Lithiumtherapie und Nierenfunktion bei Patienten mit Bipolarer Störung: Einfluss der Therapiedauer auf die glomeruläre Filtrationsrate im Kontext von somatischer Komorbidität und Therapie-Response

zur Erlangung des akademischen Grades Doctor medicinae (Dr. med.)

vorgelegt der Medizinischen Fakultät Charité – Universitätsmedizin Berlin

von

David Saiger
aus Weingarten

Datum der Promotion: 22.09.2017
Inhaltsverzeichnis

1 Zusammenfassung ... 7

1 Abstract ... 9

2 Einleitung .. 11

2.1 Bipolare Störung ... 11

2.1.1 Epidemiologie und Klinik .. 12

2.1.2 Psychosoziales Funktionsniveau 12

2.1.3 Somatische Komorbidität .. 12

2.1.4 Suizidalität und Mortalität ... 13

2.1.5 Therapie ... 13

2.2 Lithiumtherapie bei Bipolarer Störung 14

2.2.1 Entdeckung ... 14

2.2.2 Behandlung der akuten Manie 14

2.2.3 Phasenprophylaktische Therapie 14

2.2.4 Antisuizidale Wirkung ... 15

2.2.5 Response ... 15

2.3 Chronische Niereninsuffizienz 16

2.3.1 Ätiologie und Epidemiologie 16

2.3.2 Klassifizierung .. 17

2.3.3 Prognose ... 17

2.4 Nierenfunktion unter Lithiumtherapie 18

2.4.1 Histopathologie .. 18

2.4.2 Tubuläre Funktion .. 19

2.4.3 Glomeruläre Funktion ... 19

2.4.3.1 Terminale Niereninsuffizienz 21

2.4.3.2 Einflussfaktoren auf die glomeruläre Funktion unter Lithiumtherapie 21
2.4.3.2.1 Serum-Lithiumspiegel ... 22
2.4.3.2.2 Dauer der Lithiumtherapie ... 22
2.4.3.2.3 Komedikation ... 23
2.4.3.2.4 Hyperparathyreoidismus ... 23
2.4.3.2.5 Komorbidität ... 24
2.4.3.2.6 Lithium-Response ... 24

3 Fragestellung .. 26

3.1 Primärhypothese: Lithiumtherapiedauer und eGFR 26
3.2 Sekundärhypothesen ... 26
 3.2.1 Erniedrigte GFR und chronische Niereninsuffizienz 26
 3.2.2 Lithiumtherapiedauer und Serum-Kreatinin 27
 3.2.3 Response und Funktionsniveau unter prophylaktischer Therapie 27
 3.2.4 Therapie-Response und GFR .. 28
3.3 Explorative Datenanalyse ... 28

4 Methodik ... 29

4.1 Studiendesign und Studienzeitraum .. 29
4.2 Ein- und Ausschlusskriterien ... 29
4.3 Endpunkte ... 29
4.4 Patienteninformation, Datenschutz, ethische Aspekte 30
4.5 Datenerhebung .. 30
4.6 Labormethoden .. 31
4.7 Messinstrumente .. 32
 4.7.1 Bestimmung der eGFR ... 32
 4.7.2 Functioning Assessment Short Test ... 32
 4.7.3 Alda Scale .. 33
 4.7.4 Score für renale Risikofaktoren ... 33
4.8 Definition der chronischen Niereninsuffizienz 34
4.9 Statistische Auswertung ... 34
 4.9.1 Deskriptive Statistik ... 34
 4.9.2 Prüfung der Primärhypothese .. 35
 4.9.3 Prüfung von Sekundärhypothesen .. 36
 4.9.3.1 Erniedrigte GFR und chronische Niereninsuffizienz 36
 4.9.3.2 Lithiumtherapiedauer und Serum-Kreatinin 37
 4.9.3.3 Response und Funktionsniveau unter prophylaktischer Therapie 37
 4.9.3.3.1 Alda-Scale .. 37
 4.9.3.3.2 Functioning Assessment Short Test (FAST) 38
 4.9.3.4 Therapie-Response und GFR ... 38
 4.9.4 Explorative Datenanalyse ... 38

5 Ergebnisse .. 40
 5.1 Beschreibung der Stichprobe .. 40
 5.2 Primärhypothese: Lithiumtherapiedauer und eGFR 43
 5.3 Sekundärhypothesen ... 46
 5.3.1 Erniedrigte GFR und chronische Niereninsuffizienz 46
 5.3.2 Lithiumtherapiedauer und Serum-Kreatinin 50
 5.3.3 Response und Funktionsniveau unter prophylaktischer Therapie 51
 5.3.3.1 Alda Scale .. 51
 5.3.3.2 Functioning Assessment Short Test (FAST) 52
 5.3.4 Therapie-Response und GFR ... 53
 5.4 Explorative Datenanalyse ... 54

6 Diskussion ... 56
 6.1 Synopsis ... 56
 6.2 Diskussion der Methoden .. 57
 6.2.1 Studiendesign ... 57
 6.2.2 Messmethoden ... 58
6.3 Diskussion der Ergebnisse .. 59
 6.3.1 Stichprobe, klinische und demografische Merkmale ... 59
 6.3.2 Primärhypothese: Dauer der Lithiumtherapie .. 62
 6.3.3 Sekundärhypothesen .. 64
 6.3.3.1 Erniedrigte GFR und chronische Niereninsuffizienz ... 64
 6.3.3.2 Lithiumtherapiedauer und Kreatinin ... 67
 6.3.3.3 Response und Funktionsniveau unter prophylaktischer Therapie 68
 6.3.3.3.1 Alda Scale .. 68
 6.3.3.3.2 Functioning Assessment Short Test ... 68
 6.3.4 Therapie-Response und GFR .. 69
 6.3.5 Explorative Datenanalyse .. 69
 6.4 Limitationen ... 70
 6.5 Schlussfolgerung/ Ausblick .. 72

7 Literaturverzeichnis .. 75

8 Eidesstattliche Versicherung ... 84

9 Lebenslauf ... 85

10 Publikationsliste .. 86

11 Danksagung ... 87
Zusammenfassung

Einleitung

Methoden

Ergebnisse

Die Regressionsanalyse zeigte einen signifikanten Einfluss von Alter, Lithiumtherapiedauer und renalen Risikofaktoren auf die eGFR. Pro Jahr der Lithiumtherapie nahm die eGFR um 0.72 ml/min ab. Die eGFR war unter Patienten mit Lithiumtherapie signifikant niedriger als unter Patienten, die noch nie Lithium erhalten hatten. 7 Lithium-Patienten erfüllten die Diagnosekriterien für eine chronische Niereninsuffizienz. Gleichzeitig zeigten Patienten mit
Lithiumtherapie deutlich häufiger ein gutes Ansprechen als Patienten mit anderen phasenprophylaktischen Medikamenten, und ein deutlich höheres psychosoziales Funktionsniveau, gemessen im FAST.

Diskussion

1 Abstract

Background

Lithium is the most effective long-term medication in the treatment of bipolar disorder. Lithium nephrotoxicity had been considered negligible for a long time. However, reports on reduced glomerular filtration rate (GFR) have recently challenged this opinion. The aim of this study was to identify parameters explaining the decline in glomerular function and to assess both the extent of renal impairment and the benefits of lithium treatment.

Methods

95 patients with bipolar disorder were included in the study - 74 patients with current or former lithium treatment and 21 patients never exposed to lithium. Clinical and demographic data was extracted from clinical charts and complemented by interviews. Blood samples were taken to evaluate renal function. A multiple regression analysis was applied, with estimated GFR (using the CKD-EPI equation) as the dependent variable. Age, gender, duration of lithium treatment, renal risk factors, elevated lithium levels and duration of illness were included as independent variables. The frequency of chronic kidney disease was assessed in lithium patients and lithium-naïve patients. Treatment response, using the Alda Scale, and psychosocial functioning, using the Functioning Assessment Short Test (FAST), were assessed.

Results

Regression analysis showed a significant influence of age, duration of lithium treatment and renal risk factors on eGFR. For each year on lithium, eGFR decreased by 0.72 ml/min. Patients with a history of lithium treatment showed significantly lower eGFR values compared to lithium-naïve patients. 7 lithium patients met diagnostic criteria for chronic kidney disease. On the other hand, patients on lithium showed substantially higher response rates and their level of psychosocial functioning was considerably higher.

Conclusions

The duration of lithium treatment has to be added to the risk factors for glomerular failure. Its effects can be compared to the annual reduction of GFR due to advancing age. Moderate impairment of glomerular function is common among patients with lithium treatment of 20 years
or more. End-stage renal disease may occur but is uncommon. The therapeutic effects of lithium treatment were clearly superior to those of other mood stabilizers. Both response and psychosocial functioning were much better in lithium patients. The decision on discontinuation of lithium in patients with marked renal impairment should never be taken without reference to clinical response and level of functioning. It should be discussed multidisciplinarily and in dialogue with the patient.
2 Einleitung

Es konnte gezeigt werden, dass die Dauer der Lithiumtherapie ein wesentlicher erklärender Faktor für die Abnahme der GFR und die Entwicklung einer chronischen Niereninsuffizienz ist. Bipolare Patienten mit Lithium wiesen im Vergleich mit Bipolaren Patienten ohne Lithiumtherapie eine erniedrigte GFR auf; die Abnahme trat insbesondere nach langjähriger Lithiumtherapie auf.

Gleichzeitig fanden sich deutliche Hinweise für eine therapeutische Überlegenheit von Lithium gegenüber anderen Medikamenten, die zur Phasenprophylaxe Bipolarer Störungen eingesetzt werden.

2.1 Bipolare Störung

Im ersten Teil der Einleitung soll die Bipolare Störung als gemeinsame Diagnose aller in der vorliegenden Studie eingeschlossener Patienten kurz charakterisiert werden. Neben allgemeinen klinischen und epidemiologischen Merkmalen wird kurz auf Morbidität und Mortalität sowie auf das psychosoziale Funktionsniveau eingegangen. Nach einem kurzen Überblick über allgemeine Therapieoptionen wird im zweiten Teil die Lithiumtherapie näher betrachtet.
2.1.1 Epidemiologie und Klinik

2.1.2 Psychosoziales Funktionsniveau

2.1.3 Somatische Komorbidität

2.1.4 Suizidalität und Mortalität

Die Exzess-Mortalität von Patienten mit Bipolarer Störung ist jedoch nicht nur durch die somatische Komorbidität bedingt, sondern insbesondere durch das deutlich erhöhte Suizidrisiko:

2.1.5 Therapie

2.2 Lithiumtherapie bei Bipolarer Störung

2.2.1 Entdeckung

2.2.2 Behandlung der akuten Manie

2.2.3 Phasenprophylaktische Therapie

2.2.4 Antisuizidale Wirkung

2.2.5 Response

Das Ansprechen auf Lithium ist interindividuell sehr variabel und reicht vom Fehlen einer merklichen Änderung des Krankheitsverlaufs bis zur kompletten Remission ohne Residualsymptome. Als Indikatoren, die den Erfolg einer Lithiumtherapie wahrscheinliche rmachen, gelten ein Krankheitsverlauf mit voller Remission zwischen den einzelnen Episoden, eine Familienanamnese für episodisch verlaufende Bipolare Störungen sowie das Fehlen von

2.3 Chronische Niereninsuffizienz

Ziel dieser Arbeit war es, Einflussfaktoren auf die glomeruläre Nierenfunktion und die Entwicklung einer chronischen Niereninsuffizienz unter einer prophylaktischen Lithium-Langzeitmedikation zu identifizieren. Das nun folgende Unterkapitel gibt einen Überblick über Ätiologie und Epidemiologie der chronischen Niereninsuffizienz, erläutert Hintergründe zur laborchemischen Diagnostik, stellt das derzeit gültige Klassifikationsmodell und die in dieser Arbeit verwendeten Diagnosekriterien vor und geht kurz auf die Prognose einer chronischen Niereninsuffizienz ein.

