Chapter 2

Experimental methods

In this dissertation the magnetic structures of thin and ultrathin heavy lanthanide-metal
films were investigated. Commonly used methods to characterize periodic structures are
diffraction (or more general scattering) techniques, like neutron or x-ray scattering. Neu-
tron scattering has played the leading role in the past to investigate magnetic structures in
solids. Since the availability of synchrotron radiation sources also magnetic x-ray scattering
became a powerful tool to probe magnetic structures. Furthermore, synchrotron radiation
allows resonant scattering by tuning the photon energy to an absorption threshold, which
leads to an element-specific enhancement of the scattering cross section. As will be shown
in this work, resonant scattering is therefore well-suited to study thin films. The data pre-
sented in this dissertation were obtained by x-ray scattering and resonant magnetic x-ray
scattering at conventional and soft x-ray energies. The latter technique is a very recent de-
velopment and is applied in this dissertation for the first time to study AFM structures in
thin films. As it will turn out, scattering in the soft x-ray region opens up new possibilities
for the investigation of magnetic structures.

This chapter deals with basic aspects of x-ray scattering and magnetic x-ray scattering
on and off resonance. Because multiple scattering effects are usually small in x-ray scat-
tering, some points of this chapter will be discussed in a kinematical approximation. The
specific properties of resonant soft x-ray scattering have been worked out in the present
study and are discussed separately in detail in chapter 4.

2.1 X-ray scattering

When x-rays interact with matter, they can be absorbed or scattered, either elastically or
inelastically. The elastic scattering processes are coherent and lead to a diffraction pattern.
Elastic scattering can be satisfactorily described by classical electrodynamic theory with
some quantum-mechanical modifications [65]. In a classical picture, the electrons of the
target are accelerated by the incoming electromagnetic plane wave and reradiate at the
same wavelength A essentially with a dipole characteristic. The diffraction pattern of an
arbitrary electron distribution can be calculated as the sum of waves emitted by electrons
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of the target taking into account the phase difference caused by the different path lengths.
The scattering amplitude A can be expressed as an integral over the sample volume [66]
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A= —rgP- /,0 (r) 6%(#%)-%&’ (2.1)

where —ry is the scattering amplitude of a free electron, P arises from the projection
of the polarization vectors of incoming and scattered light, p(r) is the electron density
distribution, Sy denotes the unit vector in the direction of the incoming light and s the one
in the direction of observation. The measured intensity is given by |A|2.

In case of a crystalline solid, the periodic structure can be used to express the scattering
amplitude [67]

A (g) =—roP ) fj (g, hu) €'y e'thin, (2.2)
z R,

where ¢ = 27(5 — 50) /A is the scattering vector. The first sum covers one unit cell and is
called the unit-cell structure factor, which is the sum over all atoms within the unit cell
with the respective atomic form factors f; and corresponding phase factors. The second
sum goes over all lattice sites R,, and will be denoted by F(g). For a crystal with a one-
atomic basis, the scattering amplitude 2.2 simplifies to A(q) = —roP - f(gq,hv) - F(q). The
atomic form factor f is in general a complex number

fla, hw) = f*(q) + f'(hv) + i~ f"(hv), (2.3)

with the Thomson term f°, which depends on the momentum transfer ¢ if the x-ray
wavelength is of the order of the spatial extent of the electrons within the atom. f'(hr) and
f"(hv) are the real and imaginary parts of the dispersion correction, which get important
essentially at resonance energies [67].

The structure factor F'(g) for a finite crystal of N1 x N3 x N3 unit cells can be described by
the sum over all phase factors with lattice parameters a; and components of the momentum
transfer ¢; [68]

N1 Na Nz ) ) ) 2 H?: sin? lNiqiai
‘F(g)f: jlzlhzljgzlel(qlau1+q2am+q3a3]3) - Hfll singzéqiai)) (2.4)

When Nj, No, and N3 are large numbers, the function is sharply peaked at the Bragg points
with a peak intensity of (N1N2N3)2. The three Laue conditions for this are ¢ia; = 27h,
qaa9 = 27k, and gzaz = 2wl (h, k, | integers) [68].

