4. Ergebnisse

4.1. Charakterisierung des RcsAB-DNA-Komplexes am *Ew. amylovora amsG*-Promotor

Die Affinität des RcsAB-Heterodimers für das Fragment Pams G_{183} (Tab. 5) wurde mittels EMSA-Analyse abgeschätzt.

Tabelle 5: PCR-Bedingung Fragment	gen für die Amplifikation vo PamsG ₁₈₃	n PamsG ₁₈₃				
Hinprimer	PamsG ₁₈₃ -up					
Rückprimer	PamsG ₁₈₃ -low					
Templat	2 µl 1:10 verd. pEA131-DNA					
MgCl ₂	IgCl ₂ -					
Formamid	-					
Thermocycler-Programm:						
2 min Denaturierung bei 95	°C					
30 Zyklen von						
Schritt	Temperatur [°C]	Dauer [s]				
Denaturierung	95	30				
Annealing 45 30						
Polymerisation	Polymerisation7230					
+ 5 min abschließende Polymerisation						

Dazu wurde das radioaktiv markierte Fragment Pams G_{183} mit steigenden Konzentrationen einer äquimolaren Lösung von RcsA und RcsB inkubiert und mittels EMSA analysiert. Eine grafische Auftragung des Quotienten gebundene DNA/gesamte DNA vs. RcsAB-Konzentration ergab eine hyperbolische Kurve, an deren Halbsättigungshöhe die apparente Bindungskonstante K_D von ca. 100 nM abgelesen werden konnte (Abb. 11).

Abb. 11: Bestimmung der apparenten Bindungskonstante K_D des RcsAB-Heterodimers am Fragment Pams G_{183} .

Zur genauren Ablesung des K_D -Wertes ist zusätzlich ein ein vergrößerter Ausschnitt dargestellt.

Der gleiche Wert wurde auch erhalten, wenn konstante RcsB-Konzentrationen von 30 nM bzw. 2,5 μ M mit steigenden RcsA-Konzentrationen von 19 nM bis his zu 1,5 μ M für die EMSA-Analysen eingesetzt wurden. Die Benutzung verschiedener Proteinverhältnisse hatte keinen Einfluß auf die DNA-Bindungskinetik des RcsAB-Heterodimers.

Ein wichtiger Faktor für die Effizienz der Bindung des RcsAB-Heterodimers an DNA ist die Länge des DNA-Fragments. Es wurden verschieden lange DNA-Fragmente, die alle die vorher beschriebene 23 bp lange RcsAB-Bindungsstelle im *amsG*-Promotor, gelegen zwischen den Nukleotidpostionen -555 und -533 relativ zu translationalen Start von *amsG*, enhielten auf eine Bindung des RcsAB-heterodimers in EMSAs getestet. Dazu wurden 7,6 μ M RcsA und 1,6 μ M RcsB eingesetzt. Diese relativ hohen Proteinkonzentrationen waren nötig um auch bei kleinen Fragmenten noch eine detektierbare Retardationsbande zu erhalten (Tab. 6).

Fragment	Entstanden aus	Retardation (%)
$PamsG_{183}$	PCR (s. o.)	52 ± 6
$PamsG_{28}$	Hybridisierung von PamsG ₂₈ -up und PamsG ₂₈ -low	14 ± 9
$PamsG_{23}$	Hybridisierung von PamsG23-up und PamsG23-low	10 ± 5

Tabelle 6: Einfluß der Länge des DNA-Fragments auf die RcsAB-Bindung

Diese Ergebnisse zeigen, daß zusätzliche, nichtspezifische Nukleotide möglicherweise zur Stabilisierung der Protein/DNA-Interaktion beitragen.

Da die Stabilität des RcsAB/DNA-Komplexes einen entscheidenden Faktor für die Induktion des EPS-Synthese darstellen dürfte wurde die Halbwertszeit des RcsAB/PamsG₁₈₃-Komplexes bestimmt. Dazu wurde ein EMSA-Kompetitionsexperiment mit dem radioaktiv markierten PamsG₁₈₃-Fragment, 30 nM RcsB und 550 nM RcsA durchgeführt. Diese Bedingungen erwiesen sich als ideal für die Retardation von PamsG₁₈₃. Die Bindungsansätze wurden zuerst zehn Minuten lang unter Standardbedingungen inkubiert, um das Gleichgewicht zwischen RcsAB/DNA-Komplex und den freien Liganden einzustellen. Anschließend wurde den Ansätzen in Zeitintervallen zwischen zwei Sekunden und einer Stunde ein 30-facher Überschuß an nichtmarkierter PamsG₁₈₃-DNA zugegeben und die Proben einem EMSA unterzogen. Eine grafische Auftragung des Quotienten gebundene markierte DNA/freie markierte DNA vs. Inkubationszeit mit dem Kompetitor ergab die Halbwertszeit von 42 s (Abb. 12).

Abb. 12: Bestimmung der Halbwertszeit des RcsAB/PamsG₁₈₃-Komplexes.

Verglichen mit den Halbwertszeiten bekannter Komplexe von transkriptionellen Repressoren und ihren DNA-Zielen ist die Stabilität des RcsAB/DNA-Komplexes verhältnismäßig gering. Dieser Befund ist allerdings für einen transkriptionellen Aktivator nicht unerwartet, da die EPS-Synthese durch Umweltsignale gesteuert wird und eine geringe Stabilität des Komplexes eine schnellere Umstellung auf wechselnde Bedingungen ermöglichen kann.

4.2. Bestimmung eines RcsA/RcsB Bindungsmotivs im *amsG*-Promotor

Die Sequenz der identifizierten 23bp-Bindungsregion im *amsG*-Promotor zeigt vereinzelt palindromische Elemente (Tab. 8). Palindromische DNA-Sequenzen spielen häufig eine wichtige Rolle in der DNA-Erkennung durch Protein-Homodimere, für die Bindung eines Protein-Heterodimers sollten sie jedoch von geringerer Bedeutung sein, da beide Partner höchstwahrscheinlich nicht die selben Sequenzen erkennen. Um diejenigen Basen zu identifizieren, die für die spezifische Erkennung durch das RcsA/RcsB-Heterodimer verantwortlich sind, wurde daher eine in-vitro Selektion der 23bp langen Bindungsregion durchgeführt. In der Sequenz wurden 3 bis 4 bp lange Stücke durch zufällige Nukleotide ersetzt und so systematisch das gesamte Motiv permutiert. Die dabei entstandenen sechs Pools von Oligonukleotiden enthielten jeweils ein Gemisch von 64 bzw. 256 DNA-Fragmenten, die einer in vito Selektion mit 1,89 μ M RcsA und 0,17 μ M RcsB wie unter 3.30. beschrieben zugeführt wurden. Die nach der dritten Selektionsrunde retardierte DNA wurde im EMSA mit den unselektieren Gemischen auf ihre Affinität der RcsA/RcsB-Bindung verglichen und quantifiziert. Die Bindung aller DNA Mixturen war nach der Selektion um mindestens 200 % gesteigert (Tab. 7).

selektierte Region ^a	Retardation (%)	Retardation nach Selektion (%)
NNNNTTGAGAATAATCTTAATTT	13.9 ± 1.2	35.6 ± 1.5
TATA NNNN GAATAATCTTAATTT	3.9 ± 0.7	16.3 ± 3.1
TATATTGA NNN TAATCTTAATTT	0.9 ± 0.1	23.0 ± 6.5
TATATTGAGAA NNNN CTTAATTT	1.6 ± 0.3	10.9 ± 2.6
TATATTGAGAATAAT NNNN ATTT	3.6 ± 0.6	14.2 ± 2.8
TATATTGAGAATAATCTTA NNNN	9.6 ± 1.6	37.7 ± 1.9

Tabelle 7: In vitro Selektion der randomisierten DNA-Fragmente

^a Nur die Sequenz des oberen Stranges von Fragment Pams G_{23} ist dargestellt, die randomisierten Positionen sind fett markiert

Die Sequenz der Nukleotidpositionen 9 bis 11 in der 23bp-Region erwies sich als die wichtigste für die RcsA/RcsB Bindung. Fast keine Bindung war mit der unselektierten Mischung zu beobachten. Dieses Ergebnis deckt sich mit den Beobachtungen aus vorherigen Mutationsanalysen und ist darüberhinaus konsistent mit UV-crosslinking-Studien der Rcs-Proteine mit dieser DNA-Region. Im Gegensatz dazu waren die Sequenzen der terminalen Nucleotidpositionen nur von geringer Bedeutung, schon die unselektierten Pools zeigten eine relativ hohe Bindungsaffinität im EMSA.

Die selektierten DNA-Fragmente wurden in das Plasmid pBluescript KS^+ kloniert und mindestens 27 verschiedene Klone jedes Pools wurden sequenziert (Tab. 8).

					-									-										
WT (EA):	Т	A	Т	A	Т	Т	G	A	G	A	A	T	A	A	Τ	С	Т	Т	A	A	Т	Т	<u>T</u>	
Konsensus:	N	N	N	В	D	Т	R	Μ	G	A	A	W	A	W	Т	S	Y	G	R	G	R	N	N	
A:	8	6	6	3	7	1	7	8	1	21	19	11	21	11	7	4	3	9	10	7	7	4	8	
C:	9	8	10	7	3	4	6	12	-	-	6	2	3	3	3	13	10	3	7	3	6	12	8	
G:	5	7	4	7	12	-	16	7	28	8	-	3	2	5	3	8	3	14	8	18	13	9	6	
T:	6	7	8	11	7	24	-	2	-	-	4	14	4	11	17	2	11	1	2	2	4	5	8	

Tabelle 8: Bestimmung des RcsA/RcsB Erkennungsmotivs im amsG-Promotor^a

^a Die degenerierten Positionen wurden gemäß der IUPAC-Nomenklatur benannt.. Die am häufigsten aufgetretenen Basen in den analysierten Sequenzen sind fett dargestellt. Palindromische Elemente in der Wildtyp-Sequenz sind unterstrichen.

Eine besonders stringente Selektion war wiederum an den Positionen 9 bis 11 zu beobachten, wobei Purine an den Stellen 10 und 11 unbedingt vorhanden sein mussten. Nur 5 der 64 möglichen Codons wuden nach der Selektion der randomisierten Postionen 9 bis 11 gefunden, wobei die Wildtyp-Sequenz GAA klar bevorzugt wurde. Weitere konservierte Basen waren ein Thymin an Position 6 und die Sequenz WAWT an den Basen 12 bis 15. Das die Basen 6 bis 15 umfassende Zentrum der RcsA/RcsB Bindungsregion zeigte einen hohen A/T-Gehalt von ca. 80%.

Die Ergebnisse der *in-vitro*-Selektion wurden durch zwei verschiedene EMSA-Ansätze überprüft. Zuerst wurde die Retardation repräsentativer, aus der Selektion erhaltener DNA Sequenzen quantifiziert (Tab. 9). Die selektierten Fragmente (SF) waren 72 bp lang und enthielten das Fragment PamsG₂₃ des amsG Promotors mit den jeweiligen Mutationen gegenüber der Wildtyp-Sequenz. Wie erwartet zeigten die Nucleotide an beiden Enden des Fragments PamsG₂₃ keine hohe Sequenz-Spezifität in der in-vitro-Selektion. Allerdings deutete die gesteigerte Retardation des optimierten Fragments SF (C₁C₂C₃T⁴) auf die Existenz einer geringen Selektivität in dieser Region hin. Austausche von Thymin und Adenin durch Guanin und Cytosin in Fragment SF (G₅C₈) steigerten dessen Retardation durch das RcsA/RcsB-Heterodimer auf das Doppelte. Der Vergleich der Fragmente SF (G₅A₇C₈) und SF ($G_5C_7C_8$) demonstrierte, daß an Postion 7 ein Purin für die Bindung benötigt wird. Darüber hinaus zeigte das Verhalten von Fragment SF ($G_5A_6C_7C_8$), daß die Anwsenheit des Thymins an der 6. Stelle essentiell ist. Die Basen 9 bis 16 waren schon in der Wildtyp-Sequenz optimal. An den Positionen 9 und 10 wurden ausschließlich Purine toleriert. Zur effektiven Retardation wurde an der Stelle 9 praktisch ausschließlich Guanin benötigt, ein Adenin an der Position 10 steigerte die Bindung um das Doppelte. Das Adenin an Position 11 konnte durch Purine nur unter Verlust der Retardationseffizienz ausgetauscht werden. Der Austausch des Thymins an Position 16 durch Cytosin bewirkte eine Verringerung der Bindung auf ca. 25 %. Anders als es von der *in-vitro*-Selektion zu erwarten war, steigerte der Ersatz des Thymins an Position 18 durch Guanin die Retardation des Fragments SF (G_{18}) nicht. Die Fragmente SF ($C_{17}G_{18}$) und SF ($A_{17}G_{18}$) ließen erkennen, daß ein Pyrimidin an Position 17 vorhanden sein muß, da ein Adenin an dieser Stelle die Bindung stark verringerte. Position 19 könnte eine Spezifität für Purine zeigen, da der Austausch von Adenin durch Thymin im Fragment SF ($G_{18}T_{19}$) dessen Retardation auf ca. 25 % reduzierte.

