeständen bzw. waren kommerziell erhältlich:

Tellurpulver, Sulfurylchlorid SO₂Cl₂, 1-Bromo-2,4,6-tri-*tert*-butylbenzol, 2,6-Dimesityliod-benzol, ⁶⁵ Di-*tert*-butylzinnoxid, ⁶³ *m*-Terphenylantimondichlorid. ⁸²

Lösungsmittel

Etherische Lösungsmittel (THF und Diethylether) wurden über Kaliumhydroxid vorgetrocknet und von Natrium/Benzophenon abdestilliert. Kohlenwasserstoffe (Toluol, n-Hexan, n-Pentan) wurden ebenfalls über Kaliumhydroxid vorgetrocknet und von Natrium/Benzophenon abdestilliert. Dichlormethan wurde über P_2O_{10} unter Schutzgasatmosphäre getrocknet, abdestilliert und anschließend mit Argon gesättigt. Im weiteren Verlauf der Arbeit alle Lösemittel mittels wurden eines Lösemittelreinigungsanlagen-Systems SPS-800 der Firma M. Braun absolutiert. Aufbewahrung erfolgte wie oben beschrieben. Deuterierte Lösemittel (d₈-Toluol, d₈-THF, C₆D₆ CDCl₃) wurden von der *Chemotrade Chemiehandels-GmbH* bezogen.

Spektroskopie/Analytik

Die NMR-Messungen wurden an einem JL400 FT-NMR-Spektrometer der Firma JEOL durchgeführt. Chemische Verschiebungen δ sind in ppm angegeben und auf das Lösungsmittelsignal bzw. auf Tetramethylsilan (¹H- und ¹³C-NMR) oder Dimethyltellurid (125Te-NMR) bzw. Tetramethylzinn (119Sn-NMR) als externen Standard bezogen. 13C-, ¹¹⁹Sn- und ¹²⁵Te-NMR-Spektren wurden unter ¹H-Breitbandentkopplung gemessen. Elementaranalysen wurden mit einem Vario EL der Elementar Analysensysteme GmbH durchgeführt. Die Infrarot-Spektren wurden mit einem Nexus-FT-IR-Spektrometer 670 von der Firma Nicolet mit SMART DuraSamp IR-Zubehör in abgeschwächter (ATR-FT-IR) aufgenommen. Schmelzpunkte wurden Totalreflexion an einem Schmelzpunktmessgerät IA9200 der Firma Electrothermal bestimmt. Molekulargewichte wurden an einem Vapour Pressure Osmometer gemessen. Zur Kalibrierung des Osmometers wurde Benzil in Toluol als Eichsubstanz verwendet.

Modifizierte bzw optimierte Synthesen

Synthese von Bissupermesitylditellurid (Mes*Te)₂ (1)

Lithium (2.50 g, 360.00 mmol) wird in einer Lösung aus 4,4'-Di-tert-butylbiphenyl (1.00 g, 3.85 mmol) in THF (80 ml) suspendiert und bis zu einer intensiven Grünfärbung der Lösung gerührt. Anschließend wird eine Lösung aus 1-Bromo-2,4,6-tri-tert-butylbenzol (25.00 g, 76.90 mmol) in THF (180 ml) zu der Reaktionsmischung getropft. Die Zugabe erfolgt bis zur Rotfärbung und wird erst wieder fortgesetzt, wenn sich die Lösung erneut grün färbt. Nach Zugabe der gesamten Lösung wird noch 1h gerührt. Die Reaktionsmischung wird in ein Schlenk-Rohr, in dem Tellurpulver (11.70 g, 92.00 mmol) vorgelegt ist, überführt und weitere 12h bei RT gerührt. Es wird 10 min Luft durch die Lösung geleitet und anschließend das Lösungsmittel im Vakuum entfernt. Der zurückbleibende Feststoff wird mit Hexan in einem Soxhlett-Extraktor extrahiert und danach das Lösungsmittel auf 100 ml eingeengt. Bissupermesitylditellurid (Mes*Te)₂ (4) kristallisiert als dunkelroter Feststoff.

Ausbeute: 23.40 g (31.50 mmol, 41%).

¹H-NMR (CDCI₃): $\delta = 7.30 \text{ (s, 4H, Ar), } 1.40 \text{ (s, 36H, CH₃),}$

1.32 (s, 18H, CH₃) ppm.

¹³C-NMR (CDCI₃): δ = 157.3, 149.9, 121.5, 112.0 (Ar), 39.6, 34.8, 33.7,

31.4 ($C(CH_3)_3$) ppm.

¹²⁵Te-NMR (CDCI₃): δ = 547.8 ppm.

Schmp.: 194–195°C

EA: $C_{36}H_{58}Te_2$ (M = 741.09 g/mol) Ber.: C 58.34, H 7.90

Gef.: C 58.38, H 7.87

Synthese von Supermesityltellurenyl(II)bromid Mes*TeBr (3)

Zu einer Lösung von Bissupermesitylditellurid (0.20 g, 0.26 mmol) in Diethylether (30 ml) wird Brom (0.04 g, 0.26 mmol) langsam bei 0°C zugetropft. Die Lösung wird eine Stunde gerührt, bevor sie auf Raumtemperatur erwärmt wird. Die Lösung wird auf 10 ml eingeengt und zur Kristallisation auf -15°C abgekühlt. Verbindung 3 kristallisiert als dunkelgrüner Feststoff.

Ausbeute: 0.19 g (2.16 mmol, 83%).

¹H-NMR (CS₂/CDCI₃-Kap.): $\delta = 7.65$ (s, 2H, Ar), 1.78 (s, 9H, CH₃),

1.26 (s, 18H, CH₃) ppm.

¹³C-NMR (CS₂/CDCl₃-Kap.): δ = 151.5, 127.3, 123.2, 122.1 (Ar), 40.8, 35.2, 34.0,

31.2 (C(CH₃)₃) ppm.

¹²⁵Te-NMR (CS₂/CDCI₃-Kap.): δ = 1170.3 ppm.

Schmp.: Zersetzung

EA: $C_{18}H_{29}$ TeBr (M = 452.93 g/mol) Ber.: C 47.73, H 6.45

Gef.: C 47.55, H 6.50

Synthese von *m*-Terphenylantimon(V)tetrachlorid *m*-TerSbCl₄ (21)

Es werden 3.00 g (9.30 mmol) 1,3-Dimesitylphenyllithium in 100 ml einer 1:1 Mischung aus Diethylether und *n*-Hexan gelöst. Währenddessen werden 2.14 g (9.30 mmol) SbCl₃ in einem 250 ml Schlenkkolben vorgelegt und in 100 ml einer 1:1 Mischung aus Diethylether und *n*-Hexan gelöst. Das Lithiumorganyl wird in einen Tropftrichter überführt und bei -78°C langsam zu der SbCl₃-Lösung getropft. Diese Temperatur wird für weitere 2 h gehalten, dann langsam auf Raumtemperatur erwärmt und für weitere 24 Stunden gerührt. Das Lösungsmittel wird im Vakuum entfernt und der Feststoff mit 50 ml *n*-Hexan extrahiert und über eine Umkehrfritte von den unlöslichen Bestandteilen getrennt. Anschließend wird das Hexan im Vakuum entfernt und der verbleibende farblose Feststoff in Diethylether gelöst. Zu dieser Mischung werden 1.25 g (9.30 mmol) Sulfurylchlorid SO₂Cl₂ getropft. Die Reaktionsmischung wird über Nacht gerührt, bevor das Lösungsmittel im Vakuum entfernt wird. Verbindung 21 wird aus DCM/Hexan als gelber kristalliner Feststoff erhalten.

Ausbeute: 4.60 g (8.10 mmol, 87 %).

¹**H-NMR (C₆D₆):** $\delta = 7.59 \text{ (t, 1H, Ph), } 7.22 \text{ (d, 2H, Ph), } 6.97 \text{ (s, 4H, Mes),}$

2.28 (s, 6H, CH₃), 2.13 (s, 12H, CH₃) ppm.

¹³C-NMR (C_6D_6): $\delta = 148.3, 142.6, 140.1, 138.3, 138.0, 131.0, 128.8,$

106.6 (Ar), 21.6, 21.1(CH₃) ppm.

Schmp.: Zersetzung

EA: $C_{24}H_{25}Cl_4Sb$ (M = 577.03 g/mol) Ber. : C 49.96, H 4.37

Gef.: C 50.15, H 4.73

Synthese des *m*-Terphenylantimonoxyhydroxychlorids [*m*-TerSb(O)(OH)Cl]₂ (23)

Eine Lösung des m-Terphenylantimon(V)tetrachlorids m-TerSbCl₄ (**21**) (0.10 g, 0.17 mmol) in Toluol (50 ml) wird mit 0.1 M NaOH (10 ml) versetzt. Die Reaktionsmischung wird eine Stunde stark gerührt, bevor die Phasen getrennt werden. Die Toluolphase wird mit Na₂SO₄ getrocknet und das Lösungsmittel im Vakuum entfernt. Der erhaltene farblose Feststoff wird aus DCM/Hexan umkristallisiert.

Ausbeute: 0.08 g (0.08 mmol, 96%).

¹**H-NMR (C₆D₆):** $\delta = 7.57 \text{ (t, 1H, Ph), } 7.20 \text{ (d, 2H, Ph), } 6.95 \text{ (s, 4H, Mes),}$

2.26 (s, 6H, CH₃), 2.21 (s, 12H, CH₃) ppm.

¹³C-NMR (C_6D_6): $\delta = 140.3, 140.1, 138.4, 133.7, 132.4, 131.4, 128.3,$

106.8 (Ar), 21.5, 21.2 (CH₃) ppm.

IR: $\tilde{v}_{OH} = 3521 \text{ cm}^{-1}$.

Aggregationsgrad (in Toluol bei 60°C) = 2.0

Schmp.: Zersetzung

EA: $C_{48}H_{54}O_6Sb_2$ (M = 970.46 g/mol) Ber.: C 57.23, H 5.20

Gef.: C 58.02 H 5.22

5 Experimenteller Teil

80

Synthese neuer Verbindungen

Synthese von SupermesityItellurenyl(II)chlorid Mes*TeCl (2)

Zu einer Lösung aus Bissupermesitylditellurid (0.50 g, 0.67 mmol) in Ether (30 ml) wird langsam Sulfurylchlorid (0.09 g, 0.67 mmol) bei 0°C zugetropft. Die Lösung wird eine Stunde gerührt, bevor sie auf Raumtemperatur erwärmt wird. Anschließend wird sie auf 10 ml eingeengt und zur Kristallisation auf -15°C abgekühlt. Verbindung **2** kristallisiert als dunkelblauer Feststoff.

Ausbeute: 0.46 g (1.13 mmol, 82%).

¹H-NMR (CS₂/CDCI₃-Kap.): $\delta = 7.70 \text{ (s, 2H, Ar), } 1.88 \text{ (s, 9H, CH₃),}$

1.56 (s, 18H, CH₃) ppm.

¹³C-NMR (CS₂/CDCl₃-Kap.): $\delta = 150.5, 127.9, 122.9, 120.1 \text{ (Ar)}, 40.8, 35.1, 32.0,$

31.6 (C(CH₃)₃) ppm.

¹²⁵Te-NMR (CS₂/CDCI₃-Kap.): δ= 1179.4 ppm.

Schmp.: Zersetzung

EA: $C_{18}H_{29}$ TeCl (M = 408.48 g/mol) Ber.: C 52.93, H 7.16

Gef.: C 52.52, H 7.50

Synthese von Supermesityltellur(IV)trichlorid Mes*TeCl₃ (4)

Zu einer Lösung aus Bissupermesitylditellurid (Mes*Te)₂ (2.00 g, 2.70 mmol) in Ether (50 ml) wird langsam Sulfurylchlorid (1.02 g, 7.56 mmol) bei 0°C getropft. Die Lösung wird eine Stunde gerührt, bevor sie auf Raumtemperatur erwärmt wird. Anschließend wird die Lösung auf 15 ml eingeengt und zur Kristallisation auf -15°C abgekühlt. Verbindung **4** kristallisiert als gelber Feststoff.

Ausbeute: 2.49 g (5.18 mmol, 96%).

¹**H-NMR (CDCI₃):** $\delta = 7.24 \text{ (s, 2H, Ar), } 1.31 \text{ (s, 9H, CH₃),}$

1.31 (s, 18H, CH₃) ppm.

¹³C-NMR (CDCl₃): $\delta = 149.9, 127.3, 123.1, 119.4 \text{ (Ar)}, 40.1, 35.3, 31.6,$

31.0 ($C(CH_3)_3$) ppm.

¹²⁵Te-NMR (CDCl₃): δ = 1791.0 ppm.

Schmp.: Zersetzung

EA: $C_{18}H_{29}TeCl_3$ (M = 479.38 g/mol) Ber.: C 45.03, H 6.11

Gef.: C 44.88, H 6.02

Synthese von 5,7-Di-*tert*-butyl-2-hydro-3,3-dimethylbenzol[b]tellurophen-1,1-dichlorid (5)

Das SupermesityItellur(IV)trichlorid Mes*TeCl₃ (**4**) (1.00 g, 2.09 mmol) wurde unter Argon bei Raumtemperatur aufbewahrt. Nach 14 Tagen haben sich die gelben Kristalle entfärbt und einen farblosen amorphen Feststoff gebildet, der aus Ethanol umkristallisiert wird.

Ausbeute: 0.89 g (2.01 mmol, 96%).

¹H-NMR (CDCI₃): $\delta = 7.05 \text{ (s, 2H, Ar)}, 1.58 \text{ (s, 2H, CH₂)}, 1.40 \text{ (s, 6H, }$

 $C(CH_3)_2$), 1.36 (s, 9H, $C(CH_3)_3$),

1.30 (s, 9H, C(CH₃)₃) ppm.