Scattering from thin-films and surfaces

In a real scattering experiment, the scattering volume is always limited by the size and
penetration depth of the x-ray beam. While these boundaries are gradual, the boundaries
formed by surfaces and interfaces are usually abrupt. If the crystal is finite, the scattered
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Figure 2.1: Simulations of equations 2.5 and 2.6 representing the crystal-truncation rods
of a semi infinite crystal (b) and of a thin film (c) in reciprocal lattice units. The sketch
in (a) defines the directions in momentum space.

intensity will be more and more distributed in reciprocal space with decreasing the size of
the crystal.

A crystal with a surface can be thought of as a lattice which is laterally infinite and
semi-infinite in the third direction. Carrying out the summation in equation 2.4 at a point
in reciprocal space where the two in-plane Laue conditions are fulfilled, but not the third
one for the direction normal to the surface plane, leads to [67,68]:

NEN3
4 sin® (%Q3a3) ’
which is defined away from the Bragg peaks, i.e. if the denominator is # 0. This equa-
tion shows that there is finite intensity distributed along the surface normal, the so called
crystal-truncation rod (CTR). Figure 2.1 (b) shows the shape of the CTR on a logarithmic
scale according to equation 2.5; g3 is given in reciprocal lattice units in direction perpendic-
ular to the surface (a3). It is worth to note that the scattered intensity away from the Bragg
peak is of the same order as the intensity scattered from a single monolayer [68]. It can be
shown that the intensity distribution along the CTR depends strongly on the properties
of the surface e.g. surface roughness and layer spacing [67-69]. Therefore, measurements
of CTR’s have become a useful probe of the surface structure and the near-surface region
of single crystals. The shape of the CTR is also determined by e.g. a finite penetration
depth and a finite coherence length of the x-rays.

A second case, important for this dissertation, is the scattering from a thin film. This is
approximated by a laterally infinite lattice, with a finite number of scattering planes in the

third direction. The diffraction pattern perpendicular to the surface derived from equation
2.4 is given by the Laue function [68]

|F (q3)] = (2.5)

IF (go)]” = N2V ( sists) (2.6)
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Figure 2.2: Typical scans in reciprocal space used in the present work. Left: longitudinal
scan (specular geometry). Right: transverse or rocking scan probing the off-specularly
scattered intensity.

This function is plotted in figure 2.1 (c) for the case of a 10-layer-thick film. The number
of layers, N3, determines both the width of the Bragg peak and the distance to the side
maxima, the so-called Laue oscillations.

Typical scans in reciprocal space

The diffraction pattern of a crystal is three-dimensional. In case of a thin film, there are
two naturally distinct directions; perpendicular to the sample surface, where the sample
is of finite size and parallel to the surface, where the sample is practically infinite. The
scans that correspond to these directions and that are used in the present work are called
longitudinal and transverse scans, depending on the rotations of sample and detector.

A longitudinal scan is shown schematically on the left side of figure 2.2. If the angles of
the incident and detected x-rays are equal with respect to the sample surface (specular ge-
ometry), the scattering vector is perpendicular to the sample surface (¢, ). A simultaneous
change of detector and sample angle in specular geometry results in a longitudinal scan.
Since the angles of incidence © and detection ©' are equal in specular geometry, they will
be denoted as © in the following.

An example of a longitudinal scan from a thin film on a substrate is given in figure 2.3.
It shows the scattering pattern of a 27-monolayer-thick (ML) Ho film along the specular
(001) direction on a logarithmic scale. The component of the scattering vector along the
c* direction of the reciprocal lattice is usually denoted by L. In the present case, the
lanthanide metal films are (0001) oriented and so ¢, = L. In figure 2.3, the length of the
scattering vector is given in reciprocal lattice units ¢*. For specular geometry, the relation
between the scattering angle © and the scattering vector is given by

i 2 -
¢ =L= Tﬂsin@, Ljc" = fsin@,

with the x-ray wavelength \ and the reciprocal lattice parameter ¢*!. The upper panel of

IThroughout this thesis, the reciprocal lattice parameters are calculated from the room temperature
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figure 2.3 displays the crystal-truncation rod of the uncovered W(110) substrate along the
surface normal. The intensity distribution of the W rod in reciprocal space is characteristic
for a semi infinite crystal (figure 2.1 (b)), with scattered intensity even far away from the
Bragg-peak position.