Fragment	Sequenz ^b	Retardation (%)
wt	TATATTGAGAATAATCTTAATTT	24.7 ± 7.6
$SF (C^1 C^2 C^3 T^4)$	<u>CCCT</u> TTGAGAATAATCTTAATTT	41.5 ± 1.8
$SF(G^5C^8)$	TATA <u>G</u> TG <u>C</u> GAATAATCTTAATTT	55.2 ± 4.0
$SF (G^{5}A^{7}C^{8})$	TATA <u>G</u> T <u>AC</u> GAATAATCTTAATTT	20.5 ± 0.7
SF ($G^{5}C^{7}C^{8}$)	TATA <u>G</u> T <u>CC</u> GAATAATCTTAATTT	6.4 ± 1.8
SF ($G^{5}A^{6}C^{7}C^{8}$)	TATA <u>G</u> ACCGAATAATCTTAATTT	3.3 ± 0.9
SF (G ¹⁰)	TATATTGAG <u>G</u> ATAATCTTAATTT	12.6 ± 0.6
$SF(C^{11})$	TATATTGAGA <u>C</u> TAATCTTAATTT	11.0 ± 1.1
$SF(T^{11})$	TATATTGAGATTAATCTTAATTT	19.2 ± 0.3
$SF(A^{9}C^{11})$	TATATTGA <u>A</u> ACTAATCTTAATTT	2.3 ± 0.2
SF (T ¹⁴)	TATATTGAGAATA <u>T</u> TCTTAATTT	16.2 ± 1.0
$SF(T^{14}C^{15})$	TATATTGAGAATA <u>TC</u> CTTAATTT	5.3 ± 1.3
$SF(T^{13}T^{14})$	TATATTGAGAAT <u>TT</u> TCTTAATTT	13.1 ± 0.2
$SF(A^{17}G^{18})$	TATATTGAGAATAATC <u>AG</u> AATTT	3.5 ± 0.9
$SF(G^{18})$	TATATTGAGAATAATCT <u>G</u> AATTT	22.6 ± 2.5
$SF(G^{16}G^{18})$	TATATTGAGAATAAT <u>G</u> T <u>G</u> AATTT	14.6 ± 1.9
$SF(C^{17}G^{18})$	TATATTGAGAATAATC <u>CG</u> AATTT	36.3 ± 0.21
$SF(G^{18}T^{19})$	TATATTGAGAATAATCT <u>GT</u> ATTT	6.8 ± 0.8
$SF(G^{20}G^{21}G^{22})$	TATATTGAGAATAATCTTA <u>GGG</u> T	16.5 ± 5.5

 Tabelle 9 Retardation selektierter DNA- Fragmente mit mutierter RcsA/RcsB-Bindungsstelle^a

 $^{\rm a}$ DNA-Fragmente von 72 bp Länge wurden in EMSAs mit 33 nM RcsB und 1.89 μM RcsA analysiert

^b ,,down"-Mutationen im Vergleich zum Wildtyp-Fragment sind unterstrichen, ,,up"-Mutationen doppelt unterstrichen. Ein zweiter Ansatz zur Überprüfung der Selektions-Ergebnisse bestand in der EMSA-Analyse von 23 bp DNA-Fragmenten, die durch Rekonstitution geeigneter einzelsträngiger Oligonukleotide erhalten wurden (Tab. 10). Das Fragment Pams G_{23} (A₁C₂T₄G₅C₈) enthielt gemäß dem Konsensus-Motiv (Tab. 8) optimierte Positionen am 5'-Ende. Die Retardation dieses Fragments war um das Doppelte verstärkt. Dieses Ergebnis ist kohärent mit den Eigenschaften der Fragmente SF ($C_1C_2C_3T_4$) und SF (G_5C_8). Die Optimierung der Positionen 20 bis 23 im Fragment PamsG₂₃ ($G_{20}G_{21}C_{22}A_{23}$) bewirkte eine vierfache Verstärkung der Bindung. Interessanterweise erhöhte der Austausch des in der Wildtyp-Sequenz enthaltenen Tymins an Position 18 durch Guanin im Fragment PamsG23 (G18) die Reatardation um das Vierfache, wogegen die gleiche Mutation in dem 72-bp-Fragment SF (G₁₈) keinen Effekt zeigte. Der Austausch des Thymins durch Adenin an Position 17 resultierte in der kompletten Unterdrückung der Retardation von Fragment PamsG23 (A17G18). Dieses Ergebnis stimmt gut mit der drastisch reduzierten Bindung des Fragments SF (A17G18) überein. Das Fragment PamsG₂₃ (Konsensus) enthielt alle optimierten Positionen, die vorher in den Fragmenten $PamsG_{23}$ (A₁C₂T₄G₅C₈), $PamsG_{23}$ (G₂₀G₂₁C₂₂A₂₃) und $PamsG_{23}$ (G₁₈) analysiert wurden. Interessanterweise erwies sich die Reatardation dieses Fagments gegenüber der Wildtyp-Sequenz nicht als erhöht, sondern um ca. 50 % vermindert. Dies könnte ein Hinweis darauf sein, daß die Erkennung der einzelnen Nukleotid-Positionen nicht unabhänging voneinander stattfindet. Darüberhinaus könnten Sekundärstrukturen des DNA-Stranges für die spezifische Bindung durch das RcsA/RcsB-Heterodimer wichtig sein.

Fragment	Sequenz ^a	Retardation (%)
Ew. amylovora:		
$PamsG_{23}$ (wt)	TATATTGAGAATAATCTTAATTT	4.8 ± 1.1
$PamsG_{23}(A_1C_2T_4G_5C_8)$	<u>AC</u> T <u>TG</u> TG <u>C</u> GAATAATCTTAATTT	9.6 ± 1.0
$PamsG_{23}(G_{20}G_{21}C_{22}A_{23})$	TATATTGAGAATAATCTTA <u>GGCA</u>	17.6 ± 0.8
$PamsG_{23}(G_{18})$	TATATTGAGAATAATCT <u>G</u> AATTT	14.6 ± 2.5
$PamsG_{23}(A_{17}G_{18})$	TATATTGAGAATAATC <u>AG</u> AATTT	0
PamsG ₂₃ (Konsensus)	<u>ac</u> t <u>tg</u> tg <u>c</u> gaataatct <u>g</u> a <u>ggca</u>	2.4 ± 1.2

Tabelle 10: Optimierung von RcsA_{EA}/RcsB_{EA}Bindungsstellen aus *Ew. amylovora*^a

^a Die oberen Stränge der DNA-Fragmente sind dargestellt. Gegenüber der Wildtyp-Sequenz veränderte Basen sind einfach ("down"-Mutationen) oder doppelt ("up"-Mutationen) unterstrichen.

4.3. Identifikation einer RcsA/RcsB-Bindungsstelle im P. stewartii cpsA-Promotor

Das *cps*-Operon für die Stewartan-Biosynthese in *P. stewartii* ist homolog zum *ams*-Operon von *Ew. amylovora*. Beide werden durch Rcs-Proteine reguliert. Die Sequenz einer ungefähr

600 bp großen Region, die den Promotor von *cpsA*, dem ersten Leserahmen des *cps*-Operons, enthält, wurde der Sequenz des *amsG*-Promotor angepaßt (Abb. 13).

- CGCACTTAACTGTATCGCTTAAAGGGAAACGGGGGGGGGATTTTGAAGAAA -558
- TCACTACACTCGCCATTCAGAGGTATTTCTTATGCGATTAATCCTGGTGC -544
- AATATAT <mark>TGAGAATAATCTTA</mark> ATTTTGAGTAGCTAAAACGAGGGGTAGGT -508
- CAACA <mark>TGGAATAAATCTGA</mark> TTTTTTTTTCTTCCCTGGCACCCAAAATGAG -494
- GGTAACCGCGCAACATGAAAGTAGTCTTATTGGTAAAAGGGGCAGCACGG -458
- GGCTTCAATACTTATTACTGGTAGTCTTTTTCCTAAAATAGTCCGGTGAT -444
- GCAGTGAGACTCTTGTAAAGAGACCATTTATAACTAGTATAGCAACATAT -408
- GGCGGGGTCCACTTGTAAACAGGCCAGTAATAACTAGTATAGCAACGAGT -394
- TAGTTAATGACTGCGTGGAGGTTGTATTTGGCGCAGTGCAGTGGGGAGGA -358
- TAGTTAACGCCTGCGTCTGAACCTGTAATTTGCGCAATC -351
- ATGATAAATATTGTGAGGCAGCACACAATCCACTGATAAATGTTAACGCC -308
- ATCCGTCAGGGTAAGCAGCGGAATGTAAACGCATTCGGCAAGGGATGCGT -301
- TGGCGT AAAATTAAGAGCTAATT ATG \Rightarrow amsG
- TGTGCG ATG \Rightarrow cpsA

Abb. 13: Sequenz-Anpassung des *P. stewartii cpsA*-Promotors mit dem *Ew. amylovora amsG*-Promotor.

Konservierte Nukleotide werden durch senkrechte Striche angezeigt, RcsAB-Bindungsstellen sind blau hinterlegt.

Die Nukleotid-Positionen -538 bis -516 entsprechen der RcsA/RcsB-Heterodimer-Bindungstelle im *amsG*-Promotor und sie wurden als ein 28-bp großes DNA-Fragment in EMSAs analysiert. Dazu kamen die RcsA-Proteine von *Ew. amylovora* (RcsA_{EA}) und *P. stewartii* (RcsA_{PS}) sowie das RcsB-Protein von *Ew. amylovora* (RcsB_{EA}) zum Einsatz. Das Fragment wurde von beiden Kombinationen klar retardiert (Abb. 14). Dieses Ergebnis deutet an, daß möglicherweise die Bindung eines RcsA/RcsB-Heterodimers an eine Region von ungefähr -510 bis -540 bp stromaufwärts des translationellen Starts des Operons ein allgemeines Prinzip in der Regulation der EPS-Synthese in *Erwinia* darstellt. Die Retardation des Fragments F_{28} des *cpsA*-Promotors scheint etwas stärker mit RcsA_{PS} als mit RcsA_{EA} zu sein, umgekehrt scheint das RcsA_{AE}-Protein etwas effizienter bei der Retardation des $PamsG_{23}$ -Fragmentes zu wirken als RcsA_{PS}. Dies ist ein Anhaltspunkt für die Beteiligung der RcsA-Proteine an der spezifischen DNA-Erkennung.

Abb. 14: Bindungsaktivitäten der RcsA-Proteine von *E. amylovora* und *P.stewartii* an den Promotoren von *amsG* und *cpsA*

Ein 23-bp-Fragment von -555 bis -533 des amsG-Promotors (A) und ein 28-bp-Fragment von -538 bis -516 des *cpsA*-Promotors (B) wurden unter Standardbedingungen mittels EMSAs analysiert. Die Rcs-Proteine wurden in folgenden Konzentrationen eingesetzt: RcsB: 1,7 μ M; RcsA_{EA}: 5,7 μ M; RcsA_{PS}: 5,7 μ M

Im Vergleich zum Konsensus-Motiv des *amsG*-Promotors (Tab. 8) ist die RcsA/RcsB-Bindungsstelle des *cpsA*-Promotors an zwei essentiellen Stellen degeneriert (Tab. 11) und nicht palindromisch. Der Austausch des degenerierten Adenins durch das konservierte Guanin in Fragment P*cpsA* (G^9) bewirkte eine fünffach verstärkte Retardation im EMSA. Obwohl es an vershiedenen Positionen degenerierte Basen enthielt, war die Bindung des betrachteten 28bp-Fragmentes vergleichbar zu der des Fragments F₂₃ aus aus dem *amsG*-Promotor. Die Degeneration könnte also durch optimierte Basen an anderen Stellen des *cpsA*-Bindungsmotivs kompensiert werden.