2.3.1 Ätiologie und Epidemiologie

Die Prävalenz einer chronischen Niereninsuffizienz mit vermindelter GFR wurde für die Allgemeinbevölkerung mit ca. acht Prozent angegeben, basierend auf großen Bevölkerungsstudien in den USA. [35] Aktuelle Studien gehen von einer deutlich geringeren Prävalenz von 2.3 bis 5.9 Prozent in Deutschland aus, [36, 37] mit wesentlich höheren Werten unter älteren Patienten. [38]
2.3.2 Klassifizierung

Die chronische Niereninsuffizienz wird anhand der GFR in sechs Kategorien eingeteilt (siehe Tabelle 1). Für die Diagnose einer chronischen Niereninsuffizienz wird gefordert, dass eine verminderte glomeruläre Filtrationsrate (GFR < 60 ml/min) über mindestens drei Monate besteht. Zusätzlich zur verminderten GFR sollte ein Hinweis für eine strukturelle Nierenschädigung vorliegen, beispielsweise bildgebende oder histologische Auffälligkeiten, ein pathologisches Urinsediment oder eine Albuminurie. Liegen keine Hinweise auf eine strukturelle Nierenschädigung vor, sollten weitere Untersuchungen erfolgen, bevor die Diagnose einer chronischen Niereninsuffizienz gestellt werden kann (beispielsweise eine Cystatin-C-gestützte eGFR-Bestimmung). Ab einem Stadium G3b spricht man auch ohne Hinweise auf strukturelle Schädigungen von einer chronischen Niereninsuffizienz. [39]

Als zusätzlicher Marker zur Beurteilung einer chronischen Niereninsuffizienz wird die Bestimmung des Albumin-Kreatinin-Quotienten im Urin (UACR) empfohlen. Die UACR gilt als Prädiktor für das Fortschreiten einer Niereninsuffizienz [40] und kann Hinweise auf eine strukturelle Nierenschädigung liefern, insbesondere bei nur leicht vermindert GFR (Kategorie G2, G3a). [39]

Tabelle 1: Klassifikation der chronischen Niereninsuffizienz nach KDIGO 2012 [39]

<table>
<thead>
<tr>
<th>Kategorie</th>
<th>GFR ml/min pro 1.73m² KOF</th>
<th>Klinische Bewertung der Nierenfunktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>≥90</td>
<td>Normal bis hoch</td>
</tr>
<tr>
<td>G2</td>
<td>60-89</td>
<td>Leichtgradig vermindert</td>
</tr>
<tr>
<td>G3a</td>
<td>45-59</td>
<td>Leicht- bis mittelgradig vermindert</td>
</tr>
<tr>
<td>G3b</td>
<td>30-44</td>
<td>Mittelgradig bis schwer vermindert</td>
</tr>
<tr>
<td>G4</td>
<td>15-29</td>
<td>Schwer vermindert</td>
</tr>
<tr>
<td>G5</td>
<td><15</td>
<td>Terminale Niereninsuffizienz</td>
</tr>
</tbody>
</table>

GFR: Glomeruläre Filtrationsrate
KOF: Körperoberfläche

2.3.3 Prognose

Mit dem Grad der Niereninsuffizienz steigen sowohl Morbidität als auch Mortalität. Eine (häufig klinisch noch asymptomatische) Niereninsuffizienz G3a geht bereits mit einer 1.2-fach erhöhten
Mortalität und einem 1.5-fach erhöhten Risiko für kardiovaskuläre Ereignisse einher; bei Vorliegen einer terminalen Niereninsuffizienz ist die Mortalität etwa sechsfach erhöht. [41]

2.4 Nierenfunktion unter Lithiumtherapie

2.4.1 Histopathologie

Erste Hinweise auf ein nephrotoxisches Potential von Lithium ergaben sich 1977 aus Nierenbiopsien von 14 Patienten mit Langzeit-Lithiumtherapie, die mehrheitlich zur Abklärung einer akuten Lithium-Intoxikation aufgenommen worden waren. Im Vergleich zu gesunden Kontrollen zeigten 13 der Biopsien chronische pathologische Veränderungen wie Nephron-Atrophie, interstitielle Fibrose, Glomerulosklerose und Mikrozysten, die nicht durch die akute Intoxikation erklärt werden konnten. [42] Die Publikation warf die Frage auf, wie sich eine langjährige Lithiumtherapie auf die Entwicklung der Nierenfunktion auswirkt und hatte zahlreiche klinische und epidemiologische Studien zur Nierenfunktion unter Lithiumtherapie zur Folge, auf die im Anschluss näher eingegangen wird.

2.4.2 Tubuläre Funktion

Auf die histopathologische Arbeit von Heestbech et al. folgten klinisch-epidemiologische Arbeiten, die sich mit dem Auftreten sowohl glomerulärer als auch tubulärer Funktionsstörungen unter einer prophylaktischen Therapie mit Lithium beschäftigten. Auf die tubuläre Funktion soll hier nur kurz eingegangen werden, da der Fokus der Arbeit auf glomerulären Funktionsstörungen liegt.

Tubuläre Funktionsstörungen in Form eines Diabetes insipidus renalis gelten als häufigste renale Auswirkung einer Lithiumtherapie. In ca. einem Drittel der Patienten macht sich dies mit Polydipsie und –urie bemerkbar. [45] Damit ist eine medikamentöse Lithiumtherapie umgekehrt die häufigste Ursache für einen Diabetes insipidus renalis. [46] Im Mittel sinkt die maximale Urin-Konzentrationsfähigkeit unter Lithiumtherapie um 15%. [47]

2.4.3 Glomeruläre Funktion

Tubuläre Funktionsstörungen gelten als gut belegte Nebenwirkung einer Lithiumtherapie. Die Entwicklung der glomerulären Funktion unter Lithium wird dagegen seit vielen Jahren kontrovers diskutiert.

Während also zunächst von vorwiegend tubulären Funktionseinschränkungen ohne relevante Beeinträchtigung der glomerulären Funktion ausgegangen wurde, mehrten sich in den letzten 15 Jahren Befunde, die darauf hinweisen, dass Bipolare Patienten mit Langzeit-Lithiumtherapie neben tubulären Funktionsstörungen auch eine erniedrigte glomeruläre Filtrationsrate entwickeln. Dies konnte zunächst für Vergleiche mit der Allgemeinbevölkerung [57], mit gesunden Kontrollen [58] und mit Kontroll-Patienten mit anderen psychiatrischen Diagnosen [59, 60] gezeigt werden. Die Häufigkeit einer chronischen Niereninsuffizienz Stadium 3 (definiert über die eGFR) wurde in diesen Arbeiten mit 34,4% [59] und, abhängig von der Altersgruppe, 36-77% [57] angegeben, Lepkifker et al. fanden in 21% der Fälle eine chronische Niereninsuffizienz, definiert über zwei konsekutive Serum-Kreatinin-Messungen ≥ 1.5 mg/dl [58]; erhöhte Kreatinin-Werte unter Lithiumtherapie sind ebenfalls bekannt. [61]

Die Rekrutierung einer Kontrollgruppe von vergleichbaren Patienten mit Bipolarer Störung, aber ohne aktuelle oder frühere Lithiumtherapie gestaltet sich aufgrund der großen Bedeutung von Lithium in der prophylaktischen Therapie schwierig. [59] Eine Studie aus dem Kreis der internationalen Lithium-Forschungsgruppe IGSLI (www.igsli.org) verglich 139 Lithium-Patienten mit 70 Patienten ohne Lithiumtherapie; dabei stellte die Bipolare Störung in beiden Gruppen zumindest die überwiegende Mehrheit der Diagnosen dar. In der Lithium-Gruppe trat
eine eGFR < 60 ml/min in 27.3% der Fälle auf und war damit signifikant häufiger als in der Vergleichsgruppe (5,7%) – die allerdings auch signifikant jünger war. [62] In einer ebenfalls 2013 veröffentlichten Querschnitts-Studie aus der IGSLI-Gruppe fand sich unter 120 Patienten mit Bipolärer Störung in der Lithium-Gruppe (n=90) eine niedrigere eGFR als in der Vergleichsgruppe von 30 Patienten, die noch nie Lithium erhalten hatten. Die Häufigkeit einer chronischen Niereninsuffizienz mit einer eGFR < 60 ml/min wurde nicht angegeben. Serum-Kreatinin-Werte unterschieden sich nicht zwischen den beiden Gruppen. Auch hier war die Vergleichsgruppe jünger und wies eine kürzere Krankheitsdauer auf. [63] Eine Studie mit 20 Bipolaren Lithium-Patienten und 10 Kontrollpatienten mit Bipolärer Störung, aber ohne Lithiumtherapie kam zu einem ähnlichen Ergebnis. [64] Eine retrospektive Registeranalyse von 6 360 Patienten mit der Diagnose einer Bipolären Störung in Großbritannien fand unter Lithium-Patienten signifikant häufiger eine eGFR < 60 ml/min als unter Patienten, die noch nie Lithium erhalten hatten. [65]

2.4.3.1 Terminale Niereninsuffizienz

Während sich Hinweise auf eine reduzierte GFR bei Patienten mit Langzeit-Lithiumtherapie verdichteten, lagen Berichte über Fälle von terminaler Niereninsuffizienz zunächst nur vereinzelt vor [55, 66] und wurden als extrem seltene Komplikationen mit möglicherweise anderen Ursachen als der Lithiumtherapie betrachtet. [56] Neuere, registerbasierte Arbeiten geben die Häufigkeit einer Lithium-induzierten dialysepflichtigen Niereninsuffizienz mit 1.5% der Lithium-Patienten an. [67] Der Anteil der Lithium-Nephropathie an allen Fällen von Nierenersatztherapie wird in verschiedenen Arbeiten mit 0.2% [68], 0.7% [69] bzw. knapp 2% [67] angegeben.

2.4.3.2 Einflussfaktoren auf die glomeruläre Funktion unter Lithiumtherapie

Fräglich ist, über welche Faktoren sich die Abnahme der glomerulären Filtrationsrate unter einer Langzeit-Therapie mit Lithium erklären lässt. In der Literatur werden verschiedene Einflussfaktoren vorgeschlagen und kontrovers diskutiert. Im Folgenden sollen diese kurz vorgestellt werden.
2.4.3.2.1 Serum-Lithiumspiegel

Der Lithium-Zielspiegel lag in den 1960er und 1970er Jahren zwischen 0.8 und 1.2 mmol/l. Als sich Hinweise auf ein nephrotoxisches Potential von Lithium mehrten, wurde dieser nach einer Empfehlung von M. Schou zumindest in europäischen Ländern auf 0.5-0.8 mmol/l gesenkt und regelmäßige Kontrollen der Nierenfunktion wurden zunehmend Teil der klinischen Routine (auch wenn eine französische Arbeit von 2008 zeigte, dass eine systematische Kontrolle der Nierenparameter bei vielen Patienten unter Lithium-Langzeittherapie offenbar nicht erfolgt [57]). Da der Einfluss der Höhe des Serum-Lithiumspiegels umstritten ist, wird ebenfalls kontrovers diskutiert, ob die niedrigeren Zielspiegel seit Beginn der 1980er Jahre das Risiko für die Entwicklung einer terminalen Niereninsuffizienz deutlich gesenkt oder gar eliminiert haben könnten. [72, 73]

Überdosierungen und Intoxikationen mit Lithium werden als Risikofaktor für die Entwicklung einer chronischen Niereninsuffizienz angenommen, [58] obwohl klare Belege für diese Annahme fehlen. [56]

2.4.3.2.2 Dauer der Lithiumtherapie

2.4.3.2.3 Komedikation

2.4.3.2.4 Hyperparathyreoidismus

Schwierigkeiten bereitet dabei insbesondere die Tatsache, dass sich ein Hyperparathyreoidismus weitaus häufiger sekundär als Folge einer Niereninsuffizienz entwickelt – dann jedoch einhergehend mit erniedrigten bis normalen Serum-Kalziumwerten. [82] Welche Rolle ein Hyperparathyreoidismus an der Entwicklung einer chronischen Niereninsuffizienz unter Lithiumtherapie spielt, ist unklar.

