
Chapter 3

Examples

3.1 Orlicz sequence spaces

As it has been shown in Section 1.4 the spaces lp (1 ≤ p <∞, p 6= 2)
and c0 have the Lyapunov property. The next class of Banach spaces
for which it is natural to consider this property is the class of Orlicz
sequence spaces. The introduction of Orlicz functions has been inspired
by the obvious role played by the functions tp in the definition of the
space lp. It is quite natural to try to replace tp by a more general
function M and then to consider the set of scalars {an}∞n=1 for which
the series

∑∞
n=1M (|an|) converges. W. Orlicz [27] has checked the

restrictions which have to be imposed on the function M in order to
make this set of sequences into a suitable Banach space. His study led
to the following definition.

Definition 3.1.1 An Orlicz function M is a continuous, nondecreas-
ing, and convex function defined for t ≥ 0, with M (0) = 0.

We shall consider vector - valued Orlicz sequence spaces. With any
Orlicz function M and sequence {Xn} of Banach spaces we associate
the space (X1 ⊕X2 ⊕ ...)M of all sequences x = (x1, x2, ...) , where xi ∈
Xi (i = 1, 2, ...) , such that

∞∑
n=1

M
(‖xn‖

ρ

)
< ∞ for some ρ > 0. The

space (X1 ⊕X2 ⊕ ...)M equipped with the norm

‖x‖ = inf

{
ρ > 0 :

∞∑
n=1

M

(‖xn‖
ρ

)
≤ 1

}

41
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is a Banach space. If Xn = R (n = 1, 2, ...)we get the Orlicz sequence
space lM .

We will show that all Orlicz sequence spaces containing no isomor-
phic copies of l2 have the Lyapunov property. For this aim we recall
some definitions and statements (that can be found in [24]) concerning
them.

Proposition 3.1.2 ([24], p. 139) Let M1 and M2 be Orlicz func-
tions. Then the following assertions are equivalent:

(i) lM1 = lM2, i.e. both spaces consist of the same sequences and the
identity mapping is an isomorphism between lM1and lM2.

(ii) M1 and M2 are equivalent at zero, i.e. there exist constants k >
0, K > 0, and t0 > 0 such that for all 0 < t < t0, we have
K−1M2(k

−1t) ≤M1 (t) ≤ KM2 (kt) .

Anyway, without loss of generality we may assume that M (1) = 1.
We shall be interested in Orlicz spaces not containing isomorphic

copies of l2 space because l2 is not a Lyapunov space.

Definition 3.1.3 An Orlicz function M is said to satisfy the ∆2-
condition at zero if M is nondegenerate and sup

0<t≤1

M(2t)
M(t)

<∞.

Proposition 3.1.4 ([24], p. 138) For an Orlicz function M the fol-
lowing conditions are equivalent:

(i) M satisfies the ∆2-condition at 0;

(ii) lM contains no subspace isomorphic to l∞.

In the sequel we suppose M to satisfy the ∆2-condition.

Remark 3.1.5 If M is an Orlicz function, x ∈ (X1 ⊕X2 ⊕ ...)M , and
ε > 0, then evidently by the definition of the norm ‖x‖ > ε if and only

if
∞∑

m=1
M
(‖xm‖

ε

)
> 1.
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Proposition 3.1.6 ([24], p. 143) The space lp or c0 if p = ∞ is
isomorphic to a subspace of an Orlicz sequence space lM if and only if
p ∈ [αM , βM ] , where

αM = sup

{
q : sup

0<λ, t≤1

M(λt)
M(λ)tq

<∞
}
,

βM = inf
{
p : inf

0<λ, t≤1

M(λt)
M(λ)tp

> 0
}

are the Boyd indices.

A detailed exposition of the basic properties of Orlicz sequence
spaces is given in [24]. Now we prove some lemmas. The following
lemma is a strengthening of Lemma 1.5.2.

Lemma 3.1.7 Under the conditions of Lemma 1.5.2 for every A ∈
Σ, λ (A) 6= 0 there exist G

′
n ∈ Σ|A, G′′

n = A\G′
n (n = 1, 2, ...) such that

(i) λ
(
G
′
n

)
= λ

(
G
′′
n

)
= 1

2
λ (A) ;

(ii) rn=χG′n-χG′′n are independent random variables on the measure

space
(
A,Σ|A, 1

λ(A)
λ (·)

)
;

(iii)
∥∥∥µ (G′

n

)
− 1

2
µ (A)

∥∥∥ ≤ 1
2n .

Proof. We shall construct the sets G
′
n, G

′′
n (n = 1, 2, ...) by induction

on n. Let n = 1. By Lemma 1.5.2 there is a G
′
1 ∈ Σ|A such that∥∥∥∥µ (G′

1

)
− 1

2
µ (A)

∥∥∥∥ ≤ 1

2
and λ

(
G
′
1

)
=

1

2
λ (A) . (3.1)

Let n = k + 1. Suppose G
′
j , G

′′
j (j = 1, ..., k), satisfying the required

conditions, have been constructed. By independence of {rj}k
j=1 there

are mutually disjoint sets {Di}2k

i=1 ⊂ Σ|A such that

r1 =
2k−1∑
i=1

χDi
− 2k∑

i=2k−1+1

χDi;

r2 =
2k−2∑
i=1

χDi
− 2k−1∑

i=2k−2+1

χDi
+

3·2k−2∑
i=2k−1+1

χDi
− 2k∑

i=3·2k−2+1

χDi
;

... ... .............................................................................

rk =
2k∑
i=1

(−1)i+1 χDi
.
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By Lemma 1.5.2, there exists D
′
i ∈ Σ|Di

such that∥∥∥∥µ (D′
i

)
− 1

2
µ (Di)

∥∥∥∥ ≤ 1

4k+1
and λ

(
D
′
i

)
=

1

2
λ (Di)

(
k = 1, ..., 2k

)
.

Put G
′
k+1 =

2k⋃
i=1

D
′
i. It is easy to verify that G

′
k+1, G

′′
k+1 satisfy conditions

(i)-(iii).

Lemma 3.1.8 Let X be a Banach space, r > 0, F : X →
R be a convex function, which is bounded in the ball B (0, 2r) =
{x ∈ X : ‖x‖ ≤ 2r}. Then F is uniformly continuous in the ball
B (0, r) of the space X.

Proof. Let |F (x)| ≤ C for any x ∈ X with ‖x‖ ≤ 2r. Take arbitrary
a, b ∈ B (0, r) with F (b) ≥ F (a) . Consider the straight line A =
{θa+ (1− θ) b : θ ∈ R} passing through a and b. Choose e ∈ A, ‖e‖ ≤
2r, so that ‖a− e‖ ≥ r and b is between a and e. Since F is convex,
we have

F (b)− F (a)

‖b− a‖ ≤ F (e)− F (a)

‖e− a‖ ≤ 2C

r

and F is uniformly continuous.

Remark 3.1.9 In the sequel we shall use Lemma 3.1.8 for the function

F (x) =
∞∑

n=1
M (‖xn‖), where x = (x1, x2, ...) ∈ (X1 ⊕X2 ⊕ ...)M , which

is bounded in the ball B (0, 2) by the ∆2-condition and the following
lemma.