Fragment	Sequenz	Retardation [%]
Konsensus:	NNNBDTRMGAAWAWTSYGRGRNN	
FcpsA (wt)	AACATGGAATAAATCTGATTTTTCTCTT	4.7 ± 0.5
FcpsA (G ₉)	CAACATGG <u>G</u> ATAAATCTGATTTTT	26.1 ± 0.1

Tabelle 11: Die RcsAB-Bindungsstelle im P. stewartii cpsA-Promotor

4.4. Lokalisierung einer RcsA/RcsB-Bindungsstelle im E. coli wza-Promotor

Das 485-bp-Fragment $Pwza_{485}$, welches den vermutlichen Promotor und die ersten neun Codons des wza-Gens, dem ersten Leserahmen des Colansäure-Biosynthese-Oprons in E. coli, enhielt, wurde durch das RcsA/RcsB-heterodimer gebunden, was durch EMSAs gezeigt werden konnte. Sukzessive Deletionen des 5'- und 3'-Endes zeigten, daß das 55-bp-Fragment $Pwza_{55}$ ausreichend für die Retardation durch das RcsA/RcsB-Heterodimer war. Es umfasste die Basen der Positionen -119 bis -65 relativ zum transkriptionellen Start von *wza* (Abb. 15). Die Retardation war verringert mit dem 41-bp-Fragment $Pwza_{41}$ (Basen -119 bis -79), praktisch keine Bindung konnte mit dem 27-bp-Fragment $Pwza_{27}$ (Basen -106 bis -80) und dem 38-bp-Fragment $Pwza_{38}$ (Basen -119 bis -82) beobachtet werden. Diese Ergebnisse ließen den Schluß zu, daß die 28-bp lange Region der Nukleotide -106 bis -79 relativ zum trankriptionellen Start des *wza*-Gens notwendig, aber nicht hinreichend für für eine effiziente RcsA/RcsB-Heterodimer-Bindung ist (Abb. 16).

Eine Verlängerung des 3'-Endes des 55-bp-Fragments trug nicht zur Verbesserung der Bindung durch RcsAB_{EC} bei, das Ausmaß der Retardation des Fragments $Pwza_{72}$ (Nukleotide -119 bis -48) war vergleichbar zu der des Fragments $Pwza_{55}$. Die Bindung des RcsAB-Heterodimers ist allerdings temperatursensitiv. Eine Inkubation der EMSA-Ansätze bei 28 °C vor der Elektrophorese steigerte die Retardation gegenüber einer Inkubation bei 37 °C um das Dreifache.

Das Alignment des 55-bp-Fragments mit der RcsAB-Bindungsstelle im *Ew. amylovora amsG*-Promotor wies mehrere Nucleotide in der Region -115 bis -96 relativ zum transkriptionellen Start des *wza*-Gens als mögliche Interaktionspartner mit RcsAB aus. Diese Positionen wurden näher durch Einführung möglicher "up"- und "down"-Mutationen gemäß dem RcsAB_{amsG}-Konsensus-Motiv mittels EMSAs analysiert. Der Austausch des degenerierten Adenins an Position -109 durch ein konserviertes Guanin in den Fragmenten P*wza*₇₂ (G₋₁₀₉) und P*wza*₇₂ (G₋₁₀₉A₋₁₀₈) bewirkte eine Steigerung der Retardation durch RcsAB (Tabelle 12). Dagegen war die Bindung des Fragments P*wza*₇₂ (G₋₁₁₂) nach dem Austausch des hochkonservierten Thymins an Position -112 durch ein Guanin stark reduziert. Das Fragment P*wza*₇₂ (C₋₁₁₀T⁻₁₀₈C₋₁₀₆), welches Mutationen an drei konservierten Positionen trug, zeigte keinerlei Retardation mehr in EMSAs. Eine verringerte Bindung war außerdem beim Austausch zweier weniger konservierter Adenine durch Cytosine im Fragment P*wza*₇₂ (C.₉₈ $C_{.96}$) zu beobachten. Interessanterweise verringerten auch zwei zum vermuteten RcsAB-Konsensus-Motiv lediglich benachbart liegende Mutationen im Fragment Pwza₇₂ (G₋₉₁C₋₉₀) die Retardation durch das RcsAB-Heterodimer. Diese Beobachtung ist ein Hinweis auf mögliche weitere DNA-Protein-Interaktionen in der direkten Umgebung des Erkennungsmotivs.

Ergebnisse

Pwz	7/107	02			
-106	5 -	-80			
	$Pwza_{48}$				
	<u>-95</u>		-	-4	<u>8</u>
$Pwza_{41}$					
-119	+	-79			
$Pwza_{55}$				65	
-119 Dwza	++			-03	
-119		+ +		_/	8
			CCCA	C and and an	
	CC		CGGA	$G_{-70}G_{-69}G_{-68}A_{-67}$	
	C C			$C_{-91}C_{-90}$	
GA				$G_{198} = G_{196}$	
G				G 100	
C T C				C_{110}	
G CTC				G 112C 100T 108C 107	
G				G 112	
				112	
GTCAACC <u>TAAAGAAAC</u>	<u>CTCCTA</u> AAAACCATA'	TTGAATGACACTTAA	TATAATTCT	TAAAAATAGCCAATTACCGAA	TTGTTATC <u>TTGCCT</u> GCT
	-10 +1		$wza \rightarrow$		

Abb. 15: Analyse der RcsAB-Bindungstelle im E. coli wza-Promotor.

Die RcsAB Box ist doppelt unterstrichen und mögliche Promotor-Konsensussequenzen sind einfach unterstrichen. Zahlen zeigen die Nukleotid-Positionen relativ zum transkriptionellen Start des *wza*-Gens an. Die auf RcsAB-Bindung getesteten Fragmente sind als Linien repräsentiert und wie im Text benannt. Gebundene Fragmente sind mit "+" markiert, nichtretardiert Fragmente mit "-". Durch Mutagenese analysierte Basen sind über die Sequenz gestellt, "up"-Mutationen sind fett, "down"-Mutationen kursiv.

4.4.1. Charakterisierung des RcsAB/DNA-Komplexes im E.coli wza-Promotor

Um zu überprüfen, ob der *wza*-Promotor Präferenzen für die Erkennung der homologen $RcsAB_{EC}$ -Proteine zeigt, wurde das 55-bp-Fragment $Pwza_{55}$ in EMSAs mit verschiedenen Kombinationen der Proteine $RcsA_{EA}$, $RcsA_{EC}$, $RcsA_{PS}$, $RcsB_{EA}$ und $RcsB_{EC}$ analysiert (Abb. 16).

Abb. 16: Retardation von wza-Promotor-Fragmenten durch RcsAB.

Die Fragmente $Pwza_{27}$, $Pwza_{38}$, $Pwza_{41}$ und $Pwza_{48}$ wurden in EMSAs unter Standardbedingungen analysiert. Die Retardation des Fragments $Pwza_{55}$ wurde darüberhinaus mit heterologen RcsAB-Proteinen untersucht: $RcsA_{EC}/RcsB_{EC}$ (Spur 1), $RcsA_{EC}/RcsB_{EA}$ (Spur 2), $RcsA_{EA}/RcsB_{EA}$ (Spur 3) und $RcsA_{PS}/RcsB_{EA}$ (Spur 4). Die Proteine wurden in folgenden Konzentrationen eingesetzt: 1,7 μ M $RcsB_{EC}$ und $RcsB_{EA}$, 5,7 μ M $RcsA_{EC}$, $RcsA_{EA}$ und $RcsA_{PS}$. I: retardierte DNA-Fragmente; II: ungebundene DNA

Der *wza*-Promotor wurde von allen getesteten Protein-Kombinationen erkannt und es waren keine signifikanten Unterschiede in der Retardation zu erkennen. Die Bindung von RcsA_{EC} oder RcsB_{EC} in Konzentrationen bis zu 4,5 μ M alleine sowohl and P*wza*₅₅ als auch an das den gesamten *cpsA*-Promotor enthaltende 485-bp-Fragment konnte nicht beobachtet werden. Dagegen reichte eine Konzentration von ungefähr 0,2 μ M einer Mischung beider Proteine aus, um die DNA-Fragmente im EMSA nachweisbar zu binden. Das die Nukleotide -95 bis -48 umfassende und eine palindromische Sequenz beinhaltende Fragment P*wza*₄₈ wurde weder von RcsA_{EC} noch von RcsB_{EC} retardiert. Außerdem zeigte die Mutation von vier Basen im Palindrom keinen Effekt auf die Retardation des Fragments P*wza*₇₂ (C₋₇₀G₋₆₉G₋₆₈A₋₆₇) durch RcsAB_{EC} (Tabelle 12).

Fragment ^a	wza-Promoter-Sequenz ^b	Retardation (%) ^c
<i>Pwza</i> ₇₂ :	TAAAGAAACTCCTAAAA	25.2 ± 3.4
$Pwza_{72} (G^{-112}):$	<u>G</u> AAAGAAACTCCTAAAA	3.6 ± 0.1
$Pwza_{72} (C^{-110}T^{-108}C^{-106}):$	TA <u>C</u> A <u>T</u> A <u>C</u> ACTCCTAAAA	0
$Pwza_{72} (G^{-109}):$	TAA <u>G</u> GAAACTCCTAAAA	33.6 ± 1.2
$Pwza_{72} (G^{-109}A^{-108}):$	TAA <u>GA</u> AAACTCCTAAAA	30.3 ± 2.2
$Pwza_{72} (C^{-98}C^{-96}):$	TAAAGAAACTCCTA <u>C</u> AC	8.6 ± 1.4
$Pwza_{72} (G^{-112}C^{-109}T^{-108}C^{-107}):$	<u>G</u> AA <u>CTC</u> AACTCCTAAAA	0
$Pwza_{72} (G^{-91}C^{-90}):$	TAAAGAAACTCCTAAAA-N ₄ - <u>GC</u>	14.3 ± 2.1
$Pwza_{72} (C^{-70}G^{-69}G^{-68}A^{-67}):$	TAAAGAAACTCCTAAAA-N ₂₅ - <u>CGGA</u>	22.2 ± 1.8

Tabelle 12 : In-vitro-Analyse der RcsAB Bindungsstelle im E. coli wza-Promotor

^a DNA-Fragmente von 72 bp Länge wurden für die EMSAs eingesetzt.

^b Von Position -112 bis -96 relativ zum transkriptionellen Start des *wza*-Gens und weiter 3' gelegene Nucleotide Durch Mutagenense analysierte Stellen sind unterstrichen..

^c Die Protein-Konzentration für die EMSAs betrug 2 μ M RcsAB_{FC}.

Die kinetischen Charakteristika der $RcsAB_{EC}/Pwza_{72}$ -Interaktion wurden mit der Surface-Plasmon-Resonance-Technik untersucht (Abb. 17).

Abb. 17: SPR-Analyse der RcsAB-Bindungseigenschaften.

Die SPR Messungen wurden mit den immobilisierten DNA-Fragmenten $Pwza_{72}$ (durchgezogene Linie) und $Pwza_{72}(G_{-112}C_{-109}T_{-108}C_{-107})$ (gestrichelte Linie) durchgeführt. Als Kontrolloberfläche diente ein zufälliges 72-bp-DNA-Fragment. Der Injektionsbeginn wurde als t=0 s definiert. Die Proteinkonzentrationen betrugen für RcsB 750 nM und für RcsA 3,75 μ M.

Zur Bestimmung der Assoziations-, Dissoziations- und Gleichgewichtskonstante wurden RcsAB-Proteingemische in einem Konzentrationsbreich von 47 nM bis 7,5 μ M sukzessive injiziert und die resultierenden Sensorgramme aufgezeichnet. Die Gleichgewichtskonstante K_D wurde nach dem Langmuir-Modell zu 77 ± 28 nM berechnet. Der K_D von RcsAB_{EC} am *E. coli wza*-Promotor stimmt gut mit der zuvor in 4.1. mit der EMSA-Technik bestimmten K_D von RcsAB_{EA} am *E. amylovora amsG*-Promotor überein.

Darüber hinaus wurde das Fragment Pwza₇₂ (G₋₁₁₂C₋₁₀₉T₋₁₀₈C₋₁₀₇) mit vier Punktmutationen in hochkonservierten Positionen analysiert. Im EMSA konnte keine Retardation mit RcsAB beobachtet werden (Tabelle 12). Seine Gleichgewichtskonstante K_D im SPR-Experiment betrug 50 ± 30 μ M, ein ca. 1000-fach höherer Wert gegenüber der Wildtyp-Sequenz, der die schlechtere Bindung klar widerspiegelt.