2.4.3.2.5 Komorbidität

2.4.3.2.6 Lithium-Response

3 Fragestellung

Ziel der vorliegenden Arbeit war es, einen Beitrag zur Diskussion um das nephrotoxische Potential einer prophylaktischen Lithiumtherapie in der Behandlung der Bipolaren Störung zu leisten. Im Folgenden sind die aus der Literatur abgeleiteten Hypothesen aufgeführt, die dazu geprüft wurden.

3.1 Primärhypothese: Lithiumtherapiedauer und eGFR

Aus der Literatur leitet sich die Frage ab, welche Faktoren der Lithiumtherapie die Abnahme der glomerulären Funktion erklären können. Dabei wird bislang wenig berücksichtigt, inwieweit die Bipolare Störung selbst und die damit einhergehende somatische Komorbidität zu einer reduzierten glomerulären Filtrationsrate beitragen könnten. Um relevante Einflussfaktoren zu identifizieren, schien es erforderlich, möglichst umfassende Informationen zu Krankheits- und Lithiumtherapiedauer, Lithium-Dosierung, Serum-Lithiumspiegeln, Komedikation, somatischen Begleiterkrankungen und renalen Risikofaktoren zu erhalten. Die Absicht war, unter Berücksichtigung dieser Informationen insbesondere einen Einfluss der Lithiumtherapiedauer auf die Abnahme der glomerulären Filtrationsrate zu prüfen. Entsprechend wurde die Primärhypothese formuliert:

3.2 Sekundärhypothesen

3.2.1 Erniedrigte GFR und chronische Niereninsuffizienz

Darüber hinaus stellt sich die Frage, wie groß das Ausmaß einer Lithium-induzierten Nierenschädigung ist. Zur Häufigkeit einer chronischen Niereninsuffizienz unter einer Langzeit-Therapie mit Lithium finden sich in der Literatur sehr unterschiedliche Angaben und oftmals ist nicht klar, ob die Lithiumtherapie der einzige Faktor ist, der zur Entwicklung einer Niereninsuffizienz geführt hat. Besonders problematisch erscheint in diesem Zusammenhang,
dass Kontrollgruppen häufig aus der Allgemeinbevölkerung rekrutiert werden oder aus Patienten mit anderen Diagnosen als der einer Bipolaren Störung bestehen. Es schien daher essentiell, neben Bipolaren Patienten mit Lithiumtherapie eine geeignete, altersentsprechende Kontrollgruppe von Patienten zu rekrutieren, die ebenfalls an einer Bipolaren Störung erkrankt waren, aber noch nie Lithium erhalten hatten. Im Vergleich mit einer solchen Kontrollgruppe sollte gezeigt werden, dass eine Lithiumtherapie mit einer erniedrigten glomerulären Filtrationsrate einhergeht und eine chronische Niereninsuffizienz häufiger unter Lithiumtherapie auftritt. Sekundärhypothesen dazu lauteten:

1. Bipolare Patienten mit aktueller oder früherer Lithiumtherapie weisen niedrigere Werte in der eGFR auf als Bipolare Patienten, die noch nie Lithium eingenommen haben.

3.2.2 Lithiumtherapiedauer und Serum-Kreatinin

Neben dem Einfluss der Lithiumtherapiedauer auf die eGFR sollte zusätzlich untersucht werden, welchen Einfluss die Lithiumtherapiedauer auf den Serum-Kreatinin-Wert als altersunabhängiges Maß für die glomeruläre Nierenfunktion hat. Analog zur Primärhypothese wurde eine weitere Sekundärhypothese formuliert.

3.2.3 Response und Funktionsniveau unter prophylaktischer Therapie

Eine Intention der Arbeit war es, den Therapieerfolg für die eingesetzte phasenprophylaktische Medikation (Lithium oder andere) zu messen sowie Einschränkungen durch die Erkrankung in unterschiedlichen Lebensbereichen zu erfassen. Dadurch sollte ermöglicht werden, die Beeinträchtigungen durch eine mögliche Nierenfunktionsstörung dem Benefit einer Lithiumtherapie gegenüberzustellen und beide gegeneinander abzuwägen. Es wurde postuliert, dass durch Lithium ein besseres Ansprechen erreicht werden kann als durch andere
phasenprophylaktische Medikation und dass sich dies auch messbar in Einschränkungen durch die Erkrankung niederschlägt. Entsprechende Sekundärhypothesen lauteten:

5. Patienten mit aktueller Lithiumtherapie weisen ein höheres psychosoziales Funktionsniveau auf als Patienten ohne Lithiumtherapie (gemessen im Functioning Assessment Short Test, FAST).

3.2.4 Therapie-Response und GFR

6. In der Gruppe der Lithium-Patienten findet sich eine positive Korrelation zwischen dem Gesamtscore der Alda-Scale (als Maß für die Lithium-Response) und der glomerulären Filtrationsrate (eGFR).

3.3 Explorative Datenanalyse

In einem Vergleich zwischen der Gruppe der Lithium-Patienten mit eingeschränkter glomerulärer Filtrationsrate (eGFR < 60 ml/min) und der Gruppe der Lithium-Patienten mit erhaltener Nierenfunktion wurden explorativ weitere Merkmale auf Unterschiede untersucht. Von Interesse waren die mittleren Serum-Lithium-Spiegel, die Anzahl erhöhter Serum-Lithium-Spiegel (> 1.0 mmol/l), der Quotient aus erhöhten Serum-Lithium-Spiegeln und Zeitraum der dokumentierten Lithiumtherapie, die Häufigkeit renaler Risikofaktoren, die Häufigkeit einer Komedikation sowie die Häufigkeit von Anzeichen für einen primären Hyperparathyreoidismus.
4 Methodik

4.1 Studiendesign und Studienzeitraum

4.2 Ein- und Ausschlusskriterien

Folgende Einschlusskriterien wurden gewählt:

- Alter über 18 Jahre
- Einwilligungsfähigkeit
- Vorliegen einer schriftlichen Einwilligung
- Diagnose einer Bipolaren Störung entsprechend den Kriterien des DSM IV-TR

Ausschlusskriterien waren:

- Rücknahme der Einwilligung
- fehlende Einwilligungsfähigkeit
- Diagnose einer rheumatischen Erkrankung mit möglicher renaler Beteiligung
- Schwangerschaft zum Zeitpunkt der Studie
- Chemotherapie zum Zeitpunkt der Studie

4.3 Endpunkte

Primärer Endpunkt war die geschätzte glomeruläre Filtrationsrate (eGFR), bestimmt nach der CKD-EPI-Formel. [86] Grundlage zur Berechnung der eGFR sind die Größen Alter, Geschlecht und Serum-Kreatinin. Sekundäre Endpunkte waren der Albumin-Kreatinin-Quotient im Urin.
(UACR), Kreatinin, Kalzium, Parathormon und Lithium-Spiegel im Serum, die Lithium-
Response, quantifiziert mithilfe der sogenannten Alda Scale - einem Instrument zur
retrospektiven Bewertung des Ansprechens auf Lithium [87] - sowie ein Punktwert im FAST
(Functioning Assessment Short Test) zur Bewertung des Funktionsniveaus in unterschiedlichen
Lebensbereichen. [88] Die einzelnen Skalen und Tests werden unter Messinstrumente genauer
beschrieben.

4.4 Patienteninformation, Datenschutz, ethische Aspekte

Alle teilnehmenden Patienten wurden durch den Studienarzt ausführlich über die Studie und den
damit verbundenen Aufwand informiert, sowohl in einem persönlichen Gespräch als auch
schriftlich durch eine detaillierte Probandeninformation.

Die Studie wurde in Übereinstimmung mit den Richtlinien der Deklaration von Helsinki zu
ethischen Grundsätzen für die medizinische Forschung am Menschen durchgeführt. Geltende
Datenschutzbedingungen wurden beachtet. Alle Daten wurden pseudonymisiert erhoben, so dass
keine Rückschlüsse auf die Person möglich waren. Dazu wurde jedem Patienten eine zufällige
dreistellige Studiennummer zugeteilt. Personenbezogene Daten (Verschlüsselungsliste,
Einverständniserklärung) wurden örtlich getrennt in einem verschlossenen Schrank aufbewahrt.
Elektronische Daten wurden auf einem passwortgeschützten Server abgelegt.

Durch die Ethikkommission der Charité Universitätsmedizin Berlin erfolgte nach ausführlicher
Schilderung des Vorhabens ein positives Votum (Sitzung vom 23.Januar 2014, Antragsnummer
EA1/010/14).

4.5 Datenerhebung

Die Patientenrekrutierung erfolgte ab Februar 2014 in der Psychiatrischen Institutsambulanz der
Klinik für Psychiatrie und Psychotherapie der Charité Universitätsmedizin Berlin. Nach
schriftlicher Einwilligung wurden eine Blutprobe zur Bestimmung von Kreatinin, Kalzium,
Parathormon und Lithium-Spiegel sowie eine Urinprobe zur Bestimmung der Albumin-
Kreatinin-Ratio gewonnen.

In einem persönlichen Gespräch und unter Zuhilfenahme der klinischen Dokumentation wurden
sowohl demographische Daten als auch Informationen zu Krankheitsdauer, Krankheitsverlauf

Unter Zuhilfenahme der Dokumentationen zum Krankheitsverlauf aus der Klinikakte und den Studiendokumenten wurde vom behandelnden Psychiater ein Wert auf der Alda-Scale (siehe Messinstrumente) zur Messung der Lithium-Response bestimmt. Die Durchführung des Functioning Assessment Short Test (FAST, siehe Messinstrumente) erfolgte ebenfalls durch den behandelnden Psychiater; es handelt sich um einen Fremdrating- Fragebogen.

4.6 Labormethoden

Nachfolgend sind die Methoden aufgeführt, die zur Bestimmung der laborchemischen Parameter eingesetzt wurden:

- Kreatinin (im Serum und im Urin): Standardisiertes Verfahren mit der Methode nach Jaffé
- Albumin (im Urin, zur Berechnung der Albumin-Kreatinin-Ratio): Turbidimetrie
- Kalzium (im Serum): Photometrie
- Intaktes Parathormon (im Serum): Elektro-Chemilumineszenz-Assay

4.7 Messinstrumente

4.7.1 Bestimmung der eGFR

Die exakte Messung der glomerulären Filtrationsrate über die Bestimmung der Clearance eines exogenen oder endogenen Markers ist aufwändig und erfordert die Analyse einer Urinprobe, die über eine exakte Zeit gesammelt wird. [90] Im klinischen Alltag kommen meist Formeln zum Einsatz, die aus Laborparametern und demographischen Daten eine näherungsweise Bestimmung der glomerulären Filtrationsrate (estimated GFR, eGFR) erlauben. In die 2009 veröffentlichte CKD-EPI-Formel fließen Alter, Geschlecht und ein Serum-Kreatininwert ein. [86] Die CKD-EPI-Formel ist insbesondere für Werte über 60ml/min – und damit bei Nierengesunden – präziser als die ebenfalls weit verbreitete MDRD-Formel (welche sich auf die gleichen Parameter stützt) [91, 92] und wurde in dieser Arbeit zur Bestimmung der glomerulären Filtrationsrate verwendet.

4.7.2 Functioning Assessment Short Test

Der Functioning Assessment Short Test (FAST) ist ein Fremdrating-Fragebogen, der für Patienten mit Bipolärer Störung entwickelt wurde, um das psychosoziale Funktionsniveau zu beurteilen. In 24 Items, die sich auf sechs verschiedene Lebensbereiche beziehen (Unabhängigkeit, berufliche Funktion, kognitive Funktion, finanzielle Angelegenheiten, zwischenmenschliche Beziehungen, Freizeit) werden Einschränkungen durch die Erkrankung mit einem Punktwert von 0 (keine Schwierigkeiten) bis 3 (starke Schwierigkeiten) bewertet. So wird ein Gesamtwert zwischen 0 und 72 gebildet; je höher der Wert, desto größer sind die Einschränkungen. [88] Der FAST wurde im euthymen Zustand bestimmt. Für Patienten, die zum Zeitpunkt der Studienteilnahme nicht euthym waren, erfolgte die Bestimmung möglichst zeitnah nach Remission.
4.7.3 Alda Scale

Analog wurde die Alda-Scale für Patienten, die eine andere phasenprophylaktische Therapie als Lithium erhielten (Antikonvulsivum, Neuroleptikum, Antidepressivum) zur Beurteilung der Response eingesetzt.