The lower panel in figure 2.3 displays the same kind of scan from a Ho film grown on
the W substrate. At small scattering vectors, the so called Kiessig fringes [70] can be
observed arising from interference of x-rays reflected from the Ho surface and from the
Ho/W interface. In an hcp lattice, the first Bragg peak along the (007) direction appears
at L = 2¢* corresponding to the single layer spacing that is half of the c—axis lattice
parameter. The intensity of the Bragg peak is distributed over a large volume in momentum
space and shows characteristic side maxima and minima called Laue oscillations. The
intensity distribution can be nicely described by equation 2.6 plus an additional background
arising from the CTR of the W substrate. The Kiessig fringes and Laue oscillations are of
different origin and contain complementary information about film thickness and roughness.
Kiessig fringes are not sensitive to the atomic structure and can also be observed in liquid
films [71] or from polycrystalline layered materials [72], while the Laue oscillations are
related to the crystalline structure. From the Kiessig fringes, the total film thickness can
be determined, while the Laue oscillations give information about the number of coherently
scattering lattice planes. If both numbers agree, as in case of the spectrum in figure 2.3,
the film is single-crystalline throughout its whole thickness.

Information on in-plane correlations can be obtained from a transverse or rocking scan,
as shown schematically on the right side of figure 2.2. Rotating the sample through the
specular position with the detector kept fixed leads to a variation of the momentum transfer
essentially parallel to the surface (g). For small deviations from specular geometry, this
path can be approximated by a straight line in momentum space perpendicular to the ¢
direction. The in-plane momentum transfer, ¢, and the width of the transverse scan, Agj,
are given by

q = 2% (COS (2(:) — @) — Cos (@)) , Ag) = 4; sin ((:)) -AO,

where O is the angle between the surface and the incident x-rays and 20 — O is the angle
of observation. The transverse scan probes the extension of the Bragg peaks parallel to
the surface and by that, it is a probe of the in-plane coherence. Since real single crystals
are often composed of small, ideal crystal grains, also called mosaic blocks, the rocking
width is related to their size and orientation distribution. Thus, the rocking width of a
structural Bragg reflection is often called mosaic spread and reflects essentially the quality
of the crystal.

The transverse scan at the Ho(002) Bragg-peak position is shown in the inset of figure
2.3. The rocking width found here is considerably better than those reported for MBE
grown Ho films and comparable to good single crystals [73]. This example shows the best
crystallinity achieved in our experiments. Typical rocking width were of the order of 0.06°,
which is still very good for metal films.

lattice constants of Ho and Dy metal, ¢ = 5.618 A and 5.650 A [5], respectively.
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Figure 2.3: Upper panel: W(110) Bragg peak and the crystal-truncation rod along the
(110) direction. Lower panel: specular reflectivity of a 27-ML Ho film epitaxially grown on
a W(110) substrate, showing the Kiessig fringes at small scattering angles and the Ho(002)
Bragg peak. The momentum transfer for both curves is given in Ho reciprocal lattice units.
The inset shows a transverse scan at the Ho(002) Bragg-peak position.

X-ray reflectivity

For x-rays, the index of refraction n = 1 — § 4 i/ is usually close to unity, and the small
deviation from unity can be neglected in many x-ray scattering experiments justifying
the kinematical approach. But near grazing incidence, the reflected intensity depends
sensitively on the change of the index of refraction at an interface, which can be seen
directly from Snell’s law. Due to this sensitivity and due to the comparably strong change
of the optical constants § and ( at strong resonances, like the My absorption thresholds
of the heavy lanthanide metals, it can become necessary to include dispersion corrections
into the data analysis.

