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Zusammenfassung

Quantenmechanik erlaubt uns, das Verhalten physikalischer Systeme in einer Vielzahl
experimenteller Situationen verlasslich vorherzusagen. In diesem Sinne ermoglicht sie
uns, eine Intuition fiir das Verhalten mikroskopischer Systeme zu entwickeln, so wie die
Newtonsche Mechanik uns das Verstandnis der Prinzipien makroskopischer Bewegun-
gen erlaubte. Wir wissen, dass Manipulationen und Messungen quantenmechanischer
Systeme diese direkt beeinflussen und die Ergebnisse verandern kénnen. Auf der anderen
Seite sind zur Identifikation und Steuerung der mikroskopischen Quantensysteme hoch-
komplexe experimentelle Aufbauten notig, die das genaue Verstindnis der Vorgénge bei
der Messung erschweren.

Diese Arbeit hat das Ziel, Ideen zur effizienten Kontrolle von Quantensystemen zu
evaluieren und zu erweitern. Der Fokus liegt dabei auf dem mit der Messung einherge-
henden Informationsverlust und dem moglichen Einfluss von Annahmen tiber das zu
messende Quantensystem. Neuartige Wege der Beschreibung und der Rekonstruktion
von Quantenzustinden und Quantenoperationen werden auf reale Messergebnisse an-
gewendet um einige der bestehenden Graben zwischen theoretischen und experimentellen
Herangehensweisen an die Rekonstruktion von Quantensystemen zu schlieen, und dabei
neue Hindernisse zu identifizieren.

Eine weiteres Ziel dieser Arbeit ist das Bewerben eines informationstheoretischen
Ansatzes bei der Beschreibung von Quantensystemen. Eine klare mathematische Bes-
chreibung der im System vorhandenen, gesuchten Information erlaubt nicht nur die Ana-
lyse der Transformationen und Verluste dieser Information, sondern ermoglicht dadurch
auch die Bestimmung der fiir verschiedene Messvorginge erlangbaren Erkenntnisse. Diese
Anséatze konnten auch zu neuen Ideen der Identifikation und Transformation klassischer
Systeme und Netzwerke beitragen.

Entsprechend dieser Motivation eroffnen wir neue Perspektiven auf Messtechniken
sowie die Interpretation von Messergebnissen in der Anwendung und Erweiterung neuer
Methoden zur Umkehrung von mathematischen Faltungen auf fehlerbehaftete Datensétze
aus Messungen von Atomen in optischen Gittern. Wir fithren weiterhin sinnvolle
Wege der Messung spezieller Eigenschaften von Quantenzustanden—ihre Nahe zu einem
Gaussschen Zustand—aus unvollstdndigen Messdaten ein. Zuletzt fithren wir ein neuart-
iges Protokoll ein um die einem stark korrelierten System innewohnende Verschrankung
moglichst nachhaltig nutzbar zu machen.

Es ist besonders dieser letzte Ansatz, der zu der Vision der Realisierung eines bedin-
gungslos sicheren Kommunikationsnetzwerkes beitragen kann. Dieses ermoglichte uns
im “Quantum Internet of Things” ein sicheres Netzwerk zwischen intelligenten Geraten
aufzubauen und bréchte uns so der Welt der Science Fiction ein kleines Stiick néher.

xii



Abstract

Quantum mechanics allows us to reliably predict the behaviour of physical systems in
a plethora of experimental situations. In this sense, it enables us to build an intuition
for microscopic systems as Newtonian mechanics helped us understand the principles
of macroscopic motion. We know that our actions and measurements on quantum
mechanical systems directly influence our results and have the ability to change outcomes.
On the other hand, highly complex experimental setups are necessary to identify and
manipulate these microscopic quantum systems, which makes a complete understanding
of the measurement process a hard process.

This work aims to test and expand ideas on how this control of quantum systems
can be done in careful and efficient ways. It focuses on the loss of information during
measurements and the possible influence of presumptions about the quantum state in
question. Modern ways of describing and reconstructing quantum states and quantum
operations are applied to real experimental situations to fill in some of the gaps—and of
course point at new gaps—between theoretical and experimental approaches to present
day quantum systems.

This work further aims to advertise an information theoretic mindset in the approach
to quantum mechanics. A clear description of the wanted information contained in the
system in question not only allows to investigate the transformations and the losses this
particular information undergoes, but also helps determining which part of the wanted
information is theoretically accessible for different kinds of measurement. As system
sizes grow and new technologies like the internet of things introduce the need for faster
and faster processing, principles from quantum information theory can offer important
leads to new ideas on system identification and transformation.

We develop a number of ideas following this mindset. Firstly, we offer new perspectives
on measurement techniques as well as the interpretation of results by applying several
blind deconvolution techniques to experimental data of atoms in optical lattices. We
then introduce meaningful measures to gain insight on special properties of quantum
states—their closeness to a Gaussian state—from only very limited partial measurement
data. Lastly we introduce a novel protocol to transform the entanglement content in a
highly correlated state to be able to use this resource in the most sustainable way.

It is this last part in particular, that points at a possible contribution of this work to
the vision of realising an unconditionally secure communication network. This would
enable us to use quantum communication in a quantum internet of things—a secure
communication network between intelligent devices—taking us one step closer to our

wildest science fiction dreams.
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1. Introduction

... 10 tool appears better calibrated for a direct assault [on the foundations of
quantum mechanics| than quantum information theory. Far from a strained
application of the latest fad to a time-honoured problem, this method holds
promise precisely because a large part—but not all—of the structure of
quantum theory has always concerned information. It is just that the physics
community needs reminding. (Fuchs, 2002)

The experimental revolutions in the field of quantum mechanics, achieved in the last
century and especially the last decades, are mind-blowing. Aspects, that were once seen
as paradoxical and are still hard to grasp, like Schrodinger’s cat or the Einstein Podolski
Rosen paradox, are verified over and over again and taken as true predictions of quantum
mechanics [9, 25, 35].

The field of quantum optics served and continues to serve as a catalyst, as the ability
to control the quantum state of light provides an ideal starting point for promising
experiments that can test the properties and predictions of quantum mechanics where
we lack the imagination [87]. Despite these exhaustive tests, quantum mechanics proved
to be correct and no borders to its validity have been found, even though there remain
tons of open questions [45, 93].

As our trust in quantum mechanics grows, we can explore the new concepts that this
framework offers us. Exploring quantum communication and exploiting the possibilities
of quantum measurement to identify the most efficient and economical way within the
boundaries of quantum mechanics brought to life the field of quantum information theory
and quantum cryptography [50].

Quantum information theory uses the methods of information theory, which have de-
veloped over the past decades in parallel to computer science. Already in the late
1940’s, Claude Shannon contributed to the questions of how information can be defined,
quantified or transmitted over a channel of either time (memory) or space [88]. Fol-
lowing in the footsteps of Shannon, quantum information theory introduced quantum
analogues of Shannon’s theorems by looking into how strongly quantum information can
be compressed, and how noise affects the transmission of quantum information [69].
There is a deep fascination in learning more about systems than we—on the first glance—
should be able to. In 2014, a method of nanoscopy, that makes it possible to distinguish
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molecules below the diffraction limit was rewarded the Nobel prize. Instead of searching
for information, where there is none, special properties of the system and new approaches
to measurement were used that introduce a new kind of information to the system, which
is then used to get a much higher resolution [57]. In a similar way, new approaches
to measurement and manipulation of quantum states revolutionise the efficiency and
reliability of operations in the quantum world beyond imagination.

This work aims to test and expand ideas on how quantum systems can be identified and
controlled in more efficient ways in order to approach real life applications in labs. It
also focuses on where information is lost during our approaches to learn about quantum
systems, and where measurement or reconstruction approaches might destroy or—even
worse—introduce information into unknown quantum systems. Several modern ways
of describing and reconstructing quantum states and quantum operations are applied
to real experimental situations to fill in some of the gaps—and of course point at new
gaps—between theoretical and experimental approaches to present day quantum systems.
Overcoming these gaps is crucial in order to be able to “benefit from the advances in
quantum technologies” into our everyday lives, a goal not only listed in the recently
released “Quantum Manifesto” but also bringing us on step closer to our wildest dreams
of science fiction.

After this general introduction, we will introduce different possibilities in the descriptions
of quantum states. The focus herein lies in describing Gaussian states as well as low-rank
states and Matrix Product states and operators, as they will all play a major role in the
later chapters.

In the following chapter three, different ways of identifying quantum systems and re-
constructing quantum states are described. The chapter also features an introduction
of the compressed sensing method, which will be central to chapter five. In the last
introductory chapter, we will give a short overview on the tools of quantum and classical
information theory that will appear in this thesis. We will introduce the concepts of

information content, entropy and especially relative entropy.

In chapter five, compressed sensing techniques are used to perform a non-linear deconvo-
lution of fluorescence peaks to efficiently and reliably reconstruct atom positions. This
work was done in collaboration with experimentalists from Bonn, performing fluorescence
imaging on optical lattices in order to distinguish nearest neighbour atoms. We use sev-
eral variants of compressed sensing and discuss how compressed sensing can in general
be applied to these and similar experimental situations. We perform reconstruction on
simulated as well as experimental data and present benchmark results on reconstructabil-



ity containing a newly introduced error model. We also discuss possibilities of improving
the distinguishability of close-by atoms and reducing information loss during the meas-

urement process.

In chapter six, instead of reconstructing a low-rank estimate of a certain quantum state,
we discuss the possibility of reconstructing more general properties of quantum states.
This work was done in collaboration with experimentalists from Munich, performing
time-of-flight measurements on cold atoms originating from optical lattices. We invest-
igate the loss of information during time-of-flight measurements and discuss to what
extent this information is sufficient to reconstruct properties of the measured states. We
introduce the useful property of local deviation from Gaussianity and derive bounds on
it that can be estimated with only very limited information.

In chapter seven and eight, rather than performing tomography and learning about a
state, we dive into methods to manipulate quantum states to arrive at a wanted out-
come state with given properties. Entanglement is the key resource in many quantum
information protocols such as quantum key distribution or quantum communication. As
local operations and classical communication cannot enlarge the amount of entanglement
between two parties, we investigate the possibility of transforming the entanglement
between subsequent pairs from a entangling source into wanted entanglement between
the two pairs. We investigate whether the rates of generating highly entangled pairs can
be improved by treating the entanglement that is already present in the system in the
most sustainable way. In chapter seven we therefore present entanglement distillation
protocols, the postselective recurrence protocol and the deterministic 5-qubit code, an
error-correcting protocol. We prepare the translation of these protocols into the world
of tensor networks, which we introduce in chapter eight. There we show how sources of
entangled pairs can naturally be described by Matrix Product Operators and translate
protocols from quantum optics into this new language. We investigate the steps of
the entanglement distillation protocols and use renormalisation techniques. We discuss
physical models and present parameter spaces, where correlations between subsequent
pairs can indeed be of advantage.

In chapter nine, we summarise our conclusions and present our outlook on future applic-
ations of treating information present in a system like the precious resource it is.

To make the main text more readable, the mathematical proofs for chapter eight as well
as parts of the numerical code developed for the work presented in chapters five and six
is commented and presented in the appendix.
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2. Descriptions of Quantum States

One of the reasons using quantum mechanics in future communications and computations
is, that the Hilbert space underlying the quantum states grows exponentially and allows
for complex states like highly entangled states. This can introduce exponential speed-ups
in quantum computation and quantum simulation. However, this possibility also bears
the serious disadvantage that due to this complexity it can be very hard to describe a
generic quantum system efficiently. The large amount of degrees of freedom makes a full
tomography and a full description of the state a difficult and inefficient task. However,
there exist plenty of quantum systems, where this description can be done more efficiently.
By concentrating on a smaller corner in Hilbert space, one can already cover a huge
class of physically meaningful settings and states. In this chapter, we concentrate on
three different descriptions, that allow us to describe or reconstruct states in different
corners of Hilbert space. The first set of states we will focus on is that of Gaussian
states. These are the states that have a Gaussian Wigner function and can therefore
be efficiently described in phase space. The second class of states are low-rank states,
which are quantum states which can be represented by density matrices that have only a
few eigenvalues different from zero. By finding the non-trivial eigenspace of these states,
much less information is needed for a full description. The last set of states is a huge
class, that can in its limits cover the whole of Hilbert space. The class of tensor network
states, or the special case of matrix product operators provide a natural description
of a system that has mainly local interactions. The so-called bond dimension can be
understood as a backdoor to allow for more complicated interactions, but small bond
dimensions already cover a large set of meaningful states.

We will now focus on these subspaces in more detail. Afterwards, we will investigate
how using additional knowledge on the subspace of quantum states can be used to improve

the efficiency of reconstructing information about the quantum state from measurements.

2.1. Finite Dimensions

Every quantum state corresponds to a density operator satisfying three characteristics:

it is positive semi-definite, Hermitian, and its trace is one.
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p>0, p=p, Trp=1

In this density matrix picture, all state operations can be thought of as maps transform-
ing one density matrix into another one. These operations are called quantum channels
and have to conserve the three properties that define a quantum state. One possible
allowed operation is the convex combination of quantum states. The outcome of such a
convex combination on pure input states is called a mixed state. Every quantum state
can be decomposed into a basis of pure states. This decomposition is however not unique,
which is one of the reasons why certain properties like entanglement are difficult to define
when moving from the world of pure to mixed quantum states. One often has to imple-
ment additional knowledge about the system in question, such as a physical reason for
a natural decomposition into specific subspaces, to find a reasonable measure for entan-
glement. We will treat different possible measures of entanglement in a following chapter.

Before we consider several different decompositions of quantum states, we will mathem-
atically define a quantum channel, as we will use this concept in a later section. Quantum
channels are completely positive, trace-preserving, linear maps, as they map quantum
states to quantum states. They can generally be formulated as

prT(p) = Trg[U(p® pp)UT]. (2.1)

where the system is enlarged to include an environment, unitarily transformed and
reduced to the original system by tracing out the environment again. Any quantum
operation can thus be seen as a unitary transformation on a bigger system which is not
completely accessible. This quantum channel picture makes it thus possible to cover
all kinds of possible quantum transformations such as unitary operations, changes in
the system size which include compositions with other systems, partial traces as well as
projective measurements, in one single mathematical formulation. This is exceptionally
useful in the description of quantum information protocols like entanglement distillation,
as it allows the observation of the transformation of information in every step. For
continuous variable systems, one has to use a different language though, as the Hilbert
space in question will become infinitely dimensional. We will consider this in the next

section.

2.2. Gaussian States

If we move away from the realm of qubits and finite-dimensional quantum systems and

consider continuous variables instead, most properties like entanglement are in general

10



2.2. GGaussian States

hard to bound let alone to describe. A large number of protocols and manipulations
of quantum states can however be described by the evolution of the moments of the
distributions of the states. One special set of states, the so-called Gaussian states are
fit to represent a huge class of physical states. Coherent states or squeezed states, but
also thermal or Gibbs states are famous examples for Gaussian states. They all share
the property of having a Gaussian Wigner function, which itself is the Fourier transform
of the characteristic function. We will introduce this setup, as we will use it in chapter
six, where we develop a method to bound the closeness of a specific quantum state to
the set of Gaussian states using only very limited information about the quantum state
in question. The topic of Gaussian states is widely represented in the literature, we thus
refer to Nielsen and Chuang [70] for a more thorough introduction than is given in the
following.

The most common example for a system with continuous variables and an infinitely
dimensional Hilbert space is the quantum harmonic oscillator. Its coordinates are the
continuous functions for position X and momentum P, which can be described using
annihilation and creation operators, the product of which forms the number operator,
which shares its eigenbasis |n) with the Hamiltonian of the quantum harmonic oscillator.
The first example of a Gaussian state is the coherent state, which is nothing but the

eigenstate of the annihilation operator, a |a) = a|a):

la) = e~lal’/2 i 2y,
n=0 \/ﬁ

If we now consider not only one degree of freedom, say a single mode, but N degrees
of freedom, we can describe them as N harmonic oscillators and describe the state in
the phase space of these oscillators, which is of dimension R?YN. As we are dealing with
harmonic oscillators, we know that there exist commutation relations in every mode
which gives us additional knowledge on a property of the phase space.

The reason why this phase space picture is helpful is, that as observables of different
modes commute, we can reduce the complexity of the description of the system by
considering the single mode problems independent of each other. To describe either states
or operations in phase space, one makes use of the Wigner function W, a normalised and
real-valued function. It is in general not a probability distribution, as its values can be
negative, but can be used to determine expectation values of products of the canonical
coordinates, called moments of the distribution.

<X“Pb> = /OO dz dp "W, (z,p)
p 00 pRES

The Wigner function is derived as the Fourier transform of the characteristic function,
which is itself defined as the expectation value of the displacement operator in phase

11
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space.

There are certain functions, for which it is exceptionally useful to describe them only
in terms of their moments and the evolution of these. Wick’s theorem, based on Isserli’s
formula, tells us, that for example Gaussian states are completely defined by their first
and second moments alone [59, 102]. The first moments are the expectation values of
the canonical coordinates, i.e. the displacement in phase space. The second moments
contain all possible combinations of two R = X, P from all modes, which can be cast in
a real symmetric 2N x 2N matrix, called the covariance matrix ~.

ik = 2Re ((B; — (Rj),) (B = (Ri),)) . g,k =1,....N.

The fact that 2V is always even has an important physical implication. Williamson’s
theorem [103] states, that any n-dimensional real symmetric matrix with an even di-
mension can be diagonalised using a so-called symplectic transformation. Symplectic
transformations are of significant physical interest, as they are transformations of the ca-
nonical operators which preserve the commutation relations. Symplectic diagonalisation
of the before-mentioned covariance matrix ~ leads to its symplectic eigenvalues, which
appear as the eigenvalues of the matrix ioc~ 17, where ¢ is the symplectic form.

n (o 1)
o= (2.2)
k=1 (_1 0
For more detail, we refer to the constructive proof of this theorem by Narcovich [68].
This transformation into independent modes allows a very efficient description of
Gaussian states. Their importance in many experimental setups in the description of
coherent or thermal states makes them an important building block in the description

of quantum systems.

A general Gaussian state is defined by its Gaussian Wigner distribution
1
W =Cexp (—2(1« — )Ty (e - d)) . (2.3)

(' is a normalisation constant and d is the displacement vector, e.g. the expectation
value of the position. It is the first moment of the distribution. Using the symplectic
transformation one can show that there always exists a canonical basis such that the
Gaussian state factorises into single modes belonging to different temperatures.

One last special property of Gaussian states we want to introduce is their von Neumann
entropy. Within the set of all density operators with fixed finite first and second moments,
the respective Gaussian state maximises the entropy. This can be proven by evaluating
the relative entropy between the Gaussian state ¢ and any other state p of the set with

12
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fixed first and second moments.

D(plo) = Tr(plnp) —Tr(oclno) = =S(p) +S(c) >0 (2.4)

We will use this feature later to characterise a given distribution and evaluate their
distance from the set of Gaussian states.

2.3. Low-Rank States and Matrix Product States

Even though the Hilbert space of a few ions, or even a single particle can be enormous,
the vast majority of quantum states are not of physical interest. Most naturally occurring
states lie in a very small corner of this Hilbert space. They are either low-rank or even
pure (classical) states, ground states of local Hamiltonians that can be described as
Tensor Network states, or states with special symmetries as the Gaussian states we
introduced in the last section.

One physical example for low-rank states are low entropy states, that are supported on
a r-dimensional subspace of the underlying d-dimensional Hilbert space. Those states
arise as pure classical states subject to a local source of noise. We will see in the next
section, how these states often require significantly fewer measurement settings in order
to perform a full tomography than a full rank state, even if the sparse subspace is not
known.

The problem of an exponentially growing Hilbert space gets even worse when regarding
quantum many body states. This space contains a large number of highly entangled
non-local states. However, if we restrict the states to having only local interactions—in
the sense that they can only be correlated to states that are physically close to them—the
correlations between them decay exponentially with their distance. One special case
of these Tensor Network States (TNS) are the one-dimensional Matrix Product States
(MPS), where each state is only connected to two neighbouring states and they form a one-
dimensional chain of quantum states. This setting lies at the heart of the density matrix
renormalisation group (DMRG) approach, and every one-dimensional ground state of
a local, gapped Hamiltonian can be represented using an MPS with a constant bond
dimension, the dimension that allows for correlations between neighbouring states [75]. If
the bond dimension is sufficiently large, any state can be represented as a matrix product
state, so MPS are a representation of states rather then a special class. However, one
typically chooses the representation of MPS if the bond dimension is small, meaning that
it does not grow with the number of states. A typical MPS is defined by a set of matrices
{Al[k]} with & € 1,..., N being the site and a Dy X Dj,1 matrix A corresponding to
each of the kth site. A pure quantum state ¢ € cd” characterising N sites each of
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2. Descriptions of Quantum States
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Figure 2.1.: A matrix product state in the graphical representation. Each blue block
represents a set of matrices AIkI, the blue lines represents the matrix mul-
tiplication between these matrices over the bond dimension and the black

downward lines correspond to the physical indices at the respective sites.

which belongs to a d-dimensional Hilbert space can thus be written as

d
Py =3 Tr[AEIAZIzI...AZIJJI i1, d2, .. in) - (2.5)

i1y =1

The bond dimensions D;, are the dimensions that appear in the product of two neigh-
bouring matrices. In the end, the trace over the remaining matrix product defines the
prefactors in a specific basis. Normalisation and other expectation values are computed
by contraction of the tensors. To do that, we can use a convenient identity:

Te[A* B*C*] Tr[ABC] = Tr[(A* ® A)(B* @ B)(C* @ O)]. (2.6)

Since to normalise [1), we need its scalar product with its complex conjugation, applying
the former identity to the MPS representation leads to

N
(W) = ZTr 1] }Z AT A Gy (2.7)

1,7=1

Elk]

The matrix E is called the transfer matrix. As this formulation of the MPS representation
has the obvious downside of being cumbersome and introducing a large amount of indices,
MPS are most of the time represented in a graphical calculus. The translation to this
graphical calculus is done by replacing matrices or tensors by boxes, and contractions
of indices as bonds between those boxes, see Figure 2.1. A simpler class, which we will
mostly consider in this thesis, are translationally invariant MPS, where all matrices A
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are identical and thus the bond dimension D is also identical between all sites. Every
translationally invariant state has such a translationally invariant MPS representation,
as shown in [75]. These translationally invariant MPS allow us to store the state using
only d matrices of size D x D, which is very efficient compared to the original size of
the Hilbert space. Furthermore, translationally invariant MPS are closely related to
completely positive maps £ acting on the space of D x D matrices: £(X) = ; A; X AZT.
We will make use of this concept in a later chapter in the context of renormalisation of
matrix product operators, the natural extension of MPS to mixed states.

2.4. Matrix Product Operators (MPO)

The introduction of MPS makes it possible to describe a large range of pure quantum
states. However, to describe mixed quantum states in a similar fashion, the more complex
representation of Matrix Product Operators has to be used. Here, we use it to describe
a density matrix, but it can also be applied to describe parent Hamiltonians or local
interactions [36, 99]. They can also be represented graphically, see Figure 2.2.

MPO representing mixed states can be obtained from MPS with a special structure
by taking a partial trace, representing an individual interaction with an environment of
every particle forming up the MPS. Those MPO are called locally purifiable and could be
represented by an MPS with the same bond dimension but with a higher physical degree
of freedom of the single particle. This can be seen as including the environment into the
state, which is then represented by an additional freedom. Tracing out the environment
retrieves the mixed state represented by an MPO. Graphically depicted, this process can
be seen as reordering the free indices of the MPO all to one side to get a MPS with a
higher number of physical indices.

We will now show, how the representation of a purifiable MPO can be derived from the
MPS representation introduced in the last chapter.

d
p=loel= > % e alla A e[l

iN
i1yenin=171,...in=1
><|Z'1,i2,---i )<j1,j2,---jN|
2 N .. . . . .
— Z Z Tr|:MZ[1}]1Mi[2,}j2 ...MZ-[NL-N] li1, 12, ... in)J1, J2, - - - IN]|
Zla 7ZN 1.715 7]N_

From now on, we will mostly assume, that the MPS are translationally invariant and
drop the upper index [k] for the sake of readability and only keep the physical indices.
The MPO matrix M replaces the MPS matrices A and A*. Not every possible matrix
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Figure 2.2.: A Matrix product operator in the graphical representation. Again, each blue
block represents a set of matrices, now called M*. Compared to the MPS,

there are twice as many free indices.

product operator can be cast into this purifiable form. It is a computationally hard
problem to decide, whether an MPO leads to a positive semi-definite state. Kliesch et
al showed in [62] that it is NP-hard—it needs exponentially many calculation steps in
the number of sites—and even undecidable if the chain is infinitely long. This special
case of MPO however allows us to naturally describe correlations between pairs of states,
offering us a new way of describing entanglement distillation protocols, as discussed in a
later chapter.
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3. ldentification of Quantum Systems

As hinted on in the last chapter, general quantum systems can be hard to identify.
Instead of doing a full tomography on a system, one often only solves an estimation
problem to fit a possible outcome to the outcome of the experiment. In general these
estimation problems do not have a unique solution. If however, the state that is to be
reconstructed is close to a pure state or only has a low-rank, there exist techniques to
approach the limits on efficient reconstructions [20, 33].

3.1. Quantum Tomography

As in classical physics, a tomography of a quantum state signifies a full description of the
state’s properties under measurements. In the same way distributions are generalised to
quantum states, stochastic operations reflecting operations on the quantum system or
measurements are replaced and generalised to quantum channels—the quantum version
of communication channels sending quantum information from one party to another. By
definition, such channels are required to map quantum states onto quantum states. It
turns out, that a slightly stronger notion than that of positive linear operators is required:
Quantum channels are trace-preserving, completely positive maps. Mathematically, they
can be cast into the form
p=T(p) = 3 KipK] (3.1)
J
with >°; K J* K; =1. Not only perfect measurements or operations on the channel, but
any operation, noisy or not, will be reflected by a linear map of this form. By virtue
of the Choi-Jamiolkowski-isomorphism, quantum channels mapping the N-dimensional
quantum states onto themselves are isomorphic to quantum states in N2-dimensions.
Measurements on quantum systems are incorporated by resolutions of the identity
Py, ..., Pg (called positive operator valued measures: POVMs) with the property that
Zle P, = 1. Upon measurement, the probability of obtaining the specific outcome k
is given by pr = Tr(pPx) = (p, P;). For comprehensive material on quantum channels,
see for example Refs. [101, 104].
Key to the problem of performing tomography on quantum states and channels is to
exploit the sparse signal paradigm, methods of compressed sensing and related ideas,
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based on two principles, sparsity and incoherence.

3.2. Compressed Sensing

Compressed sensing, a classical idea from the context of matrix completion of sparse
matrices, is an intriguing example how to reconstruct information in seemingly mysterious
ways from incomplete data. In 2005 and 2006, Candes and Tao describe the problem
as a problem of error correction, where the error vector is unknown [20]. They prove,
that there are situations, in which the original signal can be reliably reconstructed.
Following the same approach, Donoho proposes classes of measurement designs, tight
frames, where convex optimisation leads to a reconstruction of the original system with a
considerably low amount of needed measurements [33]. Later, Gross and Liu, Flammia,
Becker and Eisert translated the method to the world of quantum information theory,
where they apply it on the context of fairly pure states and offer a significant performance
improvement on the reconstruction of quantum states [54]. All these impressive theories
on reconstruction take into account the importance of reliability and offer reliable bounds
on the reconstruction. The methods allow feasible reconstructions, that would otherwise
be impossible to do on a classical computer.

Suppose that the objects of interest x (for example N-dimensional vectors or N x N-
dimensional matrices) can be well-approximated by superpositions >°,. ¢, of a few fixed
pure states {t¢,}. As compared to the full linear span of all states, this smaller set of
objects has then substantially reduced complexity. However, to efficiently exploit this
additional compressible structure, non-linear signal processing methods have to be used.
Assume that the objects x are superpositions of exactly r different states, so they are
r-sparse

r= Y with |[K|=r. (3.2)
keK

Once the supporting set K is known, conventional signal processing methods can be
used to recover x. However, for unknown IC, the whole signal set lacks linear structure
and is only the union of subspaces referring to different K’s. The classical approach
consists of taking sufficiently many samples to reconstruct any x in the full span and then
discarding in an adaptive way most of the samples since x was r-sparse. With the advent
of compressed sensing [20, 33, 43], it has become clear that it is possible to reconstruct a
sparse signal x exactly from a seemingly incomplete set of linear measurements (¢, x)
(e.g. the scalar product in N-dimensional vector space) and that this can be done
efficiently via convex optimisation.

Since a random N x N matrix has N? degrees of freedom, a full tomography of this
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3.2. Compressed Sensing

matrix takes order O(N 2) measurements. However, for sparse matrices with rank r,
ideal measurements would only require O(r x N) to recover the full information. In
compressed sensing, the number of measurement settings is remarkably close to the
ideal setting. Only O(rNlog N) random measurement settings are needed for a re-
construction with a failure probability below % By repeating the reconstruction with
further copies of the same state, the reconstruction can be brought to a constant error
with only (’)(rQN 2log N ) copies of the state. Furthermore, the reconstruction from the
outcomes of these measurements can be done using an efficient algorithm. Classical
compressed sensing is widely used in image enhancement, where a sparse solution to an
underdetermined system is found. This sparse solution can for example reduce unwanted
noise effects in pictures. In quantum compressed sensing, the tomography of a quantum
state is translated to a matrix completion problem, which can be solved by trace norm
minimisation subject to convex constraints which contain the measurements.

The reason for this reduction of measurement settings to be even possible lies in the
special symmetries of the underlying space of matrices. The manifold of rank-r matrices
in CV*N can be embedded into O(rN log N) dimensions with only a small distortion in
the two-norm [72]. One realisation of this embedding is using the expectation values of
a random subset of O(rN log N') Pauli matrices. There always exists a fixed set of Pauli
matrices that can be used to reconstruct any N x N matrix with rank r. In fact, most
random sets fulfil this property.

In the standard form of the compressed sensing problem, linear noisy observations in
a N-dimensional vector space are assumed. Let & be the M x N measurement matrix
with the M rows {gbm}n]\;[:l and x be an N-dimensional vector containing the original

signal. We then obtain the standard estimation equation for compressed sensing as
y=®x+e, (3.3)

where @ is called the compressed sensing operator and e is a noise vector [64]. y
is the M-dimensional vector representing the measured signal. While this problem
is underdetermined, the goal is to recover a r-sparse vector x, i.e., a vector with only
|z||; < r non-zero entries. A key step in sparse optimisation has been achieved in Ref. [20]
where it was shown that under suitable assumptions on @, the reconstruction is possible
using convex optimisation methods. Meanwhile, this problem is well investigated in the
compressed sensing community. Exemplarily, it can be shown that if M > (rlog(N /7))
and @ is a random matrix with i.i.d. {41, —1}-Bernoulli or sub-Gaussian distributed
entries and ||el|, < €, any unknown r-sparse vector x can recovered with exponential

probability by solving the quadratically constrained ¢;-minimisation problem

T =argmin|z||; s.t. |ly—Pzl, <e (3.4)
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3. Identification of Quantum Systems

Here, the ¢1-norm appears as the convex relaxation of ||-||, (by taking the convex hull
of sparse vectors). A well-known sufficient criterion on @ to ensure sparse reconstruction
by such type ¢;-programs is given by the restricted isometry property (RIP) [19], i.e., ®
is r-RIP if there exists 0 < 4, < 1

2 2 2
1D][3 — [|z13] < 6[|=5 (3.5)

Then, provided the unknown vector x is r-sparse it can be recovered if ® is 2r-RIP
with d9, < v/2 — 1 [19], which was improved to 02, < 3/(4 + /6) ~ 0.4652 [44].

The minimisation of the ¢;-norm is shown to have the same optimal outcome as the
minimisation of the rank, which is an NP-hard problem. The duality is connected to the
trace norm being the largest convex function that puts a lower bound on the rank. [78]

The trace norm optimisation problem can be solved using standard convex optimisation
techniques and results in the closest low-rank estimate of the quantum state that was
measured.

When r < N, the number of measurement settings can further be reduced by applying
a technique called direct fidelity estimation. Instead of performing a full tomography, the
fidelity of the reconstructed low-rank estimate p of the original state p can be estimated
within an e-region [72].

Let us consider a state p € H describing a system of d qubits and let thus N be 2.
Let further P be the set of all Pauli operators, meaning

P={PIP=01®02® - -®o0g;0; € {1,04,04,0.}}. (3.6)

We now choose m different P € P by sampling independently and uniformly at random.
For each ¢ € m, we measure P; on several copies of p and average over the outcomes to
obtain an estimate for Tr(P;p). More formally, we can define a sampling operator (a
linear map) A : H — R™ with

n
i = - T PZ )
(A(p)i = |/ = Te(Pip)
where we already normalised. The measurement outcomes are then given by
y=Alp) + 2,

where z represents statistical noise from the finite amount of measurements. The recon-
struction of p, the low-rank estimate of p is then performed as follows. We search for a
matrix x € H that fits the measurement results y while at the same time minimising the

trace norm |z|¢;.

