## Anhang

Tab. A1: Bei der Bestrahlung der Apatit-Proben in drei verschiedenen Reaktoren bestanden unterschiedliche Gradienten im Neutronenfluss parallel zu den Bestrahlungsbehältern, in denen die Apatit-Präparate übereinander gestapelt waren. Der Gradient wurde aus den induzierten Spaltspurdichten in den Glimmerdetektoren ermittelt, die den CN5-Dosimetergläsern auflagen. Zwei Dosimetergläser befanden sich am oberen und unteren Ende des Probenstapels und ein drittes gegebenenfalls in der Mitte.

| Nr. des Bestrah- | Reaktor       | Anzahl der    | Anzahl der   | Gradient der    | Gradient pro Probe |
|------------------|---------------|---------------|--------------|-----------------|--------------------|
| lungsbehälters   |               | Apatit-Proben | Dosimeter-   | Neutronen-Dosis | (%)                |
|                  |               |               | Gläser (CN5) | (%)             |                    |
| UP 06            | Riso          | 31            | 2            | 5.6             | 0.18               |
| UP 07            | Riso          | 31            | 2            | 1.5             | 0.05               |
| UP 09            | Lucas Heights | 24            | 3            | 17.1            | 0.71               |
| UP 11            | Oregon        | 22            | 3            | 15.1            | 0.69               |
| UP 20            | Oregon        | 12            | 2            | 11.8            | 0.98               |
| UP 23            | Oregon        | 15            | 2            | 12.4            | 0.83               |
| UP 24            | Oregon        | 15            | 2            | 10.0            | 0.67               |
| UP 28            | Oregon        | 21            | 2            | 13.8            | 0.66               |
| UP 29            | Oregon        | 15            | 2            | 6.0             | 0.40               |
| UP 30            | Oregon        | 21            | 2            | 3.1             | 0.15               |
| GFZ1A            | Oregon        | 16            | 2            | 6.4             | 0.40               |

Tab. A2: Apatit-Spaltspurproben aus dem Profil bei 21°S, sowie zwei Profilen in Zentral- und Nordboliven (17.5°S und 15.5°S), die präpariert und bestrahlt wurden, aber aus Zeitgründen im Rahmen dieser Arbeit nicht mehr datiert wurden. Die Rechts- und Hochwerte entsprechen der UTM Zone 19 (zur Lage der Proben siehe Abb. A1).

