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Introduction

This dissertation addresses problems from infinitary combinatorics and the theory of
complete Boolean algebras. As background theory we assume ZFC.

A subset K of a Boolean algebra B will be called a chain of B if it is totally or-
dered by the canonical partial ordering <B on B. The set of chains of B is inductively
ordered by the subset-relation ⊂, so a simple application of Zorn’s Lemma gives the
existence of maximal chains. We say that a Boolean algebra is chain homogeneous
if all its maximal chains are pairwise isomorphic as linear orders.

The basic question which motivated this thesis was, whether there is under appro-
priate set theoretical assumptions an atomless and chain homogeneous, atomless and
complete Boolean algebra B, such that the maximal chains of B are not isomorphic
to the real unit interval [0, 1].

At the bottom of this question were two observations: Few, but very prominent
complete Boolean algebras are chain homogeneous, such as the Cohen algebras and
measure algebras. But their maximal chains are all isomorphic to [0, 1]. On the
other hand, every maximal chain K of a chain homogeneous and atomless, complete
Boolean algebra B is a complete linear order with endpoints that satisfies the count-
able antichain condition c.c.c., i.e., every family of pairwise disjoint, open intervals
of K is countable.

Therefore, our problem is tightly related to Souslin’s Hypothesis SH, which states
that every complete and dense, linear order is already isomorphic to a real interval
if it satisfies the c.c.c. If we assume SH, then our question is immediately answered
to the negative.

However, in the 1960’s years it has been proved that SH is independent from ZFC,
i.e., if ZFC is consistent then so are the two theories ZFC + SH and ZFC + ¬SH. A
counter-example to Souslin’s hypothesis is called a Souslin line and the corresponding
complete Boolean algebras are Souslin algebras. We should also mention Souslin-
trees, which are a manifestation of the same phenomenon and the main technical
tool used in this context. For a Souslin algebra B, all maximal chains of B are
Souslin lines. So our basic question has the following reformulation:
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Is it consistent relative to ZFC that there is a chain homogeneous Souslin
algebra?

The main result of this paper is the affirmative answer to this question, cf. Theorems
2.3.2, 2.4.2 and 2.4.3 in the chapter Maximal chains in Souslin algebras. Assuming
♦+ (which is consistent relative to ZFC) we give three constructions of chain homo-
geneous Souslin algebras.

To lay the grounds for these constructions, we have extended the existing repre-
sentation theory for Souslin algebras and their subalgebras. Furthermore we use this
representation theory to deduce the following results.

1. In section 1.2-1.4 a structure theory for regular embeddings between Souslin
algebras is developed.

2. For the class of so called strongly homogeneous Souslin trees we extend an ex-
isting decomposition result (cf. Theorem 1.5.10) and give a new one (Theorem
1.5.3).

3. We use these decompositions to get examples of Souslin trees that separate
certain rigidity notions for Souslin trees. This answers a question of Fuchs and
Hamkins [FH06, Question 4.1].

Editorial note: This thesis was conceived as consisting of two, more or less inde-
pendent articles. For the submission they have been merged into one document.
Now each of them is a large chapter, with its proper introductory and preliminaries
sections. As a consequence, some of the notions are defined twice and some standard
results are cited in the first as well as in the second chapter. We hope that this
causes only a minor inconvenience to the reader.

Furthermore, an abstract, acknowledgements and a cv in German have been
included.



Chapter 1

Subalgebras of small Souslin
algebras
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Introduction

In this article, we enhance the existing representation theory for atomless, complete
subalgebras of small Souslin algebras (i.e. completely generated by a subset of car-
dinality ℵ1) and apply this method to get a rough classification of possible types of
subalgebra embeddings (Sections 1.1 through 1.4).

We also extend a known decomposition result for strongly homogeneous Souslin
trees in Section 1.5.4. From this decomposition we obtain examples of Souslin trees
which separate the strong rigidity notions considered in [FH06].

We only consider ℵ1-Souslin algebras and ℵ1-Souslin trees and leave aside the
question to which extent our methods and results can be generalised to κ-Souslin
algebras or trees.

Preliminaries and Notation

Though we often have to make additional assumptions which imply the existence
of Souslin trees, our basic theory is ZFC, Zermelo-Fraenkel set theory with choice.
We only consider ℵ1-Souslin trees and -algebras, so we omit the parameter in the
notions of κ-Souslin tree, κ-Souslin algebra etc. Concerning the tree notation, we
follow [DJ74].

Souslin trees

A tree is a partial order (T,<T ) with the additional property, that for every element
t ∈ T , the set of its predecessors, {s ∈ T | s <T t}, is well-ordered by the ordering
<T . Whenever possible, we omit the subscript T and denote the tree ordering just
by <.

The elements of a tree are called its nodes, the minimal elements are roots. The
height of a node, ht t, is the order type of the well-order ({s < t}, <). For every node
t we define the set of its immediate successors,

succ t := {s ∈ T | t < s and ht s = ht t+ 1}.

For a cardinal κ we say that T is κ-branching if every node has exactly κ immediate
successors. For every ordinal α we define the αth level of T and denote it by Tα :=
{t ∈ T | ht t = α}. The height of T is the minimal ordinal α such that Tα is empty.
For a subset c of htT we consider the tree

T�c =
⋃
α∈c

Tα
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with the ordering < inherited from T and call this tree the restriction of T to the
levels from c. If t ∈ Tα and γ < α then t�γ denotes the unique predecessor of t on
level γ.

A subset b of a tree T is a branch, if it is closed downwards and linearly ordered
by <. The length of a branch is just its order type with respect to <. A branch is
cofinal if its length coincides with htT . An antichain of T is a subset that consists of
pairwise incomparable nodes. We call branches or antichains maximal if they cannot
be extended. Note, that every (non-empty) level of T is a maximal antichain.

A tree T is normal if the following hold: T has a unique root, every node t has at
least two direct successors and successors on every level Tα with ht t < α < htT , and
branches of limit length λ have at most one extension of length λ+ 1. In this paper
we only consider ℵ0-branching, normal trees of height ≤ ω1 with countable levels.

A map f : S → T between trees is called a tree homomorphism, if it transfers <S

to <T and does not change the height: htT f(s) = htS s for all s ∈ S.

A Souslin tree is a tree of height ω1 that has neither antichains nor branches of
size ℵ1. Note, that a normal tree is Souslin if and only if it has no cofinal branches.
A subtree is a subset which is a union of branches, i.e., it is closed downwards. Every
Souslin tree has a normal subtree which is Souslin. So we only consider normal
Souslin trees.

For every node t ∈ T we let T (t) := {s ∈ t | t ≤ s} and call it the tree T relativised
to t. So {s < t} ∪ T (t) is always a subtree of T (and cofinal if T is normal). This
explains the name of the following basic observation.

Lemma 1.0.1 (Subtree Lemma, cf. [Lar99]). Let T be a normal Souslin tree. Then
every subtree of height ω1 contains a set of the form T (t) for some t ∈ T .

If we consider a tree T with the topology generated by the basic open sets T (t)
for t ∈ T , then the conclusion of the lemma reads: Every nowhere dense subtree of
T is countable.

Given a family ((Ti, <i) | i ∈ I) of trees we define the tree product to be

⊗
i∈I

Ti :=

{
s : I →

⋃
i∈I

Ti | si ∈ Ti and htTi
(si) = htTj

(sj) for all i, j ∈ I

}

with the ordering defined such that s < t if and only if for all i ∈ I we have si <i ti.
Another way to describe the tree product is

⊗
Ti =

⋃
α<β

∏
i∈I(Ti)α, where β is the

minimal height of the Ti,
∏

denotes the Cartesian product and (Ti)α is just the αth
level of the tree Ti.
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It is well known, that for a Souslin tree T , its tree square T⊗2 = T ⊗ T is no
longer Souslin. This is easily seen with the aid of the Subtree Lemma, because
{(t, t) ∈ T ⊗ T | t ∈ T} is a nowhere dense subtree of T ⊗ T with height ω1.

Assuming that the trees Ti are pairwise disjoint we define the tree sum by⊕
i∈I

Ti := {root} ∪
⋃
i∈I

Ti,

where the node root is not in any of the Ti. The tree sum carries the ordering

({root} ×
⋃
i∈I

Ti) ∪
⋃
i∈I

<i,

i.e., we just place all the Ti side by side on top of the new root.

Various construction methods for Souslin trees

Most commonly known are Souslin tree constructions which assume the combinato-
rial principle ♦, which states that there is a ♦-sequence, i.e. a sequence (Rν | ν < ω1)
such that for every subset X of ω1 the set {α | Rα = X ∩ α} is stationary in ω1 (cf.
[Kun80, §II.7]). We will occasionally use this method here for the construction of
examples. In Cahpter 2, a strengthening of ♦ is used to construct Souslin algebras
with extremely strong homogeneity properties.

Other well-known Souslin trees are generic, i.e., they exist in the generic exten-
sions of the universe by generic filters for a specific forcing partial order. Such are
the p.o. of countable partial functions on ω1, which adjoin a Cohen subset of ω1 –
this forcing is the equivalent to Jech’s forcing with trees of countable height –, or
the p.o. of finite partial functions from ω1 to ω which adjoins ℵ1 Cohen reals and is
equivalent to Tennenbaums forcing with finite trees. In order to get a Souslin tree
in a generic extension it is already sufficient to adjoin a single Cohen real, as Shelah
has shown in [She]. Todorcevic has found a definition for a term with a free variable
for a real, which yields a Souslin tree in V if the variable is replaced by a real r which
is Cohen-generic over some inner model M of V , such that M [r] = V .

Boolean algebras

For the background on Boolean algebras we refer mainly to volume one of the Hand-
book of Boolean Algebras, [Kop89]. A Boolean algebra B is called

• homogeneous, if for every pair a, b of elements strictly between 0 and 1, there
is an automorphism of B mapping a to b;
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• rigid, if it does not admit any non-trivial automorphism;

• simple, if it has no proper atomless and complete subalgebra.

Since we are concerned with complete subalgebras, we briefly point out a fact
that is important for our arguments but maybe not so well-known.

If A is a complete subalgebra of the complete Boolean algebra B, then we denote
the canonical projection from B onto A by

h : B → A, b 7→
∏
{a ∈ A | b ≤B a}.

(Here we follow [DJ74] instead of [Kop89].) The canonical projection respects arbi-
trary sums, but it is in general only sub-multiplicative, i.e. we only have h(xy) ≤B

h(x)h(y) for sure, though if x is an element of A, then h(xy) = xh(y).
For an element b of B we consider the algebra

b · A := bA := {ab | a ∈ A},

which is a complete subalgebra of B�b.

Proposition 1.0.2. In the situation described above, the restriction of h is an iso-
morphism between bA and A�h(b). The converse isomorphism is given by multi-
plication with b.

Proof. We first show that ϕ := h�(bA) : bA → A�h(b) is a Boolean homomorphism.
Since h respects sums, it is sufficient to show that also complements are respected.
For an arbitrary element x of bA we know that x = h(x)b and therefore b − x =
b− h(x). But b− x is the complement of x in bA, so

h(b− x) = h(b− h(x)) = h(b)− h(x),

which is the complement of h(x) in A�h(b).
If for x, y ∈ bA we have h(x) = h(y), then x = bh(x) = bh(y) = y, so ϕ is 1-1.

Finally, every element a of A below h(b) is hit by ba ∈ bA. Since ϕ is thus also onto,
it is an isomorphism.

Souslin algebras

A Souslin algebra is an atomless and complete Boolean algebra that has only count-
able antichains and satisfies the ℵ0-distributive law: for all families aij with i ∈ ω
and j ∈ J , where J is arbitrary, the following equation holds:∑

i∈ω

∏
j∈J

aij =
∏{∑

i∈ω

aif(i) | f ∈ ωJ

}
.
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We call a Souslin algebra B small, if it has a family of complete generators of size
ℵ1. In this case, we always find a dense subset T of B, such that (T,<) is a normal
Souslin tree, where < is >B, the reversed natural order of B. (In [DJ74] this is
used as a definition of “Souslin algebra”. Since there can be non-small Souslin
algebras, we stick to the general definition and always declare when smallness is
needed.) Furthermore, this B is isomorphic to the algebra ROT = RO(T,<) of
regular open subsets of T , where T carries the (already mentioned) partial order
topology generated by the sets T (t) for t ∈ T (cf. [Kop89, Theorem 14.20]). Following
[DJ74], we call such a T a Souslinization of B.

In this chapter we only consider small Souslin algebras. The following classical
Restriction Lemma for isomorphisms of Souslin algebras implies that two Sousliniza-
tions of a Souslin algebra coincide on a club set of levels, cf. [DJ74, Lemma VIII.9].

Lemma 1.0.3 (Restriction Lemma). If ϕ : A → B is an isomorphism between the
small Souslin algebras A and B, and S is a Souslinization of A and T of B, then
there is a club set C of ω1 such that the restriction of ϕ to S�C is a tree isomorphism
between S�C and T�C.

Concerning the operations of tree product, tree sum and relativisation, we remark,
that the following isomorphisms are canonical:

1. the tree product corresponds to the (Dedekind-completion of the) free product
of Boolean algebras as defined in [Kop89, §11]:

RO(S ⊗ T ) ∼= ROS ⊕ ROT ;

2. the tree sum corresponds to the Cartesian product of Boolean algebras:

RO(S ⊕ T ) ∼= ROS × ROT ;

3. for every t ∈ T we have ROT (t) ∼= (ROT )�t.
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1.1 Representing subalgebras

Subalgebras of Souslin algebras have been considered e.g. in [Jec72b] or [BB89, §5]
(both deal with the same result), [KM83] and more implicitely in [DJ74] or [Lar99,
§8]. To represent a subalgebra A of the small Souslin algebra B with respect to some
Souslinization T of B, the first three sources define a good equivalence relation on the
tree T , while the last two use maps between trees T �C (for some club set C ⊆ ω1)
and a Souslinization S of A.

We combine the two approaches in so far, that we will consider equivalence re-
lations, which directly induce the relevant mappings between the Souslinizations.
Recall that all trees under consideration are assumed to be normal, ℵ0-branching
and of height ≤ ω1.

Definition 1.1.1. a) Let T be a normal, ℵ0-branching tree of height µ ≤ ω1 with
countable levels. An equivalence relation ≡ on T is a tree equivalence relation
(t.e.r.) if

i) ≡ respects levels, i.e., s ≡ t only if htT s = htT t;

ii) ≡ is compatible with <T , i.e., for s <T s′ and t <T t′ with s and t of the
same height, s′ ≡ t′ implies s ≡ t;

iii) the induced partial order on the set T/≡ of ≡-cosets given by

a <T/≡ b ⇐⇒ (∃s ∈ a, t ∈ b)s <T t

for a, b ∈ T/≡ is a normal, ℵ0-branching tree order.

b) If T souslinizes B and A is an atomless and complete subalgebra of B, we say that
the t.e.r. ≡ on T represents A on T if the sums over the ≡-classes form a dense
subset of A: 〈∑

s/≡ | s ∈ T
〉cm

= A.

Remark 1.1.2. A few remarks on Souslin subalgebras and t.e.r.s are in order.

1. Every complete and atomless subalgebra of a Souslin algebra is Souslin as well.
This is why we also call them Souslin subalgebras.

2. If A is a complete and atomless subalgebra of the Souslin algebra B, then there
are a club C of ω1 and a t.e.r. ≡ on T�C which represents A.

3. Every t.e.r. on a Souslin tree T represents some Souslin subalgebra.
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4. On limit levels a t.e.r. is determined by its behaviour on the levels below,
because of the requirement that the quotient tree be normal.

5. And finally: in the context of Souslin algebras the lower bound for the branch-
ing number is no restriction, since for every normal Souslin tree T the restriction
T�C is ℵ0-branching, if C only contains limit ordinals.

The concept of t.e.r. allows redundant information in the sense that s and t can
be equivalent even though s and t are separated by an element of the subalgebra
represented by the t.e.r. This kind of redundance cannot be completely eliminated,
but we can consider t.e.r.s of higher accuracy.

Definition 1.1.3. a) A t.e.r. ≡ on T is called nice, if for all s, s′, t in T with s <T s
′

and s ≡ t there is some t′ >T t with s′ ≡ t′.

b) A t.e.r. ≡ on T is called almost nice, if for all s, s′, t in T with s <T s
′ and s ≡ t

and ht(s) = α+ 1 for some α there is some t′ >T t with s′ ≡ t′.

c) A t.e.r. ≡ on T is called decent, if there is a tree T ′ and an almost nice t.e.r. ≡′
on T ′ and there is an isomorphism ϕ : T → T ′�C with some club C ⊆ htT ′ such
that for all s, t ∈ T we have s ≡ t if and only if ϕ(s) ≡′ ϕ(t).

Obviously every nice t.e.r. is almost nice and every almost nice t.e.r. is decent.
If ≡ is an almost nice t.e.r. then there is essentially only one kind of violation of the
niceness condition: If s ≡ t are limit nodes and there is some s′ > s such that no
successor t′ of t is equivalent to s′, then the same applies to a direct successor of s
already.

Unlike niceness, almost niceness is not handed down to restrictions of the form
T�C, so for general applications, decency is the right property (cf. Proposition 1.1.7).
We will begin our studies of the different degrees of niceness with a result on the
effects of the strongest of these properties. Recall the definition of the basic projection
h of a Boolean algebra B onto a complete subalgebra A: h(b) =

∏
{a ∈ A | b ≤B a},

i.e., h(b) is the minimal element of A above b.
The following definition is taken from [DJ74, p.85] while the above definition of

a nice t.e.r. is extracted from the way the notion of a nice subalgebra is used in the
same source.

Definition 1.1.4. Let B be a small Souslin algebra. We call a subalgebra A of B
nice if it is atomless and complete and there are Souslinizations S of A and T of B
s.t. h′′Tα = Sα for all α < ω1.
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Lemma 1.1.5. Let A be a complete and atomless subalgebra of the small Souslin
algebra B. Then A is nice in B iff there is a nice t.e.r. ≡ on some Souslinization T
of B which represents A.

Proof. Suppose A is nice in B and let S, T be Souslinizations as in definition 1.1.4.
Define ≡ on T by

s ≡ t :⇐⇒ h(s) = h(t).

Then ≡ clearly is a t.e.r. on T . Now given s, s′, t ∈ T , s.t. s ≡ t and s′ <B s we have
to find below t a node t′ ∈ T which is ≡-equivalent to s′. To reach a contradiction,
assume that s′ 6≡ t′ for all t′ <B t. Let γ = ht(s′). Since A is a nice subalgebra as
witnessed by T and S, we have

h(t′) · h(s′) = 0

for all t′ <B t of level γ. But then, again by the niceness of A,

h(s) =
∑
{h(r) | r ∈ Tγ, r <B s} 6=

∑
{h(r) | r ∈ Tγ, r <B t} = h(t)

which is the desired contradiction.
For the converse let ≡ be a nice t.e.r. (without loss of generality assume C = ω1),

such that the set S of sums over the ≡-classes is a Souslinization of A:

T/≡∼= S := {
∑

t/≡| t ∈ T} souslinizes A.

We have to show that for all t ∈ T we have h(t) =
∑
t/≡.

Clearly we already have t ≤B
∑
t/≡∈ A, so h(t) ≤A

∑
t/≡. Now if h(t) 6=

∑
t/≡

for t ∈ Tα, then there is some s′ ∈ Tγ, γ > α, s.t.∑
s′/≡≤A

(∑
t/≡

)
− h(t) ∈ A

by the denseness of S in A. Letting s�α ∈ Tα be the unique s >B s
′ we have s ≡ t.

But then our hypothesis on ≡ implies the existence of some t′ ∈ Tγ below t and
equivalent to s′. Therefore (

∑
s′/ ≡) · h(t) > t′ which contradicts our choice of

s′.

The last argument of the proof above is also applicable to almost nice t.e.r.s and
successor nodes.

Corollary 1.1.6. Let B be souslinized by T and A represented by the almost nice
t.e.r. ≡ on T . Then for all successor nodes s ∈ Tα+1 we have h(s) =

∑
s/≡.
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As will be shown in Theorems 1.3.5 and 1.3.9, every homogeneous Souslin algebra
has both nice subalgebras and also atomless and complete subalgebras which are not
nice.

But does every atomless and complete subalgebra of B have an almost nice rep-
resentation? The affirmative answer (modulo the choice of an appropriate Sous-
linization of B) is given by the next proposition, which is a variant of the well-known
result that every Souslin algebra with a set of complete generators of size ℵ1 contains
a Souslin tree that is densely embedded (cf. [Kop89, Theorem 14.20]).

Proposition 1.1.7. Let A be an atomless, complete subalgebra of B a Souslin alge-
bras and T a Souslinization of B. Then there is a club C ⊆ ω1 and a decent t.e.r. ≡
on T�C that represents A on T�C.

Proof. We construct a Souslinization S of B on which there is an almost nice t.e.r.
≡′ representing A. Then by the Restriction Lemma for Isomorphisms 1.0.3 we know
that there is a club C of ω1 with T�C ∼= S�C which witnesses that the t.e.r. ≡ on T
that is induced by ≡′ is decent.

Before constructing S, we describe a method of refining a given partition P of
unity in B to a partition R in B with the property, that h′′R is a partition in A. Let
Q be the set of atoms of 〈h′′P 〉cm and define

R = {pq | p ∈ P, q ∈ Q} \ {0}.

Then R refines P and for pq ∈ R we have h(pq) = qh(p) = q since q is an atom. So
h′′R = Q.

Fix a dense set {xα+1 | α ∈ ω1} of B indexed by successor ordinals. Starting with
S0 = {1} let Pα be any partition in B refining Sα in such a way that every s ∈ Sα is
divided in infinitely many parts and xα ∈ 〈Pα〉cm. Then let Sα+1 be the refinement
of Pα with respect to h as described above. So h′′Sα+1 is a partition in A. The limit
levels of S are canonically defined as

Sα :=
{∏

b | b ∈ [S�α]
}
\ {0}.

Thus S is a Soulinization of B. Next we define ≡′ on successor levels. For s, t ∈ Sα+1

let
s ≡′ t :⇐⇒ h(s) = h(t).

Once again, for limit levels there is no freedom in the choice of ≡′ since S/≡′ has to
be a normal tree. For α a limit ordinal and s, t ∈ Sα let

s ≡′ t :⇐⇒ (∀γ < α) s�γ ≡′ t�γ.
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It remains to show that ≡′ is almost nice. So let s ≡′ t on some successor level Sα+1

and s′ >S s. Without loss of generality we can assume that also s′ is of successor
height γ. Then we have

h(s′) ≤B h(s) = h(t) = Σ{h(t′) | t′ ∈ Sγ, t <S t
′}.

Since h′′Sγ is a partition, we have s′ ≡′ t′ for some t′ >S t on level Sγ.

By the next corollary, given a subalgebra A of B and an arbitrary Souslinization
T of B, we can test A for niceness on an arbitrary restriction of T to a stationary set
of levels.

Corollary 1.1.8. If A is a nice subalgebra of B and T souslinizes B and carries a
decent t.e.r. ≡ representing A, then there is a club C ⊂ ω1, such that ≡ is nice when
restricted to T�C.

Proof. Since the intersection of two club sets of ω1 is club again, we can assume that
≡ is even almost nice on T . Denote the canonical mapping T → A by

π : T → A, t 7→
∑

t/≡ .

We know that π(r) ≥B h(r) for all nodes r ∈ T and for a successor node r even
π(r) = h(r) by the almost niceness of ≡.

We have to find a club C such that π and the projection h coincide on T�C. Now
let S be a Souslinization of B such that h′′S souslinizes A and fix by the Restriction
Lemma 1.0.3 a club D of ω1 with T�D = S�D. Let C be the set of all limit points
of D, i.e., C := {γ ∈ D |

⋃
(D ∩ γ) = γ}. Now pick α ∈ C and t ∈ Tα. Then

π(t) ≥B h(t) =
∏

γ∈D∩α

h(t�γ) ≥B
∏

γ∈D∩α

h(t�γ + 1) =
∏

γ∈D∩α

π(t�γ + 1) = π(t),

since π respects products along branches by the normalitiy requirement on T/≡.

We can also improve our representation result of Proposition 1.1.7 a little bit, if
A is not too bad. With the next definition we capture the property of being not even
locally nice.

Definition 1.1.9. We say that A is nowhere nice in the small Souslin algebra B
if A is an atomless and complete subalgebra of B and for every b ∈ B the algebra
bA = {ba | a ∈ A} is not nice in B�b.
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Proposition 1.1.10. Let B be a small Souslin algebra and A a complete and atomless
subalgebra of B. Let

b :=
∑
{x ∈ B | xA is nice in B�x}.

Then bA is nice in B�b and (−b)A is nowhere nice in B�(−b).

Proof. It follows directly from the definitions that (−b)A is nowhere nice.
Clearly, the property “xA is nice in B�x” descends from x to y ≤B x, for if T,≡

is a nice representation for xA in B�x, then choose α < ω1 such that y is in 〈Tα〉cm,
the complete subalgebra of B�x generated by Tα. With Y = {t ∈ Tα | t ≤B y} the
tree R =

⊕
t∈Y T (t) souslinizes B�y and ≡ remains nice, when restricted to R.