N 1 2
p = arg min S| A(z) =yl + plfy, (3.7)
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1 is a parameter that has to be fitted to the amount of noise from the measurements.
The minimisation of the trace norm of x encourages low-rank outcomes in an efficient
way, as minimising the rank itself is a hard problem. This low-rank estimate is then
checked using direct fidelity estimation.

If the system to be estimated is not discrete but continuous, the measurement set-
ting has to be generalised. Instead of sampling the measurement operators from Pauli
measurements, they are taken from a non-orthogonal basis, a tight frame, which is an
overcomplete, non-orthogonal generalisation of operator bases. The orthogonal projectors
P are then measured from this tight frame, while satisfying certain incoherence prop-
erties to ensure uniqueness of the recovered solution. Fourier type measurements often
fulfil such conditions. One example is homodyne measurement, where the expectation
values of the displacement operators form a tight frame for certain constraints on the
phase angle. See [72] for a more thorough overview on continuous variable compressed
sensing.

Compressed sensing, apart from image processing and quantum state tomography,
can also be used in the reconstruction of quantum processes. In process tomography;,
the process € is translated into a state using the Choi-Jamiolkowski isomorphism. The
tomography is then performed on the state p and the process is reconstructed from the

reconstruction of the quantum state.

pe = (e®1) (Wo)tol), o) = jgl S 15) o) (3.8)

The rank of p¢ is equal to the Kraus rank of e. Variants of the compressed sensing
techniques introduced in this chapter will be applied in a following chapter in the

deconvolution of non-linear signals from measurements of atoms in optical traps.
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4. Quantum Information Theory

To complete our introduction, we will shortly introduce classical and quantum inform-
ation theory, as they moulded the mindset of a sustainable treatment of the resources
of information or entanglement. In measurements of quantum systems, the conducted
measurement or the applied transformation becomes a part of the whole system that is
to be identified. In order to understand the impact of these operations, tools developed
in information theory are absolutely necessary. We will introduce the concepts of entropy,
the classical formulation and its quantum counterpart, as well as the relative entropy
which is a tool that allows comparisons of probability distributions.

4.1. Classical Information Theory

Information theory has, in the last few years, become something of a scientific
bandwagon [...] Although this wave of popularity is certainly pleasant and
exciting for those of us working in the field, it carries at the same time an
element of danger. While we feel that information theory is indeed a valuable
tool [...] it is certainly no panacea for the communication engineer or, a
fortiori, for anyone else. Seldom do more than a few of nature’s secrets give
way at one time. It will be all to easy for our somewhat artificial prosperity to
collapse overnight when it is realised that the use of a few exciting words like

information, entropy, redundancy, do not solve all our problems. (Shannon,
1956)

Indeed, the wave of popularity of information theory did not come to an end. One of
the reasons might be, that the concept of information is highly intertwined with quantum
mechanics itself. The discussion of information theory shifts the point of view from the
outcomes of a measurement to the process of the measurement itself. There are many
great reviews, books and even philosophical texts about this topic, see for example [70,
91, 94], and we will only concentrate on a few topics.

In classical information theory, the information content of a statement highly depends
on the information that is already available about the system. If a desk has only two
possible colours—white and black—the statement “The desk is not white” reveals the
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full knowledge about the colour of the desk, while in a world where the set of possible
colours contains eight or 16 colours, the gained knowledge is way smaller. In that
sense, a useful measure for information should quantify how much information is gained
when the information is revealed. If a random variable X has x possible outcomes with

probabilities p(z), the Shannon entropy
S(X) = S(p(x)) = =D _p(z)logyp(z) = 0 (4.1)

provides such a measure. It gives the average of the information content of a possible
statement. The amount of information is hereby modelled by the negative of the logar-
ithm of the probability distribution. As this measure is lower for a low number of possible
outcomes with relatively high probabilities, as for the desk which is either black or white,
the Shannon entropy is often described as the amount of uncertainty or unpredictability
in a certain statement. For the desk, that is either black or white, depending on the
probabilities of either outcome, the Shannon entropy gives a maximum of one. If only
one eighth of the desks are white, it even drops down to 0.54, as the uncertainty in a
possible statement goes down—the statement will probably be, that the desk is black.
Likewise, if we allow for more possible outcomes (or colours), the unpredictability rises,
and so does the Shannon entropy. For only one single possible outcome the Shannon
entropy is equal to zero, reflecting that there is no uncertainty in the statement to
come. Similar to the entropy in the case of a single random variable, a measure can be
defined for two random variables X and Y. This conditional entropy is defined using
the conditional probability p(y|z). This probability reflects the probability of event Y,

given that event X already occurred. We say that, introducing the simultaneous or joint

probability p(z,y) = p(z)p(y|z)

SYIX) = Zp ) D _p(ylz) logy(p(ylz)) = = > p(z,y)logy p(yl).
y z oy
Note that if the two probability distributions are independent of each other, the joint
probability of z and y is a simple product of the single probabilities, p(z,y) = p(x)p(y),
as p(y|lx) = p(y), whenever p(z) # 0. In this case, the conditional entropy is equal to
the entropy of Y alone, S(Y|X) = >, p(2)S(Y) = S(Y). However, if the distributions
are not independent, this equality doesn’t hold anymore, and S(Y|X) < S(Y). The
uncertainty of outcome Y is less, as part of the information is already contained in the

occurrence of outcome X. We can define a mutual information content of X and Y as
I(X:Y)==-S{Y|X)+S(Y)

I(Y:X):—%:Xy:px LY logQMZI(X:Y).
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This symmetric measure quantifies how independent X and Y are from each other and
it is related to the conditional as well as the joint entropy, as I(X : V) = —S(Y|X) +
S(Y) = -S(X,Y)+ S(X)+ S(Y). We see that for independent distributions, the
mutual information content is zero, as S(Y]X) = S(Y') in these cases. This on the other
hand means that S(X,Y) = S(X) + S(Y), so the joint entropy is additive in the case
of independent distributions. If two independent systems are combined, the entropy of
the total system is the sum of the single entropies. Whenever the systems are dependent,
the joint entropy is always less than the sum of the single entropies. This behaviour is
called subadditivity. This subadditivity is a direct consequence of using the logarithm
as a measure for the amount of information in the system. The subadditivity entails,
that performing data processing, which contains collection and manipulation, can never
increase the amount of information in a system. This is known as the data processing
inequality, which holds for all measures of information. It can also be understood as the
impossibility of introducing new information through post-processing. Data processing
can be seen as a stochastic process and the data processing inequality states that using
data processing to arrive at a new variable Z cannot carry more information about
an original distribution X then the result of a first data processing Y. Both mutual
informations are again bounded from above by the the entropy, or information content
of X: S(X)>1(X:Y)>1I(X:Z). While this classical inequalities are plausible and
can be understood intuitively, the quantum equivalents are more involved.

4.2. Quantum Information Theory

The objects of interest in quantum information theory are quantum states of physical
objects. As introduced in the last chapters, these quantum states can be represented
by density operators p that are positive semi-definite operators, p > 0, over a Hilbert
space (a complex vector space with additional properties), and satisfy Tr(p) = 1. For

CN*N are Hermitian, positive

finite-dimensional quantum systems, these operators p €
semi-definite matrices over an N-dimensional vector space, normalised to unit trace:
They generalise probability distributions over a finite alphabet. The main diagonal
elements of p will also always constitute a probability distribution. Any quantum state
can be described by such an object.

Von Neumann introduced the first analogue to the classical Shannon entropy defined

for any density operator p with p = p! > 0 with trace 1:

S(p) = —Trplog, p.

If p is decomposed into projectors |¢;) (¢;| with probabilities p;, it can be shown
that S(p;) > S(p). Equality holds if the pure states ¢; are pairwise orthogonal, for
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example eigenstates of p. The reason for this bound lies in the distinguishability of
quantum states. While classical outcomes can always be compared and distinguished,
non-orthogonal quantum states cannot be distinguished with certainty. This reduces the
information content. The straightforward way of calculating the von Neumann entropy
is by using the eigenspectrum of p. With eigenvalues \;, we get S(p) = —>2; Ai logs A;.

The quantum entropy S(p) is zero if and only if p represents a pure state, having only
a single non-zero eigenvalue A = 1. On the other hand, S(p) is maximal for maximally
mixed states. As the trace is invariant under the change of basis, the von Neumann
entropy shares this property and S(p) = S(UpUT) for any unitary transformation U.
Similar to its classical equivalent, the quantum entropy can only grow when two or more
quantum systems are combined, a property which is called concave. Another property
it shares with its classical counterpart is the subadditivity, which bounds this growth
as S(pap) < S(pa) + S(pp), where p4 and pp are the reduced density matrices of a
general state pap. The full proofs of these properties is covered in many books, for
example Nielsen and Chuang [70] and we will not repeat them here. It is not surprising
that both concepts share a lot of properties, as the definitions resemble strongly. There is
however one very useful difference between the classical and the quantum entropy. While
in classical systems, the entropy of a subsystem is never greater than the entropy of the
whole system, there exist quantum states where this is the case. One example is the pure
state pap = |¢) (¢| with |¢) = %HOO) +]11)) with S(pap) = 0. The reduced states
however both have an entropy of 1. This is why quantum entropy can be used to detect
entanglement between two subsystems. Whenever S(pap) < S(pa), the subsystems A
and B are entangled. This property might be surprising, as the reduction to subsystems
and the combination of different systems seem to be very similar. The use of quantum
entropy reveals this non-classical behaviour in quantum states. As a consequence, the
subadditivity can be extended on the left hand side resulting in a triangle inequality:
1S(pa) — S(pB)ll < S(pan) < S(pa) + S(pp). The left hand side can be interpreted
as the possibility of the entropies of the subsystems cancelling each other, if the state is
entangled, as shown in the example of the Bell state stated above. If the two subsystems
have different amounts of entropy, the entropies can however only partially cancel each
other, leaving some entropy in the total system. The role of entanglement as a valuable

resource in quantum communication will be studied in chapter seven.

4.3. The Relative Entropy

A useful measure of the closeness or similarity of two probability distributions p(z) and
q(z) is given by the relative entropy, or Kullback-Leibler divergence. As we will use
it later in the attempt to find the closeness of a measured state to the set of Gaussian
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states, it deserves its own section. Its classical formulation is defined as

D(p(x Zp log< Eg) (4.2)

and it qualifies as a measure of distance, as it is non-negative and zero if and only if the
two probability distributions are equivalent for all x. Notice, that the relative entropy is
non-symmetric and measures how much information is lost if ¢(x) is used to approximate
p(z). In that sense, it can qualify whether ¢(z) is a good model for p(z). The quantum
version of the relative entropy, the probability distributions get replaced by states:

D(plo) = —Trpln(g) =—Trplnp+Trplno. (4.3)

A very useful property of the relative entropy that follows from its convexity is the
relative entropy of a state p with respect to a reference state ¢ which is a tensor product
of lower-dimensional states o;:

D(p|@ai) = > D(pilos)- (4.4)

So if o is a separable state and can be written as a tensor product of ¢; in subspaces
‘H;, the relative entropy of the whole system is an upper bound to the sum of relative
entropies of the projections on the subspaces H;. This can be seen as a potential loss
of information through the projection of p, which can only lower the bound on the
distinguishability of p and o.

A more extensive description of the property of (relative) entropies can be found in
Nielsen and Chuang [70]. We will now proceed to use these quantum information tools
together with the concepts and methods of describing and reconstructing quantum states

in several situations.
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5. Deconvolution of Fluorescence
Peaks Using Compressed Sensing

In the following chapter we describe our approach to solve the non-linear problem of
finding amplitudes and positions of atoms in an optical lattice using a compressed sens-
ing method in a single reconstruction step. This work was done in collaboration with
Carlos Riofrio and Jens Eisert. We closely worked together with Andrea Alberti and
Dieter Meschede from the institute of applied physics (IAP) in Bonn, who provided
experimental data from fluorescence imaging of atoms in optical lattices [3, 61].

After discussing the general approach to non-linear systems using compressed sensing,
we describe the experimental setup used in fluorescence imaging and identify the meas-
urement map in the context of compressed sensing. We use a trace norm minimisation
to ensure sparsity of the source function describing the lattice occupation derived from
compressed sensing techniques. By investigating the restricted isometry property of the
experimental measurement map, we find the limits for the application of compressed
sensing in this and similar measurement setups. We derive fundamental error bars on any
reconstruction based on the information content in the measurement data and compare
the compressed sensing reconstruction to the two-step reconstruction method used by
the group in Bonn. Using a simulation of the measurement process, we also investigate
possibilities to reduce the error bar in the reconstruction by expanding or changing the

measurement setup.

5.1. Non-linear Systems

In a non-linear system, the answer to an exterior excitation is not proportional to its
magnitude. Neither additivity nor homogeneity hold, which entails that the superposition
principle does not apply. Equations cannot be solved by finding linear combinations of
known solutions, which makes these systems difficult to solve. In fact, most systems that
occur in nature are non-linear, and some of them are not even linearisable. This is one

of the reasons why weather forecasting is hard and not always right.
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5.1.1. Linearisation

Many other problems however, can be transformed to a linear form by for example
separation of variables or linearisation. Sometimes these transformations only hold in
a small domain, like in the case of the pendulum under influence of gravity, which can
be brought to the form of a simple harmonic oscillator for small angles. In linearisation,
the output of y = f(z) at any = = a is approximated based on the value and the slope
of f(z) at = b, given f is continuous on [a,b] and a is close to b. We now want to

focus on this concept of linearisation in the context of compressed sensing.

5.1.2. Compressed Sensing

As introduced in section 3.2, Compressed Sensing is a technique to reconstruct low-rank
states with a small amount of measurement settings. Classical compressed sensing is
used to find the unique sparse solution to an underdetermined system. In the quantum
version of compressed sensing, only O(Nrlog N) measurement settings are needed to
perform a tomography on an N-dimensional rank r state p. To get a constant error
in the reconstruction of the state, only O(rQN 2log N ) copies of the state are needed.
The reconstruction is done via two-norm minimisation and can be performed efficiently
through convex optimisation. A big upside of the reconstruction through compressed
sensing is the possibility of reliable error bounds, not only in the reconstruction guaran-
tee but also through direct fidelity estimation. Compressed sensing is best applicable,
whenever the signal of interest is an approximately sparse, finite N-dimensional real
or complex vector Z. Sampling is done using a linear mapping ¢ to an M-dimensional

observation space resulting in a distribution
y = ¢ + €, (5.1)

where € represents measurement noise with |le|l2 = €. Not every mapping ¢ allows
for an efficient and reliable reconstruction of ¥ from g. ¢ has to fulfil the so-called
restricted isometry property (RIP), which can be understood as bounding the effect small
deviations in the source distribution ¥ have on the resulting distribution y. Another
possible interpretation is that if the map ¢ is close to an Euclidean map, it will almost
preserve distances, which is equivalent to ¢ being Lipschitz. The Lipschitz property is
very closely related to fulfilling the RIP, as can be seen in the following definition: A
distribution ¢ fulfils the RIP if

(1—65)|zll5 < [loz]l3 < (1+85)||=]3 (5.2)

for s-sparse x and d; < 1. dg is defined as the smallest constant for which RIP holds
for all x with fixed rank s. There are several algorithms which can be chosen to solve
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the reconstruction problem min, ||y — ¢:sz§ subject to = being of a fixed sparsity. All
of them use that the minimisation problem is isomorphic to minimising the rank of x
subject to ||y — ¢x|| < e. However, they differ in the way the constraint is introduced in
the reconstruction problem.

One method, which is basically a gradient search with a constraint enforcing sparsity,
is called Iterative Hard Thresholding (IHT) [14]. It introduces a stepsize or learning rate
1 > 0 and is an iterative procedure. The IHT is then given by

vo =0, 2" =H, (2l + po” (y — g2l)) (5.3)

Hg(a) is a non-linear operator that sets all but the largest s elements to zero. For
|¢]ls < 1, this expression converges to a local minimum of min, ||y — gbx||g subject to
|lz|lg < s (where ||z[|, is the number of non-zero elements in ). This method is relatively
robust against noise, it degrades only linearly with noise, and gives reliable error bars.
The number of needed observations is optimal and grows linearly with s. The only
condition is that the map ¢ and its transpose ¢* are linear and known. In the beginning
of this chapter we discussed, that there are many cases in natural system settings, where
this assumption is wrong. We will now focus on how the reconstruction has to be adapted
to the case of a non-linear map.

5.1.3. Non-linear Compressed Sensing

If a system is not too non-linear, there is always hope that the approaches used for linear
systems can be adapted to the new situation. In non-linear compressed sensing, this
adaption is done by introducing a new step in the reconstruction procedure. The non-
linear map ¢ is first linearised and afterwards the linear compressed sensing reconstruction
method is performed. Of course, this linearisation introduces a new source of error, which
changes the error bounds and the conditions on reconstructability. Two main questions
immediately arise. The first is, whether we can still find a convex objective function to
minimise the problem min, ||y — ng(:v)H% subject to = being sparse, where ¢(z) is now a
non-linear map ¢ : H — B. It is not clear how to find such a function in general, but
it turns out one can use an adapted version of IHT. The second question is how to deal
with the notion of sparsity in a general space H. For this we can introduce a known set
A C H and define the projection Py : H — A. We then introduce x4 = P4z as follows

2 _ . ~112
— < inf ||z — : 5.4
o= all® < inf flo — 7] + ¢ (54)
The positive ¢ entails for the situation that z,p¢ itself might not be in A. By replacing
Hy in (5.3) by Py, we find a new version of IHT by replacing ¢(x) with its linearisation
in z*

ro=0, " =Py (a4 el (y — gual™)). (5.5)
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This algorithm converges, whenever ¢, satisfies RIP

2 2 2
Vorasaredc|lrr — zaly < [|@p (21 — 22) |5 < Bzt — 22l3 (5.6)

while ¢(x) and ¢ +x satisfy a linearisation criterion.

o (x1) — ¢(x2) — du= (w1 — x2) |5 < Cl(1 — 22)[3 (5.7)

Whenever the constants satisfy § < % < 1.ba —4C, THT converges to a x* which is

e-close to . The error bound can be directly deduced by bounding H(x — ar["Jrl])HQ
using (5.6) and (5.7) with the appropriate choice of the constants.

One example for a system that is very close to linear is a measurement setup where
a signal undergoes a linear measurement system ® which satisfies the RIP with some
constants « and [ and is then captured by detectors with a non-linear response f,
such that the total measurement map is given by ®f(z) with a non-linear f(x) =
x + h(z). The linearisation is then given by ¢« = ® + ®1L/(x*), the linear part of the
measurement map corrected by the the derivative of h. It turns out that it is enough
for ||h/(x)|| to be bounded from above by one for RIP to hold, because this entails the
linearisability condition (5.7) for @ and ¢ .

We will now turn on an explicit example of a measurement setup that is non-linear
and perform the linearised version of compressed sensing to recover atom positions in an
optical lattice with reliable error bars.

5.2. Fluorescence Imaging

In Fluorescence Imaging, atoms in a deep lattice confinement are illuminated using a
coherent light source. The fluorescence light emitted by the atoms is collected using a
microscope and CCD detectors. From the resulting image, the positions and fluores-
cence amplitudes, i.e. reflectivity, of the atoms have to be reconstructed. In this specific
experiment, the optical 1D lattice contains caesium atoms. The experiment has been
conducted at the group of Prof. Meschede in Bonn [3, 61].

The original source distribution S of atoms at position z in the 1D optical lattice is
given by
N
S(x) = a0+ ) ard(z — &), (5.8)
k=1
where &}, is one of the N possible positions in the optical lattice, a; is the fluorescence
amplitude of the kth atom and ag is stray light background introduced by the meas-
urement. Tunneling is suppressed and we want to recover the positions &, and the
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5.2. Fluorescence Imaging

fluorescence amplitudes a in the lattice. At the same time we want to get a reliable
error bar on the reconstruction to be able to make predictions on which resolution would
be needed in the measurement to be able to distinguish individual lattice sites. As
enhancing the resolution in the measurement setup is very costly, an investigation of the
influence of other parts of the measurement setup on the error bars is very promising.
In the experiment, fluorescence imaging is used to measure a discrete distribution I(s;)
which is related to the continuous source distribution S(x) through convolution with the
so-called line spread function (LSF) L

I(si) = /_O:O,C(Si —u)S(u)du + e(s;) (5.9)
= Zakﬁ(si _fk) +£'a0+6(81) (5.10)

k
= ¢(ak, &) + (s:), (5.11)

with a non-linear measurement ¢. If there are only few atoms in the optical lattice, so if
N < R with R being the image resolution, we can define a sparse signal vector x with
x = (ay,...,ay), where a; is non-zero if and only if there is an atom present at position
7 in the lattice.

This distribution I described in (5.11) is obtained from the source distribution S
introduced in (5.8) through several imaging steps. First, the source distribution is
transformed by optical diffraction in the imaging microscope. The originally sharp
points are transformed into blurred spatial distributions. Mathematically, this can be
described by the convolution of the source distribution with the line spread function.
After this imaging procedure, the distribution is sampled by a CCD detector, resulting
in a discrete version of the former continuous distribution. In general, I(z;) # I[z;], as
the discrete version I[z;] is the projection of sampling spacings in the object plane to
one single pixel through a rectangular function. In this process, information can be lost,
as the pixels and the lattice spacings do not have the same size and there are offsets
between the two grids. In the last step of the imaging process, each pixel or bin is
impaired by noise sources like photon shot noise. This noise varies from pixel to pixel
and is represented by e(s;) in (5.11). The pictures we will discuss are collected over one
second of exposure time. The image is then integrated over the time axis to result in a
higher signal strength. Several post processing steps have to be performed to be able
to perform the reconstruction on the image. Noise background has to be reduced, the
number of atoms per image is estimated and the pictures are cut into smaller sections,
so-called regions of interest (ROI), that contain the least amount of area without atoms,
which would only contribute to the error in the reconstruction. Before we discuss how the
pictures are processed, we will discuss whether reconstruction using compressed sensing
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techniques is possible in this setup.

There are several ways how to approach the problem of reconstructing a; and &
from (5.11). In the current setup used in [3, 61], the positions are guessed from the
Fourier transform (which turns the convolution into a simple product) and used as input
values for an iterative least squares procedure that fits the best positions and amplitudes
to the image distribution. The downside of this approach is, that there is no reliable
information on error bars from this reconstruction. We will follow the approach of non-
linear compressed sensing introduced in the last section. In order to do so, we will have
a closer look on the measurement map ¢ and the line spread function L.

To model the measurement map, we assume that the source distribution S(i) gets
mapped to an image I. The map consists of a convolution with the so called line spread
function £, caused by the optical system, followed by a discretisation caused by the
finite resolution of the CCD detecting the reflected photons. The number of pixels will
be denoted as N. This results in the discrete distribution I introduced in (5.11). &(s) is
an error term containing both the stray light background and Gaussian noise at every
discrete position s. To be able to reconstruct unknown positions and amplitudes from
the measured signal, we have to reformulate the problem.

5.3. Preparing the Compressed Reconstruction

We reformulate the problem by introducing a matrix L which is a matrix of dimension N x
M, where M is the resolution up to which the linespread function is known, which is
typically much higher than the image resolution. The matrix L contains shifted versions
of the linespread function in every row. For M = N, L is a Toeplitz matrix. We will
address the construction of L in a following section. Using this matrix, the problem can
be stated as I, = 3; Lyjxi +ep with k€ 1,--- ,N,i € 1,---, M. The vector & € RM
contains the fluorescence amplitudes a; in each position. Since only few atoms are present
in the lattice, most of these amplitudes will be zero. Therefore, ¥ is a sparse vector. This
will allow us to use compressed sensing techniques to reconstruct 7 from /. We will now
discuss whether this linearisation satisfies the RIP condition needed in order to be able
to apply non-linear compressed sensing techniques.

5.3.1. Restricted Isometry Property

To be able to use compressed sensing techniques, we have to find the bounds on the
restricted isometry property for the transformation matrix L. We do this by proving
the bounds for which a Toeplitz sensing matrix always fulfils the property. As this is
true for all Toeplitz matrices, we will choose a different name for the proof and call the
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5.3. Preparing the Compressed Reconstruction

matrix A. Let this n x n matrix be A such that A;; = a;_;

ag a-1 a-2 -+ Q4l-n
ap  ag a1 -+ azp

A=| a2 ay ap - A3—n| . (5.12)
|Gp—1 Gp—2 Gp-3 -+  aQ |

In our particular case, given the fact that A is the matrix representation of the line
spread function, we have the following properties

ap > a+1 > 42 > -+ > Ay (1p) > 0. (5.13)

For the restricted isometry property to hold, we need to find the minimum and
maximum of ||A93||§, where x is a sparse binary vector, i.e. its components are either 0
or 1.

Note that

n n
HA%”% = Z'TATAx = Z (Z Azgf‘hk)%% (5.14)
J,.k=1 \i=1

where T denotes matrix transposition, and the term in the parenthesis is
. T
By =Y Ay = (A A)kj. (5.15)
=1

Since x is binary, we can write

|Az|5 = >" By (5.16)
3ok
where j, k € S with S = {1, a9,. .., as} is the set of indices a; for which z,; = 1. The
number of elements of S is the sparsity s.

In order to minimise or maximise this last equation, we need to know the structure of

matrix B defined in Eq. (5.15). Since A is Toeplitz, we can write B as
n
Bkj = Zai_jai,k. (517)
i=1

In our problem, the elements of A decay very fast to zero. This means that there exist
indices 8 and v for which

ag >a-1>0-2 > "+>0a1-8=0_g8=" " =0al—p = (5.18)

and
a0>a1>a2>~~~>a7f1:a7:-~:an,1:(). (5.19)
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Noting this, we can write the matrix A explicitly

ao a—1 a—9 - az2—p 0 0 0 - 0
al apg a-1 -+ a3_g as_g 0 0 - 0
as al apg - a4-p as—g as_g 0 - 0
A= |2 Ay=3 Oy=4 0 Oy=p Oy—p-1 Oy—p-2 (y—p-3 0 (5.20)

0 ay-2 ay-3 -+ Gy pr1 Gyp  Ayp1 Gyp2 0
0 0 0

0 0 0

i 0 0 0 s 0 Ay—2 Gy—3 s al a()_

The matrix B is Toeplitz in a middle region, whenever every row of A is decaying
to zero in a “fast” way, such that for every b > N: A; ;1) = A;;—p = 0. The number
of non-zero entries in a row of A is thus 2N +1 > dim(A) = M. Consider now the

following
Bjn =3 A eAc
§

= 253 Ag j Ak

=Y Actnjindetnkin
¢

= Z A?+n,£+nA€+n,k+n
13

= Bjinktn, (5.21)

where the last equality sign needs the following discussion to hold. Since the summation
always runs from £ = 0,..., M we need to ensure, that all the relevant terms are still
included in the summation. As stated above, we know that A decays to zero after some
number of steps N. We thus know, that the only indices where A; ¢ is non-zero is for
j—N <& < j+ N. The same holds of course for k. We can derive the same constraint
for € +n, where we alsousethat 0 < E <M : 0<n<j—N<E+n<j+N<M+n.
We can also bound the indices from above by M, since it is the dimension of A. Doing

that, we get two constraints, one for the indices j and k and one for n

n<M—2N (5.22)
N<j<M-N (5.23)
N<k<M-—N. (5.24)
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If j and k£ fulfil these conditions, the last equality sign above holds and B is Toeplitz in
this domain. The dimension of the Toeplitz part is reduced by 2N leaving us with M —
2N.

We want to argue that the relevant part of the matrix B is the Toeplitz region. We
observe that, for M — oo, B approaches a fully Toeplitz matrix. The deviation from
the Toeplitz form is only a boundary effect.

Bounds in RIP

In the following, we concentrate on the Toeplitz part of B and look for an upper and
lower bound in the Toeplitz domain. For simplicity, we stick to the name B. Our problem
still is to bound

|Az|)5 = eTAY Az = "Bz =3 Bjx (5.25)
7,k

from below and above. In the last equality sign we used that x has a given sparsity

s and only binary entries. The sum runs over all indices for which z; = z;, = 0. The

complexity of the problem can be simplified further by realising, that we can introduce

the distance between the indices d = k —j. Then 32, . Bjx = > >4 Bj j+d, Where d

runs over all the distances between non-zero entries in x. Since B is Toeplitz, we see

that this problem is independent of j and we only have to solve it for one special j.

We also know one additional property of B, namely monotonicity: B;; > B; ;4 and
Bi,i—l—d > Bi,iJre for d > e.

Theorem 1. The smallest possible distance (meaning next neighbours around the diag-
onal) yields the upper bound for the RIP.

Proof. Assume the RIP would be maximised by a distance in the indices that was bigger
then one, so we would not include B; ;4. but B; ;141 in the summation. Then we can

find a higher value by replacing B; ;141 by the not yet included B; ;..

By summing the s highest entries in a row of B we thus get the upper bound for the
RIP. O

Theorem 2. Maximising the distance yields the lower bound for the RIP.

Proof. This is a bit more subtle. For small sparsities, we can make use of the property
mentioned above, where we see that the entries of a row in B decay to zero after some
distance N from the diagonal. There it is easy to see that we can minimise > 4 B; ;44 by
taking only d > N apart from d = 0. However, if the sparsity is too big, we will have

contributions from the next entries as well, since our matrix is not infinitely long. Making
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one distance bigger will thus reduce another. We can solve that problem by looking at
the gradient of a row of B. If the decay in the entries is bigger closer to the diagonal,
the biggest distance optimises the problem: Assume we would have an optimal value for
distances a, b, where a < b. Then we would get a better bound using a + 1 and b — 1, since
Biita — Bijita+1 > Bijirp—1 — Bijtp and thus Bj o + Biivp > Biita+1 + Biivp—1-
By maximising the distance and taking equidistant non-zero entries in x we get the
lower bound for the RIP, as long as the LSF decays faster close to the diagonal. As we
will see in the next part, this is the case in the experiment mentioned above, where the
LSF is close to a Gaussian. We can thus indeed use the compressed sensing techniques

introduced in the beginning of this chapter to reconstruct the measurement data. O]

5.3.2. Simulation of the Measurement

In order to test our reconstruction techniques and to predict which changes in the
measurement setup are promising for achieving single site resolution, we want to be able
to simulate own measurement data similar to the one obtained from real experiments. To
achieve this goal, we modelled the different imaging steps described in the experimental
section and used the parameters from the actual measurements. The resulting images
resemble the images from the experiment very closely, as can be seen from Fig. 5.1. The
linespread function used to simulate the pictures is the one present in the experiment.
Note, that the experimental picture has a much higher amplitude. This is because the
experimental picture is taken and later integrated over a certain period of time, while
the simulated picture shows a single shot variant. In a reconstruction, this will result in
higher amplitudes being reconstructed.

The full code of this simulation is available in appendix B.2. We will guide through it
shortly and show different examples for simulated pictures in Figures 5.2 and 5.3

With these artificial images, we are able to check the reliability of our reconstruc-
tions, which we also performed with actual pictures. Additionally, we compared our
reconstructions to the reconstructions from [61] and [3].

5.3.3. Linearisation and Error Bars

It is already possible to use this description of the measurement process to derive error
bars on any reconstruction method taking into account the amount of noise that is present
in the picture. The noise accumulates from photon shot noise, errors in the detectors
as well as the discretisation. Any reconstruction method that does not make use of
additional information can only distinguish two possible outcomes where the resulting
picture differs more than the average noise in this area. We are mostly interested in the
error bar with respect to the position in superresolution. To translate the noise present
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Image of atoms with distance 2 (errorbar 3.55 pixels)
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2 Simulation of atoms with distance 2, noise level 5%
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Pixel in simulated image. +: atom positions

Figure 5.1.: Both images show atoms of distance 2. The top image is an image taken in
the lab (image 8 of atoms with distance 2), while the bottom image shows
a simulated image with a noise ratio of 5%, which is the average amount of

noise in the experimental pictures.
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Simulation of atoms with distance 5, noise level zero
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e Simulation of atoms with distance 5, noise level 5%
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Figure 5.2.: Simulations of different atom configuration and noise setups. In the upper
image, the overlap of two pure linespread functions is shown, as the noise level
is zero. In these settings, the right positions can always be reconstructed.