¹³C-NMR (CDCI₃): $\delta = 145.0, 127.1, 123.3, 119.7 \text{ (Ar)}, 50.0 \text{ (CH₂)},$

40.2 (C(CH₃)₃), 35.6 (C(CH₃)₃), 31.0 (C(CH₃)₃),

 $30.6 (C(CH_3)_2), 20.1 (C(CH_3)_2) ppm.$

¹²⁵Te-NMR (CDCI₃): δ = 1107.0 ppm.

Schmp.: Zersetzung

EA: $C_{18}H_{28}Cl_2Te$ (M = 442.92 g/mol) Ber.: C 48.81, H 6.37

Gef.: C 48.81, H 6.59

5 Experimenteller Teil

82

Synthese des Dekachloridditellurat-Anion mit protoniertem Ether-Kation

 $(Et_2OH)_2(Te_2CI_{10})\cdot 2Et_2O$ (6)

Eine Lösung von SupermesityItellur(IV)trichlorid Mes*TeCl₃ (4) in Et₂O wird mit einem

Überschuss Sulfurylchlorid SO₂Cl₂ über einen längeren Zeitraum bei -15°C stehen

gelassen. Mit der Zeit bildet sich 6 als gelber kristalliner Feststoff. Es wurde nur ein

Einkristall röntgenographisch vermessen.

Hydrolyse des SupermesityItellur(IV)trichlorids Mes*TeCl₃ (4)

Es werden 1.79 g (3.70 mmol) SupermesityItellur(IV)trichlorid Mes*TeCl₃ (4) in 100 ml

THF gelöst. Anschließend werden 100 ml einer 0.1 M NaOH-Lösung zugetropft. Die

Mischung wird 1 h intensiv gerührt. Der entstandene farblose, amorphe Feststoff wird

abfiltriert und im Vakuum getrocknet.

EA: $C_{18}H_{30}O_2Te$ (M = 406.03 g/mol)

Ber.: C 53.3; H 0.8

Gef.: C 29.4, H 0.8

Synthese des Zweikerniges Stannatelluroxan Mes*Te(O)OSn(t-Bu)₂Cl (7)

Es werden 0.21 g (0.44 mmol) Supermesityltellur(IV)trichlorid Mes*TeCl₃ (4) und Di-tert-

butylzinnoxid (0.23, 1.30 mmol) in THF (40 ml) gelöst und zwei Stunden bei

Raumtemperatur gerührt. Zur Kristallisation wird das Lösungsmittel auf 10 ml eingeengt.

Verbindung **7** kristallisiert als farbloser Feststoff.

Ausbeute: 0.23 g (0.35 mmol, 81%).

¹H-NMR (CDCI₃): $\delta = 7.37 \text{ (s, 2 H, Ar), 1.49 (s, 18 H, CH₃),}$

1.38 (s, 9 H, CH₃), 1.24 (s, 18 H, CH₃) ppm.

¹³C-NMR (CDCI₃): $\delta = 156.7, 152.3, 149.8, 141.5, 125.5, 119.39 (Ar), 45.1,$

42.1, 39.7, 34.7, 33.8, 31.5, 31.4, 30.4 (C(CH₃)₃) ppm.

¹¹⁹Sn-NMR (CDCI₃): $\delta = -128.3 [^2J (^{119}Sn-^{125}Te) = 196 Hz] ppm.$

¹²⁵Te-NMR (CDCI₃): $\delta = 1748.6 [^2J (^{125}Te^{-119/117}Sn) = 196 Hz] ppm.$

Schmp.: Zersetzung

EA: $C_{26}H_{47}CIO_2SnTe$ (M = 673.41 g/mol) Ber.: C 46.37, H 7.03

Gef.: C 46.25, H 6.78

Synthese von Bis-*m*-terphenylditellurid (*m*-TerTe)₂ (8)

Zu einer Suspension aus 2,6-Dimesityliodbenzol (5.00 g, 11.40 mmol) in Hexan (50 ml) wird langsam 2.5 M *n*-Butyllithium (5.00 ml, 12.50 mmol) zugetropft und über Nacht gerührt. Anschließend wird das Lösungsmittel im Vakuum entfernt. Zu dem verbleibenden Feststoff werden Tellurpulver (1.50 g, 11.40 mmol) und THF (200 ml) gegeben. Nachdem die Reaktionsmischung über Nacht gerührt wurde, wird für eine Stunde Luft durch die Lösung geleitet. Anschließend wird das Lösungsmittel im Vakuum entfernt und der zurückbleibende Feststoff mit Toluol in einem Soxhlett-Extraktor extrahiert. Das Toluol wird am Rotationsverdampfer entfernt. Aus heißem Hexan kristallisiert 8 als schwarzer Feststoff aus.

Ausbeute: 1.77 g (2.39 mmol, 42%).

¹**H-NMR (C₆D₆):** $\delta = 7.20 \text{ (t, 1H, Ph), 6.80 (d; 2H, Ph), 6.77 (s, 4H, Mes),}$

2.27 (s, 6H, CH₃), 2.07 (s, 12H, CH₃) ppm.

¹³C-NMR (C_6D_6): $\delta = 148.0, 140.8, 136.4, 136.0, 128.5, 128.0, 128.0,$

107.2 (Ar), 20.8, 20.7 (CH₃) ppm.

¹²⁵**Te-NMR (C₆D₆):** δ = 322.2 ppm.

Schmp.: 292–293°C

EA: C₄₈H₅₀Te₂ (882.18 g/mol) Ber.: C 65.35, H 5.71

Gef.: C 65.29, H 5.68

Synthese der m-Terphenyltellurenyl(II)halogenide m-TerX₂TeTem-Ter [X = CI (9); X = Br (10)] und m-TerTel (11)

Eine Lösung von Bis-m-terphenylditellurid (m-TerTe) $_2$ (**8**) (0.88 g, 1.00 mmol) in Et $_2$ O (30 ml) wird auf 0°C abgekühlt und langsam das entsprechende Halogen (oder synthetische Äquivalent) (SO $_2$ Cl $_2$: 0.14 g, 1.0 mmol für **9**; Br $_2$: 0.16 g, 1.0 mmol für **10**; l $_2$: 0.25 g, 1.0 mmol für **11**) zugegeben. Die Verbindungen **9** (blaue Kristalle), **10** (grüner Kristalle) und **11** (grüne Kristalle) wurden durch Einengen und Kristallisation bei -15°C erhalten.

Ausbeuten: 0.86 g, 0.90 mmol für **9** (95%); 0.99 g, 0.95 mmol für **10** (91%); 1.08 g, 1.90 mmol für **11** (95%).

9:

¹²⁵**Te-NMR (CDCI₃):** δ = 1374.9 (Integral 37%), 1090.4 (Integral 26%),

1027.3 (Integral 37%) ppm.

UV (**Diethylether**, **0.1 mmol**): $\lambda_{max} = 534 \text{ nm}$.

Schmp.: Zersetzung

EA: $C_{48}H_{50}Cl_2Te_2$ (M = 953.02 g/mol) Ber.: C 60.49, H 5.29

Gef.: C 60.20, H 5.02

10:

¹**H-NMR (CDCI₃):** $\delta = 7.37 \text{ (t, 1H, Ph), } 7.07 \text{ (d, 2H, Ph), } 6.84 \text{ (s, 4H, Mes),}$

2.27 (s, 6H, CH₃), 1.99 (s, 12H, CH₃) ppm.

¹³C-NMR (CDCI₃): $\delta = 148.2, 139.0, 137.8, 136.4, 130.9, 128.4, 128.3,$

108.0 (Ar), 21.2, 20.8 (CH₃) ppm.

¹²⁵Te-NMR (CDCI₃): δ = 1683.8 ppm.

Schmp.: Zersetzung

UV (**Diethylether**, **0.1 mmol**): $\lambda_{max} = 559 \text{ nm}$.

EA: $C_{48}H_{50}Br_2Te_2$ (M = 1041.92 g/mol) Ber.: C 55.33, H 4.84

Gef.: C 54.95, H 4.82

11:

¹**H-NMR (CDCI₃):** $\delta = 7.49 \text{ (t, 1H, Ph), } 7.14 \text{ (d, 2H, Ph), } 6.96 \text{ (s, 4H, Mes),}$

2.37 (s, 6H, CH₃), 2.07 (s, 12H, CH₃) ppm.

¹³C-NMR (CDCI₃): $\delta = 149.6, 140.5, 137.6, 136.1, 130.9, 128.3, 128.0,$

102.8 (Ar), 21.2, 21.0 (CH₃) ppm.

¹²⁵Te-NMR (CDCI₃): $\delta = 1018.0 \text{ ppm}.$

UV (Diethylether, 0.1 mmol): $\lambda_{max} = 622 \text{ nm}$.

Schmp.: Zersetzung

EA: $C_{24}H_{25}ITe$ (M = 567.96 g/mol) Ber.: C 50.75, H 4.44

Gef.: C 50.35, H 4.41

Synthese der m-Terphenyltellur(IV)trihalogenide m-TerTeX₃ [X = CI (12); X = Br (13)]

Eine Lösung von Bis-m-terphenylditellurid (m-TerTe) $_2$ (8) (0.38 g, 0.43 mmol) in Et $_2$ O (30 ml) wird auf 0°C abgekühlt und das entsprechende Halogen (oder synthetisches Äquivalent) (SO $_2$ Cl $_2$ = 0.17 g, 1.29 mmol; Br $_2$ = 0.21 g, 1.29 mmol) zugegeben und für eine Stunde bei dieser Temperatur gerührt. Das Lösungsmittel wird im Vakuum entfernt und der erhaltene Feststoff aus DCM/Hexan umkristallisiert. Verbindung 12 wird als schwach gelber Feststoff erhalten. Verbindung 13 wird als gelber Feststoff erhalten.

Ausbeute: 0.39 g (0.82 mmol, 95%) für 12.

Ausbeute: 0.54 g (0.79 mmol, 92%) für 13.

12:

¹**H-NMR (C₆D₆):** $\delta = 6.98 \text{ (t, 1H, Ph), 6.76 (d, 2H, Ph), 6.73 (s, 4H, Mes),}$

2.23 (s, 6H, CH₃), 1.99 (s, 12H, CH₃) ppm.

¹³C-NMR (CDCI₃): $\delta = 148.5, 141.3, 136.8, 136.4, 128.4, 128.1, 128.0,$

107.6 (Ar), 21.3, 21.2 (CH₃) ppm.

¹²⁵Te-NMR (CDCI₃): δ = 1345.8 ppm.

Schmp.: Zersetzung

EA: $C_{24}H_{25}CI_3Te$ (M = 548.01 g/mol) Ber.: C 52.66, H 4.60

Gef.: C 52.62, H 4.72

13:

¹**H-NMR (C₆D₆):** $\delta = 7.18 \text{ (t, 1H, Ph), 6.99 (d, 2H, Ph), 6.93 (s, 4H, Mes),}$

2.30 (s, 6H, CH₃), 2.27 (s, 12H, CH₃) ppm.

¹³C-NMR (CDCI₃): $\delta = 147.1, 142.6, 138.6, 137.3, 132.3, 131.6, 130.9,$

108.2 (Ar), 21.3, 21.2 (CH₃) ppm.

¹²⁵**Te-NMR (CDCI₃):** δ = 1243.8 ppm.

Schmp.: Zersetzung

EA: $C_{24}H_{25}$ Br₃Te (M = 680.77 g/mol) Ber.: C 42.34, H 3.70

Gef.: C 42.24, H 3.36

Synthese des m-Terphenyltellurenyliodid-lod-Charge-Transfer-Komplexes m-TerTel····l₂ (14)

Eine Lösung von Bis-m-terphenylditellurid (m-TerTe) $_2$ (8) (0.88 g, 1.00 mmol) in Et $_2$ O (30 ml) wird auf 0°C abgekühlt und I $_2$ (0.76 g, 3.00 mmol) zugegeben. Anschließend wird die Mischung für eine Stunde bei dieser Temperatur gerührt. Das Lösungsmittel wird auf 10 ml eingeengt. Verbindung 14 wird als metallisch grüner, kristalliner Feststoff erhalten.

Ausbeute: 1.50 g (1.82 mmol, 91%).

¹**H-NMR (CDCI₃):** δ = 7.15 (t, 1H, Ph), 6.98 (d, 2H, Ph), 6.95 (s, 4H, Mes),

2.29 (s, 6H, CH₃), 2.19 (s, 12H, CH₃) ppm.

¹³C-NMR (CDCI₃): $\delta = 138.2, 136.4, 135.7, 131.0, 129.0, 128.7, 127.8,$

127.7, (Ar), 21.2, 21.0 (CH₃) ppm.

¹²⁵Te-NMR (CDCl₃): δ = 905.1 ppm.

¹²⁵**Te-NMR (C₆D₆):** $\delta = 945.6 \text{ ppm}.$

UV (Toluol, 0.1 mmol): $\lambda_{max} = 496 \text{ nm}.$

Schmp.: Zersetzung / vorherige Abspaltung von I_2 erkennbar.

EA: $C_{24}H_{25}I_3Te$ (M = 821.77 g/mol) Ber.: C 35.08, H 3.07

Gef.: C 35.24, H 3.32

Synthese der *m*-Terphenyltellurinsäure [*m*-TerTe(O)OH]₂ (15)

Eine Lösung von *m*-Terphenyltellur(IV)trichlorid *m*-TerTeCl₃ (**12**) (0.55 g, 1.00 mmol) in Toluol (50 ml) wird mit 0.5 M NaOH (10 ml) versetzt. Die Reaktionsmischung wird für mindestens 24 Stunden stark gerührt, bevor die Phasen getrennt werden. Die Toluolphase wird mit Na₂SO₄ getrocknet und das Lösungsmittel im Vakuum entfernt. Der erhaltene Feststoff wird aus Ethanol umkristallisiert. Verbindung **15** wird als farbloser kristalliner Feststoff erhalten.