| Proben-Nr  | Lokalitätsbezeichnung             | Rechtswert      | Hochwert     | Höhe   | Bestrahlung | datierbar |
|------------|-----------------------------------|-----------------|--------------|--------|-------------|-----------|
| 1100011111 | g                                 |                 | 110011110110 | (m NN) | Nr.         |           |
|            |                                   | Profil bei 21°S |              |        |             |           |
| RG07       | W Rio Grande                      | 667 522         | 7698 826     | 3740   | LIP28       | ia        |
| AP86       | Süd-Linez                         | 668 970         | 7616 113     | 4000   | UP11        | ja        |
| SC08       | N San Cristobal San Vicente-Basis | 684 374         | 7676.054     | 3830   | UP28        | ja        |
| VV11       | Vila Vila                         | 695 682         | 7664 542     | 3805   | UP28        | ja        |
| CR06       | Corregidores                      | 701 964         | 7700 198     | 3790   | UP28        | ia        |
| AC45       | Aguas Castillas                   | 769 984         | 7670 205     | 4070   | UP24        | j<br>ia   |
| AC44       | Aguas Castillas                   | 771 338         | 7670 813     | 4043   | UP30        | j<br>ia   |
| AC43       | Aguas Castillas                   | 771 487         | 7671 123     | 4050   | UP24        | j<br>ia   |
| AC42       | Aguas Castillas                   | 771 673         | 7671 241     | 4050   | UP30        | j<br>ia   |
| AC46       | Aguas Castillas                   | 772 466         | 7671 450     | 4051   | UP24        | j.<br>ia  |
| EC02       | N Atocha, Ordoviz                 | 784 026         | 7686 639     | 3820   | UP28        | ia        |
| EC72       | San Vicente Überschiebung         | 790 291         | 7632 969     | 4023   | UP09        | ia        |
| EC07       | Atocha-Tupiza                     | 814 995         | 7659 954     | 4080   | UP28        | ia        |
| TU37       | W Tupiza                          | 837 500         | 7627 383     | 3158   | UP29        | ia        |
| TU40       | W Tupiza                          | 839 045         | 7626 081     | 3072   | UP30        | ja        |
| EC74       | Tupiza Störung                    | 840 001         | 7640 866     | 3740   | UP09        | nein (1)  |
| EC76       | Tupiza Störung                    | 844 766         | 7640 673     | 3705   | UP23        | nein (1)  |
| EC75       | Tupiza-Synklinale, Kreide         | 847 639         | 7640 939     | 3540   | UP09        | ia        |
| EC44       | Cotagaita, (?)Jura/Kreide         | 850 555         | 7702 084     | 3150   | UP23        | ja        |
| MO36       | E Mochará                         | 863 224         | 7635 157     | 3800   | UP29        | ia        |
| EC79       | Camargo Störung                   | 880 403         | 7629 628     | 3570   | UP09        | ja        |
| EC40       | Cotagaita                         | 885 158         | 7701 801     | 2400   | UP23        | nein (3)  |
| EC38       | Cotagaita, (?)Kreide/Paläogen     | 886 631         | 7701 895     | 2400   | UP28        | ja        |
| YU17       | Yunchará                          | 895 681         | 7582 119     | 4053   | UP28        | ja        |
| YU18       | Yunchará                          | 897 573         | 7567 629     | 3490   | UP28        | ja        |
| EC34       | Westflanke Sama-Antiklinorium     | 907 080         | 7631 736     | 3140   | UP28        | ja        |
| EC31       | Ostflanke Sama-Antiklinorium      | 921 449         | 7619 658     | 3600   | UP28        | ja        |
| EC28       | Ostflanke Sama-Antiklinorium      | 928 587         | 7621 731     | 3275   | UP09        | nein (2)  |
| SE34       | Interandin, Sellas                | 949 989         | 7629 018     | 2180   | UP29        | ja        |
| JU22       | Interandin, Junacas               | 962 122         | 7613 927     | 2196   | UP29        | ja        |
| CA23       | Interandin, W Canaletas           | 981 460         | 7620 721     | 2280   | UP29        | ja        |
| CA24       | Interandin, W Canaletas           | 982 112         | 7621 072     | 2230   | UP29        | ja        |
| NA33       | Interandin, Narvaez               | 989 788         | 7623 073     | 1780   | UP29        | ja        |
| EC18       | Interandin, Überschiebung N°3     | 993 228         | 7622 019     | 1603   | UP23        | nein (2)  |
| EC17       | Interandin, Überschiebung N°2     | 994 865         | 7619 072     | 1893   | UP23        | nein (2)  |
| EC16       | Interandin, (?)Jura/Kreide        | 998 386         | 7616 100     | 1355   | UP28        | ja        |
| SS32       | Interandin, W San Simon           | 1004 194        | 7618 548     | 1398   | UP29        | ja        |
| SS31       | Interandin, W San Simon           | 1005 038        | 7619 280     | 1268   | UP29        | ja        |
| MA27       | Subandin, Serrania Madayuti       | 1037 942        | 7623 909     | 1000   | UP29        | ja        |
| AN28       | Subandin, Serrania Antonio        | 1049 097        | 7617 307     | 1150   | UP29        | ja        |

Fortsetzung auf der nächsten Seite

| Tab. A2 | (fortgesetzt) |
|---------|---------------|
|---------|---------------|