If an incident x-ray beam propagates from one medium into the other with different
optical properties, it is required that the wave and its derivative at the surface and interface
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Figure 2.4: Reflection and transmission in a slab of finite thickness with sharp boundaries.
Ej denotes the wave vector of the incident beam in slab j and Ef the corresponding wave
vector of the beam reflected at the interface to slab j 4+ 1. This leads to the momentum
transfer ¢; = | Ef — k;|. The total reflectivity is the sum of all possible reflection paths, as
schematically shown in the right part.

are continuous. From these requirements, Snell’s law and the Fresnel equations can be
derived [67, 74]. An incident plane wave propagating at an angle © with respect to the
interface splits into a specularly reflected wave at the same angle and a refracted wave at ©,.,
as shown in figure 2.4. As © and O, are small, the cosines of Snell’s law, cos ® = n cos ©,.,
can be expanded to yield a corrected expression for the now complex momentum transfer
within the absorbing medium

q’:%.sin (\/C:)2—25+i2ﬁ),

where O is defined as the scattering angle in specular geometry. From this, the reflectance
from the surface of a semi-infinite crystal can be written as the complex quantity r =
(¢ —q")/(qg+¢'). The reflected intensity, Ir o<| 7 |?, falls off rapidly with ¢=* for scattering
angles large compared to the critical angle ©¢ = v/26 [75].

A general description of reflection from N stratified homogeneous slabs is given by
Parratt [72]. The situation is sketched in figure 2.4. In this case, the evaluation of the
boundary conditions leads to a recursive formula for the reflectance of the interface, r;_1 ;,
between the j and the (j — 1) slab

7—1

oy —at l'f’j,jﬂ + Fj, 1
J1—L17 — j ?
rije1Fj-1 +1

where a; = exp(—ig;d;/4) is the phase factor and F;_1 ; = (¢;—1 — ¢;) / (¢j—1 + g;) are the

Fresnel coefficients for a reflection from the interface 7 — 1,5, described by the complex

momentum transfer ¢;. Starting from the substrate slab N with infinite thickness and

therefore with reflectance ry_1ny = aj‘v_lFN,l,N, and defining the phase factor on the

vacuum side a; = 1, the recursive solution leads to the intensity reflected from the surface
Igp 2

T |T1,2| )

Iy

with the incident intensity Ij.
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So far, I described the theory for sharp interfaces. Since scattering at grazing angles is
sensitive to the change of the index of refraction, it is sensitive to the exact electron-density
profile at the surface and the interfaces of the sample. Thus, it is important to include
surface and interface roughness into the model. The most simple expression can be derived
in kinematical approximation, which describes the reflectivity by the Fourier transform of
the electron-density profile perpendicular to the surface. While a sharp surface is described
by an abrupt change of the electron-density profile, a rough surface with a height variation
described by a Gaussian distribution of width o,.,s leads to a Debye- Waller-like damping
of the reflected intensity [71,75]

IR — I}};resnele—qQU%ms ]

The value of 0., (root-mean-square roughness) is conventionally used to express surface
and interface roughness.

2.2 Magnetic x-ray scattering

The concepts discussed in the previous sections are in principle independent of the scat-
tering mechanism, but the discussion so far has focused on the interaction between the
electric field of the electromagnetic wave and the charge of the electron (equation 2.1).
While charge scattering is the dominant mechanism, the electric and magnetic field of the
x-ray also interact with the magnetic moments, which gives rise to magnetic scattering.
The magnetic contribution to the scattering cross section was calculated for the first time
by Gell-Mann and Goldberger [76]. Platzman and Tzoar calculated its dependence on the
scattering vector and predicted that x-rays could be used to determine magnetic struc-
tures [77]. Magnetic x-ray scattering was for the first time experimentally observed in 1972
by de Bergevin and Brunel for AFM NiO [78]. This comparably late observation is due to
the fact that the magnetic-scattering cross section is very small. Compared to the charge-
scattering cross section, it is reduced by a factor of (hv/ moc2)2 for a single electron. For
typical x-ray energies of 10 keV this factor is of the order of 10~%. If x-rays are scattered
by an atom, the magnetic-scattering cross section is further reduced as compared to charge
scattering, because only unpaired electrons take part in the magnetic-scattering process.
Thus, the magnetically scattered intensity is typically 5 to 6 orders of magnitude smaller
than the charge scattering intensity.