(1,2 2

in the picture to this error bar, we compare noiseless images I, ) — i Lkixz(l ), where

both z(1:2) only contain only a single non-zero entry which is shifted by n with respect
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Simulation of atoms with distance 5, noise level 10%
T T T

25 T T T T T T

1.5

Peak height
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0 10 20 30 40 50 60 70 80 90 100
Pixel in simulated image. +: atom positions
- Simulation of atoms with distance 20, noise level 5%
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Peak height

0 10 20 30 40 50 60 70 80 90 100
Pixel in simulated image. +: atom positions

Figure 5.3.: In the upper image, a noise level of 10% is simulated to benchmark the
reconstructability. The lower image shows atoms that are 20 lattice sites
apart. Still, their peaks are connected and they lie in one region of interest.

The height of the peaks drops, as the two maxima do not overlap anymore.
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- Growth of errorbar with noise

| -

0 5 10

Errorbar in superresolution

Noise in %

Figure 5.4.: Dependence of the size of the error bar with the amount of noise in %. The
size of the error bar is given in superresolution—the pixels are cut in 10
sections each. The lattice distance corresponds to approximately 7 steps in
superresolution, or 0.7 px, and are indicated by coloured lines.

(1) (2)

to each other z;”” =z, = 1. We know that we cannot distinguish two images, if the

|1 = 1@ < VN, (5.26)

where € is the standard deviation of the noise present in the image and N is the resolution
(or length) of I. We obtain the error bar by finding the maximal n, such that Eq. (5.26)
is still fulfilled. Our error bar in position is then exactly n (in superresolution).

This highly depends on the linespread function. For the datasets that were provided,
these error bars are about 2-3 pixels in normal image resolution. As this compares to
3-4 lattice sites, it is impossible to distinguish these configurations using the linespread
function at hand, see also Fig. 5.4.

5.3.4. Image Preparation

To perform a reconstruction of images taken from the experiment, the pictures have to
be prepared to reduce the size of the error bars. In this preparation, two main goals are
achieved. In a first step, the background noise is removed. The origin of this background
noise is the light that is scattered randomly during the exposure and hits the detectors.
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The second part of the preparation consists of detecting so-called Regions of Interest
(ROI). These regions of interest are the parts of the image, that actually contain atom
peaks. Since the lattice is filled sparsely, most parts of the image only contain background
noise. If these parts would be added to the reconstruction, the total amount of noise
would grow linearly thus weakening the error bars. Furthermore, by reducing the effective
size of the system to be reconstructed, we improve the speed of the reconstruction.

For further discussion, let I be the array that contains the measured picture. To remove
the baseline, we average over the entries of I that are lower than a certain threshold,
namely the minimal absolute value of I plus two times an error margin that is estimated
from the variance of an empty part of the picture. This average value is then subtracted
from the array /. The resulting picture is fluctuating around zero. This way, the additive
noise in the picture is very low.

The estimation of ROIs is more involved. In a first step, the cumulative sum of I is
calculated. Whenever an atom peak is present in the picture, this cumulative sum has a
high slope, while staying constant whenever there is no atom present. This is of course
only true if the baseline is already removed. To detect high slopes, the gradient of the
cumulative sum of [ is estimated, which results in a smoothed version of I, where the
noise influence is less strong. Now, the maxima of this smoothed I are evaluated up to a
low multiple of the background noise and contribute to the ROIs. The high contributions
that originate from one area of the image are included in one single ROI. Empty ROIs,
that don’t contain a contribution of an atom and are detected from noise artefacts are
removed due to low cumulative sums. Afterwards, the remaining ROIs are enlarged by
the size of the LSF, such that the positioning of the atoms in the pictures with reduced
sizes is not imposed and still done in the reconstruction itself. The algorithm searches
for lower peaks in the image by removing the peaks detected first from the sample and
searching for peaks again. When all peaks are detected, their distance is evaluated and
their ROIs are either combined to one big ROI, if they overlap or the peaks are separated
in two distinct ROIs. From regions that are not covered by the ROIs, the noise estimated
is estimated again and compared to the original estimate. Also, ROIs that contain peaks
that are not fully part of the image, because the original atom was on the border of
the area covered by the detectors, are removed. The positions of these atoms are not
reconstructed. However, the dataset contained only a few (1%) of these cases. The

preparation procedure also detects the empty pictures, that don’t contain any atoms.

The procedure is performed on both simulated as well as measured pictures, as the
simulation produces images that resemble the measured pictures closely and also contain
background noise. Both types of pictures are treated the same way and the preparation
procedure is necessary as its output format is used in the reconstruction procedure, which
will be described in the following section.
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5.4. Reconstruction

The principal idea in our compressed sensing approach is to use the sparsity constraint as
additional information. We want to find the solution that fits the measured distribution
best under the constraint, that there is a only certain, small, number of particles in the
lattice. We don’t restrict possible solutions to lattice sites, but the estimated solutions
should lie on lattice sites up to our estimation error which makes the lattice distance

recoverable as a consistency check.

We analysed the datasets at hand using our trace norm minimisation compressed
sensing algorithm and the linespread function provided in the data. We compared
our results to the provided benchmark results (for the data sets of close-by atoms) and

estimated the lattice distance from the pictures with distinct peaks from far apart atoms.

5.4.1. Iterative Hard Thresholding

Our first reconstruction uses a simple gradient method where in every step we only keep
the positions p that contribute with the highest amplitude, where p is our sparseness
constraint. In this case the number of atoms in the lattice, which enters as an initial
guess. The iteration stops, if the error in two-norm between the reconstructed picture
for the estimated positions and the actual image is below some small constant, e.g. 1072
For a typical image, this is normally achieved after approximately 50 steps of iteration.

To select the highest amplitudes, we sort for size and additionally forbid two peaks to
be in the area that is covered by the width of the linespread function.

This reconstruction however only succeeds in the case of atoms that are relatively far

separated, otherwise it always underestimates the distance.

5.4.2. Trace Norm Minimisation

We use a reconstruction method where we minimise the /;-norm of our estimation of
a signal vector & while bounding the /> norm of the deviation of the measured image
and the estimation LZ by an error depending on the standard deviation of the noise
in the image to be reconstructed. Using this algorithm, we reconstruct the possible
positions of the atoms, that are—taking into account the error bars—in agreement with
the positions of the reconstructions given in the benchmark with a high rate. (100 %
in the case of the dataset for distance 2, 98 % in the case of the dataset of distance 1.)
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These reconstructions were done on the subset of pictures with atom number two, es-
timated by integrating over the region of interest. We find these estimates in a one
step algorithm. It has to be noted, that since the error bars are of the size of about
three times the lattice constant, distance 1 and 2 cannot be distinguished with certainty
using any reconstruction method as the information is not in the picture. The trace
norm minimisation always underestimates the distance in superresolution. This could
be overcome by implementing information about the lattice distance, which our current
reconstruction method does not use. However, standard compressed sensing methods do
not come to their full potential here, as the linespread function is very coherent. A more
incoherent map would spread the information over the whole image and would allow
for significantly smaller error bars, that would make it possible to distinguish the exact
distance of nearby atoms.

One possible way of implementing said incoherence without changing the current
measurement setup too much is by implementing masks or filters in the optical setup.
This option has yet to be investigated.

5.4.3. Moving the Camera

Additionally, an approach which could help with making the reconstruction more reliable
is moving the camera in a subpixel way while taking the picture of the atoms. This would
reduce the error in the offset between the pixels and the lattice sites and thus make the
estimate better. Also, blind deconvolution techniques could be applied to reconstruct
the LSF with high resolution with error bars. For low noise settings, where the offset
between atoms and pixels is the main source of error, this can help in the reconstruction
of positions in superresolution. In the present experiment however, the contribution of
the offset error is very small. To use this extra information, each position is measured
ten times while slowly moving the camera over the lattice. The resulting images are then
each reconstructed and the transition of the reconstruction hopping from one pixel to
the next indicates the exact position of the atom. This approach works whenever the
error bar is lower than one pixel, and could be used in future measurements. The code

to perform the reconstruction can be found in the appendix.

5.4.4. Nuclear Norm Minimisation

In [2, 78] Recht et al. introduce an approach on how to reconstruct pure Fourier type
images by minimising the nuclear norm. As the measurement setup could be changed
easily to capture in the Fourier plane, we followed this approach to test whether the
reconstruction would be improved by this change. In the Fourier plane, the convolution
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5. Deconvolution of Fluorescence Peaks Using Compressed Sensing

Figure 5.5.: Picture and linespread function in Fourier space. The noisy image is shown
in blue, while the linespread function is indicated in red. The frequency of
the envelope of the big orange curve reflects the original signal that is to be
reconstructed. However, the width of the linespread function allows us to
only have access to the centre part of the convolution (as it is zero outside).
This forbids the reliable reconstruction of the frequency of the original signal
using the atomic norm approach of Recht et al.

of the signal with a linespread function translates to a simple multiplication. To eliminate
the influence of the linespread function, we calculated the Fourier transform of a fit to
the linespread function. However, the placement of the cutoff of the linespread function
proves to have an extreme influence on the resulting picture, as high frequency border
regions hide the information in the picture. It is thus not possible to get more information
from the measurement without putting in additional information in the first place, which
makes this approach less valuable, as a perfect Fourier type image cannot be achieved.
For perfect settings, without any noise, the method reconstructs as well as the compressed
sensing approach in real space. The code on how to perform the minimisation can be
found in the appendix.

5.4.5. Performance Analysis and Benchmarking

To test our algorithm, we set up a simulation of the measurement setup introduced above,
which uses the measured data for the linespread function to generate artificial images
where the positions and amplitudes are known and can be compared to the reconstructed
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5.5. Outlook and Further Ideas

positions and amplitudes. In the noiseless case, the reconstruction is of course always
perfect. We add statistical noise with a standard deviation similar to the noise in the
picture sets to our simulated pictures. For single atoms, this still works remarkably well,
also in superresolution, as the RIP-constant for sparsity 1 is reasonably small. For higher
sparsities and atoms that are close to each other, the distance is often underestimated
(within the relatively big error bars), see Fig. 5.6.

When applied to real experimental images of one atom, the algorithm converges to
distinct positions and amplitudes, which are in high agreement to the ones reconstructed
using the two step algorithm.

From the images of atoms with larger distances, we reconstructed a lattice distance by
sampling over the reconstructed distances (see B.2) of 0.69 px in agreement with the

experiment.

5.5. Outlook and Further ldeas

In this chapter, we presented the limits and possibilities of using a Compressed sensing
approach to reconstruct positions and amplitudes of atoms in optical lattices from
fluorescence images. We used a simulation of the experimental measurement to compare
different reconstruction procedures and developed an error model derived from the
information content in the images. We performed benchmarking of the compressed
sensing reconstruction procedure on experimental images and were able to reconstruct the
source distribution in great accordance with the results from the two-step reconstruction
method. Using the simulation of images, we investigated different extensions to the
measurement setup that improve reconstructability in low noise regimes and for different
measurement maps. To remove the error caused by the offset between the discrete lattice
and the discrete detector setup, the camera with the detector plane could be moved slowly
while the pictures are taken. This results in a set of images containing different subpixel
shifts of a single atom. A reconstruction of this set of images allows the placement of
the atom with subpixel resolution. This step should be taken as soon as single pixel
resolution is achieved. Another idea is to move the measurement plane in the Fourier
plane of the microscope. This way, rather than capturing the position distribution,
the Fourier transform of the discrete source distribution is captured. Together with a
suitable linespread function, this bears the possibility of performing an atomic norm
reconstruction with improved error bars. However, the current linespread function is not
suitable for this approach, as information is lost during the convolution, resulting in a
very small cut of the Fourier transform of the source function which does not contain
enough information for a reconstruction.

We have shown that to further reduce the size of the error bars in the setting at

49



5. Deconvolution of Fluorescence Peaks Using Compressed Sensing

5 & Reconstruction of atom distance 3 (errorbar 2.2 pixels)
. T T T T T T T

151 5

Peak height
=
T
3
1

0.5F &

; i O

A A
Jvl\uxvuﬂvARVWA-,w\MMM,:\M‘MMMMMMAM cocgseesoeibeieesassiseysecsctapes

o

-0.5 | | | 1 1 | | |
10 20 30 40 50 60 70 80 90 100

Pixel in image. +: actual position, o: reconstruction

o5 Reconstruction of atom distance 5 (errorbar 2.3 pixels)
- T T T T T T T T

1.5

Peak height
-
T

0.5

oG ﬁAmrAxery[\?vwvawam OO €6 R YY‘(Y\!VY)’\?&XY\{ NN

2 x x o
e AT

05 L L L 1 1 L 1 L
10 20 30 40 50 60 70 80 90 100

Pixel in image. +: actual position, o: reconstruction
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peaks, the right position is reconstructed most of the times.

20



5.5. Outlook and Further Ideas

Reconstruction of atoms with distance 2 (errorbar 3.75 pixels)
T T

350 T T T

300

250

= N
w (=3
o o

Peak height in image
S
o

50

50 Il Il Il 1 1
0 20 40 60 80 100 120
Pixel in ROI of image. o: reconstruction using CS
350 Reconstruction of atoms with distance 2 (errorbar 4.53 pixels)
T T T T T

Peak height in image

0 20 40 60 80 100 120
Pixel in ROI of image. o: reconstruction using CS

Figure 5.7.: Reconstructions and actual positions of pictures 9 and 10 of a dataset with
atoms of distance 2. Again, the error bar is indicated in the title. The
two atoms are placed at the same position (less then a pixel apart) and the
actual distance of the atoms is underestimated, as could also be seen in the

simulated pictures in Fig. 5.6

o1



5. Deconvolution of Fluorescence Peaks Using Compressed Sensing

hand, the background noise has to be reduced, as images of close-by atoms contain
the same information for distinct atom positions. Bringing down background noise is a
very costly process, as the lenses and filters often have to be manufactured in the labs.
However, there could be an easier, even though less intuitive way. In order to improve
the distinguishability of atoms in neighbouring lattice positions, these settings have to
produce images, that contain different information. One hope to achieve this and to also
get the greatest benefit from the reconstruction using Compressed sensing techniques is
to enhance the incoherence of the measurement map. Similar to the Fourier approach
described above, this incoherent measurement map would be very hard to interpret for
a human eye and brain. However, as close-by source signals would be mapped to very
distinct images, the information about the positions is less affected and could thus be
reconstructed using a computer. One way to enhance the incoherence of a measurement
is to place random diffraction filters or masks in the optical setup before the source

distribution undergoes the measurement process [53].

Another approach in getting a more incoherent measurement map is to unfocus the
microscope used in the fluorescence imaging. This would produce a far field image by
blurring the image. However, the blurring might apply to all positions in the same way
which doesn’t help to distinguish them, as it does not include additional information
in the picture. In the atomic norm approach we saw however, that for a Fourier type
image the envelope from the linespread function has to be wide enough. Combining the
unfocused microscope with a shift of the measurement plane from position to Fourier
space has the potential to improve the resolution of close-by atoms using the atomic

norm approach.

An intriguing extension of the approach described in this chapter is to reconstruct not
only the source distribution containing the positions and amplitudes but to include the
measurement map L. This approach is known as blind deconvolution or Compressed
Sensing 3.0. To obtain a reliable high precision estimate for the source function, it is
crucial to know L to high precision. This reconstruction of the measurement map could
be run on certified single atom pictures at different positions. Blind deconvolution could
serve as a catalyst to unravel the information about L, that is hidden in these noisy
pictures. As different offsets between lattice spaces and detectors would be contained
in the different pictures, this could allow us to achieve certified subpixel resolution
reconstructions with reliable error bars from a small number of pictures. Especially
when applying filters to implement coherence in the measurement map, this approach
would make it possible to overcome limitations that appear insurmountable otherwise.

It is important to understand that reconstructability is the same as invertibility of the
measurement process. The reason for the loss of information that happens during the
convolution and the following discretisation lies in the invertibility of the weighed sum of
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unknown values. Using incoherent, e.g. seemingly random prefactors, which are reliably
known with great precision is as important as reducing unwanted noise. All these factors
have a key role to allow a high resolution reconstruction of the information contained in

an image by inverting the influence of the measurement process.
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6. Tomography of Properties —
Gaussianity in Optical Lattices

The following work was done in collaboration with Mathis Friesdorf, Carlos Riofrio and
Jens Eisert at FU Berlin [48]. The data that motivated this work was produced in
the quantum optics laboratory in Munich by Ulrich Schneider, Simon Félling and other
colleagues, in the group of Prof. Bloch [42]. Most measurements are nowadays conducted
to confirm a theoretical prediction. The experimental realisation aims to reproduce an
outcome that can be derived from a simplified model of the actual experimental situ-
ation. After the measurement, the experimental outcome is compared to the theoretical
prediction and deviations either hint at unwanted effects or noise in the experimental
setup or at a wrong or incomplete theoretical model. In this chapter, we will follow a
slightly different approach. We will investigate to what extent a measurement result
can be interpreted with implying as little as possible on the underlying system. Introdu-
cing the Gaussianity of a quantum state, we will show how the information about this
property is transformed during the measurement and can be deduced from incomplete
measurement data. After introducing our tool of choice to measure Gaussianity, the
relative entropy, we will describe how it can be used to efficiently distinguish quantum
states. Subsequently, we will discuss Gaussianity in the context of cold atoms in optical
lattices. We show results for simulated data and discuss the loss of information during

time-of-flight measurements.

6.1. Tomography without Assumptions

Assumptions on properties of systems can change the way we interpret possible outcomes.
Especially in the interpretation of measurement data of complex quantum systems, when
assuming certain properties of the system in question we also assume that the devices
used in the course of the measurement can be controlled perfectly. It would be preferable,
however, if we could determine certain properties of quantum systems without introducing
assumptive information about the system or the context of the measurement.

One field of study that follows this approach is the one of device independent tomo-
graphy [5]. There, one characterises the systems solely on their measurement statistics
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6. Tomography of Properties — Gaussianity in Optical Lattices

and the observed correlations and takes the underlying systems and dimensions as un-
known. In this chapter, we follow this approach to characterise the Gaussianity of a
measured state from partial data only. We rigorously avoid assumptions and find lower

bounds using tools from statistical theory as well as quantum information science.

6.1.1. The Relative Entropy

A promising tool to measure the Gaussianity of a measured state, given only its second
and fourth moments and without further assumptions on the system is an estimation of
a lower bound on the minimal relative entropy between the state p and a Gaussian state

o. The minimal relative entropy is given by
rg}jn D(pllo) = Iﬁian (Tr(plnp) — Tr(plno)). (6.1)

Since p is a physical state of which we know second and fourth moments, we have

to add several constraints to this minimisation problem. Let r; = x1,...,2p,pP1,.-.,Pn
be the 2n canonical coordinates for our quantum system. Then the constraints are the
following
(ri), =0 0<i<2n
<{7’i,7"j}>p:%'j 0<1<2n
4 .
(TiTkaTz>p = mgﬂll 0<i<2n (6.2)

where the first can be fulfilled easily by shifting the variables to a new set of canonical
variables with vanishing first moments. Instead of minimising over all possible Gaussian
states o, we constrain this set to the Gaussian state o, with the same second moments
as p. By this assumption, we can simplify the minimisation problem, since Tr(plno) =
Tr(o,Ino). Thus (6.1) can be written as follows

min D(p||o) = min(Tr(plnp) — Tr(o,lno,) + Tr(o,lno,) — Tr(o,1lno))

in(Te(pln p) — Tr(o, ln o)
= min(Tr(pln p) = Tr(o, 1 a,) +D(0 o)
= min(Tr(pln p) ~ Te(, In ) + mjn D(/|)
in(Tr(pIn p) — Tr( )

—Tr

Tr(o,lno,)), (6.3)

since D(p|lo) > 0 and D(p|lo) = 0 if and only if p = 0. The initial problem is thus

simplified to minimise (6.3) under the same constraints as above, with known second
moments of the Gaussian state o,,.
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6.1. Tomography without Assumptions

6.1.2. Decomposition of Gaussian States

As introduced in previous chapters, a Gaussian state o is completely characterised by
its first and second moments. As its covariance matrix v is a positive definite, real,
symmetric 2n X 2n matrix, there exists a symplectic transformation S € Sp(2n,R) such
that ST~S = diag(n1,...,%n,M,...,Mn). For Gaussian states this property leads to
the fact that the state can be written as a product of single mode states. This can be
seen looking at the Wigner density function of the Gaussian state. The Wigner density

function of ¢ for vanishing first moments is given by

1 1
Wy (r) = (27r)2”det(7)eXp(_2rT7 1r>. (6.4)

Since we know that the covariance matrix v can be diagonalised, we can derive the

following property of the inverse of the covariance matrix:
-1
ST~S = diag(n;) — (ST75> = diag(n; ') — 771 = S diag(n; 1)ST (6.5)

If we now choose new canonical variables (the symplectic transformation leaves the
commutation relations invariant) # = STr, the Wigner function can be written as a

product over “single mode” Gaussian states:

n~2
W, (F) = @ﬂ:ilmmwﬁézz +“> IIW,? (6.6)

=1 h

Thus the corresponding Gaussian state o can be written as the normalised (C;) product
over single mode Gaussian state.

n . ~2 =2 n
o=1]] Ci : exp<—w> =[] o (6.7)

i=1 27 2n; i=1

with C; = 2mn; sinh(1/2n;). We can further simplify this expression by making the
transformation to the usual creation and annihilation operators, which is given by

@:—L{m+@ b= —i (bi — b)) (6.8)

V@ Ve

obtaining
T
blb;

1 70
af:<1—e‘m)a‘m. (6.9)

6.1.3. Estimating the Gaussianity

To bound the Gaussianity of the state p, we would like to get a lower bound for the
relative entropy of the states p and o. In the last section we learnt, that a Gaussian state
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6. Tomography of Properties — Gaussianity in Optical Lattices

o can be composed into a product of single mode states o;. Earlier, we introduced the
Gaussian state o, with the same first and second moments as the state p, which we now
can compose into single mode states by a transformation depending on the symplectic
transformation that diagonalises the covariance matrix v symplectically. Since the

relative entropy is given by
D(p|lo) = Tr(plnp) — Tr(o,1no,) = —S(p) + S(o,), (6.10)

S being the von Neumann entropy, D has the same properties as S. As the trace is
invariant under unitary transformations, we can transform to the space, where o, can
be written as a product over single mode states. We then can make use of the following

property of the relative entropy:
D(pllor ® 01) = D(Tr2(p)lo1) + D(Tr1(p)llo2) (6.11)

If we apply this inequality repeatedly, and apply it on our initial problem and use the
unitary transformation belonging to the symplectic transformation S, we get:

D(pllo,) = DU(S)pU(S)'[| €1 0ps) > i%}ﬁ“ US)PU(S) o) (612)

We can thus find a lower bound for the initial problem by minimising the single mode
problem for the given moments of p. The symplectic transformation S simplifies the
second moments for p, since its covariance matrix is the same as the covariance matrix
of o. However, one cannot hope to get easier expressions for the higher moments of p.
The constraints for the higher moments of p have to be adapted using the symplectic
transformation, which we will see in a following section.

To simplify the problem, we will use that a pinching operation can only increase the

entropy. This is the case since from Schur’s theorem we know that
diag(p) < A(p). (6.13)

The function xInx is convex and by that, Tr pln p is Schur convex. We thus know that
== Z)\Zln)\z Z Zpilnpi. (614)
i i

For further simplification, we loosen our constraints regarding the second and fourth
moments. By that, we lower the relative entropy, since

mgl Tr(plnp) > mmTr(plnp) for A* C A. (6.15)
pEA™

We now minimise over all states p subject to second and fourth moments, where the
numbers of creation and annihilation operators are the same. This allows us to severely
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6.1. Tomography without Assumptions

reduce the set of moments we have to take into account. We will come to the explicit
selection of these moments in the next section.

The full estimation of the relative entropy is summarised in the following inequality:

D(pllo) = Tr(pInp) — Tr(plno)
= Tr(plnp) — Tr(o,Inoy,)

> Z:l D(Tl"{j}’j;éi U(S)PUT(S)”%,Z’)

> Xn: (Z P In pr + S(Um‘)) (6.16)
=1 k

where py, are the diagonal elements of Try;) ;; U(S) pUT(S). The entropy of the Gaussian
state 0, can be evaluated using the representation of o; we obtained earlier, o; =

(1 _ el/ni) e—bzbi/ni'

3 (1= e V/m) kg [(1 = 1/ =4/n]
=0

Tr(o,ilno,;) =
k
1

—In(1—c V%) - Zko,.

( ) ; 772 pst
1

—In(l1—e V%) - =M 6.17

( )= M (6.17)

The My are the transformed version of the second moments of both state p and ¢ and
can be obtained from the covariance matrix using the symplectic transformation S. To
make life easier, we will clarify the used transformations and variables in the next section

before we finally solve the single mode problem.

6.1.4. Transforming the Measurement Data

To keep track of the different variables we use here, this section concentrates on the

relationships between r, 7, q, ¢

r=|" — q= i
Di a,

The transformation 7' is the linear mapping between the canonical variables and the
bosonic operators. The symplectic transformation S diagonalises the covariance matrix
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6. Tomography of Properties — Gaussianity in Optical Lattices

7, where we chose the normalisation v = ({r;,r;}) = (2Re(r;,7;)). In a measurement,
one measures densities <aTa> and density correlations <(a‘La) (aTa)>. To estimate the
relative entropy from measured second and fourth moments, we thus have to transform
the measured data using both the symplectic transformation and the linear mapping.

The linear transformation 7" is given by:

1
T = ' with 77 = g (6.18)
1 -

Using this transformation, we obtain the covariance matrix ~:
v =2Re(rrT) = 2Re(T g T71) (6.19)

v is a Hermitian, real, positive matrix and can be diagonalised with the symplectic
transformation S. This transformation is constructed following Narcovic [68]. For every

positive definite, real, symmetric 2n x 2n matrix ~, any root n of

x(n) =det(y+inJ) =0 with J= (_Oﬂ ]é) (6.20)

is real and non-zero; furthermore, —n is also a root. We call the eigenvectors of this
eigenvalue problem Wj, so that we have

(y+imJ)W; =0,  (y—ipJ)W; =0 (6.21)

we now recombine these eigenvectors and introduce X; and Y;:
1 . 1 .

Multiplication of v with these vectors diagonalises v and we get the symplectic trans-
formation S:

ST75 =[X, Y]T v [X,Y] = diag(n1, ... 9ny M1y - - 1) (6.23)

To obtain the transformed second and fourth moments, we need to get from the ¢ to the
q, since we used My = <(j(jT> and My = (;d;qri) where My is a 2n x 2n matrix and My
is a vector containing all (2n)* fourth moments for all combinations of 0 < i, j, k,[ < 4.
The transformation §7 = T'STT~1T maps ¢ to § using § = ST¢. The measured moments
can thus be transformed by

A%:?%ﬁaMAngfﬁgmg (6.24)
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Since we pinch in the § basis, we are only interested in the second and fourth moments
with the same number of creation and annihilation operators. Ms has the following form:

bib;  bbl .
My = J 11, 4,57€0,...n 6.25
2,g (bjbj b}b}) J ( )

After pinching, this matrix becomes bidiagonal. We are only interested in the lower
diagonal of My where My = <bjbz> Regarding My, we are interested in

M4 = <(b;rbz)2> == <bjbzb;rbz> = <qn+iqiqn+iqi> s 1€ 0, ... (626)

We thus get n transformed second and fourth moments for the n single mode problems.
In the following section, we introduce the method we used for solving the single mode
problems.

6.1.5. Solving the Single Mode Problem

We still need to solve the single mode problem. We want to minimise the entropy of the
state p to find a lower bound on the minimised entropy D(p||o) subject to the measured
constraints.

1 _1
minimise Zpk In pp, + —Ma; — 1n<1 —e "i>
k i
subject to an =1
n
ann = Mo
n

S pan? = My
n

To solve this problem, we look at the Lagrange dual problem. This is the function
g(p, A) = inf, L(xz, u, A) where p and A are Lagrange multipliers. This function is
concave and is a lower bound to the original function. Since our original problem is
convex, the duality gap between the two problems is zero and the optimal value for the
dual problem is the same as the optimal value for the original problem. In our case, we
have three constraints and thus need three Lagrange multipliers. The Lagrangian to our
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problem is given by

L(p; po; p2, p1a) = Y pr I py
k
+po| D Pk — 1)
k

+ o Z prk — Mz) (6.27)
k

+ s | Y prk® - M4)
k
1 _1
+ — Mo —1n<1 —e ?7>
n

The extremal points of this Lagrangian are of the form pp = e~ (I potuzk+pak?) for fived
;. Thus the Lagrange dual function is given by:

g(w) = — Ze—(1+uo+u2k+u4k2) g — paMs — g My + 717]\/[2 _ 1n(1 _ e‘%) (6.28)
k

If we maximise this concave function, we get the optimal value for our former problem.
Each single mode problem can thus be reduced to a maximisation of a concave function
with three variables.

The convergence of this function is non-trivial, so we performed numerical minimisation
of —g(p;) using convex optimisation. We can thus find the optimal value of the dual
optimisation problem and arrive at our estimate for the bound on the relative entropy.
See the appendix for a description of the used optimisation. This leaves us with a
method of efficiently characterising the Gaussianity of a quantum state by estimating the
bounds on the relative entropy between the given moments of the measured state and
the corresponding Gaussian state. We will now turn on investigating, how this approach
can be applied in the situation of bosonic states.

6.2. Gaussianity in the Context of Optical Lattices

Ultra-cold atoms in optical lattices provide one of the most promising platforms for
analogue quantum simulations of complex quantum many-body systems. Large system
sizes can now routinely be reached and are already used to probe a large variety of
different physical situations, ranging from quantum phase transitions to artificial gauge
theories. At the same time, measurement techniques are still limited and full tomography
for these systems seems out of reach. Motivated by this observation, we present a method
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to directly detect and quantify to what extent a quantum state deviates from a locally
Gaussian description, based on available noise correlation measurements from in-situ and
time-of-flight measurements, as an indicator to what extent strong correlations in ground
and thermal states are significant. We connect our findings to equilibration, disordered

systems and the suppression of transport in Anderson insulators.

6.2.1. Ultra-cold Atoms

Ultra-cold atoms in optical lattices provide one of the most prominent architectures to
probe the physics of interacting many-body systems. The parameters of the resulting
Hamiltonians can be largely tuned in different regimes allowing to explore a wide range
of physical phenomena in and out of equilibrium [13, 22, 81, 106]. They are one of
the most promising platforms for realising quantum simulations and show signatures of
outperforming classical computers for certain problems [12, 16, 95, 96]. Using state-of-the-
art techniques, large scale systems with several thousand atoms can be controlled [13];
in fact, even states with specific initial configurations and atoms aligned on largely
arbitrary shapes can be realised [39]. By modulating the optical lattice in time or by
altering its geometry, a wide range of complex physical settings can be explored, ranging
from probing quantum phase transitions [16, 96] to realising instances of artificial gauge
theories [106].

While a large degree of control over these platforms has been achieved, at present, it
is still true that the measurement capabilities are limited to an extent. This appears
particularly relevant in the context of quantum simulations, where the result of the
simulation has to be read out from the physical experiment. It seems clear that full
quantum state tomography is infeasible, both for limits in measurement prescriptions
as well as due to the unfavourable scaling of the effort of tomography with the system
size. Suitable combinations [71] of tensor network tomography [29, 90] and compressed
sensing schemes [54] suggest a way forward towards achieving tomographic knowledge,
but at present such ideas have not been realised yet.

In the light of these obstacles, it seems imperative to focus the attention on developing
tools to directly detect relevant properties of the quantum state, rather than trying to
capture the full density operator — giving rise to information that is often not needed
anyway. Among these, entanglement features come to mind that contain valuable in-
formation about a quantum state [6, 26, 38, 55|, or notions of non-classicality that can
be directly detected [66]. Similarly, it is of interest to identify to what extent the state
realised corresponds to a ground or thermal state of an interacting model, and hence to
what extent the state deviates from a Gaussian state. As one of the main promises of the
field of ultra-cold atoms is to precisely study interacting quantum many-body models
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deviating from non-interacting theories, this type of information is highly relevant.

In this work, we introduce a new scheme that can be used to directly estimate the local
deviation from the Gaussianity of a state, based solely on second and fourth moments of
particle number measurements. We apply this tool to the specific context of ultra-cold
atoms and show that noise correlations in in-situ measurements are already sufficient for
its calculation. In this way, we build upon and relate to the ideas of Refs. [4, 41, 42],
but deliver an answer to the converse task: We do not show how interacting models are
reflected in noise-correlations, but ask how data can be used to unambiguously witness

such deviations from non-interacting models.

Gaussian States of Massive Particles

Interacting many-body quantum systems are exceedingly hard to capture and describe
in terms of classical parameters. Non-interacting models — models that have Gaussian
ground and thermal states — are an exception to this rule, in that the complexity of their
description is low. They are a paradigmatic class of states both for fundamental questions
in quantum information as well as for finding ground states of condensed matter models,
such as the interaction-free Bose-Hubbard model [13]. At the same time they are states
that do not exhibit the intricate structure of interacting quantum many-body models.
Again, since one of the main promises of the field is to address such interaction effects, it
seems important to have tools at hand to directly detect a deviation from Gaussianity.