Ausbeute: 0.44 g (0.47 mmol, 93%).

¹**H-NMR (C₆D₆):** $\delta = 7.12 \text{ (t, 1H, Ph), 6.98 (d, 2H, Ph), 6.87 (s, 4H, Mes),}$

2.22 (s, 6H, CH₃), 2.14 (s, 12H, CH₃) ppm.

¹³C-NMR (C_6D_6): $\delta = 147.6, 140.4, 136.8, 135.5, 127.9, 127.1, 126.6,$

106.2 (Ar), 20.2, 19.9 (CH₃) ppm.

¹²⁵Te-NMR (C_6D_6): $\delta = 1403.4 \text{ ppm}.$

IR: $\tilde{v}_{OH} = 3590 \text{ cm}^{-1}$.

Assoziationsgrad (Toluol bei 60°C) = 1.6

Schmp.: Zersetzung

EA: $C_{48}H_{52}O_4Te_2$ (M = 948.12 g/mol) Ber.: C 60.81, H 5.53

Gef.: C 60.62, H 5.14

Synthese der m-Terphenyltelluroxyhalogenide [m-TerTe(μ_2 -O)X]₂ [X = Cl (16); Br (17), I (18)]

Eine Lösung des jeweiligen m-Terphenyltellur(IV)trihalogenids m-TerTeX $_3$ (X= Cl 0.55 g, 1.00 mmol; X = Br 0.68 g, 1.00 mmol; X = 0.82 g, 1.00 mmol) in Toluol (50 ml) wird mit 0.5 M NaOH (10 ml) versetzt. Die Reaktionsmischung wird eine Stunde stark gerührt, bevor die Phasen getrennt werden. Die Toluolphase wird mit Na $_2$ SO $_4$ getrocknet und das Lösungsmittel im Vakuum entfernt. Der erhaltene farblose Feststoff wird aus DCM/Hexan kristallisiert.

Ausbeute: 0.42 g (0.85 mmol, 85%) für 16.

Ausbeute: 0.44 g (0.81 mmol, 81%) für 17.

Ausbeute: 0.51 g (0.87 mmol, 87%) für 18.

16:

¹**H-NMR (C₆D₆):** $\delta = 7.02 \text{ (t, 1H, Ph), 6.80 (d, 2H, Ph), 6.77 (s, 4H, Mes),}$

2.27 (s, 6H, CH₃), 2.04 (s, 12H, CH₃) ppm.

¹³C-NMR (C_6D_6): δ = 148.0, 140.8, 136.4, 135.9, 128.5, 127.9, 127.6,

107.2 (Ar), 20.8, 20.7 (CH₃) ppm.

¹²⁵**Te-NMR (C₆D₆):** δ = 1372.0 ppm.

Schmp.: Zersetzung

EA: $C_{48}H_{50}Cl_2O_2Te_2$ (M = 985.02 g/mol) Ber.: C 58.53, H 5.12

Gef.: C 58.24, H 4.75

17:

EA: $C_{48}H_{50}Br_2O_2Te_2$ (M = 1073.92 g/mol) Ber.: C 53.68, H 4.69

Gef.: C 54.05, H 4.84

18:

EA: $C_{48}H_{50}I_2O_2Te_2$ (M = 1167.90 g/mol) Ber.: C 49.36, H 4.32

Gef.: C 49.40, H 3.82

NMR-Spektren der Verbindungen **17** und **18** konnten aufgrund der geringen Löslichkeit nicht gemessen werden.

Synthese von Natrium-m-terphenyltellurat Na₄(m-TerTeO₂)₄ (19)

Eine Mischung aus m-Terphenyltellurinsäure [m-TerTe(O)(OH)] $_2$ (15) (1.00 g, 1.10 mmol) und NaH (0.06 g, 2.30 mmol) in 40 ml Toluol wird über Nacht bei Raumtemperatur gerührt. Anschließend wird das Lösungsmittel von der nun trüben Lösung im Vakuum entfernt. Der verbleibende farblose Rückstand wird aus Acetonitril/THF umkristallisiert.

Ausbeute: 0.89 g (0.45 mmol, 82%).

¹**H-NMR (CDCI₃):** $\delta = 7.39 \text{ (t, 1H, Ph), 6.89 (d, 2H, Ph), 6.27 (s, 4H, Mes),}$

2.18 (s, 6H, CH₃), 1.96 (s, 12H, CH₃) ppm.

¹³C-NMR (CDCI₃): $\delta = 147.5, 144.6, 137.9, 137.6, 137.0, 130.0,$

129.3, 108.0 (Ar), 21.2, 21.1 (CH₃) ppm.

¹²⁵**Te-NMR (CDCI₃)**: δ = 1698.4 ppm.

EA: $C_{24}H_{25}NaO_2Te$ (M = 496.04 g/mol) Ber.: C 58.11, H 5.08

Gef.: C 58.49, H 5.39

Synthese des Stannatelluroxan (m-TerTe)₂(t-Bu₂Sn)₂O₅ (20)

Eine Mischung aus m-Terphenyltellurinsäure [m-TerTe(O)(OH)] $_2$ (15) (0.95 g, 1.00 mmol) und Di-tert-butylzinnoxid (0.50 g, 2.00 mmol) in 40 ml THF wird zwei Stunden bei Raumtemperatur gerührt, bevor die Lösung filtriert und das Lösungsmittel zur Kristallisation eingeengt wird. Verbindung 20 wird als farbloser Feststoff erhalten.

Ausbeute: 1.10 g (1.50 mmol, 77%).

¹**H-NMR (CDCI₃)**: $\delta = 7.47 \text{ (t, 1H, Ph), 7.03 (d, 2H, Ph), 6.82 (s, 4H, Mes),}$

2.29 (s, 6H, CH₃), 2.0 (s, 12H, CH₃), 0.95 (s, 9H, CH₃),

0.88 (s, 9H, CH₃), ppm.

¹³C-NMR (CDCI₃): $\delta = 146.3, 146.1, 137.5, 136.7, 136.4, 130.9, 129.3,$

128.1 (Ar), 41.5, 35.5 [C(CH₃)₃], 30.2, 29.9 [C(CH₃)₃],

21.4, 21.0(CH₃)

¹¹⁹Sn-NMR (CDCl₃): $\delta = -253.3 [^2J (^{119}Sn-O-^{125}Te) = 32 Hz; ^2J (^{119}Sn-$

 117 Sn) = 528 Hz] ppm.

¹²⁵Te-NMR (CDCI₃): δ = 1613.5 ppm.

Schmp.: Zersetzung

EA: $C_{64}H_{86}O_5Sn_2Te_2$ (M = 1427.98 g/mol) Ber.: C 53.83, H 6.07

Gef.: C 53.86, H 5.91

5 Experimenteller Teil

90

Synthese der m-Terphenylstibonsäure [m-TerSbO(OH)₂)]₂ (22)

Eine Lösung von *m*-Terphenylantimon(V)tetrachlorid *m*-TerSbCl₄ (**21**) (0.58 g, 1.00 mmol) in Toluol (50 ml) wird mit 0.1 M NaOH (10 ml) versetzt. Die Reaktionsmischung wird für mindestens 24 Stunden stark gerührt, bevor die Phasen getrennt werden. Die Toluolphase wird mit Na₂SO₄ getrocknet und das Lösungsmittel im Vakuum entfernt. Der erhaltene Feststoff wird aus Ethanol umkristallisiert. Verbindung **22** wird als farbloser kristalliner Feststoff erhalten.

Ausbeute: 0.43 g (0.44 mmol, 88%).

¹**H-NMR (C₆D₆):** $\delta = 7.07 \text{ (t, 1H, Ph), 6.85 (d, 2H, Ph), 6.80 (s, 4H, Mes),}$

2.17 (s, 6H, CH₃), 2.15 (s, 12H, CH₃) ppm.

¹³C-NMR (C_6D_6): $\delta = 146.7, 138.2, 138.0, 137.4, 129.6, 128.4, 128.3,$

107.8 (Ar), 21.5, 21.2 (CH₃) ppm.

IR: $\tilde{v}_{OH} = 3653 \text{ cm}^{-1}$.

Aggregationsgrad (in Toluol bei 60°C) = 2.0

Schmp.: Zersetzung

EA: $C_{48}H_{54}O_6Sb_2$ (M = 970.46 g/mol) Ber.: C 59.41, H 5.61

Gef.: C 59.39 H 5.57

Synthese des m-Terphenylstibonsäureethylester [m-TerSb(O)(OH)OEt]₂ (24)

Es werden 0.25 g (0.28 mmol) *m*-Terphenylstibonsäure [TerSbO(OH)₂)]₂ (**22**) in 50 ml Ethanol gelöst und für zwei Stunden zum Sieden erhitzt. Anschließend wird das Lösungsmittel am Rotationsverdampfer entfernt. Der resultierende Feststoff entspricht Verbindung **24**. Kristalle können durch langsames Verdampfen des Ethanols an Luft gewonnen werden.

Ausbeute: 0.26 g (0.25 mmol, 98%).

¹**H-NMR (C₆D₆):** $\delta = 7.50 \text{ (t, 1H, Ph), 7.11 (d, 2H, Ph), 6.95 (s, 4H, Mes),}$

3.25 (m, 4H, CH₂), 2.32 (s, 6H, CH₃), 1.97(s, 12H, CH₃),

0.91 (m, 6H, CH₃) ppm.

¹³C-NMR (C_6D_6): $\delta = 145.4, 137.5, 137.0, 134.50, 130.3, 127.7, 108.0$

(Ar), 25.17(CH₂) 21.16 (*p*-CH₃), 20.91 (*o*-CH₃), 18.52

(CH₂-CH₃) ppm.

IR: $\tilde{v}_{OH} = 3553 \text{ cm}^{-1}$.

Schmp.: Zersetzung

EA: $C_{26}H_{31}O_3Sb$ (M = 513.28 g/mol) Ber.: C 60.84, H 6.09

Gef.: C 59.95, H 6.04

Synthese des sechskernigen Natrium-Antimon-Sauerstoff-Clusters [(*m*-TerSb)₂(O)₂(OH)₅Na·H₂O]₂ (25)

Es werden 0.50 g (0.52 mmol) m-Terphenylstibonsäure $[\text{TerSbO}(OH)_2)]_2$ (**22**) in 25 ml einer 1 M NaOH-Lösung suspendiert und intensiv gerührt. Nach ca. 2 Stunden werden 10 ml Toluol zu der Suspension gegeben und für eine weitere Stunde gerührt. Anschließend werden die beiden Phasen getrennt und zur Kristallisation abgedampft.

Ausbeute 0.32 g (0.39 mmol, 76%).

¹**H-NMR (C₆D₆):** $\delta = 7.46 \text{ (t, 1H, Ph), 7.01 (d, 2H, Ph), 6.77 (s, 4H, Mes),}$

2.30 (s, 6H, CH₃), 1.95(s, 12H, CH₃) ppm.

¹³C-NMR (C_6D_6): $\delta = 146.3, 139.4, 137.6, 136.4, 132.0, 129.7, 107.2 (Ar),$

21.2 (CH₃), 21.2 (CH₃) ppm.

IR: $\tilde{v}_{OH} = 3598 \text{ cm}^{-1}, 3586 \text{ cm}^{-1}, 3547 \text{ cm}^{-1}, 3518 \text{ cm}^{-1},$

 $v_{OH-O} = 3405 \text{ cm}^{-1}$.

Schmp.: Zersetzung

EA: $C_{48}H_{57}NaO_8Sb_2$ (M = 1028.47 g/mol) Ber.: C 56.06, H 5.59

Gef.: C 56.49, H 5.85

Synthese des sechsgliedrigen Antimon-Schwefel-Clusters $[(m\text{-TerSb}(OH)_2]_2(O)SO_4$ (26)

Eine Lösung von 0.50 g (0.52 mmol) *m*-Terphenylstibonsäure [*m*-TerSb(O)(OH)₂]₂ (**22**) in 50 ml Toluol wird in einer Zwei-Phasen-Reaktion mit 1 ml konz. H₂SO₄ in 20 ml Wasser gerührt. Anschließend werden die Phasen getrennt und die Toluolphase mit Na₂SO₄ getrocknet. Durch langsames Verdampfen des Lösungsmittels wird Verbindung **22** als farbloser kristalliner Feststoff erhalten.

Ausbeute: 0.44 g (0.42 mmol, 81%).

¹**H-NMR (CDCI₃):** $\delta = 7.56 \text{ (t, 1H, Ph), } 7.12 \text{ (d, 2H, Ph), } 6.88 \text{ (s, 4H, Mes),}$

2.31 (s, 6H, CH₃), 1.97 (s, 12H, CH₃) ppm.

¹³C-NMR (CDCI₃): $\delta = 146.4, 140.1, 138.1, 136.7, 132.3, 129.7, 108.0 (Ar),$

21.3, 21.2 (CH₃) ppm.

IR: $\tilde{v}_{OH} = 3565 \text{ cm}^{-1},$

 $\tilde{\nu}_{OH-O} = 3369 \text{ cm}^{-1}$.

EA: C₄₈H₅₄O₉SSb₂ (M = 1050.52 g/mol) Ber.: C 54.88, H 5.18, S 3.05

Gef.: C 55.23, H 4.84, S 3.41

6 Anhang

Kristallographie

Datensammlung und Verfeinerung

Die Bestimmung der Zellparameter und die Sammlung der Datensätze neuer Verbindungen wurden am Institut für Chemie und Biochemie, Anorganische Chemie der Freien Universität Berlin auf einem STOE IPDS 2T und einem BRUKER SMART 1000 CCD Diffraktometer durchgeführt.