Despite the small magnetic-scattering cross section, magnetic x-ray scattering made
a fast progress with the routine availability of synchrotron radiation sources providing
high photon flux. With the tunability of the photon energy of synchrotron radiation, the
new technique of resonant (magnetic) x-ray scattering appeared, which makes use of the
strong change of the scattering cross section near absorption thresholds. X-ray (magnetic)
scattering should be considered within two regimes. One is the non-resonant limit with the
photon energy well separated from an absorption threshold. The second is the resonant
regime where the photon energy lies near an absorption threshold. Both methods have their
own characteristics and contain slightly different information. Both techniques require the
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use of synchrotron radiation. In the non-resonant limit for practical reasons, because
the magnetic-scattering amplitude is very weak compared to that of charge scattering.
Thus, it requires a high photon flux to get a reasonable counting rate. And since the
magnetic-scattering process rotates the polarization direction of the x-rays, which can be
used to separate magnetic from charge scattering contribution, magnetic scattering requires
radiation with a high degree of polarization. In case of resonant magnetic scattering it is
necessary to tune the photon energy across the resonance, which also requires to work at
a synchrotron-radiation source.

Theoretical description of the magnetic-scattering process

This section describes the quantum mechanical basics of magnetic scattering. The descrip-
tion follows the treatment and the notation by M. Blume in reference 79.
The Hamiltonian of bound electrons coupled to an electromagnetic field is given by

M=% o (B 5a ) + 2V ()
_;_TZC j sV x Ary) - 2(;3:@2 zjjﬁj E (r;) x (Bj ZA ('ra))

+ kz/\: hiwy, (cJr (EX) ¢ (EXN) + %) :

Besides the familiar terms of the kinetic energy (canonical momentum in the presence of
an electromagnetic field) and the potential energy, the third term describes the interaction
of the magnetic part of the electromagnetic wave (B = V x A) with the spin of the electron
s; (Zeeman interaction). Term four is the spin-orbit term, where £ = —V¢ —1/c-dA/dt
is an effective electric field with the Coulomb potential ¢. This term includes the ordinary
spin-orbit coupling for electrons and a second spin-orbit term that can be thought of as
the interaction of the electron spin with the magnetic part of the Lorentz-transformed
electric field of the electromagnetic wave. And the last term describes the energy of the
electromagnetic wave field expressed in photon creation and annihilation operators ¢ (k)
and c (k).

This Hamiltonian can be split into the unperturbed system Hg, a part describing the
radiation field H,,4, and an interaction term H,,;: H = Ho + Hrad. + Hine., with

2
Hine. = ﬁ;AQ (E) - %;A(f]) 'Bj
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A perturbational treatment to second order results in a cross section obtained from the
transition probability given by the golden rule:

w =

20| ) 4+ 52 L i ) (0 [ )

o) 5 (5; ~ By), (23)

with the initial state |i) = |s; E)\>, the final state |f) = ‘f, ﬁ')\'>, the intermediate states

|n) and the corresponding energies F; = E; + hw, - - -, including the photon k.

Since the vector potential A is linear in photon creation and annihilation operators,
scattering occurs only from contributions quadratic in A, because scattering requires first
an annihilation and a subsequent creation of a photon. Accordingly, the first term of the
interaction Hamiltonian (2.7) leads to the usual Thomson scattering in first order. Also the
fourth term is quadratic in A and describes spin-dependent scattering in first order. The
second and third terms are linear in A, thus scattering occurs in second order involving
excitations into an intermediate state |n). This gives rise to resonant scattering with a huge
contribution if the energy denominator in equation 2.8 becomes small close to resonance.
The excitation of core electrons into intermediate states makes the scattering selective to
the respective element and its chemical environment. Due to magnetic exchange splitting
and spin polarization, resonant scattering is also sensitive to magnetism.