| Proben-Nr. | Lokalitätsbezeichnung                | Rechtswert    | Hochwert | Höhe     | Bestrahlung | datierbar |
|------------|--------------------------------------|---------------|----------|----------|-------------|-----------|
|            |                                      |               |          | (m NN)   | Nr.         |           |
|            | Profi                                | il bei 17.5°S |          |          |             |           |
| CB49       | Tertiär-Mulde E Confital             | 759 177       | 8039 473 | 3930     | UP30        | ja        |
| OR47       | N Oruro, Soracachi                   | 707 195       | 8040 739 | 3770     | UP30        | ja        |
| EC52       | Cochabamba                           | 763 999       | 8042 715 | 4080     | UP11        | ja        |
| EC59       | Cochabamba                           | 783 778       | 8066 073 | 2475     | UP11        | ja        |
| EC54       | Tunari-Profil                        | 832 473       | 8086 557 | 3400     | UP11        | ja        |
| TU50       | Tunari-Profil                        | 835 105       | 8096 560 | 2305     | UP30        | ja        |
| TU54       | Tunari-Profil                        | 842 108       | 8098 460 | 1820     | UP30        | ja        |
| HU55       | W Patacamaya                         | 600 221       | 8099 249 | 4050     | UP30        | ja        |
| TU52       | Tunari-Profil, Rio Avispos           | 869 877       | 8115 264 | 515      | UP24        | ja        |
| EC56       | Tunari-Profil                        | 866 306       | 8115 797 | 575      | UP11        | ja        |
| EC57       | Tunari-Profil                        | 858 297       | 8116 945 | 518      | UP11        | ja        |
| EC61       | Inquisivi, Silur                     | 687 900       | 8121 200 | 3200     | UP11        | ja        |
| EC62       | Quimsa Cruz-Pluton, Perm/(?)Oligozän | 678 864       | 8125 744 | 4800     | UP11        | ja        |
|            | Profi                                | il bei 15.5°S |          |          |             |           |
| CV59       | Caranavi-Profil                      | 661 418       | 8256 171 | 880      | UP30        | ja        |
| CV66       | Caranavi-Profil                      | 662 482       | 8266 991 | 1600     | UP30        | ja        |
| CV61       | Caranavi-Profil                      | 665 450       | 8268 032 | 1340     | UP30        | ja        |
| LQ62       | Lliquimuni-Antiklinale               | 686 973       | 8283 112 | ca. 800  | UP30        | ja        |
| PE63       | Pelado-Antiklinale                   | 698 153       | 8292 491 | ca. 1200 | UP24        | nein (2)  |
| QB64       | Quiquibey-Antiklinale                | 705 465       | 8302 209 | 730      | UP24        | ja        |

(1) Apatite mit zu geringem Urangehalt

(2) zu wenig Apatit

(3) Apatite von sehr schlechter Qualität



Abb. A1: Lage der bestrahlten Apatit-Spaltspurproben, die im Rahmen dieser Arbeit nicht mehr datiert werden konnten. Die Nummern entsprechen den Proben der Tab. A2.



Abb. A2: Radial-Diagramm (Galbraith, 1990) zur Darstellung von Einzelkornaltern. Die Einheit der y-Achse ist die normierte Standardabweichung ( $\sigma$ ), wodurch 2 $\sigma$ -Fehlerbalken für alle Einzelkornalter gleich lang sind. Die x-Achse ist nach der Genauigkeit skaliert, d.h. je kleiner der Fehler eines Einzelkornalters ist, umso weiter rechts liegt es. An der radialen Achse wird das Alter abgelesen, indem der Datenpunkt eines Einzelkornalters mit einer Gerade durch den Nullpunkt der y-Achse auf die radiale Altersachse projiziert wird. Eine Population von Einzelkornaltern passiert den Chi-Quadrat-Test ( $\chi^2$ ), d.h. sie repräsentiert mit einer Wahrscheinlichkeit von 95% die Stichprobe einer normalverteilten Gesamtpopulation, wenn alle Datenpunkte von einem ± 2 $\sigma$ -breiten Streifen umfasst werden können.