6.2.2. Gaussianity of States in Optical Lattices

The bosonic Gaussian states discussed here are characterised by the second moments

collected in the correlation matrix v with entries
75 = Tr(blbs p). (6.29)

where b},bj denote the canonical bosonic creation and annihilation operators, j =
1,...,n. Throughout this work, we investigate massive bosons leading to a situation in
which all Tr(b;bjp) = 0 for all 4,5 = 1,...,n. Any such correlation matrix satisfying
v > 0 can be diagonalised with a unitary V € U(n) as D = VAV, reflecting a mode
transformation

b; = > Viiby (6.30)
k=1

preserving the bosonic commutation relations. One immediately finds the following

convenient maximum entropy property: Gaussian states ¢ are maximum entropy states
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given their correlation matrix, so that

o = argmax S(p), (6.31)
peD

Tr (E;rl;kp) :§j7ka7k

where S(0) = —Tr(olog o) denotes the von-Neumann entropy and D denotes the set of
density matrices. In addition, by invoking the pinching inequality [11], one finds that it
is already sufficient to fix the diagonal entries Dy for k =1,...,n
o = argmax S(p). (6.32)
peD

TY(BLBM) =Dy k

Following from this, given the diagonal elements of the correlation matrix in the mo-
mentum representation, the following Gaussian state is uncorrelated over the individual

modes and given by (6.33)
n =t
o= o or= (1 - e*"k) e~ MkbbE (6.33)

where 7, > 0 is corresponding to Dy, .
As described previously, the Gaussian state corresponding to measured second mo-
ments is given by

o = argmax S(p). (6.34)
peD

Tr (ELE;#)) =Dy 1,

This maximum entropy state is achieved by the generalised Gibbs ensemble

n

1 o~
=11 e~mbb (6.35)

where Z is the usual partition sum and the 7, are determined by demanding that

Tr<6;6k@—nk525k) = Dy - (6.36)
This expression can be calculated using the bosonic partition sum
n
~T~
Z({m}) = Tr T e~ (6.37)
k=1
n (0. 9]
=11 Z e~ M (6.38)
k=1j=
n
_ 6.39
kl;ll p—— (6.39)
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With this, we straightforwardly have

1
Dy = - (=0)2 (6.40)
ey (6.41)
(1—em)? |
= (M —1)7! (6.42)
and hence
me =M(1+ D) - (6.43)

These states can be viewed as an instance of a generalised Gibbs ensemble [21, 27, 80].
Importantly for our context at hand, such Gaussian states also play a prominent role
in the context of optical lattices, where they can, for example, be used to capture the
superfluid ground state.

In recent years, research on cold atoms in optical lattices has progressed significantly,
by now allowing for unprecedented control of interacting quantum many-body system,
involving several thousands of atoms. Relying on recent experimental advances, the
position of individual atoms can be tracked using single site addressing. Using such
techniques, local expectation values of the particle number as well as density-density
correlations can be resolved. These local measurements have already provided important
insight into the out-of-equilibrium dynamics of quantum many-body systems [13] and
allow to access their microscopic properties. It is the main result laid out subsequently
to identify tools to detect a deviation from Gaussianity — reflecting a non-interacting
system — based on simple particle number measurements, building upon Refs. [46, 47].
For this, we begin with a clarifying discussion to what extent states encountered in
optical lattices can be Gaussian.

States in optical lattices describe massive particles. For that reason, the particle
number in each experimental run is fixed. This, however, implies that the full state is
not Gaussian. The best example for this is the perfect superfluid state, corresponding
to the ground state of the 1D free hopping Hamiltonian

n—1

Hyop = > (b1 +05,,05) . (6.44)
j=1

Using a chemical potential ¢ > 0 to maintain the expected particle number, thermal
states of this Hamiltonian take the form

n
p X exp (—BH —p>y b}bj) , (6.45)
j=1
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where 8 > 0 denotes the inverse temperature. This ensemble is Gaussian, as it is
the exponential of a quadratic expression of creation and annihilation operators. It,
however, only fixes the particle number on average. In order to fix the actual particle
number, meaning to ensure that the state lives on a fixed particle number sector, also
all higher moments have to be included in the ensemble. However, already including a
fixed variance with a Lagrange parameter ps > 0

n T n T ?
e—ﬂH—u > g1 bibi—h2 (Ej:l bjbj> (6.46)

Y

p X

results in a state that is no longer strictly Gaussian.

Nevertheless, the superfluid can be thought of as being Gaussian in one important
sense. Local particle number measurements are indistinguishable from a Gaussian state
for sufficiently large system sizes. Thus, many measurements of the state can be captured
using a simple Gaussian description. In the following, we present a general method that
allows us to estimate the local deviation of a state from Gaussianity, based solely on
measurements of second and fourth moments, which will afterwards be applied to states
capturing optical lattices.

6.2.3. Estimating the Local Deviation from Gaussianity

In order to approach the local deviation of states from Gaussianity in optical lattices, we
first describe how the distance of the global state to the manifold of Gaussian states can
be captured and estimated relying only on second and fourth moments. We then use
this insight to define a local deviation from Gaussianity and evaluate it for paradigmatic
bosonic models.

To quantify the deviation of a state from Gaussianity, we use the relative entropy, also
known as Kullback-Leibler divergence, as a natural quantity with a precise statistical
interpretation. The relative entropy between two states p and o is defined as

S(plle) = Tr(plnp) — Tr(plno). (6.47)

This quantity provides the asymptotic statistical distinguishability of p from ¢ in the
situation of having arbitrarily many copies of the state available [97].
Based on this relative entropy, we define the global Gaussianity of a state as

G(p) := min S(p||o), (6.48)

o€gG

where G denotes the set of all Gaussian states. This can be seen as a measure of the
strong correlations present in the state, as quantifying the statistical deviation from a
state that could have been the ground or thermal state of a non-interacting model. As
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it turns out, the minimum is always achieved for the Gaussian state o with the same
correlation matrix [67]. We denote this special Gaussian state by o,. Such a global
Gaussianity can be lower bounded by relying only on local measurement data, which
will be performed in the following.

We begin by using the additivity of the relative entropy which allows us to move to
the symplectic eigenbasis of o, and decompose the estimate into a problem involving
individual eigenmodes [97]

G(p) = S(plloy) =S (UM)pU ()| @41 o)

Z (prllow) , (6.49)

where U(7y) denotes the unitary transformation in Hilbert space (so-called metaplectic
representation) reflecting the moment transformation into the eigenmodes of ~y, Trie
denotes the reduction to the k-th mode and py := Trye (U(v)pU('y)T) For each indi-
vidual mode, we can use the Gaussianity of o, and rewrite the estimate in terms of
entropies [47]

)2 3 ((00) = 5 1) (6:50)

These single mode entropy estimates are a major simplification compared to the original
problem.

Naturally calculating the entropy of pj is still not a task that can be performed
efficiently. Rather, we solely rely on fourth moments Tr (Eil;kl;zl;kp) = My, and calculate
the smallest possible distance to the manifold of Gaussian states compatible with this
data. In this way, we are able to calculate a minimal deviation from Gaussianity, thus
showing that the state is, in this precise sense, strongly correlated. We therefore relax
the problem as follows

Glp) = 3 (S(m) — S (). (651)
k=1
Kk :=argmax S(k) , (6.52)

where kj is the maximum entropy state compatible with the second and fourth moments.
Using Schur’s theorem [11], which states that the ordered eigenvalues of a matrix majorise

the ordered diagonal entries
diag(p) < A(p) , (6.53)
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and the fact that the von-Neumann entropy is Schur convex, the entropy of this state
can be upper bounded by only considering the diagonal

S(pr) < me Inp; . (6.54)

This allows for an efficient solution of the optimisation problem using Lagrange multipli-
ers. Thus, we have seen that the global Gaussianity defined in Eq. (6.48) can be lower
bounded by using second and fourth moments in the symplectic eigenbasis of the state.
Based on this insight, we turn back to states describing massive particles in optical
lattices. There, the full state cannot be reconstructed, which necessarily implies that
important features of the state have to be addressed. Here we focus on a particularly
simple quantity that only relies on measuring the particle number on a single site, which
is accessible experimentally using single-site addressing [39]. Using such data, define the

local deviation from Gaussianity on site j of a state as
Glocal(p, 7) :==5(0x) argmax S(k) , (6.55)

k€D
Tr(njr)=n;

2 2) 2
TI‘('I’LJH i =n;

where n; is the particle number operator on site j and 7, 77? denotes its experimentally
measured expectation value and variance.

This local deviation from Gaussianity is not only easily measurable, but more import-
antly also yields relevant information about the quantum system at hand. As discussed
above, the superfluid state is locally Gaussian in the sense that the quantity in Eq. (6.55)
vanishes for large enough system sizes. In this way, calculating the local deviation from
Gaussianity, which captures to what extent onsite particle measurements are compatible
with a Gaussian state, is a natural way to quantify the distance to a perfect superfluid
state. Moreover, for the important case of non-interacting particles, it can also be used to
identify the suppression of particle propagation due to disorder. Both these applications
are elaborated upon below.

6.2.4. Local Deviation from Gaussianity in the Bose-Hubbard Model

In the following, we present numerical results for bosonic models commonly encountered
in optical lattices. We begin with the attractive Bose-Hubbard model

n—1 n
Hpu == > (blbjyn +05,,0;) — Z (6.56)
J=1 J=1

where we have chosen the hopping strength equal to unity and denote the interaction
strength by U. The ground state for U = 0 is the superfluid state introduced above and
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Figure 6.1.: Plotted is the local deviation from Gaussianity based on the measurement
of particle number and density-density correlator on a single lattice site of a
1D system for the ground state of the attractive Bose-Hubbard model with
filling fraction 7 = 1 and interaction strength U. The results are obtained
with exact diagonalisation using periodic boundary conditions on L = 15
lattice sites.

thus locally Gaussian in our sense, corresponding to a local deviation from Gaussianity
of zero. In contrast, when the interaction strength is increased, the system becomes
strongly correlated and the size of the local deviation from Gaussianity should increase.

We have confirmed that this behaviour is indeed encountered numerically and find an
almost linear behaviour between the local deviation from Gaussianity and the interac-
tion strength (see Fig. 6.1). In this way, one could even see the local deviation from
Gaussianity as an experimental probe to directly measure the interaction strength based
solely on ground state particle number fluctuations.

Another setting in which the local deviation from Gaussianity is intriguing to invest-
igate is the evolution of free systems, where it can be used as an indicator of disorder

and the concomitant suppression of transport.

6.2.5. Disordered systems

It is known that non-interacting systems which exhibit transport in a suitable sense
evolve in time in a way that the states tend to be locally Gaussian following out of
equilibrium dynamics [37], a feature that is true in surprising generality [27, 28, 51].
Thus, in this setting, the precise initial conditions are forgotten over time and local
expectation values can be captured using only the second moments of the initial state,
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then fully determining local expectation values.

This applies in particular to the free hopping Hamiltonian introduced in Eq. (6.44).
A paradigmatic setting for this is given by an initial product state with one particle
on every second site, which can be experimentally prepared employing optical super-
lattices [85, 95]. This initial state is the ground state of an infinitely strongly interacting
Bose-Hubbard model and it is thus far from being locally Gaussian, as described above.
During time evolution that has transport, however, the particles distribute evenly over
the lattice, thus moving towards the manifold of locally Gaussian states.

For disordered systems, transport is strongly suppressed and the distribution of
particles over the lattice thus does not take place. For concreteness, let us consider
a simple 1D hopping model

Z (blbj 1 +bl,1b5) + Z w;blb; | (6.57)

with local potentials w; drawn uniformly from some interval [—h, h]. For h = 0 the model
reduces to the free hopping and local Gaussification thus takes place. In contrast, when
randomness is present, transport breaks down, resulting in a positive local deviation
from Gaussianity even for long times. In Fig. 6.2 we see a initial state which is a charge-
density wave corresponding to a Fock state with one atom on every second lattice site
and the evolution is governed by the Hamiltonian in Eq. (6.57) with w; drawn randomly
from the interval [—h, h] for three different values of the disorder strength. Initially,
the local state is very non-Gaussian. For the translationally invariant system showing
transport, information spreads through the lattice and the local measurements become
compatible with a fully Gaussian description of the state, that is, the system dynamically
gaussifies. In contrast, in the disordered case, transport is strongly suppressed and the

non-Gaussianity remains locally visible.

6.3. Gaussianity from Time-of-Flight

The same approach discussed here for local deviation from Gaussianity can be applied to
global properties of the lattice. In fact, it can be applied to any modes that are defined
by a mode transformation

n
= Vaibj- (6.58)
j=1

In particular, it is applicable to time-of-flight measurements. If the quantum state is not
translationally invariant due to the presence of a harmonic trap, an average Gaussianity
over the system size is then directly detected in this way. In time-of-flight measurements
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Figure 6.2.: Plotted is the time-dependence of the local deviation from Gaussianity based
on the measurement of particle number and density-density correlator on a
single lattice site of a 1D system of L = 20 sites. Shown is the average over
40 disorder realisations.

with finite accuracy of the camera pixels, only the diagonal elements {(n(q)} = <l~)gl~7q>}
of

[ =VyVT (6.59)

are measured. The resulting distribution is more commonly expressed as a function of ¢
and t,

(n(q,tror)) = ‘[[)O(q)|2ZeiQ(Tj—Tk)—igtToF <b§bk>. (6.60)
J.k

where tpop is the time-of-flight and ¢ > 0 is a constant derived from the mass and the
lattice constant of the optical lattice. The fourth moments of the same modes defined
by V' are accessible as {<5jll~7ql~)};7)q>} and contained in the very same images from the
laboratory, merely by computing higher moments, following a prescription of Ref. [4].
Let it be stressed again that in contrast to this reference, we aim for and provide a direct
detection of correlations based solely on second and fourth moments.

Let us concentrate on the measurement process in more detail, and discuss the problems
of extracting the expectation values of particle number operators and density-density
correlations in lattice space from time-of-flight measurements.
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6.3.1. Time-of-Flight Measurements

Over the course of the measurement process, information about the expectation values
of the state in question is lost in certain steps. This entails, that the full information
cannot be recovered. This means, that the original method of extracting a bound on
the relative entropy between the quantum state in the system and the closest Gaussian
reference state has to be adapted, since until now, we relied on exact measurements of
fourth and second moments. This adaption worsens the tightness of the bounds on the
relative entropy.

However, most parts of the measurement process only destroy information about
the correlations but do not introduce new correlations in the data, where there are
no correlations present in the system. This way our bound gets worse but not wrong.
Given small enough errors introduced by the measurement, we could still reliably detect
correlations using our method. Since however some parts of the measurement are not
completely understood yet, we cannot fully claim that the measurement doesn’t introduce
new correlations; only that they don’t seem to be big, since they are not visible in the
measurement results. We will now consider the single processes of the time-of-flight

measurement.

In a time-of-flight measurement, atoms that are confined in a optical trap potential
are suddenly released. They start to move out of their positions according to their
momentum and are allowed to spread freely for a certain time tp,p. After this time-
of-flight, their momentum distribution is imaged by taking a picture of the cloud and
inverting the data. Each line in the resulting data array is then convolved with itself to
get information about density-density correlations. Fig. 6.3 shows two images that are
obtained in that way.

Electronic Noise and Photon Shot Noise

The electronic noise in the detector and the photon shot noise of taking the picture
introduce a simple, but non-reversable error in the measurement outcome. The electronic
noise can safely be neglected, as it is much smaller than the photon shot noise, which
is around /n. Thus for the relation between the real density distribution in the cloud
n(7) we can say that n,, (7) = npg(7) + n(7) with npg is randomly distributed of order
O(n(7)). Since the error is uncorrelated, it won’t introduce correlations to the signal,
if there are enough samples. Since it is comparably big, it will very likely worsen the
tightness of the bound on the estimated quantity.
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Figure 6.3.: On the left: density of the momentum distribution in a time-of-flight meas-
urement. On the right: convolution of averages of momentum distributions
showing correlation peaks typical for a Mott insulator.

Finite Detector Resolution

The finite resolution of the detector can be modelled by replacing the real density
distribution of the momenta by a discretised version, where we integrate over small
squares in the detector plane. This of course is also non-reversable. Whether it introduces
correlations or not depends on “how discretised” the signal was before the measurement.
For a continuous distribution, this would be bad, but since we detect the position of
atoms in a cloud, a finite resolution, if small enough, should only introduce an error. The
lattice spacing of the detection corresponds to ag = 2.34 num in the cloud plane. All the
atoms in a square of this size ag X ag get mapped to one position in the cloud. This may
have severe influence on the distribution of the noise, from which the density-density
correlations are deduced. We believe that this is the main reason for the peaks being
much lower than expected, which will influence the tightness of the bound. (0(10_4>
instead of O(1))

Point Spread Function

Every peak in the cloud plane gets spread during its way from the cloud plane to the
detector plane. This effect can be modelled by a convolution of the original signal with
a function F', which is close to Gaussian. The width of this function can be read of from
the width of the correlation peaks, which should have a width of only one pixel. The
influence of this process could be erased by neglecting everything but the centre of the
peak for the numerical estimation, which would make the output highly dependent on
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the respective choice. This does not seem like a reasonable approach. As discussed in
the chapter on reconstructing positions of atoms in an optical lattice, the inversion of
the point spread function is highly non-trivial. The low peak height in the measured
pictures due to noise effects and information loss ((9(10_4) instead of the expected
height of O(1)) leads to a severe worsening of the bound. To obtain a better estimate
one would have to integrate over a suitable area (the width of the peak), leading to closer
estimate of the actual peak height and thus an improvement of the bound. However,
this would lead to severe loss of information, as this integrated result could be produced

by many different distributions and thus worsen the significance of the bound.

Integration via Tilted Axis

The detection is done via a photograph of the cloud which should be perpendicular to
the detector plane. Since the cloud is three dimensional, there is a loss of information if
the position of the particles in the cloud in this direction is not translationally invariant
(which is not the case but might be a good assumption). Additionally, the axis is tilted,
such that the integration also introduces a small average over different positions lying
in the plane perpendicular to the optical axis. This error is similar to the discretisation

introduced by the single detectors of the camera.

Finite Time-of-Flight

For infinite time-of-flight, the distribution in the cloud corresponds to the momentum
distribution in the lattice. Since the time-of-flight is finite, there is an additional factor

. 2
im/tr” i the relation between source and signal distribution.

of e
This section concentrates on the errors introduced by the devices and setup used in the
measurement process. There are also other difficulties concerning the intrinsic properties

of time-of-flight measurements, which we will concentrate on in the next section.

6.3.2. Propagation of Information

In time-of-flight measurements of atoms initially confined in optical lattices, one meas-
ures the particle density n(7) using the procedure described in the last section. For ideal
measurements, the Quantity n(7) is proportional to the momentum distribution in the
trapped lattice state, since for infinite flying times (thus the starting point becomes irrel-
evant), the particle position only depends on the momentum of the particle at the time
- Where Q(7) = m/(ht)7 is the relation between the

s
position in the cloud and the momentum in the lattice [4]. ng thus gives us the number

it got released. n(r) ~ m/(ht)né(

of particles in the lattice which had a certain momentum at the time of release. Now the
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correlation function can be calculated from these measurement outcomes. By convolving
the measured densities, one can see the fluctuations in the density-density-correlations
which are expected to show up for Mott states. These are however suppressed by the
errors, such as that it is important to carefully preselect the images to include in the
calculations to get to see the fluctuations. This preselection is done by only allowing
for a certain deviation in total particle number which is still large enough to guarantee
for enough different pictures to get a reasonable expectation value. This preselection
could have to be different for our purposes. In our method, we want to diagonalise the
covariance matrix of the state, consisting of expectation values of the particle number
operator at different lattice sites. In principle, we thus have to find a transformation
from the number of particles having a certain momentum (thus position in the cloud) to
their position in the lattice before the release.

The measurement of the atoms in the lattice projects the lattice state to good approx-
imation into the lowest Bloch band via A(7,t) = Y=, w; (7, t)a; where a; is the annihilation
operator at site ¢ and w; is the free evolution of the Wannier function sitting in centred
at lattice site ¢ at position R; [82]. For long times w; ~ ht/(agm)e ~iQ(MEi with aq
being the width of the Wannier state on the lattice. This allows us to find a relation
between the measured density and the second moments:

— — _.

<n(77)>=%<n@'> ht(aomQ (ERDRE) (afay ) (6.61)

This looks like a kind of Fourier transform of the expectatlon value for the measured
density. But, in this expression, (n(7)) depends only the distance between the lattice
sites, R — R}-. The summation goes over all possible lattice sites, thus we effectively
average over the second moments, where the vector between the lattice sites is the same.
Trying to invert the relation leads to the condition, that

<a a]> Z 6( — Rg) — (Ri — ﬁj)) <ajla3> (6.62)

which can be fulfilled, if <a;-raj> is translationally invariant. Then one could get rid of
only a factor of the numbers of different realisations of this configuration in the grid. For
a Mott state, this could be a good assumption, since <a;raj> ~ 0j;, but this is against
the spirit of our method. Thus, inverting the relation is only possible for the simple case
of the diagonal, where both expressions are the same. The same problem occurs for the

fourth moments, where we obtain

(n(7)n(7) >: % m6 Z (RGO G Ri=RQW) (alalayay) + (7~ ) (n(7) .

i7',5,5’

(6.63)
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For our method, we need all expectation values of <a1aj> as well as <ajaia;r~aj> if we
already fill in those values with a zero, which violate particle number conservation
and use commutation relations to compute others. We need all these values, since we
have to transform the measurement according to the symplectic transformation which
allows us to reduce the problem to single mode problems. If we treat the lattice state
as translationally invariant, it is cumbersome (because of the factor for the number
of possibilities for the same distance), but possible to get the input necessary for the

numerical estimation.

6.4. QOutlook

In this chapter, we have introduced and elaborated on a method to directly detect
local deviations from Gaussianity of quantum many-body systems. In this way, we
have identified a way of witnessing the deviation from the ground or thermal state of a
non-interacting model, hence directly observing strong correlations present in the state.
We did so by estimating the relative entropy between a reference state and all states
compatible with a certain measurement outcome. By making use of ideas of convex
optimisation and Lagrange duality, we can efficiently derive reliable bounds on this
relative entropy. It is desirable to be able to directly detect properties relevant for research
questions at hand. This way, no prior assumptions can enter the reconstruction and
could possibly change the interpretation of a measurement outcome. More conceptually
speaking, the mindset that we advocated here constitutes a relevant further step to equip
bounds and estimates with precise statistical confidence regions. This complements the
more conventional approach in which a specific physical situation is modelled or classically
simulated, and the predictions compared with those of data from measurements. It is
our hope that the present work can contribute to the further development of such tools
of certification for the study of many-body models, particularly relevant for the partial
certification of the functioning and read out of analogue quantum simulators.
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/. Entanglement as a Resource

It has long been noted in the field of quantum information science that entanglement,
a phenomenon unique to quantum mechanics, constitutes the key resource in various
information processing and specifically communication tasks [10].

One of the most powerful applications of entanglement in quantum computing itself
is the one-way quantum computer, which replaces unitary transformations by single-
qubit measurements on a highly entangled state. The computation hereby is shifted
to the initialisation of this state and explicitly uses entanglement as a resource for
computation [77].

Apart from building a whole quantum computer, there is a vast amount of quantum
communication protocols for many tasks such as secure quantum key distribution, which
necessarily rely on entanglement, even in prepare and measure schemes [30, 49, 50].
A central goal in quantum information science has therefore been the development of
techniques to transform less usable forms of entanglement into more suitable ones, and

building our understanding of the laws governing the manipulation of entanglement.

7.1. Entanglement

A quantum state on a system that is described in a Hilbert space H4 ® Hp is called
entangled, whenever it is not separable, meaning that it cannot be written as a tensor
product of two pure states on the subsystems H 4 or H . This implies, that the reduction
of the state to either of the subsystems can only be described probabilistically. For the
maximally entangled state, the reduction of the state on the subsystems will yield the
maximally mixed state. This can easily be seen using the Schmidt decomposition:

d
SIVEDY VAl 4 @16 5 - (7.1)

d is the minimum dimension of the subsystems and \; are the Schmidt coefficients,
which satisfy >°; \; = 1. In this picture, the reduced state is given by

da
pp = Tra|E)XEl =D N G)Gl- (7.2)
=
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If the \; are evenly spread over the whole spectrum, we get the maximally mixed
state. The amount of entanglement can be quantified more precisely. There are several
measures for entanglement, that concentrate on different notions of entanglement. One
of the oldest measures for entangled pure states is the Shannon entropy of the \;, also

known as the von Neumann entropy of pp.

S(pp) = Tr(pplog(pp)) = 3_ Ailog(\i) (7.3)

For \; = % the state £ is maximally entangled. The von Neumann entropy is a convex
function, meaning that mixing two states will increase the entropy. This corresponds
two a loss in information.

Four special states that are maximally entangled are the so-called Bell states, which
form a basis of the two-qubit Hilbert space. They form a complete orthonormal set and
they can be transformed into each other by local unitary operations.

Entanglement can only be created through interactions between the subsystems.
Without interaction, the Hamiltonian describing the evolution of the system would
lead to a unitary evolution that can be written as a product, which will transform a

separable state into another separable state.
H=H,®1p+14® Hg — U(t) = UA(t) ®UB(t)

Operators that factorise into the product of the operators of the subsystems are called
local operators. In many tasks in quantum information, it is a goal to use only those
local operators as well as classical communication, as the qubits might be in different
locations. Those LOCC operations can obviously not create or enhance entanglement,
which is why so-called entanglement purification protocols are used to keep the amount
of entanglement as high at is needed.

While we until now only considered bipartite entanglement of pure states, the whole
picture is much more delicate. So-called multipartite entanglement is harder to define
satisfactorily. Entanglement can for example be quantified regarding only certain parti-
tions of the subsystems. On top of that, entanglement has to also be defined for mixed
states of the quantum system, which will naturally appear in systems that interact with
an environment. The entanglement measures have to be adapted accordingly.

A mixed state p is called separable if and only if it can be written as

P =Y Dk lak, br)ag, byl
P

with |ag) € Hy and |by) € Hp. Following the former definition, it is called entangled
whenever it is not separable. This definition agrees with the requirement, that entangled
states cannot be generated from a product state using LOCC.
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To probe whether a given state is entangled or not, the Peres-Horodecki criterion [58,
74] can be used. It provides a test using the partial transpose of a bipartite state p. If this
partial transpose has a negative eigenvalue, the density operator is certainly entangled.
This criterion is sufficient, but not necessary. For H 4 and Hp of high dimension, there

are density operators which are entangled without being detected by the criterion.

Another method of detecting entanglement in quantum states without having full
tomographic knowledge is the use of an entanglement witnesses [38]. There, the detection
of entanglement is connected to negative expectation values in the measurement of the

Wigner function, which are a witness of entanglement.

7.2. Quantum Repeaters

In the last section we learnt that entangled states cannot be created without local
interactions. For many quantum protocols, such as secure key distribution, we will
however want to use entangled qubits, that are far away from each other. The quantum
information has to be transmitted over large distances. In quantum mechanics, there are
physical constraints that make this transmission completely different from the classical
distribution of information. As a single measurement cannot give reliable information
about an unknown quantum state, the whole state rather than its information has to
be transmitted. Also, directly following from the same reasoning, a state cannot be
cloned [105].

To get a good estimate of a state, a sufficient number of copies of the same state
have to be created and measured to determine the coefficients in any chosen basis. The
idea in quantum communication processes is thus to directly use the created state for
further processing without measuring it. To achieve that, the quantum devices have
to be connected through quantum channels. For photons, optical fibres provide the
best candidate, where even losses can be included in the description of the quantum
channel [15, 36].

To transport an intact quantum state from one place to another, quantum teleportation
can be used. For that, the sender and the receiver of the state have to perform meas-
urements on a maximally entangled pair they share. Thus, the problem of transferring
quantum states can be brought to the problem of distributing maximally entangled pairs
over large distances. As quantum channels such as optical fibres or other environments
always introduce noise and decoherence, especially over very large distances, quantum
repeaters and entanglement distillation and purification procedures come into play.
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7.3. Entanglement Distillation

Entanglement distillation specifically captures the resource character of entanglement.
as it aims at preparing maximally entangled states from noisy or less entangled ones [10].
Specifically, it refers to the task of transforming a collection of weakly entangled pairs into
fewer highly entangled ones. There exist many different kinds of distillation protocols,
even optimal ones as the hashing protocol. Sadly, those are most of the time hard
to implement as they do not only require local operations that are easy to implement.
The protocols we will discuss are far from optimal, but only use Clifford gates on two
subsequent qubits and require only LOCC operations. This is important, if one aims for
a realistic protocol to be used in a quantum repeater.

Distillation steps are part of quantum repeater protocols [17, 24, 34], necessary to
distribute entanglement over arbitrary distances of a noisy quantum channel: In such
a scheme, entanglement is being established between different repeater stations and
transferred to the final designated nodes via suitable entanglement swapping steps.
Distillation schemes thought of in this context are often iterative schemes, such as the
recurrence protocol [8, 10, 31] and deterministic protocols based on error-correction
codes [10, 56, 60, 65]. While iterative schemes do not achieve the maximum rates set
by the distillable entanglement, they require less sophisticated and are more practically
feasible operations.

We will explore those two kinds of protocols, the postselective one, where depending on
the outcome of a measurement during one step of the protocol the outcome is either kept
and more entangled or discarded, and a deterministic one, that uses error correction to
arrive at a state that is more strongly entangled. The deterministic protocol only works
for high initial entanglement, but has the important feature that it never fails to bring up
entanglement. The postselective protocols allow for lower initial entanglement with the
cost of the risk of losing the state completely. In usual realistic entanglement distillation
setups a concatenation of the two protocols is used. First, the low entanglement is
brought up using a postselective protocol to fit the requirements of a deterministic one.
We will now introduce two standard protocols, the postselective Recurrence protocol and
the 5-qubit error correction code—a deterministic protocol.

7.3.1. Recurrence Protocol

Similarly proposed by Deutsch and Bennett in 1996, the recurrence protocol is not very
efficient in the speed of convergence to the maximally entangled state, but focuses on
implementability. It is a 2 — 1 protocol, as it consumes 2 pairs in every step to arrive in
one state that is closer to the maximally entangled one. By acting out this protocol in
parallel, it consumes half the shared pairs in one step of the iteration. We will describe
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7.3. Entanglement Distillation

the protocol in more detail, using the Pauli operators, the Hadamard gate, and the Cxor
gate, a controlled not gate. The Cxort is a two-qubit gate.

0 1 0 —i 10 1 (11
() () ) )

While the Pauli operators can be interpreted as causing bit- and phase-flip operations,
the Cnot entangles the two qubits it is acted on, while the first qubit serves as the
control bit.

1 0 0 O
01 00

Cnot = 000 1 and  Cnor(]0) + (1)) |0) = |00) + |11)
0 01O

With this set of operations, the two communication partners A and B perform then
an iterative procedure consisting of three steps. First, they both perform a CyoT on two
subsequent pairs. Second, they measure the target pair in the computational basis and
third, compare their results. Whenever they measured the same outcome, they brought
up the entanglement in the remaining state. If they however measured different results,
they have to discard the remaining state, as they didn’t succeed in bringing up the
entanglement. It is this step of discarding pairs depending on the measurement outcome
that all postselective protocols share. The recurrence protocol nevertheless is a useful
protocol, as the probabilities of measuring the same outcome depend on the amount of
entanglement that is present in the system. If we consider the distillation of ¢ Bell
states, we can formulate the protocol using probabilities. The index n denotes the nth
iteration of the protocol.

pn(¢+) = Qn, pn(¢—) = bp, pn(@b—i—) = Cn, pn(w—) =dy

The probabilities are at the same time the overlap of the original state with the
4 orthogonal Bell states, that form a basis set. Every iteration step changes these
probabilities. For one iteration step, the probabilities for bit flip errors () instead of ¢)
are suppressed in the square of the strength of the noise €, while phase flip (— instead of
+) is only suppressed in the order e. One can use the Hadamard gate to interchanges these
two errors and transform bit-flip errors to phase-flip errors and vice versa. (Explicitly, it
interchanges ¢_ with ¢4.) The two communication partners thus both apply a Hadamard
gate as a fourth step of their iterative procedure before performing another iteration step.
This double step shrinks both phase-flip and bit-flip errors with at least the order €2 and
for suitable initial conditions the protocol indeed converges to the maximally entangled
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¢+ state. The probabilities after two iterations are given by

anre = (2 +82) +(E+ &),
bpto = 40202 +4c2 + d2,
Cnta =2 (a% + bi) (c% + d%) :

dnt2 = Banbpcpdy.

The protocol converges whenever the initial fidelity, so the size of a,, is higher then %, as
Deutsch has shown [8, 31].