Die Kristalle wurden vor der Messung unter Mineralöl ausgesucht und mit einer Glaskapillare auf dem Goniometerkopf montiert.

Die Strukturanalyse erfolgte in folgenden Arbeitsschritten:

- Bestimmung der Orientierungsmatrix und der Gitterkonstanten mit Hilfe der Orientierungsparameter von 500–1500 Reflexen im gesamten Messbereich aus mehreren Aufnahmen.
- II. Bestimmung der Reflexintensitäten durch Anpassen der Integrationsbedingungen an das gemittelte Reflexprofil und anschließendes Auslesen aller Aufnahmen.
- III. Datenreduktion und Korrekturen
 - a) Skalierung der Rohdaten durch drei Standardreflexe und empirische/numerische Absorptionskorrektur
 - b) Lorentz- und Polarisationsfaktorkorrektur.
- IV. Die Lösung erfolgte mit den Programmsystemen SHELXS,⁸⁵ SHELXL,⁸⁶ X-STEP32⁸⁷ und WinGX⁸⁸ auf verschiedenen Rechnersystemen (Windows XP, 2000; PENTIUM II und IV PCs) mit Hilfe von direkten Methoden und anschließenden Differenzfouriersynthesen, Optimierung der Atomparameter durch Verfeinerung nach der Methode der kleinsten Fehlerquadrate gegen F₀² für die gesamte Matrix. Dabei wurde folgende Gewichtung verwendet:

$$w = (\sigma^2 F_0^2 + (aP)^2 + bP)^{-1}$$

$$P = \frac{1}{3} (2F_c^2 + \max(0, F_0^2))$$

Als Koeffizienten a und b wurden die von SHELXL vorgeschlagenen Werte genommen, so dass für die ermittelten Gütewerte gilt:

$$R_{I} = \frac{\sum_{\text{hkl}} ||F_{\theta}| - |F_{C}||}{\sum_{\text{hkl}} |F_{\theta}|} \qquad wR_{2} = \sqrt{\frac{\sum_{\text{hkl}} w (F_{0}^{2} - F_{c}^{2})^{2}}{\sum_{\text{hkl}} w (F_{0}^{2})^{2}}}$$

V. Fehlordnungen:

In einigen Kristallstrukturen traten Fehlordnungen in der Struktur selbst oder in eingelagerten Lösungsmittelmolekülen auf. Die Lösung der fehlgeordneten Strukturen wird im Folgenden genauer beschrieben.

Die Fehlordnung in Verbindung **5** der *tert*-Butylgruppe wurde durch eine geteilte Besetzung von 0.6 für die C25, C26 und C27 und von 0.4 für die C25', C26' und C27' gelöst. Verbindung **5** enthielt zusätzlich ein fehlgeordnetes Ethanolmolekül. Das Ethanol liegt auf einem kristallographischen Inversionszentrum. O1 und O1' wurden mit einer geteilten Besetzung von 0.25 gelöst.

Das H1 in Verbindung **6** ist über zwei kristallographisch unabhängige Positionen fehlgeordnet und wurde mit einer geteilten Besetzung von 0.5 gelöst.

In Verbindung **20** ist der komplette anorganische Teil mit Ausnahme des zentralen O5 fehlgeordnet. Die Struktur wurde mit einer geteilten Besetzung von 0.75 für Te1, Te2, Sn1, Sn2, O1, O2, O3 und O4 und 0.25 für Te1', Te2', Sn1', Sn2', O1', O2', O3' und O4' gelöst (Abbildung 37).

In Verbindung **22** ist ein fehlgeordnetes THF-Molekül enthalten, das auf einem kristallographischen Inversionszentrum liegt. O4 und O4' wurden mit einer geteilten Besetzung von 0.5 gelöst.

In Verbindung **24** ist die Ethylgruppe an dem O2 über zwei Positionen fehlgeordnet. Die Ethylgruppe wurde mit einer geteilten Besetzung von jeweils 0.5 für C1, C2, C1' und C2' gelöst.

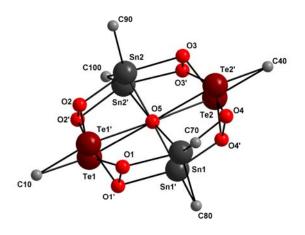


Abbildung 37: Fehlordnung in Verbindung 20.

VI. Die Molekülbilder wurden mit dem Zeichenprogramm Diamond erstellt.⁸⁹

Daten zu den Kristallstrukturanalysen

Die kristallographischen Daten der bereits publizierten Strukturen wurden an das Cambridge Crystallographic Data Centre als Zusatzpublikationen übermittelt. Kopien können auf Anfrage bei CCDC, 12 Union Road, Cambridge CB21EZ, UK (fax: + (44)1223-336-033; Email: deposit@ccdc.cam.ac.uk) unter Angabe der jeweiligen CCDC-Nummer kostenfrei angefordert werden.

SupermesityItellurenyI(II)chlorid Mes*TeCl (2)

Summenformel (Einheit)	C ₁₈ H ₂₉ CITe
Molare Masse (g/mol)	408.46
Kristallsystem	Orthorhombisch
Raumgruppe	P2 ₁ 2 ₁ 2 ₁
Gitterkonstanten a, b, c (Å)	5.92(1), 15.60(3), 20.12(4)
Winkel α, β, γ (°)	90, 90, 90
Zellvolumen (ų)	1857.9(7)
Z	4
Kristalldimension (mm)	0.07, 0.17, 0.23
Röntgenographische Dichte (g/cm³)	1.460
Temperatur (K)	173
Messgerät	BRUKER SMART 1000
Strahlungsquelle	Μο-Κα
Parameter	824
Absorptionskoeffizient (mm ⁻¹)	1.736
Vollständigkeit von $ heta_{ ext{max}}$	99.9%
Gemessene / unabhängige Reflexe	23197 / 5691
Gemessene Reflexe mit (<i>I>2σ(I)</i>)	4718
GooF	1.081
R1 (F) (I > 2σ(I))	0.0324
wR2 (F ²) (all data)	0.0778
Restelektronendichte max / min	1.113 / -0.811
CCDC-Nummer	631199

SupermesityItellurenyl(II)bromid Mes*TeBr (3)

Summenformel (Einheit)	C ₁₈ H ₂₉ BrTe
Molare Masse (g/mol)	452.921
Kristallsystem	Orthorhombisch
Raumgruppe	P2 ₁ 2 ₁ 2 ₁
Gitterkonstanten a, b, c (Å)	5.95(9), 15.59(2), 20.26(3)
Winkel α, β, γ (°)	90, 90, 90
Zellvolumen (ų)	1878.2(5)
Z	4
Kristalldimension (mm)	0.06, 0.10, 0.50
Röntgenographische Dichte (g/cm³)	1.602
Temperatur (K)	173
Messgerät	BRUKER SMART 1000
Strahlungsquelle	Μο-Κα
Parameter	181
Absorptionskoeffizient (mm ⁻¹)	3.703
Vollständigkeit von $ heta_{ m max}$	99.5%
Gemessene / unabhängige Reflexe	23237 / 5726
Gemessene Reflexe mit (I>2 σ (I))	5273
GooF	1.04
R1 (F) (I > 2\sigma(I))	0.020
wR2 (F ²) (all data)	0.044
Restelektronendichte max / min	0.72 / -0.32
CCDC-Nummer	643124

SupermesityItellur(IV)trichlorid Mes*TeCl3 (4)

Summenformel (Einheit)	C ₁₈ H ₂₉ Cl ₃ Te
Molare Masse (g/mol)	479.36
Kristallsystem	Triklin
Raumgruppe	PĪ
Gitterkonstanten a, b, c (Å)	10.11(2), 10.22(2), 11.90(2)
Winkel α, β, γ (°)	105.14(5), 108.07(4), 107.30(4)
Zellvolumen (ų)	1029.0(3)
Z	2
Kristalldimension (mm)	0.05, 0.25, 0.26
Röntgenographische Dichte (g/cm³)	1.547
Temperatur (K)	173
Messgerät	BRUKER SMART 1000
Strahlungsquelle	Μο-Κα
Parameter	480
Absorptionskoeffizient (mm ⁻¹)	1.831
Vollständigkeit von $ heta_{ ext{max}}$	96.8%
Gemessene / unabhängige Reflexe	12766 / 6130
Gemessene Reflexe mit (I>2 σ (I))	5511
GooF	1.015
R1 (F) (I > 2σ(I))	0.0422
wR2 (F ²) (all data)	0.1100
Restelektronendichte max / min	3.011 / -3.266
CCDC-Nummer	631196

5,7-Di-tert-butyl-2-hydro-3,3-dimethylbenzol[b]tellurophen-1,1-dichlorid (5) 1/2 EtOH

Summenformel (Einheit)	C ₃₈ H ₅₆ CI ₄ OTe ₂
Molare Masse (g/mol)	925.83
Kristallsystem	Monoklin
Raumgruppe	P2 ₁ /c
Gitterkonstanten a, b, c (Å)	10.54(2), 18.07(4), 11.78(3)
Winkel α, β, γ (°)	90, 114.31, 90
Zellvolumen (ų)	2043.1(8)
z	2
Kristalldimension (mm)	0.29, 0.30, 0.41
Röntgenographische Dichte (g/cm³)	1.505
Temperatur (K)	173
Messgerät	BRUKER SMART 1000
Strahlungsquelle	Μο-Κα
Parameter	928
Absorptionskoeffizient (mm ⁻¹)	1.717
Vollständigkeit von $ heta_{ ext{max}}$	98.3%
Gemessene / unabhängige Reflexe	25267 / 6137
Gemessene Reflexe mit (I>2 σ (I))	5388
GooF	1.048
R1 (F) $(I > 2\sigma(I))$	0.0224
wR2 (F²) (all data)	0.0621
Restelektronendichte max / min	1.193 / -0.411
CCDC-Nummer	631197

$[Et_2OH]_2[Te_2CI_{10}]$ (6)

Summenformel (Einheit)	C ₁₆ H ₄₂ CI ₁₀ O ₄ Te ₂
Molare Masse (g/mol)	908.20
Kristallsystem	Orthorhombisch
Raumgruppe	Fddd
Gitterkonstanten a, b, c (Å)	8.76(5), 25.61(5), 31.51(5)
Winkel α, β, γ (°)	90, 90, 90
Zellvolumen (ų)	7070.0(4)
Z	16
Kristalldimension (mm)	0.23, 0.24, 0.38
Röntgenographische Dichte (g/cm³)	1.707
Temperatur (K)	173
Messgerät	BRUKER SMART 1000
Strahlungsquelle	Μο-Κα
Parameter	3552
Absorptionskoeffizient (mm ⁻¹)	2.426
Vollständigkeit von $ heta_{ ext{max}}$	99.0%
Gemessene / unabhängige Reflexe	21204 / 2727
Gemessene Reflexe mit (I>2 σ (I))	2279
GooF	1.393
R1 (F) $(I > 2\sigma(I))$	0.0542
wR2 (F ²) (all data)	0.0993
Restelektronendichte max / min	1.309 / -2.363
CCDC-Nummer	631200

Zweikerniges Stannatelluroxan Mes*Te(O)OSn(t-Bu)₂Cl (7)

Summenformel (Einheit)	C ₂₆ H ₄₇ CIO ₂ SnTe
Molare Masse (g/mol)	673.38
Kristallsystem	Monoklin
Raumgruppe	P2 ₁ /n
Gitterkonstanten a, b, c (Å)	11.95(1), 10.28(9), 25.42(3)
Winkel α, β, γ (°)	90, 91.64(1), 90
Zellvolumen (ų)	3120.1(6)
z	4
Kristalldimension (mm)	0.31, 0.18, 0.07
Röntgenographische Dichte (g/cm³)	1.433
Temperatur (K)	200
Messgerät	STOE IPDS 2T
Strahlungsquelle	Μο-Κα
Parameter	275
Absorptionskoeffizient (mm ⁻¹)	1.839
Vollständigkeit von $ heta_{ ext{max}}$	99.8%
Gemessene / unabhängige Reflexe	5643 / 5643
Gemessene Reflexe mit (I>2 σ (I))	3258
GooF	0.866
R1 (F) ($I > 2\sigma(I)$)	0.0530
wR2 (F ²) (all data)	0.1151
Restelektronendichte max / min	3.080 / -2.025

Bis-m-terphenylditellurid (m-TerTe)₂ (8)

Summenformel (Einheit)	C ₄₈ H ₅₀ Te ₂
Molare Masse (g/mol)	882.08
Kristallsystem	Monoklin
Raumgruppe	P2 ₁ /c
Gitterkonstanten a, b, c (Å)	11.52(1), 15.09(2), 23.56(3)
Winkel α, β, γ (°)	90, 99.39(3), 90
Zellvolumen (ų)	4039.8(9)
Z	4
Kristalldimension (mm)	0.13, 0.15, 0.29
Röntgenographische Dichte (g/cm³)	1.450
Temperatur (K)	173
Messgerät	BRUKER SMART 1000
Stralungsquelle	Μο-Κα
Parameter	451
Absorptionskoeffizient (mm ⁻¹)	1.476
Vollständigkeit von $ heta_{ ext{max}}$	99.6%
Gemessene / unabhängige Reflexe	49706 / 12324
Gemessene Reflexe mit (<i>I>2σ(I)</i>)	8173
GooF	0.966
R1 (F) (I > 2\sigma(I))	0.0429
wR2 (F ²) (all data)	0.1005
Restelektronendichte max / min	1.431 / -1.579
CCDC-Nummer	651206

m-Terphenyltellurenyl(II)chlorid m-TerTeCl₂Tem-Ter (9)