We prove that this local niceness property is also preserved under taking arbitrary
sums. So let M be a subset of B, such that all elements of M have this property.
We want to show that for x :=

∑
M the subalgebra xA is nice in B�x. We can

without loss of generality assume that M is an antichain. Then M is countable.
Furthermore we can assume that also h′′M is an antichain by the argument used at
the beginning of the proof of Proposition 1.1.7. We can furthermore assume that
there is a Souslinization T of B such that M is a subset of T1, the first nontrivial
level of T , and T carries a decent t.e.r. ≡ which represents A.

Now for every element r of M there is by Corollary 1.1.8 a club Cr of ω1, such
that ≡ is nice on T (r)�Cr. Let C be the club intersection of all sets Cr for r ∈ M .
We claim that ≡ is nice on the subtree

S =
⊕
r∈M

T (r)�C

of T . So let s ≡ t in S and s′ > s. If there is a unique member r of M below
both nodes s and t, then we can apply the hypothesis on r. Otherwise we still have
rs := s�1 ≡ t�1 =: rt and h(rs) = h(rt) by our assumption. But then we have
with Proposition 1.0.2, that rth(s

′) > 0. So there is a node t∗ > rt equivalent to s′.
Finally, by niceness above rt, there also is t′ ≡ t∗ ≡ s′.
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1.2 Automorphisms and large subalgebras

Definition 1.2.1. Let B be a complete Boolean algebra. We say that A is a large
subalgebra of B, if A is a complete subalgebra of B and there is a countable subset
X of B, such that 〈A ∪X〉cm = B.

Note first, that being a large subalgebra of B is not only a property of A but of
the pair (B,A). For this reason we occasionally speak of large embeddings in this
context.

Note also that large subalgebras of Souslin algebras are always atomless and
therefore Souslin algebras, since for every atom a of A, the countable set X ∪ {a}
would have to generate the relative algebra B�a. But this is impossible, because
〈X〉cm is atomic itself by the distributivity of B (cf. [Kop89, Proposition 14.8]). It
also follows from distributivity that we can assume the set X from the definition to
be an antichain of B, if A is a large subalgebra of a Souslin algebra B.

The most elementary example of a Souslin algebra with a large subalgebra is the
following.

Example 1.2.2. Assume that B is Souslin and there is some b in B, such that the
relative algebras B�b and B�−b are isomorphic, say by the map ϕ : B�b → B�−b.
Then the set A of elements of the form a+ϕ(a) for a ≤ b is a complete subalgebra of
B and isomorphic to B�b and therefore atomless. Here we even have 〈A ∪ {b}〉 = B,
since every c ∈ B we be written as

c = b(cbϕ(cb)) + (−b)(c− b)ϕ−1(c− b),

which clearly lies in the subalgebra generated by A and b.

In the same manner we can construct more and more large subalgebras.

Example 1.2.3. Let X be an infinite partition of unity in B such that all the
relative algebras B�a for a ∈ X are pairwise isomorphic. Fix a family of commuting
isomorphisms ϕab : B�a → B�b between these relative algebras, i.e., ϕac = ϕbc ◦ ϕab

for all a, b, c ∈ X. (This can be done by first picking a member a0 ∈ X together
with isomorphisms ϕb : B�a0 → B�b for all b ∈ X such that ϕa0 = id and then
letting ϕab := ϕb ◦ϕ−1

a .) For every subset Y ⊆ X we can assembly the corresponding
relative algebras in the same manner as above:∑

b∈Y

ϕab(c) for c ≤ a
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(here we need, that the isomorphisms ϕab commute). Given Y ⊂ X we get a large
subalgebra AY of B�(

∑
Y ). Considering Cartesian products, we get for every par-

tition of X another large subalgebra of B. And if Q is a partition of X refining P ,
then AP is a subalgebra of AQ.

In particular, our Souslin algebra B has 2ℵ0 large subalgebras.

The next example shows the possibility of the other extreme.

Example 1.2.4 (Only one non-trivial subalgebra). Let B be a simple Souslin alge-
bra, i.e., B has no proper atomless and complete subalgebra. (Such an algebra was
constructed, assuming ♦, in [Jec72b]. Or take the regular open algebra of a full tree
T , cf. Section 1.5.2 and Lemma 1.5.7.) We claim that the Souslin algebra C := B×B
has only one proper atomless and complete subalgebra, which is furthermore large
in C.

Clearly, C has the large subalgebra A := {(b, b) | b ∈ B}. But as we have A ∼= B,
there are no (atomless and complete) subalgebras of C below A.

On the other hand we have C�(1, 0) ∼= C�(0, 1) ∼= B. So if there was any other
atomless and complete subalgebra A′ of C, then (0, 1) · A′ or (1, 0) · A′ would be
a nontrivial subalgebra of the respective relative algebra of C. But the latter are
simple, and the existence of such a subalgebra A′ is impossible.

In general, large subalgebras always occur when a Souslin algebra has non-trivial
symmetries.

Theorem 1.2.5. Let ϕ ∈ Aut B. Then the set of fixed points of ϕ is an atomless,
complete algebra A and there is an antichain A of B such that 〈A ∪ A〉cm = B.

We give two proofs of this theorem, the first exploiting the fact that automor-
phisms restrict to certain Souslinizations, while the second is an application of Froĺık’s
Theorem (cf. [Kop89, Theorem 13.23]), a deep result of the theory of complete
Boolean algebras.

Proof 1. Since every automorphism of a complete Boolean algebra is complete, A is
also a complete subalgebra of B.

We now show that no x ∈ A+ is an atom. Let T be an ω-branching Souslinization
of B�x s.t. ϕ�T ∈ AutT . It is clear that for all t ∈ T the fixed point equation
ϕ(
∑

orbϕ t) =
∑

orbϕ t holds, so
∑

orbϕ t ∈ A. If now for t ∈ T1 we have
∑

orbϕ t =
x, then orbϕ t = T1. But then for all s ∈ T2 s.t. t <T s and for all n ∈ ω \ {0} we
have ϕns 6<T t, so

∑
orbϕ s �B t is a fixed point of ϕ below x.

To construct the antichain A with 〈A ∪ A〉cm = B we fix a Souslinization T of B
s.t. ϕ restricts to an automorphism of T . We assume without loss of generality that
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the set of non-fixed points of ϕ is dense in B. Otherwise consider the relative algebra
B�x where x =

∑
{y ∈ B | (∃z ≤B y)ϕz 6= z}.

Now for every n ∈ ω the set of nodes t of T that are fixed by ϕn is a subtree. By
the subtree lemma (1.0.1) and our assumption we know that for n = 1 this subtree
is countable.

For n > 0 we define the following open sets An of T

An = {t ∈ T | ϕn�Tt = id and (∀0 < k < n)ϕk�Tt 6= id}

and for n = 0 we let

A0 = {s ∈ T | (∀t)(∀n > 0)s <T t⇒ t /∈ An}.

Again by the subtree lemma we see that for

n = 0 the set B0 of the s ∈ A0 with ϕks 6= s for every k > 0 is dense in A0, and for

n > 0 the set Bn of the t ∈ An with ϕkt 6= t for all k = 1, . . . , n − 1 is also dense in
An.

Finally we choose a maximal antichain A of
⋃

n∈ω Bn and have∑
A =

∑⋃
Bn =

∑⋃
An = 1B.

So if t ∈ T lies below s ∈ An, then x =
∑

orbϕ t ∈ A and sx = t.

Proof 2. Froĺık’s Theorem states that for every automorphism f of a complete Boolean
algebra A, there is a partition of unity {a0, a1, a2, a3} in A such that f�(A�a0) is the
identity and for i > 0 we have f(ai) · ai = 0.

We consider the countable family (ϕn | n ∈ Z) of automorphisms of B and let
(an0, an1, an2, an3) be a partition of unity given by Froĺık’s Theorem for ϕn, n ∈ Z.
Let X be the set of atoms of the complete subalgebra of B that is (completely)
generated by the elements ϕk(ani) for k, n ∈ Z and i < 4. Note that ϕ �X is a
permutation of X and if for some x ∈ X and n ∈ ω we have ϕn(x) = x then the
restriction of ϕn to B�x is the identical mapping.

We claim that 〈A ∪X〉cm = B. Since X is an antichain, it suffices to show that
for all x ∈ X and b ∈ B�x there is a member a ∈ A, a fixed point of ϕ, with ax = b.
For all integers n we know that either ϕn(b) = b or ϕn(b) is disjoint from x. Let
a = {ϕn(b) | n ∈ Z} and the proof is finished.
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In [Jec97, p. 266] Jech considers a complete Boolean algebra B and a complete
subalgebra A of B, such that the set {b ∈ B | bA = B � b} is dense in B. (The
effect on forcing with such a subalgebra is stated in [Jec97, Lemma 25.4]: A and
B give the same generic extensions.) The following technical lemma about optimal
witnesses of largeness rests on the fact that we are in that situation when A is a
large subalgebra of B. With these witnesses at hand, we can easily deduce the main
structural properties of large embeddings.

Lemma 1.2.6. Let A be large subalgebra of B and let X := {x ∈ B | B�x = A · x}.

a) The set X is dense in B and for x <B y ∈ X we have x ∈ X.

b) For every x ∈ X the restriction of the canonical projection h to B�x is an
isomorphism between B�x and A�h(x). The inverse map of h�(B�x) is given by
multiplication with x.

c) Every countable subset M ⊆ X with
∑
M = 1 (or even 1 −

∑
M ∈ X)

witnesses that A is large.

d) For every x ∈ X there is a maximal element y of X above x.

Assume that A�a 6= B�a for all a ∈ A+ and let Y denote the set of maximal elements
of X.

e) The image of Y under h is a maximal antichain of A.

f) Every set M ′ of pairwise disjoint elements of Y is extendible to a maximal
antichain M ⊂ Y of B.

g) For every maximal antichain M ⊆ Y we have h′′M = h′′Y .

h) Let a ∈ h′′Y . Then there is a cardinal κ(a) ≤ ℵ0, such that for all maximal
antichains M ⊆ Y the set M ∩ h−1{a} has cardinality κ(a):

|{y ∈M | h(y) = a}| = κ(a).

The announced optimal witnesses of largeness are simply the partitions of unity
A in B that are subsets of Y defined as above.

Proof. Let N ⊂ B be a maximal antichain of B witnessing that A is large in B, i.e.,
such that B = 〈A ∪N〉cm. Then the denseness of X stated in a) is easily seen, since
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for every b ∈ B there is an element a ∈ N comparable to b, and we clearly have
A · (ab) = B�(ab), so ab ∈ X. The second part of a) is trivial.

The proof of b) is a direct application of Proposition 1.0.2 and the definition of
the set X.

Now let for the proof of c) M ⊂ X with
∑
M = 1. We want to show that every

b ∈ B+ is of the form

b′ =
∑
{xh(bx) ∈M | xb >B 0}.

It is clear that b′ ≥B b, because h(b),
∑
M ≥ b. On the other hand we conclude from

part b) that xh(bx) = bx for x ∈ X, so b′ ≤B b as well. So we have 〈A ∪M〉cm = B.

To prove the existence of maximal elements of X, it is enough to verify that sums
over increasing sequences of length ω of elements of X lie in X. So let xn ∈ X and
xn+1 >B xn for all n. Set x =

∑
xn. We prove that every xn is in A · x as follows.

Fix n. For every k > n pick an element ak ∈ A that satisfies xkak = xn. Setting
a =

∏
k>n ak we get xka = xn for all k > n and therefore xa =

∑
xka = xn. But

then we already have A ·x = B�x, because every element y ∈ B�x can be decomposed
into yn := y(xn+1−xn), and by the above argument we have yn ∈ A ·x for all n ∈ ω.

For part e) of the lemma, we have that 1 =
∑
Y by a) and d) and therefore

1 =
∑
h′′Y . It remains to show that for all pairs x, y ∈ Y with h(x)h(y) >B 0 we

have h(x) = h(y). To reach a contradiction we assume the existence of a pair x, y ∈ Y
with a non-empty intersection of the h-images, h(x)h(y) >B 0, yet h(x)− h(y) >B 0.
This implies x−h(y) >B 0 for other wise h(x)h(y) = 0. We set z := y+(x−h(y)) >B y
and get zh(y) = y. This shows that y, z − y ∈ A+ · z, so z ∈ X (because z − y <B x
so z − y ∈ X), contradicting the maximality of y in X.

The proofs of f) and g) are trivial, so now for h). We assume without loss of
generality that h′′Y = {1} and let A,B ⊆ Y be maximal antichains of B. We induc-
tively transform A by virtue of a cut-and-paste-operation into maximal antichains
Ai in Y = h−1{1} with the cardinality |Ai| = |A| such that the elements b0, . . . , bi−1

are in Ai where b0, . . . is a fixed enumeration of B of order type κ ≤ ω.

First enumerate the elements of A with order type k ≤ ω and let ci = a0h(aib0)
for i < k. For distinct indices i, j we have h(aib0)h(ajb0) = 0, because h�(B�b0) is
an isomorphism. So the ci form a partition of a0, where ci = 0 is allowed and we
have c0 = a0b0 by b). Then clearly the set A1 := {b0} ∪ {ci + (ai − b0) | i < k} is a
partition in B. Finally we have

h(ci + (ai − b0)) = h(ci) + h(ai − b0) = h(a0)h(aib0) + h(b0 − ai)

= h(aib0 + (b0 − ai)) = h(b0) = 1
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so indeed Ai ⊂ h−1{1}. For the next step, ignore b0 in A and B and start with an
enumeration of A such that a1b1 >B 0. Iterating this procedure we either get Ak = B
if A and is finite or we see that both sets, A and B are infinite.

Corollary 1.2.7. If B is homogeneous and A is large in B, then A and B are iso-
morphic.

Proof. If, in the notation of the last lemma, we let A := h′′Y and κ = |h′′Y | ≤ ℵ0,
then we clearly see that A ∼= Bκ ∼= B where the second isomorphism holds by
homogeneity and the chain condition.

Once we have enough local isomorphisms as in part b) of Lemma 1.2.6, it is
easy to glue them together in order to obtain a Boolean automorphism. We obtain
a converse to Theorem 1.2.5 stating that every large subalgebra of a small Souslin
algebra B is the set of fixed points of some automorphism ϕ of B.

Theorem 1.2.8. Given a large subalgebra A of B, there is an automorphism ϕ of B
with A = {x ∈ B | ϕ(x) = x}. If Y defined as in Lemma 1.2.6 has an infinite subset
which is an antichain, then there are 2ℵ0 such automorphisms.

Proof. We only consider the case that h(y) = 1 for all y ∈ Y . Choose a maximal
antichain A ⊂ Y . In the case, that A is finite enumerate its elements by a0, . . . , an.
For k < n and x ∈ B�ak let ϕk(x) := ak+1h(x) and for x ∈ B�an let ϕn(x) := a0h(x).
Then

ϕ : B→ B, x 7→
∑
k≤n

ϕk(akx)

is as required.
Enumerate A by ak, k ∈ Z if infinite. For k ∈ Z define ϕk as above in the case

k < n and modify the definition of ϕ in the obvious way.
The cardinality statement is then trivial by the number of possible choices to

make.

We now return to small Souslin algebras and deduce a nice representation for a
large subalgebra above an optimal witness of largeness.

Proposition 1.2.9. Every large subalgebra A of a small Souslin algebra B is nice in
B.

Proof. We construct a Souslinization of T which is nice for A. This is similar to the
proof of Proposition 1.1.7. Let T1 be a maximal antichain of B consisting of maximal
elements x with A ·x = B�x, i.e. T1 ⊂ Y in the notation used above. Then A := h′′T1
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is an antichain. Now fix for each a ∈ A an inverse image ba ∈ h−1(a) ∩ T1. In order
to construct the higher successor levels, we first refine the nodes above ba for each
a ∈ A and then copy these refinements by virtue of the isomorphisms

ψa,b : B�ba → B�b, x 7→ bh(x)

for all b ∈ h−1(a) ∩ T1. This automatically transfers to limit levels and guarantees
that h′′Tα is an antichain also for limit α. We refine Tα such that every t ∈ Tα is
split in infinitely many parts.

Finally, we claim that the relation

s ≡ t :⇐⇒ ht s = ht t and h(s) = h(t)

is a nice t.e.r., so let s ≡ t on level Tα and let s′ be a T -successor of s. Then
t′ = (t�1) · h(s′) is the witness of this instance of niceness.

The representation given above can also be read in the other direction, as a
representation of B with respect to A, which is a very simple case of the sheaf
representation of a Boolean algebra over a subalgebra, as in [Kop89, §8.4].

Corollary 1.2.10. Assume that A is large in the Souslin algebra B. In the notation
of Lemma 1.2.6, we have the following representation of B:

B ∼=
∏

a∈h′′Y

(aA)κ(a).
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1.3 Nowhere large subalgebras

Definition 1.3.1. Let T be a Souslinization of B and A a complete subalgebra of
B.

a) A is nowhere large (in B) if for all b ∈ B+ we have bA 6= B�b.

b) A t.e.r. ≡ on T is∞-nice if it is nice and for all α < β < ht(T ) and for all s ∈ Tβ,
the projections t 7→ t�α, when restricted to the ≡-class of s, are ∞-to-one, i.e.,

for all r ∈ (s�α)/≡: |{t ∈ s/≡| t�α = r}| = ℵ0.

c) A is∞-nice in B if there is a club C of ω1, such that T�C carries an∞-nice t.e.r.
≡ that represents A, i.e., {

∑
s/≡| s ∈ T} is dense in A.

Example 1.3.2. Let S and T be ℵ0-branching trees such that their tree product
S ⊗ T is Souslin. (E.g., the principle ♦ implies, that for every given Souslin tree
S there is a Souslin tree T , such that S ⊗ T is c.c.c., cf. [Lar99, Lemma 7.3].) Set
B := RO(S ⊗ T ) and (s, t) ∼ (u, v) if and only if s = u. Then ∼ is an ∞-nice t.e.r.:
If s <S s

′ and htS(s) = htT (t) = htT (r) and t′ >T t then for any r′ > r we have that
(s′, t′) ∼ (s′, r′), so ∼ is nice. The ∞-part follows from the branching assumption on
T . The quotient tree (S ⊗ T )/∼ is obviously isomorphic to S. And the subalgebra
A represented by ∼ is ∞-nice in B.

Proposition 1.3.3. Let A be a nice subalgebra of B. Then A is ∞-nice iff it is
nowhere large.

Proof. Let T souslinize B, and let the nice t.e.r. ≡ on T represent A. We start from
left to right. We show for every node s of T , that A · s 6= B�s. Pick any node t above
s in T . Since ≡ is ∞-nice, there is a node r above s and equivalent to t, so t 6∈ A · s.
(So what we actually have shown, is A · s = {0, s}.)

For the other implication let A be nowhere large. We define a club set C ⊂ ω1,
such that the restriction of ≡ to T �C is ∞-nice. The inductive definition of C is
trivial once we have proven the following fact. Given any countable ordinal α there
is a β ∈ (α, ω1) such that for all nodes t ∈ Tβ the set

{r ∈ t/≡ | r�α = t�α},

i.e., the set of nodes above t�α and equivalent to t, is infinite.
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To prove the claim, fix α < ω1 and s ∈ Tα. For pairs of nodes r <T t define n(r, t)
to be the number of successors of r that are equivalent to t. Now for all nodes r, t
we have by the niceness of ≡

s <T r <T t⇒ n(s, r) ≤ n(s, t).

Now assume towards a contradiction that in each level Tβ above Tα there is some
node r ∈ Tβ for which n(s, r) is finite. Then there is a natural number N such that

S := {r ∈ T | r ≤T s or (s <T r and n(s, r) ≤ N)}

is a subtree of T of height ω1. Assume furthermore that N is minimal with this
property. Then there is, by virtue of the Subtree Lemma 1.0.1, a node r >T s such
that for all t >T r the value n(s, t) is exactly N . Together with ≡’s niceness, this
implies that for all t >T r the ≡-class of t contains only one node above r which is
t. But then A · r = B�r, contradicting the hypothesis on A to be nowhere large in
B.

1.3.1 ∞-nice subalgebras and homogeneity

Proposition 1.3.4. Every small and homogeneous Souslin algebra has a homoge-
neous Souslinization.

Proof. Let B be homogeneous and T be any Souslinization of B. Our task is to find
a club C ⊂ ω1 such that T �C is a homogeneous Souslin tree. By the homogeneity
of B we can choose for every pair s, t ∈ T of the same height α < ω1 a Boolean
isomorphism ψst : B�s→ B�t. By the Restriction Lemma for Isomorphisms between
Souslin algebras, there is also a club Cst containing α, such that ψst�(T (s)�Cst) is an
isomorphism onto T (t)�Cst.

Finally, we define C to be the range of the normal sequence (γν) defined as follows:
Set γ0 = 0 and let for ν < ω1

γν+1 := min
⋂

s,t∈Tγν

Cst \ (γν + 1).

Theorem 1.3.5. Every small, homogeneous Souslin algebra has a nice and nowhere
large subalgebra.
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Proof. Let T be a homogeneous and ℵ0-branching Souslin tree, i.e., for every pair
s, t of nodes on the same level of T there is a tree isomorphism between T (s) and
T (t). We show that T carries an ∞-nice t.e.r. ≡ using the homogeneity of T .

After construction stage α we will have the t.e.r. ≡ on T �α + 1, sets Iγ ⊂ Tγ

of representatives of the ≡-classes for γ ≤ α and a family of isomorphisms {ϕst :
T (s) ∼= T (t) | s ≡γ t, γ ≤ α}. These isomorphisms commute, i.e. ϕtt = idT (t) and
ϕst = ϕrt ◦ ϕsr for all r ≡γ s ≡γ t, and they have the following coherence property:
for s, t ∈ Tα and r = s�γ, u = t�γ where γ < α we have ϕst = ϕru�T (s).

The existence of the ϕst will assure that ≡ is a nice t.e.r., and so the ≡-classes
on limit levels are not thinned out with respect to their predecessing classes.

In the successor case of α + 1, we consider the equivalence relation ≡ on Tα,
the set of representatives Iα ⊂ Tα and the isomorphisms ϕst for s ≡α t, all given
by the inductive hypothesis. In order to define ≡ on Tα+1, we first choose for each
s ∈ Iα a partition of succ(s) into ℵ0 infinite sets Pn, n ∈ ω. Then for all r, t ≡ s
and u ∈ succ(r) and v ∈ succ(t) we let u ≡ v if and only if ϕrs(u) and ϕts(v) are in
the same partition set Pn. (Of course, if r, t ∈ Tα are not equivalent, then neither
their successors are.) We pick a set of representatives Iα+1 ⊂

⋃
s∈Iα

succ(s). Finally
we have to choose the tree isomorphisms ϕst for all equivalent pairs s, t ∈ Tα+1 such
that the above coherence requirement is satisfied. Fix s ∈ Iα+1 and choose for T -
successors r, t of s− := s�α, both equivalent but unequal to s, isomorphisms ϕst

and ϕsr respectively and let ϕrt = ϕst ◦ ϕ−1
sr . For r, t, both equivalent to s, but not

necessarily successors of s−, define

ϕrt := (ϕs−t−�T (v)) ◦ ϕuv ◦ (ϕr−s−�T (r)),

where u := ϕr−s−(r) and v := ϕt−s−(t).
For a countable limit ordinal, there is only one choice for the equivalence relation

≡ on Tα. For s, t ∈ Tα we let s ≡ t if and only if s�γ ≡ t�γ for all γ < α. Fix
s ∈ Tα. For every γ < α and r ≡ s�γ there is some t ∈ Tα equivalent to s and
above r, namely t = ϕs�γ,r(s). So niceness is maintained up to level α and for these
equivalent pairs (s, t) we already have the isomorphisms ϕst = ϕs�γ,r�T (s) at hand.
But there can be equivalent nodes r and t on level α, such that for all their pairs
u, v of respective predecessors on the same level we have ϕuv(r) 6= t. However, the
≡-class of s splits into a partition such that for all r, t ≡ s, the nodes r and t have
such an inherited isomorphism if and only if they are members of the same element
of the partition. After choosing a set of representatives J for this partition of the
≡-class of s and fixing isomorphisms ϕrt for representatives r, t ∈ J we can construct
the still missing isomorphisms in the same manner as above.

We finally choose a set Iα of representatives for the ≡-classes of Tα without any
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further restriction. This finishes the construction, and we hope, that it is clear from
this construction that the result is an ∞-nice t.e.r. on T .

Remark 1.3.6. The chain homogeneous Souslin algebras constructed in Chapter 2
have ∞-nice subalgebras by the last theorem. If B is chain homogeneous, then B
is in particular isomorphic to each of its atomless and complete subalgebras. As a
consequence, a chain homogeneous Souslin algebra cannot have pairs of independent
subalgebras as the Souslin algebra of the type RO(S ⊗ T ) from Example 1.3.2 does:
(isomorphic copies of) ROS and ROT .

1.3.2 Hidden symmetries and nowhere nice subalgebras

The following is an example of a Souslin algebra without large subalgebras (by rigid-
ity, cf. Theorem 1.2.8) but with an ∞-nice subalgebra. Lemma 1.3.8 shows that in
such a case rigidity does not reflect to subalgebras. We will then use the main idea
of the proof of Lemma 1.3.8 to deduce the existence of non-nice subalgebras once B
has a non-large subalgebra.

Example 1.3.7 (A rigid Souslin algebra with a nice subalgebra under ♦). We aim
at constructing a Souslin tree T with an ∞-nice t.e.r. ≡. Rigidity of B = ROT is
obtained by designing T such that for all club sets C of ω1 the restricted tree T�C is
rigid.