Lemma 3.1.10 Let M be an Orlicz function satisfying the ∆2-
condition, 0 < δ ≤ 1, x = (a1, a2, ...) ∈ (X1 ⊕X2 ⊕ ...)M . Then we
have the following properties:

(i) if ‖x‖ ≤ δ, then
∞∑

m=1
M (‖am‖) ≤ δ,

(ii) if
∞∑

m=1
M (‖am‖) ≤ δ, then ‖x‖ ≤ 2δ

1
log2 C , where C is the constant

from the ∆2−condition.
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Proof. (i) Using the definition of an Orlicz function we get

∞∑
m=1

M (‖am‖) =
∞∑

m=1

M
(
δ
1

δ
‖am‖

)
≤ δ

∞∑
m=1

M

(‖am‖
δ

)
≤ δ.

(ii) By the ∆2-condition, it follows that there is a constant C > 0 such
that M (2t) ≤ CM (t) for any t ≤ 1. Define α = ‖x‖M . Suppose
1
2n ≤ α ≤ 1

2n−1 . Let us remark that 1 =
∞∑

m=1
M
(

1
α
‖am‖

)
, M is a

nondecreasing function, and M (1) = 1. Hence,

1 =
∞∑

m=1

M

(‖am‖
α

)
≤ Cn

∞∑
m=1

M (‖am‖) ≤ Cnδ.

Therefore 1 ≤ Cnδ, i.e. n ≥ log2
1
δ

log2 C
. So we have obtained α ≤ 2δ

1
log2 C .

Theorem 3.1.11 Let M be an Orlicz function satisfying the ∆2-
condition, 2 /∈ [αM , βM ] , {Xn}∞n=1 be a sequence of Banach spaces such
that Xn has the Lyapunov property for all n. Then (X1 ⊕X2 ⊕ ...)M

has the Lyapunov property.

Proof. Let us consider two cases.
Case 1: βM < 2. First we fix N ∈ N and k =

[
N

ln N

]
. We shall

prove ad absurdum. Assume that (X1 ⊕X2 ⊕ ...)M fails the Lyapunov
property. By Lemma 1.4.7 there are (Ω,Σ, λ), ε > 0 and T : L∞ → X
satisfying the conditions (a) and (b) of the condition (ii) of this lemma.
Without loss of generality we may assume that ‖T‖ ≤ 1

2
and ε ≤ 1.

Denote Tx = (T1x, T2x, ...). Let us show by induction on j that there
exist functions {ti}∞i=1 ∈ L∞ such that for every j the functions {ti}j

i=1

are jointly equidistributed with {si}j
i=1 from Lemma 1.4.9 and

∞∑
m=1

M

(∥∥∥∥∥Tm

(
j∑

i=1
ti

)∥∥∥∥∥
)
>

j∑
i=1

∞∑
m=1

M (‖Tmti‖)− 1,∥∥∥∥∥Tm

(
j∑

i=1
ti

)∥∥∥∥∥ < 1 for any m = 1, 2, ... .
(3.2)

For j = 1 there is nothing to prove. Suppose that for j = n
{ti}n

i=1 satisfying (3.2) have been constructed. Now consider A =
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{
ω ∈ Ω :

∣∣∣∣ n∑
i=1

ti

∣∣∣∣ < √N} and put am = Tm

(
n∑

i=1
ti

)
(m = 1, 2, ...) . Take

an arbitrary δ > 0. In accordance with Lemmas 3.1.8, 3.1.10, and Re-
mark 3.1.9 there is θ ∈ (0, 1) such that∣∣∣∣∣

∞∑
m=1

M (‖xm‖)−
∞∑

m=1

M (‖ym‖)
∣∣∣∣∣ ≤ δ (3.3)

if ‖x‖ ≤ 1, ‖y‖ ≤ 1 and ‖x− y‖ ≤ θ. Combining the ∆2−condition
and Lemma 3.1.10, we obtain

∞∑
m=N1+1

M (‖am‖) ≤ δ, ‖am‖ ≤ δ (m = N1 + 1, ...) , (3.4)

‖(0, ..., 0, aN1+1, aN1+2, ...)‖M ≤ θ, (3.5)

for some N1 ∈ N. By Theorem 1.5.6, (X1 ⊕X2 ⊕ ...⊕XN1)M has
the Lyapunov property. It is clear that µ (B) = (T1χB, ..., TN1χB)
is a nonatomic measure. Hence, by Lemma 3.1.7 there exists a se-
quence G

′
n ∈ Σ|A, G′′

n = A\G′
n, λ

(
G
′
n

)
= λ

(
G
′′
n

)
= 1

2
λ (A) such

that the functions zn = χG′ − χG′′ are independent on A and
‖(T1zn, ..., TN1zn)‖M →

n→∞ 0. By continuity of M there is a θ1 > 0 such

that if |t| , |u| ≤ 1 and |t− u| ≤ θ1 then |M (t)−M (u)| ≤ δ
N1
. Select

n0 ∈ N so that
‖(T1zn0 , ..., TN1zn0)‖M ≤ δ, (3.6)

‖Tizn0‖ ≤ θ1, i = 1, 2, ..., N1. (3.7)

Combining (3.3)-(3.7) and Lemma 3.1.8, and Remark 3.1.9, we infer∣∣∣∣ ∞∑
m=1

M (‖am + Tmzn0‖)−
∞∑

m=1
M (‖am‖)−

∞∑
m=1

M (‖Tmzn0‖)
∣∣∣∣

≤
∣∣∣∣∣ N1∑
m=1

[M (‖am + Tmzn0‖)−M (‖am‖)]
∣∣∣∣∣

+
N1∑

m=1
M (‖Tmzn0‖) +

∞∑
m=N1+1

M (‖am‖)

+

∣∣∣∣∣ ∞∑
m=N1+1

[M (‖am + Tmzn0‖)−M (‖Tmzn0‖)]
∣∣∣∣∣ ≤ 4δ.

It is evident that

‖am + Tmzn0‖ ≤
[ ‖am‖+ θ1 if m = 1, ..., N1

δ + 1
2

if m = N1 + 1, ...
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Putting tn+1 = zn0 and fitting δ sufficiently small we arrive at (3.2) for
j = n + 1.

Notice that the condition βM < 2 means the existence of 1 < p <
2 and C > 0 such that

CxpM (t) ≤M (tx) (3.8)

for any t, x ∈ (0, 1] .
Now we employ the proved fact and this inequality. Let {ti}k

i=1 be

jointly equidistributed with {si}k
i=1 and meet requirement (3.2). Intro-

duce the sets of indices

J i
1 = {m ∈ N : ‖Tmti‖ ≤ ελ (supp tk)} ,
J i

2 = {m ∈ N : ‖Tmti‖ > ελ (supp tk)} ,
where i = 1, ..., k. Then employing (3.2), we get

∞∑
m=1

M

(∥∥∥∥∥Tm

k∑
i=1

ti

∥∥∥∥∥
)

≥ k∑
i=1

∞∑
m=1

M (‖Tmti‖)− 1

=
k∑

i=1

 ∞∑
m∈Ji

1

M (‖Tmti‖) +
∞∑

m∈Ji
2

M (‖Tmti‖)
− 1.