Non-resonant magnetic scattering

In the non-resonant limit, the magnetic-scattering amplitude has the simple form [80-83]
non’r‘es 1
moy o 5L(a) A+ (a)-B

Here L(q) and S(q) denote the Fourier transforms of the orbital and spin magnetization
densities, respectively. The matrices A and B act on the polarization vectors and depend
on the wave vectors of the incoming and scattered light. The components can be chosen
by the experimental geometry. There are two main aspects of the non-resonant magnetic-
scattering amplitude. Firstly, A and B have non-diagonal elements. This means that a
part of the magnetically scattered x-rays changes the polarization direction, which does
not occur in charge scattering. Accordingly, polarization analysis of the scattered beam
can discriminate the magnetic signal from the charge scattering. Secondly, A and B are
not identical in contrast to magnetic neutron scattering. The difference in the polarization
dependence leads to a difference in the scattering cross sections for the orbital and spin
moment and can be used to separate these contributions, which is not directly possible with
neutron scattering [82]. With the magnetic-scattering channel, the total elastic scattering
amplitude is now f fo +f fl4i f” nonres including the polarization dependence? so that

mag
do/dQ = | f2.

2In magnetic scattering it is often useful to include the polarization dependence P into the atomic form
factor f. To distinguish the quantity including P from f, it is denoted as f throughout this thesis.
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Resonant magnetic scattering

Most of the scattering experiments in this work were carried out by exploiting resonances.
At resonance, when the photon energy is tuned to an absorption threshold, there is an
additional contribution f,.s to the scattering amplitude. Within a simple one-electron
picture, an incident photon promotes an inner-shell electron to an unoccupied state above
the Fermi level. This excitation decays through emission of a scattered photon of the same
energy.

As compared to non-resonant magnetic scattering, the resonant-scattering amplitude
is more complicated. For electric dipole transitions E'1, it was calculated by Hannon et
al. [84], and can be written as the sum of three separate terms [83]:

FEY ) = fo(hv) + feire(hv) + fim(hv), (2.9)
where
~ 3
Folhw) = = (o) (€7 [Pl + L)

ﬁirc(hlj) = —1 <%> (gl X é\) -m [Fil - F—|1—1:|

Fnlh) = = () (€' +) €-7) [2F) — Fl, = P

here, the FC1 are energy-dependent dimensionless resonant oscillator strengths for dipole

transitions with a change in the magnetic quantum number (. The first term, fo(hy),
is independent of the local magnetic axis m. As in case of Thomson scattering it does
not change the polarization direction, expressed as the inner product of the polarization
vectors of the incoming and the scattered light, & and €’. This leads to 0 — ¢’ or 71 — 7’
scattering, where o denotes the x-ray-polarization direction perpendicular and 7 parallel to
the scattering plane spanned by the wave vectors of the incident and detected x-rays. This
contribution is known as anomalous scattering. The second term depends on the difference
in the resonant oscillator strengths, Fcl, where ( is the projection of the photon spin on
the local magnetic axis m (unit vector). With the selection rule for photon absorption
¢ = AM; = #+1, this term is of circular dichroic nature. After scattering, the polarization
direction is rotated by a certain angle, leading to finite o’ or 7’ components in the scattered
light (¢ — 7’ or m — o scattering). The scattering amplitude contains m as a linear term,
leading to peaks at the same points in reciprocal space as from non-resonant scattering,
which is linear in m as well. The last term of the scattering amplitude is of linear dichroic
nature. Since the projection on local magnetic axis appears twice, this contribution is
quadratic in m.

The resonant E2 or electric quadrupole amplitude contains terms in m from zero up to
fourth order with 13 distinct contributions. Hence, E2 resonant scattering can contribute
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to the main Bragg reflections and satellites up to the order of four [84]. As a result, the
scattering amplitude is the coherent sum of contributions from E1, E2, . . . events.
At strong dipole resonances like the My absorption thresholds of the lanthanides, the
contributions from electric quadrupole or higher transitions are very weak as compared to
E1 and can be neglected.