4.7.4 Score für renale Risikofaktoren

Um unterschiedliche renale Risikofaktoren zusammenzufassen, wurde ein Score bestimmt, der sich folgendermaßen zusammensetzt: Für das Vorliegen einer arteriellen Hypertonie, eines Diabetes mellitus, der wiederholten Einnahme von NSAID, einer Herzensuffizienz sowie vaskulären Erkrankungen (pAVK, KHK, Schlaganfall) wurde jeweils ein Punkt vergeben, so dass sich ein Gesamtwert von 0 bis 5 ergibt. Der Nikotinkonsum wurde in Packyears als zusätzliche Variable in den Analysen berücksichtigt und wurde daher nicht in den Score mit aufgenommen.
4.8 Definition der chronischen Niereninsuffizienz

Als erniedrigte glomeruläre Filtrationsrate wurde eine eGFR ≤ 60 ml/min festgelegt. [39] Wird in dieser Arbeit von einer erniedrigten oder eingeschränkten eGFR oder von Einschränkungen in der Nierenfunktion gesprochen, so bezieht sich dies auf die einmalige Kreatinin-gestützte Berechnung zum Zeitpunkt der Querschnitts-Untersuchung.

Um die Diagnose einer chronischen Niereninsuffizienz stellen zu können, werden allerdings zusätzlich ein Zeitkriterium sowie bei leichtgradig eingeschränkter GFR Hinweise auf strukturelle Schädigungen der Nieren gefordert. Eine chronische Niereninsuffizienz wurde entsprechend dieser KDIGO-Kriterien definiert als eine eGFR < 60 ml/min, die über mindestens 3 Monate besteht. Dazu erfolgte zusätzlich zur Querschnittsuntersuchung eine zweite eGFR-Bestimmung in einem zeitlichen Abstand von mindestens 3 Monaten. Als Marker für eine strukturelle Schädigung wurde zusätzlich die Albumin-Kreatinin-Konzentration im Urin berücksichtigt: Für Patienten der Kategorie G3a (eGFR 45-59 ml/min) wurde als zweites Kriterium neben der wiederholt erniedrigten GFR eine UACR von ≥ 30 gefordert. Ab einem Stadium G3b (eGFR unter 45 ml/min) galt die Diagnose einer chronischen Niereninsuffizienz auch ohne erhöhte UACR als erfüllt. [39]

4.9 Statistische Auswertung

4.9.1 Deskriptive Statistik

Mit Methoden der deskriptiven Statistik wurde zunächst die Stichprobe genauer beschrieben. Es wurden 2 Gruppen gebildet: In die Lithium-Gruppe wurden alle Patienten aufgenommen, die zum Zeitpunkt des Einschlusses oder in der Vergangenheit eine Phasenprophylaxe mit Lithium erhielten; die übrigen bildeten die Nicht-Lithium-Gruppe. Es wurden Mittelwerte und Standardabweichungen für Alter, Krankheitsdauer, Episodenzahl und Nikotinkonsum in Packyears sowie die Häufigkeiten weiterer renaler Risikofaktoren (arterielle Hypertonie, Diabetes mellitus, regelmäßige NSAID-Einnahme, vaskuläre Erkrankungen) bestimmt. Mithilfe des t-Tests (für die metrischen Variablen Alter und Erkrankungsdauer in Jahren, Episodenzahl
sowie Nikotinkonsum in Packyears) bzw. des exakten Tests nach Fisher (für die kategorialen Variablen Geschlecht, Diagnose sowie die Häufigkeiten renaler Risikofaktoren) wurden Unterschiede in diesen Merkmalen zwischen der Lithium- und Nicht-Lithium-Gruppe auf eine mögliche Signifikanz hin untersucht.

4.9.2 Prüfung der Primärhypothese

Als Rechenverfahren wurde eine hierarchische Prüfung der Variablen gewählt. Im Gegensatz zu schrittweisen Verfahren, die für explorative Analysen empfohlen werden, wird dabei zunächst diejenige Variable berücksichtigt, deren Einfluss anhand der verfügbaren Literatur für am relevantesten gehalten wird. Für jede weitere Variable wird der darüber hinausgehende Beitrag zur Varianzaufklärung bestimmt. In einem zweiten Schritt werden Variablen entfernt, die keinen signifikanten Einfluss zeigen. Abschließend erfolgt eine erneute Regressionsrechnung. [95]

Die einzelnen Stufen des hierarchischen Einschlussverfahrens waren:
Modell 1: Alter

Modell 2: Alter, Geschlecht

Modell 3: Alter, Geschlecht, Dauer der Lithiumtherapie

Modell 4: Alter, Geschlecht, Dauer der Lithiumtherapie, Score für Risikofaktoren, Nikotinkonsum

Modell 5: Alter, Geschlecht, Dauer der Lithiumtherapie, Score für Risikofaktoren, Nikotinkonsum, Anzahl der erhöhten Serum-Lithium-Spiegel, Krankheitsdauer

Zur Berechnung der Samplegröße gilt für die multiple Regression der Grundsatz, dass pro Prädiktorvariable mindestens 10 Fälle vorliegen sollten. [95] Bei 7 Prädiktorvariablen ergab sich somit eine mindestens erforderliche Samplegröße von 70.

Der Einfluss einer Prädiktorvariable galt als signifikant, wenn \(p \leq 0.05 \) war. Nach Ausschluss von Variablen mit \(p > 0.05 \) wurde mit den verbleibenden Variablen eine abschließende Regression gerechnet.

Voraussetzungen, um von dem Regressionsmodell auf die Population schließen zu können, aus der die Stichprobe stammt, wurden geprüft und werden im Ergebnisteil berichtet. Zur Prüfung auf Ausreißer, die das Modell verzerren können, wurden die Standardresiduen in der Stichprobe betrachtet. [95]

4.9.3 Prüfung von Sekundärhypothesen

4.9.3.1 Erniedrigte GFR und chronische Niereninsuffizienz

Zur Prüfung der ersten Sekundärhypothese wurden die Mittelwerte der eGFR in den beiden Gruppen mithilfe eines t-Tests für unverbundene Stichproben auf signifikante Unterschiede geprüft. Dabei wurde ein Signifikanzniveau von 5% gewählt.

Die für einen t-Test erforderliche Voraussetzung der Varianzgleichheit wurde mit einem Test nach Levene geprüft. Von einer Normalverteilung wurde ausgegangen, wenn die Schiefe zwischen -1 und +1 lag, wenn der Quotient aus Mittelwert und Median Werte zwischen 0,9 und
1,1 annahm und wenn in der grafischen Darstellung (Histogramm) keine Auffälligkeiten zu sehen waren, die gegen eine Normalverteilung sprechen (z.B. Zweigipfligkeit). [96]

Die Häufigkeit einer chronischen Niereninsuffizienz nach der oben genannten Definition wurde in den beiden Gruppen bestimmt und auf einen signifikanten Unterschied geprüft (zweite Sekundärhypothese).

Für beide Gruppen wurde zudem die Häufigkeit der unterschiedlichen Grade der Nierenfunktion (G1 bis G5) unter Berücksichtigung von eGFR und UACR dargestellt. [39]

4.9.3.2 Lithiumtherapiedauer und Serum-Kreatinin

Zur Prüfung der dritten Sekundärhypothese kam eine multiple Regressionsanalyse zum Einsatz. Als Kriteriumsvariable wurde Serum-Kreatinin gewählt, als Prädiktorvariablen wurden entsprechend der Primärhypothese Alter, Geschlecht, Dauer der Lithiumtherapie, Risikofaktor-Score, Packyears, Anzahl der dokumentierten erhöhten Serum-Lithium-Werte (>1,00 mmol/l) und Krankheitsdauer berücksichtigt. Im Gegensatz zur Primärhypothese erfolgte die Regression hierbei in einem schrittweisen Verfahren, da es sich um einen eher explorativen Ansatz handelte.[95]

4.9.3.3 Response und Funktionsniveau unter prophylaktischer Therapie

4.9.3.3.1 Alda-Scale

Als Maß für die Lithium-Response wurden die Häufigkeiten der einzelnen Alda Scale-Gesamtwerte für die Gruppe der Patienten mit aktueller Lithiumtherapie im Vergleich mit der Gruppe der Patienten mit anderer Medikation grafisch dargestellt. Die Häufigkeit einer Therapie-Response (definiert als Alda-Score ≥ 7) wurde für die beiden Gruppen bestimmt und auf einen
signifikanten Unterschied geprüft (vierte Sekundärhypothese). Als Testverfahren wurde ein \(\chi^2\)-Test nach Pearson verwendet.

4.9.3.3.2 Functioning Assessment Short Test (FAST)

4.9.3.4 Therapie-Response und GFR

Für die Gruppe der Patienten, die zum Zeitpunkt der Studie eine Lithiumtherapie erhielten, wurde eine Korrelation zwischen den Alda-Gesamtscores und der ermittelten eGFR geprüft (sechste Sekundärhypothese). Da die Alda-Scale-Werte eine näherungsweise zweigipflige Verteilung zeigten und damit die Voraussetzung der Normalverteilung nicht erfüllt war (siehe Ergebnisse), wurde als Verfahren ein Test nach Spearman gewählt.

4.9.4 Explorative Datenanalyse

Für Patienten mit regelmäßig vorliegenden Serum-Lithium-Spiegeln wurde der mittlere Serum-Lithium-Spiegel berechnet, indem die Summe durch die Anzahl der Messwerte geteilt wurde. Auf das Vorliegen eines primären Hyperparathyreoidismus wurde geschlossen, wenn sowohl Serum-Kalzium als auch das intakte Parathormon im Serum auf Werte außerhalb des Referenzbereichs (Kalzium: > 2.5 mmol/l für Patienten bis 60 Jahre, > 2.55 mmol/l für Patienten über 60 Jahre; intaktes Parathormon: > 65 mmol/l) erhöht waren. Eine klinische oder chirurgische Diagnosesicherung erfolgte nicht.

In einem explorativen Ansatz wurden diese und weitere Merkmale getrennt für die Gruppe der Lithium-Patienten mit reduzierter GFR und die Gruppe der Lithium-Patienten mit erhaltener Nierenfunktion betrachtet. Häufigkeiten wurden dabei mithilfe eines exakten Tests nach Fisher.
auf signifikante Unterschiede geprüft. Für metrische Variablen wurden die Mittelwerte berechnet, zur Unterschiedsprüfung kam ein t-Test für unverbundene Stichproben zum Einsatz.
5 Ergebnisse

5.1 Beschreibung der Stichprobe

Tabelle 2: Klinische und demografische Merkmale sowie Häufigkeiten renaler Risikofaktoren zwischen Lithium- und Nicht-Lithium-Patienten im Vergleich

<table>
<thead>
<tr>
<th>Merkmal</th>
<th>Lithium –Gruppe (n=74)</th>
<th>Nicht-Lithium-Gruppe (n=21)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>demografische und klinische Daten</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>männlich: Anzahl (%)</td>
<td>34 (45,9%)</td>
<td>8 (38,1%)</td>
<td>n.s.</td>
</tr>
<tr>
<td>mittleres Alter in Jahren (SD)</td>
<td>49,61 (15,85)</td>
<td>48,10 (14,23)</td>
<td>n.s.</td>
</tr>
<tr>
<td>Diagnose Bipolar-I-Störung: Anzahl (%)</td>
<td>39 (52,7%)</td>
<td>6 (28,6%)</td>
<td>0,082</td>
</tr>
<tr>
<td>mit psychotischen Symptomen: Anzahl (%)</td>
<td>21 (29,2%) n=72</td>
<td>4 (19%)</td>
<td>n.s.</td>
</tr>
<tr>
<td>mittlere Krankheitsdauer in Jahren (SD)</td>
<td>23,63 (11,90) n=67</td>
<td>25,38 (12,49) n=20</td>
<td>n.s.</td>
</tr>
<tr>
<td>mittlere Episodenzahl (SD)</td>
<td>15,61 (15,33) n=51</td>
<td>22,88 (18,66) n=17</td>
<td>n.s.</td>
</tr>
<tr>
<td>mittlere Dauer der Lithiumtherapie (SD)</td>
<td>9,73 (8,21)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>renale Risikofaktoren</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>arterielle Hypertonie: Anzahl (%)</td>
<td>26 (36,3%) n=71</td>
<td>2 (9,5%)</td>
<td>0,029</td>
</tr>
<tr>
<td>Diabetes mellitus: Anzahl (%)</td>
<td>3 (4,2%) n=71</td>
<td>1 (4,8%)</td>
<td>n.s.</td>
</tr>
<tr>
<td>wiederholte Einnahme von NSAID: Anzahl (%)</td>
<td>14 (19,7%) n=71</td>
<td>0 (0%)</td>
<td>0,034</td>
</tr>
<tr>
<td>Gefäßerkranzung: Anzahl (%)</td>
<td>4 (5,6%) n=71</td>
<td>0 (0%)</td>
<td>n.s.</td>
</tr>
<tr>
<td>Nikotinkonsum: mittlere Packyears (SD)</td>
<td>9,15 (12,89) n=67</td>
<td>12,52 (14,65)</td>
<td>n.s.</td>
</tr>
</tbody>
</table>