4.4.2. Konstruktion der Plasmide pMW29, pMW31 und pMW**D** zur Mutagenese durch homologe Rekombination

Zur Rekombination wurden größere Fragmente von mehreren kbp benutzt, da so die Ortsspezifität gesteigert werden konnte. Sie wurden so gewählt, daß die zu mutierende Sequenz direkt am 5'-Ende lag. Auf diese Weise konnte sichergestellt werden, daß alle Rekombinanten die gewünschte Mutationen am definierten Platz enthielten. Diese Fragmente wurden durch PCR gewonnen. Tabelle. 13 faßt die PCR-Bedingungen für die drei Fragmente zusammen.

Tabelle 13: PCR-Bedingungen zur Amplifikation der Fragmente P_{MW29} , P_{MW31} und P_{MWD}

Fragment	P _{MW29}	P _{MW31}	p _{MWA}				
Hinprimer	PMW29-up	PMW31-up	PMWD-up				
Rückprimer	Pwzarek-low	Pwzarek-low	Pwzarek-low				
Templat	2 µl 1:5 verd. C600 chromomale DNA						
MgCl ₂	-						
Formamid	7µ1						

Thermocycler-Programm:						
2 min Denaturierung bei 95 °C						
30 Zyklen von						
Schritt	Temperatur [°C]	Dauer [s]				
Denaturierung	95	60				
Annealing	45	60				
Polymerisation	72	210				
+ 5 min abschließende Polymerisation						

Die PCR-Produkte und das Plasmid pfdA8 wurden mit den Restriktionsendonukleasen *Pst*I und *Bgl*II verdaut und die drei Fragmente in den Vektor ligiert.

4.4.3. In-Vivo-Analyse der E. coli wza-RcsAB Bindungsstelle durch Mutagenese

Die chromosomalen Merodiploiden MW29, MW31 und MW Δ des *E. coli* Stamms C600 wurden durch die Integration der Plasmide pMW29, pMW31 und pMW Δ durch homologe Rekombination erhalten (Abb. 18).

Abb. 18: Schema der homologen Rekombination für die in-vivo-Analyse der RcsAB Box.

Die mutmaßlichen Mutanten wurden mittels Southern Blots auf korrekte Insertion der Plasmide getestet. Dazu wurde die chromosomale DNA der Stämme isoliert und mit vier verschiedenen Kombinationen von Restriktionsenzymen verdaut (Abb. 19). Als Sonde wurde ein den letzten 34 Basen des Kanamycin-Resistenz-Gens komplementäres einzelsträngiges Oligonukleotid eingesetzt. Klone mit dem richtigen Bandenmuster wurden für weitere Experimente eingesetzt.

Abb. 19: Restriktionsanalyse der merodiploiden Mutanten.

A: benutzte Schnittstellen, B: Southern Blot von pMW29 als repräsentative Darstellung 1: Plamid pfdA8, 2: *SalI/Bgl*II, 3: *NcoI/Bgl*II, 4: *Bgl*II, 5: *AgeI*/BglII

Der *wza*-Promotor des Stammes MW31 war direkt stromaufwärts der RcsAB-Box abgeschnitten, der Stamm MW29 enthielt zusätzlich vier Punktmutationen in essentiellen Basen innerhalb der identifizierten RcsAB-Bindungsstelle. Im Stamm MW Δ wurde die gesamte RcsAB-Box deletiert. (Abb. 20).

Abb. 20: Vergleich der *wza*-Promotor-Sequenzen in E.coli C600, MW29, MW31 und MWD.

Die RcsAB-Boxen sind grau unterlegt, Punktmutationen im Bindungsmotiv rot markiert. Grün hinterlegt sind Sequenzen aus dem Plasmid pfdA8.

Die Phänotypen der drei Mutanten wurden nach Einführung des Plasmids pEA101 getestet. Dieses Plasmid enthielt das *Ew. amylovora rcsA*-Gen und bewirkte im *E. coli* Wildtyp-Stamm C 600 eine Induktion der Colansäure-Biosynthese durch Aktivierung des *wza*-Promotors.

Die EPS-Produktion und der Phänotyp der Kontroll-Mutante MW31 \times pEA101 war vergleichbar zum Wildtyp-Stamm C600 \times pEA 101 (Tabelle 14). Dieses Ergebnis zeigte, daß das ca. 450 bp lange Fragment stromaufwärts des *wza*-Gens ausreichend ist, um die volle Promotor-Aktivität sicherzustellen.

Im Gegensatz dazu war die EPS-Produktion im Mutantenstamm MW29 \times pEA101 drastisch reduziert, die Kolonien hatten ein trockenes Erscheinungsbild (Tabelle 14).

Stamm ^a	Plasmid	Kolonietyp ^b	EPS-Production ^c
(Genotyp)			(mg Glucose/10 ⁸ Zellen)
C600	-	В	-
(wt)	pEA101	F	5.8 ± 0.6
MW31	_	В	-
	pEA101	F	6.0 ± 0.4
MW29	_	В	-
	pEA101	В	0.3 ± 0.1

Tabelle 14: Phänotypen der mutierten RcsAB Boxen in E. coli

^a Relevanter Genotyp

^b Der Kolonietyp wurde nach 24 h Wachstum auf LB-Agar bei 37 °C bestimmt

^c Nach 24 h Wachstum auf LB-Agar bei 37^oC und durch den Anthon-Tets abgeschätzt. Zahlen repräsentieren Mittelwerte aus drei Bestimmungen. Minus: nicht bestimmt

Diese Experimente demonstrieren die Wichtigkleit der identifizierten RcsAB Bindungsstelle für die Colansäure-Biosynthese und lassen darauf schließen, daß das RcsAB-Heterodimer auch *in vivo* an diese DNA-Region gebunden wird.

4.5. RcsA und RcsB binden an die *rcsA*-Promotoren *von E. coli, K. pneumoniae, S. typhi* und *Ew. amylovora*.

Die Autoregulation des *E. coli rcsA*-Gens wurde kürzlich gezeigt (Ebel und Trempy, 1999). Im Rahmen dieser Arbeit wurde untersucht, ob die Aktivierung von *rcsA*-Promotoren durch Bindung eines RcsAB-Heterodimers an RcsAB-Box-ähnliche DNA-Regionen abläuft.

Ein 277 bp langes PCR-Fragment $PrcsA_{EC277}$, welches die intergenische Region zwischen den *E. coli* Genen *fliR* und *rcsA* einschließlich des *rcsA* Start-Codons enthielt, wurde im EMSA klar durch das RcsAB_{EC}-Heterodimer retardiert (Abb. 21). Eine mögliche RcsAB-Bindungsstelle konnte zwischen den Nukleotid-Positionen -264 bis -251 realtiv zum translationellen Start von *rcsA*_{EC} identifiziert werden (Abb. 23). Das rekonstituierte 34 bp lange Fragment $PrcsA_{EC34}$, das die Basen -274 bis -241 umfasste, wurde ebenfalls an RcsAB gebunden, wie im EMSA deutlich gezeigt werden konnte (Abb 21). Unter den wichtigsten Positionen, die essentiell für die RcsAB-Bindung sind, befanden sich drei konservierte Purine, die am wahrscheinlichsten durch die Sequenz GGA an den Positionen -261 bis -259 im *rcsA*-Promotor repräsentiert wurden. Eine Mutation dieser Purine zur Sequenz TTC im 277 bp langen Fragment $PrcsA_{ECM}$ bewirkte die völlige Unterdrückung der Retardation durch RcsAB_{EC} (Abb. 21). Die vorgeschlagene Sequenz war also essentiell für die *in-vitro*-Bindung der Rcs-Proteine an den *rcsA*_{EC}-Promotor. Die *rcsA*-Autoregulation schien außerdem von der Anwesenheit beider Proteine abhängig zu sein, da weder RcsA noch RcsB allein in

Konzentrationen bis zu 4,5 μ M nicht in der Lage waren, das 277 bp lange Fragment des *rcsA*_{EC}-Promotors im EMSA zu retardieren.

Abb. 21: Das RcsAB-Heterodimer bindet an den *E. coli rcsA*-Promotor

EMSA-Analyse des *E. coli rcs*A-Promotors. PrcsA_{EC277}, PrcsA_{ECM} und PrcsA_{EC34} wurden designt wie im Text beschrieben. .1 = kein Protein, $2 = 2 \mu M RcsAB_{EC}$. I = retardierte DNA-Fragmente, II = ungebundene DNA

Falls die Autoregulation der *rcsA*-Expression ein konservierter Mechanismus ist, sollte eine RcsAB-Bindungsstelle auch in den *rcsA*-Promotoren anderer Spezies vorhanden sein. Mehrere mögliche RcsAB-Bindungsstellen konnten in den *rcsA*-Promotorregionen von *E. amylovora, K. pneumoniae* und *S. typhi* identifiziert werden. Alle lagen zwischen -321 bis - 244 relativ zum translationellen Start der jeweiligen *rcsA*-Gene (Abb. 23). Um mögliche RcsAB/DNA-Interaktionen mit den gefundenen Motiven zu testen, wurden drei DNA-Fragmente rekonstituiert. Das 29 bp lange Fragment Pr*cs*A_{EA} umspannte die Basen -331 bis - 302 des *Ew. amylovora rcs*A, das 29 bp lange Fragment P*rcs*A_{KP} enthielt die Nukleotid-Positionen -239 bis -267 des *K. pneumoniae rcs*A und das 29 bp lange Fragment P*rcs*A_{ST} umfasste die Basen -275 bis -247 des *S. typhi rcs*A. Alle drei Framente wurden in EMSAs deutlich retardiert (Abb. 22).

Abb. 22: Analyse der RcsAB Bindungsstellen in den *rcsA*-Promotoren von *Ew. amylovora*, *K. pneumoniae* und *S. typhi*.

EMSA-Analyse von *rcs*A-Promotoren verschiedener Enterobakterien. *Prcs*A_{KP}, *Prcs*A_{EA} und *Prcs*A_{ST} wurden wie im Text beschrieben hergestellt. 1 = kein Protein, 2 = 2 μ M RcsAB_{EC}. I = retardierte DNA-Fragmente, II = ungebundene DNA

Eine Sequenzanpassung der *rcs*A-Promotoren der drei eng verwandten Spezies *E. coli*, *S. typhi* und *K. pneumoniae* ließ mehrere identische, weiter stromabwärts liegende Regionen erkennen, die mögliche Promotor Konsensussequenzen repräsentieren könnten (Abb. 23). In dieser Anordnung sind die RcsAB-Bindungstellen ungefähr 100 bp stromaufwärts der vermutlichen transkriptionellen Starts der jeweiligen *rcs*A-Gene lokalisiert.

	G TTC	
PrcsA _{EC}	GCC-ATTAATATAATTCCG-TAACGTTTATCATGTTATCC TAAGGATTATCCGA	-251
PrcsA _{ST}	GCCGATAAATAATAACCCA-TAATTTTTATCCTGTTTTAC TAAGGTTTATCCGA	-252
PrcsA _{KP}	GCGAGCAAGCCAGCCAACCGCTAACGTGGGTTTCATTTGAAG TAAGGAAATTCTGA ** * * * * * * * * * * * * * * * * * *	-244
PrcsA _{EC}	AAAATAATACCTAC-GAACA-TCTTCCAGGATACTCCTGCAGCGAAATATTTGTTT	-197
PrcsA _{ST}	AAATAAATTTTAAA-AAACA-TTCACCAGGATATATCCACTGCCCCTTATTTGTTT	-198
PrcsA _{KP}	AAGTAAAAGAATACTGGGCGCGTAACCATAGCATCTATGGGCACTT-TTTGTTT ** ** * * * * ** * * * * * * * * *	-191
	-35	
PrcsA _{EC}	TAAGCTCACTCACA-TATCGCAACATTTAC <u>TTTACT</u> TTAAGACAATTCCAGGCA <u>AA</u>	-142
PrcsA _{ST}	TTACTTCACTCACA-TAACGCAACATTCACTTTACTTTAAGATGATTCCTGGCAAA	-143
PrcsA _{KP}	TTAATTCGGTCACACTACCGGTTC-TTGAC <u>TTTACT</u> TTAAGAGTTTTCCTGGCA <u>AA</u> * ** ***** ** * * ** ***************	-136
	-10	
PrcsA _{EC}	TTATACAACACTTTACGGGATAGTAAGTCCGCCTGAAAAATCGCGAGAGTGGCGCA	-86
PrcsA _{ST}	TTATATGTAACTTTACGGGATAGTAAGTTCGCCTGAAAAACCGCGTAAGCGTTGTC	-87
PrcsA _{KP}	TTATATGCATAGATGCGGAATAGTTTAATGGAGCTAATGGGTTCTTTC ***** * *** * *** * * *	-88
PrcsA _{EC}	TTAGGTGACCCATGTTGTTCCGTTTAGTCATGATGAAATATTCAGGTAAGGGGA	-32
PrcsA _{ST}	TAAGGTGACTATTCGTGTTCCGTCTGATTATGGTGAGTTATTCAGGTAAGGGGA	-33
PrcsA _{KP}	TAAACCTACTATTATTATCGCCCGCAAGGACTGCTTCGCACAGCCAGTGCGAAGTG * * * * * * * * *	-32
	RBS	
PrcsA _{EC}	ATTATCGTTACGCATTGAGT <u>GAGG</u> G-TATGCC <u>ATG</u> +3	
PrcsA _{ST}	ATTATCGTTACGCATTGAGT <u>GAGG</u> GGTATGCC <u>ATG</u> +3	
PrcsA _{KP}	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	

Abb. 23: Sequenzanpassung der *rcsA*-Promotoren aus *E. coli*, *K. pneumoniae* und *S. typhi*.