Let (Rν)ν<ω1 be a ♦-sequence. We inductively construct T as an ℵ0-branching
tree on the supporting set ω1 along with the t.e.r. ≡. So in successor steps we
appoint to each maximal node ℵ0 direct successor nodes and extend ≡ in any way
that maintains ∞-niceness.

In the limit step α we have so far constructed T�α and ≡ on this tree. We consider
the Polish space X = [T �α] of cofinal branches through T �α and the equivalence
relation ∼ on X induced by ≡ via

x ∼ y ⇐⇒ (∀γ < α)x�γ ≡ y�γ.

(For a more detailed treatment of the topological terminology use here, we refer to
Sections 2.1.3 and 2.2.2.) The ∼-classes are perfect (and non-empty) subsets of X.
The level under construction, Tα, corresponds to a countable and dense subset Q of
X. In order to obtain a nice extension of ≡ we have to choose this countable set Q
in a way that guarantees, that for every ∼-class a ⊂ X the set a∩Q is either empty
or dense in a.

Every automorphism ϕ of T�C for some club C of ω1 induces an auto-homeomor-
phism ϕ on X. In order to achieve a rigid algebra we have to choose some limit
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levels in a way that prevents some automorphisms (proposed by the ♦-sequence)
from extending. This is done by first choosing a branch x ∈ X and then the dense
and countable set Q ⊂ X such that x ∈ Q but ϕ(x) 6∈ Q.

Now for the choice of Q in the following three cases:

1) If α < ω · α or Rα is neither a maximal antichain of T �α nor does it code an
automorphism of T�C for some club C of α, then we first choose a countable and
dense set Q0 of X. Then let for x ∈ Q0 be Qx a countable and dense subset of
x/∼ with x ∈ Qx. Finally set Q =

⋃
x∈Q0

Qx.

2) If α = ωα and Rα codes an automorphism ϕ, then we choose x0 ∈ X and continue
as in the first case, only that we require x0 ∈ Q0 and ϕ(x0) 6∈ Q0, Qx for all x ∈ Q0.
This is always possible.

3) If Rα is a maximal antichain of T�α, we want, as in classical Souslin tree construc-
tions under ♦, that every node of Tα lies above some node of Rα. A proof of the
fact that this can be achieved together with the denseness of Q in the ∼-classes
of the extended branches can be found in Chapter 2, cf. the Second Reduction
Lemma 2.2.15.

Note that we can arrange the coding such that we do not have to consider a coinci-
dence of cases 2) and 3).

Lemma 1.3.8. Let A be a nice and nowhere large subalgebra of B. Then there is an
nice and nowhere large subalgebra C of B, such that A is large in C:

A ≤large C ≤∞-nice B.

Proof. Let T souslinize B and ≡ on T be ∞-nice and represent A in T . Choose a
countable limit λ and let ∼ coincide with ≡ on T �(λ + 1). Now we divide every
∼-class a of Tλ in two indexed parts a = a0∪̇a1 such that for every pair s ∈ a0 and
r <T s there is a node t ∈ a1 above r and vice versa, i.e., for r < t ∈ a1 there
exists s ∈ a0 ∩ T (r). This can be done after choosing an enumeration of length ω
of the predecessor set

⋃
{s ∈ T | (∃t ∈ a)s <T t}. These partitions define a map

f : Tλ → 2, associating to every node s the index i of its partition member s ∈ ai.
Now let for α > λ and s, t ∈ Tα

s ∼ t :⇔ s ≡ t and f(s�λ) = f(t�λ).

Then ∼ is clearly ∞-nice when restricted to T�C where C = {0} ∪ ω1 \ λ+ 1. This
shows that C := 〈

∑
s/∼| s ∈ T 〉cm is nice and nowhere large in B.
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Furthermore, for every s ∈ T above level λ + 1 the ≡-class of s is partitioned
into exactly two ∼-classes. So we can define the automorphism ϕ of (T�C)/∼ that
interchanges for each ≡-class the corresponding ∼-classes. Then ϕ naturally extends
to C and has A as its fixed point algebra which is by Theorem 1.2.5 large in C.

The main idea of the last proof, that of dividing the classes on a limit level in
two “dense” subsets, can be used to construct non-nice subalgebras.

Theorem 1.3.9. If a small Souslin algebra B has a nice and nowhere large subalgebra
A then there is a nowhere nice (cf. Definition 1.1.9) subalgebra A′ of B (and A is a
nice subalgebra of A′).

Proof. Let T souslinize B and≡ represent A in T . We inductively construct an almost
nice, but non-nice refinement ≡′ of ≡, which yields A′ as stated in the theorem. Up to
level Tω the new relation coincides with≡. Limit levels have to be treated canonically,
and on double successor steps α + 2 we choose the minimal possible refinement by
meeting

s ≡′ t :⇐⇒ s ≡ t and s�(α+ 1) ≡′ t�(α+ 1).

To define ≡ on Tα+1 for a countable limit α, we first refine ≡′ on Tα to the equivalence
relation ∼ in a way such that every ≡′ class splits in infinitely many ∼-classes and
for every s ≡′ t ∈ Tα and u <T t, there is a successor of u in s/∼. (One could say
that the ∼-classes lie densely in the sense of [T �α] in the ≡′-classes.) Then let for
s, t ∈ Tα+1:

s ≡′ t :⇐⇒ s ≡ t and s�α ∼ t�α.

We finally show, that no Souslinization S of B admits a nice t.e.r. representing A′.
We only need to consider restrictions S = T �C of T for a club set C ⊂ ω1. So let
α ∈ C be a limit ordinal and choose s, t ∈ Tα, such that s ≡′ t but s 6∼ t. Then for
every r ∈ T�C above s there is no successor of t which is ≡′-equivalent to r. So s, t, r
witness that A′ is not nice.

If we now let C be the set of all countable limit ordinals joined by 0, and defining
on T/≡′ the t.e.r. ' by

(s/≡′) ' (t/≡′) :⇐⇒ s ≡ t,

it is easy to see, that the ∞-niceness decends from ≡ to '.

Corollary 1.3.10. a) Every small Souslin algebra with an independent pair of com-
plete and atomless subalgebras as well as every homogeneous and small Souslin
algebra have non-nice subalgebras.
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b) If there is a non-large, complete and atomless subalgebra of B then there is also
one which is not nice.

Proof. For part a), let A,A′ be an independent pair of atomless and complete sub-
algebras of B. If any of A or A′ is not nice, there is nothing to prove. If A and A′

are nice subalgebras of B, then so is 〈A ⊕ A′〉cm by independence of A and A′. But
A and A′ are also nowhere large, so they are ∞-nice. By Theorem 1.3.9, B also has
a non-nice subalgebra.

Since every homogeneous, small Souslin algebra has an ∞-nice subalgebra, the
same argument applies here.

Now assume for the proof of part b), that A is a nice subalgebra of B but neither
nowhere large nor large. Let

b :=
∑
{a ∈ B | aA = B�a}

be the sum of all elements in which A is large. Then A · (−b) is nowhere large and
nice in B�(−b). But then there is by Theorem 1.3.9 a nowhere nice subalgebra C of
B�(−b) above A · (−b). Finally 〈C∪B�b〉 is complete, atomless and not nice in B.

In Example 1.2.4 we have seen a Souslin algebra B with a unique subalgebra
which is furthermore large in B and therefore nice. Now we have proven that we
always find a non-nice subalgebra unless there are only large subalgebras in B.

A natural question to ask is, whether there is always a nice subalgebra if there is
any (atomless and complete). We do not know the answer. But we can vary Jech’s
construction of a simple Souslin algebra (using ♦) in order to get a Souslin algebra B
with a nowhere nice subalgebra A, such that A itself is a simple Souslin algebra and
is therefore of another type as the one constructed in the last proof. In particular,
below A there cannot be a nice subalgebra of B, since there is none at all.

Nevertheless, it is impossible to use the same trick in order to destroy subalgebras
above A.
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1.4 Summary of the structure theory

This section collects the structural results we have found so far.

1.4.1 Localisation of embedding properties

The general complete subalgebra A of a Souslin algebra has not yet been classified
by the previous sections. Consider for example a Souslin algebra B with a nowhere
nice subalgebra A. Then A × B has the complete subalgebra C := {(a, a) | a ∈ A},
which is not nice but is large below (1, 0), i.e., (1, 0) · A is large in B�(1, 0).

The next theorem states that we always can decompose a Souslin algebra with
respect to a given complete subalgebra into relative algebras, where the properties
considered appear in their pure form.

Theorem 1.4.1. Given a small Souslin algebra and a complete subalgebra A of B,
there are uniquely determined and pairwise disjoint elements a, b, c, d of B, such that

1.) a+ b+ c+ d = 1B;

2.) aA is atomic;

3.) bA is large in B�b;

4.) cA is ∞-nice in B�c;

5.) dA is nowhere nice in B�d.

Proof. The element a is simply the sum of the atoms of A. So from now on we can
assume that A is atomless. By Proposition 1.1.10 we have to let d be the sum of all
elements x ∈ B such that xA is nowhere nice in B�x. And Lemma 1.2.6 gives us,
that b = {x ∈ B | xA = B�x}. It is finally trivial that for c := 1 − (a + b + c) the
algebra cA is nice and nowhere large in B�c.

1.4.2 Implications between structural properties

We try to give an overview of the structural implications we have found in the form
of a diagram. This diagram should be read as: “If the small Souslin algebra B has
a ..., then it also has a ...”, where “B has a homogeneity” has to be translated with
“B is homogeneous”.

Except for the places marked by question marks, the diagram contains all the
implications there are, as argued below.
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non-trivial automor-
phism

l
homogeneity −→ large subalgebra

↓

∞-nice subalgebra ←−
indep. pair of al., cm.
subalgebras whose sum is
dense

↓? ↓?

nowhere large subalgebra ←−
independent pair of
atomless, complete
subalgebras

l
nowhere nice subalgebra

Table 1.1: Implication digram for subalgebra and symmetry properties

The only item missing in this diagram is the result of Lemma 1.3.8 on hidden
symmetries, i.e., the fact that a Souslin algebra that has an ∞-nice subalgebra also
has a non-rigid (and ∞-nice) subalgebra.

We have not included the references to the proofs of the implications, but we
hope that the reader can quickly find them in the previous two sections.

We conclude this section with a list of counter-examples for the non-implications.
Concerning the hypotheses needed for their existence, we do not know whether the
negation of Souslin’s hypothesis SH is sufficient. But in the known models of set
theory with only few yet any Souslin algebras, e.g. as constructed in [AS93, Section
6], they can all be found except for the (chain) homogeneous ones.

• In Example 1.2.4 we gave a Souslin algebra B with exactly one proper atomless
and complete subalgebra, which is furthermore large. This algebra has therefore
no nowhere large subalgebra and is not homogeneous, for it admits only one
non-trivial automorphism.

• In the proof of Proposition 1.6.2 we will construct a rigid Souslin algebra C
which is (the completion of) the free product of two Souslin algebras A and
B. These two are therefore independently embedded in C. This shows that
a Souslin algebra of the form A⊕ B does not have to admit any non-trivial
automorphisms.
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• The main results of Chapter 2 of this thesis are ♦+-constructions of chain
homogeneous Souslin algebras. These are homogeneous and therefore have
nowhere large subalgebras, but Lemma 2.3.4 states that they do not admit
independent pairs of atomless, complete subalgebras.

As the question marks in the diagram are quite dissatisfactory, we would like to
know whether or not the existence of a nowhere nice subalgebra implies that of a
nice one, and similarly for the pairs independent subalgebras.
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1.5 Strongly homogeneous and full Souslin trees

We take a closer look at two classes of Souslin trees, that are widely known among set
theorists, although often under different names. So in each of the sections introducing
one of these two classes we give a listing of the names we have found in the literature.

1.5.1 Strong homogeneity

Strongly homogeneous Souslin trees occur quite often in set theoretic literature. In
[LT01] they are called coherent Souslin trees and play a central role in the solution
of Katetov’s Problem on the metrizability of certain compact spaces. Shelah and
Zapletal show in [SZ99, Theorem 4.12] that Todorcevic’s term for a Souslin tree
in one Cohen real is strongly homogeneous, Larson gives a direct ♦-construction
([Lar99, Lemma 1.2]), and also Jensen’s construction under the same hypothesis of
a 2-splitting, homogeneous tree, as carried out in [DJ74, Chapter IV], is easily seen
to be strongly homogeneous.

Definition 1.5.1. A Souslin tree T is called strongly homogeneous if there is a family
(ψst | s, t ∈ T, ht s = ht t) which has the following properties:

1) ψst is an isomorphism between the tree T (s) of nodes above s and the tree T (t)
of nodes above t and ψss is the identity.

2) (commutativity) For all nodes r, s, t of the same level of T we have ψrt = ψst ◦ψrs.

3) (coherence) For nodes r, s from the same level, t above r and u = ψrs(t) we require
that ψtu is the restriction of ψrs to the tree T (t) ⊂ T (r).

4) (transitivity) If t and u are nodes on the same limit level Tα, then there is a level
Tγ below such that for the corresponding predecessors r of t and s of u we have
ψrs(t) = u.

The crucial property of a coherent family is that of transitivity, which means that
every limit level is a minimal extension of of the initial segment below with respect
to the coherent family on that initial segment. Given any homogeneous tree, it is
easy to define a family on T with the properties 1-3) above.

One feature of Jensen’s tree mentioned above is that it has exactly ℵ1 automor-
phisms (cf. [DJ74, Theorem IV.4.ii]). As stated in the next proposition, this number
of automorphisms (weakened to the continuum for the sake of consistency with ¬CH)
is a common feature of strongly homogeneous Souslin trees and their regular open
algebras. This also shows that the chain homogeneous Souslin algebras constructed
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in Chapter 2 are not strongly homogeneous, since they are constructed under ♦+

(which implies CH), and they have 2ℵ1 > 2ℵ0 automorphisms. (Here we call a Souslin
algebra strongly homogeneous if it has a strongly homogeneous Souslinisation.) In
general, the size of the automorphism group of a Souslin tree is either finite or between
(and including) the continuum and 2ℵ1 . (This was shown by Jech in [Jec72a].)

Proposition 1.5.2. Let T be a strongly homogeneous Souslin tree. Then |AutT | =
|Aut(ROT )| = 2ℵ0 .

Proof. It is easily seen (and also follows form the result of Jech just cited), that a
homogeneous tree has at least 2ℵ0 automorphisms and so has its regular open algebra.
On the other hand we show, that for any club C ⊆ ω1 and ϕ ∈ Aut(T�C) we find a
maximal antichain A of T , such that ϕ(t) = ψsϕ(s)(t) for t > s ∈ A, i.e., ϕ above A
is given by the countably many maps ψsϕ(s) for s ∈ A.

To reach a statement contradicting the transitivity of the family (ψst), we assume
that there is a node r ∈ T such that for each successor s of r there is a node t ≥ s,
such that ϕ(t) 6= ψsϕ(s)(t). Without loss of generality we can now assume that C = ω1

and that r is the root of T . We find inductively an increasing sequence of ordinals
αn such that for all nodes t ∈ Tαn+1 we have

ϕ(t) 6= ψt�αnϕ(t�αn)(t).

Let α be the supremum of the αn and t ∈ Tα. Since α is a limit ordinal we by
transitivity have an n ∈ ω such that ϕ(t) = ψt�αnϕ(t�αn)(t) which is impossible by the
choice of the αn.

The next result is our first on the existence of certain decompositions of strongly
homogeneous Souslin trees. (A second one follows in Section 1.5.4.) This again
gives a proof of the fact that strongly homogeneous Souslin algebras cannot be chain
homogeneous, since by Lemma 2.3.4 chain homogeneous Souslin algebras cannot have
an independent pair of atomless, complete subalgebras.

Theorem 1.5.3. Every ℵ0-branching, strongly homogeneous Souslin tree T is (iso-
morphic to) the tree product of n strongly homogeneous Souslin trees for any given
natural number n > 0.

Proof. We give the proof for n = 2, from which the general result follows by induc-
tion. (It is also easy to draw a direct generalisation to arbitrary n ≥ 2.) Given the
strongly homogeneous Souslin tree T with the coherent family
(ϕs,t : (∃α)s, t ∈ Tα) of tree isomorphisms, we inductively define two ∞-nice t.e.r.s
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≡ and ∼ on T , which are independent in the following sense: for every pair s, t of
nodes of the same height the intersection s/≡ ∩ t/∼ is non-empty of size one.

We use a partition pattern of rows (for ≡) and columns (for ∼) of the Cartesian
product ω×ω. In the case of T1 where all nodes are direct successors of a single one,
the root, choose a bijection f0 between T1 and ω × ω. Define for s, t ∈ T1

s ≡ t :⇐⇒ the first coordinates of f0(s) and f0(t) coincide

and
s ∼ t :⇐⇒ the second coordinates of f0(s) and f0(t) coincide.

In successor stage α + 1 of the construction the same will be done for the direct
successors of a single anchor node r ∈ Tα: Choose a bijection fα between the succ(r)
and ω × ω and define ≡ and ∼ for s, t ∈ succ(r) as above. For the copying of this
pattern from the set of successors of the anchor node to the remaining nodes of
level α + 1 we use the automorphisms ϕru where u ∈ Tα, i.e., for s, t ∈ Tα+1 with
s ∈ succ(u) and t ∈ succ(v) we have

s ≡ t :⇐⇒ u ≡ v and the first entries of fα ◦ ϕur(s) and fα ◦ ϕvr(t) coincide

and

s ∼ t :⇐⇒ u ∼ v and the second entries of fα ◦ ϕvr(s) and fα ◦ ϕur(t) coincide.

On limit levels of T the relations ≡ and ∼ are already determined. It follows directly
that ≡ and ∼ are (∞-)nice: If r ≡ s and t is above r, then ϕrs(t) ≡ t is above s.

The coherent families of isomorphisms on T/≡ and T/∼ are easily defined using
the coherent family on T . For r, s on the same level ant t ∈ T (r) we simply let

ψr/≡,s/≡(t/≡) = ϕrs(t)/≡ .

The independence from the choice of the representants follows from the construction
and the properties commutativity, coherence and transitivity from the corresponding
properties of (ϕst). Since the definitions of ≡ and ∼ are totally symmetric, the same
applies to ∼, and so the quotient trees are indeed strongly homogeneous.

To finish the proof we inductively show that on all levels Tα for 0 < α < ω1

each ≡-class meets every ∼-class in exactly one node. For T1 this is clear from the
construction, and for a successor Tα+1 it follows with the same argument from the
inductive assumption. So let s, t be nodes of countable limit height α. We search
for r ∈ Tα with s ≡ r ∼ t (and then show that it is unique). By transitivity there
is γ < α such that ϕuv(s) = t for u = s�γ and v = t�γ. The inductive assumption
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for γ yields a unique node w ∈ Tγ with u ≡ w ∼ v. Set r := ϕuw(s) = ϕvw(t).
An easy induction then gives s ≡ r ∼ t. To prove uniqueness, assume that there is
a second node r′ with this property. Let γ < α be large enough that s, t, r, r′ are
mapped to each other by the automorphisms corresponding to their predecessors on
level γ and such that the distinction between r and r′ is revealed below level γ. So
r�γ 6= r′�γ yet both lie in the intersection of u/≡ and v/∼ (with u, v defined as
above) – contradiction!

Though, of course, not every tree product of two strongly homogeneous Souslin
trees is Souslin again (e.g. take T ⊗ T ), there is a converse to the last theorem.

Proposition 1.5.4. If S and T are strongly homogeneous Souslin trees and the tree
product S ⊗ T satisfies the c.c.c., then S ⊗ T is a strongly homogeneous Souslin tree
as well.

Proof. Let (ϕrs) and (ψtu) be the coherent families of S and T respectively. Then it
is easily verified that the maps

ρrt,su : (S ⊗ T )(r, t)→ (S ⊗ T )(s, u), (x, y) 7→ (ϕrs(x), ψtu(y))

form a coherent family of isomorphisms for the product tree.

1.5.2 Fullness

Also full Souslin trees are quite ubiquitous, though they often appear under different
names. E.g. the well known two types of generic Souslin trees as constructed by Jech
and Tennenbaum to show the consistency of the negation of Souslin’s hypothesis are
full. The term “full” is taken from Jensen’s handwritten notes [Jen], where he shows,
that his tree as constructed under ♦ in [DJ74, Theorem V.1.1] is full. Abraham and
Shelah describe the same property in [AS93] as being Souslin and all derived trees
being Souslin, too. Full trees are called free trees in [SZ99, §4.0] and [Lar99, §8].
Fuchs and Hamkins in [FH06] introduce the properties of being n-fold Souslin off the
generic branch and the n-absolute UBP for all n ∈ ω. We introduce the parametrised
notion of n-fullness to demonstrate the uniform equivalence of these two concepts.

Definition 1.5.5. a) Let n be a natural number. We say that a Souslin tree T
is n-full if for every subset P of size n of some Tα, α < ω1, the tree product⊗

s∈P T (s) satisfies the countable antichain condition. The tree T is full if it is
n-full for all n ∈ ω.
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b) A Souslin tree is said to be n-fold Souslin off the generic branch, if for any sequence
~b = (b0, . . . , bn−1) generic for the n-fold forcing product of (the inverse partial
order of) T and any node s ∈ T \

⋃
i∈n bi, the subtree Ts of all nodes of T

comparable to s has the c.c.c. (and is therefore a Souslin tree) in the generic

extension M [~b].

It is trivial that the properties just defined all are handed down to subtrees. They
also can be viewed as properties of the regular open algebras as shown below. Note
that the n-fold tree product T⊗n := T ⊗ · · · ⊗ T of a single tree T is a dense subset
of T n, the n-fold Cartesian (or forcing-) product of T . So their regular open algebras
are canonically isomorphic. We sometimes identify one with the other to simplify
notation.

We start our consideration of full trees by proving the equivalence of iterated
Souslinity off the generic branch with the parametrised fullness condition we intro-
duced above. Though it seems likely that the construction in [FH06] mentioned above
can be modified to yield an n-full but not n + 1-full tree, the separation between
the different degrees of n-fullness has not been established yet. We will do this in
Corollary 1.5.13.

Lemma 1.5.6. For a positive natural number n, a normal Souslin tree T and its
regular open algebra B the following statements are equivalent.

a) T is n-fold Souslin off the generic branch.

b) T is n+ 1-full.

c) For every antichain P ⊂ B of size n+ 1, the free product of the relative algebras
corresponding to the elements of P is a Souslin algebra, i.e.,

⊕
b∈P B�b satisfies

the countable chain condition.

Proof. We start with the implication (b→a). So assume that T is n+ 1-full and let
~b = (b0, . . . , bn−1) generic for T⊗n. Choose α < ω1 big enough, such that the nodes
ti := bi(α) are pairwise incompatible. Finally, pick a node tn ∈ Tα distinct from all
the bi(α). By our fullness assumption on T , the product tree

⊗
i∈n+1 T (ti) satisfies

the countable antichain condition. But then M [~b] �”T (tn) is Souslin” by a standard
argument concerning chain conditions in forcing iterations. Now it is easy to see that
T is n-fold Souslin off the generic branch.

For the other direction we inductively show that T is m-full for m ≤ n + 1,
assuming that T is n-fold Souslin off the generic branch. The inductive claim is
trivial for m = 1, so let m ≥ 1 and let s0, . . . , sm be pairwise distinct nodes of
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the same height. Then for any generic sequence ~b = (b0, . . . , bm−1) for
⊗

i∈m T (si)

we know that T (sm) is Souslin in the generic extension M [~b]. Finally the two-
step iteration

⊗
i∈m T (si) ∗ Ť (sm) is isomorphic to

⊕
i∈m+1 T (si) and satisfies the

countable antichain condition.
Since it is trivial that c) implies b), we finally show that n-fullness is really a

property of the regular open algebra. It is easy to see that for every n-full tree T
and every club set C in ω1, the restriction T�C is n-full again. The converse holds as
well: Every tree S with T ∼= S�C is also n-full. To prove the latter, let ϕ : T ∼= S�C
and s0, . . . , sn−1 ∈ Sα. Let γ < ω1 such that ϕ′′Tγ = Sβ for some β > α and define

Q := {(t0, . . . , tn−1) ∈ T⊗n
γ | ϕ(ti) >S si}.

Then clearly Q is a countable set, so the tree-sum of the tree-products corresponding
to the elements of Q, i.e., ⊕

~t∈Q

⊗
i<n

T (ti)

satisfies the c.c.c. and is densely embeddable in
⊕

i<n S(si). So n-fullness is trans-
ferred to every other Souslinisation of ROT .

This last lemma implies that a full tree T is also full off the generic branch in the
sense that in the generic extension obtained by adjoining a cofinal branch b through
T , for every node t ∈ T \ b, the tree T (t) is still full.

From now on we say that B is an n-full Souslin algebra if any of its Souslinisations
is n-full. For Souslin algebras fullness has strong structural consequences.

Lemma 1.5.7. The regular open algebra of a 2-full tree is simple, i.e., it has no
proper atomless and complete subalgebras. In particular: Forcing with a 2-full tree
yields a minimal generic extension of the ground model.