Tab. A3: Wärmeleitfähigkeitsbestimmungen an Bohrungen im Altiplano und in der Ostkordillere Boliviens nach Henry and Pollack (1988). Da in Henry and Pollack (1988) keine Angaben über die erbohrten Gesteine enthalten sind, wurden die Formationen und Lithologien nach den geologischen Karten des *SERGEOMIN* (1: 250 000) ermittelt (S-AP, Z-AP, N-AP: südlicher, zentraler und nördlicher Altiplano, EC: Ostkordillere).

| Nr. | Bohrung          | Lage | Formationen                                 | Lithologie                                       | Tiefe (m) | Leitfähigkeit <sup>(1)</sup> |
|-----|------------------|------|---------------------------------------------|--------------------------------------------------|-----------|------------------------------|
|     |                  |      |                                             |                                                  |           | [W/(mK)]                     |
| 25  | Kolpani          | S-AP | Quartär - Obermiozän<br>(Fm. San Vicente)   | Lockersedimente                                  | 150       | 1.8                          |
| 21  | Agua<br>Castilla | S-AP | Obermiozän<br>(Fm. San Vicente)             | Lockersedimente                                  | 110       | 2.0                          |
| G   | Corocoro         | N-AP | Eozän-Oligozän<br>(Fm. Potoco)              | Silt- und Sandsteine, Kong-<br>lomerate          | 485       | 3.2                          |
| Н   | Chacarilla       | N-AP | Miozän (Äquivalente zur<br>Fm. San Vicente) | Konglomerate, Sand- und<br>Siltsteine, Vulkanite | 150       | 2.7                          |
| 20  | Nasama           | Z-AP | ?Oberkreide                                 | ?                                                | 70        | 2.3                          |
| 22  | Chorolque        | EC   | Miozän                                      | (Sub-)vulkanite                                  | 760       | 4.9                          |
| 23  | Tatasi           | EC   | Miozän                                      | (Sub-)vulkanite                                  | 350       | 2.7                          |
| Ι   | Santa Fe         | EC   | Miozän                                      | Pyroklastika, Laven                              | 213       | 3.4                          |
| 16  | Colquiri         | EC   | Devon                                       | Sandsteine, Silt- und Ton-<br>steine             | 320       | 4.2                          |
| 14  | Matilde          | EC   | Devon                                       | Sandsteine, Silt- und Ton-<br>steine             | 130       | 3.6                          |
| 15  | Cuatro<br>Amigos | EC   | Devon                                       | Sandsteine, Silt- und Ton-<br>steine             | 230       | 3.3                          |
| 17  | Huanuni          | EC   | Silur<br>(Fm. Unica/Catavi)                 | Tonsteine, Silt- und Sand-<br>steine             | 900       | 8.3                          |
| 18  | Bolivar          | EC   | Silur<br>(Fm. Unica/Catavi)                 | Tonsteine, Silt- und Sand-<br>steine             | 400       | 4.9                          |
| 19  | Catavi           | EC   | Silur<br>(Fm. Unica/Catavi)                 | Tonsteine, Silt- und Sand-<br>steine             | 640       | 4.4                          |
| 24  | Chilcobija       | EC   | Ordoviz<br>(Fm. Taipal)                     | Silt- und Feinsandsteine                         | 75        | 3.5 <sup>(2)</sup>           |
| F   | Chojilla         | EC   | Ordoviz                                     | Sandsteine, Silt- und Ton-<br>steine, Quarzite   | 600       | 3.5                          |

<sup>(1)</sup> Die mittlere Wärmeleitfähigkeit wurde an wassergesättigten Gesteinsscheiben im *divided bar*-Verfahren bestimmt und über die Tiefe der Bohrung gemittelt.

<sup>(2)</sup> An Oberflächenproben nahe der Bohrung bestimmt.

Tab. A4: Längen-Korrektur für die scheinbaren Spaltspuralter aller Proben mit mittlerer Spaltspurlänge (MSL) >11  $\mu$ m (Anzahl der Messungen in Klammern). D<sub>par</sub>-Werte sind als Proben-Mittelwerte angegeben. L<sub>om</sub> (induziert) ist die initiale (originale) mittlere Länge von induzierten Spaltspuren nach Daten von Carlson et al. (1999), die linear mit D<sub>par</sub> korreliert ist (L<sub>om</sub> (induziert) = 0.2830\*D<sub>par</sub> + 15.63  $\mu$ m). L<sub>om</sub> (spontan) korrigiert die L<sub>om</sub> (induziert) um die Längenreduktion von Altersstandards, hier um den Faktor 0.893 nach Ketcham et al. (2000).