If J i
2 = Ø, then by (3.8) we obtain

∞∑
m=1

M (‖Tmti‖) ≥ ∞∑
m=1

Cεpλ (supp tk)
pM

( ‖Tmti‖
ελ(supp tk)

)
≥ Cεpλ (supp tk)

p .

In the last inequality we used Remark 3.1.5 and property (b) of the
map T . If J i

2 6= Ø, then

∞∑
m=1

M (‖Tmti‖) ≥ ∞∑
m∈Ji

2

M (‖Tmti‖)
≥ ελ (supp tk) ≥ Cεpλ (supp tk)

p .

Thus, we get

∞∑
m=1

M

(∥∥∥∥∥Tm

(
k∑

i=1

ti

)∥∥∥∥∥
)
≥ C

[
N

lnN

]
εp

(
λ

(∣∣∣∣∣
k−1∑
i=1

si

∣∣∣∣∣ < √N
))p

− 1.

(3.9)
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Now we consider two cases. Let 1 <

∥∥∥∥∥T
(

k∑
i=1

ti

)∥∥∥∥∥ . Applying the ‖.‖M -

definition, (3.8), and (3.9), we get

1 =
∞∑

m=1
M


∥∥∥∥∥Tm

(
k∑

i=1
ti

)∥∥∥∥∥ · 1∥∥∥∥T

(
k∑

i=1

ti

)∥∥∥∥
 ≥

≥ C 1∥∥∥∥T

(
k∑

i=1

ti

)∥∥∥∥p

(
∞∑

m=1
M

(∥∥∥∥∥Tm

(
k∑

i=1
ti

)∥∥∥∥∥
))

≥

≥ C 1∥∥∥∥T

(
k∑

i=1

ti

)∥∥∥∥p

(
Cεp

[
N

ln N

] (
λ

(∣∣∣∣∣k−1∑
i=1

si

∣∣∣∣∣ < √N
))p

− 1

)
.

Whence,

‖T‖p
(√

N + 1
)p

+ C ≥
∥∥∥∥∥T

(
k∑

i=1
ti

)∥∥∥∥∥
p

+ C

≥
(

N
ln N

− 1
)
C2εpλ

(∣∣∣∣∣k−1∑
i=1

si

∣∣∣∣∣ < √N
)p

for all N ∈ N. By Lemma 1.4.9, the multiplier λ

(∣∣∣∣∣k−1∑
i=1

si

∣∣∣∣∣ < √N
)

→
N→∞

1. It follows that this inequality is not true for large N . Let∥∥∥∥∥T
(

k∑
i=1

ti

)∥∥∥∥∥ ≤ 1. Then
∞∑

m=1
M

(∥∥∥∥∥Tm

(
k∑

i=1
ti

)∥∥∥∥∥
)
≤ 1. Employing (3.9),

we arrive at a contradiction in the same way. Thus case 1 is finished.
Case 2: αM > 2. Equivalently, there exist p > 2 and C > 0 such

that
M (tx) ≤ CxpM (t) (3.10)

for any 0 < t, x ≤ 1.
By analogy with case 1 we fix N ∈ N and k = [N lnN ], choose

the mapping T, construct functions {ti}k
i=1 jointly equidistributed with

{si}k
i=1 such that

∞∑
m=1

M

(∥∥∥∥∥Tm

(
k∑

i=1

ti

)∥∥∥∥∥
)
≤

k∑
i=1

∞∑
m=1

M (‖Tmti‖) + 1 ≤ k + 1. (3.11)
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Let fN be as in the proof of Theorem 1.4.11:

fN =


1 if

k∑
i=1

ti ≥
√
N

−1 if
k∑

i=1
ti ≤ −

√
N

0 for the rest

.

Let us stress that∥∥∥∥∥T
(

k∑
i=1

ti

)∥∥∥∥∥ ≤ ‖T‖ (√N + 1
)
≤
√
N + 1

2
. (3.12)

Put α =

∥∥∥∥∥T
(

1√
N

k∑
i=1

ti

)∥∥∥∥∥ , αm =

∥∥∥∥∥Tm

(
1√
N

k∑
i=1

ti

)∥∥∥∥∥. Then α < 1 and

αm < 1 for large N . If we combine (1.8) ,(3.12) and property (b)
of the operator T , we get α > ελ (supp fN) ≥ ε

2
for large N. By

the ∆2−condition there is a constant C > 0 such that M
(

1
α
αm

)
≤

C1M (αm). Consequently, by (3.10) and (3.11)

1 =
∞∑

m=1
M
(

αm

α

)
≤ C1

∞∑
m=1

M (αm) = C1

∞∑
m=1

M

(∥∥∥∥∥Tm

(
k∑

i=1
ti

)
1√
N

∥∥∥∥∥
)

≤ C1

∞∑
m=1

M

(∥∥∥∥∥Tm

(
k∑

i=1
ti

)∥∥∥∥∥
)
C
(

1√
N

)p

≤ C1C
(

1√
N

)p
(k + 1) = C1C

(
1√
N

)p
([N lnN ] + 1)

for sufficiently large N ∈ N. This contradiction concludes the proof.

Remark 3.1.12 Let {Xn} be a sequence of Banach spaces and
{Mn}∞n=1 be Orlicz functions satisfying the uniform ∆2-condition

(i.e., there exists a constant C such that sup
0<t≤1

Mn(2t)
Mn(t)

< C for

all n ∈ N). Then the previous theorem is valid for the modular
space (

∑
Xn)Mn

of all sequences x = (x1, x2, ...) , where xn ∈ Xn

(n = 1, 2, ...) , such that
∞∑

n=1
Mn

(‖xn‖
ρ

)
< ∞ for some ρ > 0 and

‖x‖ = inf
{
ρ > 0 :

∞∑
n=1

Mn

(‖xn‖
ρ

)
≤ 1

}
.
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3.2 The Ap-property

In this section we shall show that Lorentz sequence spaces, Schreier’s
space, and Baernstein’s spaces not containing isomorphic copies of l2
have the Lyapunov property.

First let us summarize some material concerning these spaces.

The Lorentz sequence spaces were introduced in connection with
some problems of analysis and interpolation theory. Let 1 ≤ p < ∞.
For any a = (a1, a2, ...) ∈ c0\l1, a1 ≥ a2 ≥ ... ≥ 0, let d(a, p) = {x =

(x1, x2, ...) ∈ c0 :sup
σ∈π

∞∑
n=1

∣∣∣xσ(n)

∣∣∣p an < ∞}, where π is the set of all

permutations of the natural numbers N. Then d(a, p) with the norm

‖x‖ =
(
sup
σ∈π

∞∑
n=1

∣∣∣xσ(n)

∣∣∣p an

) 1
p

for x ∈ d(a, p) is a Banach space and the

sequence of unit vectors {en}∞n=1 is a symmetric basis of d(a, p). For
the basic properties of the Lorentz spaces d(a, p) we refer to ([9], [10]).
In particular, it is known that every infinite-dimensional subspace of
d(a, p) has a complemented subspace isomorphic to lp [1].