By tuning the photon energy to a resonance, an enhancement of the magnetic-scattering
signal occurs if there is a difference in the cross section between spin-up and spin-down
electronic states. This difference can arise in a number of ways making the identification
of the responsible mechanism not as straightforward as in case of non-resonant scattering.

The first and most obvious reason is the finite spin polarization of the partially filled
states into which the core electron is excited. If there are more unoccupied states of one
spin direction than of the other, there is a higher transition probability to the first ones,
leading to magnetic contrast in the scattering cross section. This in particular is the case
for the 3d states of the 3d-transition metals (L7 ;;; absorption thresholds) and for the
4f and 5f states of lanthanides and actinides (M, absorption thresholds), respectively,
where a resonant enhancement of the magnetic-scattering signal can be expected.

A second possible reason for an enhanced magnetic signal lies in the difference of over-
lap integrals between spin-up and spin-down states. This arises from polarization via
hybridization by another strongly polarized state [85]. Van Veenendaal et al. have found
that the difference in the spatial extent of the spin-up and spin-down 5d states due to
interaction with the strongly polarized 4f states makes a major contribution to the ob-
served signal at the Ho Ly 17 thresholds. Excitation into polarized 5d states gives rise to a
resonant enhancement of the magnetic signal by a factor of 50 as compared to off-resonant
scattering. In fact, it was the L;;; threshold of Ho at which the first discoveries of resonant
magnetic scattering were made by Gibbs et al. [81].

Finally, if the resonant excitation energies, or the lifetimes of the spin-up and spin-down
channels are different, there might also be a magnetic contrast, i.e. an enhancement of the
magnetic signal can arise. In contrast to the situations described above, this can happen
even with a totally empty intermediate state, where the assignment of a finite polarization
in the valence shell might be incorrect [86]. Experimental evidence of this effect has been
found at the K threshold of Mn in the orbitally-ordered material LaMnOj [87].

Scattering from helical-antiferromagnetic Ho

Caused by the different contributions to the resonant-scattering amplitude in equation 2.9,
strong variations of the magnetic-scattering properties across an absorption threshold can
be expected, like the polarization dependence and the magnetic-scattering intensity. While
equation 2.9 holds for free atoms, for crystals one has to consider also the specific magnetic
structure and the individual scattering geometry in order to compare equation 2.9 with the
experimental results. In the following, resonant magnetic x-ray scattering will be illustrated
for the case of Ho metal. As already mentioned in chapter 1, bulk Ho metal is a helical
antiferromagnet between its Curie temperature of about 20 K and the Néel temperature of
131.2 K. The helical structure consists of ferromagnetically ordered moments in the basal
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Figure 2.5: Helical AFM structure of a Ho-metal film with a magnetic period of 2¢*/7.
A projection of the magnetic moments of the helical structure onto the scattering plane
results in a harmonic modulation.

planes of the hcp lattice with the moment of each plane rotated by a certain angle with
respect to the neighboring plane, thus forming a helix along the crystallographic ¢ axis, as
shown schematically in figure 2.5. The magnetic period is temperature dependent with a
length of about 10 monolayers at 40 K, decreasing with increasing temperature to about
7 monolayers at the Néel temperature [88]. Since Ho exhibits a nearly perfect helical
magnetic structure, even in case of thin films, the interpretation of the scattering data is
comparably simple, because no higher Fourier components of the magnetic structure exist
and higher harmonics in the scattering signal are caused by the resonant-scattering process
alone. The magnetic-scattering process depends on projections of the local magnetic axis.
For the helical structure, the projection of the magnetic moments perpendicular to the
helix propagation results in a sinusoidal modulation as illustrated in figure 2.5. Since the
resonant-scattering amplitude (equation 2.9) consists of a part that is linear and one which
is quadratic in the local magnetic axis m, a first and a second harmonic can be expected,
corresponding to the period of the sine and the half period caused by the squared sine.