| Probe | scheinbares | D <sub>par</sub> | MSL                    | mittlere initiale Spaltspurlänge |                           | Längen-                                               | korrigiertes |
|-------|-------------|------------------|------------------------|----------------------------------|---------------------------|-------------------------------------------------------|--------------|
| Nr.   | Alter (Ma)  | (µm)             | (µm)                   | (µm)                             |                           | reduktion                                             | Alter (Ma)   |
|       |             |                  | L <sub>m</sub> (Probe) | L <sub>om</sub> (induziert)      | L <sub>om</sub> (spontan) | L <sub>m</sub> (Probe) / L <sub>om</sub><br>(spontan) |              |
| ED19  | 27.6        | 1.99             | 13.82 (75)             | 16.19                            | 14.46                     | 0.96                                                  | 28.9         |
| AP85  | 21.1        | 2.24             | 12.77 (93)             | 16.26                            | 14.52                     | 0.88                                                  | 24.0         |
| CR05  | 31.4        | 2.12             | 13.54 (90)             | 16.23                            | 14.49                     | 0.93                                                  | 33.6         |
| AP84  | 33.8        | 2.40             | 12.58 (84)             | 16.31                            | 14.56                     | 0.86                                                  | 39.1         |
| ED24  | 32.7        | 1.83             | 13.06 (10)             | 16.15                            | 14.42                     | 0.91                                                  | 36.1         |
| AP87  | 30.1        | 2.20             | 14.10 (66)             | 16.25                            | 14.51                     | 0.97                                                  | 31.0         |
| EC64  | 27.7        | 1.54             | 11.79 (4)              | 16.07                            | 14.35                     | 0.82                                                  | 33.7         |
| EC06  | 24.3        | 1.48             | 14.50 (2)              | 16.05                            | 14.33                     | 1.01                                                  | 24.0         |
| EC08  | 25.8        | 2.08             | 12.35 (45)             | 16.22                            | 14.48                     | 0.85                                                  | 30.3         |
| EC09  | 21.5        | 1.81             | 12.63 (10)             | 16.14                            | 14.42                     | 0.88                                                  | 24.5         |
| TU38  | 31.5        | 1.87             | 12.00 (54)             | 16.16                            | 14.43                     | 0.83                                                  | 37.9         |
| EC78  | 36.7        | 1.56             | 12.45 (84)             | 16.07                            | 14.35                     | 0.87                                                  | 42.3         |
| EC83  | 20.1        | 1.71             | 13.89 (6)              | 16.11                            | 14.39                     | 0.97                                                  | 20.8         |
| EC35  | 22.4        | 2.16             | 12.47 (67)             | 16.24                            | 14.50                     | 0.86                                                  | 26.1         |
| EC80  | 28.2        | 1.80             | 12.27 (25)             | 16.14                            | 14.41                     | 0.85                                                  | 33.1         |
| EC82  | 29.3        | 1.63             | 13.28 (3)              | 16.09                            | 14.37                     | 0.92                                                  | 31.7         |
| EC81  | 24.5        | 1.70             | 12.97 (101)            | 16.11                            | 14.39                     | 0.90                                                  | 27.2         |
| EC30  | 23.8        | 1.61             | 12.98 (38)             | 16.09                            | 14.36                     | 0.90                                                  | 26.3         |
| EC29  | 23.9        | 1.72             | 13.72 (100)            | 16.12                            | 14.39                     | 0.95                                                  | 25.1         |
| SA19  | 26.1        | 1.78             | 14.15 (5)              | 16.13                            | 14.41                     | 0.98                                                  | 26.6         |
| SA20  | 28.8        | 1.72             | 12.87 (84)             | 16.12                            | 14.39                     | 0.89                                                  | 32.2         |
| SA21  | 29.3        | 2.11             | 12.91 (64)             | 16.23                            | 14.49                     | 0.89                                                  | 32.9         |
| EC23  | 16.4        | 2.06             | 14.04 (60)             | 16.21                            | 14.48                     | 0.97                                                  | 16.9         |
| EC19  | 9.2         | 1.81             | 13.15 (7)              | 16.14                            | 14.42                     | 0.91                                                  | 10.1         |