SD: Standardabweichung, n.s.: nicht signifikant, NSAID: nichtsteroidale antiinflammatorische Medikamente.

p-Wert für t-Test bzw. exakten Test nach Fisher.
Tabelle 3: Medikation zum Zeitpunkt der Studie

<table>
<thead>
<tr>
<th>Substanzklasse</th>
<th>N (gesamt=95)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lithium</td>
<td>57</td>
<td>60,0</td>
</tr>
<tr>
<td>Antikonvulsivum</td>
<td>42</td>
<td>44,2</td>
</tr>
<tr>
<td>Neuroleptikum</td>
<td>31</td>
<td>32,6</td>
</tr>
<tr>
<td>Antidepressivum</td>
<td>29</td>
<td>30,5</td>
</tr>
</tbody>
</table>

Abbildung 1: Anzahl der eingesetzten Substanzen

Anzahl der Substanzen
(Lithium, Antikonvulsiva, Neuroleptika, Antidepressiva)

Für 12 der 74 Lithium-Patienten – davon 8 Patienten mit früherer Lithiumtherapie - lagen keine regelmäßigen Spiegel vor. Der dokumentierte Zeitraum der Lithiumtherapie der übrigen 62 Patienten (definiert als Jahre, in denen mindestens 2 Lithium-Spiegel vorlagen) betrug im Mittel 7,09 Jahre (SD 5,64, Median 5,5, Minimum 0,5, Maximum 26,25). Im Mittel lagen pro dokumentiertem Jahr 3,64 Serum-Lithiumspiegel vor (SD 1,12, Median 3,36, Minimum 2,22 Maximum 7,76).

5.2 Primärhypothese: Lithiumtherapiedauer und eGFR

Zur Prüfung der Primärhypothese wurde eine multiple Regressionsanalyse mit der eGFR als Kriteriumsvariable und den Prädiktorvariablen Alter, Geschlecht, Dauer der Lithiumtherapie,

Die Dauer der Lithiumtherapie zeigte bei einem gewählten Signifikanzniveau von 5% einen signifikanten Beitrag zur Aufklärung der Varianz in der eGFR. Damit konnte die Primärhypothese bestätigt werden. Als weitere Variablen mit signifikantem Beitrag erwiesen sich das Alter und der Score für renale Risikofaktoren. Diese drei Variablen konnten im Regressionsmodell knapp zwei Drittel der Varianz in der eGFR aufklären, wobei der größte Beitrag durch das Alter zustande kam. Die Abnahme der eGFR pro Jahr der Lithiumtherapie war mit 0,72 ml vergleichbar der altersbedingten jährlichen Abnahme von 0,76 ml. Pro Punkt im Risikofaktor-Score reduzierte sich die eGFR um weitere 4,76 ml.

Somit ergab sich folgendes Modell zur Vorhersage der eGFR aus den Variablen Alter, Risikofaktor-Score und Dauer der Lithiumtherapie:

\[eGFR = 130,98 - 0,76 \times \text{[Alter]} - 0,72 \times \text{[Dauer der Lithiumtherapie]} - 4,76 \times \text{[Risikofaktor-Score]} \]

Tabelle 4: Modellübersicht Regression mit Kriteriumsvariable eGFR

<table>
<thead>
<tr>
<th>Modell</th>
<th>R</th>
<th>R²</th>
<th>Änderung R²</th>
<th>Sign. Änderung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,74</td>
<td>0,55</td>
<td>-</td>
<td>0,000</td>
</tr>
<tr>
<td>2</td>
<td>0,78</td>
<td>0,62</td>
<td>0,06</td>
<td>0,001</td>
</tr>
<tr>
<td>3</td>
<td>0,80</td>
<td>0,64</td>
<td>0,03</td>
<td>0,026</td>
</tr>
</tbody>
</table>

Modell 1: Alter
Modell 2: Alter, Lithiumtherapiedauer
Modell 3: Alter, Lithiumtherapiedauer, Risikofaktor-Score
R: multiple Korrelation
R²: Determinationskoeffizient

Tabelle 5: Koeffizienten des Regressionsmodells mit Kriteriumsvariable eGFR

<table>
<thead>
<tr>
<th></th>
<th>Nichtstandardisierte Koeffizienten</th>
<th>Standardisierte Koeffizienten</th>
<th>Konfidenzintervall für B (95%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Standardfehler</td>
<td>Beta</td>
</tr>
<tr>
<td>(Konstante)</td>
<td>130,98</td>
<td>5,25</td>
<td></td>
</tr>
<tr>
<td>Alter (Jahre)</td>
<td>-0,76</td>
<td>0,12</td>
<td>-.55***</td>
</tr>
<tr>
<td>Lithiumtherapiedauer</td>
<td>-0,72</td>
<td>0,22</td>
<td>-.27**</td>
</tr>
<tr>
<td>Risikofaktor-Score</td>
<td>-4,76</td>
<td>2,09</td>
<td>-.18</td>
</tr>
</tbody>
</table>

*p = .026; **p = .001; ***p < .001

Tabelle 6: Ausgeschlossene Variablen

<table>
<thead>
<tr>
<th></th>
<th>Nichtstandardisierte Koeffizienten</th>
<th>Standardisierte Koeffizienten</th>
<th>t-Wert</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Standardfehler</td>
<td>Beta</td>
<td></td>
</tr>
<tr>
<td>Geschlecht</td>
<td>0,19</td>
<td>3,33</td>
<td>0,00</td>
<td>0,06</td>
</tr>
<tr>
<td>Nikotinkonsum</td>
<td>0,21</td>
<td>0,14</td>
<td>0,12</td>
<td>1,52</td>
</tr>
<tr>
<td>Anzahl der Intoxikationen Krankheitsdauer</td>
<td>0,18</td>
<td>0,30</td>
<td>0,05</td>
<td>0,61</td>
</tr>
<tr>
<td>Krankheitsdauer</td>
<td>0,10</td>
<td>0,22</td>
<td>0,05</td>
<td>0,46</td>
</tr>
</tbody>
</table>

Es wurden fünf Fälle gezählt, deren Standardresiduum kleiner als -2 oder größer als +2 war. Bei einer Stichprobengröße von 74 entspricht dies 6,7% der Fälle und damit etwas mehr als den erwarteten 5%. [95] Keines der Standardresiduen war kleiner als -2,5 oder größer als +2,5.

5.3 Sekundärhypotesen

5.3.1 Erniedrigte GFR und chronische Niereninsuffizienz

Zur Prüfung der ersten Sekundärhypothese wurden zunächst die Werte der eGFR für die beiden Gruppen näher betrachtet. Bei einer Schiefe von -0,81 und einem Quotient aus Mittelwert und Median von 0,94 wurde nach Prüfung der grafischen Darstellung der Werte von einer Normalverteilung in der Lithium-Gruppe ausgegangen. In der Nicht-Lithium-Gruppe waren die Kriterien für eine Normalverteilung ebenfalls erfüllt (Schiefe -0,40, Quotient aus Mittelwert und Median 0,97, keine Hinweise auf nichtnormalverteilte Werte im Histogramm). Der Levene-Test der Varianzgleichheit war für p ≤ 0,05 nicht signifikant, womit zwischen den beiden Gruppen Varianzgleichheit angenommen werden konnte. Damit waren die Voraussetzungen für einen t-Test für unverbundene Stichproben erfüllt.

Die eGFR betrug im Mittel 83,0 ml/min (SD 22,0) in der Lithium-Gruppe und 94,2 ml/min (SD 15,2) in der Nicht-Lithium-Gruppe. Dies stellte bei einem Signifikanzniveau von 5% einen signifikanten Unterschied dar (t-Test für unverbundene Stichproben, p = 0,032, Mittelwertsdifferenz 11,15, Konfidenzintervall 0,957 bis 21,34). Somit konnte gezeigt werden, dass Patienten mit Lithiumtherapie eine niedrigere eGFR aufweisen als Patienten, die noch nie Lithium eingenommen haben.
In Abbildung 3 ist die eGFR für Patienten ohne Lithiumtherapie und für die drei Gruppen der Patienten mit bis zu 10 Jahren, mehr als 10 bis 20 Jahren und über 20 Jahren Lithiumtherapie dargestellt.

Abbildung 3: eGFR in Abhängigkeit von der Lithiumtherapiedauer

Tabelle 7 zeigt die Häufigkeit der verschiedenen GFR-Kategorien G1 bis G5 (basierend auf einer einmaligen Messung) getrennt für die Lithium- und die Nicht-Lithium-Gruppe. Außerdem ist die Häufigkeit einer UACR ≥ 30 für die einzelnen Kategorien dargestellt.

Für 8 der 13 Patienten in der Lithium-Gruppe, die in der Querschnittsuntersuchung eine eingeschränkte GFR zeigten, bestätigte sich dieser Befund auch in einer zweiten Messung im Abstand von mindestens 3 Monaten. 3 dieser 8 Patienten wiesen eine UACR < 30 auf (nicht erhöht), davon eine Patientin der Kategorie G3a und 2 Patienten der Kategorie G3b. Für die Kategorie 3b (GFR < 45 ml/min) ist kein weiterer struktureller Hinweis auf eine Nierenschädigung erforderlich, um die Diagnose einer chronischen Niereninsuffizienz stellen zu können (vgl. Definition der chronischen Niereninsuffizienz). Somit erfüllten 7 Patienten die Diagnosekriterien einer chronischen Niereninsuffizienz, basierend auf einer zweiten eGFR-
Tabelle 7: Kategorien der eGFR und Albumin-Kreatinin-Ratio im Urin [39]

<table>
<thead>
<tr>
<th>KDIGO-Kategorie</th>
<th>eGFR ≥ 90</th>
<th>eGFR 60-90</th>
<th>eGFR 45-59</th>
<th>eGFR 30-44</th>
<th>eGFR 15-29</th>
<th>eGFR < 15</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lithium-Gruppe</td>
<td>G1</td>
<td>G2</td>
<td>G3a</td>
<td>G3b</td>
<td>G4</td>
<td>G5</td>
<td></td>
</tr>
<tr>
<td>N (%)</td>
<td>33 (44,6%)</td>
<td>28 (37,8%)</td>
<td>9 (12,2%)</td>
<td>2 (2,7%)</td>
<td>2 (2,7%)</td>
<td>0</td>
<td>74 (100%)</td>
</tr>
<tr>
<td>UACR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 30</td>
<td>29</td>
<td>21</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>≥ 30*</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>0</td>
<td>2</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>fehlend</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Nicht-Lithium-Gruppe</td>
<td>N (%)</td>
<td>13 (61,9%)</td>
<td>8 (38,1%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>21 (100%)</td>
</tr>
<tr>
<td>UACR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 30</td>
<td>9</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>≥ 30*</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>fehlend</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

eGFR: estimated glomerular filtration rate
UACR: Albumin-Kreatinin-Ratio im Urin
*Höchstwert 166
Bestimmung und unter Berücksichtigung der UACR; dies entspricht 9,5%. Davon waren 4 Patienten unter aktueller Lithiumtherapie, 3 hatten früher Lithium erhalten und bis zum Zeitpunkt der Studie abgesetzt.