To describe diffraction from a helix in Z direction one has to introduce the magnetic
structure factor [83]

m— Y exp (z’Q-En) -m(R,),
R

=n
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with the position-dependent magnetic unit vector m (r) evaluated at the atomic coordinate
R,

m (r) = ycos (tx) — Zsin (1) ,

where 7 is the absolute value of the magnetic modulation vector. With this replacement
and by assuming a purely m—polarized incident x-ray beam (x-ray polarization vector
parallel to the scattering plane as illustrated in figure 2.6), as used in most experiments of
the present work, the scattering amplitude in dipole approximation can be written as the
sum of zero-order (zo), first-order (fo), and second-order (so) harmonics corresponding
to a series of magnetic-superstructure satellites separated by 07, £17, and +27 from the
chemical Bragg reflections in momentum space, respectively [83]

fretio (W) = J2° (hv) + 72 (hv) + f* (hv) (2.10)
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In general, fZ1 is a second-order tensor in the o (x-ray polarization vector perpendicular
to the scattering plane) and m components of the incident x-ray beam and the ¢’ and
7’ components of the scattered x-rays. But choosing a fixed polarization direction for
the incident x-rays, it reduces to a vector expression. The upper elements represent the
m — o', the lower elements the m — 7’ scattering contribution. The different polarization
dependences in equation 2.9 lead to the different geometry factors, which are functions of
the detection angle ¥ = 20 in specular scattering geometry.

As can be seen from equation 2.10, the direction of photon polarization is changed
by magnetic scattering, while charge scattering does not affect the polarization. This
can be exploited to discriminate magnetic from charge scattering by means of polarization
analysis [89]. A schematic view of the scattering geometry in which most of the experiments
in the conventional x-ray region were done is shown in figure 2.6. The incident x-rays are
7 polarized; for polarization analysis, a graphite crystal is mounted on the detector arm
of the diffractometer. The scattering angle of the graphite (006) Bragg reflection is very
close to 90° at the photon energy corresponding to the Ho Lj;; absorption threshold of
about 8 keV. Scattering at 90° produces a complete linear polarization of the scattered
light [65], since no intensity is scattered in the direction parallel to the photon E vector
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Figure 2.6: Scattering geometry as used in the conventional x-ray experiments performed
in this work at the ESRF. The incident 7 polarized beam is reflected in specular geometry.
The scattered beam has two polarization components arising from charge and magnetic
scattering. By use of an analyzer crystal with a Bragg angle of 90° at the given photon
energy either the m or the o component of the scattered x-rays can be selected.

(dipole characteristic). Only the component polarized perpendicular to the direction of
observation is reflected into the detector, while the other one is suppressed. By rotating
the analyzer crystal around the direction of observation (¢unaiyzer) €ither the 7w (charge
and magnetic scattering) or the mo channel (magnetic scattering) can be detected.

The efficiency of polarization analysis is illustrated in figure 2.7. The scans show the
region of the (002) Bragg peak of a 113-ML Ho film along the (00!) direction. Without
polarization analysis (upper spectrum), no signal from the magnetic superstructure is ob-
servable due to the strong background caused by Laue oscillations. The lower spectrum
was recorded in the o7 polarization channel after mounting the graphite (006) analyzer
crystal. Applying polarization analysis leads to a suppression of the charge scattering by
a factor of about 500, and the magnetic-superstructure satellites (002+7) become clearly

visible [53,90].
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Figure 2.7: Specular x-ray scattering from a 113-ML Ho film at the Ho L;;; absorption
threshold demonstrating the effect of polarization analysis. The incident x-ray beam was
chosen to be o polarized. The top spectrum was recorded without analyzer, showing
the Laue profile of the Ho(002) Bragg peak along the surface normal. The spectrum
below shows the same scan using polarization analysis. In the om channel the magnetic-
superstructure satellites are clearly visible, because the charge-scattering background is
suppressed.