In 1930, J. Schreier [30] introduced the notion of “admissibility”
while producing a counterexample to a question of S. Banach and S.
Saks. These two had just shown [3] that in the spaces Lp [0, 1] (where
p > 1) each weakly convergent sequence contains a subsequence whose
arithmetic means converges in norm. They went on to ask whether such
a thing held in the space of continuous functions C [0, 1] . J. Schreier
showed that this was not the case. A slight variation in his original
concept produces the space which is called Schreier’s space in [4].

Definition 3.2.1 A finite subset E = {n1 < n2 < ... < nk} of N is
said to be admissible if k ≤ n1. We denote by L the class of all admis-
sible subsets of N.

Let c00 denote the vector space of all real sequences which are
eventually 0. Schreier’s space S is the ‖.‖S-completion of c00, where
‖x‖S =sup

E∈L

∑
k∈E

|x (k)|, where x (k) is a k-th coordinate of x, and x ∈ c00.
It is known [4] that this space is not reflexive with a 1-unconditional
basis.
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In 1972, A. Baernstein [2] produced a reflexive variant of S which
contains a weakly null sequence such that no subsequence is strongly
Cesaro convergent.

If E and F are finite non-void subsets of N, we write ”E < F” for
maxE < minF . For x ∈ c00 we write Ex to indicate the vector defined
by:

(Ex) (k) =

{
x (k) , if k ∈ E

0, otherwise.

Fix 1 < p <∞. For x ∈ c00, we define

‖x‖Bp
= sup


(

n∑
k=1

‖Ekx‖p
l1

) 1
p

: Ek ∈ L, E1 < E2 < ... < En, n ∈ N

 .
Baernstein’s space Bp is ‖.‖Bp

-completion of c00. It is known that ev-
ery infinite-dimensional subspace of Bp has a complemented subspace
isomorphic to lp. See [4] for details.

The idea of the proofs here is very close to Theorem 1.4.11. But the
new trick which we employ, namely considering an auxiliary c0-valued
operator, allows us to generalize the Lyapunov theorem for more spaces.

Definition 3.2.2 A Banach space X with a basis is said to have the
Ap-property (X ∈ Ap) if for some basis {en}∞n=1 in X there exists a map

T̃ ∈ L(X, c0) such that for every x =
∑N

i=1 x (i) ei ∈ X, with x (i) 6= 0,
(1 ≤ i ≤ N), and every ε > 0 there exists δ > 0 such that for any

y =
∑M

i=N+1 y (i) ei ∈ X with
∥∥∥T̃ y∥∥∥∞ ≤ δ

|‖x+ y‖p − ‖x‖p − ‖y‖p| < ε

if 1 ≤ p <∞, or

|‖x+ y‖ −max {‖x‖ , ‖y‖}| < ε

if p = ∞.

Lemma 3.2.3 If X ∈ Ap and T̃ is from Definition 3.2.2 then for every

x ∈ X, x 6= 0, for every sequence xn
w−→

n→∞ 0 in X with
∥∥∥T̃ xn

∥∥∥∞ −→
n→∞ 0,

and for every ε > 0 there exists n such that

|‖x+ xn‖p − ‖x‖p − ‖xn‖p| < ε
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if 1 ≤ p <∞, or

|‖x+ xn‖ −max {‖x‖ , ‖xn‖}| < ε

if p = ∞.

Proof. Let {en}∞n=1 be a basis in X and let T̃ ∈ L(X, c0), for which

the conditions of Definition 3.2.2 are satisfied. Fix x =
∞∑
i=1

x (i) ei ∈ X,

x 6= 0, xn =
∞∑
i=1

xn (i) ei ∈ X, (n = 1, 2, ...), xn
w→

n→∞ 0,
∥∥∥T̃ xn

∥∥∥∞ →
n→∞ 0,

ε > 0. Put C =sup
n
‖xn‖. Choose θ ∈ (0, 1) such that for any a, b ∈

[0, ‖x‖ + 1 + C] with |a− b| ≤ θ the inequality |ap − bp| < ε
4

holds.

Select N ∈ N such that

∥∥∥∥∥ ∞∑
i=N+1

x (i) ei

∥∥∥∥∥ ≤ θ
4
. Denote xε =

N∑
i=1

xε (i) ei,

where

xε (i) =

{
x (i) if x (i) 6= 0
θ

4N
if x (i) = 0

.

It is obvious that

|‖x‖p − ‖xε‖p| < ε

4
. (3.13)

Find δ > 0 for xε and ε
4

according to Definition 3.2.2. There is n ∈ N

such that
∥∥∥T̃ xn

∥∥∥∞ ≤ δ and

∥∥∥∥∥ N∑
i=1

xn (i) ei

∥∥∥∥∥ ≤ θ
4
. Select M ∈ N such that∥∥∥∥∥ ∞∑

i=M+1
xn (i) ei

∥∥∥∥∥ ≤ θ
4
. Put xε

n =
M∑

i=N+1
xn (i) ei. It is easy to see that

‖xn − xε
n‖ ≤ θ

2
and

∥∥∥T̃ xε
n

∥∥∥∞ ≤ δ and consequently

|‖xn‖p − ‖xε
n‖p| < ε

4
, (3.14)

|‖xε + xε
n‖p − ‖xε‖p − ‖xε

n‖p| < ε

4
. (3.15)

Note that |‖x+ xn‖ − ‖xε + xε
n‖| ≤ θ. Therefore

|‖x+ xn‖p − ‖xε + xε
n‖p| ≤ ε

4
. (3.16)
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Combining (3.13)-(3.16), we get

|‖x+ xn‖p − ‖x‖p − ‖xn‖p| ≤ |‖xε + xε
n‖p − ‖xε‖p − ‖xε

n‖p|
+ |‖x+ xn‖p − ‖xε + xε

n‖p|+ |‖x‖p − ‖xε‖p|
+ |‖xn‖p − ‖xε

n‖p| < ε.

The case p = ∞ can be shown in the same way.

Theorem 3.2.4 If X ∈ Ap (p 6= 2), then there exist a Lyapunov topol-
ogy τ on X, n

′ ∈ N, and if 1 ≤ p < 2 there is p
′ ∈ [p, 2) such that

Cτ
(
n
′
, X

)
> (n′)1/p′ ,

if 2 < p <∞ there is p
′ ∈ (2, p] such that

bτ
(
n
′
, X

)
< (n′)1/p′ .