7.3.2. 5-qubit Error Correcting Code

In classical error correction, one often uses redundant encoding of the information to
guarantee for successful transmission. The bit is replaced by a logical bit, that is more
robust against single bit flips as multiple bit flips, occurring at the same time, would
be needed to flip from the logical 0 to the logical 1. This number of flips is called
the Hamming distance and often simply corresponds to the number of bits used in the
encoding.

In the quantum setting, we have to obey the no cloning theorem and cannot just copy
the state before the transmission. One can, however, follow a similar line of thought, and
embed the qubit in a larger Hilbert space. Shor introduced a quantum error correcting
code, a nine-qubit code, which is a generalisation of the ideas introduced in the Shor
code [32].

Using a unitary transformation U, the state is encoded into a subspace of some large
Hilbert space. This subspace is also called quantum error-correcting code. After the
transmission over a noisy channel, a syndrome measurement is performed on the extra
dimensions, also called ancillas. This measurement gives as output an error syndrome,
which is used to determine the recovery operation to be applied to arrive at the original
qubit. Each error syndrome belongs to an orthogonal subspace and corresponds to a
particular error that can appear in the system. This way, the error can be recognised by
the syndrome and can be reversed by the measurement.

Error correction can be used in entanglement purification to correct the errors that
distinguish the state from the maximally entangled one. Different from the postselective
protocol, only one way communication is needed in the protocols, as only the error
syndrome has to be transmitted. Additionally, the state is kept whenever the error can
be identified. The smallest error correcting code is the 5-qubit code. Every single qubit
error is mapped to a unique error syndrome and it is set up solely through Clifford
operations. The error syndrome could however also correspond to multi-qubit error and
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the wrong error would be corrected, introducing a new additional error in the state. As
long as the errors are uncorrelated and the error probability is small, the protocol still
converges on average. This is why the error correcting protocol can only be used in much
lower noise levels, compared to the postselective protocol. For the 5-qubit code the noise
tolerance is € ~ 0.046.

Both protocols follow the assumption that the initial states are identically and in-
dependently distributed, which means that there is no correlation between subsequent
pairs. This is an assumption that is very strong and does not agree with having sources
of entangled pairs that are used at a high rate, as the source system could still be in an
excited state after the measurement. Our work extends this picture and proves bounds
for these protocols when the system shows not only wanted inter-pair entanglement but
also unwanted correlations between subsequent pairs [18, 23].
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8. MPO Purification and
Renormalisation

The following work has been conducted together with Stephan Wéldchen, Earl Campbell
and Jens Eisert and has been published in PRL in 2015 [100].

In entanglement distillation protocols, it is usually assumed that the initial entangled
pairs are i.i.d. distributed and uncorrelated with each other, an assumption that may
be very much inappropriate in any entanglement generating process involving memory
channels. Here, we introduce a framework that captures entanglement distillation in the
presence of natural correlations arising from memory channels. Conceptually, we bring
together ideas of condensed-matter physics — that of renormalisation — with those of
local entanglement manipulation. Formally, we introduce ideas of tensor networks and
matrix product operators to the context of entanglement distillation, and rigorously prove
convergence to maximally entangled states in several meaningful settings, introducing

notions of renormalisation of matrix-product operators.

8.1. Considering Correlations

The silent assumption in almost all of the proposed distillation schemes, is that the initial
resources have been identically prepared and show no correlations. Depending on the
type of preparation, this may or may not be a reasonable assumption. Whenever memory
effects or channels [1, 63, 76] are involved, one expects some correlations between the
involved entangled pairs, going beyond an i.i.d. setting. These correlations are expected to
decay rapidly over several pairs sent through a channel — reflecting the natural correlation
structure arising from a memory channel (see Fig. 8.1). The mathematical definition of
distillable entanglement in the presence of correlations has been developed in [15, 18].
The important practical problem of how to distil entanglement from correlated pairs
arising from quantum memory channels is still wide open.

In this work, we propose a conceptually novel way forward to solve this problem,
bringing together ideas from entanglement theory with those of condensed matter theory,
specifically of renormalisation and tensor network states. We start by identifying the
natural class of states arising from preparations and memory channels as bipartite matriz-
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8. MPO Purification and Renormalisation

Figure 8.1.: On the left: Source with memory emitting weakly correlated photon pairs
with a decaying correlation from one pair to the next pairs indicated in red.
On the right: Same setup, naturally formulated as an MPO with the bond

dimension indicated in blue.

product operators (MPO) [99, 107]. Such classes of states are usually considered in the
condensed matter context to capture thermal many-body states or those arising from
open systems dynamics. Here, we encounter natural bipartite — and still multipartite —
instances thereof. Entanglement distillation is then identified as a renormalisation of
bipartite matriz-product operators. Viewed in this mindset, the methods are inspired and
derived from renormalisation [98] of matriz-product states [36, 40, 73, 75, 84, 86|, again
from many-body theory.

Specifically, what we show is that both the recurrence protocol and the error correction
protocol converge to pairs of maximally entangled pure states for subsequently correlated
pairs naturally described by an MPO. This leads to entanglement distillation very similar
to the i.i.d. case and numerical evidence suggests that allowing for principally unwanted
correlations between subsequent pairs can even speed up the convergence to maximally
entangled pairs compared to the uncorrelated i.i.d. case. We introduce a simple physical

example, where this is the case for a large parameter region.

8.2. Setting and Formalism

We consider a sequence of L pairs of qubits, where two parties (say Alice and Bob) each
hold one qubit from each pair. The focus on qubits is set for simplicity of notation only,
it is clear that the same framework can be applied also to systems of other physical
dimension. These pairs are entangled, as well as correlated with each other, as a con-
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Figure 8.2.: Renormalisation schemes of MPO mapping N pairs to M in an N — M
scheme. In the 2 — 1 recurrence protocol two neighbouring MPOs are con-
jugated with a local unitary and subjected to a measurement. Contraction
of the tensor network leads to the MPO at the subsequent scale.

sequence of the preparation procedure involving stationary quantum memory effects. A
natural preparation exhibiting such a memory involves an auxiliary quantum system C
of some dimension d that embodies all the degrees of freedom of the memory. The state
is then prepared in a sequential fashion, with the memory unitarily interacting with the
first entangled pair, then the second, and so on [75, 76, 83]. A state generated in this
way is a matrix-product state, if it is pure, or a matriz-product operator in case of noisy
mixed states [99, 107], as they are considered here, with d taking the role of the bond
dimension. The decay of memory effects in the distance between the entangled pairs
naturally emerges in this construction. It is the setting of naturally correlated bipartite
MPO arising that is being introduced here.

More specifically, we work in a numerically indexed Bell basis {|¢1),|d2) , |¢3) , |d4)},
more commonly labelled as { o1, |67), [wT), \1/1_)}. We consider a sequence of L
pairs of qubits, with basis vectors |®x) = |¢z,) |¢zy) - - - [Pz, ), Where Alice holds the
first qubit of each pair and Bob holds its partner. Translationally invariant mixed states
reflecting stationariness of the source are described in the MPO language as

(@y|p|@y) = Te[MTL9 N7202 | N[PLUL] (8.1)

The dimension of the matrices M*Y € C™¥? z y € {1,...,4} limits the correlations
between pairs, and by increasing this bond dimension d arbitrary quantum states can be
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described in this formalism. There is a gauge freedom in our choice of MPO matrices as
for any invertible X, mapping M*¥ — X M%Y X~ will give an alternative description
of the same physical state. Generally, 16 matrices are needed for the description of
each pair, since a two-particle density matrix has 16 entries. However, without loss
of generality we can assume the state is Bell diagonal, so that M*Y = 0 whenever
x # y. If the state was not Bell diagonal originally, it can be brought into this form
by a suitable local group twirl over the Pauli group [10]. Since the employed protocols
make use of Clifford operations, the group twirl will conjugate with these operations,
so that it can be implemented at the very end or merely at the level of classical data
processing. For this reason we herein use the shorthand A = MY, B = M?2, ¢ = M33
and D = M** Without loss of generality, we consider the distillation of maximally
entangled ¢ pairs. The “A” matrix will be the dominant matrix and the others we will
call noise matrices. We introduce the noise contribution of the coefficient matrices B, C

and D as ey = max (|| By, [Cally 1 [ Dally 1)

8.3. Protocols and Renormalisation

An N — M iterative protocol for entanglement distillation of i.i.d. states will act on N
pairs at a time and output M (where M < N) pairs. For more than N i.i.d. pairs, the
protocol is performed in parallel on blocks of N pairs. In the MPO setting, pairs are
not i.i.d. and so we must specify which pairs are involved in each block of a protocol.
We choose neighbouring pairs so the first NV pairs are distilled into M pairs, while
simultaneously the next N pairs are distilled, and so on. This natural choice has the
practical merit of respecting locality, and has the additional advantage that the output
state is easily shown to again be a MPO of the same bond dimension (see Fig. 8.2).
Every iteration of the distillation protocol now acts as a map from a MPO on one scale
to the subsequent one and reducing the chain length from L to LM /N. After each step,
a positive MPO is retained [62]. Indeed, it can be naturally seen as a process of MPO
renormalisation, this being a mixed-state and bipartite analogue of the renormalisation
of matrix product states discussed in Ref. [98]. After the nth step, we label the MPO
operators {Ay, By, Cp, Dy}, where the initial raw state provides the n = 0 matrices.
We further introduce the transition matrix E, = A,, + B, + C,, + D,, as it has useful
properties. We prove several results on convergence to entangled states which show the
functioning of the schemes; proofs that can also be interpreted as convergence proofs for
renormalisation flow of the MPOs. Specifically we consider the recurrence protocol and
a distillation through error correction using the 5-qubit code. Both protocols rely solely
on Clifford operations that preserve the Bell diagonality, and use local operations and
classical communication with respect to the partition between Alice and Bob. Intuitively,
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one can say that in many practically relevant settings, the entanglement and correlations
between pairs are being “renormalised” into more useful entanglement shared between

Alice and Bob, to be employed in subsequent key generation.

8.4. 5-qubit Protocol

For every error correcting code that encodes k£ qubits into /N physical qubits, there exists
an iterative N — k one-way entanglement distillation protocol [10]. In these protocols,
noise information is extracted by local measurements, but instead of post-selecting when
errors are detected we attempt to correct them by determining the smallest weight error
consistent with the measurement data. The advantage over the recurrence protocol is
that this protocol is deterministic, and that one-way distillation schemes require much less
classical communication. In particular, we consider one-way entanglement distillation
using the 5-qubit code (so a 5 — 1 protocol), which is the smallest code capable of
correcting any single qubit error, and we state the following theorem

Theorem 3 (Error correction). Given a translationally invariant Bell diagonal MPO pg
with coefficients Ag, By, Co, and Dy, the iterative application of the 5-qubit error cor-
recting code leads to convergence of pn to uncorrelated pairs in the pure and mazximally
entangled state ¢y for g < 1/33. € is defined as above in the gauge where &, the
quantum channel that is isomorphic to Ey, is trace-preserving.

Again, the full proof will be appear in the appendix. Similar to the post-selective case,
we show that with a growing number of iterations n, the contribution of the dominant
matrix A, to the state p, grows exponentially faster than the contribution of the noise
matrices. In the deterministic case, we can use our gauge freedom to make the map
corresponding to the transition matrix F trace-preserving. Since we do not post-select,
we do not need to renormalise p,, in every round. In the 5-qubit error correction code, the
transition matrix is always mapped to its fifth power, E, 1 = E?. Thus, if we initially
choose a gauge where the corresponding map & is trace-preserving, the transition matrix
will keep this property over the course of the iteration. Using combinatorical arguments,
we then prove that for suitably small €y, €, converges to zero, entailing convergence in
fidelity of the physical state.

Instead of giving a lower bound on the fidelity, we give an upper bound on the infidelity,
or the probability of measuring ¢2, ¢3 or ¢4 for a pair of qubits. For ¢9 we have

Tr {BEL*T}
Tr[EL] 7

where the 1 acts on all other pairs of qubits. Similar expressions hold for ¢35 and ¢4 by

Tr[p(|p2)de| @ 1)] = (8:2)

replacing B with C' or D, respectively. We will find an upper bound of this expression in
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terms of the channel norm of the associated observable transfer matrices B, C, and D.
We assume locally purifiable MPOs which allows us to make use of an isomorphism
between the MPO matrices and completely positive maps. Specifically, we define a norm
| M|| in terms of a channel M Choi-isomorphic to M, so that ||[M]| = ||M]|,_,; and we
use the induced “1-to-1” Schatten norm. See Ref. [11] and appendix A.2.1 for more on
norms. We call £ the channel Choi-isomorphic to the transfer matrix £. Our lemma 12
of the appendices proves that, assuming £ is trace-preserving, we have

1+ d/ 27 (&)Y

Trp (|p2) (P2l ®1)] < || B , 8.3
[0 (I92) (P2l @ 1)] < | Bl1_,4 L /2 (5)E (8.3)
where 7 is the ergodicity coefficient of a channel, defined as

7(M) = max 7”/\4(0)”1, (8.4)

Ti[o]=0 [0,

which allows quantification of how rapidly a channel mixes input states into the channel’s
stationary state. Proving convergence of the initial MPO in the state p to the maximally
entangled state ¢T is achieved by showing that the noise matrices vanish exponentially
faster than the A,, matrices.

One step of the protocol takes 5 pairs as input and returns one pair as output, correcting
all zero and one qubit errors and thus reducing the error probability to at least quadratic
order in €,. As discussed before, the code applies without postselection, which means
that the state does not have to be renormalised. As the length of the chain L,, is divided
by five in every step, the new transfer matrix FE,41 is simply the fifth power of the
previous transfer matrix E,. So if we start with a trace-preserving transfer matrix, it

remains trace-preserving

Eni1=E> = E, = E (8.5)
and I I
n 0

By submultiplicativity of the ergodicity, we have
nL
(&)L < r(&0) T = r(&0)™. (8.6)

This already gives us an upper bound for the normalisation for every step in the iteration
just from the initial length of the chain and ergodicity. The second step is to upper
bound ||By|ly, ||Crll; and || Dy||;. We introduced, as a measure of the noise, the quantity

en = max {[| Bn|ly, |Cully, [ Dnll1 }-

defined in a gauge and scaling, where &, is trace-preserving. This gauge and scaling
stays constant over the iteration. The complete update rules can be derived following
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the methodology of section A.1.1. We obtain a closed form for the map acting on the
coefficient matrices in each iteration, though we omit it here as each expression contains
4* terms and is not very insightful. Rather, we present just the four leading terms here

Apro=AD + A2B, + AYC, + A2D + ...,

Bpyo = A3B2+ A3C\\D,, + A3D,,Cp + A2B, AnCh + . .
Cpio = A3B,C, + A3C, B, + A3D2 + A2B,AyDy + . ..
Do = A3B.D, + A3C2 + A3Dy By + A2BApBy + . .. .

Furthermore, we do not need the explicit iteration rule but only its norm. Each term is a
product consisting of A,, and some noise matrices. We can upper bound the channel norm
by using submultiplicativity and subadditivity and the definition of our noise measure.

3 2 2
1Busalhior < 30201 AuI3 Ly + 706 A2, +90ek | All2,, +66¢,

3 2 2
[Chslly < 302 Auly + 706 Aul2y + 90€h | A2, + 666,

3 2 2
1Dnilliy < B0y + 7063 Anly + 906k Aul2,; + 6665,

As we see the resulting iteration rule is symmetric for all three noise terms and at least
of quadratic order. The norm of A, can be easily upper bounded using the properties
of channels and channel norms ||A,||;_; < |€n]l;_; = 1. The ensuing iteration for the

noise measure is thus
€nt1 < 3062 + 70€3 + 90t 4 66€”. (8.7)

Clearly, for errors to reduce €, must be at least smaller than 1/30. In this regime we
have

7 1 11
ent1 < 306, + —€2 + —ep e
3 10 4500

701 11, ,
<33
( 3710 4500) n

So we can be sure the iteration converges if ¢y < % ~ 0.0303. Numerically we find that

€o < 0.031. The speed of the convergence is doubly exponential in the number of rounds,

1
< (33
%(@

Making use of Eq. (8.3) and Eq. (8.6), we find that infidelity is bounded by

< L (e LEL T (E0)

p((ﬁi) 33 1 —d5/2T(50)L0
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Since |7(&y)| < 1, we have in generic cases that in the limit of an infinite chain

p67) < 55 630)”

and it converges whenever ||Boll;_1, [|Colli_1: [[Doll1_1 < %

It was shown that we can formulate a threshold depending on the 1-to-1-norm of the
three noise channels. This concludes our proof of a threshold for the five-qubit error
correcting code. This is the most important part of this work, since a real world repeater
scheme would most likely employ a deterministic protocol that requires only one-way
communication. However, finding a threshold for the postselective protocol is also of
interest. It turns out that the proof is more sophisticated since we cannot rely on the
trace-preserving property of the transfer channel. This requires a refined approach that

involves deriving a perturbation bound for the left Perron vector of a quantum channel.

8.5. Recurrence Protocol

The recurrence protocol is a 2 — 1 iterative protocol, which uses post-selection. At
every round measurement outcomes are being produced and we only proceed if certain
outcomes are obtained. Here we use the recurrence scheme proposed in Ref. [31]. Cast
into the MPO language, the iteration formula is found (see appendix A.1.1) to be

;H—l = A721 + B72p 7/H-1 - Aan + BnAn

, 9 9 , (8.8)
Bn+1 - OTZ + Dn; Dn+1 — OnDn + DnCr,—L.

where the role of the prime is explained shortly. Replacing matrices by commutative
scalars recovers the original i.i.d. result. These update rules are considerably simpler
than those of the error correcting protocol, but in every other regard analysis of the
recurrence protocol is more involved.

We introduce the noise contribution of the coefficient matrices B’,C" and D’ as €, =
max (HB7/’L|‘1~>17 NCh 111 HD,QHlﬁl). Due to norm submultiplicativity, we expect that
the norm of small noise matrices will shrink in size. However, ensuring A, , | stays large

is difficult. To do so, we shall adjust the MPO gauge in every step
Ap = oy Xp ALXY By — an X, BL X,

n<Tn -

Cp = anX,CL X Dy — o X, DL X,

n- n

(8.9)

where «, is a constant, so that A, trace-preserving (we also choose this gauge initially)
and hence ||A,11|l;_,; = 1. The matrix norms are not gauge invariant and we denote
¢, the noise parameter in this gauge. We will find that the strength of the gauge change
depends on the ergodicity of A, for which we use the shorthand 7,, := 7(A,,). We are
now ready to state our main result.
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Figure 8.3.: Region of convergence for the recurrence protocol. The area under the blue
line is the region fulfilling the conditions given in theorem 4. The green
region is a slightly improved bound that can be obtained with computer
assistance, but for which we have no closed form expression. The blue dot
corresponds to our physical example discussed in section 8.6.

Theorem 4 (Convergence in the recurrence protocol). Given a translationally invariant
Bell diagonal MPO py with coefficients Ay, By, Cy, and Dy, the iterative application of

the recurrence protocol leads to convergence of pn to uncorrelated pairs in the pure and
11-7
T1+74"

maximally entangled state ¢ for g <

The conditions for convergence are illustrated in Fig. 8.3. The proof is technically
involved and is presented in full length in the appendix. We will sketch it here, however,
and provide significant intuition. To show convergence, we need to show that the
noise matrices go down exponentially fast, while A,, stays large. The first part can be
shown by taking into account a double step of the protocol after which all norms of

the noise matrices are at least of order ¢2. This can be shown via subadditivity and
submultiplicativity of the 1-to-1 norm.
€nto < 4(1 + e%) & (8.10)

However, to ensure the contribution of the dominant matrix stays large, our approach
is to regauge so that A, o is trace-preserving. A channel A, is trace-preserving if and
only if the dual channel AT (the Heisenberg representation of A,) satisfies Al (1) =
1. When instead Al (&,) = A&, (where A, is the largest such eigenvalue), then the
Perron-Frobenius theorem ensures &, is Hermitian and positive semi-definite. The gauge
transformation will recover trace-preservingness by setting a,, = A,; Land X,, = VE®VE,
provided ¢ is invertible. This transformation potentially increases the norm of the
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noise matrices. Using submultiplicativity we find that e,12 = A, 'k(X,)e, 19, Where
k(X)) = H)CnHl%lH)c'n_lHl_>1 is the condition number of X,,. The factor A, ! can be
dismissed as one easily finds A1 < 1. We wish to show that A,.1 stays close to
trace-preserving to keep the condition number small, and we demonstrate

147,
— :;1 (42 + 10€t) . (8.11)

n

k(X)) < (1—2k,)"Y with &k, =

The proof bears similarities to the perturbation of the steady state of a trace-preserving
quantum Markov chain, which also depends on the ergodicity coefficient of the transition
matrix. The basic intuition is that if A,, is a rapidly mixing channel, with small 7,,, then
A% is also rapidly mixing. Before we apply our gauge transformation, A, is a sum
of A;ll and some small noise matrices. The more rapidly mixing a channel, the more its
eigenstates are robust against the perturbative addition of noise matrices. We desire the
dual eigenstate state &, to stay close to 1, which we expect for rapid mixing channels
(small 7,,) and low noise (small €,) as we show rigorously in a spirit similar to the ideas
of [92].

Although ergodicity is not a matrix norm, it has similar properties such as subadditivity
and submultiplicativity, from which one can derive an upper bound on 7,42 in terms
of 7, and ¢€,. A double step of the protocol raises the ergodicity coefficient of A to the
fourth power, adds the perturbation and sets the new gauge. Since the perturbation is
small and exponentially decaying, we can bound Th+9 S i f(€n) where f(e,) — 1 as
€n, — 0. The full and exact bound is given in the appendices as lemma 3. The essential
point is that we have bounds on the pair (€,42,7h+2) in terms of (e,,7,). It is now
straightforward to numerically determine the region of convergence to the fixed point
(0,0), which we show in Fig. (8.3). Also shown in this figure is an analytic curve, for
which we show (€,,7,) — (0,0) without numerical aid (see appendix A.2.6). Finally,
convergence in MPO operators again entails convergence of the density matrix. This

whole argument is presented in more rigorously in appendix A.1.1.

8.6. Numerical Studies and Physical Hamiltonians

To complement the rigorous and analytical results presented above, we have also per-
formed numerical studies on randomly drawn matrices. These results confirm that a
state within the distillable region is guaranteed to converge, but we also observe conver-
gence for many states outside the analytically demonstrated region of distillability. Our
analysis has assumed the worst case scenario, where correlations are always pernicious.
However, our numerics indicate that in many strongly correlated chains the correlations
can also be beneficial and enable distillation at noise levels well above the rigorous
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threshold as well as in cases where the protocols do not converge for uncorrelated i.i.d.
states.

To present a specific example we introduce a simple memory based on a Heisenberg

interaction. Initially we consider uncorrelated states (Werner State with Fj)

1—Fp
po = Fo [0 )@ + ——

(1@7X@7[+ [¥F)F |+ [¥)¥ ),
which subsequently undergo a unitary interaction with a memory bit on Bob’s side.

U(t,J) =exp(itH) with H=J(X@X+YQY+Z®2Z)+Zo1+1Z.

We further implement a dephasing channel for forgetful memory, which is applied to the
memory in-between two interactions with Bob’s qubit,

D.(0) = (1—cp)o+ cpl.

This procedure is depicted in Fig. 8.4. We compare the performance of the recurrence

Figure 8.4.: MPO diagram of the process generating our physical example.

protocol on (i) sequentially prepared states with implemented memory with (ii) perfect
memoryless i.i.d. distributions of the same local fidelity. As a measure of how a specific
memory setting performs we introduce the notion of relative noise

1 — FMPO

Tn =g Fiid

after n rounds of iteration.

For certain parameters, e.g. Fyp =0.9,J =1,c¢p = 0.04 and ¢t = 0.1, the MPO setting
converges significantly faster than the i.i.d. setting of the same local fidelity. After one
round we have 77 = 0.9, meaning that after one round we have only 90 % of the noise
compared to the i.i.d. case. We included this specific MPO in Fig. 8.3. For longer
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8. MPO Purification and Renormalisation

interactions (¢ = 0.47) we get a local fidelity of < 0.4. An i.i.d. setting with this fidelity
does not succeed, but the MPO setting does. This shows that we transport the unwanted
inter pair correlations introduced by the memory into the wanted correlations between
the pairs. We tested our Heisenberg memory model for different parameters and the
distillation of the correlated states performs better than the distillation in the i.i.d. case
for a large range of interaction times, see also Fig. 8.5.

1
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Y3
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Figure 8.5.: Relative noise after three steps of iteration for different initial fidelities Fj
and interaction parameter J with cp = 0.04. Whenever the relative noise is

smaller than one, we see a comparable advantage over the i.i.d. case.

8.7. Perspectives.

In this work, we have introduced a framework of renormalising entanglement in order
to achieve entanglement distillation in the presence of natural correlations. We have
proven that protocols known to work for i.i.d. pairs above a threshold fidelity also give
rise to feasible entanglement distillation. We have identified criteria to ensure conver-
gence of correlated pairs described by a MPO to a number of independent maximally
entangled pure states. On intuitive grounds, one might expect that if the MPO is only
weakly correlated between the pairs and the reduced density matrix of a single pair is
sufficiently close to a Bell pair, the distillation protocols should behave similarly to the
i.i.d. case. Indeed, convergence can be proven for threshold fidelities and conditions on
the correlation between the pairs. The programme initiated here shows that correlations
are not necessarily a disadvantage, and one does not have to aim at decorrelating pairs
or resetting preparation procedures, steps that will take time and will in practice lead
to further entanglement deterioration. This work shows that such correlations can be
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8.7. Perspectives.
largely renormalised away, with no modification to the schemes applied. We hope that

this work triggers further studies on entanglement distillation and repeater protocols in
the presence of realistic memory effects.
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9. Perspectives and Open Questions

This work aims to advertise an information theoretic mindset in the approach to quantum
mechanics. A clear description of the wanted information contained in the system in
question not only allows to investigate the transformations and the losses this particular
information undergoes, but also helps determining which part of the wanted information
is theoretically accessible for different kinds of measurement. As system sizes grow and
new technologies like the internet of things introduce the need for faster and faster
processing, principles from quantum information theory can offer important leads to new
ideas on system identification and transformation.

In this work, we develop some ideas following this mindset. We offer new perspectives on
measurement techniques as well as the interpretation of results, we introduce meaningful
measures to gain insight on special properties of quantum states from only partial
measurement data and we transform the entanglement content in a highly correlated
state to be able to use this resource in the most sustainable way.

In chapter five, we used methods related to the compressed sensing technique to perform
non-linear deconvolution of measurement data. This was done to invert the influence of
the line spread function to recover the source function and with it the amplitudes and
positions of atoms in an optical lattice. We applied several reconstruction methods to
experimental data from measurements performed in Bonn in the group of Prof. Meschede
as well as simulated data using the original line spread function. Our goal was to
gain reliable knowledge of the atom positions by introducing honest error bars on the
reconstruction. Furthermore, we wanted to gain insight on possible future improvements
of such measurement systems to boost the distinguishability of close-by atoms by reducing
information loss during the measurement process.

We present the limits and the merits of using a compressed sensing approach in this
slightly non-linear measurement process. On one hand, we are able to deduce reliable
error bars and benchmark our new reconstruction techniques using the positions recon-
structed by the experimental group in their two stage reconstruction algorithm. We
show great accordance of both reconstruction techniques, which makes the non-linear
compressed sensing technique a reasonable tool to apply even in the traditional meas-
urement setup, whose map is very coherent. On the other hand, we experiment with
different slight adjustments to the measurement setup using the simulation that mimics
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the measurement setup as closely as possible. We present that without introducing
further incoherence, the compressed sensing techniques do not offer an improvement on
the reconstructability without further reducing the noise. For reduced noise, however, we
present the idea of a moving camera, where the detector plane is moved in a controlled
way while the picture is taken. This allows to achieve reliable subpixel resolution in the
reconstruction, where the location of an atom can be located within the detector induced
pixel. Other ideas involve a shift of the measurement plane to the optical Fourier plane
of the microscope. This way, the atomic norm reconstruction methods closely related
to the compressed sensing method could be applied. However, the current linespread
function is not suited to this approach, as it’s Fourier transform is also close to a Gaussian
distribution and does not cover much of the spectrum. This results in high information
losses. To reduce these losses, another approach seems promising. Rather than reducing
the noise in the experimental setup, which is a very time-consuming as well as costly
procedure, one could introduce incoherence in the measurement map, thereby making it
more suitable to the compressed sensing approach. Similar to the Fourier approach, the
incoherence of the measurement map makes it harder to interpret for the human brain,
but distributes the information over the whole image. But as long as two neighbouring
atoms are mapped to very distinct pictures, a computer aided reconstruction would
result in a significant improvement of the resolution of a reconstruction. An interest-
ing way of introducing incoherence in measurement maps is to place randomly selected
diffraction filters in the optical setup before the signal is disturbed by any linespread
function. However complicated this might seem to implement in the lab, it might be
worth a thought as the possibility to reliably distinguish states of neighbouring atoms in
optical lattices is needed the development of optical quantum technology like repeaters

or simulators.

The most intriguing extension of the reconstruction techniques points in the direction of
wireless quantum technology. Rather than using the measurement map to reconstruct
a signal, the reconstruction of the measurement map is included in the so-called blind
deconvolution approach. The measurement map in wireless transmission is changed by
obstacles and the individual path of each signal. To gain the high precision reconstruction
needed in communication protocols, the transmission map must be known with high
confidence. Blind deconvolution techniques could serve as a catalyst to unravel the
information hidden in noisy pictures. The fuel for both techniques is the amount of
incoherence in the measurement map. Using seemingly random, but known prefactors,
protects the information from the influence of noise. This way, the information can be
unveiled by inverting the influence of the measurement process.

If this measurement process cannot be inverted completely, one has to rely on quantities
that are immune to the loss of information introduced by the measurement. In chapter six,
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we introduced such a quantity—the local deviation from Gaussianity—in the context of
time-of-flight measurements in optical lattices with cold atoms. This kind of measurement
results in an average over the single particle distances, and thus the individual distances
between particles cannot be reconstructed without further assumptions. We introduce
a measure for Gaussianity and derive bounds that can be estimated using only partial
data without introducing assumptions. With this, we can directly detect local deviation
from Gaussianity in quantum many-body systems. This deviation can witness that a
state is neither a ground nor thermal state of a non-interacting model, which means
that strong correlations are present in the state. The bound is efficiently derived by
using convex optimisation of the Lagrange dual function and optimises over all possible
states compatible with a certain measurement outcome. This way, we avoid introducing
information through prior assumptions and possibly altering the interpretation of a
measurement outcome. This mindset is a relevant further step to introduce precise
statistical confidence regions in derived bounds or estimates. Different from the more
conventional approach of comparing the outcomes of a simulation of a specific physical
situation with the actual data from real experiments, our approach allows to certify to
what extent a specific interpretation of a measurement outcome is correct. Further tools
for this kind of certification will be needed on the road to secure quantum communication,
quantum simulators, but also in general for partial certification of measurement processes
in quantum physics.

As quantum communication develops, a certain device plays an important and fascinating
role: The quantum repeater. As in normal data transfer, the quality of the signal drops
with the distance of transmission. In classical communication, this loss is removed
by using error correction techniques and most of all by sending multiple copies of the
same state through the transmission channel. In quantum communication, one generally
uses shared entangled states to generate reliably secret keys, that can then be used
to encrypt the message. To prove security, these key distribution protocols rely on a
high amount of entanglement between the pairs. Due to incoherence effects, this would
restrict communication to a very limited range. It is at this point, that the quantum
repeater is an essential tool to allow for long-range quantum communication. Due to
the no-cloning theorem, the repeater cannot just clone the state. In order to retrieve
the original amount of entanglement, so-called entanglement distillation protocols are
employed, that map many weakly entangled pairs to less strongly entangled pairs in
an iterative procedure. As entanglement cannot be produced in local operations and
classical communication, the efficiency of these protocols relies on carefully using the
correlations already present in the system to bring up the entanglement in the preferred
subspace. In chapter seven and eight, we develop a way of using unwanted inter-pair
correlations introduced by noisy sources to promote the wanted correlations between the
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two entangled partners. We do so by making use of the language of Matrix Product
Operators and translate protocols from quantum optics to the language of tensor networks.
Entangled pairs from noisy sources can naturally be described in the MPO setting and
we investigate the steps of entanglement distillation protocols using renormalisation
techniques. As we show, in certain physical models for noisy sources, the approach
can lead to a serious speed-up in the convergence to highly entangled pairs without
correlations between subsequent pairs (so-called i.i.d. pairs). We identify the parameter
spaces and threshold fidelities for the convergence in two different protocols, the post-
selective Recurrence protocol as well as the deterministic 5-qubit error correcting code,
showing the interesting feature that the deterministic protocol is seemingly immune to
a high amount of correlations. In the Recurrence protocol, the amount as well as the
nature of the correlations drastically change the convergence behaviour. Indeed, the
correlations are not necessarily a disadvantage. This allows for faster procedures, as
time-consuming procedures to decorrelate pairs or reset preparation procedures can be
omitted without modifications to the entanglement distillation schemes applied.