Die Niereninsuffizienz war in zwei der drei Fälle der Grund für das Absetzen, die dritte Patientin hatte Lithium aus Angst vor Nebenwirkungen abgesetzt. 3 Patienten fielen unter die Kategorie G3a und jeweils zwei unter die Kategorien G3b und G4. In der Nicht-Lithium-Gruppe fanden sich keine Fälle von chronischer Niereninsuffizienz.

Die Dauer der Lithiumtherapie der 7 Patienten mit chronischer Niereninsuffizienz betrug im Mittel 20,94 Jahre (SD 10,19), unterschied sich jedoch deutlich im Bezug auf das Geschlecht: Für die 3 männlichen Patienten betrug sie im Mittel 12,42 (SD 5,01), für die 4 Patientinnen 26,19 (SD 10,44) Jahre. Die geringe Fallzahl erlaubte keine weitere statistische Auswertung dieses Befundes.

In Abbildung 4 sind die prozentualen Häufigkeiten einer chronischen Niereninsuffizienz im Zusammenhang mit der Lithiumtherapiedauer dargestellt.
5.3.2 Lithiumtherapiedauer und Serum-Kreatinin

Tabelle 8: Koeffizienten des Regressionsmodells mit Kriteriumsvariable Serum-Kreatinin

<table>
<thead>
<tr>
<th></th>
<th>Nichtstandardisierte Koeffizienten</th>
<th>Standardisierte Koeffizienten</th>
<th>Konfidenzintervall für B (95%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Standardfehler</td>
<td>Beta</td>
</tr>
<tr>
<td>(Konstante)</td>
<td>1,09</td>
<td>0,13</td>
<td>-</td>
</tr>
<tr>
<td>Lithiumtherapiedauer</td>
<td>0,02</td>
<td>0,01</td>
<td>.38***</td>
</tr>
<tr>
<td>weibliches Geschlecht</td>
<td>-0,23</td>
<td>0,08</td>
<td>-.30**</td>
</tr>
<tr>
<td>Risikofaktor-Score</td>
<td>0,11</td>
<td>0,05</td>
<td>.23*</td>
</tr>
</tbody>
</table>

*p = .027; **p = .004; ***p < 0.001

Tabelle 9: Modellübersicht Regression mit Kriteriumsvariable Serum-Kreatinin

<table>
<thead>
<tr>
<th>Modell</th>
<th>R</th>
<th>R²</th>
<th>Änderung R²</th>
<th>Sign. Änderung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,42</td>
<td>0,18</td>
<td>-</td>
<td>< 0,001</td>
</tr>
<tr>
<td>2</td>
<td>0,52</td>
<td>0,27</td>
<td>0,10</td>
<td>0,003</td>
</tr>
<tr>
<td>3</td>
<td>0,57</td>
<td>0,32</td>
<td>0,05</td>
<td>0,027</td>
</tr>
</tbody>
</table>

Modell 1: Lithiumtherapiedauer
Modell 2: Lithiumtherapiedauer, Geschlecht
Modell 3: Lithiumtherapiedauer, Geschlecht, Risikofaktor-Score

R: multiple Korrelation
R²: Determinationskoeffizient

5.3.3 Response und Funktionsniveau unter prophylaktischer Therapie

5.3.3.1 Alda Scale

Abbildung 5 zeigt die prozentuale Verteilung der Alda-Scale-Werte getrennt für Patienten mit Lithiumtherapie und für Patienten mit anderer prophylaktischer Medikation. Für einen Patienten konnte kein Wert bestimmt werden, da er zum Zeitpunkt der Studie keine phasenprophylaktische Medikation erhielt.
Zur Prüfung der vierten Sekundärrhynthese erfolgte ein χ^2-Test nach Pearson. Ein Alda-Gesamtscore von 7 oder höher wurde bei 27 Patienten (47,7%) unter Lithiumtherapie und sechs Patienten (16,2%) mit anderer Therapie erreicht (drei Fälle mit Lamotrigin, zwei Fälle mit Carbamazepin, ein Fall mit einer kombinierten Therapie mit Lamotrigin und Valproat). Damit war eine Response unter Lithium signifikant häufiger als unter anderer Therapie ($p=0,002$, χ^2-Test nach Pearson).

5.3.3.2 Functioning Assessment Short Test (FAST)

Die FAST-Werte der Patienten, die zum Zeitpunkt der Studie mit Lithium behandelt wurden (Median 16) waren signifikant niedriger als die FAST-Werte der Patienten ohne Lithiumtherapie (Median 28), U=-3,15, p=0,002.

5.3.4 Therapie-Response und GFR

Für die sechste Sekundärhypothese wurden ausschließlich Patienten mit Lithiumtherapie zum Zeitpunkt der Studie berücksichtigt, da nur für diese Patienten auch Alda-Scale-Werte für Lithium vorlagen.
Zunächst erfolgte eine Datenanalyse der Alda-Scale-Werte und der eGFR-Werte zur Auswahl eines geeigneten Testverfahrens. Schiefe und Quotient aus Mittelwert und Median lieferten jeweils keine Hinweise auf Nichtnormalverteilung. Allerdings wies die grafische Darstellung der Alda-Scale-Werte auf eine bimodale Verteilung hin. Daher konnte nicht von einer Normalverteilung ausgegangen werden; zur Prüfung auf eine Korrelation zwischen Alda-Score und eGFR wurde daher als nicht-parametrisches Verfahren ein Test nach Spearman durchgeführt.

Es zeigte sich keine Korrelation zwischen den Alda-Scale-Werten und der ermittelten eGFR. Der Spearman-Korrelationskoeffizient betrug -0,135 bei einem p-Wert von 0,32. Die Stichprobengröße betrug n=57. Damit konnte nicht gezeigt werden, dass besonders diejenigen Patienten Einschränkungen der Nierenfunktion entwickelten, die nur unzureichend auf Lithium ansprachen.

5.4 Explorative Datenanalyse

Tabelle 10: Explorativer Vergleich zwischen Lithium-Patienten mit einer GFR größer und kleiner 60 ml/min

<table>
<thead>
<tr>
<th>Merkmal</th>
<th>Lithium-Patienten mit reduzierter GFR (eGFR < 60 ml/min) n=13</th>
<th>Lithium-Patienten mit erhaltener GFR (eGFR ≥ 60 ml/min) n=61</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>mittlerer Serum-Lithium-Spiegel (SD)</td>
<td>0.66 (0.14) n=12</td>
<td>0.65 (0.10) n=52</td>
<td>n.s.</td>
</tr>
<tr>
<td>Serum-Lithium > 1.0 mmol/l: Mittlere Anzahl (SD)</td>
<td>8.82 (11.88) n=11</td>
<td>3.29 (3.72) n=51</td>
<td>0.007</td>
</tr>
<tr>
<td>Anzahl Serum-Lithium > 1.0 mmol/l pro Jahr (SD)</td>
<td>0.64 (0.67) n=11</td>
<td>0.60 (0.64) n=51</td>
<td>n.s.</td>
</tr>
<tr>
<td>Komedikation (AD,AK,NL): Anzahl (%)</td>
<td>6 (50.0%) n=12</td>
<td>30 (62.5%) n=48</td>
<td>n.s.</td>
</tr>
<tr>
<td>Erhöhtes Parathormon: Anzahl (%)</td>
<td>8 (61.5%) n=11</td>
<td>8 (13.6%) n=59</td>
<td>0.001</td>
</tr>
<tr>
<td>Erhöhtes Parathormon und erhöhtes Ca: Anzahl (%)</td>
<td>1 (7.7%) n=11</td>
<td>1 (1.7%) n=59</td>
<td>n.s.</td>
</tr>
</tbody>
</table>

Renale Risikofaktoren

<table>
<thead>
<tr>
<th>Merkmal</th>
<th>Lithium-Patienten mit reduzierter GFR (eGFR < 60 ml/min) n=13</th>
<th>Lithium-Patienten mit erhaltener GFR (eGFR ≥ 60 ml/min) n=61</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>mittlerer Risikofaktor-Score (SD)</td>
<td>1.46 (1.05)</td>
<td>0.48 (0.68) n=58</td>
<td><0.001</td>
</tr>
<tr>
<td>arterielle Hypertonie: Anzahl (%)</td>
<td>11 (84.6%)</td>
<td>15 (25.9%) n=58</td>
<td><0.001</td>
</tr>
<tr>
<td>Diabetes mellitus: Anzahl (%)</td>
<td>2 (15.4%)</td>
<td>1 (1.7%) n=58</td>
<td>n.s.</td>
</tr>
<tr>
<td>wiederholte Einnahme von NSAID: Anzahl (%)</td>
<td>3 (23.1%)</td>
<td>11 (19.0%) n=58</td>
<td>n.s.</td>
</tr>
<tr>
<td>Gefäßkrankung: Anzahl (%)</td>
<td>3 (23.1%)</td>
<td>1 (1.7%) n=58</td>
<td>0.018</td>
</tr>
<tr>
<td>Nikotinkonsum: mittlere Packyears (SD)</td>
<td>10.00 (17.64) n=10</td>
<td>9.00 (12.07) n=57</td>
<td>n.s.</td>
</tr>
</tbody>
</table>

p-Wert für t-Test bzw. exakten Test nach Fisher. SD: Standardabweichung. n.s.: nicht signifikant.
NSAID: nichtsteroidale antiinflammatorische Medikamente.
6 Diskussion

6.1 Synopsis

Es konnte gezeigt werden, dass die Dauer der Lithiumtherapie einen signifikanten Beitrag zur Aufklärung der Varianz in der glomerulären Filtrationsrate leistet. Als weitere relevante Einflussfaktoren zeigten sich das Alter und ein Score für renale Risikofaktoren. Dies ist die erste Arbeit, in der dabei die CKD-EPI-Formel zur Bestimmung der GFR eingesetzt wurde.

Bipolare Patienten mit Lithiumtherapie zeigten eine niedrigere glomeruläre Filtrationsrate als Patienten, die noch nie Lithium eingenommen hatten. Insgesamt traten 7 Fälle von chronischer Niereninsuffizienz auf – alle in der Lithium-Gruppe, und gehäuft unter Patienten mit längerer Lithiumtherapie. Ein Einfluss der Lithiumtherapiedauer zeigte sich auch auf die Serum-Kreatininwerte als weiteren, altersunabhängigen Parameter für die Nierenfunktion.

Gleichzeitig fanden sich klare Hinweise für die therapeutische Überlegenheit einer Phasenprophylaxe mit Lithium: Ein volles Ansprechen auf die Therapie wurde unter Lithium in knapp der Hälfte der Fälle erreicht, unter anderer phasenprophylaktischer Therapie in nur knapp einem Sechstel der Fälle. Lithium-Patienten zeigten außerdem ein deutlich besseres psychosoziales Funktionsniveau im Functioning Assessment Short Test.

Es fand sich ein unerwarteter Unterschied im renalen Risikoprofil zwischen Patienten mit und ohne Lithiumtherapie: Arterielle Hypertonie und Einnahme von NSAID waren in der Lithium-Gruppe signifikant häufiger. Zudem ergaben sich Hinweise auf eine möglicherweise erhöhte Vulnerabilität männlicher Patienten bezüglich der Entwicklung einer chronischen
Niereninsuffizienz. Diese Befunde liefern wertvolle Anhaltspunkte für weitere Forschungsarbeiten.

6.2 Diskussion der Methoden

6.2.1 Studiendesign

Einzelheiten der Lithiumtherapie (genaue Dauer, Serum-Lithium-Spiegel etc.) weniger verlässlich bzw. weniger detailliert.

Die Response findet bislang keine Berücksichtigung in Arbeiten zur Nierenfunktion unter Lithiumtherapie. Gleiches gilt für die Beurteilung der Einschränkungen durch die Erkrankung, wie sie beispielsweise der Functioning Assessment Short Test erlaubt. Sowohl für die Frage nach einem Zusammenhang zwischen dem Ansprechen auf eine Lithiumtherapie und der Entwicklung einer chronischen Niereninsuffizienz als auch für die Überlegung, ob in gewissen Fällen eine Therapieumstellung erfolgen sollte sind solche Informationen allerdings wichtig.