Proof. Case 1 ≤ p < 2. Let τ be the T̃−c0 weak topology on X, where
T̃ is from Definition 3.2.2, and {fi}∞i=1 be the coordinate functionals.
Take an arbitrary n ∈ N, a Lyapunov tree Xn with ‖xm1,...,mi

‖ > 1.
We will show that there exist {m0

i }n
i=1 such that∥∥∥∥∥

n∑
i=1

xm0
1,...,m0

i

∥∥∥∥∥
p

≥
n∑

i=1

∥∥∥xm0
1,...,m0

i

∥∥∥p − 1 (3.17)

Let m0
1 = m1

1. Consider the sequence
{
xm0

1,m2

}∞
m2=1

. By the definition

of a Lyapunov tree xm0
1,m2

w−→
m2→∞ 0 and

∥∥∥T̃ xm0
1,m2

∥∥∥∞ −→
m2→∞ 0. Then in

accordance with Lemma 3.2.3 we can choose m0
2 such that∥∥∥∥∥

2∑
i=1

xm0
1,m0

i

∥∥∥∥∥
p

>
2∑

i=1

∥∥∥xm0
1,m0

i

∥∥∥p − 1

2
.

Now consider the sequence
{
xm0

1,m0
2,m3

}∞
m3=1

. Analogously choose m0
3

such that ∥∥∥∥∥
3∑

i=1

xm0
1,m0

2,m0
i

∥∥∥∥∥
p

>
2∑

i=1

∥∥∥xm0
1,m0

i

∥∥∥p
+
∥∥∥xm0

3

∥∥∥p − 1

4
.
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It follows that∥∥∥∥∥
3∑

i=1

xm0
1,m0

2,m0
i

∥∥∥∥∥
p

>
3∑

i=1

∥∥∥xm0
1,m0

2,m0
i

∥∥∥p −
(

1

2
+

1

4

)
.

Continuing this process we obtain {m0
i }n

i=1 satisfying (3.17).
As ‖xm1,...,mi

‖ > 1 (i = 1, ..., n) we get∥∥∥∥∥
n∑

i=1

xm0
1,...,m0

i

∥∥∥∥∥
p

≥ n− 1,

and consequently ∥∥∥∥∥
n∑

i=1

xm0
1,...,m0

i

∥∥∥∥∥
p

≥ (n− 1)1/p .

It follows that Cτ (n,X) ≥ (n− 1)1/p for all n. It is not difficult to see

that there exist p
′ ∈ [p, 2) and n

′
such that

(
n
′ − 1

)1/p
> (n′)1/p′ and

consequently Cτ
(
n
′
, X

)
> n

′ 1

p
′ .

Case 2 < p <∞ is proved by analogy with the previous one.

Corollary 3.2.5 If X ∈ Ap (p 6= 2), then X has the Lyapunov prop-
erty.

Proof. The proof follows immediately from the last theorem and The-
orems 2.1.8, 2.1.9, 2.2.5, and 2.2.6.

In Lemmas 3.2.6, 3.2.7, 3.2.8 below the natural coordinate embed-
ding of the corresponding sequence space into c0 plays the role of T̃
from Definition 3.2.2.

Lemma 3.2.6 d (a, p) ∈ Ap.

Proof. Note that if x = (x1, x2, ...) ∈ d (a, p), ‖x‖ =
( ∞∑

n=1
x̂p

nan

) 1
p

,

where (x̂1, x̂2, ...) is an enumeration of {|xn|}∞n=1 such that x̂1 ≥ x̂2 ≥ ....

Fix x =
N∑

i=1
xiei ∈ d (a, p), where xi 6= 0 (i = 1, 2, ..., N), ε ∈ (0, 1).

Without loss of generality we may assume that x1 ≥ x2 ≥ ... > 0. Since
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a = (a1, a2, ...) ∈ c0, there exists k > N such that
k+N∑
i=k

ai <
ε
2
. Take

δ = min
{

ε
2k
, min
1≤i≤N

xi

}
. Let y =

M∑
i=N+1

yiei ∈ d (a, p) with ‖y‖∞ ≤ δ.

We may assume that yN+1 ≥ yN+2 ≥ ... ≥ 0. Further we estimate the
number |‖x+ y‖p − ‖x‖p − ‖y‖p| :

|‖x+ y‖p − ‖x‖p − ‖y‖p| =
M∑

i=N+1
yp

i (ai−N − ai)

=
N+k∑

i=N+1
yp

i (ai−N − ai) +
M∑

i=N+k+1
yp

i (ai−N − ai) .

Since 1 ≥ a1 ≥ a2 ≥ ... ≥ 0, we obtain

N+k∑
i=N+1

yp
i (ai−N − ai) ≤

N+k∑
i=N+1

yp
i ≤

ε

2
.

An application of ‖y‖∞ ≤ 1 yields

M∑
i=N+k+1

yp
i (ai−N − ai) ≤ M∑

i=N+k+1
(ai−N − ai)

=
N+k∑

i=k+1
ai−

M∑
i=M−N+1

ai <
ε
2
.

So, |‖x+ y‖p − ‖x‖p − ‖y‖p| < ε.

Lemma 3.2.7 S ∈ A∞.

Proof. Let x =
N∑

i=1
xiei ∈ S, where xi 6= 0 (i = 1, 2, ..., N), ε > 0.

Denote δ = 1
N

min
1≤i≤N

|xi|. Choose y =
M∑

i=N+1
yiei ∈ S with ‖y‖∞ ≤ δ.

It is evident that ‖x‖ , ‖y‖ ≤ ‖x+ y‖, consequently max {‖x‖ , ‖y‖} ≤
‖x+ y‖.

We shall prove that ‖x+ y‖ ≤ max {‖x‖ , ‖y‖}. Let k ≤ N , E =
{n1 < ... < nk} be an admissible set, i.e. k ≤ n1. If nk ≤ N , then∑

i∈E

|xi|+
∑
i∈E

|yi| =
∑
i∈E

|xi| ≤ ‖x‖ .
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If nk > N , then∑
i∈E

|xi|+
∑
i∈E

|yi| ≤
∑
i∈E

|xi|+ min
1≤i≤N

|xi| ≤
∑
i∈E′

|xi| ≤ ‖x‖ ,

where E
′
= {k0} ∪ {i ∈ E : i ≤ N}, k0 ∈ k,N\E. Let k > N , then∑

i∈E

|xi|+
∑
i∈E

|yi| =
∑
i∈E

|yi| ≤ ‖y‖ .

Thus ‖x+ y‖ ≤ max {‖x‖ , ‖y‖} .

Lemma 3.2.8 Bp ∈ Ap.

Proof. Let x =
N∑

i=1
xiei ∈ Bp, x 6= 0, ε > 0. Select θ ∈ (0, 1) such that

for any a, b ∈
[
0, ‖x‖l1

+ 1
]

with |a− b| ≤ θ the inequality |ap − bp| < ε

holds. Take δ = θ
N

. Choose y =
M∑

i=N+1
yiei ∈ S with ‖y‖∞ ≤ δ.

Evidently ‖x‖p + ‖y‖p ≤ ‖x+ y‖p. We shall prove that ‖x+ y‖p ≤
‖x‖p + ‖y‖p + ε. Let E1 < E2 < ... < En, Ei ∈ L, and

‖x+ y‖p =
n∑

i=1

‖Ei (x+ y)‖p
l1
.