Proof. Suppose that B is 2-full and A is a proper, atomless and complete subalgebra.
Then there are a Souslinisation T of B and an almost nice t.e.r. ≡ on T which
represents A. Since A is proper, there must by distinct nodes s ≡ t on a successor
level of T . On successor levels of T the canonical projection h : B → A is induced
by the canonical map associated to ≡, call it ρ : T → T/≡, via

h(s) =
∑

s/≡ = h(t),

cf. Corollary 1.1.6. Then Proposition 1.0.2 implies that B�s and B�t both have a
subalgebra which is an isomorphic copy of A�(

∑
s/≡), while s and t are disjoint in

B. This contradicts the fact that B�s⊗ B�t satisfies the c.c.c.
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The last result implies in particular, that n-full trees (for n > 1) cannot be
decomposed as a product of trees. On the other hand, not every simple Souslin
algebra is 2-full: In [AS93, Section 2.2] Abraham and Shelah give a ♦-construction
of two full Souslin trees whose tree product is special, i.e. it can be covered by
countably many antichains. The tree sum of these two full trees has a simple regular
open algebra which is not 2-full.

1.5.3 Optimal matrices of partitions

In order to isolate the main combinatorial ingredient for the proof of the main result
in Section 1.5.4, we introduce a technical notion and prove the associated existence
result.

Definition 1.5.8. For n ∈ ω, an n-optimal matrix of partitions is a family (Pk,m |
k ∈ ω, m < n) of infinite partitions Pk,m = (ak,m

i | i ∈ ω) of ω with the following
properties.

(i) Column-wise consensus: For all m < n and all i : k → ω where k ∈ ω, the
intersection

⋂
`<k a

`,m
i(`) is infinite.

(ii) n-optimality: For all maps (i, k,m) : n → ω × ω × n with (k(j),m(j)) 6=
(k(`),m(`)) for all j < ` < n and m(j) 6= m(`) for at least one pair j, ` < n the
intersection ⋂

j<n

a
k(j),m(j)
i(j) is a singleton.

Note that if in (ii) the domain of (i, k,m) is restricted to a proper subset of n,
then the corresponding intersection has to be infinite. When we draw the matrix as

P0,0 . . . P0,m . . . P0,n−1
...

...
...

...
...

Pk,0 . . . Pk,m . . . Pk,n−1
...

...
...

...
...

 ,

then (i) says, that every finite intersection of sets taken from partitions along a
single column is infinite, as long as it does not have to be empty for the trivial
reason, that two distinct sets from the same partition occur among these sets. By (ii),
intersections of less then n sets, each coming from another partition, are infinite, and
if n sets come from pairwise distinct partitions from at least two different columns,
then they meet in a unique natural number.
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Lemma 1.5.9. There is an n-optimal matrix of partitions for every natural number
n > 1.

We will give two different proofs for this lemma. The first is a direct construction
with nested inductions and somewhat cumbersome book-keeping details, while the
second, the main idea of which is due to Sabine Koppelberg, uses a more sophisticated
forcing style argument.

Proof 1. To start we fix a bijective enumeration h = (h0, . . . , hn−1) : ω → ωn and
define a0,m

i to be the pre-image of i under hm. Let P0,m := {a0,m
i | i ∈ ω}.

The rest of the proof consists of a three-fold induction. The outer loop is indexed
with (k,m) ∈ ω× n, and goes row by row, from the left to the right. One could also
say that the progression of the indices follows the lexicographic order of ω × n, i.e.,
m grows up to n− 1 and then drops down to 0 while k increases to k+ 1. (The first
n stages, where k = 0, of the outer induction have been included in the induction
anchor in the first line of the proof.)

The inner inductions are common ω-inductions. In each stage of the middle one
we define one element ak,m

i of the partition Pk,m, and the innermost induction consists

of a choice procedure for the elements of that set ak,m
i .

So assume that the partitions P`,m = {a`,m
i | i ∈ ω} have already been defined

for (`,m) <lex (k, n) and also the i first sets ak,m
0 = a0, . . . , a

k,m
i−1 = ai−1 of Pm,k have

been fixed. Assume also, that the family constructed so far has the properties (i)
and (ii) from Definition 1.5.8. We inductively choose three sequences x`, y` and z` of
members of ω\

⋃
h<i ah and afterwards set ai := {x`, y` | ` ∈ ω}. The members of the

x sequence will satisfy requirement (i) while the y` guarantee that the intersections
for (ii) are non-empty. The z` go back to the stack for the construction of the later
members of Pk,m.

The following definitions of f, b, I, c, d and τ have been fixed at the start of the
definition of the members of Pm,k, before the construction of a0.

Let f : ω → kω be onto and ℵ0-to-1 and set for ` ∈ ω

b(`) :=
⋂
j<k

aj,m
f(`)(j).

These sets have to be met by ai infinitely many times. So we will choose x` from b(`).
Let I be the set of subsets σ of (ω × k × n) ∪ (ω × (k + 1)×m) of cardinality n− 1
such that pr2,3�σ is injective and pr3�σ is not constant, where pri,j is the projection
to the ith and jth component. So if σ ∈ I then distinct members of σ are indices for
n− 1 members of pairwise distinct partitions and these partitions lie in at least two
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distinct columns of the n-optimal matrix. For σ ∈ I let

c(σ) :=
⋂

(j,p,q)∈σ

ap,q
j

and note that this set is infinite, because if Pp,q is a partition which is not involved
in σ then c(σ) meets every element of Pp,q in exactly one natural number.

Also the sets c(σ) have to be met by ai, so we fix an injective enumeration τ of I
and choose y` from c(τ(`)) unless that set has already been hit by earlier members
of ai.

Condition (ii) imposes that each set c(σ) be only met one time. So once the
intersection is non-empty, that particular set c(σ) has to be avoided in later choices.
We thus define for every natural number x the set

d(x) :=
⋃{

c(σ) | (∀ (j, p, q) ∈ σ)x ∈ ap,q
j

}
and choose x` and y` from outside

⋃
j<` d(xj) ∪ d(yj).

We now turn to the formal definition of our three sequences and argue afterwards,
why these choices always are possible. Set e =

⋃
h<i ah and let inductively

x` := min

(
b(`) \

(
e ∪

⋃
j<`

(d(xj) ∪ d(yj) ∪ {zj})

))

y` :=

{
x`, if c(τ(`)) ∩

⋃
j<`{xj, yj, xj+1} 6= ∅

min c(τ(`)) \ (e ∪ {z0, . . . , z`−1}), otherwise,

z` := min

(
b(`) \

(
e ∪

⋃
j≤`

{xj, yj, zj, xj+1, yj+1}

))
.

There are always candidates for x`, because the set b(`)\e is non-empty (by induction
on i — this is the reason for the choice of the corresponding z` in earlier steps ah),
and for σ ∈ I and ` ∈ ω the intersection b(`)∩ c(σ) is either empty or a singleton. So
we have to avoid only finitely many elements of b(`) \ e (d is a finite union for all xj

and yj) which is of course possible. The same argument shows that z` is well-defined.
Finally for y`, the set c(τ(`)) has met every set ah for h < i in a unique element, so
once again we only have to delete finitely many elements from an infinite set.

We hope that it has now become clear that the result of this threefold induction
is an n-optimal matrix of partitions.
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Proof 2. To start this second proof, read the first two paragraphs of the first proof,
where the inductive anchor and the progression of the indices (k,m) during the
induction are described. Now assume that we want to construct Pk,m and that the
part of the matrix of partitions which has already been constructed has the properties
of column-wise consensus and n-optimality. We denote the set of indices for that part
by

L := {σ | σ ⊆ (k × n) ∪ (k + 1×m)}.

We now define a forcing partial order P and a countable family F of dense subsets
of P, such that every F-generic filter in P gives rise to a partition P which fulfils our
inductive claim. The partial order P will consist of finite partial functions on the
natural numbers, such that for every F-generic filter G, the union fG :=

⋃
G is a

total function on ω. P will then be defined as

P := {f−1(j) | j ∈ ω}.

In order to define P, let

J := {σ ∈ L | pr′′2σ = {m} or |σ| < n− 1}

and
K := {σ ∈ L | pr′′2σ 6= {m} and |σ| = n− 1}.

(Here pr2 again denotes the projection on the second component.) For every σ ∈ L
let Pσ denote the canonically defined common refinement of the partitions Pk,m for
(k,m) ∈ σ. The properties of column-wise consensus and n-optimality determine
for which σ the set Pσ is still a partition. E.g., if σ intersects more than one row of
the partition and has more than n elements, then Pσ = {∅} ∪ {{i} | i ∈ ω} which
is clearly not what one would call a partition. However, Pσ is a partition and has
only infinite elements whenever σ comes from J or K. Choose for all σ ∈ J ∪K an
injective enumeration (aσ

i | i ∈ ω) of Pσ.
Now let

P := {f : domf → ω | dom ⊂ ω is finite and for all σ ∈ K, i ∈ ω : f�aσ
i is 1-1}.

Our family F of dense subsets of P consists of the sets defined as follows. For ` ∈ ω
let

U` := {f ∈ P | ` ∈ domf},

for σ ∈ J and i, j, ` ∈ ω let

V σ
ij` := {f ∈ P | j ∈ f ′′(aσ

i \ `)},
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and for σ ∈ K and i, j ∈ ω let

W σ
ij := {f ∈ P | j ∈ f ′′aσ

i }.

We first show that every F-generic filter indeed induces a partition as we want it and
show afterwards that the members of F are dense in P.

So let G ⊂ P be an F-generic filter, f :=
⋃
G and P := {f−1(j) | j ∈ ω}. Then

f : ω → ω is total, because G intersects all sets U`. The sets V σ
ij` care about column-

wise consensus and the implicit part of n-optimality, i.e., the fact that less than n
sets coming from distinct partitions always intersect in an infinite set. Finally the
sets W σ

ij are responsible for the explicit part of n-optimality.
It is trivial that U` is dense for every `. To show the same forW σ

ij, let f ∈ P, σ ∈ K
and i, j ∈ ω. If j ∈ f ′′aσ

i we are done. If not, then consider the set

X = {τ ∈ K | there is a ∈ Pτ such that j ∈ f ′′a}.

For the choice of our new pre-image of j, we have to avoid the union of all witnesses
a for τ ∈ X for all τ ∈ K. But as σ is distinct from all τ ∈ X and each of them has
n − 1 members not all from the same column, each of the intersections aσ

i ∩ a is at
most a singleton. Since K and dom(f) are finite, we can always find an extension g
of f in W σ

ij.
The argument for the density of V σ

ij` is similar, yet a bit more complicated. Pick
f ∈ P, σ ∈ J and i, j ∈ ω and define X and aτ for τ ∈ X as above. For those τ in
X with σ 6⊂ τ the argument given above applies. So let X0 := {τ ∈ X | σ ⊂ τ} and
assume without loss of generality that |σ| = n − 2. Then the union of two distinct
members τ and τ ′ ofX is of size n and by n-optimality we have Pτ∪τ ′ = {{n} | n ∈ ω}.
If τ ∈ X0 and a ∈ Pτ , then we either a is contained in aσ

i , or the two sets are disjoint.
So for τ ∈ X0 the set

Pτ ∩ P(aσ
i )

is a partition of aσ
i into ℵ0 infinite sets. Fix a member τ0 of X0 and let A := {a ∈

Pτ0 | j ∈ f ′′a} be the set of all witnesses for τ0 ∈ X0. Since dom(f) is finite, also
A is. Let b :=

⋂
A. Then clearly aσ

i \ b is infinite, and for every pair a0, a with
a0 ∈ Pτ0 \ P(b) and a ∈ Pτ with τ ∈ X0 \ {τ0} the intersection of a0 with a is a
singleton. Now fix also a0 and collect the finitely many sets

B := {a | there is τ ∈ X0 \ {τ0} : a ∈ Pτ and j ∈ f ′′a}.

Then clearly a0 \
⋃
B is infinite (cofinite in a0) and a subset of aσ

i \ (b∪
⋃
B). So we

can find our new suitable pre-image for j above any given ` ∈ ω. This finishes the
proof.
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1.5.4 Decompositions with full factors

The following theorem is stated in [SZ99, p.246] for the case n = 2 without proof.
Larson gives the construction of a single full subalgebra of a strongly homogeneous
Souslin algebra in the proof of Theorem 8.5 in his paper [Lar99].

Theorem 1.5.10. For every natural number n > 1 and every ℵ0-branching, strongly
homogeneous Souslin tree T there are n full Souslin trees S0, . . . , Sn−1 such that
T ∼=

⊗
m<n Sm.

Proof. Let T be a strongly homogeneous Souslin tree and denote by ϕs,t the members
of the coherent family of T . We inductively define level by level n t.e.r.s ≡0, . . . ,≡n−1

with the following properties:

• T/≡m is a full Souslin tree for m < n.

• For any sequence (s0, . . . , sn−1) ∈ Tα the intersection of the classes sm/≡m for
m < n is a singleton:

⋂
m<n sm/≡m= {r} for some r ∈ Tα.

The isomorphism between
⊗

m<n T/≡m and T is then given by mapping (sm/≡m|
m < n) to the unique element of the intersection of the coordinates and the inverse
map is just the product of the canonical maps for the equivalence relations ≡m.

Let (Pk,m | m < n, k ∈ ω) be an n-optimal matrix of partitions, where we view

each Pk,m as enumerated by ak,m
i , i ∈ ω. In order to define t.e.r.s we transfer the

whole matrix of the Pk,m to every set succ(s) for s ∈ T in a coherent way: Choose
for every α < ω1 an anchor node rα ∈ Tα and a bijection σα : ω → succ(rα), and
define for s ∈ Tα and all indices i, k,m the sets

ak,m
i (s) := (ϕrα,s ◦ σα)′′ak,m

i .

Then clearly for every s ∈ T , k ∈ ω and m < n, the set Pk,m(s) := {ak,m
i (s) | i ∈ ω}

forms a partition of succ(s), and these partitions are linked by the coherent family
in a coherent way, i.e., ϕs,t transfers Pk,m(s) to Pk,m(t).

Fix m < n in order to define ≡m on T by recursion on the height. We will
also enumerate the ≡m-classes of each level with order type ω, i.e., we define a map
h : T → ω, such that for s, t ∈ Tα we have s ≡m t if and only if h(s) = h(t).

Choose P0,m(root) as the partition of the set T1 = succ(root) and let ≡m on T1

be the equivalence relation with classes a0,m
i (root) for i ∈ ω. Let h(root) = 0 and

choose h on T1 in a way, such that nodes s and t are ≡m-equivalent just in case that
their h-values coincide.
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Next we consider the case where α is a successor ordinal, α = γ + 1 for some
γ < ω1. Let s, t ∈ Tα and let s− <T s and t− <T t be their direct predecessors on
level γ. We let s ≡m t if and only if their direct predecessors are ≡m-equivalent,
s− ≡m t− (so in particular h(s−,m) = h(t−,m)), and if there is i ∈ ω such that

s ∈ ah(s−),m
i (s−) and t ∈ ah(t−),m

i (t−).

In words, the ≡m-equivalence of the direct predecessors gives us a natural number
h(s−) and we apply Ph(s−),m on level α to enquire whether s and t are ≡m-equivalent.
Extend h to the Tα as described above.

On limit stages λ the relation ≡m is already determined by its behaviour below,
and we choose the h�Tλ once more in any way such that h(s) = h(t) is equivalent to
≡m-equivalence for nodes s, t ∈ Tλ.

Having finished the construction of the relation ≡m, we show that it is ∞-nice,
where the ∞-part follows easily from the fact that Pk,m partitions ω in infinitely
many sets. So we deduce niceness. Letting s ≡m r on level α and t above s we
claim that ϕs,r(t) ≡m t and show this by induction on the height of t above s. For
successor stages the claim follows directly from the construction and the inductive
hypothesis, since the relevant partition Pj,m is transferred via ϕs,r by the coherence
of the coherent family. The limit case follows directly from the inductive assumption.
(The property of ≡m, that ≡m-equivalence lifts from s and r to preimages and images
of ϕs,r will be used again in the proof of the Fact below.)

It remains to prove the two claims stated before the construction. We start with
the fullness of T/≡m. Let s0, . . . , sk−1 be pairwise non-m-equivalent nodes of the
same level Tα. We write Si for (T/≡m)(si/≡m) and claim that for every antichain
A of

⊗
i<k Si we can find an antichain B of T with the same cardinality. We give a

hint for where to look for the members of B in the following
Fact. Fix m < n and pairwise non-m-equivalent nodes s0, . . . , sk−1. For any se-
quence (t0, . . . , tk−1) of nodes in Tβ, with α < β and si < ti for i < k, the intersection
of the classes ti/≡m ∩T (si) above the nodes si, shifted above s0 by ϕsi,s0 , i.e. the set⋂

i<k ϕ
′′
si,s0

(ti/≡m), is infinite and therefore non-empty.

Proof of the fact. By induction on the height β of the nodes ti, starting with β =
α + 1. In this minimal case we have t−i = si, so the sets ϕ′′si,s0

(ti/≡m) belong to
distinct partitions Ph(si),m(s0), i < k and therefore have an infinite intersection by
property (i) of the n-optimal matrix.

For the higher successor case β = γ + 1, α < γ, we simulate this initial sit-
uation. By the inductive hypothesis pick r0 ∈

⋃
i<k ϕ

′′
si,s0

(t−i /≡m) > s0, and let
ri := ϕs0,si

(r0) > si for i < k. We then know that ri ≡m t−i , so ti/≡m has elements
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above ri. Consequently
⋃

i<k ϕ
′′
ri,r0

(ti/≡m) is infinite by the same argument as above
and furthermore a subset of

⋃
i<k ϕ

′′
si,s0

(ti/≡m).
For the case where β is a limit ordinal, we choose γ < β large enough, such that

letting qi = ti�γ for all i, j < k we have ϕqi,qj
(ti) = tj. This is possible due to the

transitivity of the coherent family. We also require α < γ. The inductive hypothesis
gives us a node r0 ∈

⋃
i<k ϕ

′′
si,s0

(qi/≡m), which we copy to ri := ϕs0,si
(r0), so we also

have ri ≡m qi. We consider u = ϕqi,r0(ti). By the commutativity of the coherent
family this definition is independent from the choice of i < k. But then

ϕs0,si
(u) = ϕr0,ri

(u) = ϕr0,ri
◦ ϕqi,r0(ti) = ϕqi,ri

(ti)

where the first equation follows from coherence, the second one from the definition
of u and the third one from commutativity. So the property stated above right after
the construction of ≡m implies that ϕsi,s0(ti) ≡m u since ri ≡m ti for all i < k. This
completes the proof of the Fact.

By virtue of the Fact we can pick for every element (t0/≡m, . . . , tk−1/≡m) of our
antichain A ⊂ T/≡m a node u ∈

⋂
i<k ϕ

′′
si,s0

(ti/≡n) and collect these nodes in B.
Then B is clearly an antichain of T with the same cardinality as A. So we have
shown that T/≡m is indeed a full tree.

Now for the second claim. Let (s0, . . . , sn−1) be any sequence of nodes of some
Tα. We need to show that

⋂
m<n sm/≡m has a unique element. This is done by

induction on α > 0. Starting with α = 1 we know that sm/≡m= akm,m
im

(root) for
some im and km. So property (ii) of our n-optimal matrix is all we need here. For
α = γ + 1 we assume that the classes s−m/≡m meet in a single node, say r ∈ Tγ.

The set of elements of sm/≡m which lie above r is then just a
hm(r),m
im

(r) and again
property (ii) of the matrix proves the claim. In the limit case we once more use
the transitivity of the coherent family. So let α be a limit and γ < α large enough
such that ϕqm,q`

(sm) = s` where we abbreviate sm�γ = qm. For a last time in this
proof we use the commutativity of the coherent family: Let r be the unique element
of the intersection of the classes qm/≡m. Then t = ϕqm,r(sm) is well defined and
independent from the choice of m < n. By the lifting property of the equivalence
relations stated above, it follows from qm ≡m r, that sm ≡m t.

Readers familiar with [Lar99, §8] know how much the final part of the last proof
owes to Larson’s proof of his Theorem 8.5. For the sake of completeness we note the
following.

Corollary 1.5.11. For every strongly homogeneous Souslin tree T and every pair
m,n of natural numbers satisfying 2m + n ≥ 2 there are sequences Ri, i < m of
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strongly homogeneous trees and Sj, j < n of full trees such that T can be decomposed
into the tree product of all these trees:

T ∼=
⊗
i<m

Ri ⊗
⊗
j<n

Sj.

Proof. By the Theorems 1.5.3 and 1.5.10, the only case left that needs proof is
m = n = 1. Let Pk,0 and Pk,1 for k < ω be the members of a 2-optimal matrix of
partitions. Set P := P0,0 and Qk := Pk,1 for k < ω and construct the t.e.r. ∼ on the
base of P along the lines of the proof of Theorem 1.5.3 and ≡ on the base of the Qk

as for Theorem 1.5.10.

The proof of Lemma 1.5.9 on n-optimal matrices of partitions becomes very simple
when the statement is restricted to the case n = 2. Furthermore, the decomposition
of a strongly homogeneous tree in only two full factors together with Theorem 1.5.3
and the simple argument of the last proof would give a less complicated, inductive
proof of Theorem 1.5.10.

But the decomposition as carried out in our proof of Theorem 1.5.10 allows for
the two following remarkable consequences which cannot be deduced in the same
straight forward fashion from the simpler decomposition sketched above.

Corollary 1.5.12. Let the strongly homogeneous Souslin tree T be decomposed as the
tree product of n full trees Si for i < n as carried out in the proof of Theorem 1.5.10.
Let {a, b} be a partition of the set n with a, b 6= ∅. Then

�N
i∈a Si

“
⊗
i∈b

Ši is strongly homogeneous.”

Proof. We proceed by induction on the size of a. Fix i < n, let c a generic branch
through Si and work in the generic extension by c. Then the tree product

R :=
⊗
j<n
j 6=i

Sj

is canonically isomorphic to

c⊗
⊗
j<n
j 6=i

Sj ⊂ T

(here we take the branch c to be a degenerate tree factor in the tree product). Denote
the canonical isomorphism by ρ and the canonical projection T → R by π.
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We define the tree isomorphisms ψrs for nodes r and s of Rα, α < ω1 from the
members ϕρ(r)ρ(s) of the coherent family of T . For this, we refer to the maps h(·, j) :
T → ω used in the construction of the t.e.r.s ≡j in the proof of Theorem 1.5.10. We
collect them and define h : T → ωn−1 by simply concatenating the values h(t, j) for
t ∈ T and j < n, j 6= i.

If r, s ∈ Rα and h(ρ(r)) = h(ρ(s)), then we let

ψrs := π ◦ ϕρ(r)ρ(s) ◦ ρ : R(r)→ R(s).

It follows from the fact that the n-optimal partition matrices are transported between
the (sets of direct successors of the) nodes by the members ϕtu of the coherent family
of T that this definition is sound and indeed yields an isomorphism.

Now let r, s ∈ Rα with h(ρ(r)) 6= h(ρ(s)). In order to define ψrs we compose
the tree isomorphisms that we have already defined for the direct successors of r
and s. For every direct successor u ∈ succ(r) there is exactly one v ∈ succ(s) with
h(ρ(u)) = h(ρ(v)). This follows from the n-optimality of the partition matrix. Let
ψrs(u) be just this v. If x is a non-immediate successor of r then first find the direct
successor u of r below x and the image v = ψrs, and set

ψrs(x) := ψuv(x).

It remains to prove, that the family of tree isomorphisms just defined is coherent,
commutative and transitive. Commutativity and coherence are inherited from the
coherent family of T . (Note, that ψrs(x) = y implies that h(ρ(x)) = h(ρ(y)), so the
two cases do not interfere.) As for transitivity, let x, y ∈ Rλ for some countable limit
ordinal λ. Find Then by the transitivity of the family of the ϕtu for T , there are
t < ρ(x) and u < ρ(y) with ϕtu(ρ(x)) = ρ(y). But then t and u lie in b⊗R, so there
are r, s ∈ R such that ρ(r) = t and ρ(s) = u and thus ψrs(x) = y.

We finally argue, why the step carried out above also serves as the general step in
our induction on the power of a. By all the coherence properties of the family ϕtu of
T , the subtree b⊗R of T (in the generic extension, of course) carries an n−1-optimal
matrix of partitions: Pk,j for j < n and j 6= i. From this matrix, a family of n − 1
t.e.r.s is defined with exactly the same properties: ≡j restricted to b ⊗ R for j < n
and j 6= i. Using ρ−1 to transfer all the structure to R, our argument can now be
applied to R and a member i′ of a \ {i}.

So, e.g. in the case n = 2, forcing with one full tree can not only destroy the
fullness of another one, but even turn the latter into a strongly homogeneous Souslin
tree.
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Our last corollary of (the proof of) Theorem 1.5.10 gives the announced separation
of the finite degrees of fullness. This shows, that the family of parametrised fullness
conditions is properly increasing in strength.

Corollary 1.5.13. If there is a strongly homogeneous Souslin tree, then there is an
n-full, but not n+ 1-full tree.

Proof. Let the strongly homogeneous Souslin tree T be decomposed as the tree prod-
uct of n full trees Si for i < n as carried out in the proof of Theorem 1.5.10. We
show, that the tree sum of the factors,

R :=
⊕
i<n

Si

is an n-full but not n + 1-full Souslin tree. The Fact used in the proof of Theo-
rem 1.5.10 remains true in the following variant:
Fact’. For any pair of sequences (s0, . . . , sn−1) in Tα and ti > si in Tβ and any
sequence m : n→ n the intersection⋂

i<n

ϕ′′si,s0
ti/≡m(i)

is not empty.
Modulo the obvious changes in the notation, the proof remains completely the

same as before, using the n-optimality of the matrix. And also with the same ar-
gument as above we can derive an antichain of T from any given antichain of R
maintaining the cardinality. So R is n-full.