Eine Abwägung von Einschränkungen in der Nierenfunktion gegen den Benefit einer phasenprophylaktischen Lithiumtherapie findet sich bislang in einem Rechenmodell, das auf einem systematischen Literatur-Review basiert. [101]

6.2.2 Messmethoden

Die Bestimmung der glomerulären Filtrationsrate erfolgte mithilfe der Kreatinin-basierten CKD-EPI-Formel. Solche Schätzverfahren sind im klinischen Alltag weit verbreitet. Als präziser gelten Clearance-Messungen mit exogenen Markern, diese sind allerdings teuer, aufwändig und erfordern ein stationäres Setting, was für diese Arbeit nicht durchführbar war. Eine ambulante
Gewinnung von Sammelurin zur Clearance-Messung endogener Marker (z.B. Kreatinin) wurde erwogen, allerdings gilt diese als fehleranfällig und nicht präziser als die Bestimmung der eGFR, so dass kein zusätzlicher Nutzen ersichtlich war. [90]

Die CKD-EPI-Formel wurde verwendet, da sie akkurater ist als die MDRD-Formel, die sich auf die gleichen Parameter stützt. Besonders im Bereich über 60ml/min – in dem sich die meisten Patienten fanden – werden genauere Ergebnisse der glomerulären Filtrationsrate erreicht. Insgesamt führt die CKD-EPI-Formel im Vergleich mit der MDRD-Formel zu weniger hohen geschätzten Prävalenzen einer chronischen Niereninsuffizienz. [37, 102]

6.3 Diskussion der Ergebnisse

6.3.1 Stichprobe, klinische und demografische Merkmale

Die 74 Patienten mit aktueller oder früherer Lithiumtherapie und die 21 Patienten, die noch nie eine prophylaktische Lithiumtherapie erhalten hatten, unterschieden sich nicht signifikant in der Zusammensetzung bezüglich des Geschlechts; Männer und Frauen waren in beiden Gruppen etwa gleich häufig vertreten, was der Epidemiologie der Bipolaren Störung entspricht. [2]

der Befund reproduzieren lässt, was mögliche Erklärungen sein könnten und inwiefern ein Zusammenhang mit einer eingeschränkten GFR besteht.

6.3.2 Primärhypothese: Dauer der Lithiumtherapie

Die Dauer der Lithiumtherapie lieferte im Regressionsmodell einen signifikanten Beitrag zur Varianzaufklärung der eGFR. Der Effekt von Lithium entsprach mit einer Abnahme der GFR um 0.72 ml/min pro Jahr der Lithiumtherapie in etwa dem Einfluss des Alters: Pro Lebensjahr ergab sich im Modell eine Abnahme um 0.76 ml/min. Zusätzlich zeigte sich eine Verminderung der GFR um knapp 5 ml/min pro Punkt auf dem Score für renale Risikofaktoren.

Das Ausmaß der jährlichen Lithium-bedingten Abnahme der eGFR war praktisch identisch mit der von Bocchetta et al. berichteten Abnahme der GFR pro Jahr der Lithiumtherapie (-0.73 ml/min) [76]

In der Überprüfung der Fälle auf Ausreißer zeigten sich mit 6.7% etwas mehr Fälle als erwartet, deren Standardresiduum kleiner als -2 oder größer als +2 war und die damit als potentielle Ausreißer zu betrachten sind. Diese könnten das Regressionsmodell verzerrt haben. [95] Eine explorative erneute Regressionsanalyse nach Ausschluss der beiden Fälle mit der größten Abweichung in den Standardresiduen führte allerdings zu keiner relevanten Änderung in der Regressionsgleichung. Starke Ausreißer mit einem Standardresiduum kleiner als -2.5 oder größer als +2.5 lagen zudem nicht vor. Daher kann davon ausgegangen werden, dass die potentiellen Ausreißer nicht zu einer wesentlichen Verzerrung geführt haben und dass das Modell auf die Grundgesamtheit Bipolarer Patienten mit Lithiumtherapie übertragbar ist.
6.3.3 Sekundärhypothesen

6.3.3.1 Erniedrigte GFR und chronische Niereninsuffizienz

Obwohl die Reduktion deutlich ausfiel, war die GFR in beiden Gruppen im Mittel nicht relevant eingeschränkt. In der Betrachtung der Subgruppen von Patienten mit unterschiedlich langer Lithiumtherapiedauer zeigte sich jedoch, dass mit längerer Therapiedauer eine deutlichere Reduktion der GFR auftrat: Patienten mit einer Lithiumtherapiedauer von bis zu 10 Jahren unterschieden sich bezüglich der GFR nicht wesentlich von Patienten ohne Lithiumtherapie; beide Gruppen zeigten im Mittel Werte über 90 ml/min. Mit längerer Lithiumtherapiedauer fiel die GFR im Mittel allerdings auf 72.5 ml/min (10 bis 20 Jahre Therapiedauer) und unter 60 ml/min (über 20 Jahre Therapiedauer). Diese Befunde unterstützen die Primärhypothese und sprechen ebenfalls für einen negativen Einfluss der Lithiumtherapiedauer auf die GFR. Eine Reduktion scheint erst unter langjähriger Lithiumtherapie aufzutreten, im ersten Jahrzehnt der Therapie bleibt die glomeruläre Funktion noch weitestgehend erhalten. Als alternative Erklärung wäre prinzipiell denkbar, dass die Lithiumtherapie vor vielen Jahren noch unter anderen Bedingungen erfolgte als in den letzten Jahren und dass damit nicht die Therapiedauer, sondern vielmehr der Zeitraum, in dem die Therapie erfolgt war, ausschlaggebend für den Einfluss auf die GFR ist. Gegen ein solches Kohortenphänomen spricht, dass sich zumindest die empfohlenen
Lithium-Zielspiegel als ein möglicher erklärender Faktor seit Beginn der 80er-Jahre nicht mehr relevant geändert haben. Ein größeres Bewusstsein für renale Schädigungen unter Lithiumtherapie und damit zunehmend besseres Monitoring in den letzten Jahren könnte aber durchaus eine Rolle in diese Richtung spielen.

Diese Diskrepanz lässt sich zum einen über die unterschiedliche zugrunde liegende Definition der chronischen Niereninsuffizienz erklären: Während die zitierten Arbeiten von einer einmaligen eGFR-Bestimmung auf das Vorliegen einer chronischen Niereninsuffizienz schließen, wurden in der vorliegenden Arbeit eine zweimalig erniedrigte eGFR im Abstand von mindestens 3 Monaten sowie für Patienten der Kategorie G3a eine zusätzlich erhöhte Albumin-Kreatinin-Ratio im Urin gefordert, um die Diagnose einer chronischen Niereninsuffizienz zu stellen. Damit wurde den Empfehlungen klinischer Leitlinien entsprochen. [39] Diese strengere Definition ermöglicht es, zwischen Patienten mit manifester Niereninsuffizienz und Patienten mit leichtgradig erniedrigter glomerulärer Filtrationsrate zu unterscheiden und bildet die tatsächliche Prävalenz einer chronischen Niereninsuffizienz unter Patienten mit Lithiumtherapie vermutlich besser ab als eine Definition, die nur auf einer einmaligen eGFR-Bestimmung beruht. Es ist anzunehmen, dass Querschnitts-Untersuchungen, die die GFR basierend auf einer einzelnen Messung bestimmen, die Prävalenz einer chronischen Niereninsuffizienz überschätzen. Interessant ist, dass Close et al. die Häufigkeit einer chronischen Niereninsuffizienz unter Lithium-Patienten in einer vergleichbaren Größenordnung angeben (12,2 %). Die Diagnose in deren Register-basierten Arbeit beruht auf Diagnose-Codes in
elektronischen Datenbanken, die vermutlich ebenfalls erst bei wiederholt erniedrigter GFR vergeben wurden. [65]

Zusätzlich muss berücksichtigt werden, dass die Patienten für die vorliegende Arbeit in einer Spezialsprechstunde für Bipolare Störungen rekrutiert wurden. Mit knapp vier Lithium-Spiegel-Bestimmungen pro Jahr und entsprechend häufigen eGFR-Messungen waren die Patienten sehr engmaschig bezüglich der renalen Funktionsparameter betreut und sind damit vermutlich nicht repräsentativ für die Gruppe aller Patienten mit Lithiumtherapie (vgl. Bassilios et al. [57])

Entsprechend der Reduktion in der GFR besonders unter langjähriger Lithiumtherapie stieg die Prävalenz einer chronischen Niereninsuffizienz mit der Dauer der Lithiumtherapie an. In den ersten zehn Jahren blieb die glomeruläre Funktion meist erhalten; ein Sechstel der Patienten mit 10 bis 20 Jahren Lithiumtherapie und mehr als ein Drittel der Patienten mit einer Therapiedauer
von über 20 Jahren wiesen aber eine chronische Niereninsuffizienz auf. Dies entspricht in der Größenordnung den Ergebnissen von Bocchetta et al. [76]

6.3.3.2 Lithiumtherapiedauer und Kreatinin

Der Einfluss der Lithiumtherapiedauer auf die glomeruläre Nierenfunktion zeigte sich auch in der Höhe der Kreatinin-Werte im Serum. Die ermittelte Regressionsgleichung lässt sich folgendermaßen zusammenfassen: Pro Jahrzehnt der Lithiumtherapie kommt es zu einem Anstieg des Kreatinin um knapp 0.2 mg/dl. Frauen zeigen um 0.23 mg/dl niedrigere Werte als Männer, und für das Vorliegen jedes renalen Risikofaktors erhöht sich der Wert um 0.11 mg/dl. Insgesamt konnten diese drei Variablen etwa ein Drittel der Varianz in den Kreatinin-Werten erklären, den größten Beitrag lieferte dabei die Dauer der Lithiumtherapie.

Im Gegensatz zur eGFR lag mit Serum-Kreatinin ein altersunabhängiges Maß für die glomeruläre Funktion vor. Das Alter zeigte entsprechend auch keinen signifikanten Einfluss auf die Höhe der Kreatinin-Werte. Auf methodische Schwierigkeiten, die mit einer altersabhängigen Variablen wie der eGFR verbunden sind, wurde bereits in der Diskussion der Primärhypothese eingegangen. Das Regressionsmodell mit Kreatinin als Kriteriumsvariable erlaubte daher eine realistischere Einschätzung der Varianzaufklärung als dies durch das Regressionsmodell der Primärhypothese der Fall sein dürfte und kann als Ergänzung zu diesem gesehen werden. Zur Beurteilung der glomerulären Funktion ist die eGFR dennoch besser geeignet als Serum-Kreatininwerte allein. [92]

In der Literatur finden sich Bestätigungen für den Einfluss der Lithiumtherapiedauer auf Kreatinin-Werte. [58, 75] Eine Zunahme von knapp 0.2 mg/dl in zehn Jahren – wie sie sich aus dem Regressionsmodell ergibt – ist vergleichbar mit dem in einer Meta-Analyse berichteten Anstieg um 0.08 mg/dl über eine mittlere Beobachtungsdauer von fünf Jahren. [61]
6.3.3.3 Response und Funktionsniveau unter prophylaktischer Therapie

6.3.3.3.1 Alda Scale

Die Aufteilung von Patienten in Lithium-Responder und Lithium–Non-Responder spiegelte sich in der bimodalen Verteilung der Alda-Scale-Werte für Lithium, mit einem Gipfel bei drei und einem weiteren bei acht bis neun Punkten.

In der Literatur werden im Vergleich zur vorliegenden Arbeit niedrigere Alda-Scale-Ergebnisse und ein geringerer Anteil von Patienten mit guter Response berichtet. [31, 87] Zur Response unter anderer phasenprophylaktischer Medikation als Lithium finden sich keine vergleichbaren Daten, da die Alda-Scale als Messinstrument nur für eine phasenprophylaktische Therapie mit Lithium validiert ist.