We introduce the sets of indices

I1 =
{
i ∈ 1, n : Ei ∩N + 1,M = Ø

}
,

I2 =
{
i ∈ 1, n : Ei ∩ 1, N = Ø

}
,

i0 = 1, n\ (I1 ∪ I2) .
Then

‖x+ y‖p =
∑
i∈I1

‖Eix‖p
l1

+
∑
i∈I2

‖Eiy‖p
l1

+ ‖Ei0 (x+ y)‖p
l1
.

Let us estimate the last item

‖Ei0 (x+ y)‖p
l1

=
(∥∥∥(Ei0 ∩ 1, N

)
x
∥∥∥

l1
+
∥∥∥(Ei0 ∩N + 1,M

)
y
∥∥∥

l1

)p

< ‖Ei0x‖p
l1

+ ε.
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This implies that

‖x+ y‖p =
∑

i∈I1∪i0

‖Eix‖p
l1

+
∑
i∈I2

‖Eiy‖p
l1

+ ε ≤ ‖x‖p + ‖y‖p + ε.

The lemma is proved.

Corollary 3.2.9 The Lorentz sequence spaces d (a, p) (p 6= 2), the
Baernstein spaces Bp (p 6= 2) and the Schreier space S have the Lya-
punov property.

3.3 Tsirelson-type spaces

The results of this section are contained in [34].
One of the historical concerns of the structure theory of Banach

spaces has been whether there are any ”fundamental” spaces which
embed isomorphically in every infinite dimensional Banach space. The
spaces c0 or lp (1 ≤ p <∞) were hoped to have this property, be-
cause all classical Banach spaces do indeed contain a copy of c0 or
lp (1 ≤ p <∞). Also Orlicz spaces have this property despite the fact
that the definition of an Orlicz space is not a priori connected to any
lp or c0. This hope was destroyed by B. S. Tsirelson’s construction of
a reflexive Banach space with a monotone unconditional Schauder ba-
sis and no embedded copies of c0 or any lp [33]. T. Figiel and W. B.
Johnson continued the research and obtained a reflexive Banach space
with a symmetric basis that has the same property. The following
construction of Tsirelson’s space is due to Figiel and Johnson [4].

We inductively define a sequence of norms {‖·‖N}∞N=1 as follows: for
x ∈ c00, let{ ‖x‖0 = ‖x‖∞ ,

‖x‖N+1 = ‖x‖N ∨ 1
2
max

{∑n
j=1 ‖Ejx‖N : n ∈ N, n ≤ E1 < ... < En

}
for N ≥ 0. It is easily seen that the ‖·‖N are norms on c00, that they
increase with N , and that

‖x‖N ≤ ‖x‖l1
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for all x ∈ c00 and for all N . Thus, for each x ∈ c00, lim
N
‖x‖N exists and

is majorized by ‖x‖l1
. We denote lim

N
‖x‖N by ‖x‖ and easily confirm

that it norms c00. Tsirelson’s space T is the ‖·‖-completion of c00.
Note that from the definition of the norm it follows that

‖x‖ = max

‖x‖∞ ,
1

2
sup


n∑

j=1

‖Ejx‖ : n ∈ N, n ≤ E1 < ... < En




(3.18)
for each x ∈ T .

This construction has been developed further and some Banach
spaces of Tsirelson-type were obtained in order to solve some long-
standing problems of Banach space theory. Below we present the results
of Schlumprecht, Maurey, and Gowers.

Definition 3.3.1 A space (Y, ‖·‖) is said to be λ− distortable if there
exists an equivalent norm |‖·‖| such that for every infinite dimensional
subspace Z ⊂ Y the quantity

sup {|‖y‖| / |‖z‖| : ‖y‖ = ‖z‖ = 1}
is at least λ.

In 1991 T. Schlumprecht [30] constructed an example of a space
that is λ-distortable for every λ. Before giving his definition let us fix
some notation.

T. Schlumprecht defines a class of functions f : [1,∞) → [1,∞),
which we call F , as follows. The function f is a member of F if it
satisfies the following five conditions:

(i) f (1) = 1 and f (x) < x for every x > 1.
(ii) f is strictly increasing and tends to infinity.
(iii) lim

x→∞x
−qf (x) = 0 for every q > 0.

(iv) The function x/f (x) is concave and not decreasing.
(v) f (xy) ≤ f (x) f (y)for every x, y ≥ 1.

It is easily verified that f (x) = log2 (x+ 1) satisfies these conditions,

as does the function
√

log2 (x+ 1).

The support of a vector x =
∞∑

n=1
anen ∈ c00 is the set of n ∈ N for

which an 6= 0. An interval of integers is a subset of N of the form
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{a, a+ 1, ..., b} for some a, b ∈ N. We shall also define the range of a
vector, written by the ran (x), to be a smallest interval containing its
support. We shall write x < y to mean ran (x) < ran (y). If x1 < ... <
xn, we shall say that x1, ..., xn are successive.

Now let f be the function x 7→ log2 (x+ 1) as above. Define the
sequence of norms {‖·‖N}∞N=0

on c00 as follows. Fix x ∈ c00 and put

{ ‖x‖0 = ‖x‖∞ ,

‖x‖N+1 = ‖x‖N ∨ sup
{
f (n)−1∑n

j=1 ‖Ej (x)‖N : n ≥ 2, E1 < ... < En

}
.

Schlumprecht’s space S is the completion of the space c00 equipped
with the norm ‖x‖ = lim

N
‖x‖N for every x ∈ c00. It is not difficult to

show that the constructed norm satisfies the following condition

‖x‖ = max

‖x‖∞ , sup f (n)−1
n∑

j=1

‖Ej (x)‖ : n ≥ 2, E1 < ... < En

 .
(3.19)

In 1993 W. T. Gowers and B. Maurey [12] constructed a Banach
space that does not contain any unconditional basic sequence. The
definition of the space resembles that of Schlumprecht’s space. First
we shall need a certain amount of preliminary notation.

Let Q be the set of scalar sequences with finite support, rational
coordinates, and maximum at most one in modulus. Let J ⊂ N be an
infinite set such that, if m < n and m,n ∈ J , then log log logn ≥ 4m2.
Let us write J in increasing order as {j1, j2, ...}. We shall also assume
that f (j1) > 256. (Recall that f (x)=log2 (x+ 1).) Now let K ⊂ J be
the set {j1, j3, ...}, and let L ⊂ N be the set of integers j2, j4, ....

Let σ be an injection from the collection of finite sequences of suc-
cessive elements of Q to L such that, if z1, ..., zs is such a sequence,

S = σ (z1, ..., zs), and z =
s∑

i=1
zi, then (1/20) f

(
S1/40

)1/2 ≥ |supp (z)|.
We shall use the injection σ to define special functionals in an ar-

bitrary normed space of the form (c00, ‖·‖).
If (c00, ‖·‖) is a normed space on the finitely supported sequences

and m ∈ N, let A∗
m (X) be the set of functionals of the form

f (m)−1
m∑

i=1
fi such that f1 < ... < fm and ‖fi‖ ≤ 1 for each i. If
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k ∈ N, let ΓX
k be the set of sequences g1, ..., gk such that gi ∈ Q for

each i, g1 ∈ A∗
j2k

(X) and gi+1 ∈ A∗
σ(g1,...,gi)

(X) for each 1 ≤ i ≤ k − 1.
We call these special sequences. Let B∗

k (X) be the set of functionals of

the form f (k)−1/2
k∑

j=1
gj such that (g1, ..., gk) ∈ ΓX

k . These are specials

functionals.
The definition of the norm is as the limit of sequences of norms.