We argue that R is not n-fold Souslin off the generic branch. If bi is a co-
final branch through Si then in the generic extension obtained by adjoining ~b =
(b0, . . . , bn−1), the strongly homogeneous tree T has a cofinal branch as well, thus
destroying the Souslinity of all subtrees of R.
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1.6 Separating high degrees of rigidity

In Sections 1-3 of [FH06] Fuchs and Hamkins consider different notions of rigidity
for Souslin trees: (ordinary) rigidity, total rigidity and the unique branch property
and their absolute counterparts. In this context they also introduced the stronger
notion of being (n-fold) Souslin off the generic branch which we already considered
in the last section, cf. Lemma 1.5.6. The present section gives examples that witness
the independence between 2-fullness and the n-absolute UBP which was asked for in
[FH06].

Definition 1.6.1. a) A Souslin tree T is called n-absolutely rigid, if T is a rigid tree
in the generic extension obtained by forcing with T n (or equivalently T⊗n).

b) A Souslin tree is totally rigid, if the trees T (s) and T (t) are non-isomorphic for all
pairs of distinct nodes s and t of T . It is n-absolutely totally rigid if it is totally
rigid after forcing with T n.

c) A Souslin tree T has the unique branch property (UBP), if forcing with T adjoins
only a single cofinal branch to T . For n > 0 we say, that T has the n-absolute
UBP, if forcing with T n+1 adjoins exactly n+ 1 cofinal branches to T .

As well as fullness, the UBP is handed down to subtrees and transfers to RO-
equivalent trees. The latter is clear from the fact that the generic branches of two
Souslinizations of a Souslin algebra B are in canonical 1-to-1 correspondence. Fuchs

2-full ←− 3-full ←− 4-full ←− . . .
↓ ↓ ↓

UBP ←− absolutely
UBP

←− 2-absolutely
UBP

←− . . .

↓ ↓ ↓

totally rigid ←− absolutely
totally rigid

←− 2-absolutely
totally rigid

←− . . .

↓ ↓ ↓

rigid ←− absolutely
rigid

←− 2-absolutely
rigid

←− . . .

and Hamkins prove the implications as well as some independencies between these
rigidity notions. They also give in [FH06, Section 4] a diagram of implications
between the degrees of rigidity that we have approximately reconstructed here for
the convenience of the reader.
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In [FH06] Fuchs and Hamkins have shown that the part of the diagram to the
left and below “absolutely UBP” is complete in the sense that there are no further
implications between these rigidity properties. They ask whether the rest of the
diagram is complete as well, cf. [FH06, Question 4.1]. We will show below that there
are neither implications from left to the right including diagonals (cf. Theorem 1.6.4,
nor from the second to the first row (Theorem 1.6.3).

1.6.1 Fullness and the unique branching property

We start with an easy result deduced from the elementary properties of finitely full
trees for the second column of the diagram.

Proposition 1.6.2. If there is a 3-full Souslin tree, then there is also a Souslin tree
which has the UBP and is not 2-full.

Proof. Let T be 3-full and pick distinct nodes s, t of the same height from T . We
show, that the Souslin tree S = T (s) ⊗ T (t) has the UBP. Let b ⊗ c be a generic,
cofinal branch in S (viewing b and c as trees). By the 2-fold Souslinity off the generic
branch of T , every tree of the form T (r) with r ∈ T \ (b∪ c) is Souslin in the generic
extension by b⊗ c. On the other hand, if there was a second cofinal branch through
S in the generic extension, then one of its components would have to pass through
such a node r /∈ b ∪ c, which yields a contradiction.

ROS is not simple, because it has an isomorphic copy of ROT (s) as a proper
subalgebra. So S cannot be 2-full by Lemma 1.5.7.

This result cannot be improved by simply requiring T to be full, because by
iterating the forcing with a tree product n+1 times, we always get at least 2n cofinal
branches.

We do have the following non-implication result for the n-absolute UBP and
2-fullness under the stronger assumption of ♦.

Theorem 1.6.3. Assume ♦. Then there is a Souslin tree which is not simple but
has the n-absolute UBP for all n ∈ ω.

Sketch of proof. We construct an n-absolutely UBP Souslin tree T along with an∞-
nice t.e.r. ≡ on T . To achieve the n-absolute UBP, we use the forcing machinery with
the partial orders (T�α)⊗n. Fix a ♦-sequence (Rν | ν < ω1), and let Rα either guess
a maximal antichain of T �α or a pair of the form (~s, ḃ), where ~s = (s0, . . . , sn−1) ∈
(T�α)⊗n and ḃ is a

⊗
i<n T (si)-name for a cofinal branch in T�α passing by besides

all the si, i.e.,
~s 
(T �α)⊗n ši /∈ ḃ for all i < n.
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If the latter is the case, then the name ḃ gives rise to a mapping

ϕ :

[⊗
i<n

T (si)

]
→ [Tα]

sending the sequence ~c of α-branches to the set of all nodes that are forced into ḃ by
~c. Now we simply have to seal the branch ϕ(~c) for every ~c through ~s which consists
of branches c0, . . . , cn−1 that have extensions in Tα.

If Rα is a maximal antichain, then, as in Example 1.3.7, the Second Reduction
Lemma 2.2.15 guarantees that ≡ can be maintained in an ∞-nice fashion.

For the other non-implication we can work with a weaker hypothesis again.

Theorem 1.6.4. Let n > 1. If there is a strongly homogeneous Souslin tree, then
there is an n-full tree which is not (n−1)-absolutely rigid.

Proof. We fix n > 1 and use the tree R from the proof of Corollary 1.5.13 obtained
from a strongly homogeneous tree T as the tree sum R =

⊕
i<n Si of the full factors

Si, i < n of T .
From Corollary 1.5.13 we know, that R is n-full.
To show, that R is not (n−1)-absolutely rigid we refer to Corollary 1.5.12. It

follows directly, from the case that a = n \ {i} for some i < n, that R is not rigid
in the generic extension obtained by adjoining a cofinal branch through the trees Sj

for j < n and j 6= i. But this generic extension can also be reached by forcing with
R⊗n−1.
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Introduction

In this chapter we develop a method for constructing Souslin algebras that abound
with automorphisms and use it to give an affirmative answer to the question whether
or not it is consistent relative to ZFC, that there is a chain homogeneous Souslin
algebra. In our representation we strongly exploit the tight connection between the
combinatorics of normal trees of countable height and Polish spaces.

The first section reviews the notation and known results used in our constructions.
In Section 2 we define several technical notions and prepare them for their use in
the Souslin tree constructions of the last two Sections. Section 3 contains the first
main result, the construction of a Souslin tree whose algebra of regular open subsets
is chain homogeneous, assuming the combinatorial principle ♦+. In Section 4 we
enhance this construction and get, again under ZFC + ♦+ a chain homogeneous
Souslin algebra with homogeneity properties that seemingly cannot be strengthened
any further. This algebra serves as the starting point of an iterative construction of
a big, chain homogeneous Souslin algebra.

2.1 Preliminaries

Here we collect the basic definitions and results to fix the notation and for later
reference. The Definition-environment is omitted, because almost everything is to
be understood as definitions. We work in ZFC, Zermelo-Fraenkel set theory with
choice.

2.1.1 Boolean algebras

Boolean algebras and the most elementary related notions, such as subalgebras,
completeness, atoms will not be defined here, though we will mention some more or
less subtle relationships between them. The main reference for looking up undefined
notions is the first volume of the Handbook of Boolean Algebras, [Kop89].

Let B be a Boolean algebra. We call the binary relation on B

x ≤B y ⇐⇒ xy = x ⇐⇒ x− y = 0

the natural or the canonical order of B. A subset X ⊂ B, which is totally ordered
by ≤B is a chain of B. A chain X is a maximal chain of B if X is furthermore ⊂-
maximal amongst the chains of B. We call a Boolean algebra all of whose maximal
chains are pairwise order isomorphic chain homogeneous. We let

mcB = {K ⊂ B | K is a maximal chain of B} .
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An antichain of B is a family X ⊂ B of pairwise disjoint (i.e. xy = 0) elements
of B. We say that B satisfies (or has) the κ-chain condition (or short κ-c.c.) if
every antichain of B has cardinality less than κ. The ℵ1-c.c. is also called c.c.c. for
countable chain condition.

We can already state the first lemma concerning our search for complete and
chain homogeneous Boolean algebras.

Lemma 2.1.1. If B is complete and all maximal chains are pairwise order isomor-
phic, then B has the c.c.c.

Proof. Given an uncountable antichain X of B it is easy to construct well-ordered
chains with supremum 1, K0 = {x0 <B x1 <B . . .} of order type ω and K1 = {y0 <B

y1 <B . . .} of order type ω1. Now for any pair K, K ′ ∈ mcB with K0 ⊂ K and K1 ⊂
K ′ there should be an isomorphism ϕ : K → K ′ but then n 7→ min{α | ϕ(xn) ≤B yα}
would give a cofinal countable sequence in ω1.

Now let B be a complete Boolean algebra. By saying that A is a complete
subalgebra of B we mean that A is a subalgebra of B which is a complete Boolean
algebra, and it computes the same infinite sums and products as B does. I.e., for all
M ⊆ A we have ∑A

M =
∑B

M

and the analogous equation for products holds as well. For any subset X of B we
call

〈X〉cm :=
⋂
{A | X ⊆ A and A is a complete subalgebra of B}

the subalgebra of B that is completely generated by X and maybe write 〈X〉cmB if B
is not clear from the context. If the superscript cm is omitted, i.e., by 〈X〉B, we
denote the intersection of all subalgebras containing X as a subset (and not only the
complete subalgebras) and call 〈X〉 the subalgebra of B, that is finitarily generated
by X.

Note that given an arbitrary Boolean algebra A which is a subalgebra of a com-
plete Boolean algebra B, the (Dedekind) completion A = ROA+ (cf. [Kop89, Section
4.3]), which is the unique complete Boolean algebra containing A as a dense subal-
gebra, is not necessarily isomorphic to 〈A〉cmB (cf. regular subalgebras below).

A Boolean algebra B is ℵ0-distributive if for every family (aij)i∈ω,j∈J with an
index set J of arbitrary size, the following equation holds:

∏
i∈ω

∑
j∈J

aij =
∑{∏

i∈ω

aif(i) | f ∈ ωJ

}
.



56 CHAPTER 2. MAXIMAL CHAINS IN SOUSLIN ALGEBRAS

We do not need more specific concepts of distributivity.
An antichain is a maximal antichain or a partition (of unity) if it is ⊂-maximal,

and if X, Y are maximal antichains we say that X refines Y if for all x ∈ X there is
an y ∈ Y above, i.e. x ≤B y.

A useful characterisation of of ℵ0-distributivity is this: A Boolean algebra B is
ℵ0-distributive if and only if for every countable family (Yn) of maximal antichains
of B there is a common refinement X, i.e. a maximal antichain that refines all the
Yn (cf. [Kop89, Proposition 14.9]).

A Souslin algebra is a complete, atomless, c.c.c. and ℵ0-distributive Boolean al-
gebra. We use letters A,B,C to denote Souslin algebras. In other contexts than ours,
κ-Souslin algebras are defined as complete, atomless, κ-c.c. and (< κ)-distributive
Boolean algebras and κ can be any uncountable cardinal. In this notation the objects
of our consideration are called ℵ1-Souslin algebras. But by Lemma (2.1.1) above,
these higher Souslin algebras will always have maximal chains of distinct order types
and are therefore not chain homogeneous.

In a Souslin algebra B, a complete subalgebra A is atomic if and only if A is
completely generated by some countable subset X of B (cf. [Kop89, Proposition
14.8]). In the other extreme, since distributivity and the c.c.c. are handed down to
complete subalgebras, the atomless, complete subalgebras of a Souslin algebra B are
Souslin algebras as well.

A regular subalgebra A of B is a subalgebra, such that for all M ⊂ A we have∑BM =
∑AM if the latter sum exists. Here A need not be complete and only

the sums that exist in A are considered. A well-known fact is, that A is a regular
subalgebra of B if and only if A is a dense subset of 〈A〉cmB . In this case 〈A〉cmB is
indeed isomorphic to A := RO(A+, <B), the Dedekind completion of A (cf. [Kop93,
Proposition 4]).

Lemma 2.1.2. Let B be a Souslin algebra and K ∈ mc B. Then 〈K〉, the subalgebra
of B that is finitarily generated by K, is a regular subalgebra of B.

Proof. Let A := 〈K〉 and M be a subset of A such that ΣAM exists. We have to
show that

∑AM =
∑
M . Products and sums without superscript are to be taken

in B. Without loss of generality we can assume that M is a partition of unity in A
and therefore countable.

To get a better representation for
∑AM we apply the Normal Form Theorem

[Kop89, Proposition 4.4] to the elements x ∈M :

x =
n∑

i=0

ai0ai1, where − ai0, ai1 ∈ K,
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where we assume that 0, 1 ∈ K. The elementary products over K have at most two
factors since K is linearly ordered by ≤B. By splitting up the sums we can assume
that each x ∈M has the form (−a)b, where a, b ∈ K.

So we enumerate

M = {ai0 · ai1 : i ∈ ω}, where (−ai0), ai1 ∈ K ∪ {1}

and apply the (dual) (ℵ0,∞)-distributivity law satisfied by B:

∑
M =

∑
i∈ω

∏
j∈2

aij =
∏{∑

i∈ω

aif(i) : f ∈ ω2

}
.

We have to show that for each f ∈ ω2 we have
∑

i∈ω aif(i) = 1. So we fix f , divide ω
in two parts, N0 := f−1(0) and N1 := f−1(1), and consider∑

aif(i) =
∑
i∈N0

ai0 +
∑
i∈N1

ai1 = −
∏
i∈N0

−ai0︸ ︷︷ ︸
=:b0∈K

+
∑
i∈N1

ai1︸ ︷︷ ︸
=:b1∈K

.

The inequality
∑
aif(i) < 1 would therefore imply that b0 > b1 and finally the element

b0 − b1 of A would be disjoint from every member of M – contradiction.

Note that we only used that (K,≤B) is completely embedded in (B,≤B), both
viewed as complete lattices. I.e. for the conclusion of the lemma it suffices that
(K,<B) is complete and the infima and suprema in L are the same as in B.

We frequently consider the regular open algebra ROX of some topological space
X. A subset U of X is regular open if the interior of the closure of U is equal to U
and ROX is the set of all regular open subsets of X. The regular open algebra of any
space X is a complete Boolean algebra but it is in general not a subalgebra of P(X)
from which the operations are modified by taking the regularisations (cf. [Kop89,
Theorem 1.37]). If the topology of X is not specified, then one of following applies:

• if X is a linear order, then X carries the order topology (as in the following
proposition),

• if X = T is a tree, then T carries the partial order topology which is generated
by all subsets of the form T (t) for some t ∈ T (a declaration of our tree notation
follows below).
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Corollary 2.1.3. For every K ∈ mc B we have

〈K〉cm ∼= 〈K〉 ∼= ROK,

where K carries the order topology induced by ≤B.

Proof. The first isomorphism follows with [Kop93, Proposition 4] by the last lemma.
Now for the second: Every element of ROK contains some basic open interval (u, v)
of K (or [u, v) if u = 0 respective (u, v] if v = 1, the regularisation), so the canonical
homomorphism

φ : 〈K〉 → ROK, φ

(
n∑

i=0

ui · (−vi)

)
=

n∑
i=0

RO K reg(ui, vi) = reg

(
n⋃

i=0

(ui, vi)

)
(with ui, vi ∈ K ∪ {0}) is an embedding whose range is a dense subset of ROK.

2.1.2 Souslin lines

A Souslin line is a complete, dense linear order that satisfies the countable chain
condition but is not separable, i.e., it has no countable dense subset, but all families
of pairwise disjoint open intervals are countable.

In this definition the possibility of a Souslin line having a separable non-trivial
interval is included. We will, however, never consider a Souslin line with a non-trivial
separable interval.

It is a standard result, that every Souslin line L has a dense subset of cardinality
ℵ1 and therefore the cardinality |L| = 2ℵ0 .

Lemma 2.1.4. The maximal chains of a Souslin algebra B are Souslin lines with
endpoints and without non-trivial separable intervals.

Proof. Let K be a maximal chain of B. Completeness and denseness are trivial. We
can associate each open interval (u, v) of K with the product v · (−u) in B. So every
set of pairwise disjoint open intervals of K corresponds to an antichain of B with the
same cardinality and must thus be at most countable.

We finally show that K is non-separable. Let H be any countable subset of K.
If H was a dense subset of K then the subalgebras of B completely generated by
H and by K respectively would coincide, but by distributivity of B, the subalgebra
〈H〉cm is atomic by [Kop89, Proposition 14.8] while the complete subalgebra 〈K〉cm ∼=
RO(K,<B), is atomless, because K is densely ordered by <B.

To see that K has no separable intervals replace K in the preceding argument
by any closed interval [u, v] of K and B by the relative algebra B�(−u) · v which is
Souslin and has an isomorphic copy of the interval [u, v] of K as a maximal chain.
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Lemma 2.1.5. Let L be a Souslin line without separable intervals. The regular open
algebra of L is a Souslin algebra. Furthermore, if L has endpoints then ROL has a
maximal chain K which is isomorphic to L such that 〈K〉cm = ROL.

Proof. As above, completeness, absence of atoms and the antichain condition are
easy. We now show that if we are given a family (anm)n,m∈ω of open intervals anm of
L, such that for all n ∈ ω the set {anm | m ∈ ω} is a maximal antichain, we have

∑{∏
n∈ω

an,f(n) | f ∈ ωω

}
= 1.

By [Kop89, Theorem 14.9.a)] this suffices in order to prove ℵ0-distributivity. The set
A of the boundaries of the anm is countable and therefore nowhere dense in L. Any
open interval (x, y) ⊂ L\A lies below the product bf =

∏
n∈ω an,f(n) for some f ∈ ωω

by our assumption on the family of the anm, and the sum over all such intervals is
clearly 1.

2.1.3 Normal trees

A tree is a partial order (T,<T ) where the set of predecessors {s | s <T t} is well-
ordered by <T for all t ∈ T . The elements of a tree are called nodes. For a node
t ∈ T we let succ(t) be the set of t’s immediate successors. The height of the
node t in T is the order type of the set of its predecessors under the ordering of T ,
htT (t) := ot({s | s <T t}, <T ). For an ordinal α we let Tα denote the set of nodes of
T with height α. If htT (s) > α we let s�α be the unique predecessor of s in level α.

The height of a tree T , htT , is the minimal ordinal α such that Tα is empty. An
antichain is a set of pairwise incomparable nodes of T , so for α < htT , the level Tα

is an antichain of T .
If c is a subset of the height of a tree T , let T�c denote the tree that consists of

all the nodes of T whose height lies in c together with the inherited tree order <T :

T�c =
⋃
α∈c

Tα, s <T �c t ⇐⇒ s <T t.

In this context it is worth noting that htT �c(t) = ot(c ∩ htT (t)) for all t ∈ T�c which
is possibly smaller than htT (t).

Nodes, that do not have <T -successors, are called leaves, and T is called κ-
branching, κ a cardinal, if all nodes of T have exactly κ immediate successors, except
for the leaves.



60 CHAPTER 2. MAXIMAL CHAINS IN SOUSLIN ALGEBRAS

A branch is a subset b of T that is linearly ordered by <T and closed downwards,
i.e. if s <T t ∈ b then s ∈ b. For α < ot(b, <T ) we let b�α be the unique element
of Tα ∩ b and so extend the similar notation for nodes and predecessors to branches
and their elements. (For a normal tree this is just natural, since the nodes can be
identified with the branches leading to them.) A branch is maximal in T if it is not
properly contained in any other branch of T .

A maximal branch b of a tree T is called cofinal if its order type with respect to
<T coincides with the height of T . We let

[T ] = {b | b is a cofinal branch of T} .

For s ∈ T set ŝ := {b ∈ [T ] | s ∈ b}. We consider [T ] as a topological space with the
base {ŝ | s ∈ T}.

Under the notion of a normal tree we subsume the following four conditions:

a) there is a single minimal node called the root ;

b) each node has at least two immediate successors;

c) each node has successors in every higher non-empty level;

d) branches of limit length have unique limits (if they are extended in the tree),
i.e., if s, t are nodes of T of limit height whose sets of predecessors coincide, then
s = t.

A striking property of normal trees is formulated in Kurepa’s Isomorphism Lemma
for normal trees, cf. [Kur35, p.102]. The result and its proof are well-known, but
since we will use some variations of the argument later on, we also state the proof.

Lemma 2.1.6. Let S, T be two normal κ-branching trees, κ ≤ ω, of the same height
α < ω1 with countable levels only. Then S ∼= T .

Proof. For trees of finite height, an easy inductive choice gives the isomorphism. So
let the height of S and T be a countable limit ordinal α. Choose countable and
dense sets X ⊂ [S] and Y ⊂ [T ] and enumerate them by (xi | i ∈ ω) and (yi | i ∈ ω)
respectively.

We give a back-and-forth-construction of a bijective mapping f : X → Y which
lifts to a tree isomorphism ϕ : S → T . Define f(x0) = y0 and ϕ(x0�γ) = y0�γ for all
γ < α.

We now give the back-argument, the forth-argument is completely analogous. Let
i be minimal such that f−1(yi) has not yet been fixed, and pick the minimal γ such
that ϕ−1(yi�γ) has not yet been defined.
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This γ is a successor ordinal, say γ = δ + 1, because S and T are assumed to be
normal trees.

Now choose an immediate successor s of ϕ−1(yi�δ) such that ϕ(s) has not yet
been defined. Such a node s exists by the choice of γ. Finally let j be minimal
such that s ∈ xj. Then f(xj) has not yet been defined, but we set f(xj) = yi and
ϕ(xj�γ) = yi�γ. This is consistent with the choices met for f and ϕ so far.

After every step of the construction ϕ is a partial isomorphism between S and
T . By the choice of X and Y , the union of these partial isomorphisms is bijective,
so in the end ϕ : S → T is an isomorphism.

If the trees are of infinite successor height α + n, then find ϕ : S�α → T �α as
above with the choices X = {{r <S s} | s ∈ Sα} and Y = {{r <T t} | t ∈ Tα}. Then
f gives the extension of ϕ to level α. The final n steps are then easy.

The last argument shows that for any γ < α and every isomorphism ϕ0 between
S�(γ + 1) and T�(γ + 1) there is an extension ϕ0 ⊂ ϕ : S ∼= T .

The following observation turns out to be very useful in the construction of ho-
mogeneous Souslin algebras, cf. Example (2.1.13).

Proposition 2.1.7. Let T be a normal tree of countable limit height α with only
countable levels. Then [T ] (with the topology defined above) is a perfect Polish space,
i.e. a separable and completely metrizable space without isolated points.

Proof. Choose a cofinal sequence (γn) of length ω in α with range c. Then [T ] is
homeomorphic to [T�c] via

ϕ : [T ]→ [T�c], b 7→ b ∩ T�c.

If T�c is ℵ0-branching, then [T�c] is nothing less than the Baire space ωω. In general,
[T �c] can be embedded onto a perfect subspace of the Baire space and so is Polish
as well.

Whenever we consider a mapping ϕ : T → S between trees and call this mapping
a tree homomorphism we mean that ϕ carries <T to <S and respects the height
function: htS(ϕ(s)) = htT (s) for all s ∈ T .

A tree T is said to be homogeneous, if for all pairs s, t ∈ T of the same height
there is a tree isomorphism between T (s) and T (t), the trees of nodes in T above s
and t respectively.

It is clear that every tree isomorphism ϕ : T → S induces a homeomorphism
ϕ : [T ] → [S] and that for every club C ⊆ htT we have a natural homeomorphism
between [T ] and [T�C] since every cofinal branch of T is uniquely determined by its
intersection with T�C.
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2.1.4 Souslin trees

In general, a Souslin tree is a tree T of height ω1 such that every family of pairwise
incomparable nodes and every branch of T are at most countable. We will only con-
sider normal Souslin trees, where absence of uncountable antichains already implies
that the tree has no cofinal branch.

It is well known that for a normal Souslin tree T , its regular open algebra ROT
is a Souslin algebra and T can be embedded densely in ROT . On the other hand,
in every Souslin algebra B that has a family of complete generators of cardinality ℵ1

(this is what we will call a small Souslin algebra), there is a dense subset T of B\{0}
such that (T,>B) is a normal Souslin tree (note that <T is >B) whose regular open
algebra is isomorphic to B (see e.g. [Kop89, Theorem 14.20]).

We will use the following convention established in [DJ74]. Let T be a subset of
a Souslin algebra B. Then T is said to souslinise B or to be a Souslinisation of B
if T is dense in B and becomes a Souslin tree under the reverse Boolean order of B.
Every level Tα of a Souslinisation T of B is a partition of unity in B and taking limits
in T is simply the evaluation of the corresponding infinite product in B: If t ∈ Tα is
a limit node, let tγ for γ < α be the unique >B-predecessor of t of height γ. Then
t =

∏
{tγ | γ < α}.

The Souslinisation is unique up to the elimination of a non-stationary set of levels.
For a proof of this well-known result, cf. [DJ74, Lemma VIII.9].