It is this last part in particular, that contributes to the vision of realising an uncon-
ditionally secure communication network. In quantum communication, information is
transmitted encoded in quantum systems. So-called prepare-and-measure schemes, such
as the BB84 protocol [7], a key distribution protocol, rely on sending perfectly distin-
guishable orthogonal states. Modern security proofs even allow for noisy communication
channels [52, 79, 89] and provide unconditionally secure ways of key distribution. One
future task is to concentrate on another tool from classical information theory—the chan-
nel capacity, or the classical information capacity. To introduce quantum communication
into secure communication networks as needed in the internet of things, the capacities
of quantum communication channels have to continue to grow to offer key rates that are

large enough to enter the race of modern communication.
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A.1. Protocols

A.1.1. Recurrence Protocol
Computational vs. Bell Basis

The recurrence protocol can be broken up into two steps performed locally by Alice and
also Bob. So Alice (and also Bob) divide their qubits up into adjacent pairs within the
MPO chain. For each pair the isometry K = |0)0,0| 4+ |1)1, 1| is applied. This can
be implemented using a local CNOT, measurement, postselection and disposing of the
measured qubit. The second step consists of a Hadamard rotation, again by both Alice
and Bob. It is easy to verify that after the first step we again get an MPO with the

same bond dimension (see Fig.8.1) such that
MEY — (MEY)?. (A.1)

where the C' subscript denotes that these are matrix product operators for the computa-
tional basis of 2 qubits, and so x,y € {(0,0), (1,0), (0,1),(1,1)}. Indeed, this is direct
analogous to the i.i.d case where the density matrix elements map as p; 4 — pi’y, though
of course only in the computational basis. The phase noise is dealt with by the second
step. The bilateral Hadamard operation effectively swaps bit and phase flip noise so that
both are dealt with. In the computational basis the bilateral Hadamard operation is
unwieldy so we switch to the Bell basis. For the Bell basis we use the following shorthand:
A= MU= Mg),o),(o,o) +Mél’l)’(0’0> JrM(Co,o),(l,l) +M(Co,0),(1,1);

2,2 _ 1 ,(0,0),(0,0 1,1),(0,0 0,0),(1,1 0,0),(1,1)
B=M —Mé )i >—Mé ):( )_M(C ):( >+Mé )i )7

_ 3.3 _ 2 ,(0,1),(0,1) (0,1),(1,0 1,0),(0,1 1,0),(1,0),
C=M *M(C )( + M )( )+M(C ( )+M(c ),(1,0).

— a4 = g 0D00) (00,10 _ pp(1.0),(0.1) L 4(1,0),(1,0),
D= M*"* = M — M - M, + MY ;

which only defines the MPO operators for the diagonal elements in the Bell-basis, but
we will see that they are decoupled from other elements and so it is sufficient to consider
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these alone. In this basis the recurrence procedure implements

Ap = A2+ B2 = A2 4+ B2 = Ap,

B, — {An, B} = C? +D? = B, 1,
Cp — C24+ D2 = {A,, By} = Cpy1,
Dy — {Cn, Dy} = {Ch,y Dn} = Dpa,

where each of the two steps are shown, and a subscript n is introduced to denote the
MPO after n iterations. The brackets {-,-} denote the anti-commutator. For matrices
that are simply scalars, where B,,,C),, D, ~ ¢, and A, ~ 1, we see By+1, Dp41 ~ 262
but Cpy1 ~ O(e). This occurs because in a single round only one type of noise is
decreased, and so to see an overall €2 error reduction we must consider two rounds of
iteration
Ans2 = (A7 + B3)? + (CF + D}),
Bn+2 - {Am Bn}2 + {Cm Dn}2’
Cot2 = {A} + B}, C + D;},
Dpyo = {{An; Bn}> {Cn; Dn}}’

Now treating the matrices as scalars, we see B,C, D all go from size O(e) to O(€2>

(A.2)

or smaller. This is the intuition from the i.i.d. case and we next turn to making this
rigorous by quantifying this size with appropriate matrix norms.

Detailed Outline of Convergence Proof for Recurrence Protocol

In the main text we presented a sketch of the proof of Thm. 4. We first recap this sketch,
filling in some details, and clearly stating required lemmas. Numerous technical tools
relating to norms and the ergodicity coefficient are covered in Sec. A.2.1. Many readers
may find it useful to first familiarise themselves with the simpler proof for deterministic
protocols. The first step is showing the iterative formulae relating MPO operators after
n + 1 distillation rounds as a polynomial of MPO operators after n rounds, as introduced
in Eq. A.2. Much of the proof centres around obtaining an upper bound on

en = max (||Bull11, 1Call1—1: 1Dnll151) 5 (A.3)

where a gauge is used so that A4, is trace-preserving. As argued in the main text we
make use of the following lemma.

Lemma 1. Let M be a completely-positive channel, with largest eigenvalue A and
MI(E) = X&. Let X be a channel mapping X (p) = Epv/E. If € is invertible, X~
exists and X o M o X1 is trace-preserving.
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We give further steps of the proof in Sec. A.2.2. Applying the lemma to A;j, 5, gives
a gauge transform we herein label &),. As argued in the main text, we have a recursive

relation
ento < 4k(Xy) (1 + e%) e, (A4)

where 1(X,) = ||X,|| - ||X, Y]] is the condition number of X,. A substantial amount of
our technical work goes into proving

Lemma 2. The condition number of k(X,) where X, is our gauge change, is upper
bounded by

1474
1_;(%3+m¢), (A.5)

n

k(X)) < (1—2k,)"Y with k, =

which we prove in Sec. A.2.3. Notice that the condition number depends on both 7,
and €, and in turn €,4+9 is now upper bounded by a function of only €, and 7,,. In
Sec. A.2.3 we also introduce Thm. 8, an eigenvalue perturbation theorem, which we
prove in Sec. A.2.4.

We already understand the iterative behaviour of €,, but not of 7,,. In Sec. A.2.5 we
show that

Lemma 3. The ergodicity coefficient A,, obeys
14+ A,

n
where i
A, = o A.

with k, as in Lemma A.5.

Notice that 7,42 depends only on 7, and ¢,. Therefore, these two lemmas provide a
pair of coupled equations that provide (€,+2,Tn+2) as a function of (e, 7,). Therefore,
it is straightforward to numerically study the initial conditions (g, 79) flow towards the
desired point (0,0), and this is presented in Fig. 8.3. These results show that a state
within this distillable region is guaranteed to converge, but many steps in our argument
make worst case assumptions and so we may also find convergence for many actual MPO
states with (eg, 79) outside this region.

The distillable region is difficult to analytically characterise. However, we can analyt-

ically prove convergence on a slightly smaller region.

Lemma 4. Given the iterative formulae for upper bounds on €, and 1,, we know that
(én, ™) — (0,0) whenever

(11—7f
€0 < min <71+7'61>. (A.8)
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We give a full proof in Sec. A.2.6. We have shown that the MPO noise matrices vanish,
while the A,, remains trace-preserving and so of constant norm. As ¢, — 0 we have
A, — &, and we can conclude convergence in fidelity as follows from lemma 12.

A.2. Mathematical Concepts and Proofs

A.2.1. Definitions and Properties of Norms

Properties of Norms

1/p

As norms for the states we use the Schatten p-norm, |[p[|, = (X; 0i(p)?) ", where 0;(p)

is the ¢th singular value of p. For the c.p. maps we will use norms defined over a variation
[(Po)

g

with Schatten norms ||P||,_,, = max, ol
We can now use, that
T 1
ol = max T2 2Ly 2
2 oo, pq p—1
and deduce the following lemma.
Lemma 5. Let P be a map. Then
— ||pt
H,P“r%s - HP si1_>7‘£1

where we use M to denote the unique channel such that for all A, B we have Tr(AM(B)) =
Tr(M1(A)B).

[P (o)l
Pll,_s = max ———"—" A9
1Pl = ma ED (A.9)
= ancw;rnaxM (A.10)
o o2 log o _|lonllg
Tr|o1PT (o
= maxmaxM (A.11)
B ool ol
[P .
= max ————>+ (A.12)
B ol
— ||pt
i L (A.13)

Using Lemma 5, we state that |P||;_; = HPTH

00—00"
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Lemma 6. Let P be a positive map. Then the following holds:

_IP@lL PO
o ol =

Assume that the maximum for P is reached by omax = 07 — 0~ where 67,0~ > 0
and Tr((a*)Ta_) = 0. Though this matrix is potentially non-positive (o # 0), we show
that there always exists a non-negative matrix opax that also achieves the maximum. A
completely positive map P preserves positivity, and so

PGl = [P(e*) - 2o,
< [P(e*)], + IP()

(A.14)

I, (A.15)

where we again use the triangle inequality. For a positive Hermitian matrix |[|M||; =

Tr(M), and since ot are positive and P preserves positivity (it is a cp map) we infer

1P (0max) [l < Te[P (o) +Tx[P(07)] (A.16)
=Tr {P(UJr) + 73(0_)} (A.17)
=Tr [P(U+ + J_)} (A.18)
= |P(eT+07)], (A.19)
Additionally we have
lomaxlly = 3 Ihi(omax)| = ||l +07 - (A.20)

So we can conclude that

1M (oma)ly _ [M(o* +00)],

< — (A.21)
lomax |y lo* + ol
Therefore, there exists a strictly positive matrix o}, = ot + ¢~ that also achieved the
maximum value.
Corollary 5. If P is a positive map then
1Pl = [P (A.22)

©.9]
Since in the variational definition of the 1 — 1-norm stated above, the maximum is
always reached on a positive state, we can use the trace properties and the variational
relations of the Schatten norms.

1P (o)l Tr[P(o)] Tr[1P(0)]

max ———’—+ = max — —— = max — ——2>+ (A.23)
a>0 oy o20 |lo]|; a20 oy
Tr|PT(1)e
= maxM = HPT(II)H . (A.24)
020 lolly o0

From this corollary, two further corollaries follow.
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Corollary 6. If P is a positive and trace-preserving map then ||P|,_, = 1.

Corollary 7. For a channel of the form X (p) = /Ep/€ we have that

120 = |VELVE| = lel

Ergodicity Coefficient and Fundamental Channel

We make frequent use of another concept originating from Markov chains, which is the
ergodicity coefficient. It is a measure for how close a quantum channel is to a projection
onto its steady state. The ergodicity is defined as follows. If p is the steady state of a
completely positive map and ||o||; = Tr{\/ O’TO'} is the trace norm of o, then

1F (o)l

= —_, A2
)= i Tl 42

The ergodicity coefficient is similar to the second eigenvalue of the map, and in fact it is
straightforward to see that it always upper bounds the second eigenvalue. The ergodicity
coefficient is submultiplicative. If two maps F; and JF> are trace-preserving then

T(./Tl./_‘é) < T(Fl)T(.FQ). (A.QG)

So the product of the two maps is at least as close to being a projector as both maps
individually. Multiplying a lot of quantum channels, each with an ergodicity smaller
than one, eventually leads to a projection.

A.2.2. Preserving the Trace

The observation that A;A;11 = (A;X)(X14;41) means that an MPO is not uniquely
defined and offers a gauge freedom. Since we deal with unnormalised MPO, we also
have the freedom of rescaling. There is a canonical gauge and scale corresponding

to the transfer channel £ being trace-preserving. We apply the gauge transformation
A; =+ A= XAX ! with X = /€. Consequently,

E—E = (\/§® \/E)E<\/§j® \/gj) and (A.27)
£(p) =+ vee (Ve ) e (A.28)
Now we are in a gauge where 1 s the left Perron state.
) - \/575(\@1\/5) Ve = ete(e) e, (A.29)
—Jelg et =1 (A.30)
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A.2.3. Condition Number

Here we prove the condition number bound presented as Lem. 2. The condition number

is small provided &, is close to 1. Specifically, following Cor. (7) we can upper bound

1051 < €] (A31)
L S (432

and so k(X)) < ||§||OOH§_1HOO Observe that if &, is close to the identity then d, = &, —1
is small, and it is helpful to reformulate in terms of A, := ||0,]|,,. We find

1€lloo = M= (M =&l < T+ =Efloe = 14 Ap. (A.33)

Similarly we can deduce

1=¢'-¢'(1-9), (A.34)

Il = et =t a-g)| (A.35)

1> e = e i = €l (A.36)

= e < 1—1A' (A.37)

This give a new expression for the condition number

_ 1+ Ay
w(X) = Nl N oo < T
n

. (A.38)

To proceed we need to upper bound A,,, which we achieve using the following powerful
result.

Theorem 8. (Figenvalue Perturbation Theorem) Let Py and Po be completely positive
maps with spectral radius 1, and Py is trace-preserving. If £ is the left Perron state for
P, so that PY(&) = &, then

k
=&l = 7= (A.39)
where (M)
_ (LMY _
b= (TS ) 1P -l (A10)

We prove this result in the following subsections, but here make direct use of it.
We set M; = A} which inherits the required properties from A,. Likewise, we set
My = A7H(AL + P,) where P, := Ao — A} is a perturbation composed of noise
matrices and ) is a normalisation constant ensuring that My has spectral radius 1. Note
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that My differs from Aj, 5 by only a constant so they have the same eigenvectors, e.g.
¢. Therefore, the theorem tells us that A,, < ky, /(1 — k) where

- (A.41)

b = (T ) A -t )

Since A, is trace-preserving 7(A}) = 7(A,)* = 7,. Looking at the second factor, we
collect the .A;LL terms and use the triangle inequality

[P1= P21 = H(l —ATHA - )‘717D2H1—>1
<fr=a7lanl L, +a7Pa]

1—1 1—1°

To proceed we need information about A, which is the spectral radius of A% + P, and
s0 A < 1+ ||Pylly_,;. Furthermore, because A} and P, are both positive channels, we
know that A must exceed the spectral radius of A% and so 1 < A. Therefore, A\=! < 1
and |1 — A7 < [|Py|l;_,;. Combining these observations we have

le - P2||1—>1 < 2||7Dn||1—>1'

and so
1+,
b =2 (22 1Pl (A42)
Tn
To upper bound HP;‘;H we have to refer back to the iterative formulae and use norm

submultiplicatively to show HP;%Hlﬁl <262 + 56%. Substituting this into k, we get

1— 74

ky = <1+T ) (462 4 10€2), (A.43)

which proves Lem. 2. We give a quick overview of the bounds we have derived.

=&, <34, (A.44)
e A (A45)
%] < 14A, (A.46)
2 < =5 (A47)
w(X) < 1“_“2 (A.48)

However, the proof rests upon Thm.8, which we turn to in the next section.
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A.2.4. Proof of the Eigenvalue Perturbation Theorem

Our methodology for proving Thm.8 is in the spirit of [92], but generalised so that one
of the channels need not be trace-preserving. The proof requires some new concepts we

have not yet introduced, including the fundamental channel.
Definition 7. Let P be a channel, then the fundamental channel of P is
Z=1-P+P>®)" (A.49)
This definition is central to the following two lemmas

Lemma 8. P; and Pa are completely positive maps with spectral radius 1, and Py is
trace-preserving. Zy is the fundamental channel of P1. The left Perron state for Pa is &.

Then we can say

HZI||1—>1H7)1 —7)2||1—>1

1 —¢]l <
= 1= 121121 I1P1 = Pally g

and

Lemma 9. Let P be a CPT-map, and denote Z to be the fundamental channel of P. It

follows that

1 3(; )
Z < 7
|| ||1—>1 -1 7_(73)

Combining these results straightforwardly leads to Thm.8, and so the remainder of
this section will prove these lemmas. We being by bounding how much the left Perron
state is perturbed from the identity. First we look at the projectors of our maps in the

matrix picture.

Pre = |p)A]  with  (A[p1) = Tr[pr] =1, (A.50)

P = |po)€|  with  (&]pa) = Tr[Tpe| = 1. (A.51)

Since the eigenvector matters only up to a constant we can rescale |) and |p2) so they

still satisfy Tr {5%2] = 1, but also satisfy (p1|¢) = Tr [pk} = 1.

Since we are dealing with the left eigenvectors we have to transpose our maps for easier
notation. Thus the transposed projectors are

PRl = [)p| with (1)) =

B3t = 1€)p2|  with  {€]p) =

1, (A.52)
1.
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-1
We start by applying (ZT) , the inverse fundamental matrix of transposed P; to the
difference between ¢ and the identity matrix 1.

(z) " a-9=-Pl+PrNa-¢ (A.54)
=1-1+1-¢+Pf(€) ~1Tx[pl¢]
= £+ P(©) (A.55)

Going from first to second lines, we have used PJ(1) = 1 and P°t(1) = 1. Going from
second to third we use the normalisation condition Tr [p{é’} = 1 and cancel the identities.

It is a condition of the lemma that £ = 732T (€) and so
~1
(2]) (-9 =(PI-Pi)© (A-56)

Now we multiply by ZI on both sides and take the co-norm.

1=l = |21 o (P -PH (9|, (A.57)
Zio(P] - P}

< |21e ﬁfH 2)(g)H"OIISHOo (A.58)

<|zle (Pl -P)|__ Il (A.59)

<|2lo(P{-PD|___(Mle+I1—-¢l)
Now we use Lem. 5 to deal with the adjoints and use that the identity has oco-norm 1.

I =lloe < N(Pr—="P2) e Zull,, (1 + [T =¢ll)

Now we subtract the term [[(P1 — P2) o Z1||;_; /|1 — || from both sides.

(L= oe(X = [[(P1—=P2) o Z1l1_1)
< |[[(P1—="P2) o Z1|l;_4 (A.60)

Assuming that 1 — [[(P1 — P2) o Z1||;_,; > 0, which is true for P; and Py being close
enough we divide by 1 — ||(P1 — P2) o Z1||;_;-

||Zl||1—>1||7)1 —7)2||1—>1

A .61
2t TP = Poll o (A.61)

1€l < -

This completes the proof of Lem. 8.
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Next we turn our attention to showing Lem. 9. First we reformulate the definition of

the fundamental channel.

Z(P)=1-P+P®) ' = i (P —P®)*
k=0
=1+ fj (P*—P>)
k=1

(A.62)
(A.63)
(A.64)

(A.65)

In those steps we used that (P; — P®)" = PF — P and that P> (P — P>®) = 0. It

is important to note that for any o, the expression (P —P>)(0) is traceless.

|1+ 532 Pro (P —P%)) (1)
ol
e Ml [P o (P—P) (o)
— oo oy llo]l
[0 PP = P00, [P - P (o),
|P —P>(a1)ly o1 Iy

Y20 P (o2 P
it e PP P,
voszo ool B ol

1

121l = max

1

<1+ max
o1

(A.66)

(A.67)

(A.68)

(A.69)

We now upper bound both terms separately. We note that P — P> = P(1 — P>).

e NP =P) (1)l

o1 ol

— e PPA =P (1)) Iy [ = P> (o)l
or |1 —=P>(o1)ll; o1l

< PA=P>(e )y (1 —P>)(o1)ll;
Tefoy]=0 |1 —P>(o1)|l; o2 o1l

< 7P =Py < 7Py + [P 51)

<27(P).

(A.70)

(A.71)

(A.72)
(A.73)

Here we have used the fact that both 1 and P are trace-preserving and completely
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positive and Cor. (6).

|Zi0Prea)], &= [P ()],
T e D A Py (A7)
= kX::OT(Pk) < kz::OT(P) = ?(77) (A.75)

Thus we can conclude that
2r(P) 14+ 7(P)
1—7(P) N 1—7'(73)'

12115 <1+ (A.76)

This completes the proof of Lem. 9.

A.2.5. Change of the Ergodicity

After regauging, the ergodicity coefficient changes. This change can be bounded in the
following way.

Lemma 10. Let Py and Pa be trace-preserving, c.p. maps. Then we have
|7(P1) — 7(P2)| < 7(P1 — P2).
Without loss of generality we assume 7(P1) to be bigger than 7(P2).

[P1(a0)l; [P2(02)ll;
Pi1)—7(P2)| = max ———— — TR ATT
TP TP = B ol o ol o
< max [Pl [Pa(en)y (A.78)
Tr[on]=0  [lo1]l; o]y
< max NPL=P2)(@1)lly (A.79)
Tr[o1]=0 H01||1

Next, we still need to bound the ergodicity coefficient for X, (Ajl1 + Pn) X1 For this
purpose we use Lem. 10 (in the second step).

7 (2 (AL +Pn) X,
<7 (AR) 4 r(AL) = 7 (A (AL + ) 3
< (A 7 (AL - X (AL + P X, (A-81)

Subsequently, we bound the second term.
A = X (AL +Po) X
= A} - X, AL - X, P
= (1- )AL+ X, A1 — XY — x,Px,
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Next, we use the fact that 7(F; + F2) < 7(F1) + 7(F2) and that 7(F) < || Fll;_; in
the following steps,

(AL = X (AL + P X )
< 7-((]1 — Xn)-"ﬁﬁ) + T(XH.A;LL(H — Xn_l)> + T(XnPan_1>

<7(1- Xn)T(’Ai) ™ HX”A;IL(H N Xn_l)Hl—n T HX”P”XJIHFH
<=l (A Kl A - 2
S L PO TP o
Using equations (A.44) to (A.48) we conclude that
T( AL — 2, (AL +Pn) X, (A.82)
< 7(An)'3A, + 1 fiz?ﬂn + ii:HPnHHl-
Therefore,
7( X (An+Pn) X, 1) < 7(AL)(1+3A,) + 1 J_r i” (3An + [[Pulli1)
n

Next, we can upper bound the new ergodicity 7(A,12).

X (AL +Py) X
T(An+2) = T( 1 +6R

< 7(An (AR +Pa) X ). (A.83)

It follows, from assuming the worst case of a growing ergodicity, that

14+ A,
1-A,

T(Ant2) < T(An)4(1 +3An) + (3An + ||7)n||1—>1)' (A.84)

A.2.6. Simplifying Parameter Space

In the following section, we will make use of the abbreviations 7, = 7(4,), Z, = i—ﬁ
and P, = ||Pyn|l;_,;. With these definitions, the bounds are presented as follows: l
P, < 262 + 56l (A.85)
27, P,
Ap < ——F—— A .86
T 1-27,P,) (A.86)
1+A
— Bn
1+A
€n+2 < 41 — A: (621 + Ei) (A88>
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To derive a manageable convergence threshold for ¢y depending 7, we chose the ansatz

1
Znen < 7. (A.89)

Next, we show that given (A.89) for all n, €, converges to zero. Subsequently, we
demonstrate that if (A.89) is fulfilled at step n, it is also fulfilled for n + 2. First, we
assert that (A.89) implies

11— 1
< = o< -, A.90
R S (4.90)
Now we can upper bound P,
11
P, < (2 +5e2)e2 < =€ A 91
n n 5
Furthermore
27, Py, o2l 7.
A, < < 5 T A.92
" 1-2Z,P, ~ 1-287,€& (4.92)
211 22
= a5 7
<_sTn 3 o L, A.93
S, T2, S (4.93)
is true for all ¢, < % and leads us to
14+A 31
- A” < L+ oén. (A.94)
n
Finally, we can upper bound €49
31
€nto < 4(1 + 20€n) (1 + ei) < 56%. (A.95)

This converges to zero for ¢y < % which is implied by (A.89). Next, we show that if (A.89)
is true for step n it also holds for step n 4+ 2. We look at the update rule of 7,, (A.87),
and insert the bounds (A.91), (A.93) and (A.94).

4 21 31 21 11
Tn+2 S Ty (1 + 106”) + (1 u 20> (m + 5)

21
< Tf{ + Té—oen + 3¢, (A.96)

Inserting (A.90) yields
31—71,  31—1,
4 42 n e n
O TIF e g =g
We look at two different cases, 0.5 < 7, < 1 and 0 < 7, < 0.5. In the first regime, we

know

43 1—7’4+31—Té<7_
T, T, — = .
T I B I I
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Therefore, if (A.89) is fulfilled, 7,42 < 7, and from (A.95) we know €,19 < €,. If ¢,
and 7, satisfy ansatz (A.89), than €,492 and 7,12 necessarily do the same, since they are
both smaller. In the second regime we know

4
Tnt2 STn—l_TnEl—i—T;% 71—{—7’4
n

S0 once T, is smaller than 0.5 it stays smaller than 0.5. Therefore,

17_, 175 1
Zn+2€n+2 < T556n < E?En < ?,

and the ansatz holds true in step n + 2. By induction we can conclude that if (A.89) is
satisfied for n = 0 it stays satisfied for all n = 2k with &£ € IN. The assumption for step

n = 0 can be reformulated in the form

11—7g

<0 A.
60_71—1—761 (A-97)

The speed of the convergence is given by

n/
€n < é(5€0)2 i

This concludes the derivation of a threshold for the recurrence protocol that ensures
convergence to maximally entangled pure states.

A.3. Bounding Observables

So far we always dealt with unnormalised MPOs; since it allows the explicit description
of the MPO matrices independent of the length of the MPO. An MPO with the same
matrices but of a different length will generally have a different norm.

We now show that if the transfer matrix is trace-preserving the norm of an MPO will

be exponentially close to unity in L, the length of the chain.

Lemma 11. If E is isomorphic to £, a trace-preserving completely positive map, then
1—d*27(8)" < Te[E] <1+ d°%r(€)",

where T(&) 1is the ergodicity coefficient of E.

Proof. The proof is based on the idea to write the trace explicitly in the matrix picture
for E/ as a sum over a basis. We chose the generalised Pauli matrices P, which vectorised
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and normalised will give us a convenient basis for the trace. We use that except for the
identity, all these matrices have trace equal to zero.

Te|EY] = <f| Eln—t >+ S (o|EE|o).

ceP/1
Now we change into the channel picture to use the ergodicity coefficient.

1

Tr|o&ELn (o
8Tr[8T(]1)]— 2—[ ()]

Tr[EL} > A o2

Next, we can use that the identity is a fixed point of ET. We can freely lower bound
by changing from [|o||, to ||o|.,, but we have to introduce a factor v/d to replace |||,
with [|o]|;.

Te|EY] > 1-d*Vd max M
=0 [loflllolfl;
1-d*? max max M
N Tr[o]=0 Te[oa]=0 [|o1]|og o2y
>1-d? max HgL 92 H1

Trloz]=0 o2y
1-d?r(&)".

The upper bound can be achieved analogously. O]

We now show that it is possible to upper bound the expectation value of an Hermitian
operator with its 1-to-1 norm. The transfer matrix of an operator supported on r sites
is denoted as Fp, and the isomorphic channel as £

Lemma 12. If £ is a trace-preserving completely positive map and &, is an operator
channel supported on r sites, then

Te[EH EE] < () 1+ d5/ 27 (&)

and by settingr = 1 and Eg = A, B,C, D we find the local fidelity w.r.t |p1) , |d2) , |p3) , |d4)

respectively.

Proof.

Te|EGEX | = < ELELT
Vd

= g T L—ra

UGP/]I
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As before, we switch to the channel picture to deal with the first term

\]/13> = ;Tr 68 (1)]

Tr[E5EL7 (1)]
T
5651}1 H1—>1’

< €6 EX

1
(JaPomt

<|

The second term will be handled accordingly.

1—1

= l€olli1

S {olELEL o) < d® max (0| EHEL|o)
Tr[o]=0

ceP/1 ]

2

Tr {0565#”‘1 (0)]

= d* max

Tr {01568/;”_1(02)}

Tifo]=0 B
) Tr|oEHEL ()]
= d* max 5
Tr[o]=0 [fedl®
< d?

max max
Tr[o1]=0 Tr[o2]=0

In the last step we made again use of ||o||, < ||o2]],-

> (o|ELEL|0) < d? max ’

EpEx (o)

o1l oo llo2ll

oeP/1 Tr(o2]=0 ozl
= d®>Vd max ‘862:#:1(02)"1 H“/’r’?"_l(“?)Hl
Tr[o2]=0 Hgnn (O’Q)Hl ||02||1
5Lnfl
= 2|1 T@;{OW

r L—r
= "2l 1517(E)

For the denominator we use the upper bound from Lem. 11 and this completes the

proof.

]

Alas, lower bounding in the same fashion is not generally possible without knowing

more about the eigenvectors of E,. Lem. 12 tells us that upper bounds for physical

expectation values can easily be derived by looking at the channel norms, given a

long chain and that the transfer matrix is trace-preserving. This raises the question

whether the transfer matrix remains trace-preserving over the course of the iteration.
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This is only the case for deterministic protocols without postselection since no matrices
are disregarded and thus the transfer matrix &, is a power of the previous transfer
matrix. Consequently, the proof of a threshold was much more straight forward in the
deterministic case.
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B. Code

B.1. Bounding Gaussianity using Convex Optimisation

The following code contains the minimisation of the relative entropy of a given measure-
ment set using the symplectic diagonalisation of the given covariance matrix. It uses the
modules “momentsfromtof.py”, which calculates the covariance matrix for given experi-
mental TOF measurement outcomes, and “minimizerelent.py”, which contains functions

needed in the minimisation procedure.

minimizegauss.py

“minimizegauss.py” transforms given measurement data using the symplectic diagonal-
isation of the covariance matrix v. It then performs convex optimisation on the dual

function of the minimisation problem in the single modes.

# —-*- coding: utf-8 -*-

import numpy

#import scipy

#import math

from numpy import *

from numpy.linalg import *

#from scipy.optimize import fmin
import minimizerelent as minimize
import momentsfromtof as getmoments
#import cvzopt, cvzopt.solvers
#import pylab as p

import sys

import os.path

BINBIIIBERILBIIBLBRIBIERIBLIRRB IR

# Simulated data contains b'b (2mom) and bTBOIL (4mom)

h = int(sys.argv[3])

mode = int(sys.argv[2])

bosonic_mom = numpy.load('/net/data/janina/npy/input/bosonic_moments_L'
+str(mode)+'_h'+str(h)+'.npy ') .item()

num = int(sys.argv[1])
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B. Code

path = '/net/data/janina/npy/' +str(mode)+ 'mode/fast/h_"'+str(h)+'/"'

length = int(sys.argv[3])
assert (length<=mode)

BRI BRIB BRI L TRIBIERIBLBRIBIERIB BTN Y
#for free bosons: [num] exzists from 0 to 9.

for length in range(1l,mode):

append = '_'+str(num)+’_'+str(length)+’'_'+str(h)+'.npy’
if os.path.exists(path+ 'M2m'+append) and os.path.exists(path+ 'M{m'+append) :

M2m = numpy.load(path+ 'M2m'+append)
M4m = numpy.load(path+ 'M/m'+append)
print 'loading old data’

elif length < mode:
M2m = bosonic_mom[num] [ '2mom']
M4m_array = bosonic_mom[num] [ '4mom’]
print( 'Taking cut from the middle...')
a = mode-length
M2m = M2m[a/2:a/2+length,a/2:a/2+length]

M4m_array = M4m_array[a/2:a/2+length,a/2:a/2+length,a/2:a/2+length,a/2:a/2+1length]

#If needed, calculate missing entries
#A#pHA#MLm = getmoments. getM4 fromnumerics (M2m,M4m_array)

#save data

numpy . save (path+ 'M2m' +append, M2m)

numpy . save (path+ 'M{m' +append, M4m_array)
else:

M2m = bosonic_mom[num] [ '2mom']

M4m_array = bosonic_mom[num] [ '4mom’]

#calculate data, if needed

HH#H#A#MLm = getmoments. getM) fromnumerics (M2m, M4m_array)

#save data
numpy . save (path+ 'M2m' +append, M2m)
numpy . save (path+ 'M{m' +append, M4m_array)

gamma = minimize.covfromdata(M2m)

R RIIIIIIBRIIBIBBBBIIIBH BB I T oo 15 s s 1o o

# Symplectic Diagonalization of the Gaussian State

S,eta,gammadiag = minimize.symplectic (gamma)

numpy .save( 'npy/’' +str (mode)+ 'mode/eta_ ' +str(num)+'.npy' ,eta)

# 1f wanted, check if S is symplectic:

minimize.checkS(S)

#Transform moments in the symplectic basts
if 0: #os.path.ezists(path+'M2'+append) and
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B.1. Bounding Gaussianity using Convex Optimisation

M2
M4
print 'loading old data’

numpy . load (path+ 'M2' +append)

numpy . load (path+ 'M/ ' +append)

else:
#Calculation (For more complicated systems)
#this will take a while for big N (40%2.8 min for N=40)
AA#AAM2L = minimize. getM2(M2m,S)
###A#AMAL = minimize. getMieff (M4m,S)
#i##t#anumpy . save (path+'M2t '+append, M2t)
####t#Anumpy . save (path+'M4t '+append, M4t)

#Calculation for simulated data

M2, U = numpy.linalg.eigh(M2m)

perm = argsort(-M2)

M2 = M2[perm]

U = U[:,perm]

M4 = minimize.getM4fast(M4m_array,U)

#this was effort. save for later use.
numpy . save (path+ 'M2 ' +append,M2)
numpy . save (path+ 'M/ ' +append,M4)

#make calculation on smaller part, where M2, M4>0
ind = M2>10**x-4 #basically empty mode

eta = 2xM2 + 1

etas = etal[ind]

M2s = M2[ind]

M4s = M4[ind]

#now calculate the minimized entropy
x0 = array([1.0,M2[0],M4[0]11)
min_entropy,xopt = minimize.minrelent(M2s,M4s,etas,x0)

dualentropy = minimize.dualentropy(M2,eta)

numpy . save (path+ 'entropies ' +append.format (40),
{'RelEnt' :-sum(min_entropy) + sum(dualentropy),
'MinEnt' :min_entropy,
'GaussEnt ' :dualentropy})

print length

momentsfromtof.py

The following code contains the functions and routines needed to transform given mo-
ments from the measurement basis to the basis in which the minimisation of the dual
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function in performed.