Define X0 = (c00, ‖·‖0) by ‖x‖0 = ‖x‖∞, and for N ≥ 0 let

‖x‖XN+1
= sup

{
f (n)−1∑n

i=1 ‖Eix‖XN
: 2 ≤ n ∈ N, E1 < ... < En

}
∨ sup {|g (Ex)| : k ∈ K, g ∈ B∗

k (XN) , E ⊂ N}

Note that this is an increasing sequence of norms, because the sets
B∗

k (XN) increase as N increases (and more generally, if ‖x‖Y ≤ ‖x‖Z

for every x ∈ c00, then B∗
k (Y ) ⊂ B∗

k (Z)). They are also all bounded
above by the l1-norm. Define ‖x‖ = lim

N→∞
‖x‖XN

. The ‖·‖-completion

of the c00 is called Gowers-Maurey’s space GM .
The constructed norm satisfies the following condition

‖x‖ = ‖x‖∞ ∨ sup
{
f (n)−1∑n

i=1 ‖Eix‖ : 2 ≤ n ∈ N, E1 < ... < En

}
∨ sup {|g (Ex)| : k ∈ K, g ∈ B∗

k (X) , E ⊂ N} .
(3.20)

W. T. Gowers modified the construction of GM to give an example
of an infinite-dimensional Banach space that does not contain c0, l1 or
an infinite-dimensional reflexive Banach space [11].

Let Q be as above. Let J ⊂ N be a set such that if m < n and
m,n ⊂ J , then log log log log log n ≥ 1000m. Let us also suppose that

f (j) > 10103 for every j ∈ J , where f (x) =
√

log2 (x+ 1). Let σ be an
injection from the set of finite sequences of successive elements of Q to
J .

Let X = (c00, ‖·‖) be a normed space such that the standard basis is
bimonotone. For everym ∈ N define A∗

m (X) to be the set of functionals

of the form f (m)−1
m∑

i=1
x∗i , where x∗1, ..., x

∗
m are successive members of

c00 and ‖x∗i ‖ ≤ 1 for each i. A special sequence of functionals on X is
defined to be a sequence of the form z∗1 , ..., z

∗
M , where M ∈ N, the z∗i

are successive, z∗i ∈ A∗
m ∩ Q for some m ∈ J and for 2 ≤ i ≤ M , we
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have z∗i ∈ A∗
σ(z∗1 ,...,z∗i−1)

∩ Q. A special functional on X is defined to

be a functional of the form E

(
M∑
i=1

z∗i

)
such that z∗1 , ..., z

∗
M is a special

sequence. To any special sequence we associate a sequence of integers
n1, ..., nM ∈ J such that z∗1 ∈ A∗

n1
and ni = σ

(
z∗1 , ..., z

∗
i−1

)
for 2 ≤

i ≤M . The first number n1 is not necessary uniquely determined, but

n2, ..., nM certainly are. Given a special functional z∗ = E

(
M∑
i=1

z∗i

)
,

we say that Z ⊂ J is associated to z∗ if we can pick such a sequence
n1, ..., nM associated to the sequence z∗1 , ..., z

∗
M and Z consists of those

ni for which E ∩ ran (z∗i ) 6= Ø. A collection of special functionals
w∗

1, ..., w
∗
N is called disjoint if we can choose for them disjoint associated

sets Z1, ..., ZN .
We are now ready to define our norm. We shall define it as a limit

of a sequence of norms on c00. First let X0 be defined by ‖x‖0 = ‖x‖∞.
For N ≥ 0, define XN by

‖x‖XN+1
= sup

{
f (n)−1∑n

j=1 ‖Ejx‖XN
: n ≥ 2, E1 < ... < En

}
∨ sup

(∑M
j=1

∣∣∣x∗j (x)
∣∣∣2)1/2

,

where the second supremum ranges over all sequences x∗1, ..., x
∗
M of dis-

joint special functionals on XN .
It is easy to check that every x ∈ G satisfies the equation

‖x‖ = ‖x‖∞ ∨ sup
{
f (n)−1∑n

j=1 ‖Ejx‖ : n ≥ 2, E1 < ... < En

}
∨ sup

(∑M
j=1

∣∣∣x∗j (x)
∣∣∣2)1/2

.

(3.21)
We will show that the above mentioned spaces have the Lyapunov

property. To this end we will give some preliminary information.

Definition 3.3.2 If X is a ‖·‖-completion of c00 such that (ei) is a
normalized monotone basis of X, f ∈ F or f = const, and every
x ∈ X satisfies the inequality

‖x‖ ≥ sup

f (n)−1
n∑

j=1

‖Ejx‖ : n ∈ N, n ≤ E1 < ... < En
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then we shall say that X satisfies an admissible lower f -estimate.

Note that by (3.18)-(3.21) Tsirelson’s space has an admissible
lower 1

2
-estimate, Schlumprecht’s and Gowers-Maurey’s spaces have a

log2 (x+ 1)-estimate, Gowers’s space has a
√

log2 (x+ 1) -estimate.

Theorem 3.3.3 If X is a Banach space that satisfies an admissible
lower f -estimate then there exist a Lyapunov topology τ on X and n
such that Cτ (n, X) > n1/p for some p ∈ [1, 2).

Proof. Let τ be the weak topology on X. Define the coordinate
functionals by fj . Take an arbitrary n ∈ N and consider a Lyapunov
tree Xn with ‖xm1,...,mi

‖ ≥ 1 and take an arbitrary ε > 0. Then by the
definition of a Lyapunov tree we can find numbers m0

1, ..., m
0
n such that∥∥∥∥∥∥xm0

1,...,m0
k
−

pk+1∑
i=pk+1

fi

(
xm0

1,...,m0
k

)
ei

∥∥∥∥∥∥ < ε

n
,

where n− 1 ≤ p1 < p2 < ... < pn+1, for k = 1, ..., n. Then∥∥∥∑n
k=1 xm0

1,...,m0
k

∥∥∥ >
∥∥∥∑n

k=1

∑pk+1

i=pk+1 fi

(
xm0

1,...,m0
k

)
ei

∥∥∥− ε

≥ f (n)−1
n∑

k=1

∥∥∥∑pk+1

i=pk+1 fi

(
xm0

1,...,m0
k

)
ei

∥∥∥− ε

≥ f (n)−1
n∑

k=1

(∥∥∥xm0
1,...,m0

k

∥∥∥− ε
n

)
− ε

≥ f (n)−1 (n− ε)− ε.

As ε is arbitrary, we get

sup
m1,...,mi

∥∥∥∥∥
n∑

k=1

xm1,...,mk

∥∥∥∥∥ > n · f (n)−1 .