Die in EMSAs analysierte essentielle Region des *rcsA*_{EC}-Promotors ist dargestellt. Die Identität der drei Promotoren zueinander beträgt 42,7 %. Identische Positionen sind durch Sterne markiert, *rcsA*-Startcodons, vermutliche Ribosomen-Bindungstellen (RBS) sowie wahrscheinliche Promotor-Konsensus-Sequenzen sind unterstrichen. Die RcsAB-Boxen sind fett dargestellt. Die über die Sequenzen gestellten kursiv geschriebenen Basen zeigen die Mutationen im Plasmid prcsA-M4.

4.5.1. Die RcsAB-Box ist essentiell für die rcsA-Autoregulation in E. coli.

Zur *in-vivo*-Untersuchung der Bedeutung RcsAB-Box im $rcsA_{EC}$ -Promotor wurden die beiden Plasmide prcsA-WT und prcsA-M4 konstruiert.

4.5.1.1. Konstruktion der Plasmide prcsA-WT und prcsA-M4.

Zunächst wurde durch PCR ein ca. 1 kb langes Fragment von der chromosomalen DNA des E. coli-Satmmes XL1 amplifiziert, welches das rcsA-Gen und eine stromaufwärts gelegene, ca. 300 bp lange Sequenz, die die RcsAB-Box einschloß, umfaßte (Tab. 15).

	Tab.	15:	PCR-B	edingungen	für d	lie Am	plifikatior	des	prcsA-WT-	Inserts
--	------	-----	-------	------------	-------	--------	-------------	-----	-----------	---------

Primer	PrcsA _{WT} -up		
	PrcsA _{WT} -lo	OW	
Templat	2 µl 1:5 verd. C600 chro	omosomale DNA	
MgCl2	-		
Formamid	-		
Thermozykler-Programm (30 Zy	vklen)		
Schritt	Temperatur [°C]	Dauer [s]	
Denaturierung	95	60	
Annealing	45	60	
Polymerisation	72	90	
+ 5 min abschließende Polymer	isation		

Das PCR-Produkt wurde agarosegelelektrophoretisch aufgereinigt und mit den Restriktionsendonukleasen *Bam*HI und *Hind*III verdaut. Mit den gleichen Enzymen wurde außerdem das Plasmid pBluescript KS^+ verdaut. Das PCR-Fragment wurde anschließend in das geschnittene Plasmid ligiert und der Ansatz in DH5 α transformiert. Die Plasmid-DNA Amicillin-resistenter, mucoider Kolonien wurde isoliert und analysiert. Das korrekte Plasmid prcsA-WT wurde im präparativen Maßstab isoliert und diente als Templat für die Konstruktion des Plasmides prcsA-M4, in dem Punktmutationen in die RcsAB-Box eingeführt werden sollten. Dazu wurde eine weitere PCR mit Primern, die die gewünschten Mutationen in der RcsAB-Box bewirkten (PrcsA_{M4}-up und-low) durchgeführt.

4.5.1.2. In-vivo-Analyse der Plasmide prcsA-WT und prcsA-M4

Die Plasmide prcsA-WT, welches das $rcsA_{EC}$ -Gen zusammen mit einer stromaufwärts gelegenen 300 bp langen, die RcsAB-Box enthaltdenden Region trug, und prcsA-M4, das zusätzlich vier Punktmutationen in hoch konservierten Positionen der RcsAB-Box enhielt, wurden in den *E. coli* Stamm DH5 α transformiert. Anschließend wurden die Bakterien auf

den resultierenden Phänotyp getestet. Das Plasmid prcsA-WT mit dem Wildtyp-*rcs*A-Promotor steigerte die EPS-Produktion und brachte fluide Kolonien hervor. Diese Effekte wurden offenbar durch eine erhöhte Kopienzahl der RcsA-Proteine erzeugt (Tabelle 16). Im Gegensatz dazu blieben die Kolonien der mit dem Plasmid prcsA-M4 transformierten Bakterienzellen trocken, die EPS-Produktion war gegenüber dem Stamm DH5 $\alpha \times$ prcsA-WT drastisch reduziert. Diese Beobachtungen belegen, daß die RcsAB-Box neben ihrer Beteiligung an der Regulation der EPS-Biosynthese-Operons zusätzlich essentiell für die *E. coli-rcsA* Autoregulation *in-vivo* ist.

Wurde dagegen das Plasmid prcsA-M4 in den *lon*⁻Stamm SG1087 transformiert, zeigten die resultierenenden Kolonien einen fluiden Phänotyp, d. h. eine gesteigerte EPS-Produktion (Tab. 16). In Übereinstimmung zu diesem Befund wurde die Expression einer *cpsB::lacZ*-Fusion im *lon*⁻Stamm JB3034 durch die Einführung des Plasmids prcsA-M4 klar erhöht, blieb aber geringer zu der *cps::lacZ*-Expression im Stamm JB3034 \times prcsA-WT. Das Fehlen der Lon-Protease führt zur einem Anstieg der Halbwertszeit des RcsA-Proteins. Die Hintergrunds-Expression von *rcsA* vom Plasmid prcsA-M4 genügte dann offenbar zur Aktivierung des Colansäure Biosynthsese-Operons.

Stamm ^a	Plasmid	Kolonietyp ^b	EPS-Produktion ^c	<i>cpsB</i> -Expression ^d
(Genotyp)			(mg Glucose/10 ⁸ Zelle	en)(LacZ-Einheiten)
DH5a	-	В	-	-
(WT)	prcsA-WT	F	15.2 ± 0.3	-
	prcsA-M4	В	0.3 ± 0.1	-
SG1087	-	В	-	-
(rcsA, lon)	prcsA-M4	F	9.9 ± 0.6	-
JB3034	-	-	-	2 ± 0.1
(rcsA, lon,	prcsA-WT	-	-	382 ± 84
cpsB::lacZ)	prcsA-M4	-	-	67 ± 38

Tabelle 16 : Phänotypen der mutierten RcsAB-Boxen im rcsA-Promotor von E. coli

^a relevanter Genotyp

^b nach 24 Stunden Wachstum bei 37 °C auf LB-Agar

^c nach 24 Stunden Wachstum bei 37 °C auf LB-Agar und mit dem Anthron-Assay bestimmt. Mittelwerte aus drei Bestimmungen; -: nicht ermittelt

^d ß-Galactosidase-Einheiten nach Miller (1972). Mittelwerte aus drei Bestimmungen.

4.6. Identifikation einer RcsAB-Box in den Gen-Clustern für die K2-Antigen-Expression in *K. pneumoniae* und für die Vi-Anitgen-Expression in *S. typhi*.

Die Gene *rcsA* und *rcsB* wurden außerdem in den Enterobakterien *S. typhi* und *K. pneumoniae* identifiziert. Falls die jeweiligen Kapsel-Biosynthese Cluster ebenfalls durch RcsAB reguliert werden, sollte in deren Hauptpromotoren eine RcsAB-Box vorhanden sein. Der erste ORF des *S. typhi* Vi-Antigen Clusters codiert das Regulatorprotein TviA (VipR) (Hashimoto *et al.*, 1996). Eine mögliche RcsAB-Box befand sich zwischen den Positionen - 322 bis -309 relativ zum translationellen Start von *tviA* (Tabelle 17). Um zu testen, ob diese Region vom RcsAB-Heterodimer erkannt wird, wurde das 60 bp lange Fragment P*tviA* erstellt, welches die Basen -347 bis -288 umfasste. Im EMSA wurde dieses Fragment klar von RcsAB retardiert (Abb. 23).

16 ORFs werden dem *K. pneumoniae* K2-Antigen Biosynthese-Cluster zugeordnet (Arakawa *et al.*, 1995). Eine ungefähr 900 bp lange, einen σ^{54} -abhängigen Promotor enthaltende Region geht dem *orf3*-Gen voraus. Eine RcsAB-Box konnte dort nicht gefunden werden. Stattdessen liegt eine RcsAB-Box an den Positionen -181 bis -168 relativ zum translationellen Start von *orf1*, einem Gen, das ein GalF-homologes Protein kodiert (Tabelle 17). Die Retardation des 59 bp langen Fragments *PgalF*, das die Basen -202 bis -144 relativ zu translationellen Start von *galF* enthielt, durch das RcsAB-Heterodimer lieferte Hinweise darauf, daß die Region stromaufwärts von *galF* (*orf1*) einen Rcs-abhängigen Promotor enthalten könnte.

Abb. 24: Retardation der RcsAB-Boxen aus den Promotoren PgalF aus K. pneumoniae und PtviA aus S. typhi.

Das 59 bp lange Fragment PgalF und das 60 bp lange Fragment Ptvia wurden in EMSAs bei Standardbedingungen für RcsAB_{EC}-Bindung analysiert. Die Proteine wurden in Konzentrationen von 2 μ M zugegeben. I: retardierte DNA-Fragmente; II: ungebundene DNA

4.7. Das RcsAB-Heterodimer und BvgA, ein transkriptioneller Regulator aus *Bordetella pertussis*, erkennen gleiche DNA-Sequenzen.

Aus allen bisher identifizierten RcsAB-Boxen wurde mit Hilfe des Programmes MAST (Bailey und Gribskov, 1998) ein Motiv berechnet, das zur Suche weiterer ähnlicher Regionen in GenBank mittels der MEME-Software (Bailey und Elkan, 1994) eingesetzt werden konnte. Es wurden zwei potentielle RcsAB-Boxen innerhalb der regulatorischen Regionen von *bvgA* aus *Bordetella pertussis* und *aus B. parapertussis* sowie *fha aus B. parapertussis* (Scarlato *et al.*, 1990) gefunden (Tabelle 17). Beide Promotoren werden durch BvgA, einem transkriptionellen Regulator aus der LuxR-Familie mit einer zu RcsA und RcsB homologen DNA-bindenden Domäne , aktiviert. Um zu testen, ob Kreuzspezifitäten in der DNA-Bindung zwischen den Rcs-Proteinen und BvgA existieren, wurde zunächst das BvgA-Protein kloniert und Isoliert um es in EMSAs einzusetzen.

4.7.1. Aufreinigung des BvgA-Proteins

Das BvgA-Protein wurde, wie unter 3.19. beschrieben, als Maltosebindungsprotein-Fusion vom Plasmid pMBvgA (freundlicherweise zur Verfügung gestellt von Dr. Frank Bernhard) exprimiert und über eine Dextrinsäule affinitätschromatographisch gereinigt. Die DNA-Bindungsaktivität des aufgereinigten Proteins wurde durch in-vitro-Phosphorylierung kurz vor den Gelshiftassays optimiert.

4.7.2. EMSA-Analyse der bvgA- und fha-Promotoren

Die beiden 50 bp langen DNA-Fragmente P*bvgA*_{BP} und P*bvgA*_{BA}, die die vermutlichen RcsAB-Boxen der *B. pertussis* und *B. parapertussis bvgA*-Promotoren enthielten, sowie das 50 bp lange Fragment P*fha*, das die vermutliche RcsAB-Box aus dem *fha*-Promotor aus *B. pertussis* enthielt, wurden in EMSAs durch das RcsAB-Heterodimer retardiert (Abb. 24). Darüber hinaus wurde das Fragment P*fha* auch vom aufgereinigten BvgA-Protein gebunden (Abb. 24). Dies deutet darauf hin, daß die Homologie der DNA-bindenden Domänen von RcsAB und BvgA ausreicht, um vergleichbare DNA-Sequenzen zu erkennen. Die *luxI*-Box, eine potentielle Bindungsstelle des LuxR-Proteins zeigt kaum Ähnlichkeiten zur RcsAB-Box und wurde auch nicht vom RcsAB-Heterodimer im EMSA gebunden.