Summenformel (Einheit)	C ₄₈ H ₅₀ Cl ₂ Te ₂
Molare Masse (g/mol)	953.0
Kristallsystem	Triklin
Raumgruppe	PĪ
Gitterkonstanten a, b, c (Å)	11.70(1), 14.12(2), 14.87(2)
Winkel α, β, γ (°)	109.73(3), 97.72(3), 109.29(3)
Zellvolumen (ų)	2097.7(5)
Z	2
Kristalldimension (mm)	0.08, 0.12, 0.25
Röntgenographische Dichte (g/cm³)	1.509
Temperatur (K)	173
Messgerät	BRUKER SMART 1000
Strahlungsquelle	Μο-Κα
Parameter	469
Absorptionskoeffizient (mm ⁻¹)	1.550
Vollständigkeit von $ heta_{ ext{max}}$	96,8%
Gemessene / unabhängige Reflexe	26336 / 12458
Gemessene Reflexe mit (<i>I>2σ(I)</i>)	8788
GooF	1.017
R1 (F) (I > 2 σ (I))	0.0402
wR2 (F ²) (all data)	0.0925
Restelektronendichte max / min	2.790 / -0.828
CCDC-Nummer	651202

m-Terphenyltellurenyl(II)bromid m-TerTeBr₂Tem-Ter (10)

Summenformel (Einheit)	C ₄₈ H ₅₀ Br ₂ Te ₂
Molare Masse (g/mol)	1041.94
Kristallsystem	Monoklin
Raumgruppe	P2 ₁ /n
Gitterkonstanten a, b, c (Å)	12.04(5), 27.06(1), 13.91(5)
Winkel α, β, γ (°)	90, 108.29(8), 90
Zellvolumen (ų)	4304.0(3)
z	4
Kristalldimension (mm)	0.02, 0.16, 0.40
Röntgenographische Dichte (g/cm³)	1.608
Temperatur (K)	173
Messgerät	BRUKER SMART 1000
Strahlungsquelle	Μο-Κα
Parameter	469
Absorptionskoeffizient (mm ⁻¹)	3.244
Vollständigkeit von $ heta_{ ext{max}}$	99,8%
Gemessene / unabhängige Reflexe	34641 / 7584
Gemessene Reflexe mit (<i>I>2σ(I)</i>)	4882
GooF	1.018
R1 (F) (I > 2σ(I))	0.0543
wR2 (F ²) (all data)	0.1239
Restelektronendichte max/min	1.761 / -2.187
CCDC-Nummer	651203

m-Terphenyltellurenyl(II)iodid m-TerTel (11)

Summenformel (Einheit)	C ₂₄ H ₂₅ ITe
Molare Masse (g/mol)	567.94
Kristallsystem	Monoklin
Raumgruppe	P2 ₁ /n
Gitterkonstanten a, b, c (Å)	11.64(1), 12.64(1), 15.19(2)
Winkel α, β, γ (°)	90, 92.91(4), 90
Zellvolumen (ų)	2232.7(6)
Z	4
Kristalldimension (mm)	0.08, 0.31, 0.55
Röntgenographische Dichte (g/cm³)	1.690
Temperatur (K)	173
Messgerät	BRUKER SMART 1000
Strahlungsquelle	Μο-Κα
Parameter	235
Absorptionskoeffizient (mm ⁻¹)	2.720
Vollständigkeit von $ heta_{ ext{max}}$	99,6%
Gemessene / unabhängige Reflexe	27262 / 6817
Gemessene Reflexe mit (<i>I>2_O(I)</i>)	5772
GooF	1.050
R1 (F) (I > 2\sigma(I))	0.0350
wR2 (F ²) (all data)	0.0925
Restelektronendichte max / min	2.191 / -2.271
CCDC-Nummer	651204

m-Terphenyltellur(IV)trichlorid m-TerTeCl₃ (12)

Summenformel (Einheit)	C ₂₄ H ₂₅ Cl ₃ Te
Molare Masse (g/mol)	547.390
Kristallsystem	Monoklin
Raumgruppe	P2 ₁ /n
Gitterkonstanten a, b, c (Å)	8.54(1), 17.40(2), 15.97(2)
Winkel α, β, γ (°)	90, 98.80(3), 90
Zellvolumen (ų)	2344.8(5)
Z	4
Kristalldimension (mm)	0.09, 0.09, 0.26
Röntgenographische Dichte (g/cm³)	1.551
Temperatur (K)	173
Messgerät	BRUKER SMART 1000
Strahlungsquelle	Μο-Κα
Parameter	253
Absorptionskoeffizient (mm ⁻¹)	1.618
Vollständigkeit von $ heta_{ ext{max}}$	99,4%
Gemessene / unabhängige Reflexe	17747 / 7129
Gemessene Reflexe mit (I>2 σ (I))	5002
GooF	1.022
R1 (F) $(I > 2\sigma(I))$	0.0404
wR2 (F²) (all data)	0.0876
Restelektronendichte max / min	1.058 / -0.605
CCDC-Nummer	702788

m-Terphenyltellur(IV)tribromid von m-TerTeBr $_3$ (13)

Summenformel (Einheit)	$C_{24}H_{25}Br_3Te$
Molare Masse (g/mol)	680.77
Kristallsystem	Monoklin
Raumgruppe	P2 ₁ /n
Gitterkonstanten a, b, c (Å)	8.73(5), 17.65(5), 16.07(5)
Winkel α, β, γ (°)	90, 100.23(5), 90
Zellvolumen (ų)	2437.5(1)
Z	4
Kristalldimension (mm)	0.23, 0.25, 0.68
Röntgenographische Dichte (g/cm³)	1.855
Temperatur (K)	173
Messgerät	BRUKER SMART 1000
Strahlungsquelle	Μο-Κα
Parameter	253
Absorptionskoeffizient (mm ⁻¹)	6.146
Vollständigkeit von $ heta_{ ext{max}}$	99,6%
Gemessene / unabhängige Reflexe	30104 / 7441
Gemessene Reflexe mit (I>2 σ (I))	6388
GooF	1.012
R1 (F) (I > 2σ(I))	0.0254
wR2 (F ²) (all data)	0.0635
_ , , , , , , , , , , , , , , , , , , ,	0.982 / -0.844
Restelektronendichte max / min	0.302 / -0.044

m-Terphenyltellurenyliodid-lod-Charge-Transfer-Komplex *m*-TerTel····l₂ (14)

Summenformel (Einheit)	C ₂₄ H ₂₅ I ₃ Te
Molare Masse (g/mol)	680.77
Kristallsystem	Monoklin
Raumgruppe	P2 ₁ /n
Gitterkonstanten a, b, c (Å)	8.26(2), 14.66(4), 21.19(5)
Winkel α, β, γ (°)	90, 94.57(6), 90
Zellvolumen (ų)	2558.0(1)
Z	4
Kristalldimension (mm)	0.04, 0.11, 0.23
Röntgenographische Dichte (g/cm³)	2.134
Temperatur (K)	173
Messgerät	BRUKER SMART 1000
Strahlungsquelle	Μο-Κα
Parameter	253
Absorptionskoeffizient (mm ⁻¹)	4.792
Vollständigkeit von $ heta$ max	98,2%
Gemessene / unabhängige Reflexe	30687/ 7706
Gemessene Reflexe mit (<i>I>2_O(I)</i>)	5051
GooF	1.012
R1 (F) (I > 2\sigma(I))	0.0460
wR2 (F2) (all data)	0.1066
Restelektronendichte max / min	1.737 / -1.939
CCDC-Nummer	651205

m-Terphenyltellurinsäure [m-TerTe(O)OH]₂ (15)

Summenformel (Einheit)	C ₄₈ H ₅₂ O ₄ Te ₂
Molare Masse (g/mol)	948.10
Kristallsystem	Monoklin
Raumgruppe	P2 ₁ /n
Gitterkonstanten a, b, c (Å)	8.20(1), 16.64(3), 15.70(3)
Winkel α, β, γ (°)	90, 101.13(4), 90
Zellvolumen (ų)	2101.1(6)
Z	2
Kristalldimension (mm)	0.09, 0.10, 0.36
Röntgenographische Dichte (g/cm³)	1.499
Temperatur (K)	173
Messgerät	BRUKER SMART 1000
Strahlungsquelle	Μο-Κα
Parameter	239
Absorptionskoeffizient (mm ⁻¹)	1.431
Vollständigkeit von $ heta_{ m max}$	99,1%
Gemessene / unabhängige Reflexe	11491 / 4098
Gemessene Reflexe mit (<i>I>2σ(I)</i>)	3679
GooF	1.424
R1 (F) (I > 2\sigma(I))	0.0602
wR2 (F ²) (all data)	0.1432
Restelektronendichte max / min	1.145 / -0.649
CCDC-Nummer	702790

m-Terphenyltelluroxychlorid [m-TerTe(O)Cl]₂ (16)

Summenformel (Einheit)	C ₄₈ H ₅₀ Cl ₂ O ₂ Te ₂
Molare Masse (g/mol)	984.98
Kristallsystem	Monoklin
Raumgruppe	P2 ₁ /n
Gitterkonstanten a, b, c (Å)	11.97(2), 12.24(3), 14.31(3)
Winkel α, β, γ (°)	90, 95.29(4), 90
Zellvolumen (ų)	2088.5(7)
Z	2
Kristalldimension (mm)	0.05, 0.14, 0.12
Röntgenographische Dichte (g/cm³)	1.566
Temperatur (K)	173
Messgerät	BRUKER SMART 1000
Strahlungsquelle	Μο-Κα
Parameter	244
Absorptionskoeffizient (mm ⁻¹)	1.563
Vollständigkeit von $ heta_{ ext{max}}$	99,7 %
Gemessene / unabhängige Reflexe	20360 / 4831
Gemessene Reflexe mit (<i>I>2σ(I)</i>)	3062
GooF	1.048
R1 (F) (I > 2\sigma(I))	0.0506
wR2 (F ²) (all data)	0.1098
Restelektronendichte max / min	0.975 / -1.678
CCDC-Nummer	702789

m-Terphenyltelluroxybromid [m-TerTe(O)Br]₂ (17)

Summenformel (Einheit)	$C_{48}H_{50}Br_2O_2Te_2$
Molare Masse (g/mol)	655.31
Kristallsystem	Triklin
Raumgruppe	P-1
Gitterkonstanten a, b, c (Å)	11.25(5), 11.86(5), 11.91(5)
Winkel α, β, γ (°)	97.46(5), 114.19(5), 109.47(5)
Zellvolumen (ų)	1298.3(1)
Z	1
Kristalldimension (mm)	0.05, 0.26, 0.35
Röntgenographische Dichte (g/cm³)	1.676
Temperatur (K)	173
Messgerät	BRUKER SMART 1000
Strahlungsquelle	Μο-Κα
Parameter	334
Absorptionskoeffizient (mm ⁻¹)	3.009
Vollständigkeit von $ heta_{ ext{max}}$	97,1 %
Gemessene / unabhängige Reflexe	16168 / 7685
Gemessene Reflexe mit (I>2 σ (I))	7227
GooF	1.274
R1 (F) (I > 2\sigma(I))	0.0322
wR2 (F ²) (all data)	0.0967
Bootolektronondiehte may / min	0.655 / -0.905
Restelektronendichte max / min	0.0007 0.000

m-Terphenyltelluroxyiodid [*m*-TerTe(O)l]₂·Toluol (18)

Summenformel (Einheit)	C _{26.3} H _{27.6} IOTe
Molare Masse (g/mol)	628.66
Kristallsystem	Triklin
Raumgruppe	PĪ
Gitterkonstanten a, b, c (Å)	12.60(4), 17.77(5), 18.74(6)
Winkel α, β, γ (°)	75.54(7), 71.53(7), 70.09(6)
Zellvolumen (ų)	3693.0(19)
Z	6
Kristalldimension (mm)	0.07, 0.07, 0.16
Röntgenographische Dichte (g/cm³)	1.696
Temperatur (K)	173
Messgerät	BRUKER SMART 1000
Strahlungsquelle	Μο-Κα
Parameter	809
Absorptionskoeffizient (mm ⁻¹)	2.479
Vollständigkeit von $ heta_{ ext{max}}$	97,2 %
Gemessene / unabhängige Reflexe	43788 / 20982
Gemessene Reflexe mit (<i>I>2σ(I)</i>)	12437
GooF	1.024
R1 (F) ($I > 2\sigma(I)$)	0.0494
wR2 (F ²) (all data)	0.1082
Restelektronendichte max / min	5.629 / -1.270

Natrium-m-terphenyltellurat Na₄ (m-TerTeO₂)₄ (19)

Summenformel (Einheit)	C ₁₁₂ H ₁₃₂ Na ₄ O ₁₂ Te ₄
Molare Masse (g/mol)	2272.54
Kristallsystem	Tetragonal
Raumgruppe	$I\overline{4}$
Gitterkonstanten a, b, c (Å)	19.22(1), 19.22(1), 14.22(1)
Winkel α, β, γ (°)	90, 90, 90
Zellvolumen (ų)	5252.8(8)
Z	2
Kristalldimension (mm)	0.25, 0.31, 0.42
Röntgenographische Dichte (g/cm³)	1.437
Temperatur (K)	200
Messgerät	STOE IPDS 2T
Strahlungsquelle	Μο-Κα
Parameter	298
Absorptionskoeffizient (mm ⁻¹)	1.175
Vollständigkeit von $ heta_{ ext{max}}$	99.8%
Gemessene -/ unabhängige Reflexe	19454 / 7065
Gemessene Reflexe mit (I>2 σ (I))	6624
GooF	1.119
R1 (F) ($I > 2\sigma(I)$)	0.0349
wR2 (F ²) (all data)	0.0908
Restelektronendichte max / min	0.691 / -1.007

Stannatelluroxan (*m*-TerTe)₂(*t*-Bu₂Sn)₂O₅ (20)