Probennummer sind der mittlere  $D_{par}$ -Wert ( $\pm 1\sigma$ ) für die Summe der Einzelkornalters- und Längenmessungen der Probe (N) und die Wahrscheinlichkeit des chi-Quadrat-Tests Abb. A3:  $D_{au}$ -Werte und Radial-Diagramme der multikompositionellen Proben, deren Einzelkornalter den chi-Quadrat-Test nicht passieren ( $P(\chi^2) < 5\%$ ). Unter der angegeben. Das obere Diagramm zeigt die D<sub>par</sub>-Werte der Einzelkornalter und das mittlere Diagramm die D<sub>par</sub>-Werte der gemessenen Spaltspurlängen. Im unteren Diagramm sind die Einzelkornalter im Radial-Diagramm dargestellt (Erläuterungen siehe Abb. A2). Der Zentralwert, d.h. der Alterswert der radialen Achse, der auf der Horizontalen durch den Nullpunkt der y-Achse liegt, entspricht dem arithmetischen Mittelwert der Einzelkornalter und ist im Diagramm oben links angegeben.









Tab. A5: Sedimentations- und Erosionsbudget für das Tertiär, berechnet als Querschnittsfläche aus bilanzierten Profilen bei 21°S vom zentralen Altiplano bis zur Ostgrenze der Tertiär-Vorkommen im Chaco. Die Zahlen in Klammern geben die Quellen an: 1: Elger (2003), 2: Kley et al. (1997), 3: Müller et al. (2002), 4: Kley (1996), 5: Dunn et al. (1995), 6: Coudert et al. (1995), 7: Schätzung durch ungefähre Lage des forebulge nach Horton and DeCelles (1997).

| Profilabschnitt:                                                                                            | erodiert (l | km <sup>2</sup> ) | sedimentiert (km <sup>2</sup> ) |             |  |
|-------------------------------------------------------------------------------------------------------------|-------------|-------------------|---------------------------------|-------------|--|
|                                                                                                             | min         | max               | min                             | max         |  |
| <u>Altiplano:</u>                                                                                           |             |                   |                                 |             |  |
| Santa Ines-Antiklinale bis San Vicente-<br>Überschiebung:                                                   | 4           |                   | 493 (1)                         |             |  |
| Ostkordillere:                                                                                              |             |                   |                                 |             |  |
| Westen (San Vicente-Überschiebung bis<br>Tupiza-Überschiebung):<br>Zentrum (Tupiza-Überschiebung bis Challa | 143 (2)     | 273 (3)           | 15 (2)                          |             |  |
| Mayu-Überschiebung):                                                                                        | ? (*) (2)   | - (3)             | 10 (2)                          |             |  |
| Osten (Challa Mayu-Überschiebung bis<br>Ostgrenze der Camargo-Synklinale):                                  | 28 (2)      | 171 (3)           | 8 (2)                           |             |  |
| Interandin:                                                                                                 |             |                   |                                 |             |  |
| Ostgrenze der Camargo-Synklinale bis San<br>Simon-Überschiebung:                                            | 354         |                   | 0 (4)                           |             |  |
| Subandin:                                                                                                   |             |                   |                                 |             |  |
| San Simon-Überschiebung bis Aguarague-<br>Antiklinale:                                                      | 168         |                   | 80 (5)                          |             |  |
| Aguarague-Antiklinale bis Mandeyapecua-<br>Überschiebung:                                                   | 8           |                   | 133 (5)                         |             |  |
| Chaco:                                                                                                      |             |                   |                                 |             |  |
| Mandeyapecua-Überschiebung bis Tertiär-<br>Ostgrenze:                                                       | 0           |                   | 167 (6)                         | 181-223 (7) |  |
| Summe <sup>.</sup>                                                                                          | 7           | 05 - 978          | 107 (0)                         | 906 - 962   |  |
| <u>~ ~ ~ ~ ~</u> .                                                                                          | ,           |                   |                                 |             |  |

(\*) Aufgrund der komplexen Strukturen in der zentralen Ostkordillere sind die Störungsversätze und die erodierte Fläche dort nicht bestimmt.