Ergebnisse

Abb. 24: Retardation identischer DNA-Fragmente durch $RcsAB_{EC}$ und *B. pertussis* BvgA.

EMSAs mit den Fragmenten $PbvgA_{BP}$, $PbvgA_{BA}$ und Pfha wurden unter Standardbedingungen ohne Protein (Spuren 1) und mit 2 μ M RcsAB_{EC} (Spuren 2 und 3) durchgeführt. *Pfha* wurde sowohl vom RcsAB_{EC}-Heterodimer (linkes Bild), als auch von phosphoryliertem BvgA (rechtes Bild; Spur 1 ohne Protein, Spure 2 mit 1,2 μ M BvgA, Spur 3 mit 6,1 μ M BvgA) retardiert. I: retardierte DNA, II: ungebundene DNA

4.7.3. Formulierung einer DNA-Konsensussequenz für die RcsAB-Bindung (RcsAB-Box)

Die Zusammenstellung der RcsAB Bindungsstellen der vier *rcsA*- sowie der *wza*-, *amsG*-, *cpsA*-, *bvgA*- und *fha*-Promotoren (Tabelle 17) ließ verschiedene hoch konservierte Basen innerhalb einer 14 bp langen Kernsequenz, der RcsAB-Box, erkennen.

Gen:	Spezies:	Sequenz [*]	$\mathbf{Lage}^{\#}$
wza	E. coli K12	aacc <mark>taaagaa:actcc<u>ta</u> aaaa</mark>	-452 / -438
galF (orf1)	K. pneumoniae K2	aaaa <mark>ta<u>aga</u>t<u>t:a</u>t<u>tct</u>ca</mark> ctto	-181 / -168
tviA (orf1)	S. typhi	cgat <mark>taggaat:attc</mark> t <u>ta</u> tttt	-321 / -308
amsG	E. amylovora	atat <mark>tg<u>aga</u>a<u>t:a</u>a<u>tct</u>ta attt</mark>	-550 / -537
cpsA	P. stewartii	aaca <mark>tgga<u>at</u>a:a<u>at</u>ctga</mark> tttt	-537 / -524
rcsA	E. coli K12	atcc taaggat:tat<u>c</u>cga aaaa	-263 / -250
rcsA	S. typhi	ttac <mark>taaggtt:tatccga</mark> aaat	-264 / -251
rcsA	K. pneumoniae	gaag <mark>ta<u>ag</u>gaa:a<u>t</u>t<u>ctga</u> aagt</mark>	-256 / -243
rcsA	E. amylovora	aatt <mark>taagaat:agtccta</mark> tcat	-318 / -305
bvgA	B. parapertussis	gaat <mark>tcagaat:tttccta</mark> tttt	-175 / -162
bvgA	B. pertussis	gaat <mark>tcagact:tt<u>tc</u>cta</mark> tttt	-176 / -163
fha	B. pertussis	tgac <mark>taagaaa:tttccta</mark> caag	-165 / -152
RcsAB box [§]		aaa. <mark>TaAGaat:atTCctA</mark> .ttt	
RcsAB _{amsG}		TRVGAAW:AWTSYGR	

Tabelle 17: Zusammenfassung aller RcsAB-Bindungsstellen und Defifiniton der RcsAB-Box

^{*} Die Sequenz nur eines DNA-Stranges ist gezeigt, , die RcsAB Box fett und farblich unterlegt, palindromische Elemente innerhalb der RcsAB Box unterstrichen, der Doppelpunkt zeigt das Symmetriezemtrum an.

[#] relativ zum translationellen Start.

[§] Konsensus der 12 angegebenen Sequenzen: Großbuchstaben \ge 70 %, Kleinbuchstaben \ge 50 %, Punkt < 50 % Konservierung.

4.8. Identifikation von RcsAB-Bindungsstellen an intergenische Regionen innerhalb des *wza*-Operons zur Colansäure-Biosynthese von *E. coli*

Der *E. coli wca* Gencluster besteht aus 21 Open Reading Frames (ORFs), die Enzyme kodieren, welche an Transport, Polymerisation und Modifikation von Colansäure beteiligt sind. Der in dieser Arbeit näher untersuchte *wza*-Promotor (P*wza*) stellt mit großer Wahrscheinlichkeit den Hauptpromotoer des *wca*-Operons dar, jedoch läßt die Anordnung der Gene innerhalb des Clusters die Vermutung zu, daß diese in verschiedene funktionell verwandte Komplementationsgruppen unterteilt werden können. Zur differentiellen Regulation des Operons wäre es möglich, daß weitere, in den intergenischen Regionen

liegende Rcs-regulierte Promotoren existieren. Um dies zu untersuchen, wurden die geeignet großen intergenischen Regionen des *wca*-Operons mittels EMSA auf eine mögliche Interaktion mit dem RcsAB-Heterodimer getestet.

Tab. 18: PCR-Bedingungen f Generation Generation wca-Clusters

Fragment	PwcaA	PmanB	PwcaK			
Hinprimer	PwcaA -up	PmanB -up	PwcaK -up			
Rückprimer	PwcaA -low	PmanB -low	PwcaK -low			
Templat2 µl 1:5 verd. C600 chromomale DNA						
MgCl ₂	MgCl ₂ -					
Formamid		-				
Thermocycler-Programm:						
2 min Denaturierung	g bei 95 °C					
30 Zyklen von						
Schritt	Temperatur [°(C] D	auer [s]			
Denaturierung	95	6	0			
Annealing	45	6	0			
Polymerisation	72	6	0			
+ 5 min abschließen	de Polymerisation					

Mit dem 273 bp langen Fragment zwischen *wzx* und *wca*K (P*wcaK*) konnte keine Bindung beobachtet werden (Abb 25). Dagegen zeigten sowohl das 91 bp lange, zwischen *wzc* und *wcaA* (P*wcaA*) gelegene , als auch das 104 bp lange, zwischen *manC* und *manB* (P*manB*) gelegene Fragment eine deutliche Retardation durch RcsAB (Abb.25). Dieser Effekt war nicht nur auf die Rcs-Proteine aus *E. coli* beschränkt, sondern konnte mit denen aus *Ew. amylovora* reproduziert werden.

Ergebnisse

Abb. 25: EMSA-Analyse intergenischer Regionen des *E. coli wza*-Operons. Die Fragmente P*wcaA*, P*manB* und P*wcaK* wurden mit einem Gelshiftassay unter Standardbedingungen auf RcsAB-Bindung getestet. 1: kein Protein, 2 und 3: je 2 μ M RcsAB, I: gebundene DNA; I: ungebundene DNA

Zur Abschätzung der Stärke der Interaktion wurden Kompetitions-Gelshiftexperimente durchgeführt. Dazu wurden zu dem Gemisch aus radioaktiv markierter Pwza-DNA und Rcs-Proteinen steigende Konzentrationen entsprechender "kalter"; nicht radioaktiver DNA-Fragmente als Kompetitor gegeben und nach 10 Minuten Inkubationszeit in üblicher Weise der nativen Gelektrophorese unterworfen. Anschließend wurden die Anteile an gebundener radioaktiv markierter DNA bestimmt und grafisch aufgetragen. Diese Experimente zeigten allgemein eine verringerte Affinität der intergenischen Regionen gegenüber dem Pwza-Promotorfragment (Abb. 26).

Abb. 26: EMSA-Kompetitionsanalyse der Fragmente Pwza, PmanB und PwcaA. Steigende Konzentrationen von nichtradioaktiven DNA-Fragmenten wurden EMSA-Ansätzen mit radioaktiv markiertem Pwza und 2 μ M RcsAB unter Standardbedingungen zugesetzt und der Anteil der gegundenen radioaktiven DNA bestimmt. : Pwza, : PmanB, : PwcaA

Dabei war die Stärke der Interaktion im Falle von PmanB um das Doppelte, bei PwcaA sogar um das Vierfache herabgesetzt. Beim Vergleich der möglichen RcsAB-Bindungsstellen der intergenischen Regionen mit dem Konsensusmotiv der RcsAB-Box zeigt sich, daß diese an einigen Stellen degenerierte Basen aufweisen, die die verringerte Affinität dieser Sequenzen zum RcsAB-Heterodimer erklären könnten (Tab. 19).

Promotor	RcsAB Bindungsstelle	Lage
wcaA:	G <u>TA</u> GCC <u>GGATAA</u> GG <u>CGTTCA</u>	-48 / -67
manB:	CG <u>GTG</u> T <u>AAATAA</u> CGAC <u>AAAA</u>	-55 / -74
RcsAB-Box	aaa. TaAGaatatTCctA .ttt	

Tabelle: 19: Vergleich der möglichen RcsAB Bindungsstellen der intergenischen Regionen im wza-Operon mit dem RcsAB-Box-Konsensus Regionen im wza-Operon mit dem RcsAB-Box-Konsensus Regionen im wza-Operon mit dem RcsAB-Box-Konsensus

4.9. Identifikation von RcsAB-Bindungsstellen in intergenischen Regionen innerhalb des *ams*-Operons zur Amylovoran-Biosynthese von *Ew. amylovora*

Zwischen dem *ams*-Operon aus *Ew. amylovora* und dem ersten Teil des *wca*-Operons *aus E. coli* herrscht ein hoher Grad an Homologie. In früheren Untersuchungen konte gezeigt werden, daß verschiedene intergenische Regionen des ams-Operons Promotor-artige Eigenschaften besitzen (Berhard *et al.*, 1993; Bugert und Geider, 1995). Um zu klären, ob die Promotoraktivität dieser Sequenzen durch das Rcs-System reguliert wird, wurde ihre Interaktion mit dem RcsAB-Heterodimer in EMSAs geprüft.

Dazu wurden fünf hinreichend große intergenische Regionen aus dem *ams*-Cluster mittels PCR amplifiziert: das 121 bp lange Fragment zwischen *amsG* und *amsH* (P*amsH*), das 88 bp lange Fragment zwischen *amsA* und *amsB* (P*amsB*), das 156 bp lange Fragment zwischen *amsC* und *amsD* (P*amsD*), das 86 bp lange Fragment zwischen *amsE* und *amsF* (P*amsF*) sowie das 145 bp lange Fragment zwischen *amsF* und *amsF* (P*amsJ*) (Tab. 20).

Tabelle. 20: PCR-Bedingungen f Generation des ams-Operons

Fragment	PamsH	PamsB	PamsD	PamsF	PamsJ
Hinprimer:	PamsH-up	PamsB-up	PamsD-up	PamsF-up	PamsJ-up
Rückprimer:	PamsH-low	PamsB-low	PamsD-low	PamsF-low	PamsJ-low
Templat		2 µl	1:10 verd. pEA	131	
MgCl ₂			-		
Formamid			-		

Thermocycler-Programm:

2 min Denaturierung bei 95 °C					
30 Zyklen von					
SchrittTemperatur [°C]Dauer [s]					
Denaturierung	95	60			
Annealing	45	60			
Polymerisation7230					
+ 5 min abschließende Polymerisation					

Während für die Fragmente PamsH, PamsB, PamsD und PamsF in EMSAs keine Interaktion mit dem RcsAB_{EA}-Heterodimer bei Proteinkonzentrationen bis zu 7 μ M für RcsA_{EA} und 2 μ M für RcsB_{EA} zu beobachten war, wurde PamsJ deutlich retardiert.

EMSA-Kompetitionsstudien mit PamsJ und dem Fragment Pams G_{183} ergaben eine etwa vierfach reduzierte Affinität des RcsAB_{EA}-Heterodimers ams amsJ-Promotor im Vergleich zur RcsAB-Bindungsstelle in amsG-Promotor (Abb. 27).

Abb. 27: Kompetition zwischen PamsJ und PamsG₁₈₃

Einer konstanten Menge markierter DNA in EMSAs unter Standardbedingungen (RcsAB-Konzentration 2μ M) wurden steigende Mengen an Kompetitor-DNA zutitriert. : PamsG₁₈₃; : PamsJ

Ein Vergleich des 145 bp langen P*amsJ*-Fragments mit der RcsAB-Box Konsensussequenz zeigte eine mögliche RcsAB-Bindungsstelle, die ungefähr in der Mitte dieser Region, zwischen den Positionen -60 und -79 relativ zum translationellen Start von *amsJ* lokalisiert ist (Abb. 28).