6.3.3.3.2 Functioning Assessment Short Test

Einschränkend ist zu berücksichtigen, dass ein besonders niedriges Funktionsniveau bei manchen Patienten auch der Grund dafür sein könnte, dass eine Entscheidung gegen eine Phasenprophylaxe mit Lithium getroffen wurde. Eine geringe therapeutische Breite und die Gefahr der Lithium-Intoxikation bei mangelhafter Adhärenz stellen gewisse Anforderungen an Patienten, die möglicherweise bei sehr starken Einschränkungen im Funktionsniveau nicht erfüllt
sind. Gegen diese Annahme spricht allerdings, dass bei keinem der Patienten mit früherer Lithiumtherapie solche Gründe zum Absetzen geführt hatte und der FAST in dieser Gruppe dennoch signifikant höher war als unter Patienten mit aktueller Lithiumtherapie.

Eine Komedikation moduliert die Werte im FAST, erklärte aber nicht das bessere Funktionsniveau unter Lithiumtherapie. Patienten, die zusätzlich zur Lithiumtherapie eine systematische Komedikation mit Antidepressiva, Antikonvulsiva oder Neuroleptika erhielten, zeigten ein vergleichbares Funktionsniveau wie Patienten unter Monotherapie mit Carbamazepin, Lamotrigin oder Valproat. Das schlechteste Funktionsniveau zeigten Patienten unter einer Kombinationstherapie ohne Lithium.

Insgesamt sprechen die Ergebnisse für einen deutlichen positiven Einfluss einer Lithiumtherapie auf das psychosoziale Funktionsniveau. Ein Hinweis darauf, dass dieser Effekt über die phasenprophylaktische Wirkung von Lithium hinausgeht, findet sich in der Literatur. [108] In dieser Arbeit ließ sich dies allerdings nicht differenzieren.

6.3.4 Therapie-Response und GFR

Die Hypothese, dass besonders Patienten mit unzureichender Lithium-Response Einschränkungen der glomerulären Funktion zeigen, musste verworfen werden. Es zeigte sich keine Korrelation zwischen den Alda-Gesamtscores als Maß für die Lithium-Response und der eGFR. Es ergaben sich somit keine Hinweise darauf, dass ein möglicher negativer Einfluss der Bipolaren Störung selbst auf die Nierenfunktion besonders bei Patienten mit fehlendem Ansprechen auftritt oder durch ein gutes Ansprechen auf Lithium abgemildert werden könnte.

6.3.5 Explorative Datenanalyse

Lithium-Patienten mit einer eGFR < 60 ml/min zeigten im Vergleich zu Lithium-Patienten mit erhaltener Nierenfunktion eine erhöhte somatische Komorbidität. Arterielle Hypertonie und Gefäßerkranckungen führten zu einem höheren Risikofaktor-Score. Die Frage nach der Kausalität zwischen arterieller Hypertonie und eingeschränkter Nierenfunktion ist, wie bereits diskutiert, ohne Informationen zum zeitlichen Auftreten schwer zu beantworten. Gleiches gilt für einen Hyperparathyreoidismus, der primär als Nebenwirkung der Lithiumtherapie auftreten kann, aber ebenfalls sekundär Folge einer chronischen Niereninsuffizienz sein kann. Da nur ein Fall mit erhöhtem Calcium einherging, ließ das häufigere Auftreten eines erhöhten Parathormons unter

Die höhere Anzahl dokumentierter Serum-Lithium-Spiegel > 1.0 mmol/l unter Patienten mit chronischer Niereninsuffizienz ließ sich durch die längere Therapiedauer erklären: Pro Jahr der Lithiumtherapie war die Anzahl nicht unterschiedlich.

Für einen Zusammenhang zwischen der Höhe des Serum-Lithium-Spiegels und der Entwicklung einer chronischen Niereninsuffizienz lieferte die vorliegende Arbeit keine Hinweise, entsprechend den Ergebnissen anderer Arbeiten [58, 71] und im Widerspruch zu den 2015 veröffentlichten Ergebnissen einer großen Register-Studie. [70]

6.4 Limitationen

Die diskutierten Ergebnisse unterliegen einer Reihe von Limitationen, die sich zum Teil aus dem Studiendesign ergeben, teils mit den gewählten Messmethoden zusammenhängen.

methodische Schwierigkeiten, da nicht klar war, ob diese eher als Ursache oder eher als Folge einer chronischen Niereninsuffizienz zu deuten waren.

Es ist denkbar, dass die Entwicklung einer chronischen oder terminalen Niereninsuffizienz zu einer Behandlung in anderen Zentren oder zum Tod einzelner Patienten geführt haben könnte. Da keine prospektive Erhebung durchgeführt wurde, waren Rückschlüsse auf solche Fälle aber nicht möglich.

Bei der relativ geringen Größe der Stichprobe erreichten Unterschiede teilweise kein Signifikanzniveau, obwohl davon auszugehen war, dass es sich um tatsächliche Unterschiede handelte. Diesem Problem könnte mit einer größeren Stichprobe begegnet werden. Eine größere Stichprobe hätte es auch ermöglicht, bekannte Risikofaktoren für die Entwicklung einer chronischen Niereninsuffizienz einzeln und nicht als Gesamtscore in den Analysen zu berücksichtigen.

Zur Bestimmung der glomerulären Filtrationsrate sind genauere Verfahren bekannt als die Kreatinin-basierte Bestimmung mithilfe der CKD-EPI-Formel. Sowohl die Berücksichtigung weiterer Biomarker (insbesondere Cystatin C) als auch Clearance-Verfahren mit exogenen Markern erlauben eine exaktere Messung, [90] konnten jedoch aufgrund des größeren finanziellen und organisatorischen Aufwands nicht realisiert werden.

Andere Arbeiten zur Fragestellung der Nierenfunktion unter Langzeit-Lithiumtherapie unterliegen ähnlichen Limitationen. [57-59, 62, 65, 70, 75, 76, 83] Die vergleichsweise

6.5 Schlussfolgerung/ Ausblick

Insgesamt zeigten Patienten mit aktueller oder früherer Lithiumtherapie im Vergleich mit der altersentsprechenden Gruppe Bipolarer Patienten ohne Lithiumtherapie signifikante Einschränkungen der Nierenfunktion. In der Ausprägung waren die Einschränkungen meist moderat. In den ersten zehn Jahren der Lithiumtherapie blieb die glomeruläre Nierenfunktion weitestgehend erhalten; Einschränkungen traten größtenteils nach einer Therapiedauer über Jahrzehnte auf, was einen weiteren Hinweis auf die Bedeutung der Therapiedauer darstellt. Nach einer Lithiumtherapiedauer von über 20 Jahren war eine leicht bis moderat verminderte GFR allerdings die Regel und nicht die Ausnahme.

Unter Berücksichtigung der Diagnosekriterien aktueller klinischer Leitlinien und unter Anwendung der inzwischen gut etablierten CKD-EPI-Formel zur Berechnung der eGFR ist die Prävalenz einer Lithium-induzierten chronischen Niereninsuffizienz möglicherweise geringer als in der Literatur bislang angenommen. Da die Angaben dazu sehr stark divergieren, sind weitere Arbeiten notwendig, die sich der Frage der Häufigkeit einer chronischen Niereninsuffizienz
unter Lithiumtherapie widmen. Eine Lithium-induzierte terminale Niereninsuffizienz gilt als ungewöhnlich, auch nach einer Therapiedauer von mehreren Jahrzehnten. [67] In der vorliegenden Arbeit fand sich kein Fall von terminaler Niereninsuffizienz.

Unter Berücksichtigung der verfügbaren Literatur zu Lithium versuchte ein Simulationsmodell, den Nutzen im Bezug auf den Krankheitsverlauf und die Risiken im Bezug auf die Nierenfunktion gegeneinander abzuwägen – mit dem Ergebnis, dass ein Fortführen der Lithiumtherapie in den meisten Fällen zu empfehlen ist, selbst wenn bereits eine chronische Niereninsuffizienz vorliegt. [101]

Im Einzelfall sollte eine Entscheidung über ein Fortführen einer Lithiumtherapie trotz relevanten Einschränkungen der Nierenfunktion gemeinsam zwischen Patient_in, Psychiater_in und Internist_in getroffen werden. Die Entscheidung sollte nie ohne Berücksichtigung der Lithium-Response erfolgen. Die Alda-Scale kann hierbei als gut erprobtes Mittel dienen, um das
Ansprechen auf Lithium zu beurteilen. Auch das psychosoziale Funktionsniveau, das unter der Lithiumtherapie erreicht wurde, sollte bei dieser Entscheidung berücksichtigt werden.
7 Literaturverzeichnis

13. DGB e.V. und DGPPN e.V. S-3-Leitlinie zur Diagnostik und Therapie Bipolarer Störungen. Langversion 1.0. 2012.

8 Eidesstattliche Versicherung

Alle Stellen, die wörtlich oder dem Sinne nach auf Publikationen oder Vorträgen anderer Autoren beruhen, sind als solche in korrekter Zitierung (siehe „Uniform Requirements for Manuscripts (URM)“ des ICMJE -www.icmje.org) kenntlich gemacht. Die Abschnitte zu Methodik (insbesondere praktische Arbeiten, Laborbestimmungen, statistische Aufarbeitung) und Resultaten (insbesondere Abbildungen, Graphiken und Tabellen) entsprechen den URM (s.o) und werden von mir verantwortet.

Meine Anteile an etwaigen Publikationen zu dieser Dissertation entsprechen denen, die in der untenstehenden gemeinsamen Erklärung mit dem/der Betreuer/in, angegeben sind. Sämtliche Publikationen, die aus dieser Dissertation hervorgegangen sind und bei denen ich Autor bin, entsprechen den URM (s.o) und werden von mir verantwortet.

Die Bedeutung dieser eidesstattlichen Versicherung und die strafrechtlichen Folgen einer unwahren eidesstattlichen Versicherung (§156,161 des Strafgesetzbuches) sind mir bekannt und bewusst."

Datum 28.09.2016 Unterschrift

Anteilserklärung an etwaigen erfolgten Publikationen

Bislang sind zur vorgelegten Monografie keine Publikationen erfolgt.
9 Lebenslauf

Mein Lebenslauf wird aus datenschutzrechtlichen Gründen in der elektronischen Version meiner Arbeit nicht veröffentlicht.
10 Publikationsliste

Bislang sind keine Publikationen erfolgt.
11 Danksagung

Herrn PD Dr. Mazda Adli danke ich für die Überlassung des Promotionsthemas und die Gelegenheit, unter seiner Leitung zu forschen.

Mein großer Dank gilt Thomas Stamm für die engmaschige und zuverlässige Betreuung von den ersten Überlegungen zu dieser Arbeit bis zum Abschluss; für einen intensiven Einblick in die Welt der Bipolaren Störung; für das immer gute Arbeitsklima; und für die Anrede mit „Herr Dr. Saiger“, lange bevor dies den Tatsachen entsprach.

Herrn Prof. Dr. Bruno Müller-Oerlinghausen danke ich sehr herzlich für die professionelle Begleitung durch den gesamten Arbeitsprozess, für wertvolle Kontakte, für die Präsentation erster Ergebnisse in der IGSLI-Arbeitsgruppe und für den historischen und inhaltlichen Weitblick.

Herrn Dr. Michael Zieschang danke ich für seine nephrologische Kompetenz, auf die ich immer unangebeten zurückgreifen durfte.

Ich möchte dem Team der Psychiatrischen Institutsambulanz Mitte für die Unterstützung beim Aktensuchen und –sichten, beim Kopieren, beim Blutentnehmen ganz herzlich danken. Ohne diese tägliche Präsenz wäre die Arbeit schleppender und freudloser gewesen.

Ein großes Dankeschön gilt der AG Bipolar: Den Psycholog_innen und Mitdoktorand_innen, die mich bei inhaltlichen, methodischen und statistischen Fragen beraten haben, die mich bei der Datenerhebung unterstützt haben, die Korrektur gelesen, den Süßigkeitenschrank aufgefüllt und Sommerfeste gefeiert haben.

Ich danke von Herzen meinen Eltern, die mich während der gesamten Zeit der Promotion und auch sonst immer vorbehaltlos unterstützt haben.