1 # —*- coding: utf-8 —*-

2 import numpy

3 import time

4 from numpy import linalg

5 import matplotlib

6 import math

7 from matplotlib import pyplot as p

10

11 def energie(datall):

12 """Do everything one could want to do with this kind of data."""
13 atomn,atomnred,noise,datsmall=sortdata(datall)

14 convav,avconv,convdat,corr=getmoments.fouriercorr(datsmall)

15 adaav, ada, avada = getmoments.getM2fromexp(datsmall)

16 M4 = getmoments.getM4fromexp(ada)

17 return avada, corr

18

19 # Sort experimental data for atom number

20 def sortdata(datall,NX1=170,NX2=200,NY1=50,NY2=75,X1=103,X2=333,Y1=77,Y2=307) :

21 """We integrate over a small noise area to reduce noise in the picture. then
22 we integrate over a certain section of the image, to get the atom number of
23 each image. index contains the pictures, where the atom number is between

24 Nmin and Nmaxz. For further calculations, the subpicture should be squared.

25

26 Parameters

27 —mm—m——————
28 NX1,NX2;NY1,NY2: noise area
29 X1,X2;Y1,Y2: cloud area

30 Nmin,Nmaz: accepted particle range
31 outputs atomnumber for different slices in datall and smaller data array with
32 particle number in Nmin,Nmaz array

nmn
33

34 factor=numpy.divide(float ((X2-X1)*(Y2-Y1)),float ((NX2-NX1)*(NY2-NY1)))
35 noise = numpy.sum(datall[:,NX1:NX2,NY1:NY2],axis=1)

36 noise = numpy.sum(noise,axis=1)

37 atomn = numpy.sum(datall[:,X1:X2,Y1:Y2],axis=1)

38 atomn = numpy.sum(atomn,axis=1)

39 atomnred = atomn - factor*noise

40 n,bins,patch=p.hist(atomnred)

41 Nmin=bins [n.argmax()-1]

42 Nmax=bins [n.argmax () +2]

43 datsmall=datall[(atomnred>=Nmin)& (atomnred<=Nmax) ,X1:X2,Y1:Y2]
44 return atomn,atomnred,noise,datsmall
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B.1. Bounding Gaussianity using Convex Optimisation

def fouriercorr(datsmall): #,X1=110,X2=327,Y1=77,Y2=307):

"micalculate fourth moments (quasimomentum space) from time-of-flight

pictures using convolution via fft of the data.

Parameters
X1,X2;Y1,Y2: boundary on data subset to use (already done by sortdata)
datall: complete data set
outputs convoluted average of data, average of convoluted data,
convoluted data, correlationfunction
todo: output moments in format from minimizing code; include prefactors
datsmall = datall[:,X1:X2,Y1:Y2]
N = datsmall.shape[0]
avdat = numpy.mean(datsmall,axis=0)
convav = numpy.fft.fftshift(numpy.£fft.ifft2(numpy.square(
numpy . abs (numpy . £ft.fft2(avdat)))))
X = convav.shape[0]
Y = convav.shape[1]
convdat = numpy.zeros([N,X,Y])
for i in range(N):
convdat [i] = numpy.fft.fftshift(numpy.fft.ifft2(numpy.square(
numpy . abs (numpy . £ft.££t2(datsmall[i])))))

avconv = numpy.mean(convdat,axis=0)
corr=numpy.divide (avconv, convav)
corr=corr.real
p.pcolor(corr-1,vmin=0.0004, vmax=0.0016)
p.colorbar()

p-show()

return convav,avconv,convdat,corr

def pictolD(datsmall,N=113): #oder 115

P

Parameters

datsmall: array with TOF data, different pictures.

N: middle of picture in the second direction (y)

only use one period of k (one peak + surrounding at 115 \pm 43

section = datsmalll:,72:158,N-3:N+3]

#this should find the mean in y-direction and keep individual pictures.
flatpic = numpy.mean(section, axis=2)

return flatpic

only use snippet from 2D picture and average over it. Use the middle.
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91
92 def getM2fromexp(datsmall,N):

93 #[2D:X1=103, X2=333, Y1=77 , Y2=307 (squared); 1D:230]

94 """Calculate second moments and single shots from time of flight pictures.

95 output: adaav, ada, avada (last one is M2m = <a_t \dag a> (d) with d=(i-3))

96 todo: fiz prefactors; trace(ada) should be around 40 but is tiny.

97 careful: we assume translational invariance here, not invertible otherwise.
98 lattice 1D, makes factor eastier, data achievable, if not yet present.

99 e

100 #some constants we need because this is real data.

101 al = 425 * 10*%x(-9) # m lattice constant (\lambda/2)

102 px = 2.43 * 10%*(-6) # m pizelsize
103 hbar = 1.054571726 * 10*%*(-34) # m2 kg / s

104 t = 17 * 10%x*(-3) # s

105 m = 1.44316082 * 10x*(-25) # kg (Rb87: 86.9091835 u)
106

107 nql = pictolD(datsmall) #average over middle section

108 #need to adjust this to fit the k-space picture.

109 ng = nql/px #only 1D, no correction for r->k

110

111 n = nq.shape[1] #1D

2 # N =15 #lattice dimension (1D) (now user input)

113

o
]

114 numpy .zeros (N) #double counting for same distance between lattice points

115 L = numpy.zeros([n,N]) #phasefactor in transformation
116

117 #1D formulation: calculate P and L s.t. nq =L * P x M2

118 A = mxpxxal/(hbar*t) #prefactor in the exzponent
119 for k in range(N):

120 P[k] = (N-k)

121 for 1 in range(n):

122 L[1]1[k] = 2 * math.cos(A * kx*1)

123

124 #no double counting while inverting indices!

125 P[0] = 0.5%P[0]

126

127 #Pseudo invert L to solve for M2
128 Linv = numpy.linalg.pinv(L)

129

130 #get single shot wvalues for M2
131 nl = numpy.zeros([nq.shape[0],N])

132 for i in range(nq.shape[0]):

133 nl(i,:] = 1./P * numpy.dot(Linv , nqli,:])

134

135 #get average = expectation value of M2, for covariance matriz
136 ngav = numpy.mean(ng,axis=0)
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B.1. Bounding Gaussianity using Convex Optimisation

nlav = 1./P * numpy.dot(Linv,nqav) # 1/P * multiplies P[i] to dot(L,n)[i]

#build a"\dag a covariance matriz with translational and inversion invariance
#first averaged version, needed for covariance matriT
avada = numpy.diag(nlav[0]*numpy.ones(N),0)
for i in range(1,N):
avada += numpy.diag(nlav[i]*numpy.ones(N-i),1i)

avada += numpy.diag(nlav[i]*numpy.ones(N-i),-i)

#then also single-shot version, later needed for fourth moments
#CAREFUL: pictures now in last dimension.
ada = numpy.zeros([N,N, nl.shape[0]])
for j in range(nl.shape[0]):
adal:,:,j] += numpy.diag(nl[j,0]*numpy.ones(N),0)
for i in range(1,N):
adal:,:,j] += numpy.diag(nl[j,i]*numpy.ones(N-i),1i)
adal:,:,j] += numpy.diag(nl[j,i]*numpy.ones(N-i),-1)

#Prefactor: W7d/(2pi) * e (m/(h*t))

hbar = 1.054571726 * 10%*(-34) # m2 kg / s

t = 17 * 10%*(-3) # s

m = 1.44316082 * 10%*(-25) # kg (Rb87: 86.9091835 u)
wt = 250 # 1/s Trap frequency

al = 425 * 10%*(-9) # m lattice constant (\lambda/2)
Er = hbar**2*numpy.pix*2/(al**2*2*m) #m**2 kg /s**2 Energy. good.

J = 1.39666*16%*1.051%math.e**(-2.12104 * 4) * Er # Er (really that small?)
a01 = math.sqrt(math.sqrt(2+J)*al/(wt*m))# m**2 width of wannier state
VO = 16*Er # depth of potential
who = math.sqrt(Er*V0)/hbar # 1/s frequency of HO
a0 = math.sqrt(hbar/(m*who)) # m wannier width

pr = 2.43 * 10**(-6) # m pizelsize
W=(hbar*t)/(a0*m) # m nq has unit 1/m

#add prefactor to matrices
ada = W * ada
adaav = numpy.mean(ada, axis=0)

avada = W * avada

return adaav, ada, avada

def kd(i,j):

"""Kronecker delta used in commutation relations for M4 calculation."""

if i==j:
return 1
else:

return O
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183

184 def getM4fromexp(ada):

nmnn

185 calculate all the M4 expectation values from the ada single shot wvalues.

186 All entries with nonequal number of ad/a are zero

187

188 Parameters

189  —m———————-

190 ada: single shot values from TOF measurement, in lattice space.

191 o

192 t0 = time.clock() # this can run long; show time as entertainment
193 N = ada.shape[0] # lattice dimension

194 M = ada.shape[2] # number of pictures

195 M4 = numpy.zeros(16*N**4) # number of different combinations of a/ad
196

197 #find all entries through commutation relations

198 for i in range(N):

199 for j in range(N):

200 for k in range(N):

201 for 1 in range(N):

202 #I a a ad ad

203 M4 [8*N**3*i + 4*N#*2%j + 2#N*(k+N) + (L+N)] = \

204 numpy .mean(ada[k,i] * adall,j] +

205 kd(j,k) * ada[l,i] + kd(j,1) * adalk,i] + kd(i,k) * ada[l,j] +
206 kd(i,1) * kd(j,k) + kd(i,k) * kd(j,1l) )

207 #II a ad a ad

208 M4 [8#N**3*i + 4*N**2*(j+N) + 2xNxk + (1+N)] = \

209 numpy .mean(adalj,i] * ada[l,k] +

210 kd(i,j) * adal[l,k] + kd(k,1) * adal[j,i] + kd(k,1) * kd(i,j) )
211 #II1 a ad ad a

212 M4 [8xN**3%i + 4xN+*x2x(j+N) + 2*N*x(k+N) + 1] = \

213 numpy.mean(adalj,i] * adalk,1] + kd(i,j) * adalk,1] )
214 #IV ad a a ad

215 M4 [8#N#*3* (1+N) + 4xN**2%j + 2xNxk + (1+N)] = \

216 numpy .mean(adali,j] * adal[l,k] + kd(k,1) * adali,j] )
217 #V/  ad a ad a

218 M4 [8#N#*3% (1+N) + 4xN**2%j + 2xNx(k+N) + 1] = \

219 numpy .mean(adali,j] * adalk,1])

220 #VI ad ad a a

221 M4 [8#N**3* (i+N) + 4*N**2x(j+N) + 2xNxk + 1] = \

222 numpy .mean(adali,k] * adalj,1] - kd(j,k) * adali,1] )
223 print(str(i)+' of '+str(N)+'; current runtime: '+

224 str(round((time.clock()-t0)/60.,3))+"' min')

225 print('Total runtime: '+str(round((time.clock()-t0)/60.,3))+' min')
226 return M4

227

228 def getM4fromnumerics_ferm(ada,M4):
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B.1. Bounding Gaussianity using Convex Optimisation

"""calculate all the M4 expectation values from the adaada and ada exp values.
All entries with nonequal number of ad/a are zero

Fermionic: Use anticommutator instead of commutator.

Parameters

ada: single shot values from TOF measurement, in lattice space.

mmnn

t0 = time.clock() # this can run long; show time as entertainment

N = ada.shape[0] # lattice dimension

M4m = 1j*numpy.zeros(16*N**4) # number of different combinations of a/ad

#find all entries through commutation relations
for i in range(N):
for j in range(N):
for k in range(N):
for 1 in range(N):
#1 a a ad ad
M4m [8*N*k*3x1 + 4*xN*kx2xj + 2Nk (k+N) + (1+N)] = \
M4[k,i,1,j] - kd(j,k) * ada[l,i] - kd(j,1) * adalk,i] - \
kd(i,k) * adall,j] - kd(i,1) * kd(j,k) - kd(i,k) * kd(j,1)
#I1I a ad a ad
M4m [8*N**3%i + 4xN**2%(j+N) + 2*Nxk + (1+N)] = \
M4[j,1i,1,k] - \
kd(i,j) * adall,k] - kd(k,1) * adalj,i] - kd(k,1) * kd(i,j)
#II1 a ad ad a
M4m [8*N*#3%i + 4*N#kx2%(j+N) + 2N+ (k+N) + 1] = \
M4[j,i,k,1] - kd(i,j) * adalk,1]
#IV ad a a ad
M4m [8*N**3% (1+N) + 4xN**x2%xj + 2%Nxk + (1+N)] = \
M4[i,j,1,k] - kd(k,1) * adali,j]
#V  ad a ad a
M4m [8*N*k*3+ (1+N) + 4*N**2%xj + 2*N*(k+N) + 1] = \
M4li,j,k,1]
#VI ad ad a a
M4m [8xN*k*3+ (1+N) + 4*N**2x(j+N) + 2«Nxk + 1] = \
M4[i,k,j,1] + kd(j,k) * adali,1]
#print (str(t)+' of '+str(N)+'; current runtime: '+
# str(round((time.clock()-t0)/60.,3))+"' min')
#print ('Total runtime: '+str(round((time.clock()-t0)/60.,3))+' min')
return M4m

def getM4fromnumerics(ada,M4):

"""ecalculate all the M expectation values from the adaada and ada exp values.

All entries with nonequal number of ad/a are zero
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275

276 Parameters

277 —m————————

278 ada: single shot wvalues from TOF measurement, in lattice space.

279 e

280 t0 = time.clock() # this can run long; show time as entertainment

281 N = ada.shape[0] # lattice dimension

282 M4m = 1j*numpy.zeros(16xN*x4) # number of different combinations of a/ad
283

284 #find all entries through commutation relations

285 for i in range(N):

286 for j in range(N):

287 for k in range(N):

288 for 1 in range(N):

289 #I a a ad ad

290 M4m [8*N**3%1i + 4*N*k*2%j + 2xNx(k+N) + (1+N)] = \

291 M4[k,i,1,3j] + kd(j,k) * adall,i] + kd(j,1) * adalk,i] + \
292 kd(i,k) * adall,j] + kd(i,1) * kd(j,k) + kd(i,k) * kd(j,1)
293 #II a ad a ad

204 M4m [8+N**3*i + 4xN**2*(j+N) + 2xN*k + (1+N)] = \

295 M4[j,i,1,k] + \

296 kd(i,j) * adal[l,k] + kd(k,1) * adalj,i] + kd(k,1) * kd(i,j)
297 #II1 a ad ad a

208 MAm [8*N#**3%i + 4xNk*2%(j+N) + 2N+ (k+N) + 1] = \

299 M4[j,i,k,1] + kd(i,j) * adalk,1]

300 #IV ad a a ad

301 MAm [8*N**3* (1+N) + 4xN**2*j + 2xNxk + (1+N)] = \

302 M4[i,j,1,k] + kd(k,1) * adali,j]

303 #V  ad a ad a

304 M4m [8*N**3% (1+N) + 4xN**x2%j + 2xN*(k+N) + 1] = \

305 M4[i,j,k,1]

306 #VI ad ad a a

307 M4m [8*N**3x (i+N) + 4*N**x2% (j+N) + 2«Nxk + 1] = \

308 M4[i,k,j,1] - kd(j,k) * adali,1]

309 print(str(i)+' of '+str(N)+'; current runtime: '+

310 str(round((time.clock()-t0)/60.,3))+' min')

311 print('Total runtime: '+str(round((time.clock()-t0)/60.,3))+' min')
312 return M4m

minimizerelent.py

The following code contains the functions and routines needed to perform the symplectic

diagonalisation and minimisation.

1 # —*- coding: utf-8 —*-
2 import math
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B.1. Bounding Gaussianity using Convex Optimisation

import scipy

import numpy

import time

from numpy import *

from numpy.linalg import *

from scipy.optimize import fmin

#import cvzopt, cuvzopt.solvers

#ommm e Don't write over this line--——-—————————————-—--———-—————--—

# Transform measured moments in Symplectic base z -> Sz; M -> SMS.T
# Linear mapping between creation/annihilation and z/p base g=Tr
def rtoq(N):

""'builds transform from a"\dag a to z p basis (and back)

(a, a”\dag) =T * (z, p)

output: T, Tinv'''

n = zeros((N,N))
I = eye(N,N)
T = 1./sqrt(2) * vstack([ hstack([ I, I*1j 1), hstack([ I, -I*1j 1) 1)

Tinv = 1./sqrt(2) * vstack([ hstack([ I, I 1), hstack([ -I*1j, I*1j 1) 1)

return T,Tinv

def covfromdata_ferm(M2m) :
"''takes fermionic a_t "\dag a_j data and returns covariance matriz.''’
N = M2m.shape [0]
antidiag = numpy.array([[0,-1],[1,0]1]1)
gamma = kron(2+*M2m - eye(N) ,antidiag)
#Find transformation on the level of (a,a”\dag)

return gamma

#data means: a_t17d a_j - data.

def covfromdata(M2m):
"''takes a_i”\dag a_j data and transforms covariance matriz in z/p basis
output: gamma'''

N = M2m.shape[0]

gammaq = numpy.vstack([numpy.hstack([numpy.zeros([N,N]) ,M2m
+ numpy.eye(N)]) ,numpy.hstack([M2m,numpy.zeros ([N,N]1)1)]1)

T,Tinv = rtoq(N)

gammax = dot(dot(Tinv, gammaq), Tinv.T)

gamma = 2*real (gammax)

return gamma

def kd(i,j):
"""Kronecker delta used in commutation relations for M4 calculation.

if i==j:

nmnn
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B. Code

return 1
else:
return 0O

def orthogonal (gamma) :

N = gamma.shape[0]/2

[eta,S] = eigh(lj*gamma) #gamma is skew-symmetric. 1j%*gamma is hermitian.

perm = argsort(-eta) [:N]

eta = 1j*etal[perm]

S = S[:,perm]

gammadiag = dot(dot(S.T.conjugate(),1j*gamma),S)
return S,eta,gammadiag

def symplectic(gamma):

""'finds the symplectic transform that diagonalizes gamma;
output: S, eta, diagonalized gamma'''
N = gamma.shape[0]/2

n = zeros((N,N))
I = eye(N,N)
J = vstack([hstack([n,I]) ,hstack([-I,n])])

[eta, W] = eig(-1j * dot(gamma, J))

eta = eta.real

perm = argsort(-eta) [:N]

eta = etal[perm]

Ws = -sqrt(2) * 1j * dot(J, W[:, perm])

X = Ws.real
Y = Ws.imag
S = hstack([X, Y1)

gammadiag = dot(dot(S.transpose(), gamma), S)
return S,eta,gammadiag

def checkS(S):

"!"'check whether S really is symplectic; mostly for debugging''’
N = S.shape[0]/2

= zeros((N,N))

= eye(N,N)

= vstack([hstack([n,I]) ,hstack([-I,n])])

S[:N, :N]

= S[N:,:N]

= S[:N,N:]

= S[N:,N:]

checkl = dot(A.transpose(), D) - dot(C.transpose(), B)

O Qw®E o HAB
[}

check2 = dot(A, D.transpose()) - dot(B, C.transpose())
check3 = dot(dot(S.transpose(), J), S)
check4 = dot(dot(S, J), S.transpose())

check = max(abs(checkl - I).max(), abs(check2 - I).max(),
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95 abs(check3 - J).max(), abs(check4 - J).max())
96 if check<10**(-10):

97 print("S is symplectic.")

98 else:

99 print(”S <s not symplectic.")

100 return check

101

102 #H-—————- Fourth Part: Minimization of relative Entropy———--—-------
103

104 #-——--Minimizing - Definitions—-----

106 def state(mul0, mu2, mu4, N):

107 N_array=arange (N)

108 return ex*(-1.0*(1.0+mu0+mu2*N_array+mud* (N_array**2)))
109

110 def g(x,M0,M2,M4,N):

111 mu0, mu2, mu4d = x

112 st=state (mul0,mu2,mu4,N)

113 gval=sum(st) +mu0*MO+mu2*M2+mud*M4
114 return gval

115
116 def gradg(x,MO,M2,M4,N):

117 mu0, mu2, mu4d = X

118 st=state (mu0,mu2,mu4,N)

119 dgdmu0=MO-sum(st)

120 dgdmu2=M2-sum(st*arange (N))

121 dgdmu4=M4-sum(st*arange (N) **2)

122 return array([dgdmu0O,dgdmu2,dgdmud])

123

124 def check_constraints(opt, MO, M2, M4, N):

125 errO=sum(state (opt [0] ,opt [1],0pt[2],N))-MO

126 err2=sum(state (opt [0] ,opt [1],0pt [2],N)*arange (N))-M2
127 errd=sum(state(opt [0],opt [1],0pt [2],N)*arange (N) **2)-M4
128 return array([err0,err2,errd])

129

130 def compute_optval(x,N):

131 st=state(x[0],x[1],x[2],N)

132 ind=(st>10E-15) #cut off in fock bastis
133 optval=sum(st[ind] *1log(st[ind]))

134 return optval

135
136 def compute_optimal_x_brutal (x0,M0,M2,M4,N,tol=10e-3):

137 """Compute initial guess for optimal point of objective function
138 in the middle of the intervall of possible values for M4 """
139 xstart=1.0*x0

140 x_opt=zeros((len(M2), 3))

139



B. Code

141 "riCompute a better initial guess for the first element M2[0] using

142 simplex downhill. This is then used as an initial guess for the actual

143 computation using the fmin_bfgs algorithm. """

144 x0=scipy.optimize.fmin(g,xstart,args=(M0,M2[0] ,M4[0],N) ,disp=False)

145 for i in arange(len(M2)):

146 print (' \n\nMinimizing mode '+str(i+1)+' of '+str(len(M2))+'\n"')

147 if M4A[i]>M2[i]*%2:

148 opt=scipy.optimize.fmin_bfgs(g,x0,fprime=gradg,\

149 args=(MO,M2[i] ,M4[i],N) ,full_output=True,disp=False)

150 err=linalg.norm(check_constraints(opt [0] ,MO,M2[i] ,M4[i],N))

151 """Automatically check if the algorithm converges."""

152 if opt[6]!=0 or err>=tol:

153 x0 = xstart

154 print("Initial guess didn't work, try again...")

155 #r0=array ([MO, 1/M2[%],1/M4[%]])

156 opt=scipy.optimize.fmin_bfgs(g,x0,fprime=gradg,\

157 args=(MO,M2[1] ,M4[i],N) ,full_output=True,disp=False)

158 err=linalg.norm(check_constraints(opt[0] ,MO,M2[i] ,M4[i],N))

159 if err>=tol:

160 n=0

161 print(”...and keep on trying...")

162 while True:

163 x0 = random.rand(3)

164 opt=scipy.optimize.fmin_bfgs(g,x0,fprime=gradg,\

165 args=(MO,M2[i],M4[i],N),full_output=True,disp=False)

166 err=linalg.norm(check_constraints(opt[0] ,MO,M2[i] ,M4[i],N))
167 n = n+l

168 if err<=tol or n>600:

169 if err>tol:

170 print("Failed to find minimum! Current error: "
171 +str(err)+ ' \nMode '+str(i)+' of '+str(len(M2)-1))
172 print("M2 "+str(M2[i])+" and M4 "+str(M4[i])+
173 " will not contribute to the bound.")

174 else:

175 print("Stage 3 converged.")# Current error: "+str(err))
176 x_opt[i,:]=opt[0]

177 break

178 # print ("Current zopt: "+str(opt[0]))

179 # print ("Unable to find minimum for given M2, M4, set min_ent to zero")
180 else:

181 print("Stage 2 converged.")# Current error: "+str(err))

182 x_opt[i,:]=o0pt[0]

183 else:

184 print("Stage 1 converged.")# Current error: "+str(err))

185 x_opt[i,:]J=opt[0]

186 else:

140



B.1. Bounding Gaussianity using Convex Optimisation

187 print("M2 and M4 incompatible. Bound 0.")
188 return x_opt

189

190

191 def compute_optimal_x(x0,M0,M2,M4,N,tol=10e-3):

192 """Compute initial guess for optimal point of objective function

193 in the middle of the intervall of possible values for M4 """

194 xstart=1.0%*x0

195 x_opt=zeros((len(M2), 3))

196 """Compute a better initial guess for the first element M2[0] using

197 simplex downhill. This ts then used as an initial guess for the actual
198 computation using the fmin_bfgs algorithm. """

199 x0=scipy.optimize.fmin(g,xstart,args=(M0,M2[0] ,M4[0],N))

200 for i in arange(len(M2)):

201 opt=scipy.optimize.fmin_bfgs(g,x0,fprime=gradg,\

202 args=(MO,M2[i] ,M4[i],N),full_output=True)
203 err=linalg.norm(check_constraints(opt[0],MO,M2[i],M4[i],N))

204 """Automatically check if the algorithm converges."""

205 if opt[6]!=0 or err>=tol:

206 x0 = xstart

207 #z0=array ([MO, 1/M2[%],1/M{[%]])

208 opt=scipy.optimize.fmin_bfgs(g,x0,fprime=gradg,\

209 args=(MO,M2[i] ,M4[i],N),full_output=True)
210 err=linalg.norm(check_constraints(opt[0] ,MO,M2[i] ,M4[i],N))

211 if err>=tol:

212 #raise Exception("Unable to find minimum for given M2, M4")

213 print ("Current error: "+str(err))

214 print ("Current zopt: "+str(opt[0]))

215 print("Unable to find minimum for given M2, M4, set min_ent to zero")
216 x_opt[i, :1=0%opt [0]

217 else:

218 x_opt[i, :]=opt [0]

219 else:

220 x_opt[i,:]=opt[0]

221 return x_opt

222
223 def minrelent(M2,M4,eta,x0O=array([1.,0.1,0.1]),M0=1.0,it=1000):

224 beta = 2./eta #Normalize, since gamma = 2% real(r_i r_7)
225 x_opt = []

226 g_opt = []

227 constraints = []

228 dualentropy = []

229 f_opt = []

230 #it = 600 #counting treshold for summation over fock space
231 x_opt = compute_optimal_x_brutal(x0,MO0,M2,M4,it,tol=10e-3)

232 for k in range(M2.shape[0]):
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if x_opt[k].all() == 0:
g_opt.append( 0 )
else:
g_opt.append( compute_optval(x_opt[k],it))
min_entropy = - real(g_opt) #entropy of rho
return min_entropy,x_opt

def dualentropy(M2,eta):
beta = 2./eta
dualentropy=( beta * M2 - log(1.0 - ex*x(-beta))) #entropy of sigma

return dualentropy

def gaussian_entropy(eta):
mu = 1./(eta)
gaussian_ent=numpy.zeros (len(eta))
for i in range(len(eta)):
if abs(mu[i]-1)>10%*-3:
gaussian_ent [i]=(((1-mu[i])/(2*mu[i]l)) * math.log((1+muli])/(1-mulil))
- math.log((2*muli])/(1+muli])))
else:
gaussian_ent[i] = 0

return array(gaussian_ent)

#omm——- Minimizing - Calculation——————-—-----————-
# compute all minimized entropies for M2, M4
def getM2(M2m,S):
N = M2m.shape [0]
T,Tinv = rtoq(N)
ST = dot(dot(T,S.T),Tinv)
gammaq = numpy.vstack([numpy.hstack([numpy.zeros([N,N]) ,M2m
+ numpy.eye(N)1) ,numpy.hstack([M2m,numpy.zeros ([N,N1)1)1)
M2t = dot(dot(ST, gammaqg), ST.T.conjugate())
# M2t = dot(dot(ST.T.conjugate(), gammaq), ST)
# M2t dot(dot (dot(dot(T,S.T),gamma),S),T.T) #equivalent, but already real
M2 = real(diag(M2t[N:,:N]))
return M2,M2t

def getM2_ferm(M2m,S): #Not right yet. Need trf from ada to cov. Replace T by this trf.
N = M2m.shape[0]
T,Tinv = rtoq(N)
ST = dot(dot(T,S.T),Tinv)
gammaq = numpy.vstack([numpy.hstack([numpy.zeros([N,N]),-M2m
+ numpy.eye(N)]) ,numpy.hstack ([M2m,numpy.zeros ([N,N])]1)1)
M2t = dot(dot (ST, gammaq), ST.T)
# M2t = dot(dot(dot(dot(T,S.T),gamma),S),T.T) #equivalent, but already real
M2 = real(diag(M2t[N:,:N]))
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279 return M2

280

281 def getM4fast(M4m_array,U):

282 N = M4m_array.shape[0]

283 Ud = U.T.conjugate()

284 Ut = U.T

285 M4 = numpy.zeros(M4m_array.shape[0])

286 M4m_array = numpy.tensordot(Ud,M4m_array, (1,0))

287 M4m_array = numpy.tensordot (Ut,M4m_array,(1,1)).transpose((1,0,2,3))
288 M4m_array = numpy.tensordot(Ud,M4m_array, (1,2)).transpose((1,2,0,3))
289 M4m_array = numpy.tensordot (Ut,M4m_array, (1,3)).transpose((1,2,3,0))

290 for i in range(M4m_array.shape[0]):
201 M4[i] = real(M4m_arrayl[i,i,i,i])
292 return M4

203
204 def getMdeff(M4m_flat,S): #runtime: 40%2.9 min for N=40
295 t0 = time.clock()

296 N = int(0.5*sqrt(sqrt(M4m_flat.shape[0])))

297 T,Tinv = rtoq(N)

298 ST = dot(dot(T,S.T),Tinv)

299 M4t = (1+1j)*numpy.zeros([N])

300 for z in range(N):

301 ST4it = (1+1j)*numpy.zeros([M4m_flat.shape[0]])

302 for i in range(2+N):

303 for j in range(2xN):

304 for k in range(2*N):

305 for 1 in range(2*N):

306 ST4it [(2*N)**3*i + (2xN)**2%j + 2xNxk + 1] = \
307 ST[z+N,i] * ST[z,j] * ST[z+N,k] * ST[z,1]

308 M4t [z] = dot(ST4it, M4m_flat)

309 print(str(z)+' of '+str(N-1)+'; current runtime: '+
310 str(round((time.clock()-t0)/60.,3))+"' min')

311 M4 = real(M4t)

312 print('Total runtime: '+str(round((time.clock()-t0)/60.,3))+' min')
313 return M4

314

315 def getM4_ferm(M4m_flat,S): #not right yet.
316 t0 = time.clock()

317 N = int(0.5*sqrt(sqrt(M4m_flat.shape[0])))
318 T,Tinv = rtoq(N) #Replace with the right T
319 ST = dot(dot(T,S.T),Tinv)

320 M4t = (1+1j)*numpy.zeros([N])

321 for z in range(N):

322 ST4it = (1+1j)*numpy.zeros([M4m_flat.shape[0]])
323 for i in range(2xN):

324 for j in range(2x*N):
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325 for k in range(2*N):

326 for 1 in range(2+N):

327 ST4it [(2*N)**3*i + (2*%N)**2%j + 2xNxk + 1] = \
328 ST[z+N,i] * ST[z,j] * ST[z+N,k] * ST[z,1]

329 M4t [z] = dot(ST4it, M4m_flat)

330 print(str(z)+' of '+str(N-1)+'; current runtime: '+
331 str(round((time.clock()-t0)/60.,3))+"' min')

332 M4 = real (M4t)

333 print('Total runtime: '+str(round((time.clock()-t0)/60.,3))+' min')
334 return M4

335

336 def getM4evenmoreeff (M4m_flat,S): #restrict to columns where Mim != 0
337 t0 = time.clock()

338 N = int(0.5*sqrt(sqrt (M4m_flat.shape[0])))

339 T,Tinv = rtoq(N)

340 ST = dot(dot(Tinv.T,S),T.T)

341 M4t = (1+1j)*numpy.zeros([N])

342 for z in range(N):

343 ST4it = (1+1j)*numpy.zeros([M4m_flat.shape[0]])

344 for i in range(N):

345 for j in range(N):

346 for k in range(N):

347 for 1 in range(N):

348 ST4it [8*N##3%1i + 4*N**2xj + 2xNk(k+N) + (1+N)] = \
349 ST[i,z+N] * ST[j,z] * ST[k+N,z+N] * ST[1+N,z]
350 STA1it [8#N#*3*i + 4*N**2*(j+N) + 2xNxk + (1+N)] = \
351 ST[i,z+N] * ST[j+N,z] * ST[k,z+N] * ST[1+N,z]
352 ST4it [8*N#%3%1i + 4*N*+2x (j+N) + 2#N*(k+N) + 1] = \
353 ST[i,z+N] * ST[j+N,z] * ST[k+N,z+N] * ST[1,z]
354 ST4it [8*N**3x (1+N) + 4*xN**2%j + 2xNxk + (L+N)] = \
355 ST[i+N,z+N] * ST[j,z] * ST[k,z+N] * ST[1+N,z]
356 ST4it [8xN**3* (i+N) + 4*N*k*2%j + 2xN*(k+N) + 1] = \
357 ST[i+N,z+N] * ST[j,z] * ST[k+N,z+N] * ST[1,z]
358 ST4it [8xN**3* (i+N) + 4*N*k*2*x(j+N) + 2*Nxk + 1] = \
359 ST[i+N,z+N] * ST[j+N,z] * ST[k,z+N] * ST[1,z]
360 M4t [z] = dot(ST4it, M4m_flat)

361 print(str(z)+' of '+str(N-1)+'; current runtime: '+

362 str(round ((time.clock()-t0)/60.,3))+"' min')

363 M4 = real (M4t)
364 print('Total runtime: '+str(round((time.clock()-t0)/60.,3))+' min')
365 return M4
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B.2. Non-linear Tomography in Optical Lattices

The following code contains the code used to simulate the measurement setup for the
reconstruction of atom positions in an optical lattice. The reconstruction is done for
real as well as simulated data (“Data/Simulated_ reconstruction.m”). The Fourier ap-
proach is contained in “Atomic reconstruction.m”. The used subfunctions “Lmatrix.m”,

“Measurement.m” and “Reconstruct.m” are added in following.