Abb. 28: Lokalisierung der möglichen RcsAB-Bindungsstelle im Fragment PamsJ

Die intergenische Region zwischen amsI und amJ entält eine RcsAB-Bindungsstelle (doppelt unterstrichen). Fragmente, die im EMSA retardiert wurden, sind über der Sequenz dargestellt, Mutationen als fette ("up") Buchstaben. Die -35 und -10-Regionen sowie die Ribosomenbindungsstelle sind einfach unterstrichen.

Zur weiteren Charakterisierung der RcsAB-Bindungsstelle im *amsJ*-Promotor wurden durch PCR zwei Unterfragmente konstruiert. Sie umfaßten die Positionen -1 bis -79 (PamsJL) und - 57 bis -145 (PamsJR) Beide wurden in EMSAs klar retadiert (Abb. 29)

Abb: 29: EMSA-Analyse der Framente PL_{amsJ} und PR_{amsJ} EMSAs wurden unter Standardbedingungen mit steigenden Proteinkonzentrationen von 1= kein Protein bis 4=4µM RcsAB durchgeführt.

Das 23 bp lange Fragment PamsJC, rekonstiuiert aus den Primern PamsJC-up und PamsJClow, welches die Positionen -57 bis -79 umfaßte und somit die vermutliche RcsAB-Bindungsstelle enthielt, wurde dagegen in einem EMSA nicht geshiftet.

All diese Ergebnisse deuten darauf hin, daß diese 23 bp lange Sequenz tatsächlich die RcsAB-Erkennungstelle beinhaltet, daß aber möglicherweise zusätzliche Nukleotide vonnöten sind, den DNA/RcsAB-Komplex hinreichend zu stabilisieren. Um den Einfluß dieser möglichen RcsAB-Bindungsstelle näher zu untersuchen, wurde eine Mutationen in das 145 bp lange P*amsJ*-Fragment eingeführt, die sich gemäß dem RcsAB-Box Konsensus positiv (-71 T-A, P*amsJ*Dauf dessen Retardation durch RcsAB_{EA} auswirken sollte. Hierbei wurden die theoretischen Voraussagen durch das Experiment bestätigt (Abb. 30). Dies ist ein weiteres Indiz für die korrekte Zuordnung der RcsAB-Bindungstelle im P*amsJ*-Fragment.

Abb. 30: EMSA-Kompetitionsanalyse der Fragmente Pams G_{183} , PamsJ und PamsJD Einer konstanten Menge markierter DNA in EMSAs unter Standardbedingungen (RcsAB-Konzentration 2µM) wurden steigende Mengen an Kompetitor-DNA zutitriert. : PamsG183; : PamsJ; : PamsJD

4.10. Konstruktion dreier Mutanten-RcsB-Proteine im Phosphorylierungsmotiv

Das RcsB-Protein besitzt an den Aminosäure-Positionen 10, 11 und 56 drei hochkonservierte Asparaginsäurereste, die alle am vermuteten Phosphorylierungsmotiv beteiligt sind. Um den Einfluß der Phosphorylierung auf die Spezifität und Aktivität von RcsB zu untersuchen, wurden mittels Mutagenese drei Plasmide konstruiert, in denen jeweils eines der Asparaginsäurecodons durch ein Codon für Valin (prcsB_{10D-V}), Alanin (prcsB_{11D-A}) und Glycin (prcsB_{56D-G}) ersetzt war und die die Mutantenproteine RcsB_{10D-V}, RcsB_{11D-A} und RcsB_{56D-G} codierten.

Produkt	prcsB10 _{D-V}	prcsB11 _{D-A}	prcsB56 _{D-G}			
Hinprimer	RcsB ₁₀ -up	RcsB ₁₁ -up	RcsB ₅₆ -up			
Rückprimer	RcsB ₁₀ -low	RcsB ₁₁ -low	RcsB ₅₆ -low			
Templat	2 μ l 1:10 verd. pQ-RcsB _{EA} DNA					
MgCl ₂		-				
Formamid -						
Thermocycler-Programm: 2 min Denaturierung bei 95 °C						
30 Zyklen von						
Schritt	Temperatur [°	C] D	auer [s]			
Denaturierung	95	60)			
Annealing	45	60)			
Polymerisation	72	30)0			
+ 5 min abschließen	de Polymerisation					

Tabelle 21: PCR-Bedingungen für die RcsB-Mutagenese

4.10.1. Phänotypen der RcsB-Phosphorylierungs-Mutanten

Die Expression von $rcsB_{11D-A}$ im *E. coli* Stamm DH5 α führte zu einer erhöhten EPS-Produktion. Die Induktion der Kapselbiosynthese war RcsA-unabhängig und konnte auch im *E.coli rcsA*-Mutanten SG1087 beobachtet werden. Im Gegensatz dazu hatte die Expression von $rcsB_{11D-A}$ im *P. stewartii rcsA*-Mutantenstamm MU14110 keinen Effekt. Dies läßt darauf schließen, daß zwischen beiden Species gewisse Unterschiede im RcsB-abhängigen Mechanismus der EPS-Regulation bestehen.

Der RcsA-überproduzierende Stamm DH5 $\alpha \times pEA101$ besitzt einen hochgradig mucoiden Phänotyp aufgrund der gesteigerten EPS-Biosynthese. Wurden allerdings die Plasmide prcsB_{10D-V} und prcsB_{56D-G} in diesen Stamm transformiert, so änderte sich dessen Koloniemorphologie zur trockenen, nichtmucoiden Form. Damit übereinstimmend war die Beobachtung, daß das Plasmid prcsB_{10D-V} im üblicherweise EPS-produzierenden *P. stewartii* Wildtyp-Stamm DC283 ebenfalls zur Unterdrückung der Kapselsynthese führte. Ein solcher Effekt ließe sich mit der Titration des Endogenen RcsA-Proteins durch die mutierten RcsB- Proteine erklären. Beide Proteine könnten einen inaktiven Proteinkomplex bilden, der nicht mehr zur Induktion der EPS-Biosynthese befähigt war.

Die beiden Proteine $\text{RcsB}_{(10D-V)}$ und $\text{RcsB}_{(11D-A)}$ konnten in *E. coli* sehr gut in löslicher Form produziert werden. Das $rcsB_{56D-G}$ -Gen hingegen wurde nur schwach exprimiert und das meiste gebildete $\text{RcsB}_{(56D-G)}$ Protein blieb unlöslich. Das Unvermögen des Plasmids prcs B_{56D-G} _G zur Unterdrückung der EPS-Biosynthese im *P. Stewartii*-Stamm DC283 könnte daher auf die geringe Produktion bzw. die Instabilität des $\text{RcsB}_{(56D-G)}$ -Proteins zurückzuführen sein.

Um zu überprüfen, ob der mucoide Phänptyp in *E. coli* erwartungsgemäß durch eine erhöhte Expression des EPS-Biosyntheseclusters zustande kommt, wurden die Plasmide prcsB und prcsB_{11D-A} in den *E. coli*-Stamm JB3034 transformiert. Dieser Stamm trägt eine *cpsB::lacZ*-Fusion und erlaubt so eine Messung der *cpsB*-Expression. Die Induktion der *cpsB*-Expression durch das Plasmid prcsB_{11D-A} war mit ca. 7 Miller-Einheiten relativ gering, die des Plasmids prcsB nicht meßbar. Die *cpsB*-Expression durch das Plamid prcsB_{11D-A} wurde die Coexpression der Chaperon-Systeme *dnaKJ* und *groELS* erheblich gesteigert (Abb. 31). Die Tatsasche, daß beide Systeme die RcsB_(11D-A)-vermittelte Aktivierung der *cpsB*-Expression förderten läßt den Schluß zu, daß die Stabilität oder die korrekte Faltung des RcsB_(11D-A)-Proteins in eine aktive Konformation von der Interaktion mit Chaperon-Komplexen abhängt.

Abb. 31: Effekt der Chaperon-Koexpression auf die RcsB_(11D-A)-aktivierte *cpsB*-Expression

Alle relativen Werte wurden auf den Stamm JB3034 normiert, die *cpsB*-Expression mit Hilfe des ONPG-Tests gemessen

Die mutierten RcsB-Proteine wurden in EMSA's auf ihre Fähigkeit, das $PamsG_{183}$ -Fragment zu binden getestet. Die Retardation mit dem RcsA/B_(11D-A)-Heterodimer war vergleichbar zu der des RcsA/B-Wildtyp-Heterodimers (Abb 32). Eine Bindung des Fragments $PamsG_{183}$ mit RcsA/B_(10A-V) war nur sehr schwach sichtbar. Diese Ergebnisse lassen darauf schließen, daß die Aspartate an den Positionen 10 und möglicherweise auch 56, jedoch nicht an 11, essentiell für die Bildung eines RcsAB/DNA-Komplexes *in vivo* sind.

Abb. 32: Einfluß der RcsB-Mutationen auf die Bindung des RcsAB-Heterodimers an PamsG.

RcsAEA wurde mit den verschiedenen RcsB-Mutanten in äquimolarem Verhältnis gemischt und unter Standardbedingungenin einem EMSA auf Bindung an PamsG geprüft. 1: DNA ohne Protein; 2: $+RcsA_{EA}/RcsB_{EA}$; 3: $+RcsA_{EA}/RcsB_{(11D-A)}$; 4: $+RcsA_{EA}/RcsB_{(10D-V)}$ Die Konzentrationen der RcsAB-Heterodimere betrugen jeweils 2 μ M

4.10.2. RcsB interagiert mit RcsA in Lösung

In allen bisherigen Arbeiten wurde gezeigt, daß RcsA und RcsB als Heterodimer an der RcsAB-Box binden. Darüberhinaus wurde eine Interaktion der beiden Proteine ohne ihr DNA-Substrat postuliert, bisher jedoch noch nicht experimentell belegt.

In der vorliegenden Arbeit wurde die Interaktion von RcsA und RcsB mit Hilfe der SPR-Technik analysiert. Dazu wurden poly(His)₆-markierte RcsB- oder RcsB_(11D-A)-Proteine auf einer Ni²⁺-Nitriloessigsäure (NTA) Oberfläche eines BIAcore-Sensorchips immobilisiert. Als unspezifische Referenzoberfläche diente ein poly(His)₆-markiertes Fragment der Surfactin Synthetase (freundlicherweise bereitgestellt von Hanka Symmank). Anschließend wurde

Abb. 33: Nachweis der RcsA/RcsB-Interaktion in Lösung durch SPR

Sensorgramme der RcsA/RcsBwt-Interaktion (rot) und der RcsA/RcsB(11D-A)-Interkation in Lösung. Jeweils identische Mengen an RcsB-Proteinen wurden auf den Chip immobilisiert und anschließend eine RcsA-Lösung der Konzentration 9 µM injiziert.

Die Auswertung der kinetischen Daten beider Wechselwirkungen zeigte folgendes Bild: Mit dem RcsB-Wildtypprotein betrug die Gleichgewichtskonstante $K_D = 3.8 \pm 0.1 \times 10^{-7}$ M. Ein vergleichbarer Werte wurde auch für das mutierte Protein RcsB_(11D-A) mit $K_D = 2.6 \pm 0.5 \times 10^{-7}$ M erhalten. Die Halbwertszeit beider Proteinkomplexe ist größer als zehn Minuten.

Diese Ergebnisse demonstrieren, daß beide Proteine in Lösung miteinander in Abwesenheit ihres DNA-Ziels interagieren können und daß der Aspartat-Rest an Position 11 des RcsB-Proteins nicht essentiell für die RcsAB-Wechselwirkung ist. Die kinetischen Paramenter der Interaktion von RcsA mit RcsB und RcsB_(11D-A) sind einander sehr ähnlich, wobei das RcsB_(11D-A) -Protein eine offenbar leicht bessere Bindung mit RcsA aufweist.

4.10.3. RcsA stabilisiert die RcsB/DNA-Interaktion

Mit der EMSA-Technik konnte in dieser Arbeit bisher nur eine schwache Bindung des RcsB-Proteins am *amsG*-Promotor von *Ew. amylovora* beobachtet werden. Eine Interaktion des RcsB_(11D-A)-Proteins mit dem *wza*-Promotor konnte auf diese Weise jedoch nicht gezeigt werden, so wie im Allgemeinen bisher keinerlei RcsB/*E. coli*-Promotor-Wechselwirkungen experimentell nachgewiesen wurden. Allerdings weist die RcsA-unabhängige Aktivierung der EPS-Biosynthese durch Mehrfachkopien von *rcsB* auf eine Mögliche RcsB/DNA-Interaktion hin. Daher wurde die Wechselwirkung von RcsB mit DNA mit Hilfe der sensitiveren SPR-Technik untersucht.