Lemma 2.1.8 (Restriction Lemma). Let B0, B1 be Souslin algebras with Souslini-
sations T0 and T1 respectively. Then a maping ϕ : B0 → B1 is an isomorphism just
in case that there is a closed unbounded subset C of ω1 such that the restriction of ϕ
to T0�C is a tree isomorphism onto T1�C.

Remark 2.1.9. It is easily seen that each tree automorphism of the Souslinisation T
extends to a Boolean automorphism on B, yet not every automorphism of B needs
to restrict to T . Anyway, the last theorem implies that there must be some c club in
ω1 such that the Boolean automorphism restricts to T�c. Therefore, we call Lemma
2.1.8 the Restriction Lemma (for isomorphisms between Souslin algebras).

A Souslinisation T of B provides a natural stratification of B by countably gen-
erated, complete and therefore atomic subalgebras. Let for α < ω1

Bα := 〈Tα〉cm.

Note that for all α < ω1 we have Bα
∼= P(ω) and T �(α + 1) ⊂ Bα. Clearly the

sequence of the Bα is increasing. To show B =
⋃

α<ω1
Bα, pick a ∈ B \ {0}. There

is a maximal pairwise disjoint subset A of T of elements ≤B a, so
∑
A = a. By
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the countable chain condition A must be countable and therefore a subset of Bα for
some α < ω1. We finally note, that the sequence of the Bα is not continuous. For a
countable limit ordinal α we have

⋃
γ<α

Bγ �

〈⋃
γ<α

Bγ

〉cm

= Bα.

For the representation of a given maximal chain K of a Souslin algebra B with
Souslinisation T we will use the approximations Kα = K ∩ Bα which are chains in
Bα (but not necessarily maximal). In the simple case of power set algebras (or their
isomorphic copies, such as the Bα) we can give the following characterisation for
maximal chains.

Proposition 2.1.10. Let X be a set. Given a ⊂-chain K of P(X), define the quasi-
ordering ≤K on X by

x ≤K y ↔ (∀u ∈ K)(y ∈ u⇒ x ∈ u)

and let K := {
∑
M,

∏
M |M ⊆ K} be the completion of the linear order (K,⊂) in

P(X). Then the following statements are equivalent:

(i) K is a maximal chain of P(X);

(ii) ≤K is a linear ordering of X;

(iii) 〈K〉cmP(X) = P(X).

Proof. We prove (i→ii) by contraposition. Assume that there are distinct x, y ∈ X
such that x ≤K y and y ≤K x, so for all u ∈ K we have x ∈ u if and only if y ∈ u.
But then the set

v :=
⋂
{u ∈ K | x, y ∈ u} \ {x}

is ⊂-comparable with every u ∈ K yet not a member of K itself. So K cannot be a
maximal chain.

If X is totally ordered by ≤K , then K coincides with the set of all initial segments
of ≤K which is a maximal chain of P(X). So we have (i↔ii).

Now we show the equivalence between (ii) and (iii). We know that

〈K〉cm =
〈
K
〉cm ⊇ 〈K〉 .
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The algebra to the right is a regular subalgebra of the middle one which is regular in
P(X) itself. If we assume (iii) this implies that 〈K〉 is a dense subalgebra, i.e., every
atom {x}, x ∈ X of P(X) is a member of 〈K〉 and therefore admits a representation

{x} =
⋂

M \
⋃

N for some M, N ⊆ K

which in turn implies that ≤K separates all members of X, i.e., ≤K is total. Now
for the converse, given (ii), for each x ∈ X,

{x} =
⋂
{u ∈ K | x ∈ u} \

⋂
{u ∈ K | x /∈ u} ∈ 〈K〉cm.

Remark 2.1.11. Of course, if in the last lemma, K is a complete sub-lattice of P(X),
then K = K. So we have a bijective association between the set mc(P(X)) of
maximal chains of a power set algebra P(X) and the set of linear orders of the
underlying set X. The order types of (K,⊂) and (X,<K) are tightly related. This
also shows that for infinite X the power set algebra P(X) has many non-isomorphic
maximal chains.

2.1.5 ♦-principles

As for most Souslin tree constructions in the literature, we will assume diamond-
principles.

Definition 2.1.12. a) The sequence (Rα)α<ω1 of sets Rα ⊆ α for α < ω1 is a ♦-
sequence if for all X ⊆ ω1 there is some stationary set s ⊆ ω1 such that, for all
α ∈ s we have X ∩ α = Rα. The statement“There is a ♦-sequence.” will be
denoted by ♦, say diamond.

b) The sequence (Sα)α<ω1 of countable sets Sα ⊆ P(α) is a ♦+-sequence if for all
X ⊆ ω1 there is some club set c ⊆ ω1 s.t., for all α ∈ c we have X ∩α, c∩α ∈ Sα.
The statement “There is a ♦+-sequence.” will be denoted by ♦+, say diamond-
plus.

If we delete the requirement that c ∩ α be in Sα for α ∈ c in the definition of
the ♦+-sequence, then we define a ♦∗-sequence. This will not be used here. Since
♦+ → ♦∗ → ♦ we only need to assume ♦+ in our statements even though for the
sake of convenience we will use both, a ♦+-sequence and a ♦-sequence, at the same
time.
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To illustrate the use of Proposition 2.1.7 we will construct under the assumption of
♦ a homogeneous Souslin tree, i.e., a Souslin tree T with an automorphism mapping
s to t for every pair of nodes s, t of the same height in T .

Example 2.1.13 (a homogeneous Souslin tree). Assume ♦ and denote the members
of the ♦-sequence by Rα for α < ω1. As in the classical constructions (e.g. [Kun80,
Theorem 7.8]) we inductively construct a tree order< on ω1. The tree automorphisms
are constructed alongside with the tree.

We choose 0 as the root node, and for construction step α + 1 we provide every
node of level Tα with ℵ0 direct successors. The inductive hypothesis gives for each
pair s, t ∈ Tβ with β < α an automorphism ϕu,v of T �(α + 1) sending u to v. Now
pick s and t from the new level Tα+1, write s− and t− for s�α and t�α respectively,
and denote by ϕs,t any automorphism of T�α+ 1 extending ϕs−,t− and sending s to t.
Since we gave every node of Tα the same number of direct successors, this is always
possible. For the same reason we can extend the ϕu,v for u, v ∈ Tβ where β ≤ α to
automorphisms of T�(α+ 2).

Now for the limit stage α. We have constructed so far the tree T �α and auto-
morphisms ϕs,t of T �α for each pair of nodes of the same height. Proposition 2.1.7
states that the space [T �α] is Polish. The level Tα we are about to choose has
to correspond (branches equal sets of predecessors) to a countable, dense subset of
[T�α] by the normality requirements posed on T . Now every automorphism ϕ of T�α
naturally induces a homeomorphism ϕ of [T�α]. It is easy to see that for any choice
of ϕ and Tα there is an automorphism ϕ+ of T�(α+1) extending ϕ if and only if the
subset of [T�α] corresponding to Tα is closed under the application of ϕ.

Our task is to choose a countable, dense subset of [T�α] in such a way, that the
tree automorphisms ϕs,t of T�α constructed so far can be extended to the new level
Tα.

We distinguish two cases. In the first case, α satisfies the ordinal arithmetic
equation α = ω×α and the set Rα is a maximal antichain of T�α. Denote by X the
set of all cofinal branches b of T �α which have a common member with Rα. Since
Rα is a maximal antichain, X is dense and open in [T �α]. Consider the dense and
open sets h′′X where h is a composition of finitely many homeomorphisms ϕs,t or
their inverse mappings. In particular, the set H of all these maps h is countable, so
the intersection

N =
⋂
h∈H

h′′X

is comeagre in [T �α] and therefore dense by the Baire Category Theorem. Fur-
thermore, N is closed under the applications of ϕs,t and its inverse mapping for all
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s, t ∈ Tβ, β < α. Finally choose a countable, dense set Z of N and let Tα correspond
to the closure of Z under the application of all the homeomorphisms h ∈ H and
which is a countable and dense subset of X again. By this choice we have ensured
that Rα is also maximal as an antichain of T�(α+ 1).

In the second case, there is no need for the preparatory reduction step from [T�α]
to N . We just choose the countable, dense set Z from [T�α] and continue as in the
first case.

In both cases, by the unique limits property, there is only one choice for the
extensions of the ϕs,t for s, t ∈ Tβ, β < α.

The automorphisms ϕs,t for s, t ∈ Tα can be chosen using a variant of Kurepa’s
Lemma 2.1.6.

Remark 2.1.14. A variation of the construction above, where in each limit step,
instead of the infinite set Z a singleton b is chosen from N or [T �α] respectively,
yields a tree with a property called strong homogeneity, cf. Section 1.5.1. In order
to obtain a dense subset of [T�α] it suffices to choose a single branch b, because the
family of automorphisms then produces branches that go through all nodes not in b.

The crucial property of a strongly homogeneous tree T , respectively of its family
of automorphisms is called transitivity and requires that the limit levels are minimal
with respect to the possibility of extending certain automorphisms.
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2.2 Generating chains and complete subalgebras

In this section B always denotes a small Souslin algebra, i.e., B has a set of complete
generators of size ℵ1. We fix a Souslinisation T of B and aim at representing the
maximal chains of B as relations on the Souslinisation T . Since this is easy for
a maximal chain K if 〈K〉cm = B and cumbersome if not, we only represent the
generating chains and find something easier for the non-generating chains: we repre-
sent the complete and atomless subalgebras of B as equivalence relations on T . In
our constructions in the next section, we arrange the subalgebras to be isomorphic
to B, so every maximal chain will be isomorphic to a generating chain and if the
latter are all of the same order type, our primary goal is achieved.

2.2.1 Windscreen wipers

Small Souslin algebras are completely generated by some of their maximal chains
(cf. Lemma 2.2.5). And these generating chains can be represented on a Souslini-
sation in a particularly simple manner. These representations, coherent families of
total orders on levels of the Souslinisation, will be called wipers. We will use the
wipers to make all generating chains pairwise isomorphic.

Definition 2.2.1. A maximal chain K of B that completely generates B will be
called a generating chain.

Being a generating chain of B clearly is not only a property of the chain itself, but
of the pair of the Souslin algebra and its maximal chain. We emphasise that a chain
K that satisfies 〈K〉cm = B will not be called generating unless it is maximal. Since,
for any Souslin line L without separable intervals, ROL is a Souslin algebra with
a generating chain isomorphic to L, the last definition is non-void. It will soon be
clear that every small Souslin algebra has many generating chains (while, of course,
non-small Souslin algebras have no generating chains at all).

Lemma 2.2.2. Given a generating chain K ⊆ B the set

C := {α < ω1 : K ∩ Bα ∈ mc(Bα)} = {α ∈ ω1 : 〈K ∩ Bα〉cm = Bα}

is closed and unbounded in ω1.

Proof. We set Kα := K∩Bα for α < ω1 and start by showing that the two definitions
of C coincide. Since the subalgebras Bα are all isomorphic to P(Tα) we have by
Remark 2.1.11 on maximal chains in power set algebras a bijective mapping between
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the maximal chains of Bα and the linear orders of Tα. Given Kα ∈ mc(Bα) on one
side, for every t ∈ Tα the difference

{s ∈ Tα | s ≤Kα t} \ {s ∈ Tα | s <Kα t}

is the singleton {t}. So 〈Kα〉cm contains the generators of Bα and the two complete
subalgebras are equal. For the other direction we just note that 〈Kα〉cm = Bα implies
that <Kα separates each pair of nodes s, t ∈ Tα and is therefore total, and the induced
chain, which is Kα, is maximal.

Now let α0 < ω1. To show that C is unbounded we inductively define

αi+1 = min{γ ≥ αi : Tαi
⊆ 〈Kγ〉cm}.

We show that this minimum is well-defined. The assumption on K to completely
generate B implies that each of the countably many u ∈ Tα lies in some 〈Kγ〉cm,
because we can represent u as an infinite sum over countably many products −x · y
with x, y in some Kβ, β < ω1.

It remains to show that Tα ⊂ 〈Kα〉cm for α = supαi. So let u ∈ Tα and for i ∈ ω
let xi ∈ Tαi

be the unique T -predecessor of x. So we have xi ∈ 〈Kα+1〉cm and

x =
∏
{xi : i ∈ ω} ∈

〈⋃
i∈ω

Kαi+1

〉cm

⊆ 〈Kα〉cm.

By a similar argument we see that C is closed in ω1.

The last theorem and its proof indicate how our representation scheme for the
generating chains works.

Definition 2.2.3. Let T be a normal tree with countable levels of arbitrary height
α ≤ ω1 and let C be a subset of α. A wiper of total orders (or more convenient a
wiper) on T�C is a family W = 〈<γ| γ ∈ C〉 of total orders <γ on Tγ such that

(i) W respects the tree order of T : for all β, γ ∈ C, β < γ and s, t ∈ Tβ, s′, t′ ∈ Tγ

we have
s <T s

′ ∧ t <T t
′ ∧ s <β t⇒ s′ <γ t

′,

(ii) if β, γ ∈ C, β < γ, and s ∈ Tβ, then the set Is,γ = {t ∈ Tγ | s <T t} of
successors of s in level γ is ordered densely without endpoints by <γ.

If T of height ω1 is a Souslinisation of B and W is a wiper on T , we say that

KW :=
{∑

M | (∃α ∈ ω1)M ⊆ Tα, M is an initial segment of <α

}
is the subset of B which is induced by W .
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Only the first condition in this definition is inspired by Lemma 2.2.2 while the
second is a useful standardisation requirement whose technical importance will be-
come clear in the proof of Proposition 2.2.6 where we aim at building isomorphisms
between wipers. To illustrate the definition and justify its definiendum imagine the
Souslin tree T�C printed on the windscreenof your car, the levels on horizontal lines
and if s, t ∈ T�C are of height α then s stands to the left of t if and only if s <α t.
In this picture each state of a windscreen wiper, which has its axis fixed in the root
of T , corresponds to a member of the generating chain induced by the wiper.

The following lemma formally establishes this relationship between generating
chains and wipers.

Lemma 2.2.4. Let B be a Souslin Algebra with Souslinisation T .

a) If W is a wiper on T , then

KW :=
{∑

M | (∃α < ω1)M ⊆ Tα, M is an initial segment of <α

}
is a generating chain of B.

b) Let K be a generating chain of B. Then there is a club C ⊆ ω1, s.t. there is a
wiper W on T�C, inducing K, i.e. with K = KW as above.

Proof. To see that KW is a chain in B, let β < γ, both in C. Let M ⊂ Tγ and
N ⊂ Tβ be initial segments with respect to <γ and <β respectively. Then

P := {s ∈ Tγ | s�β ∈ N}.

defines an initial segment of <γ and we have
∑
N =

∑
P and M ⊆ P or P ⊆M .

To show maximality of KW let x ∈ B \KW and find α ∈ C with x ∈ Bα. Then
M = {s ∈ Tα | s ≤B x} is not an initial segment of <α and it is easy to construct
one which witnesses that KW ∪ {x} is no chain of B.

We show thatKW is generating. For the node t of height α, fix the initial segments

M< := {s ∈ Tα | s <α t} and M≤ := {s ∈ Tα | s ≤α t}

of <α. It is then clear that t =
∑
M≤ −

∑
M<. So 〈KW 〉cm contains a dense subset

of B.
Let now K be a generating chain of B. By Lemma 2.2.2 we know that on a club

set C ′ ⊆ ω1 of levels, the chains K ∩ Bα are maximal chains of Bα
∼= P(Tα). Each

maximal chain of P(Tα) corresponds to a total order of the set of atoms Tα and the
elements of that maximal chain are simply the initial segments of this total order.
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It is trivial that these induced total orders of Tα, α ∈ C ′ respect the tree order. So
we only have to show that the denseness requirement in the definition of wipers is
fulfilled on some club subset of C ′.

Recall that Is,γ is the set of all successors of s with height γ. For all s ∈ Tβ there
is some γ > β such that Is,γ has no minimum, because T has no cofinal branch. The
same holds for every γ′ ∈ C ′ above γ, since if t ∈ Is,γ′ was <γ′-minimal then t�γ
would have to be <γ-minimal.

The analogous argument works of course for maximality. For s ∈ Tβ let γ0
s be

some countable ordinal in C ′, such that Is,γ0
s

has neither minimum nor maximum
with respect to <γ0

s
. Let

γn+1
s := sup{γ0

t | t ∈ Iγn
s ,s}

and αs = sup γn
s . Then Is,αs is densely ordered by <αs . We inductively define a

normal sequence (δi)i<ω1 in C ′ whose range is the desired club set C:

δi+1 :=
⋃

s∈Tδi

αs

and δi =
⋃

j<i δj for i a countable limit. Then clearly for every s ∈ T�C and δi > ht(s)
the linear order (Is,δi

, <δi+1
) is dense by construction.

Every Souslin line has a dense subset of cardinality ℵ1. Thus a small Souslin
algebra has at most 2ℵ1 maximal chains, because every maximal chain is uniquely
determined be a dense subset (as a linear order).

By the next lemma we can find as many generating chains as we like.

Lemma 2.2.5. Every small Souslin algebra has exactly 2ℵ1 generating chains.

Proof. Each maximal chainK of B is a Souslin line and therefore uniquely determined
by a dense subset of power ℵ1, so there cannot be more than 2ℵ1 = |B|ℵ1 maximal
chains. Now let T be a Souslin tree and consider the club set C of all countable limit
ordinals and the family F of all wipers on T�C. It is clear that F has cardinality 2ℵ1

and distinct members of F induce distinct generating chains.

The second requirement in Defintion 2.2.3 of wipers enables us to combine the
argument from proof of Kurepa’s Isomorphism Lemma with that of Cantor for the ℵ0-
categoricity of the dense linear orders: We construct isomorphisms between wipers.
This will be a major step in the construction of a Souslin algebra that is homogeneous
for all generating chains.
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Proposition 2.2.6. Let T and S be two countable, ℵ0-branching, and normal trees
of the same height α < ω1 and let W0 = 〈≺γ| γ < α〉 be a wiper on T and W1 =
〈<γ| γ < α〉 a wiper on S. Furthermore let β < α and ϕ′ be an isomorphism from
T�(β + 1) onto S�(β + 1), such that for all γ ≤ β and s, t ∈ Tγ we have

s ≺γ t⇔ ϕ′(s) <γ ϕ
′(t).

Then there is an isomorphism ϕ between T and S extending ϕ′, such that for all
γ < α and s, t ∈ Tγ we have

s ≺γ t⇔ ϕ′(s) <γ ϕ
′(t).

Proof. We refer to the proof of Kurepa’s Isomorphism Lemma 2.1.6 and describe the
only manipulation: When it comes to choosing of ϕ−1(s), this choice has to respect
the wipers, which is always possible by the denseness requirement.

2.2.2 The Reduction Lemmata

We will now present a sequence of results, which lay the technical grounds for our
treatment of subalgebras in the construction of chain homogeneous Souslin algebras.
In Section 1.1 we introduced tree equivalence relations (t.e.r.s) in order to study
complete subalgebras of Souslin algebras. We briefly repeat the relevant definitions
and results for the reader’s convenience.

Let T be a normal, ℵ0-branching tree. We say that an equivalence relation ≡
on T is a tree equivalence relation if ≡ respects levels (i.e., ≡ refines T ⊗ T ), is
compatible with the tree order of T (i.e., ht s = ht r and s < t ≡ u > r imply s ≡ r)
and the quotient T/≡ is a normal and ℵ0-branching tree with the induced order.

For a Souslin tree T , every t.e.r. ≡ on T represents an atomless and complete
subalgebra A≡ = 〈

∑
t/≡| t ∈ T 〉cm of B = ROT . (We denote the ≡-class of t ∈ T

by t/≡.) A t.e.r. ≡ on T is said to be

• nice if for all triples r, s, t ∈ T with r ≡ s and s < t there is some u > r
equivalent to t;

• almost nice if the same condition holds for all triples such that ht s = ht r is a
successor ordinal;

• decent if there is a tree S carrying an almost nice t.e.r. ∼, and a club C of htS
such that (S�C,∼) ∼= (T,≡), i.e., ≡ is the restriction of an almost nice t.e.r.
to a club subset of levels.
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A subalgebra of B is called nice, if it is represented by a nice t.e.r. on some Souslini-
zation of B. Since niceness descends to the restriction to a club set of levels, this is
independent from the choice of the Souslinisation. Nice subalgebras are much easier
to handle than general subalgebras. But as chain homogeneous Souslin algebras
are necessarily homogeneous (cf. Proposition 2.3.3) and every homogeneous, small
Souslin algebra also has non-nice, atomless and complete subalgebras (by Theorems
1.3.5 and 1.3.9) we also have to consider this general case in our construction. Keep
in mind, that we aim at rendering all atomless, complete subalgebras isomorphic to
the Souslin algebra we construct.

The main result of Section 1.1 is Proposition 1.1.7 which states that for every
atomless and complete subalgebra A of B, there is a Souslinisation T with an almost
nice t.e.r. ≡ that represents A. So for every Souslin algebra with a Souslinisation T
and every complete and atomless subalgebra A of B there is a decent t.e.r. ≡ that
represents A on T�C for some club C of ω1.

Recall that a tree homomorphism is a mapping that preserves the tree order and
levels, i.e., if ϕ : S → T is a tree homomorphism and htS s = htT ϕ(s). We say that
a tree homomorphism ϕ : S → T carries the t.e.r. ∼ in S to the t.e.r. ≡ on T , if for
all r, s ∈ S we have r ∼ s if and only if ϕ(r) ≡ ϕ(s).

Later on, we will use the following proposition to rule out unwanted subalgebras.
It gives a “necessary denseness condition” for decent t.e.r.s which we can design to
fail, if a given t.e.r. does not fit in our method for extending tree isomorphisms. But
before we state Proposition 2.2.8 we introduce a notion of suitability that allows us
to state this and later results in a compact way.

Definition 2.2.7. Let X be a topological space and ≡ an equivalence relation on
X. We say that a subset N ⊆ X is suitable for ≡ if for every element x ∈ X the
intersection of its ≡-class x/≡ with N is either empty or dense in x/≡ (with the
subspace topology).

For a mapping h : X → Z we say N ⊂ X is suitable for h if N is suitable for the
equivalence relation given by x ≡ y :⇐⇒ h(x) = h(y).

Proposition 2.2.8. Let T be a normal, ℵ0-branching tree of height β ≤ ω1, and let
≡ be a decent t.e.r. on T . Let α < β be a limit and consider the equivalence relation
∼= on the perfect Polish space [T�α] induced by the restriction of ≡ to T�α.

a) For every x ∈ [T�α], the class x/∼= is nowhere dense and closed in [T�α]

b) Consider the natural embedding b : Tα → [T�α] given by b(t) := {s ∈ T�α | s < t}.
Then the set b′′Tα is suitable for ∼=.
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Proof. Part a) follows directly from the unique-limits-instance of the normality re-
quirement we posed on t.e.r.s . Here we do not even need that ≡ is decent.

On the other hand, decency is crucial for the second statement. For its proof
suppose there is a tree T ′ of height λ+1 (where λ is a limit) equipped with an almost
nice t.e.r. ≡′, there is a club C of λ and a tree isomorphism ϕ : T�α+ 1→ T ′�C∪{λ}
which carries ≡ to ≡′. Then the induced homeomorphism ϕ between [T�α] and [T ′�C]
is compatible with the induced equivalence relations ∼= and ∼=′ on [T�α] and [T ′�C]
respectively. It therefore suffices to show that for t ∈ T ′λ the corresponding set
{b(r) | r ∈ T ′λ, r ≡′ t} is dense. So let x ∼=′ b(t) and γ < λ. We have to show that
there is some u ∈ T ′λ above x�γ with u ≡′ t. But this follows easily by the almost
niceness of ≡′, because we have x�(γ + 1) ≡′ t�(γ + 1).

Finally the tree isomorphism ϕ translates all we have done with the almost nice
t.e.r. on T ′ to the decent t.e.r. on T .

We use two theorems by Sierpiński and Choquet respectively to deduce the fol-
lowing lemmata.

1. A dense subset of a Polish space is comeagre if and only if it contains a Polish
space as a subset (Choquet, cf. [Kec95, 8.17.ii]).

2. A criterion for Polish spaces: If Y is a seperable and metrizable space which is
the image of a Polish space under a continuous and open surjection, then Y is
Polish (Sierpiński, cf. [Kec95, 8.19]).

Lemma 2.2.9. Given a normal, countable tree T of limit height equipped with a
decent t.e.r. ≡ consider the canonical tree epimorphism

π : T → T/≡, ϕ(t) = t/≡ .

a) Let the set Y := {y ∈ [T/≡] | (∃x ∈ [T ]) y = π′′x} be equipped with the subspace
topology inherited from [T/≡]. Then the induced map

π : [T ]→ Y, x 7→ π′′x

is an open mapping.

b) Let ϕ : T/≡→ S be a tree isomorphism, ρ := ϕ ◦ π and Z := {ρ′′x | x ∈ [T ]}.
Then

ρ : [T ]→ Z, b 7→ ρ′′b

is a continuous and open surjection, and Z is comeagre in [S].
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Proof. As in the proof of Proposition 2.2.8, since it does not infect the behaviour of
the mappings, we can assume, that ≡ is indeed almost nice. We use this to show
that π is open. So let t ∈ T be a successor node and y ∈ [T ] such that y�γ ≡ t. We

will find x ∈ t̂ such that x ≡ y thus showing that π′′t̂ = π̂(t) ∩ Y .
Fix an increasing sequence γn with limit htT such that γ0 = γ = ht t and all the

higher γn are successor ordinals as well. Set t0 := t and find by almost niceness of ≡ a
node tn+1 >T tn such that tn+1 ≡ y�γn+1. Finally let x = {s ∈ T | (∃n ∈ ω)s <T tn}.
So we have shown that the image of a basic open set is (the intersection of Y with]
basic open set.

