CONTENTS

INDEX OF ABBREVIATIONS	V
ZUSAMMENFASSUNG	1
ABSTRACT	3
§1 INTRODUCTION	5
1.1 Research background	5
1.2 ERRs encoding gene	6
1.2.1 The chromosomal position of ERRs encoding gene	6
1.2.2 Structure of ERRs encoding gene	8
1.3 Expression pattern of ERRs	10
1.4 Function of ERRs and intracellular interaction with ERs	10
1.5 ERRs in the estrogen related carcinomas	14
1.6 Research objectives	15
1.7 The study significance of the expression of ERRs in ovarian cancer	15
§2 MATERIALS AND METHODS	17
2.1 Cell culture	17
2.1.1 Reagents for cell culture	17
2.1.2 Procedures	17
2.2 Study population	17
2.3 Plasmids and plasmid construction	19
2.3.1 Maps of plasmids	19
2.3.2 Plasmid construction	19
2.3.2.1 The reagents and kits for construction	19
2.3.2.2. Excision of the target gene fragment	19
2.3.2.3 Recovery of the target gene fragment	21
2.3.2.4 Recombinant of the target gene fragment and GFP vector	22
2.3.2.5 Construction of pD-GADPH plasmid	22
2.3.3 Plasmids Cloning	24
2.3.3.1 Kits	24
2.3.3.2 Procedures of transform	24
2.3.3.3 Cloning	25

2.4 Plasmids purification	26
2.4.1 Kits and equipment	26
2.4.2 Small scale plasmid purification	26
2.4.3 Large scale plasmid purification	27
2.4.4 Quantification of plasmid concentration	27
2.5 FuGENE 6 mediated transfection	28
2.5.1 Kits and equipment for the transfection	28
2.5.2 Preparation for the transfection	28
2.5.2.1 Preparation of cell culture	28
2.5.2.2 Preparation of DNA	28
2.5.2.3 Preparation of FuGENE 6 regent:DNA mixture	28
2.5.3 Transfection	29
2.5.3.1 Procedures	29
2.5.3.2 Note	30
2.6 RNA Reverse transcription	30
2.6.1 Kits and equipment for RNA reverse transcription	30
2.6.2 Extraction of total RNA	30
2.6.2.1 Before use	30
2.6.2.2 Extraction from cultured cells	31
2.6.2.3 Extraction from tissues	32
2.6.3 The first stand cDNA synthesis	32
2.7 LightCycler real-time quantitative PCR	33
2.7.1 Kits and equipment for LightCycler PCR	33
2.7.2 Brief theory of LightCycler PCR	33
2.7.3 Sequence and synthesis of special primers	34
2.7.4 Preparation of PCR	35
2.7.4.1 Dilution of primers	35
2.7.4.2 Concentration of MgCl	35
2.7.4.3 Negative Control	35
2.7.4.4 Serial dilution of standard control	35
2.7.4.5 Dilution of the sample	36
2.7.5 Setting of the experimental program	36
2.7.5.1 Program 1:Pre-incubation and denaturation of cDNA	37
2.7.5.2. Program 2: Amplification of the target sequence	37
2.7.5.3 Program 3:Melting curve analysis for product identification	38

2.7.5.4 Program 4:Cooling the rotor and thermal chamber	38
2.7.6 Procedures of quantitative PCR	38
2.8 Cofocal scan microscopy	39
2.9 Protein extraction and quantification assay	40
2.9.1 Kits and equipment for protein assay	40
2.9.2 Whole-cell protein extraction	40
2.9.3 Nuclear and cytoplasmic protein extraction	40
2.9.3.1 Reagents	40
2.9.3.2 Procedures	41
2.9.4 BSA protein quantification assay	42
2.9.4.1 Preparation of diluted BSA serial standard	42
2.9.4.2 Protein quantification assay	43
2.10 Western-Blot	43
2.10.1 Kits and antibodies	44
2.10.2 Preparation of the protein	44
2.10.3 Preparation the SDS-PAGE	44
2.10.4 Immunoblot	45
2.10.4.1 Electrophoresis	45
2.10.4.2 Immune hybridization	45
2.10.4.3 Transfer to the membrane	46
2.11 Immunocytochemistry and immunohistology	47
2.11.1 Reagents and antibodies	47
2.11.2 Immunocytochemistry	47
2.11.2.1 Working solution	47
2.11.2.2 Preparation of cell slides	48
2.11.3 Immunohistology	48
2.11 3.1 Preparation of paraffin-embedded tissue sections	48
2.11.3.2 Staining	48
2.12 Serum CA-125 assay	49
2.13 Statistics	49
§3 RESULTS	50
3.1 Identification of the recombined plasmids	50
3.2 Expression of exogenous ERRs fusion protein	53
3.2.1 Subcellular location of hERRα-GFP fusion protein	53

3.2.2 Expression of exogenous HA-tag-hERRy protein	54
3.2.2.1 Quantification of protein (BSA assay)	54
3.2.2.2 Western-Blot analysis of HA-tag-hERR $_{\gamma}$ protein	54
3.3 Expression of endogenous ERRs protein	56
3.3.1 Expression of the ERRs protein in the cultured ovarian cancer cells	57
3.3.2 Expression of the ERRs protein in the in vivo ovarian tissues	58
3.4 Quantitative analysis on ERRs mRNA levels	61
3.4.1 ERRs mRNA levels in ovarian cancer cell lines	62
3.4.2 ERRs mRNA levels in the ovarian cancer tissues	64
3.5 Different expression pattern of ERR α and ER α	65
3.6 CA-125 in patients with different ERRs expression	67
3.6.1 Definition of ERRs postitive-expression	67
3.6.2 Association between expression of ERRs and serum CA-125	67
3.7 Survival analysis of patients with different ERR expression	68
3.8 The association between expression of ERRs and clinical parameters	70
3.9 Summary of results	72
§4 DISCUSSION	74
4.1 Estrogen-ER signal pathway and ovarian cancer	75
4.1.1 ER α and ER β are high expression in ovarian cancer	75
4.1.2 The role of ER α and ER β in ovarian cancer	76
4.2 Expression of ERRs in ovarian cancers	77
4.2.1 Expression of exogenous ERRs in ovarian cancer cells	77
4.2.2 Expression of endogenous ERRs in ovarian cancer cells	78
4.3 The association between ERs and ERRs in ovarian cancer	79
4.4 The potential role of ERRs as ovarian cancer biomarkers	81
4.5 Are the ERRs new therapy targets in the hormone-related cancer?	82
§5 CONCLUSIONS	86
REFERENCES	87
ACKNOWLEDGEMENTS	94
	05
	95