Dabei konnte die Interaktion von RcsB mit ca. 100 bp langen Fragmenten aus den Promotoren von *E. coli wza* (Pwza), *E. amylovora amsG* (PamsG), und *P. stewartii cpsA* (PcpsA) nachgewiesen werden (Abb. 34A). Mit Hilfe des von der Software BIAEvaluation 3.0 bereitgestellten steady state Modells und Sensorgrammen mit RcsB-Konzentrationen zwischen 0,4 nM bis 3 μ M wurden die K_Ds der RcsB/DNA-Interaktionen für Pwza zu 4,6 ± 3 × 10⁻⁶ M, für PamsG zu 2,2 × 10⁻⁶ M und für PamsG zu 5,4 × 10⁻⁶ M berechnet. Für alle drei RcsB/DNA-Wechselwirkungen charakteristisch war die fast augenblickliche Dissoziation des Komplexes mit einer sehr kurzen Halbwertszeit von weniger als fünf Sekunden. Diese geringe Halbwertszeit könnte auch für das Scheitern eines Nachweises des RcsB/DNA-Komplexes im EMSA verantwortlich sein.

Die kinetischen Charakteristika der Bindung änderten sich beträchtlich, sobald RcsA und RcsB gemeinsam an die RcsAB-Box binden (Abb. 34B). Die Dissoziation der Proteine war stark verlangsamt und die Stabilität des Komplexes um eine Größenordnung erhöht. Kinetische BIAcore-Meßreihen ergaben KD-Werte von $3,8 \pm 0,1 \times 10^{-7}$ M für Pwza, $2,8 \pm 0,8 \times 10^{-8}$ M für PamsG und $1,5 \pm 0,3 \times 10^{-7}$ M für PcpsA. Die Halbwertszeit des RcsAB/DNA-Komplexes mit dem Pwza-Fragment verlängerte sich auf 133 ± 31 Sekunden. Die Dissoziationskonstanten von fünf Experimenten mit Proteinkonzentrationen zwischen 94 nM bis $1,5 \mu$ M wurden zu kd = $3,1 \pm 1,7 \times 10^{-3}$ s⁻¹ berechnet. All diese Ergebnisse deuten darauf hin, daß eine wichtige Rolle von RcsA bei der Aktivierung der EPS-Biosynthese darin besteht, den RcsB/DNA-Komplex zu stabilisieren.

Abb. 34: Die RcsB-Interaktion mit Pwza, PamsG und PcpsA in Ab- und Anwesenheit von RcsA

Ca. 72 bp große Fragmente von Pwza (grün) PamsG (rot) und PcpsA (blau) wurden mittels SPR durch Injektion von 750 nM RcsB (A) bzw 750 nM RcsAB (B) auf ihre Protein/DNA-Interaktion analysiert.

4.10.4. Die 11D-A-Mutation verstärkt die Bindung von RcsB an den *E. coli wza-*Promotor.

Die RcsA-unabhängige EPS-Produktion durch $\text{RcsB}_{(11D-A)}$ im *E. coli*-Stamm SG1087 könnte durch eine veränderte Interaktion des Proteins mit Promotorregionen zustande kommen. Daher wurde die Bindungen von RcsB und $\text{RcsB}_{(11D-A)}$ an identischen, mit jeweils den Fragmenten P*wza*, P*cpsA* und P*amsG* beladenen Sensorchips miteinander verglichen.

Das Ausmaß der Bindung von $\text{RcsB}_{(11D-A)}$ am Pwza-Fragment war gegenüber dem des RcsB-Wildtyps ungefähr vierfach vergrößert. An den Fragmenten P*cpsA* und P*amsG* hingegen bestanden praktisch keine Unterschiede zwischen der Bindung von RcsB und RcsB_(11D-A) (Abb. 35).

Abb. 35:Einfluß der 11D-A-Mutation auf die Bindungsstärke von RcsB an verschiedene EPS-Hauptpromotoren blau: RcsB_(11D-A), rot: RcsB_{wt}

Diese Befunde decken sich mit den Daten aus *in-vivo*-Experimenten, in denen allein $RcsB_{(11D-A)}$ in der Lage war, unabhängig von RcsA die Biosynthese größerer EPS-Mengen zu induzieren. Die Kinetik der Bindung von $RcsB_{(11D-A)}$ an DNA war der des RcsB-Wildtyps sehr ähnlich. Auch die $RcsB_{(11D-A)}/DNA$ -Komplexe dissoziierten sehr schnell und hatten dementsprechend ebenfalls nur sehr geringe Halbwertszeiten von wenigen Sekunden.

Die K_D-Werte der Bindung von RcsB_(11D-A) an die drei DNA-Fragmente wurden abermals mittels des steady-state-Modells, welches von der Software BIAeval 3.0 bereitgestellt wurde, berechnet. Als Grundlage dienten Sensorgramme mit Proteinkonzentrationen von 0,4 nM bis 3 μ M. Für die Interaktion mit Pwza ergab sich ein K_D von 3,8 ± 0,6 × 10⁻⁷ M, für PamsG ein K_D von 3 × 10⁻⁶ M und für PcpsA ein K_D von 3,9 × 10⁻⁶ M. Hierbei wird deutlich, daß die Bindung des RcsB_(11D-A)-Proteins an den *E. coli wza*-Promotor um ungefähr eine Größenordnung stärker als an die beiden anderen Promotoren und in ihrer Stärke vergleichbar mit der des RcsA-RcsB-Wildtyp-Heterodimers an das selbe DNA-Fragment ist.

Im Gegensatz zum Wiltyp-RcsB-Protein verbesserte sich die Bindung des $RcsB_{(11D-A)}$ -Proteins zum P*wza*-Fragment im Zusammenspiel mit RcsA nicht. Der mit Hilfe der SPR-Technik berechnete K_D-Wert des $RcsAB_{(11D-A)}/DNA$ -Komplexes betrug 2,6 ± 0,5 × 10⁻⁷ M und ist vergleichbar zum K_D-Wert des RcsAB/DNA-Komplexes.

4.10.5. Die RcsAB-Box wird für die Bindung von RcsB an den *E. coli wza*-Promotor benötigt.

In dieser Arbeit wurde die RcsAB-Box als 14 bp lange konservierte Region in den *wza-*, *amsG-* und *cpsA-*Promotoren identifiziert, die essentiell für die Bindung des RcsAB-Heterodimers an die jeweiligen Promotoren ist.

Die Fragmente P*wza*, P*amsG* und P*cpsA*, die in der SPR für die Untersuchung der RcsB/DNA-Interaktion eingesetzt wurden, enthielten die RcsAB-Box und es wurde untersucht, ob diese auch eine Rolle bei der Bindung von RcsB allein spielt. Die 14 bp lange RcsAB-Box im Fragment P*wza* wurde deletiert und die Bindung der beiden RcsB-Proteine am resultierenden Fragment P*wza* Δ mittels SPR gemessen (Abb. 36). Es konnte sowohl mit Wildtyp-RcsB als auch mit RcsB_(11D-A) keinerlei Bindung beobachtet werden. Dieses Ergebnis lieferte den ersten Hinweis auf eine Beteiligung der RcsAB-Box an der RcsB/DNA-Interaktion.

Abb. 36: Die RcsAB-Box ist essentiell für die RcsB/DNA-Interaktion Dargestellt sind die Sensogramme der Interaktionen von $RcsB_{(11D-A)}$ (blau) und RcsB-Wildtyp (rot) mit Pwza Δ

Um diesen Befund auch *in-vivo* nachzuprüfen, wurden die *E. coli*-Stämme C600, MW 29 und MW 31 mit den Plasmiden pr*csB* und pr*csB*_{11D-A} transformiert und die resultierende Menge synthetisierten EPS's mit Hilfe des Anthron-Tests gemessen (Tabelle 22).

Tabelle 22: Einfluß der RcsAB-Box auf die Induktion der EPS-Biosynthese durch RcsB und RcsB_(11D-A)

Stamm	Plasmid	Phänoty	р	EPS-Produkti (ug Glucose/10	EPS-Produktion	
		28°C	37°C	28°C	37°C	
C600	- pBwt pB11	В	В	-	$-25 \pm 7 \times 10-3$	
MW31	pB11 - pBwt	В	В	-	- 0.17 ± 0.02	
MW29:	pB11 - pBwt	В	В	$\begin{array}{c} 1.78 \pm 0.02 \\ 0.06 \pm 0 \end{array}$	1.01 ± 0.06 - 0.19 ± 0.01	
	pB11			1.45 ± 0.13	0.5 ± 0.05	

All diese Daten lassen den Schluss zu, daß sowohl RcsB als auch $RcsB_{(11D-A)}$ die gleichen DNA-Ziele bei der Bindung erkennen.

4.10.6. Die DNA-Bindungsaktivität von RcsB wird durch Phosphorylierung reguliert.

Die hier untersuchten Asparaginsäurereste an den Positionen 10, 11 und 56 von RcsB sind Teil eines konservierten Motivs in transkriptionellen Regulatoren, das wahrscheinlich an der Phosphorylierung dieser Proteine beteiligt ist. Im Falle von RcsB wurde vermutet, daß durch Phosphorylierung die Aktivität von RcsB moduliert wird.

Um diesen Vermutungen nachzugehen, wurde der Einfluß der Phosphorylierung auf die RcsB/DNA-Interaktion untersucht. Dazu wurde RcsB der konstanten Konzentration 750 nM mit steigenden Acetylphosphat-Konzentrationen bis hin zu 20 μ M vorinkubiert und anschließend die Bindungsaktivität der so behandelten Proteine mittels SPR untersucht. Mit steigender Acetylphosphat-Konzentration war ein deutlicher Abfall des Ausmaßes an RcsB/DNA-Bindung zu beobachten (Abb. 37). Es darf angenommen werden, daß RcsB duch Acetylphosphat autophosphoryliert wird und das resultierende RcsB^{-P} eine verringerte DNA-Bindungsaktivität aufweist. Im Gegensatz zum Wildtyp-RcsB-Protein wurde die RcsB_(11D-A)-Mutante weit weniger stark durch Acetylphosphatzugabe negativ beinflusst (Abb. 37). Die Mutation im vermutlichen Phosphorylierungsmotiv scheint also die Autophosphorylierung von RcsB zu inhibieren oder zu destabilisieren.

Abb. 37: Einfluß der Phosphorylierung auf die RcsB/P_{wza}-Interaktion

Konstante Protein-Konzentrationen wurden mit steigenden Acetylphosphat-Mengen versetzt und mittels der SPR-Technik auf ihre Bindung an den wza-Promotor getestet. : RcsB-Wildtyp; : RcsB_(11D-A)

Um zu untersuchen, ob die Phosphorylierung auch einen Einfluss auf die RcsB/RcsA-Bindung zeigt, wurde wiederum mittels der SPR-Technik die Interaktion von auf einer Ni²⁺NTA-Oberfläche immoblisiertem RcsB mit 9 μ M RcsA und 20 μ M Acetylphosphat untersucht. Der resultierende K_D-Wert von 4,7 ± 1,7 × 10⁻⁷ M ist vergleichbar zu dem der RcsB/RcsA-Interaktion in Abwesenheit von Acetylphosphat und liefert einen Hinweis darauf, daß phosphoryliertes RcsB weiterhin mit RcsA wechselwirken kann. Darüber hinaus ergab sich in den gemessenen Sensogrammen gegenüber der Abb. 33 keinerlei Änderung.

4.11. Phosphorylierung steigert die DNA-Affinität des RcsAB-Heterodimers.

Um zu überprüfen, welchen Einfluß die Phosphorylierung von RcsB auf die Bindungsaktivität des RcsAB-Heterodimers besitzt, wurden abermals SPR-Messungen durchgeführt. Dazu wurden konstante Konzentrationen von RcsAB_{wt} in Anwesenheit immer größerer Acetylphosphat-Mengen über immobilisierte P*wza*-Fragmente injiziert und die dabei beobachteten Bindungskurrven miteinander verglichen. Stellt man die relative Bindungsstärke des RcsAB_{wt}-Heterodimers als Funktion der Acetylphosphatkonzentration dar (Abb. 38), so erkennt man, daß sich ein steigender Grad an Phosophorylierung positiv auf die Protein/DNA-Interaktion auswirkt.

Abb. 38: Einfluß der Phosphorylierung auf die RcsAB_{wt}/Pwza-Interaktion

Konstante RcsAB_{wt}-Konzentrationen wurden mit steigenden Acetylphosphat-Mengen versetzt und mittels der SPR-Technik auf ihre Bindung an den *wza*-Promotor getestet.