For the first part of b), note that ρ = ϕ ◦ π and ϕ is a homeomorphism. So ρ
is clearly continuous and open, while surjectivity is trivial by the definition of Z.
Denseness of Z in [S] follows from the surjectivity of ρ, so Z is Polish by Sierpiński’s
theorem and thus comeagre in [S] by that of Choquet.

It is crucial for our applications that the images of comeagre sets under mappings
like ρ considered in the last lemma are comeagre again. This general fact is provided
by the following proposition.

Proposition 2.2.10. Let X and Y be Polish spaces and h : X → Y a continuous
mapping, such that h′′X is comeagre in Y and the right-hand side restriction of h to
its image, i.e. h : X → h′′X is an open mapping.

a) If D ⊂ Y is meagre, then h−1′′D is meagre as well.

b) If M ⊂ X is comeagre, then h′′M is comeagre as well.

Proof. We start by showing that dense sets have dense images. This is clear, since
h′′X is dense in Y , and the image of a dense subset of X is dense in h′′X.

Next we show that nowhere dense subsets have nowhere dense pre-images. Let
D ⊂ Y be nowhere dense and U ⊆ X open. Then h′′U is open in h′′X by our
hypothesis on h, and, of course, D ∩ h′′U is nowhere dense along with D. If h−1′′D
was dense in U , then by the argument above h′′(U ∩ h−1′′D) would be dense in h′′U .
But on the other hand, h′′(U ∩ h−1′′D) is a subset of D ∩ h′′U , which is nowhere
dense.

Since the operations of taking unions and taking pre-images commute, we directly
get statement a) of the proposition.

To prove part b) we assume without loss of generality, that M is a dense Gδ-
subset of X. Then clearly h′′M is an analytic subset of Y . So, by a theorem of
Lusin and Sierpinski (cf. [Jec03, Theorem 11.18.b] or [Kec95, Theorem 21.6]), h′′M
has the Baire property, i.e. there is an open subset U of Y , such that the symmetric
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difference of h′′X and U is meagre. In particular the sets h′′X \ U and U \ h′′X are
meagre. If we can show, that U is dense in Y , then the proof is finished.

So assume to the contrary that there is an open subset V of Y which is disjoint
from U . Then V ∪h′′X is meagre and so is M ∩h−1′′V = h−1′′(V ∩h′′M) by part a).
But since M is comeagre and h−1′′V is open, their intersection cannot be meagre —
contradiction!

In order to extend isomorphisms between our Souslin algebra and its subalgebras
on the level of Souslinisations during the constructions to come, we will use the fol-
lowing First Reduction Lemma, while Lemma 2.2.9 will etsablish that the hypotheses
hold.

Lemma 2.2.11 (First Reduction Lemma). Consider the perfect Polish space X and
and a countable set H such that every h ∈ H

i) is a continuous function h : X → X,

ii) has a comeagre image h′′X in X,

iii) becomes an open mapping when restricted to its range h′′X on the right hand
side.

Let furthermore M be a comeagre subset of X. Then there is a comeagre subset
N = N(M,H) of M , such that for all h ∈ H we have either h′′N = N or N is not
suitable for h.

Note, that for every h ∈ H and y ∈ h′′X the preimage h−1(y) is a closed and
nowhere dense subset of X by the hypotheses. It can be discrete (and thus at most
countable) or contain a perfect subset. For x ∈ N the last property of N implies
that the discrete part of A = h−1(h(x)) is contained in N and that N intersects
the perfect part of A in a comeagre subset — comeagre in the relative topology of
the perfect part of A which is a perfect Polish space. So we can simply say that N
intersects A in a comeagre subset of A.

Proof. By Proposition 2.2.10 we know that for every comeagre subset M of X and
every h ∈ H the set h′′M is comeagre in X.

In the other direction, i.e. for h−1′′M for comeagre M ⊂ X, we can assume that
M is the intersection of the open, dense sets Un for n ∈ ω. Then, as we are taking
pre-images, h−1′′M is the intersection of the open sets h−1′′Un. We have shown that
h−1′′M is comeagre, when we show that these sets are dense in X as well. Pick
any open subset V ⊂ X. Then h′′V is open in h′′X by the third condition on the
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members of H. But Un ∩ h′′X is open and dense in h′′X. So the sets Un ∩ h′′V and
h−1′′Un ∩ V are not empty.

Now choose an enumeration (hn | n ∈ ω) of H such that every h ∈ H appears
cofinally on the sequence. We will define our setN as the intersection over a countable
family (Mk

n | k, n ∈ ω) of comeagre subsets of M . We start with M0
0 := M , and given

the comeagre set Mk
n the next set Mk

n+1 is chosen as follows. If there is a comeagre
subset M ′ ⊆ Mk

n which is suitable for hn, then set Mk
n+1 := M ′. If not, then set

Mk
n+1 := Mk

n . If Mk
n has been defined for all n ∈ ω, we let

Mk
ω :=

⋂
n∈ω

Mk
n

and
Hk := {h ∈ H |Mk

n+1 is suitable for h for all n with hn = h}.
Note, that Mk

ω is suitable for all h ∈ Hk, for if x ∈Mk
ω A = h−1(h(x)) then

Mk
ω ∩ A :=

⋂
hn=h

Mk
n+1 ∩ A,

which is a countable intersection of comeagre subsets of A and therefore comeagre.
Let finally

Mk+1
0 := Mk

ω ∩
⋂

h∈Hk

(h′′Mk
ω ∩ h−1′′Mk

ω)

and
N := N(M,H) :=

⋂
k,n∈ω

Mk
n .

Since H is countable and by the arguments at the start of the proof, all the sets Mk
n ,

and N as well, are comeagre.
Let h ∈

⋂
k∈ω Hk. Then we have always found a h-suitable comeagre subset Mk

n+1

of Mk
n if h = hn. We show that h is surjective on N . Let y ∈ N , so y ∈Mk+1

0 for all
k ∈ ω. This means that h−1(y)∩Mk

n+1 is not empty and therefore comeagre in h−1(y)
because Mk

n+1 is suitable for h. But then N ∩ h−1(y) is a countable intersection of
sets comeagre in h−1(y) and, as a consequence, comeagre (non-empty!) itself. It is
trivial that

h′′N = h′′
⋂
k∈ω

Mk
ω ⊂

⋂
k∈ω

Mk+1
0 = N.

Now let h ∈ H which is not in Hk for some k ∈ ω, i.e., there was a number
n ∈ ω with h = hn and there was no comeagre subset of Mk

n suitable for h. Since N
is comeagre, it cannot be suitable for h. So there must be an element x ∈ N with
N ∩ h−1(h(x)) not dense in h−1(h(x)).
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Remark 2.2.12. The careful reader might have already guessed, that in our appli-
cations of the First Reduction Lemma,

• the space X will be of the form [T�α] for some countable limit α and

• the mappings h ∈ H will be of the form h = ρ = ϕ◦π≡ as in part b) of Lemma
2.2.9 with S = T . (We also allow that the t.e.r. ≡ is just the identity, so ϕ can
also be an automorphism of T .)

If N is suitable for h, then we can choose the next level of our tree in a way that
guarantees that ≡ extends to a decent t.e.r. on the new level and we can also extend
ϕ as a tree isomorphism. If on the other hand N is not suitable for h, then we can
choose Tα so that it contains a witness for this. But then ≡ is no longer decent, and
we do not have to reconsider it in later stages of the construction.

At this point we have collected enough of the representation theory for subalge-
bras of Souslin algebras to perform the first construction of a chain homogeneous
algebra given in Section 2.3.3.

In the construction of a big Souslin algebra in Section 2.4 we will carry out an
iteration of length ω2. In the remainder of this section we prepare the treatment of
certain subalgebras of the initial algebra of that iteration.

Recall from Section 1.3 that we call a t.e.r. ≡ ∞-nice if it is nice and for all
α < β < ht(T ) and all s ∈ Tβ the projections t 7→ t�α are ∞-to-one when restricted
to the ≡-class of s, i.e.,

for all r ∈ (s�α)/≡ the set {t ∈ s/≡| t�α = r} is infinite.

A subalgebra A of B is called ∞-nice if B has a Souslinisation T which carries an
∞-nice t.e.r. ≡ such that {

∑
s/ ≡| s ∈ T} is dense in A.

The equivalence classes of ∞-nice t.e.r.s have an especially nice structure:

Proposition 2.2.13. Let T be a normal, ℵ0-branching tree of countable limit height
carrying an ∞-nice t.e.r. ≡. Then for every cofinal branch b of T the set⋃

b/≡:= {s ∈ T | s ≡ (b�ht(s)}

is an ℵ0-branching, normal tree.

Proof. Unique limits are inherited from T , infinte branching follows from the ∞-
condition, successors in every higher level follow from niceness.
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Recall Kurepa’s Isomorphism Lemma 2.1.6 which states that ℵ0-branching normal
trees of the same countable height are isomorphic. We once again refine this result
in the following proposition, which eventually enables us to produce the additional
isomorphisms we need in the construction in Section 2.4.

Proposition 2.2.14. Let T be a normal, ℵ0-branching tree of limit height α < ω1

and let ≡ and ∼ be ∞-nice t.e.r.’s on T . Let γ be equal to α or else be a successor
ordinal below α. Let ϕ′ be an ismorphism between (T�γ)/≡ and (T�γ)/∼. Then there
is an automorphism ϕ of T that carries ≡ to ∼, s.t. the induced map on T/≡ is an
isomorphism onto T/∼ that extends ϕ′.

Proof. First use Lemma 2.1.6 to extend ϕ′ to an isomorphism between T/ ≡ and
T/∼ in the case that γ < α. So we can assume α = γ.

We now give a back-and-forth-argument which lifts the isomorphism ϕ′ to an
automorphism ϕ of T . Enumerate T in order type ω by s0, s1, . . . For the induction
step in the forth-direction let n be the minimal index i for which ϕ(si) has not yet
been defined. Our choice for ϕ(si) has to respect the tree order and the equivalence
relations. So let s be the predecessor of maximal height whose image under ϕ is
already determined by the choices met earlier in the construction, where s = si is
allowed. In the case that s <T si, we want to pick a node t ∈ ϕ′(si/≡) above ϕ(s)
which exists by the niceness of ∼. We furthermore require that t has not yet been
assigned as some ϕ(sj). This choice is possible due to the ∞-part in the ∞-niceness
of ∼.

For the back-step we replace in the above argument all ϕ and ϕ′ by ϕ−1 and
ϕ′−1.

We now come to state the key lemma for the construction of a Souslin algebra
with ∞-nice subalgebras. Note that, by an argument as in the proof of part a) of
Proposition 2.2.8, given an ∞-nice t.e.r. ≡ on T �α and any x ∈ [T �α], then the
≡-class of x is a nowhere dense, perfect subset of the Polish space [T�α] and thus a
perfect Polish space itself.

Lemma 2.2.15 (Second Reduction Lemma). Let T be a countable, normal and ℵ0-
branching tree with an ∞-nice t.e.r. ≡. The induced equivalence relation on [T ] will
also be called ≡. Let M ⊆ [T ] be comeagre. Then there is a comeagre subset M ′ ⊆M
which is suitable for ≡.

Proof. Without loss of generality we assume that M is a Gδ set. So let M =
⋂
Un,

where all the Un are dense open and define for n ∈ ω

Xn =
⋃
{x/≡| x/≡ ∩Un is not dense in x/≡} .



2.2. GENERATING CHAINS AND COMPLETE SUBALGEBRAS 79

Note that for x /∈ Xn the set x/≡ ∩Un is then open and dense in x/≡. We show
that Xn is meagre for every n < ω. Let then M ′ := M \

⋃
n∈ω Xn. For x ∈ M ′ we

then have (x/≡) ∩ M ′ = (x/≡) ∩ M , which is comeagre in x/≡ by the choice of M ′.
Fix n and let for s ∈ T

Ys :=
⋃
{x/≡ | s ≡ x�(ht s) and x/≡ ∩Un ∩ ŝ = ∅} ,

to get Xn =
⋃

s∈T Ys. The basic open set ŝ is the witness for the non-denseness of
x/≡ ∩Un in x/≡.

If we fix s ∈ Tγ then of course Ys ⊆
⋃

r∈Tγ
r̂ = [T ]. Now for r 6≡ s we clearly have

Ys∩ r̂ = ∅. On the other hand the set Ys∩ ŝ ⊂ ŝ\Un is nowhere dense. For r ≡ s we
can find by Proposition 2.2.14 a tree isomorphism ϕ : T (s)→ T (r) that respects ≡.
But the homeomorphism ϕ : ŝ → r̂ induced by that tree isomorphism maps Ys ∩ ŝ
onto Ys ∩ r̂. This shows that the latter set is nowhere dense as well. But then we
have established Ys as well as Xn as a countable union of nowhere dense sets.

In order to get, once and for all, rid of this kind of argument, we combine the
First with the Second Reduction Lemma and get the result which is appropriate for
our use in the construction in Section 2.4.

Corollary 2.2.16. Let T be a countable, normal and ℵ0-branching tree of limit height
α. Let H be a countable set of triples h = (ch,≡h, ϕh) where ch is a club subset of
α, ≡h is a decent t.e.r. on T�ch and ϕh : (T�ch)/≡h→ T�ch is an isomorphism. Let
furthermore I be a countable set of pairs i = (ci,≡i) such that ci is club in α and
≡i is an ∞-nice t.e.r. on T �ci. If M is a comeagre subset of [T ] then there is a
comeagre subset N of M , such that

1. for all h ∈ H, M is either suitable for h (resp. ≡h) and h′′N = N , or N is
not suitable for h;

2. N is suitable for all ≡i where i ∈ I.

(We hope that the reader may forgive us the use of the name of a tuple for
indexing its components.)

Proof. As in the proof of the First Reduction Lemma 2.2.11, but we enumerate the
memebers H ∪ I in an ℵ0-to-1 fashion, instead of those of H only. The Second
Reduction Lemma states that we always find suitable subsets for the ∞-nice t.e.r.s
≡i for i ∈ I.
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Our last technical lemma concerns nested ∞-nice t.e.r.s. With its aid we will see
that constructing an increasing chain of subalgebras, the smaller ones ∞-nice in the
larger ones, is not as hard as it might look like at first sight.

If ≡1 refines ≡0 as an equivalence relation on some set M , we define the equiva-
lence relation ≡0/1 on M/≡1 by

(x/≡1) ≡0/1 (y/≡1) :⇐⇒ x ≡0 y

for x, y ∈M .

Lemma 2.2.17. Assume we are given two ∞-nice t.e.r.’s ≡0 and ≡1 on T which is
normal, ℵ0-branching and of countable limit height, such that ≡0 is refined by ≡1 and
the t.e.r. ≡0/1 on the quotient tree T/≡1 induced by ≡0 is ∞-nice. Let furthermore
M be a comeagre subset of [T ] that is suitable for both ≡0 and ≡1. Then M/≡1 is
suitable for ≡0/1.

Proof. Assume the statement is false, i.e., that there is s ∈ T , such that

M/≡1 ∩(x/≡1)/≡0/1 ∩ ŝ/≡1 = ∅,

while (x/≡1)/≡0/1 ∩ ŝ/≡1 6= ∅. Now choose

y ∈ ŝ ∩M ∩ (x/≡0) ⊇ ŝ ∩M ∩ (x/≡1) 6= ∅.

But then (x/≡1) ≡0/1 (y/≡1), so (y/≡1) ∈ (M/≡1) ∩ (x/≡1)/≡0/1 which contradicts
our choice of s.
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2.3 Chain-homogeneous Souslin algebras

We give three ♦+-constructions of chain-homogeneous Souslin algebras, the first one
in this section and the other two in the next section. The second one is a variation
of the first one and will be used as the starting point for the iteration of the third
construction that eventually yields a big, chain homogeneous Souslin algebra.

2.3.1 The strategy

We assume ♦+ and aim at constructing a Souslin tree order T = (ω1, <T ) such that

• all generating chains of B = ROT are pairwise order isomorphic and

• all complete and atomless subalgebras of B are isomorphic to B.

In this sketch we only care about the generating chains and ignore the task of ren-
dering all atomless, complete subalgebras isomorphic to B. As in many other Souslin
tree constructions, e.g. as performed in Example 2.1.13, we will have

T�α = ωα and Tα = ω(α+ 1) \ ωα

for all infinite, countable ordinals α. We will concentrate our efforts on tree levels
Tα with α = ω · α and choose arbitrarily in all other levels.

After the construction we want to exhibit an isomorphism between two generating
chains, say K0 and K1, and therefore consider two wipers W0, W1 given by Lemma
2.2.4 living on the same club C ⊂ C0. We can code this pair of wipers by a set
X ⊂ ω1 in such a way that X ∩α is a code for the pair of wipers restricted to C ∩α
for all relevant α. These sets X ∩ α will appear in our ♦+-sequence for α in a club
D of ω1. Our construction will yield an automorphism of T �(C ∩ D) which carries
W0 to W1.

We now take a look at a relevant construction stage α ∈ C ∩ D. Whenever
C ∩ D ∩ α is bounded below α we do not know how W0 and W1 respectively are
extended on Tα, so we only consider α in which C∩D∩α is cofinal. By the induction
hypotheses we have already constructed φ0 ∈ Aut(T �(C ∩D ∩ α0)) carrying W0 to
W1 for some α0 ≤ α such that the order type of C ∩ D ∩ α \ α0 is 0 or ω. In the
latter case we inductively extend φ0 up to α which works by Proposition 2.2.6, say
φ.

Then we have to choose a countable dense set of cofinal branches which is also
closed under the action of the tree automorphism φ of T�(C∩D∩α) associated to our
pair of wipers. This is where the topological perspective on the cofinal branches of the
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countable tree is most effective: the tree automorphism φ induces a homeomorphism
φ on the Polish space of cofinal branches. If we are given any comeagre set of
branches we easily find a comeagre subset which is closed under the action of this
homeomorphism φ from which we choose our countable, dense set. Finally we extend
this set to its closure under the application of the homeomorphism. This has to be
achieved simultaneously for all pairs of wipers proposed by the ♦+-sequence on stage
α.

2.3.2 The ♦+-machinery

In the Souslin tree constructions to come we want to build additional objects (map-
pings, tree isomorphisms) on club sets of levels of the tree T to be constructed,
that relate given objects (e.g. pairs of wipers on T �C) to each other. During the
relevant construction steps, initial segments of the given objects are proposed by a
♦+-sequence and in order to extend the additional object we need some pointer to
indicate the ordinal stage up to which the recursive construction of the additional
object has reached so far. The following definition is kept somewhat general to fit in
also for later uses.

Definition 2.3.1. Fix a ♦+-sequence (Sα)α<ω1 .

a) Let C0 := {α < ω1 | ωα = α} be the set of countable fixed points of the left-
multiplication with ω.

b) Let α ∈ C0. For x ∈ P(α) set

c(x) = {γ ∈ C0 ∩ α | x ∩ ω(γ + 1) \ ωγ 6= ∅}.

c) The set of relevant guesses for stage α, Gα is the set of pairs (x, d) ∈ Sα × Sα

such that c(x), d and c(x)∩ d are club in α and for γ ∈ d the sets x∩ γ and d∩ γ
are in Sγ.

d) For (x, d) ∈ Gα let

ex,d := {γ ∈ c(x) ∩ d |
⋃

(γ ∩ c(x) ∩ d) = γ}

be the Cantor-Bendixson derivative of c(x) ∩ d, i.e., the set of its limit points.

e) Let εx,d :=
⋃
ex,d. (Note that εx,d = 0 if ot(c(x) ∩ d) = ω.)

Now if for example (x, d) ∈ Gα and x codes a pair of wipers on T�c(x), we know
that up to stage εx,d our recursive construction of the additional object — here: an
isomorphism between the wipers given by x — has been invoked and therefore up to
this stage this isomorphism has yet been constructed.
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2.3.3 Homogeneity for all maximal chains

In this section we give the first full solution to our problem.

Theorem 2.3.2. Assuming ♦+, there is a small Souslin algebra B, such that for
each pair K,K ′ ∈ mc B there is an order isomorphism between K and K ′.

Proof. We inductively construct a tree-order <T level by level on the set ω1, such
that the resulting tree T will be a normal and ℵ0-branching Souslin tree. The Souslin
algebra to be constructed will be the regular open algebra of T = (ω1, <T ).

We fix a ♦-sequence (Rν)ν<ω1 , a ♦+-sequence (Sν)ν<ω1 and a bijection g : ω1 →
(2 × ω1 × ω1) with g′′λ = 2 × λ × λ for all limit ordinals λ. Let for i ∈ 2 be gi the
concatenation of g and the projection onto the fibre over i. We will use g for coding
wipers and t.e.r.s as sets of ordinals.

Let 0 be the root of T and in the successor step fix ℵ0 distinct direct successors for
each maximal node in such a way that for every α < ω1 \ {0} the level Tα consists of
the next ω many ordinals not yet used in the construction. So we have T1 = ω \ {0},
Tn = ωn \ ω(n − 1) for all natural numbers n ≥ 2 and finally T �α = ωα for all
infinite, countable ordinals α.

Now let α < ω1 be a limit ordinal. By the inductive assumption we have so far
constructed a normal tree order (T � α,<T ) on the supporting set ωα.

We consider the space [T �α] of all cofinal branches of T �α with the topology
generated by the clopen sets t̂ := {z ∈ [T �α] : t ∈ z} for t ∈ T �α. By Proposition
2.1.7 we know that this topology is Polish and perfect.

If α < ωα we simply choose a countable dense subset Qα of [T�α] and embed Qα

onto ω(α + 1) \ ωα, i.e., we choose a bijection between Qα and ω(α + 1) \ ωα and
extend <T on ω(α+ 1) in the obvious way.

If α = ωα, we want to choose a countable dense subset Qα of [T�α], too, but this
time our set also has to seal certain maximal antichains of T�α and extend enough
tree isomorphisms. In order to state the inductive assumption and the inductive
claim we need some notation. Recall the definitions from the last section concerning
the use of the ♦+-sequence (Gα, c(x), εx,d, etc.).

Consider the subset Eα of Sα× Sα of all pairs (x, d) ∈ Gα such that g′′0x and g′′1x
are wipers W0 = 〈≺γ: γ ∈ c(x)〉 and W1 = 〈<γ: γ ∈ c(x)〉 on T �c(x) respectively.
(It would have been more correct to write g0

′′x =
⋃
W0 and g1

′′x =
⋃
W1.) So

(x, d) ∈ Eα if x codes a pair of wipers on T�c(x) and is guessed correctly by the ♦+-
sequence along with a club d on the members of d itself. From now on, if (x, d) ∈ Gα

is fixed, we write c for c(x).
The guesses of the ♦+-sequence for t.e.r.s are collected in the set Fα:

Fα := {(x, d) ∈ Gα | x codes a decent t.e.r. on c(x)}.
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Here we code e.g. with respect to the map g0. For (x, d) ∈ Fα let≡x denote the decent
t.e.r. which is coded by x. It induces the ℵ0-branching, normal tree (T�c(x))/≡x.

Keep in mind that c ∩ d is unbounded in α if (x, d) ∈ Eα or Fα by the definition
of the relevant stages set Gα.

The inductive hypothesis (IH) is, that T�α is a countable and ℵ0-branching tree
of height α and

1. for every pair (x, d) ∈ Eα there is a ⊂-chain 〈ϕx∩γ,d∩γ : γ ∈ ex,d〉 and each
ϕx∩γ,d∩γ is a tree automorphism of T�(c∩ d∩ γ+1) that was fixed in induction
step γ ∈ ex,d and which carries W 0

x,d�c ∩ d ∩ γ + 1 = 〈≺δ: δ ∈ c ∩ d ∩ γ + 1〉 to
W 1

x,d�c∩d∩γ+1 = 〈<δ: δ ∈ c∩d∩γ+1〉. In short: ϕx∩γ,d∩γ is an isomorphism
between W 0

x,d�c ∩ d ∩ γ + 1 and W 1
x,d�c ∩ d ∩ γ + 1 for all γ ∈ ex,d and

2. for every pair (x, d) ∈ Fα there is a ⊂-chain 〈ψx∩γ,d∩γ : γ ∈ ex,d〉 of tree
isomorphisms ψx∩γ,d∩γ : T�(c ∩ d ∩ γ + 1)/≡x→ T�(c ∩ d ∩ γ + 1) each of them
fixed in induction step γ ∈ ex,d.

(Recall that c = c(x) and ex,d is the set of limit points of c ∩ d.) For those (x, d) in
Eα or in Fα but with εx,d < α we need to choose extensions for the maps granted by
the IH as follows.

Fix (x, d) ∈ Eα. If εx,d = α let

ϕx,d :=
⋃

γ∈ex,d

ϕx∩γ,d∩γ.

Otherwise extend ϕx∩εx,d,d∩εx,d
by Proposition 2.2.6 to some isomorphism ϕx,d be-

tween W 0
x,d�c ∩ d and W 1

x,d�c ∩ d.
Let (x, d) ∈ Fα and set ψx,d :=

⋃
γ ψx∩γ,d∩γ if εx,d = α. Otherwise extend the

union of the chain by Kurepa’s Lemma 2.1.6 to some isomorphism

ψx,d : (T�c ∩ d)/≡x→ T�c ∩ d.