Summenformel (Einheit)	C ₆₄ H ₈₆ O ₅ Sn ₂ Te ₂
Molare Masse (g/mol)	1427.91
Kristallsystem	Monoklin
Raumgruppe	C2/c
Gitterkonstanten a, b, c (Å)	21.52(1), 21.42(5), 29.85(1)
Winkel α, β, γ (°)	90, 96.22(4), 90
Zellvolumen (ų)	13620.9(1)
Z	8
Kristalldimension (mm)	0.50, 0.13, 0.05
Röntgenographische Dichte (g/cm³)	1.393
Temperatur (K)	200
Messgerät	STOE IPDS 2T
Strahlungsquelle	Μο-Κα
Parameter	725
Absorptionskoeffizient (mm ⁻¹)	1.615
Vollständigkeit von $ heta_{ ext{max}}$	98,9 %
Gemessene / unabhängige Reflexe	43427 / 12199
Gemessene Reflexe mit (<i>I>2σ(I)</i>)	5084
GooF	0.791
R1 (F) (I > 2σ(I))	0.0559
wR2 (F ²) (all data)	0.1152
Restelektronendichte max / min	1.490 / -1.554

m-Terphenylstibbonsäure [TerSbO(OH)₂)]₂·THF (22)

Summenformel (Einheit)	C ₅₂ H ₆₂ O ₇ Sb ₂
Molare Masse (g/mol)	1042.52
Kristallsystem	Triklin
Raumgruppe	PĪ
Gitterkonstanten a, b, c (Å)	10.90(9), 11.20(8), 11.81(1)
Winkel α, β, γ (°)	63.72(6), 70.90(6), 67.91(6)
Zellvolumen (ų)	1175.8(16)
z	1
Kristalldimension (mm)	0.38, 0.25, 0.17
Röntgenographische Dichte (g/cm³)	1.472
Temperatur (K)	200
Messgerät	BRUKER SMART 1000
Strahlungsquelle	Μο-Κα
Parameter	280
Absorptionskoeffizient (mm ⁻¹)	1.199
Vollständigkeit von $ heta_{ ext{max}}$	98,1%
Gemessene / unabhängige Reflexe	12854 / 6275
Gemessene Reflexe mit (I>2 σ (I))	5250
GooF	1.004
R1 (F) ($I > 2\sigma(I)$)	0.0375
wR2 (F ²) (all data)	0.0927
Restelektronendichte max / min	0.755 / -1.137
CCDC-Nummer	702787

m-Terphenylstibonsäureethylester [m-TerSbOOHOEt] $_2$ (24)

Summenformel (Einheit)	C ₅₂ H ₆₂ O ₆ Sb ₂
Molare Masse (g/mol)	1026.52
Kristallsystem	Monoklin
Raumgruppe	C2/c
Gitterkonstanten a, b, c (Å)	19.62(2), 13.60(1), 17.90(1)
Winkel α, β, γ (°)	90, 91.56(7), 90
Zellvolumen (ų)	4793.0(7)
Z	4
Kristalldimension (mm)	0.25, 0.23, 0.27
Röntgenographische Dichte (g/cm³)	1.423
Temperatur (K)	200
Messgerät	STOE IPDS 2T
Strahlungsquelle	Μο-Κα
Parameter	289
Absorptionskoeffizient (mm ⁻¹)	1.174
Vollständigkeit von $ heta$ max	96.3%
Gemessene / unabhängige Reflexe	8005 / 4076
Gemessene Reflexe mit (I>2 σ (I))	2810
GooF	0.996
R1 (F) (I > 2\sigma(I))	0.0378
wR2 (F2) (all data)	0.0865
Restelektronendichte max / min	0.665 / -1.192

Sechkerniger Natrium-Antimon-Sauerstoff-Cluster $[(m-TerSb)_2(O)_2(OH)_5Na\cdot H_2O]_2$ (25)

Summenformel (Einheit)	C ₄₈ H ₅₀ NaO ₈ Sb ₂
Molare Masse (g/mol)	1021.37
Kristallsystem	Monoklin
Raumgruppe	P2 ₁ /n
Gitterkonstanten a, b, c (Å)	13.57(9), 18.92(1), 18.17(1)
Winkel α, β, γ (°)	90, 106.07(5), 90
Zellvolumen (ų)	4479.7(5)
z	4
Kristalldimension (mm)	0.18, 0.10, 0.12
Röntgenographische Dichte (g/cm³)	1.514
Temperatur (K)	200
Messgerät	STOE IPDS 2T
Strahlungsquelle	Μο-Κα
Parameter	532
Absorptionskoeffizient (mm ⁻¹)	1.268
Vollständigkeit von $ heta$ max	98.6%
Gemessene / unabhängige Reflexe	29413 / 12010
Gemessene Reflexe mit (I>2 σ (I))	5744
GooF	0.794
R1 (F) (I > 2\sigma(I))	0.0462
wR2 (F2) (all data)	0.0852
Restelektronendichte max / min	0.766 / -1.691

Sechsgliedriger Antimon-Schwefel-Cluster [(TerSb(O)(OH)₂]₂SO₄ (26)

Summenformel (Einheit)	C ₅₅ H ₆₁ O ₉ SSb ₂
Molare Masse (g/mol)	1141.60
Kristallsystem	Triklin
Raumgruppe	$P\overline{1}$
Gitterkonstanten a, b, c (Å)	11.39(1), 14.17(8), 17.19(2)
Winkel α, β, γ (°)	99.92(6), 90.04(7), 113.70(5)
Zellvolumen (ų)	2497.8(3)
Z	2
Kristalldimension (mm)	0.50, 0.25, 0.10
Röntgenographische Dichte (g/cm³)	1.518
Temperatur (K)	200
Messgerät	STOE IPDS 2T
Strahlungsquelle	Μο-Κα
Parameter	613
Absorptionskoeffizient (mm ⁻¹)	1.180
Vollständigkeit von $ heta_{ ext{max}}$	99.5%
Gemessene / unabhängige Reflexe	8791 / 8791
Gemessene Reflexe mit (I>2 σ (I))	4987
GooF	0.793
R1 (F) (I > 2σ(I))	0.0343
wR2 (F ²) (all data)	0.0698
Restelektronendichte max / min	0.811 / -0.932

Persönliche Angaben

Der Lebenslauf ist in der Online-Version aus Gründen des Datenschutzes nicht enthalten.

Posterpräsentationen und Vorträge

Mixed valent Terphenyltellurenylhalides TerX₂TeTeTer and an Terphenyltellurenyl lodide lodine Adduct TerTel···l₂

Jens Beckmann, Malte Hesse

Tenth International Conference on the Chemistry of Selenium and Tellurium

(ICCST-10)

22-27.06. 2007, Lodz, Polen

Über die Stabilität und Hydrolyse von Organotellur(IV)trichloriden.

Das erste wohl-definerte Organotellurenyl(II)chlorid und die erste kristalline
Organotellurinsäure

Jens Beckmann, Stefan Heitz, Malte Hesse

Tag der Chemie, Berlin 2006

Vortrag:

Über die Stabilität und Hydrolyse von Organotellur(IV)trichloriden

Tag der Chemie, Berlin 2006

Bereits veröffentlichte Ergebnisse:

1. Four distinctively different decomposition pathways of metastable SupermesityItellurium(IV) trichloride.

Jens Beckmann, Stephan Heitz, Malte Hesse, Inorg. Chem. 2007, 46, 3275.

2. SupermesityItellurenyl bromide.

Jens Beckmann, Malte Hesse, Acta Cryst. 2007, E63, o1674.

3. Formation of mixed-valent aryltellurenyl halides RX₂TeTeR.

Jens Beckmann, Malte Hesse, Helmut Poleschner, Konrad Seppelt, *Angew. Chem. Int. Ed.* **2007**, *46*, 8277.

4. Aryltellurenyl cation [RTe(CR'2)]+ stabilized by an N-heterocyclic carbene.

Jens Beckmann, Pamela Finke, Stephan Heitz, Malte Hesse, *Eur. J. Inorg. Chem.* **2008**, 1921.

5. Well-Defined Stibonic and Tellurinic Acids.

Jens Beckmann, Pamela Finke, Malte Hesse, Burkhard Wettig, *Angew. Chem. Int. Ed.* **2008**, *47*, 9982.

In Vorbereitung

6. Reactivity of the first well-defined stibonic acid towards H_2SO_4 and NaOH.

Jens Beckmann, Malte Hesse, 2009, in Vorbereitung.

7. Molecular Stannatelluroxanes

Jens Beckmann, Jens Bolsinger, Malte Hesse, 2009, in Vorbereitung.

8. A tetrameric Sodiumterphenyltellurate

Jens Beckmann, Malte Hesse, 2009, in Vorbereitung.

7 Verzeichnisse

Substanzverzeichnis

Nr.	Name	Abkürzung	Summenformel
1	Supermesitylditellurid	(Mes*Te) ₂	(2,4,6- <i>t</i> -Bu ₃ C ₆ H ₂ Te) ₂
2	SupermesityItellureny(II)chlorid	Mes*TeCl	2,4,6-t-Bu ₃ C ₆ H ₂ TeCl
3	SupermesityItellureny(II)bromid	Mes*TeBr	2,4,6- <i>t</i> -Bu ₃ C ₆ H ₂ TeBr
4	SupermesityItellur(IV)trichlorid	Mes*TeCl ₃	2,4,6- <i>t</i> -Bu ₃ C ₆ H ₂ TeCl ₃
5	5,7-Di- <i>tert</i> -butyl-2-hydro-3,3- dimethylbenzol[b]tellurophen-1,1- dichlorid		
6	Dekachloridditellurat-Anion mit protoniertem Ether-Kation		[Et ₂ OH] ₂ [Te ₂ Cl ₁₀]
7	Zweikerniges Stannatelluroxan	[Mes*Te(O)O-Snt-Bu ₂ Cl]	[Mes*Te(O)O-Snt-Bu ₂ Cl]
8	Bis-m-Terphenylditellurid	(m-TerTe) ₂	(2,6-Mes ₂ C ₆ H ₃ Te) ₂
9	m-Terphenyltellurenyl(II)chlorid	<i>m</i> -TerTeCl₂Te <i>m</i> -Ter	(2,6-Mes ₂ C ₆ H ₃ TeCl) ₂
10	<i>m</i> -Terphenyltellurenyl(II)bromid	<i>m</i> -TerTeBr₂Te <i>m</i> -Ter	(2,6-Mes ₂ C ₆ H ₃ TeBr) ₂
11	<i>m</i> -Terphenyltellurenyl(II)iodid	<i>m</i> -TerTel	2,6-Mes ₂ C ₆ H ₃ Tel
12	<i>m</i> -Terphenyltellur(IV)trichlorid	<i>m</i> -TerTeCl₃	2,6-Mes ₂ C ₆ H ₃ TeCl ₃
13	<i>m</i> -Terphenyltellur(IV)tribromid	<i>m</i> -TerTeBr ₃	2,6-Mes ₂ C ₆ H ₃ TeBr ₃
14	<i>m</i> -Terphenyltelluriodid-lod-Charge-Transfer-Komplex	<i>m</i> -TerTel····I₂	2,6-Mes ₂ C ₆ H ₃ Tel···l ₂
15	<i>m</i> -Terphenyltellurinsäure	[m-TerTe(O)OH] ₂	[2,6-Mes ₂ C ₆ H ₃ Te(O)(OH)] ₂
16	<i>m</i> -Terphenyltelluroxychlorid	[m-TerTe(O)Cl] ₂	(2,6-Mes ₂ C ₆ H ₃ TeOCl) ₂
17	<i>m</i> -Terphenyltelluroxybromid	[m-TerTe(O)Br] ₂	(2,6-Mes ₂ C ₆ H ₃ TeOBr) ₂
18	<i>m</i> -Terphenyltelluroxyiodid	[m-TerTe(O)I] ₂	(2,6-Mes ₂ C ₆ H ₃ TeOI) ₂
19	Natrium- <i>m</i> -terphenyltellurat	(m-TerTeO ₂ Na) ₄	(2,6-Mes ₂ C ₆ H ₃ TeO ₂ Na) ₄
20	Vierkerniger m-Terphenyltellur-Cluster	[(<i>m</i> -TerTe) ₂ (<i>t</i> -Bu ₂ Sn) ₂ O ₅]	[(TerTe) ₂ (t-Bu ₂ Sn) ₂ O ₅]
21	<i>m</i> -Terphenylantimon(V)-tetrachlorid	<i>m</i> -TerSbCl₄	2,6-Mes ₂ C ₆ H ₃ SbCl ₄
22	<i>m</i> -Terphenylstibonsäure	[m-TerSb(O)(OH) ₂] ₂	[2,6-Mes ₂ C ₆ H ₃ Sb(O)(OH) ₂] ₂
23	<i>m</i> -Terphenylantimon- oxyhydroxychlorid	[m-TerSb(O)(OH)Cl] ₂	[2,6-Mes ₂ C ₆ H ₃ Sb(O)(OH)Cl] ₂
24	<i>m</i> -Terphenylstibonsäure- monoethylester	[m-TerSb(O)(OH)OEt] ₂	[2,6-Mes ₂ C ₆ H ₃ Sb(O)(OH)OEt] ₂
25	sechkerniger Natrium-Antimon- Sauerstoff-Cluster	[(<i>m</i> -TerSb) ₂ (O) ₂ (OH) ₅ Na ·H ₂ O] ₂	[(2,6-Mes ₂ C ₆ H ₃ Sb) ₂ (O) ₂ (OH) ₅ Na ·H ₂ O]
26	sechsgliedriger Antimon- Schwefel-Cluster	[(<i>m</i> -TerSb(OH) ₂] ₂ (O)SO ₄	[(2,6-Mes ₂ C ₆ H ₃ Sb(OH) ₂] ₂ (O)SO ₄