Execute.m

In the following, “Execute.m” is called to choose one of several data arrays containing
different atom configurations. The pictures are then prepared for reconstruction and later
reconstructed, when “Data_ reconstruction.m” is called as the main subroutine. Possible
errors are investigated (empty pictures and missing peaks) and the reconstructions are
compared to the reconstructions performed by the experimental group using a two way

reconstruction process.

A% Load Data

/4load Data
load( 'New Data/BenchmarkImageDataset.mat') J already contains LSF

/#Process pictures with few atoms
#PicN = size(images_2atoms_d_1site);
#PicN = size(images_2atoms_d_2sites);

PicN = size(images_2atoms_d_25sites); 7
#PicN = size(sortingSummary.imageStack); J}9Images

I = zeros(PicN(1),PicN(3));

for i = 1:PicN(1)
% results from Bonn (fitted_positions) for d_1 and d_2
#I(t,:) = squeeze(mean(images_2atoms_d_1site(%,:,:),2));
I(i,:) = squeeze(mean(images_2atoms_d_25sites(i,:,:),2));
#I(%i,:) = squeeze(mean(images_2atoms_d_2sites(t,:,:),2));

end

A% Initialize

ZInitialize LSF

[Lbin,LL2] = Lmatrix(LSF,length(I(1,:)));

'Lbin initialized.' J#ok<NOPTS>

s = length(LSF(:,1)); 7% Datapoints in LSF (in superresolution)

t = floor(abs(-LSF(1)+LSF(s))); / Number of pizels covered by LSF
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4 %Initialize arrays and fill them
/#Height of background noise
epsilon = 2.5%std(I(30,1:50)); 7 60 for Benchmark, 20 for old pictures

Yhalf width of LSF
w = floor(0.5%t)+7; J 20 for Benchmark, 50 for old LSF

Ip = zeros(PicN(1),PicN(3)); Zprocessed picture (baseline removed)

Iroi = cell(1,PicN(1)); JROIS of each picture

rois = cell(1,PicN(1)); Zpositions of rois of each picture

eps = zeros(1,PicN(1)); Jnoise std in each picture

err = zeros(1,PicN(1)); /peaks at borders. 1 if there's a peak.

for i = 1:PicN(1)
[Ip(i,:),Iroi{i}, rois{i}, eps(i), err(i)] = PreparePictures(I(i,:),epsilon,w);
end

'Pictures processed.’

4% Reconstruction (And some information it needs.)

NoP = 10; /Number of Pictures to evaluate
NoA = 2; JExpected Number of Atoms

/4 xx contains the reconstructed amplitudes at superresolution positions,
4 Sri contains the Source function in the resolution of Irot

% Iroi contains the Region of interest containing the peak

/% errorbar contains the errorbar estimated for this region

/4 usablePic is a inder set of Pictures with the same number of atoms (No
%4 more half atoms..) on which the reconstruction is performed

% samedist is a index set of indices that contain atoms with the same

/ distance in the lattice, up to errorbars.

[xx,Sri,Iroi,errorbar, usablePic, recPic, fitted_pos, dist, samedist] =

Data_reconstruction(PicN, Iroi, rois, 2%eps, Lbin, s, t, NoA, NoP);

{'Reconstruction success in ',length(recPic), 'of' NoP, 'pictures'}

NoPs = length(recPic);

4% further Information (mostly useful for benchmarking for large distances)
AInformation on Errorbars:

{'Errorbars calculated. Mean:',

mean (errorbar (usablePic(find(errorbar (recPic(1:NoPs))<10))))}

/ASomething went wrong:

if length(find(errorbar(recPic(1:NoPs))>10))>0
'Problems (Errorbar>10) in pictures:' [#ok<NOPTS>
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B.2. Non-linear Tomography in Optical Lattices

find(errorbar(:)>10)
end

ZWhich pictures contain atoms with the same distance in the lattice

{'Main distance', mean([dist(samedist)]), length(samedist), 'of' NoPs}

Zlattice distance in pizel: Jfrom earlier estimations: about 0.68
DoA = 30; Jattempted distance

{'Estimated lattice distance:', DoA/mean([dist(samedist)])} /pizel/lattice site

4% Compare Reconstructions; (Only for d_1 site and d_2 sites)

4 If reconstructions of the data arrays exist, we can compare them to ours.
load( 'New Data/results_d_1site.mat')

#load('New Data/results_d_2sites.mat')

compare = zeros(1,PicN(1));
for i = recPic(1:NoPs)
for k = 1:length(fitted_pos{il})
dist_rec{i}=fitted_pos{i}(k)-fitted_positions{i}{1};

if any(abs(fitted_pos{i}(k)-fitted_positions{i}{1}) <= errorbar(i))

compare(i) = 1;
else
compare(i) = 0;
'reconstruction not in errorbars in picture ' J#ok<NOPTS>
i/#ok<NOPTS>
end
end

end

'Pictures reconstructed in accordance to Ezperimentalists:'
{sum(compare(recPic)) 'of' length(recPic)}
Z'of!
if length(find(compare(recPic(1:NoPs))<1))>0
'Reconstruction failed in pictures: (position, deviation, errorbar)’
end
for i =[find(compare(recPic(1:NoPs))<1)]
for j = 1l:length(fitted_pos{il})
err = max(abs(fitted_pos{i}(j) - fitted_positions{i}{1}));
end
{i err errorbar(i)}
end

A% Visual output for certain picture
/4 rather translate Sri to St (without region of interest offset) and show

% reconstruction in the whole picture. (could also do that with fitted_pos)
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i=20;
=1

plot(1:length(Sri{i}{j}),Sri{i}{j},1:1length(Iroi{i}{j}),Iroi{i}{j})
'reconstructed positions:' J#ok<NOPTS>
fitted_pos{i} /#ok<NOPTS>

load( 'New Data/results_d_1site.mat')
sload('New Data/results_d_2sites.mat')

% 'reconstructed positions from Bonn:' J#ok<NOPTS>
fitted_positions{i}{1} J#ok<NOPTS>
fitted_positions_discrete{i}{1}

Data__reconstruction.m

In this subfunction, the pictures are preselected according to their number of atoms and
number of reconstructed peaks, in order to get rid of faulty pictures. The reconstruction
is then performed on all usable pictures. Afterwards, the mean peak distance of the
reconstructed atoms is evaluated to benchmark the reconstructed lattice distance. To
do that, the median of reconstructed positions within the error bar is used.

A% Reconstruct from Data array and LSF
function [xx,Sri,Iroi,errorbar, usablePic, recPic, fitted_pos, dist, samedist] =
Data_reconstruction(PicN, Iroi, rois, eps, Lbin, s, t, NoA, NoP)

/Determine Normalization and Pictures with right number of Atoms

[usablePic, normalization] = peakheight(Iroi, Lbin, NoA);

tr = .0l*normalization; Athreshold for zz to be taken into account.
/Reconstruct

xx = cell(1,PicN(1)); Jcell containing reconstructed positions in ROI.
Sri = cell(1,PicN(1)); Jcell containing reconstructed source distributions.
for i = usablePic(1:NoP)
[xx{i}, Sri{i}] = reconstruct_data(normalization, s,t, tr, Iroi{il},
rois{i}, eps(i), Lbin);
end

errorbar = Errorbar(Lbin, eps, Iroi, usablePic, NoP);

errorbar = errorbar*t/s; /scale down to pizelsize

#Find indices where reconstruction failed
recPic = [];
for i = usablePic(1:NoP)

for j = length(rois{il})
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if sum(xx{i}{j}>0)>0
recPic = [recPic, il;
end
end

end
NoP = min(NoP,length(recPic));

fitted_pos = cell(l,length(rois));
dist = zeros(l,length(rois));
for i = recPic(1:NoP)
[fitted_pos{i}, dist(i)] = Fit_Positions(rois{i}, xx{i}, t, s, tr);
end

samedist = Index_samedist(dist, recPic, NoP, errorbar);

end

4% Single particle peak height

/#Figures out the height of one atom. This only works, if a set of pictures
Awith mostly one-atom-peaks exzists or if the atom number that is present in
Zmost of the pictures is known. No sophisticated step function evaluation
Zyet, as there are many cases where the atoms seem to leave the lattice.

% (Compare bozplot)

function [usablePic, normalization] = peakheight(Iroi,Lbin, NoA)

ZIf no sorting is going to be needed, set

JusablePic = [1:PicN(1)];

PicN(1) = length(Iroi);
particleN = zeros(1,PicN(1));

for i = 1:PicN(1)
particleN(i) = sum([Iroi{i}{:}1);
ZparticleN(i) = sum(Ip(i,:));
end

boxplot(particleN) ;

#h = findobj(gcf, 'tag’, 'Box');

ZAupper = get(findobj(gcf, 'tag’', 'Upper Whisker'), 'YData');
ZAlower = get(findobj(gcf, 'tag', 'Lower Whisker'), 'YData');
box = get(findobj(gcf, 'tag', 'Box'), 'YData');

usablePic = intersect(find(particleN>min(box)), find(particleN<max(box)));
4If number of atoms per picture are known:

ANoA = 2;

Anormalization = (mean(boz)/Nod)/max(Lbin(:,1));
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70 normalization = (max(particleN(usablePic))/NoA)/sum(Lbin(:,floor(length(Lbin(1,:))/2)));
71

72 end

73

74 % Reconstruct

75 function [xx, Sri] = reconstruct_data(normalization, s,t, tr, Iroi, rois, eps, Lbin)

76 top = normalization; Jmaz(Iroi{1}{1})/maz(Lbin (150, :))

77

78 for 1 = 1:length(rois)

79 if isempty(rois{1l})

80 xx{1} = NaN;

81 Sri{l} = NaN;

82 else

83 [xx{1}, Sri{1}] = Recomnstruct(Iroi{l}, Lbin, 1*eps, tr, top, s,t);
84 end

g5 end

g6 end

87
ss 4% Errorbars

so function errorbar = Errorbar(Lbin, eps, Iroi, usablePic, NoP)

90 line = floor(length(Lbin(:,1))/2);

91 [MaxVal,Index] = max(Lbin(line,:));

92 JLbin(line,Max) is mazimal. proceed going left and right from there.
93

94 errorbar = zeros(1l,length(Iroi));

95 for j = usablePic(1:NoP)

96 i=0;

97 while norm(Lbin(line,Index) - Lbin(line,Index+i),2)
98 *max (Iroi{j}{1}) /max(Lbin(line,:))

99 <= eps(j)*sqrt(length(transpose(Iroi{j}{1})));
100 if i>=(length(Lbin)-Index)

101 break

102 else

103 i = i+1;

104 end

105 end

106 errorbar(j) = ij;

107 end

108

109 end

110
111 4} Make reconstructed positions comparable to other reconstruction.
112/ Gives positions and peak distance in pizels of the original image
113 function [fitted_pos, dist] = Fit_Positions(rois, xx, t, s, tr)

114

115 fitted_pos = [];

150



B.2. Non-linear Tomography in Optical Lattices

116 for j = 1l:length(rois)

117 if length(rois{j})>0

118 fitted_pos = [fitted_pos; t/s*(find(xx{j}>tr)+0.5%s) + rois{j}(1) - 1];
119 end

120 end

121 dist = max(fitted_pos) - min(fitted_pos);

122

123 J'Positions fitted.' J#ok<NOPTS>

124 end

125

126 44 Mean Peak Distance

127} estimate the lattice constant in pizels from the distance that occures
128 ) mostly in the pictures with some attempted atom distance in lattice sites.
129

130 function samedist = Index_samedist(dist, usablePic, NoP, errorbar)

131 /get rid of empty matrices

132 Ind = find(abs([dist(usablePic(1:NoP))] - mean([dist(usablePic(1:NoP))]1))
133 < 1.5*std([dist(usablePic(1:NoP))]1));

134 Jbozplot([dist{usablePic(1:NoP)}]);

135 boxplot ([dist(usablePic(Ind))1);

136 box2 = get(findobj(gcf, 'tag', 'Boz'), 'YData');

137

138 samedist = usablePic(intersect(find([dist(usablePic(1:NoP))]>

139 (min(box2)-mean(errorbar (usablePic(1:NoP))))), find([dist(usablePic(1:NoP))]
140 <(max (box2)+mean (errorbar (usablePic(1:NoP)))))));

141

142 end

Simulation__reconstruction.m

The following code uses the LSF from experimental data to simulate the fluorescence
measurement on an optical lattice. It takes wanted resolution, sparsity to simulate, noise
level and possible amplitude range as input values. The positions can be chosen at random
or can be set to specific values to benchmark the reconstruction behaviour in critical
situations. After calculating a noiseless picture using the LSF, noise is added. This noisy
picture afterwards undergoes the same reconstruction as described in the reconstruction
of experimental data (Reconstruct.m). Afterwards, error bars are estimated and the
reconstruction is compared with the real positions used in the simulation.

1 4% Simulate the measurement of atoms in an optical lattice

2 load( 'New Data/BenchmarkImageDataset.mat') 7 already contains LSF
3 s = length(LSF(:,1));

4 t = floor(abs(-LSF(1)+LSF(s)));
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B. Code

n = 313;
Lbin = Lmatrix(LSF,n); /Benchmark
'Lbin initialized.' J#ok<NOPTS>

n = 2; ZAsparsity to simulate.
eps = 0.1; s4Noise level.
at = 0.99; /#Threshold value for lowest amplitudes

spos = randi(N,n,1);

pos = [200,207];
[ak, Xk, I_sim] = Measurement(n, 1, eps, at, Lbin, pos, 0,1);

w = floor(0.5%t)+1; JLSF width
epsilon = 2.5*std(I_sim(1:10)); /Noise content

[Ip_sim, Iroi_sim, rois_sim, eps_sim, err_sim] = PreparePictures(100*I_sim', epsilon, w);

xx_sim = cell(l,length(rois_sim));
Sri_sim = cell(l,length(rois_sim));
fitted_pos_sim = cell(l,length(rois_sim));

/#Plot:
Jplot(1:length(Iroi_sim{1}),Iroi_sim{1})

A% Reconstruct

seps_sim = 0.5;

for i = 1:length(rois_sim)
[xx_sim{i}, Sri_sim{i}] = Reconstruct(Iroi_sim{i}, Lbin, eps_sim, 0.5, 100*at, s, t);
Alzz_sim{i}, Sri_sim{i}] = ITReconstruct(Iroi_sim{i}, Lbin, 0.2*eps_sim, 0.5, 10000);
Afitted_pos_sim{i} = 1.4%(0.1*find(zx_sim{t}>0.3) + rois_sim{t}(1)-1);
fitted_pos_sim{i} =find(xx_sim{i}>0.3);7 + 10*rois_sim{i}(1)-10; 7%

end

JErrorbar
line = floor(length(Lbin(:,1))/2);
[MaxVal,Index] = max(Lbin(line,:));

i= 0;
while norm(Lbin(line,Index) - Lbin(line,Index+i),2)* max(Iroi_sim{1})/max(Lbin(line,:))
<= eps_sim*sqrt(length(transpose(Iroi_sim{1})));
if i >= (length(Lbin)-Index)
break
else
i = 1i+1;
end
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B.2. Non-linear Tomography in Optical Lattices

end

errorbar i;

errorbar = errorbar*t/s; J/scale down to pizelsize

'Results: Real positions vs. fitted positions.'
Xk - floor(s/t)*(rois_sim{1}(1)-1), transpose(fitted_pos_sim{:}), errorbar

4% compare picture with reconstruction

a = length(Iroi_sim{1});

b = min(floor(s/t)*a,max(floor(s/t),floor(s/t)*a - s));
Lbinr = Lbin(1l:a,1:b);

Irec = Lbinr*xx_sim{1};
plot(l:length(Iroi_sim{1}),Iroi_sim{1},1:1length(Irec),Irec)

Atomic__reconstruction.m

In this approach, the Fourier approach for reconstructing atom positions in fluorescence
microscopy is implemented. First, the measurement is simulated, where the measurement
plane is shifted to the Fourier plane of the image. Discretisation and convolution with
the LSF are added in this approach (see Measurement.m). Subsequently, the Fourier
transform of the LSF is used to deconvolve the signal and afterwards estimate the
frequencies using the atomic norm approach. As described in the main text, the current
LSF is not useful for this approach, as it only cuts out a very thin band of the signal
which is insufficient to reconstruct frequencies. However, the approach is added here, as
it is the natural starting point for implementing filtering with coded diffraction patterns.

4% Reconstruction of Atom positions using atomic norm

/4 1. Compute DFT of baseline corrected image

% 2. Compute DFT of all shifted verstions of the binned LSF

4 3. Divide result of (1) by all results of (2), producing a set of I_fc
/% (fourier+cleaned)

4% Simulate Pictures with measurement in fourier plane
[ak, Xk, Datal] = Measurement(n, A, e, at, Lbin, LL2, LSF, pos, map,d);

n=1; Asparsity to simulate.

eps_siml = 0.1; /Noise level.

at = 0.9; AThreshold value for lowest amplitudes
pos = [547];

[ak, Xk, I_sim] = Simulate(n, eps_siml, at, Lbin, pos);

[Ip_sim, Iroi_sim, rois_sim, eps_sim, err_sim] = PreparePictures(10000*I_sim');
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Ip = Ip_sim;

4% Get rid of LSF contribution in pictures. (1-3)
/4 Ip: Picture contatining LSF convoluted with delta
N = size(Ip);

M = size(LL2);

WM = size(Lbin);

sInitialization

If = cell(1,N(1));

Ifc = cell(N(1),10);

Ic = cell(N(1),10);

Iip = zeros(N(1),M(2));
Lf = zeros(10,M(2));

A 2.
for i = 1:10
Lf(i,:) = £ft(LL2M(1)/2+1,:));
ALF(%,:) = fft(Lbin(M(1)/2+%,:));
end

ZInterpolate and fourier transform the signal (1.)
for i = 1:N(1)
Iip(i,:) = interpl1([1:N(2)],Ip(i,:),linspace(1,N(2),M(2)));
If{i} = £ft(Iip(i,:));
% Get rid of LSF contribution (3.)
for j = 1:10
Ifc{i,j} = If{i}./Lf(j,:); /JPicture containing cleaned fourier
ALfi = Lf(5,:)\1;
AIfeli, g} = If{iF.*Lfi';
Ic{i,j} = ifft(Ifc{i,j}); ZPicture containing cleaned version
end
end
plot(Ic{1,1})

V4
%6.

ZAload('2peaks.mat’)

Aload('Lbin2.mat ')

N = size(Ip);

M = size(Lbin);

Lf = £ft(Lbin(M(1)/2+1,:));

Iip = interpl([1:N(2)],Ip,linspace(1,N(2),M(2)));
If = £f£t(Iip);
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epsilon = eps;
for j = 1:M(2)

end

if abs(Lf)>=epsilon
Ifc(j) = If(§)/LE(§);
else
Ifc(j) = If(§);
end

AIfc = If./Lf;

Ic

ifft(Ifc);

figure, plot(real(Ic))

Lmatrix.m

B.2. Non-linear Tomography in Optical Lattices

The short routine transforms the array containing the LSF in superresolution into the

matrix used in the linear mapping. Note that the matrix is not simply a Toeplitz matrix,

as the border effects as well as the shift between lattice space and image space are crucial.

4% Line-spread function to matrixz without boundary effects.
function [Lbin,LL2] = Lmatrix(LSF,n)
an:

(wanted) resolution of pictures
LSF(:,2); /% contains entries of LSF only
length(z); % length of big L != 0

floor (b/(-LSF(1)+LSF(b)))*n;

% dim(LL)

[s1, c1] = min(abs(LSF(:,1))); /find entry corresponding to pizel O.
AThis will be on the diagonal of LL.

Als2, c2] = sort(z, 'descend’); Jfind the highest entry of the LSF -> put that to pizel O.

Jc2 = c2(1);

bigl = zeros(a,1);

bigl(a/2 -cl+1l: a/2 + (b-cl)) =
Afrom the measurements.
AbigL(a/2 -c2+1: a/2 + (b-c2)) = z;/mazimum in the middle of the array.

zl
z2

zeros(a,1);
flipud(z);

z1(1) = z2(1);
bigl2 = zeros(a,1);
bigl2(1:length(z2)) = z2;

LL2 = zeros(a);

z; Jmaybe more phystical, since it comes

/#Reverse z in filling the lower diags of LL2

/#Make first entry equal to avoid warning in toeplitz

/Build huge vector with reverse LSF
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B. Code

LL2 = toeplitz(bigl2,z1); /Build a matriz with the LSF contribution on lower diag.
LL2 = LL2(:,1:a-b+1); Zcut off the part that would lead to incomplete peaks.

JLL2 will be (a)xz(a - a/n*b) in size.
44 Bin down LSF: Lbin \in R {nzm}

BN = zeros(n,a);
JHow to bin:
bn = ones(a/n,1);

for i = 1:n
BN(i,a/n*(i-1)+1:a/n*i) = bn;
end

/Binned L:
Lbin = BN*LL2;

end

Measurement.m

In Measurement.m, three different kinds of measurement maps are implemented. The
first map is the standard measurement, which simulates the measurement performed in
the laboratory. It performs the convolution with the superresolution linespread function,
adds noise and bins down to a specified resolution, simulating the detector behaviour.
The second map simulates a moving camera, where a specified number of pictures are
taken with the camera moving in subpixel distances. For the given LSF, the error
bars are dominated by noise and not by the offset, so this approach does not improve
the reconstruction. For different measurement maps however, this approach can help
to reduce the error introduced by the discretisation through the detectors. The third
approach is performing a measurement in the Fourier plane using a Fourier transform
of the LSF. To get this Fourier transform, the LSF was fitted by a Gaussian and the
Fourier transform was then calculated analytically. The measurement consists of a simple
product of the discretised Fourier transforms of LSF and signal, where noise is added
afterwards.

4% Stmulation of Measurement using different Measurement Maps
function [ak, Xk,S, Datal] = Measurement(n, A, e, at, Lbin, LL2, LSF, pos, map,d)
if map ==
Res = length(Lbin(:,1));
[Dataft, Data,S, ak, Xk] = FourierM(Res,n,A,at,pos,e); Xk are frequencies here
else
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B.2. Non-linear Tomography in Optical Lattices

[ak, Xk, S] = SourceDist(n, A, at, Lbin, pos);
if map ==
Data = StandardM(e, S, Lbin); /%
elseif map ==
n = length(Lbin(:,1));
Data = MovingM(e, A, S, n, LL2, d); /Moving camera approach.
4d: Number of lattice sites to move the camera
/elseif map == 2 JDoes not exist yet.
A Data = FourierM(e, S, LSF, pos);
end
end
end
4% Generate the undisturbed signal
function [ak, Xk, S] = SourceDist(n, A, at, Lbin, pos)

JParameters to alter:

in = 5; ssparsity to simulate.
se = 0.001; /Noise level.
sat = 0.9; AThreshold value for lowest amplitudes

/Fized Parameters:
1=1./1.4; Alattice width in pizel.

Rs = length(Lbin(:,1)); Jresolution of the picture.
ZA = s/t; Z#Ezpansion factor for S to have maxz. res.

bigRes = floor(length(Lbin)); Jcolumn dimension of LSF matriz.

N = floor(bigRes/(Ax1)); /snumber of lattice spaces.
%Sampling :

ak = at + (1-at)*rand(n,1); /#Sample peak hetights.

JXk = randi(N,n,1); #Sample n positions from 1..N

4 (NOTE: samples with replacement, values can double.)

Xk = pos;

%Xk = randperm(N,n); 4Sample (uniquely) n positions from 1..N
a0 = 0; #Add stray light background.

/#Calculate signal vector:

4Ss = ones(N,1)*a0; #Signal in lattice resolution.
4Ss(Xk) = ak; AFill in sampled data.

S = ones(bigRes,1)*a0; /Signal in maz. res. of LSF
%S(floor(Xk*4)) = ak;  JFill in sampled data.
S(Xk) = ak;

end

A% Calculate picture:
function Data = StandardM(e, S, Lbin)

of LSF
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B. Code

JA = s/t;
Rs = length(Lbin(:,1)); Jresolution of the picture.
Data = Lbinx*S; #Simulated picture (without notse)

Zeps = e*randn(BRs,1); JCompute moise.
eps = exrandn(Rs,1).*(1+log(1+Data));
seps = zeros(Rs,1);

Data = Data + eps; %Add noise.

Ato be able to compare Data and Input:

szsi = 0.1*%(Xk*A4+0.5%s);  Jalign sampled positions to image.
4Si1 = ones(Rs,1)*a0;

4Si(floor(zsi)) = 0.02*ak; Jscale by maxz(LSF)

end

A% Moving camera:

function Data = MovingM(e, A, S, n, LL2, d)

/Data = Lbin*S; #Simulated picture (without notise)

/#Do the following in a shifted way for shifts from 1:d. Concatenate the
Aresults.
Data = [];
for j = 0:d-1
BN = zeros(n,n*A);
bn = ones(A,1);
BN(1,1:A-d) = ones(A-d,1);
for i = 2:n
BN(i,A*(i-1)-d+1:A%i-d) = bn;
end
/#Binned L:
Lbin = BNx*LL2; /%*BM
Datad = Lbinx*S;
Data = [Data; Datad];
end
%Add some moise
eps = exrandn(d*n,1); /JCompute noise.
Data = Data + eps; %Add noise.
end
4% Fourier type measurement
function [Data,Dataclean,S, ak, Xk] = FourierM(Res,n,A,at,posl,e)

/#For some other function than LSF calculate fourier transform of peaks und
smultiply with fourier trf of lsf sample.

Abuild an artificial lsf

a =0.1232; b = 0; ¢ = 50; /This comes quite close to the real LSF with
#b=232 (in superresolution)

a =0.1232; b = 0; c = 50/A; /(no superresolution)
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99 diml = 477; 477 is the length of the LSF(:)
w00 AXx = linspace(-dim1/2,dim1/2,dim1)"';

101 x = linspace(l,diml,diml)"';
102 a = 0.1232; b = 0; c = 5;
103y = axexp(-((x-b)/c)."2); /Could use y as LSF(:,2)

104 Jplot(y)

105

16 Jfourier trf: dim2 should be choosen large to simulate binning.
107 dim2 = Ax*Res;

108 supp = pi;

109 W = linspace(-supp,supp,dim2)';

110 yft = a*xc/sqrt(2) * exp(-(c*w). 2/4 + 1lixbxw);

111 4b is just the offset. It is problematic later.

112

13 Jfourier trf of source fn (at * delta(z-pos))

114 S = zeros(dim2,1);

115

116 J Rescale positions to mormal space (no superresolution)
117 pos = posl/A;/positions

118

119 for i = 1:length(pos)

120 S = S + exp(lixpos(i)*w);
121 end

122

123 Xk = pos/(2*pi);

124 ak = at/sqrt(2*pi);

125 S = at/sqrt(2*pi) * S;

126

127 Jjuse convolution theorem to compute the image
128 Dataft = S.x*xyft;

129

130  %Add noise (how big should it be?)

131 Databig = Dataft + e*randn(dim2,1);

132

133 /Bin to make the atomic morm thing harder. (Another error gets introduced)
13¢ BN = zeros(Res,dim2);

135

136 JHow to bin:

137 bn = ones(A,1);

138 for i = 1:Res

139 BN(i,A*x(i-1)+1:A*i) = bn;

140 end

141

142 JBinned L:

143 Data = BNx*Databig;

144 fjonly the real part will be measured!
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Data = real(Data);

Zcompute the inverse of the binned fourtier(LSF) to get rid of its
ZAcontribution. This will be a problem we have to face.

yftbin = BN*yft;

Afor current values: relevant data is in yftbin(130:185) (10**-2). Find
/Athese edges automatically for whenever yftbin<e

Astart = 130;

/sstop = 185;

factor = 0.2;

Ayftinvcut = yftbin(start:stop)

yftinv = Oxyftbin;Z(yftbin>factor*e);

yftinv(abs(real(yftbin))>factor*xe) = 1./yftbin(abs(real(yftbin))>factorxe);
yftinv(abs(real (yftbin))<factorxe) = 0;

% analytic calculation

syftinv = sqrt(2)/(a*c) * exp((c*w). 2/4 —1i*b*w);
Aidyftinu . * yft is equal to 1.

Ayftinvbin = BN*yftinv;

Sbin = BNxS;

Dataclean = Data.*yftinv; Jthis is obviously not good yet.
t = linspace(0,Res,Res)';
plot(t,real(Data),t,real(Dataclean),t,real(Sbin))

center = floor(size(Dataclean)/2.);

center = center(1);

length = 15;

Dataclean = Dataclean(center-length:center+length+1);
plot(real(Dataclean))

w2 = linspace(-supp,supp,Res)';
plot(w2,Data);

Juse the real lsf

f = fit(LSF(:,1), LSF(:,2), 'fourier5');
coeff = coeffvalues(f);

FourierL = zeros(1,A);

N = length(coeff)

end
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B.2. Non-linear Tomography in Optical Lattices

Reconstruct.m

In this last routine, atom positions are reconstructed from given arrays containing regions
of interest and the binned down version of the experimental line spread function. It is a
standard compressed sensing approach to find the optimal sparse estimate for the signal

vector.

4% Reconstruction with nonsquared L (current)
/#Data should contain regions of interest of whole pictures without any baseline.

function [xx, Sri] = Reconstruct(Iroi, Lbin, eps, tr, top, s,t)

/#Data = Iroti; JTake Data from Image.

/#Data from simulation: Run first part of Simulate.m.

Data = Iroi';

a = length(Data);

b = min(min(floor(s/t)*a,max(2*floor(s/t),floor(s/t)*a - s)),length(Lbin(1l,:)));
Lbinr = Lbin(l:a,1:b); Jadjust LSF to size of ROI

#Set noise level:
epsilon = sqrt(eps)*a;

cvx_begin Jquiet

variable xx(b); Jcomplez

minimize( norm(xx,1) );

subject to
norm(Data - Lbinr*xx,2) <= epsilon /JLbin: (a z b) Data: (a) zz: (b)
xx <= top;

xx >= 0; / lower bound on reconstructed amplitudes

cvx_end
find (xx>tr)
sort (floor (A*Xk) ) Afor comparison with simulated Xk.

xr = zeros(b,1);
xr([find (xx>tr)])=xx([find (xx>tr)]); Jwrite biggest wvalues in new vector
I_rec = Lbinr*xr; JReconstructed Image.

norm(I_rec-Data,2)

ZFind reconstructed source function to compare with data.
Sri = zeros(a,1);

Sri(floor(t/s*x(find (xx>tr)+0.5%s))) = xx(find(xx>tr));
end

plot([1:1length(Data)],Data, [1:1length(Sri)],Sri)
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