For f = const everything is obvious. If f ∈ F , then from the condition
(iii), it follows that there is n such that

Cτ (n, X) > n1/p,

where p < 2. This completes the proof.
From this theorem and Theorems 2.1.9 and 2.1.8 we have the main

result of this section.

Corollary 3.3.4 Tsirelson’s space, Schlumprecht’s space, Gowers-
Maurey’s space, Gowers’s space have the Lyapunov property.
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3.4 Asymptotic lp spaces

In 1993 Vitali D. Milman and Nicole Tomczak-Jaegermann introduced
the class of asymptotic lp-spaces and showed that every Banach space
with bounded distortions contains a subspace from this class [26]. We
will prove that the asymptotic lp spaces (where 1 ≤ p < ∞, p 6= 2)
have the Lyapunov property.

Definition 3.4.1 A Banach space X with a normalized basis {xi} is
said to be an asymptotic lp space, for some 1 ≤ p < ∞ (resp., an
asymptotic c0 space) if there exists a constant C such that for any n ∈ N
there is N ∈ N such that normalized successive blocks N < z1 < z2 <
... < zn of {xi} are C-equivalent to the unit vector basis in lnp (resp., in
c0).

Let us mention that we will say that two basis sequences {xi} and
{ei} are C-equivalent, for some constant C, if for any finite sequence
of scalars {ai} we have

C−1

∥∥∥∥∥∑
i

aixi

∥∥∥∥∥ ≤
∥∥∥∥∥∑

i

aiei

∥∥∥∥∥ ≤ C

∥∥∥∥∥∑
i

aixi

∥∥∥∥∥ .
Theorem 3.4.2 Let X be an asymptotic lp space. Then if 1 ≤ p < 2,
then for every p < p

′
< 2 there exists n ∈ N such that

Cw (n,X) > n
1

p
′ ;

and if 2 < p < ∞, then for every 2 < p
′
< p there exists n ∈ N such

that

bw (n,X) < n
1

p
′ .

Proof. Case 1: 1 ≤ p < 2. Let w be the weak topology of X, {xi}
be a normalized basis of X, {ei} be the unit vector basis in lp. Take
p
′ ∈ (p, 2) and fix for the present n ∈ N and a Lyapunov tree Y n with
‖ym1,...,mi

‖ ≥ 1 and an arbitrary ε > 0. For n choose N = N (n) ∈ N
from Definition 3.4.1. By the definition of a Lyapunov tree we can find
numbers m0

1, ..., m
0
n and blocks N < z1 < z2 < ... < zn such that {xi}∥∥∥ym0

1,...,m0
k
− zk

∥∥∥ < ε

n
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for k = 1, ..., n. Then we have∥∥∥∥∥
n∑

k=1

ym0
1,...,m0

k

∥∥∥∥∥ >
∥∥∥∥∥

n∑
k=1

zk

∥∥∥∥∥− ε ≥ C−1

∥∥∥∥∥
n∑

k=1

ek

∥∥∥∥∥− ε = C−1n
1
p − ε.

As ε is arbitrary, we obtain

Cw (n,X) ≥ C−1n
1
p

and, consequently,

C−1n
1
p > n

1

p
′

for large enough n.
The case 2 < p <∞ is proved in analogy with the previous one.

Corollary 3.4.3 If 1 ≤ p < ∞, p 6= 2 and X is an asymptotic lp
space, then X has the Lyapunov property.

Proof. The proof follows immediately from Theorems 2.1.8, 2.1.9,
2.2.5, 2.2.6.

3.5 Tokarev’s space

We have seen that most of the constructed examples obey the scheme:
if a Banach space in some class contains no isomorphic copies of l2 then
it has the Lyapunov property. However, in this section we present an
example of a Banach space that does not contain isomorphic copies of
l2 and does not have the Lyapunov property.

In 1984 by E. V. Tokarev obtained an example of a symmetric func-
tion space that contains no isomorphic copies of lp (1 ≤ p <∞) or c0
[32]. We will recall this construction.

Definition 3.5.1 A symmetric function space E is a Banach space of
measurable functions such that:

1. if x ∈ E, |y| ≤ |x|, then y ∈ E and ‖y‖E ≤ ‖x‖E,

2. if the functions |x| and |y| are equimeasurable, then ‖x‖E = ‖y‖E.
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Let us consider the Marcinkiewicz space Mp defined by the func-

tion ψp (t) = t (− ln t)1/p, i.e., the space of functions x (t) which are
summable on [0, 1] with finite norm

‖x‖Mp
= sup

0<h≤1
Ah (x) ; Ah (x) =

1

ψp (h)

∫ h

0
x∗ (t) dt,

where x∗ is the nondecreasing rearrangement of x and such that
limh→0Ah (x) = 0 for all x ∈Mp.

Further we will suppose that p > 2. Denote (− ln t)−1/p by ϕp (t)
and note that ‖χA‖Mp

= ϕp (mesA) .
Choose a sequence of natural numbers nk; n1 < n2 < ... so that for

every k the lacunarity inequality n−1
k

∑k−1
i=1 ni + nk

∑∞
1=k+1 n

−1
i < 2−k−1

holds and consider the space Yk = nkMp + n−1
k L∞ that consists of all

summable functions x such that

‖x‖k = inf
{
nk ‖f‖Mp

+ n−1
k ‖g‖L∞ : f + g = x

}
<∞.

It is known (see [13] and [22]) that ‖χA‖k = min
{
nkϕp (mesA) ; n−1

k

}
.

Denote by EW the set of all summable functions f with finite norm
|||f ||| = ‖∑ ‖f‖k ek‖W , where W is an arbitrary reflexive Banach space
with an unconditional basis (ek) not containing isomorphic copies of lp
(1 < p <∞), for example Tsirelson’s space.

For us it is important that EW contains no isomorphic copies of l2.
From the proof of the result of Tokarev it follows that if we take W = lp
(p 6= 2), then EW contains no isomorphic copies of l2.

Theorem 3.5.2 EW does not have the Lyapunov property.

Proof. Consider the measure µ : Σ → EW such that µ (A) = χA

and check that it is countably additive. Indeed, let A1 ⊃ A2 ⊃ ...
and mes (An) −→

n→∞ 0. Take an arbitrary ε > 0. The series
∑∞

k=1
1

nk

converges, so we can find k0 ∈ N such that
∑∞

k=k0+1
1

nk
≤ ε

2
. Select

N0 ∈ N so that
∑k0

k=1 nkϕp (mes (An)) ≤ ε
2

for all N ≥ N0. Then it is
plain that

|||χAN
||| ≤ ε

for all N ≥ N0.
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Now we will show that the closure of µ (Σ) is not convex. Actually, it
is clear that µ ([0, 1]) ∈ µ (Σ). On the other hand, 1

2
µ ([0, 1]) = 1

2
χ[0,1] /∈

µ (Σ), as µ (Σ) involves only functions with values ±1. This completes
the proof.

Theorem 3.5.3 There exists a Banach space X such that l2 6⊂ X and
X fails the Lyapunov property.

Proof. By Tokarev’s results and Theorem 3.5.2, EW is such a Banach
space.