Abkürzungsverzeichnis

 t-Bu
 tert-Butylgruppe

 DMSO
 Dimethylsulfoxid

 DCM
 Dichlormethan

 EA
 Elementaranalyse

 i-Pr
 iso-Propylrest

 M
 Molmasse

 Me
 Methylgruppe

Mes Mesitylgruppe (2,4,6-Trimethylphenylgruppe)

Mes* Supermesitylligand (2,4,6-Tri-tert-

butylphenylligand)

m-Ter m-Terphenylligand (2,6-Dimesitylphenylligand)

n-BuLin-ButhyllithiumPhPhenylgruppeROrganischer RestRTRaumtemperaturSchmp.SchmelzpunktTHFTetrahydrofuran

 μ_2 Ligand mit zwei Bindungspartnern μ_3 Ligand mit drei Bindungspartnern

Spektroskopie

NMR

magnetische Kernresonanzspektro-skopie

d, m, s, t Dublett, Multiplett, Singulett, Triplett

J Kopplungskonstante ppm parts per million

IR Infrarot

UV Ultravioletter Bereich

Abbil	dunasve	rzeichnis

Abbildung 1:	Beispiele für Monoorganoelementsauerstoffverbindungen einiger	
	Elemente bis zur 4. Periode.	2
Abbildung 2:	Röntgenstrukturen von <i>i</i> -PrSn(OH)Cl₂·H₂O,	
	$(i\text{-PrSn})_9 O_8 (OH)_6 Cl_5 \cdot 6DMSO \text{ und } [(i\text{-PrSn})_{12} O_{14} (OH)_6] Cl_2.$	5
Abbildung 3:	Molekülstruktur der Monoorganostannonsäure	
	$\{[(Me_3Si)_3C]_3Sn(O)OH\}_3.$	6
Abbildung 4:	Molekülstruktur von {[(Me ₃ Si) ₃ C] ₃ Sn} ₄ O ₆ .	6
Abbildung 5:	Molekülstrukturen von Ph ₂ TeO und (<i>p</i> -MeOC ₆ H ₄) ₂ TeO.	7
Abbildung 6:	Ausschnitt der Röntgenstruktur von	
	$[\operatorname{Li}(\operatorname{THF})](\textit{i-}\operatorname{PrTe})_{12}\operatorname{O}_{16}\operatorname{Br}_{4}\{\operatorname{Li}(\operatorname{THF})\operatorname{Br}\}_{4}\}\operatorname{Br}]\cdot 2\operatorname{THF}.$	8
Abbildung 7:	Molekülstruktur des dimeren (Ph ₃ SbO) ₂ und EXAFS-Struktur des	
	polymeren (Ph₃SbO) _n .	8
Abbildung 8:	Molekülstruktur von (o-Tol₂Sb)₄O ₆ .	9
Abbildung 9:	Ausschnitt der Molekülstruktur von	
	$[Na_{21}(PhSb)_{48}O_{114}]\cdot 46H_2O\cdot 4CH_3CN.$	10
Abbildung 10:	Sterisch anspruchsvolle Lithiumorganyle.	13
Abbildung 11:	Molekülstrukturen von Verbindungen 2 und 3.	20
Abbildung 12:	Molekülstruktur von 4.	22
Abbildung 13:	Molekülstruktur von 5.	25
Abbildung 14:	Molekülstruktur von 6.	26
Abbildung 15:	Molekülstruktur von 7.	29
Abbildung 16:	Molekülstruktur von 8.	31
Abbildung 17:	Molekülstruktur von 9.	35
Abbildung 18:	Molekülstruktur von 10.	37
Abbildung 19:	Molekülstruktur von 11.	38
Abbildung 20:	Molekülstruktur von 12.	41
Abbildung 21:	Molekülstruktur von 13.	42
Abbildung 22:	Kristalle des <i>m</i> -Terphenyltellurenyliodid-Iod-Charge-	
	Transfer-Komplexes m -TerTeI···I ₂ (14) im (A) Auflicht und (B)	
	Transmissionslicht.	43
Abbildung 23:	Ausschnitt der Molekülstruktur von 14.	44
Abbildung 24:	IR-Spektrum der <i>m</i> -Terphenyltellurinsäure (15).	47

Abbildung 25:	Molekülstruktur von 15 .	48
Abbildung 26:	Molekülstrukturen von 16–18.	52
Abbildung 27:	(A) Molekülstruktur von 19. (B) Rumpfstruktur von 19.	54
Abbildung 28:	Molekülstruktur von 20.	57
Abbildung 29:	IR-Spektrum der röntgenographisch vermessenen Kristalle der	
	<i>m</i> -Terphenylstibonsäure [<i>m</i> -TerSb(O)(OH)₂]₂·THF (22).	60
Abbildung 30:	A Molekülstruktur von 22. B Kristallstruktur von 22	
	mit fehlgeordnetem THF.	61
Abbildung 31:	Molekülstruktur von 24.	65
Abbildung 32:	(A) Molekülstruktur von 25. (B) Rumpfstruktur von 25.	66
Abbildung 33:	IR-Spektrum von Verbindung 25.	67
Abbildung 34:	Molekülstruktur von 26.	69
Abbildung 35:	IR-Spektrum von Verbindung 26.	70
Abbildung 36:	Organoelementsäuren der 5. und 6. Hauptgruppe.	72
Abbildung 37:	Fehlordnung in Verbindung 20.	95

Verzeichnis der Schemata

Schema 1:	Allgemeines Hydrolyseschema von Monoorganozinntrichloriden.	4
Schema 2:	Allgemeines Hydrolyseschema der (A) Monoorganotellur(IV)trichloric	le
	und der (B) Monoorganoantimon(V)tetrachloride.	12
Schema 3:	Allgemeine Syntheseroute zur Herstellung von	
	Monoorganotellur(IV)trihalogeniden.	15
Schema 4:	Darstellung des Bissupermesitylditellurids (Mes*Te) ₂ (1).	16
Schema 5:	Bildung von Monoorganotellurenyl(II)halogeniden.	17
Schema 6:	Tetramere Strukturen von PhTel, PhSeCl, PhSeBr und Ph ₂ Se ₂ l ₂ .	18
Schema 7:	Synthesewege zur Darstellung von Mes*TeCl (2) und Mes*TeBr (3).	18
Schema 8:	Darstellung von Supermesityltellurtrichlorid Mes*TeCl ₃ (4).	21
Schema 9:	Die vier Zerfallswege des Supermesityltellur(IV)trichlorids (4).	23
Schema 10:	Versuchte Bildung von Mes*TeBr ₃ .	27
Schema 11:	Bildung des Stannatelluroxan Mes*Te(O)O-Snt-Bu ₂ Cl (7).	28
Schema 12:	Synthese des Bis-m-terphenylditellurids (8).	30
Schema 13:	Darstellung der <i>m</i> -Terphenyltellurenyl(II)halogenide (9–11)	32
Schema 14:	Umlagerungsreaktion des gemischt-valenten m-	
	Terphenyltellurenyl(II)bromid m -TerTeBr ₂ Tem-Ter (10).	33
Schema 15:	Bildung der <i>m</i> -Terphenyltellurtrihalogenide	
	[X = Cl (12); X = Br (13)] und des Charge-Transfer-Komplexes (14).	39
Schema 16:	Synproportionierung der <i>m</i> -Terphenyltellur(IV)halogenide (12–14) zu	
	den entsprechenden <i>m</i> -Terphenyltellurenyl(II)halogeniden (9–11).	39
Schema 17:	Darstellung der <i>m</i> -Terphenyltellurinsäure (15).	45
Schema 18:	Gleichgewicht zwischen monomerer und dimerer	
	<i>m</i> -Terphenyltellurinsäure (15).	46
Schema 19:	Mögliche Dimerstrukturen der Chalkogensäuren PhE(O)OH.	46
Schema 20:	Bildungswege der <i>m</i> -Terphenyloxyhalogenide (16–18).	50
Schema 21:	Darstellung des Natrium- <i>m</i> -terphenyltellurats Na ₄ (<i>m</i> -TerTeO ₂) ₄ (19).	53
Schema 22:	Strukturen der Stannatelluroxane $[(p-MeOC_6H_4)_2Te(OSnt-Bu_2CO_3]_2,$	
	$(p-MeOC_6H_4)_2TeO(Snt-Bu_2OH)_2O$ und $[(p-MeOC_6H_4)_2TeOSnt-Bu_2O]_2O$	2.55
Schema 23:	Bildung des molekularen vierkernigen Stannatelluroxan	
	$[(m-TerTe)_2(t-Bu_2Sn)_2O_5]$ (20).	56
Schema 24:	Synthese von <i>m</i> -Terphenylantimon(V)tetrachlorid (21).	59

Schema 25:	Stufenweise Hydrolyse des <i>m</i> -Terphenylantimon(V)tetrachlorids (21)	. 60
Schema 26:	Mögliche Dimerstrukturen der Organopentelsäuren PhE(O)(OH) ₂ .	63
Schema 27:	Veresterung zum Stibonsäuremonoethylester	
	[<i>m</i> -TerSb(O)(OH)OEt]₂·EtOH (24).	64
Schema 28:	Darstellung des sechkernigen Natrium-Antimon-Sauerstoff-Clusters	
	$[(m-TerSb)_2(O)_2(OH)_5Na\cdot H_2O]_2$ (25).	65
Schema 29:	Darstellung des sechsgliedrigen [m-TerSb(O)(OH) ₂] ₂ SO ₄ (26).	69

Literaturverzeichnis

- a) Gmelin: *Handbuch der anorganischen Chemie*. Weinheim **1965**;
 - b) A. Ladenburg: Vorträge über die Entwicklungsgeschichte der Chemie, von Lavoisier bis zur Gegenwart. Darmstadt **1974**.
- a) Holleman Wieberg: Lehrbuch der Anorganischen Chemie. Walter de Gryter, 102.
 Auflage, 2007;
 - b) Riedel: Moderne Anorganische Chemie. Walter de Gryter, 7 Auflage, 2007.
- ³ a) S. Riethmiller, Chemotherapy **2005**, 51, 234;
 - b) N. C. Lloyd, H. W. Morgan, B. K. Nicholson, R. S. Ronimus, Angew. Chem. Int. Ed. **2005**, *44*, 941.
- ⁴ V. Chandrasekhar, S. Nagendran, V. Baskar, Coord. Chem. Rev. **2002**, 235, 1.
- ⁵ H. Puff, H. Reuter, *J. Organomet. Chem.* **1989**, 364, 57.
- ⁶ H. Puff, H. Reuter, *J. Organomet. Chem.* **1989**, 368, 173.
- ⁷ H. Puff, H. Reuter, *J. Organomet. Chem.* **1989**, 373, 173.
- ⁸ J. Janssen, J. Magull, H. W. Roesky, Angew. *Chem. Int. Ed.* **2002**, *41*, 1365.
- ⁹ K. Wraage, T. Pape, R. Herbst-Irmer, M. Noltemeyer, H. G. Schmidt, H. R. Roeksy, *Eur. J. Inorg. Chem.* **1999**, 369.
- ¹⁰ K Lederer, *Ann. Chem.* **1912**, 391, 326.
- ¹¹ N. W. Alcock, W. D. Harrison J. Chem. Soc., Dalton Trans. **1982**, 709.
- J. Beckmann, D. Dakternieks, A. Duthie, F. Ribot, M.Schürmann, N. A. Lewcenko, Organometallics 2003, 22, 3257.
- ¹³ a) K. Lederer, *Ber. Dtsch. Chem. Ges.* **1915**, *48*, 1345;
 - b) P. Thavornyutikarn, W. R. McWhinnie, J. Organomet. Chem. 1973, 50, 135;
 - c) J. Bergman, J. Siden, K. Maartmann-Moe, Tetrahedron 1984, 40, 1607;
 - d) Y. Nakashima, T. Shimizu, K. Hirabayashi, N. Kamigata, *Org. Letters* **2004**, *6*, 2575;
 - e) Y. Nakashima, T. Shimizu, K. Hirabayashi, M. Yasui, M. Nakazato, F. Iwasaki, N. Kamigata, *Tetrahedron Asym.* **2004**, *15*, 3791.
- ¹⁴ H. Citeau, K. Kirschbaum, O. Conrad, D. M. Giolando, *Chem. Commun.* **2001**, 2006.

- ¹⁵ J. Bordner, G. O. Doak, T. S. Everett, *J. Am. Chem. Soc.* **1986**, *108*, 4206.
- ¹⁶ C. J. Carmalt, J. G. Crossley, N. C. Norman, A. G. Orpen, *Chem. Commun.* **1996**, 1675.
- ¹⁷ H. J. Breunig, J. Probst, K. H. Ebert, E. Lork, R. Cea-Olivares, J.-G. Alvarado-Rodriguez, *Chem. Ber.* **1997**, *130*, 959.
- ¹⁸ A. Michaelis, A. Reese, *Ann. d. Chem.* **1898**, 233, 368
- a) L.H. Bowen, G.G. Long, *Inorg. Chem.* **1978**, *17*, 551;
 b) G. O. Doak, *J. Am. Chem. Soc.* **1946**, 68, 1991
- ²⁰ V. Baskar, M. Shanmungam, M. Helliwell, S. J. Teat, R. E. P. Winpenny, *J. Am. Chem. Soc.* **2007**, *129*, 3042
- ²¹ a) Z. H. Aiube, C. Eaborn, *J. Organomet. Chem.* **1984**, 269, 217;
 - b) M. A. Cook, C. Eaborn, J. Organomet. Chem. 1970, 24, 529;
 - c) K. Ruhland-Senge, J. J. Ellison, R. J. Wehmschulte, F. Pauer, P. P. Power *J. Amer. Chem. Soc.* **1993**, *115*, 11353;
 - d) R. Okazaki, M. Unno, N. Inamoto, Chem. Lett. 1989, 791.
- ²² M. Yoshifuji, I. Shima, N. Inamoto, K. Hirotsu, T. Higuchi, *J. Am. Chem. Soc.* **1981**, *103*, 4587.
- ²³ a) M. Petrie, P. P. Power, H. V. R. Dias, K. Ruhlandt-Senge, K. M. Waggoner, R. Wehmschulte, *Organometallics* **1993**, *12*,1086;
 - b) S. Schultz, S. Pusch, E. Pohl, S. Dielkus, R. Herbst-Irmer, A. Meller, H. W. Roesky, *Inorg. Chem.* **1993**, *32*, 3343;
 - c) A. Meller, S. Pusch, E. Pohl, S. Dielkus, R. Herbst-Irmer, *Chem. Ber.* **1993**, *126*, 2255;
 - d) A. H. Cowley, H. S. Isorn, A. Decken, Organometallics 1995, 14, 2589;
 - e) H. Rahbarnoohi, M. J. Heeg, J. P. Oliver, Organometallics 1994, 13, 2123.
- ²⁴ W. Rudel, H. Kessler, *Chem.Ber.* **1968**, *101*, 3350.
- ²⁵ H. Poleschner, K. Seppelt, *Chem. Eur. J.* **2004**, *10*, 6565.
- ²⁶ T. M. Klapötke, B. Krumm, P. Mayer, H. Piotrowski, M. Vogt, *Z. Anorg. Allg. Chem.* **2003**, *629*,1117.

