Table of Contents

1 Introduction 7
 1.1 Cutaneous Melanoma Is a Significant Public Health Problem 7
 1.2 Melanoma Is Immunogenic and an Important General Model For Cancer Immunology 7
 1.3 Melanoma Associated Antigens Are Targets for the Immune Response 9
 1.4 Monitoring Tumour Antigen-Specific T Cells In Vivo 12
 1.5 Concerted Cellular and Humoral Responses Against Tumour-Associated Antigens Are A Rare Phenomenon 13
 1.6 Tumour Growth In the Presence of TAA-Specific T Cells 14
 1.7 Novel Therapeutic Methods Targeting Melanoma 15
 1.8 Development of a GM-CSF-Based Cellular Melanoma Vaccine 16
 1.9 A Trial with GM-CSF-Based Vaccines Stimulates Potent and Long-Lasting Immune Responses in Late Stage Melanoma Patients 18
 1.10 The GM-CSF-Based Cancer Vaccine is the Basis for the Identification of Tumour-Associated Antigens 20

2 Materials and Methods 22
 2.1 Phage Library Screening 22
 2.2 Plasmid Excision 23
 2.3 Total RNA Isolation from Cultured Cells or Tissues 23
 2.4 Reverse Transcriptase Reaction 23
 2.5 Northern Blot 24
 2.6 Southern Blot 24
 2.7 Nucleic Acid Transfer 25
 2.8 Hybridisation 25
 2.9 Colony Hybridisation Screening 26
 2.10 Recombinant Glutathione S-Transferase Fusion Protein 27
 2.11 Enzyme-Linked Immuno Sorbent Assay (ELISA) 27
 2.12 T Cell Assays 28
2.13 Construction of a Retroviral Vector and Production of VSV-G-Pseudotyped Retroviral Particles 30
2.14 Anti-ML-IAP Monoclonal Antibody and Immunohistochemistry 31
2.15 Whole Cell Lysates 32
2.16 SDS Polyacrylamide Gel Electrophoresis (SDS PAGE) 32
2.17 Immunoblotting (Western) 33

3 Results 34
3.1 Patient K030 Displayed Potent Anti-Tumour Immune Responses Following Vaccination 34
3.2 Identification of the Novel IAP Family Member ML-IAP as a Target for the Immune Response 37
3.3 Vaccination Increases ML-IAP-Specific Antibody Titres and Induces Isotype Switching 44
3.4 Vaccine-Induced CD4⁺ TILs Show Strong Proliferative Response in the Presence of Recombinant ML-IAP 47
3.5 Vaccine Induced CD8⁺ TIL Are ML-IAP-Specific And Kill ML-IAP Positive Target Cells 48
3.6 Emergence of ML-IAP Loss Tumour Cell Variants Correlates with Lack of TILs, Absence of Tumour Necrosis and Overall Clinical Deterioration 51
3.7 ML-IAP Is Widely Expressed In Neoplasms 54
3.8 Cancer Patients Have Elevated Anti-ML-IAP Antibody Levels 55
3.9 Identification of a Novel RING-less ML-IAP Splice Variant 60
3.10 Identification of Murine ML-IAP 60

4 Discussion 65
4.1 Dysregulation of Apoptosis in Cancer 65
4.2 Vaccine Enhances ML-IAP-Specific Humoral Response – The Important Role of Anti-Tumour Antibodies 67
4.3 CD4⁺ T Cells are Significantly Contributing to Tumour Rejection and Recognise ML-IAP 69
4.4 CD8⁺ TILs Can Kill ML-IAP Expressing Cells Through Caspase-Independent Pathways 70
4.5 Loss of Tumour-Associated Antigen During Course of Treatment 71
4.6 Implications for Future Vaccine Development 72
4.7 Investigating the Distribution and Biological Function of ML-IAP Splice Variants 74
4.8 Importance of Identifying the Murine Form of ML-IAP 74
4.9 Concluding Remarks 75

5 Acknowledgements 76

6 References 77

7 Abbreviations 100

8 Appendix 102
 8.1 Summary 102
 8.2 Zusammenfassung (Summary in German) 104
 8.3 Curriculum Vitae 106
 8.4 Lebenslauf (Curriculum Vitae in German) 109