²⁷ W. W. du Mont, S. Kubiniok, K. Peters, H. G. von Scnering, *Angew. Chem.* **1987**, 99, 820.

- ²⁸ T. Nguyen, A. D. Sutton, M. Brynda, J. C. Fettinger, G. Long, P. P. Power, *Science* **2005**, *310*, 844.
- ²⁹ B. Twanley, C. D. Sofield, M. M. Olmstead, P. P. Power, *J. Am. Chem. Soc.* **1999**, *121*, 3357.
- ³⁰ L. Lange, B. Meyer, W.-W. du Mont, *J. Organomet. Chem.* **1987**, *C17*, 329.
- a) P. Schulz, G. Klar, *Z. Naturforsch.* **1975**, *30B*, 40;
 b) P. Schulz, G. Klar, *Z. Naturforsch.* **1975**, *30B*, 43.
- ³² W. L. Dorn, A. Knöchel, P. Schulz, G. Klar, *Z. Naturforsch.* **1976**, *31B*, 1032.
- ³³ N. W. Alcock, W. D. Harrison, *J. Chem. Soc. Dalton Trans.* **1984**, 869.
- ³⁴ D. E. Pearson, M. G. Frazer, V. S. Fraser, L. C. Washburn, *Synthesis* **1976**, 621.
- ³⁵ L. Lange, W. W. du Mont, *J. Org. Chem.* **1985**, 286, C1.
- a) P. K. Freeman, L. L. Hutchinson, *J. Org. Chem.* **1980**, *45*, 1924;
 b) P. K. Freeman, L. L. Hutchinson, *J. Org. Chem.* **1983**, *48*, 4705.
- ³⁷ W. L. Dorn, A. Knöchel, P. Schulz, G. Klar, *Z. Naturforsch.* **1976**, *31B*, 1032.
- ³⁸ E. S. Lang, R. M. Fernandes Jr., E. T. Silverira, U. Abram, E. M. Vázquez-López, *Z. Anorg. Allg. Chem.* **1999**, *625*, 1401.
- ³⁹ P. D. Boyle, W. I. Cross, S. M. Godfrey, C. A. McAuliffe, R. G. Pritchard, S. Sarward, J. M. Sheffield, *Angew. Chem. Int. Ed.* **2000**, 39, 1796.
- ⁴⁰ P. D. Boyle, S. M. Godfrey, *Coord. Chem. Rev.* **2001**, 223, 265.
- ⁴¹ S. Kubiniok, W.-W. du Mont, S. Pohl, W. Saak, *Angew. Chem. Int. Ed.* **1988**, 27, 431.
- ⁴² N.Petragnani, M de Moura Campos, *Tetrahedron* **1965**, *21*, 13.
- ⁴³ a) O. Foss, K. Moroey, *Acta Chem. Scand.* **1966**, *20*, 123;
 - b) O. Foss, S. Huseby, Acta Chem. Scand. 1966, 20, 132.
- ⁴⁴ a) S. Hauge, O. Vikane, *Acta Chem. Scand.* **1985**, *A39*, 553;
 - b) S. Hauge, O. Vikane, Acta Chem. Scand. 1988, A42, 87;
 - c) S. Hauge, K. Maroey, T. Oedegaard, Acta Chem. Scand. 1988, A42, 56.

⁴⁵ a) E. S. Lang, G. A. Casagrande, G. M. de Oliveira, G. N. Ledesma, S. S. Lemos, E. E. Castellano, U. Abram, *Eur. J. Inorg. Chem.* **2006**, 958;

- b) E. S. Lang, G. M. de Oliveira, G. A. Casagrande, *J. Organomet. Chem.* **2006**, *691*, 59;
- c) E. S. Lang, G. N. Ledesma, U. Abram, M. V. Teijido, I. Caracelli, J. Z. Zukerman-Schpector, *Kristallogr.* **2006**, *221*, 166.
- ⁴⁶ a) H. B. Singh, N. Sudha, A. A. West, T. A. Hamor, *J. Chem. Soc. Dalton Trans.* **1990**. 907:
 - b) L. Engman, A. Wojton, B. J. Oleksyn, J. Sliwinski, *Phosphorous, Sulfur, Silicon* **2004**, *179*, 285.
- ⁴⁷ S. C. Menon, H. B. Singh, J. M. Jasinski, J. P. Jasinski, R. J. Butcher, *Organometallics* **1996**, *15*, 1707.
- ⁴⁸ T. M. Klapötke, B. Krumm, H. Nöth, J. C. Gálvez-Ruiz, K. Polborn, I. Schwab, M. Suter, *Inorg. Chem.* **2005**, *44*, 5254.
- ⁴⁹ W. W. du Mont, H. U. Meyer, S. Kubiniok, S. Pohl, W. Saak, *Chem. Ber.* **1992**; 125, 761.
- ⁵⁰ T. M. Klapötke, B. Krumm, I. Schwab, *Acta Cryst.* **2005**, *E61*, o4045.
- ⁵¹ K. Giselbrecht, B. Bildstein, F. Sladky, *Chem. Ber.* **1989**, *122*, 1255.
- ⁵² T. M. Klapötke, B. Krumm, I. Schwab, *Acta Cryst.* **2005**, *E61*, o4047.
- ⁵³ a) K. H. Boswijk, J. van der Heide, A. Vos, E. H. Wiebenga, *Acta Cryst.* **1956**, 9, 274;
 - b) R. Minkwitz, M. Z. Berkei, Z. Naturforsch. 1999, B54, 1615;
 - c) G. B. Carpenter; S. M. Richards, Acta Cryst. 1962, 15, 360.
- ⁵⁴ H. Schumann, M. Margerstädt, *J. Organomet. Chem.* **1982**, 232,147.
- ⁵⁵ D. Kobelt, E. F. Paulus, *Angew. Chem. Int. Ed.* **1971**, *10*, 74.
- ⁵⁶ a) K. I. Irgolic, *The organic Chemistry of Tellurium*, Gorden and Breach, New York, 1974;
 - b) I. D. Sadekov, A. Y. Bushkov, V. I. Minkin, Russ. Chem. Rev. 1979, 48, 343;
 - c) A. A. Maksimenko, A. V. Zakharov, I. D. Sadekov, Russ. Chem. Rev. 2000, 69, 861
- ⁵⁷ S. Heitz, *Bachelorarbeit* **2005**, Freie Universität Berlin.

⁵⁸ a) A. H Cowley, J. G.Lasch, N. C. Norman, M. Pakulski, *J. Am. Chem. Soc.* **1983**, 105, 5506;

- b) M. Yoshifuji, I. Shima, K. Ando, N. Inamoto, Tetrahedon Letters 1983, 24, 933;
- c) A. H. Cowley, J. E. Kilduff, J.G. Lasch, S. E. Mehrotra, N.C. Norman, M. Pakulski,
- B. R. Whittlesey, J. L. Atwood, W.E. Hunter, Inorg. Chem. 1984, 23, 2582;
- d) A. H. Cowley, N. C. Norman, M. Pakulski, D. L. Bricker, D. H. Russell, *J. Am. Chem. Soc.* **1985**, *107*, 8211.
- ⁵⁹ S. M. Närhi, R. Oilunkaniemi, R. S. Laitinen, M. Ahlgrén, *Inorg. Chem.* **2004**, *43*, 3742.
- 60 I. Krossing, A. Reisinger, *Eur. J. Inorg. Chem.* **2005**, 1979
- ⁶¹ T. Steiner, *Angew. Chem. Int. Ed.* **2002**, *41*, 48.
- J. Beckmann, D. Dakternieks, A. Duthie, N. A. Lewcenko, C. Mitchell, *Angew. Chemie Int. Ed.*, 2004, 43, 6683.
- ⁶³ H. Puff, W. Schuh, R. Sievers, W. Wald, R. Zimmer, *J. Org. Chem.* **1984**, 260, 271.
- ⁶⁴ K. Ruhlandt-Senge, J. J. Ellison, R. J. Wehmschulte, F. Pauer, P. P. Power, *J. Am. Chem. Soc.* **1993**, *115*, 11353.
- ⁶⁵ A. Saednya, H. Hart, *Synthesis* **1996**, 1455.
- ⁶⁶ J. Beckmann, M. Hesse, H. Poleschner, K. Seppelt, *Angew. Chem. Int. Ed.* **2007**, *46*, 8277.
- ⁶⁷ a) F. Seel, W. Gombler, *Angew. Chem. Int. Ed.* **1969**, *8*, 773;
 b) W. Gombler *Z. Anorg. Allg. Chem.* **1978**, *439*, 193.
- ⁶⁸ H. Poleschner, K. Seppelt, *Chem. Eur. J.* **2004**, *10*, 6565.
- a) N. W. Alcock, W. D. Harrison, *J. Chem. Soc. Dalton Trans.* 1982, 251;
 b) J. Beckmann, D. Dakternieks, A. Duthie, C. Mitchell, *Acta Cryst.* 2004, *E60*, o2511.
- ⁷⁰ R. Boese, A. D. Boese, D. Bläser, M. Y. Antipin, A. Ellern, K. Seppelt, *Angew. Chem. Int. Ed.* **1997**, *36*, 1489.
- ⁷¹ a) A. C. Hillier, S.-Y. Liu, A. Sella, M. R. J. Elsegood, *Angew. Chem. Int. Ed.* **1999**, 38, 2745;
 - b) D. Witthaut, K. Kirschbaum, O. Conrad, D. M. Giolando, Organometallics 2000,

- 19, 5238;
- c) H. T. M. Fischer, D. Naumann, W. Tyrra, Chem. Eur. J. 2006, 12, 2515.
- P. H. Laur, S. Saberi-Niaki, M. Scheiter, C. Hu, U. Englert, Phosphorus, Sulfur and Silicon and the Related Elements 2005, 180, 1035.
- ⁷³ B. Buss, B. Krebs, *Angew. Chem.* **1970**, *82*, 446.
- ⁷⁴ H. Schmidbaur, A. Schier, *Organometallics* **2008**, *27*, 2361.
- ⁷⁵ Vergleichsspektrum in Toluol vermessen.
- a) P. Finke, Diplomarbeit 2008, Freie Universität Berlin;
 b) J. Beckmann, P. Finke, M. Hesse, B. Wettig, *Angew. Chem. Int. Ed.* 2008; *47*, 9982.
- ⁷⁷ E. S. Lang, U. Abram, J. Strähle, *Z. Anorg. Allg. Chem.* **1997**, *623*, 1968.
- ⁷⁸ M. Suzuki, I. H. Son, R. Noyori, H. Masuda, *Organometallics* **1990**, *9*, 3043.
- J. Beckmann, D. Dakternieks, J. O'Conell, K. Jurkschat, M. Schürmann, Eur. J. Inorg. Chem. 2002, 1484.
- a) V. Chandrasekhar, S. Nagendran, V. Baskar, *Coord. Chem. Rev.* 2002, 235, 1;
 b) A. G. Davies, *Organotin Chemistry*, VCH, Weinheim, 2nd ed., 2004.
- ⁸¹ J. Beckmann, D. Dakternieks, A. Duthie, C. Mitchell; *J. Chem. Soc. Dalton Trans.* 2005, 1563
- ⁸² B. Twamley, C. D. Sofield, M. M. Olmstead, P. P. Power, *J. Am. Chem. Soc.* **1999**, 121, 3357
- a) T. Heck, Diplomarbeit 2006, Freie Universität Berlin;
 b) J. Beckmann, T. Heek, M. Takahashi *Organometallics* 2007, *26*, 3633.
 - b) J. Beckmann, T. Heek, W. Takanashi Organometaliics 2007, 26, 36
- ⁸⁴ B. Wettig, *Bachelorarbeit* **2007**, Freie Universität Berlin.
- ⁸⁵ G. M. Sheldrick SHELXS-97, Programm for Crystal Structure Solution, Universität Göttingen, 1997.
- ⁸⁶ G. M. Sheldrick *SHELXL-97*, Programm for Crystal Structure Refinement, Universität Göttingen, **1997**.
- ⁸⁷ X-STEP32 Version 1.07b, Stoe & Cie GmbH, Darmstadt, **2000**.
- ⁸⁸ WinGX Version 1.70.01, L. J. Farrugia, J. Appl. Cryst. **1999**, 32, 837.

⁸⁹ DIAMOND V2.1d, Crystal Impact, K. Brandenburg & M. Berndt GbR, **2002**.