Now Lemma 2.2.9 comes into play. Let

πx,d : T�c ∩ d→ (T�c ∩ d)/ ≡x, s 7→ s/ ≡x

be the canonical mapping associated to ≡x and define

ρx,d := ψx,d ◦ πx,d : T�c ∩ d→ T�c ∩ d.

Since ≡x is decent and ψx,d is an isomorphism, ρx,d has the same properties as the
map ϕ in Lemma 2.2.9. The induced continuous map

ρx,d : [T�α]→ [T�α], b 7→ {s | (∃t ∈ b ∩ (T�c ∩ d))s <T ρx,d(t)}
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has a comeagre image in [T�α] and is an open mapping when the range is restricted
to ρx,d

′′[T�α].
The ♦-sequence (Rν)ν<ω1 proposes candidates for maximal antichains in the usual

way. If Rα is a maximal antichain of T�α then we have to ensure that each member
of Tα is a <T -successor of some element of Rα. That means Qα has to be a subset of

Mα = {x ∈ [T�α] : ∃γ < αx�γ ∈ Rα}

which is itself an open dense subset of [T�α], because Rα is a maximal antichain. If
Rα is not a maximal antichain in T�α we simply set Mα = [T�α].

The inductive claim (IC) is that there is a choice for Qα, i.e., a countable and
dense subset of Mα, scuh that

1. every tree automorphisms ϕx,d of T�c ∩ d for (x, d) ∈ Eα and

2. for every (x, d) ∈ Fα, either≡x is no longer decent when extended to T�(c∪{α}),
or the tree isomorphism ψx,d : (T�c∩ d)/≡x→ T�c∩ d extends to the respective
trees with the new top level Tα corresponding to Qα (or Tα/≡x respectively)
added on.

We apply the First Reduction Lemma 2.2.11 to the sets M = Mα and

H = {ϕx,d | (x, d) ∈ Eα} ∪ {ρx,d | (x, d) ∈ Fα}.

Since the Eα-part of H consists of homeomorphisms and the Fα-part is subject to
Lemma 2.2.9, the hypotheses of the First Reduction Lemma are satisfied. The result
is a comeagre subset Nα of Mα, such that

• for all (x, d) ∈ Eα we have ϕ′′x,dNα = Nα and

• for each (x, d) ∈ Fα, if Nα is suitable for ρx,d then ρ′′x,dNα = Nα.

(Recall that we say that a comeagre subset M of [T�α] is suitable for ρx,d if for every
branch b ∈ [T ] the intersection of the class b/≡x with M is either empty or dense in
b/≡x.)

Let F ∗
α be the set of those (x, d) ∈ Fα, such that Nα is suitable for ≡x. So we can

choose for every (x, d) ∈ F ∗
α a right inverse σx,d : Nα → Nα of ρx,d�Nα. In general,

these sections σx,d will not be continuous, but this is no longer important.
To rule out the bad t.e.r.s, pick for each (x, d) ∈ Fα \F ∗

α one witness bx ∈ Nα for
the fact that Nα is not suitable for ≡x, i.e., that Nα ∩ bx/≡x is not dense in bx/≡x.
As already noted in Remark 2.2.12, this choice impeaches every t.e.r. extending ≡x
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from being a decent t.e.r., because it fails to satisfy the necessary denseness condition
stated in Proposition 2.2.8.

Finally extend the set {bx | (x, d) ∈ Fα \F ∗
α} to a countable and dense subset Zα

of Nα. To obtain Qα, form the hull of Zα under the application of the mappings

ϕx,d and ϕ−1
x,d for (x, d) ∈ Eα

and
ρx,d and σx,d for (x, d) ∈ F ∗

α.

Choose a bijection j : Qα → ω(α+ 1) \ ωα and extend <T in the obvious way.
To finish the induction step, we show that our choice of Tα admits extensions

of the tree isomorphisms ψx,d for all (x, d) ∈ F ∗
α. Fix (x, d) ∈ F ∗

α and set c′ =
(c(x) ∩ d) ∪ {α}. First of all extend ≡x to Tα by letting s ≡x t if and only if
s�γ ≡x t�γ for all γ ∈ c(x). (This is the only t.e.r. extending ≡x on Tα because of
the normality requirement in the definition of t.e.r.)

We can identify Tα with Qα via the bijection j. This in mind, we show that the
unique extension ψ of ψx,d to (T �c′)/≡x is an isomorphism onto T �c′: for s ∈ Tα

define

ψ′(s/≡x) := the unique t ∈ Tα with ψx,d(s�γ/≡) = t�γ for all γ ∈ c′ \ {α}

and let ψ = ψx,d ∪ ψ′. We check the soundness of this definition. For s ∈ Tα there is
ψ(s/≡x) = j ◦ ρx,d ◦ j−1(s). The normality of T/≡ guarantees that the definition of
ψ(s/≡x) is independent from the choice of the representative s. So it is clear that ψ
is indeed a tree homomorphism.

Now, by the definition of ≡x on Tα, if s 6≡ t for s, t ∈ Tα, then there is some
γ ∈ c′ \ {α} with s�γ 6≡x t�γ and so ψ(s/≡x) 6= ψ(t/≡x). On the other hand, for
every s ∈ Tα we have

ψ(j ◦ σx,d ◦ j−1(s)/≡x) = s.

So ψ is bijective also on the top level of (T�c′)/≡ and therefore a tree isomorphism.
For the reference in later induction steps we denote this tree isomorphism ψ by

ψx,d. This completes the inductive construction.
It remains to show that the above construction yields a Souslin tree T whose

regular open algebra B is chain homogeneous. We omit the standard argument
proving that T is Souslin.

If we are given two generating chains K,K ′ of B let X ⊂ ω1 be a code with
respect to g for a pair of wipers on the club C ⊂ {α : ωα = α} inducing K and K ′.
Let D be a club set in ω1 associated to X by ♦+. Then for each α ∈ E = {γ ∈
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C∩D | γ =
⋃

(γ∩C∩D)} the construction of the tree gives us a tree automorphism
ϕX∩α,D∩α of T�(C ∩D ∩ α), and the union of that increasing chain,

ϕ =
⋃
α∈E

ϕX∩α,D∩α,

extends to an automorphism ϕ of B that carries K to K ′.
Now let A be a complete and atomless subalgebra of B represented by the decent

t.e.r. ≡ on T�C. Let D be a club, such that the ♦+-sequence guesses D∩α and X∩α
for a code X for ≡ for all α ∈ D. Then the construction yields a tree isomorphism
ψ : (T�C ∩D)/≡→ T�C ∩D and therefore a Boolean isomorphism between B and
A.

So let K be a maximal chain of B, A = 〈K〉cm and ψ : B ∼= A. Now K is
isomorphic to the generating chain ψ−1′′K and is thus of that unique order type.

2.3.4 Some features of chain homogeneous Souslin algebras

Proposition 2.3.3. A small and chain homogeneous Souslin algebra B is homo-
geneous in the following strong sense. For every pair A0,A1 of Souslin subalgebras
and x ∈ A0 and y ∈ A1 where 0 <B x, y <B 1, there are 2ℵ1 distinct isomorphisms
ϕ : A0 → A1 with ϕ(x) = y.

Proof. We first argue that B is weakly homogeneous. B is assumed to be small. So
for every pair a, b of non-zero elements of B there are generating chains K,K ′ of B
with a ∈ K and b ∈ K ′. Each isomorphism ϕ between K and K ′ satisfies ϕ(a) · b 6= 0
and extends to an automorphism of B.

By a theorem of Koppelberg and Solovay (cf. [ŠR89, Theorem 18.4.1]), every
complete and weakly homogeneous Boolean algebra is a power of a homogeneous
factor, which in our case is isomorphic to B, because of the c.c.c. satisfied by B.

By Lemma 2.2.5 there are 2ℵ1 distinct generating chains. Chain homogeneity then
implies that B has 2ℵ1 automorphisms. It is then easy, granted that A0,A1

∼= B, to
construct a large family of isomorphisms as stated in the proposition.

Lemma 2.3.4. a) If A is an atomless, complete subalgebra of the Souslin algebra B,
and A and B are isomorphic, then no atomless, complete subalgebra of B can be
independent from A.

b) A chain homogeneous Souslin algebra has no independent pair of atomless and
complete subalgebras.
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Proof. To prove a), choose an isomorphism ϕ from B onto its complete subalgebra A,
and assume that C is an atomless, complete subalgebra of B and independent from
A. Then the image of C under ϕ is an isomorphic copy of C and independent from
C. So by choosing a Souslinization T of C we can by a standard argument construct
an uncountable antichain in the subset T ⊗ ϕ′′T of B contradicting the assumption
that B is Souslin.

For the proof of b) note, that here we have not assumed B to be small. In the case
of a small Souslin algebra, an application of part a) suffices to prove b). But also a
big Souslin algebra B has only maximal chains, that completely generate subalgebras
which are small Souslin algebras. So assume that A0,A1 form an independent pair
of complete and atomless subalgebras of B. Then there are maximal chains K0 ⊂ A0

and K1 ⊂ A1, which are isomorphic to each other. The isomorphism between the
chains extends to an isomorphism between the two subalgebras that are completely
generated by the chains:

C0 := 〈K0〉cm ⊂ A0 and C1 := 〈K1〉cm.

But then again, we have an isomorphic pair of subalgebras C0,C1 of B that cannot
be independent unless B fails to satisfy the countable chain condition.

Concerning the hypothesis (♦+) met for our construction, we remark the follow-
ing. In [AS93, Section 6] a model of ZFC + ¬SH is constructed, in which there is no
homogeneous Souslin tree. By Proposition 1.3.4 a (chain) homogeneous Souslin alge-
bra always has a homogeneous Souslinization. So we have found a ZFC-model where
Souslin’s hypothesis fails, yet there are no chain homogeneous Souslin algebras.

It is open whether we could make do with less than ♦+, e.g., if the assumption
of ♦ is sufficient to guarantee the existence of a chain homogeneous Souslin algebra.
However, there are clues that this is not the case.

In [DJ74, Section V.3], a Souslin tree with at least ℵ2 automorphisms is con-
structed under ♦+, and on p. 51 the authors remark: It is doubtful whether this is
provable form ♦. It seems very likely, that the regular open algebra of that Souslin
tree is also chain homogeneous as, for instance, it is not hard to see that it is homo-
geneous for generating chains.

This is reinforced by the fact that the small Souslin algebra constructed in Section
2.4 has stronger homogeneity properties of which we can prove, that they do not exist
under the assumption of ♦ alone (cf. Corollary 2.4.6). And the methods used to
implement these stronger homogeneity properties strongly resemble those used in the
proof of Theorem 2.3.2.
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So we join in the doubts of Devlin and Johnsbr̊aten cited above and conjecture
that there is a model of ZFC + ♦ in which there are no chain homogeneous Souslin
algebras.
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2.4 A big and chain homogeneous Souslin algebra

In the present section we give a ♦+-construction of a chain homogeneous Souslin
algebra that has no dense subset of cardinality ℵ1, i.e., it is big. This answers a
question by Stevo Todorcevic asked on the occasion of a talk on chain homogeneous
Souslin algebras the author gave at the Toposym 10 conference in Prague, 2006.

We start and construct in Section 2.4.1 a small, chain homogeneous Souslin al-
gebra B0 in which a sequence of subalgebras of length ω1 with certain favourable
properties is already realized.

Then we construct the iteration sequence of length ω2 while embedding each
algebra of that iteration sequence in B0 onto one of the subalgebras built up in the
construction of B0. The chain homogeneity implies that all the ℵ2 algebras on the
iteration sequence are isomorphic to B0. The final, big Souslin algebra will then be
obtained as the direct limit (or simply the union) of this ω2-sequence.

2.4.1 The footing

Before we state and prove the theorem of this section we introduce some notation.
Recall Proposition 2.2.14, which states that an isomorphism between two quotient

trees T/≡0 and T/≡1 can be lifted to an automorphism of T once the t.e.r.s are ∞-
nice. To get hold of isomorphisms between quotient trees we introduce the notion
of an engaging relation. Consider two ∞-nice t.e.r.’s ≡0 and ≡1 on T�c, with c ⊂ α
club, and an isomorphism ϕ : (T �c)/≡0→ (T �c)/≡1 between the quotient trees.
Then ϕ naturally induces a relation Φ on T �c, that consists of the pairs s, t ∈ T �c
with ϕ(s/ ≡0) = t/ ≡1. The properties of such a relation Φ are captured in the
following definition.

Definition 2.4.1. We say that a relation Φ on a tree T satisfying points 1-4) below
is engaging.

1. There is a set cΦ such that for all s, t ∈ T we have sΦt only if ht(s) = ht(t) ∈ cΦ,

2. the left-induced relation Φ0 := {(s, s′) ∈ (T � c)2 | (∃t)sΦt and s′Φt} is an
∞-nice t.e.r. on T�cΦ,

3. the right-induced relation Φ1 := {(t, t′) ∈ (T�c)2 | (∃s)sΦt and sΦt′} =≡1 also
is an ∞-nice t.e.r. on cΦ

4. Φ induces an isomorphism ϕΦ between (T�c)/Φ0 and (T�c)/Φ1 via ϕΦ(s/Φ0) =
t/Φ1 for any t with sΦt.
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It is clear that the relation Φ considered above the last definition is indeed en-
gaging with cΦ = c, and Φ0 is ≡0 while Φ1 is ≡1.

Next we define a certain sequence of club sets of ω1. Recall the definition of C0,
the set of infinite fixed points of the left hand ordinal multiplication with ω in ω1:

C0 := {α < ω1 | α 6= 0, ωα = α}.

Inductively define Ci+1 for i < ω1 to be the Cantor-Bendixson-derivative of Ci, and
for limit ordinals i let Ci be the intersection of the Cj defined so far:

Ci+1 := {α ∈ Ci | sup(Ci ∩ α) = α} and Ci =
⋂
j<i

Cj for limit i.

We list some properties of the sequence (Ci)i<ω1 used in the construction below.

(a) all the Ci are club in ω1,

(b) the sequence is continuously decreasing and has an empty intersection, hence
there is for every α ∈ C0 a unique i = i(α) with α ∈ Ci \ Ci+1,

(c) every α ∈ C0 has a direct predecessor in Ci(α), call it α−,

(d) for limit i < ω1, the minimum of Ci is the supremum of the minima of the Cj

for j < i.

Theorem 2.4.2. Assume ♦+. There is a small Souslin algebra B with an increasing
sequence (Ai | i < ω1) of subalgebras, such that the following hold.

(i) B is chain homogeneous;

(ii) for all pairs A,A′ of ∞-nice subalgebras and every isomorphism ϕ : A ∼= A′

there is a ϕ̃ ∈ Aut B with ϕ̃�A = ϕ;

(iii) the members Ai of the sequence are ∞-nice in B;

(iv) for i < j < ω1 we have Ai is an ∞-nice subalgebra of Aj;

(v) the sequence (Ai)i<ω1 is continuous in the sense that for a countable limit ordinal
i the union

⋃
j<i Aj completely generates Ai;

(vi) if λ is a countable limit ordinal and (jν | ν < λ) a normal sequence of countable
ordinals with supremum i, then there is an isomorphism ϕ : Aλ → Ai with
ϕ′′Aν = Ajν for all ν < λ.
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(vii) B is the direct limit of the sequence of the Ai, i.e.,
⋃

i<ω1
Ai = B, as B satisfies

the c.c.c.

It is hard to think of any realisable homogeneity property that is not achieved
in this Souslin algebra. Note also that the homogeneity property of (ii) cannot be
extended to include large subalgebras A, A′ (and of course not to the case A < A′ = B
as well). Consider for example A such that 〈A′ ∪ {a}〉cm = B for some a ∈ B while
〈A∪ {b}〉cm 6= B for all b ∈ B. The existence of an automorphism ϕ of B mapping A
to A′ would imply that 〈A ∪ {ϕ−1(a)}〉cm = B which is impossible by the choice of
A.

Proof. We will essentially explain how to modify the construction in Section 2.3.3
on pages 83 ff. to achieve a Souslin algebra that has properties (ii) through (vii) of
the theorem.

Let α > 0 satisfy α = ωα and recall the ♦+-machinery as introduced in Section
2.3.2 and used in the former construction of a chain homogeneous Souslin algebra.

First we take care of the homogeneity property stated above as (ii). We define

E ′
α := {(x, d) ∈ Gα | x codes an engaging relation Φx on T�c(x)}

and (in the notation of Definition 2.4.1) use Proposition 2.2.14 to lift ϕΦx to an
automorphism ϕx,d of T �c(x) ∩ d carrying Φ0 to Φ1. (As in Section 2.3.3 we will
finally choose Tα to be a subset of [T�α] that is among other closed under the induced
homeomorphisms ϕx,d for (x, d) ∈ E ′

α.)
We now describe how to embed the increasing ω1-sequence of∞-nice subalgebras

Ai in B. Recall the definition of the decreasing sequence (Ci | i ∈ ω1) of club
subsets of ω1 as well as the derived definitions of i(α) and α−. The ∞-nice t.e.r. ≡i

representing Ai will be defined on T�Ci ∪ {0} in the course of the construction of T .
The main requirements to meet are:

1. ≡i is ∞-nice for all i < ω1,

2. for i > j the restriction of ≡j to T�Ci is refined by ≡i in a way such that the
induced t.e.r. ≡j/i on the normal Souslin tree (T�Ci)/≡i is ∞-nice,

3. for limit i < ω1 we want to have Ai = 〈
⋃

j<i Aj〉cm, so ≡i shall be the conjunc-
tion of the ≡j for j < i in this case:

s ≡i t :⇔ (∀j < i)s ≡j t.
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For any i, on level T0 = {root} the relation ≡i is of course trivial. On level Tmin Ci

we define ≡i to be the identity, i.e., s ≡i t if and only if s = t for s, t ∈ Tmin Ci
.

This is a minor violation of the ∞-niceness requirement we posed on ≡i. But this is
easily remedied by deleting minCi from the club set Ci. On the other hand, by this
convention we directly see that in the end

⋃
Ai will be a dense subset of B, because

{minCi | i < ω1} is unbounded in ω1.
In lavel α ∈ C0 we have that for all j < i := i(α) the set Cj ∩ α is club in α

and the t.e.r. ≡j on T � (Cj ∩ α) has by normality of the quotient tree a unique
t.e.r.-extension to Tα. So, to satisfy the niceness condition for the t.e.r.s ≡j with
j < i(α), level Tα has to be chosen carefully with the aid of the Second Reduction
Lemma 2.2.15. In the case where i(α) is a limit ordinal, we even have ≡i(α) on [T�α]
at hand before we choose Tα, by the requirement (3) above. It is easily seen that,
since for a limit ordinal i the minimum of Ci is just the supremum of the minima of
the Cj for j < i, this is consistent with our appointment that ≡i be the identity on
Tmin Ci

.
However, for successor i(α) the definition of ≡i(α) on Tα involves the choice of

Tα. So we continue by giving the rules for the choice of Tα in the successor case
i = i(α) = j+1. Let the sets Eα and Fα be defined as in the construction in Section
2.3.3, i.e., Eα consists of pairs (x, d), where x codes a pair of wipers while the x of
a pair (x, d) ∈ Fα codes a decent t.e.r. ≡x. As in Section 2.3.3 we assume that we
have so far constructed

• tree endomorphisms ρx,d of T induced by isomorphisms between the quotient
by ≡x and T�(c(x) ∩ d) itself for (x, d) ∈ Fα,

• tree automorphisms ϕx,d for (x, d) ∈ Eα and furthermore

• tree automorphisms ϕx,d of T�(c(x) ∩ d) for (x, d) ∈ E ′
α.

We have to choose the subset Qα of [T�α] corresponding to Tα in a way that guar-
antees that

(a) Qα is closed under the application of the induced homeomorphisms ϕx,d for
(x, d) ∈ Eα ∪ E ′

α,

(b) for each pair (x, d) ∈ Fα the mapping ρx,d extends to the new top level if ≡x

remains decent and

(c) finally we have to care for the various t.e.r.s ≡j, and guarantee that they remain
nice when extended to Tα, so Qα has to be suitable for all the ≡j for j < i.
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Consider for j < i the induced equivalence relation on the set [T �α] which we
denote by the same symbol,

x ≡j y :⇐⇒ (∀γ ∈ Cj ∩ α)x�γ ≡j y�γ.

We apply combined reduction as stated in Corollary 2.2.16 to the set H of the
maps given by EαE

′
α and Fα, the collection I := {(Cj ∩ α,≡j) | j < i} of our

∞-nice t.e.r.s and the dense open set M =
⋂

s∈Rα
ŝ if Rα is a maximal antichain

(where (Rν | ν < ω1) is our fixed ♦-sequence), or M = [T �α] otherwise. The
result is a comeagre subset N of M , which is suitable for ≡j for all j < i, closed
under the application of the homeomorphisms ϕx,d and their inverses for all pairs
(x, d) ∈ Eα ∪E ′

α and which for each (x, d) ∈ Fα is not suitable for ρx,d if it does not
satisfy ρ′′x,dN = N .

Again, we denote by F ∗
α the set of indices (x, d) in Fα of mappings ρx,d for which

N is suitable. For (x, d) ∈ F ∗
α we choose a right inverse σx,d of ρx,d�N .

Now it is routine to choose a countable and dense subset Qα of N which has the
properties (a-c) listed above.

Next we define ≡i on Tα in the case, that i = j+ 1. Letting α− be the maximum
of α ∩ Ci, t ∈ Tα and r := tuhrα, we easily see that we have an infinite set r̂ ∩ t/≡j

(here we view Tα as a dense subset of [T�α]) which we partition into ℵ0 infinite sets
P (t/≡j, r, n), each of them dense in r̂ ∩ t/≡j. Note, that the definition of P has to
be independent from the choice of t. Finally we define ≡i on Tα by letting s ≡i t if
and only if

s�α− ≡i t�α
− and (∃n ∈ ω)s ∈ P (s/≡j, s�α

−, n) and t ∈ P (t/≡j, t�α
−, n).

Then by construction, ≡i is∞-nice as well as ≡j/i, and the “i(α)=successor” step is
complete.

Let now α ∈ C0 be such that i = i(α) is a limit ordinal. For j < i define ≡j on
[T�α] as above and let for x, y ∈ [T�α]

x ≡i y :⇐⇒ (∀j < i)x ≡j y.

This is the coarsest possibility to extend≡i to Tα and the only one by our requirement
that

⋃
j<i Aj completely generate Ai.

We finally show that the ≡i-classes are perfect subsets of [T�α] and that we can
use the Second Reduction Lemma 2.2.15 on them. Then the same choice-procedure
for Tα as in the first case can be adopted, only that we add (Ci,≡i) in the collection
I of the t.e.r.s to be considered.
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We construct an ∞-nice t.e.r. on some club below α which induces ≡i. Fix δ0 in
C0 between α− and α, so j0 = i(δ0) < i. Then define

jν := i(δν) and δν+1 := minCjν+1 \ δν = minCjν+1 \ δ0

and δµ = sup{δν | ν < µ} for limit µ with i(δν) < i for all ν < µ. Then the i(ν) are
the ordinals from j0 up to i. The final δµ is just α, and this ordinal µ = ot(i \ j0) is
a limit.

The set of the δν joined with {0} is the club set of α on which we now define the
t.e.r. '. For s, t ∈ Tδν define

s ' t :⇐⇒ s ≡jν t and (∀β < δ0)(i(β) ≤ i⇒ s�β ≡i(β) t�β).

Then ' is an ∞-nice t.e.r.: fix s ' t on level δξ and consider s′ > s, where s ∈ Tδν .
In the successor case, letting ν = ν− + 1, i.e. jν = jν− + 1, this follows from the
definition of ≡jν having only classes that are dense subsets of ≡jν−

-classes. To argue
for niceness in the limit case we refer to the choice of Tδν which assures, that the
≡jν -classes lie densely in the ≡jν -classes while the ∞-part of ∞-niceness is trivially
satisfied on limit stages when satisfied everywhere below. Since the jν are cofinal in
i, the ∞-nice t.e.r. ' induces ≡i on [T�α].

We now choose Qα as in the case where i was a successor, only that we add ≡i

to the collection I of t.e.r.s that shall remain ∞-nice.
Now that the construction of T and the sequence (≡i| i < ω1) is completed, we

argue that it satisfies points (v) and (vi) of the statement of Theorem 2.4.2. So let
i be a countable limit ordinal. Then, by our definition of ≡i (in the limit case), for
every node s ∈ T �Ci, its ≡i-class is just the intersection over the family (s/≡j)j<i.
This shows that Ai =

〈⋃
j<i Aj〉cm. For the proof of (vi) let λ, (jν | ν < λ) and i be

given. By chain homogeneity of B (cf. Proposition 2.3.3) we can choose ϕ0 : A0
∼= Aj0 ,

and then inductively extend the given ϕν : Aν → Ajν to ϕnu+1 : Aν+1 → Ajν+1 by
virtue of condition (ii). In limit stages µ, the argument given in the proof of (v)
above shows that 〈⋃

ν<µ

Ajν

〉cm

= Ajµ =

〈⋃
ν<µ

ϕ′′νAν

〉cm

.

So there is a unique extension ϕ of
⋃

ν<µ ϕν with domain Aλ.

2.4.2 The iteration

We realise the big and chain homogeneous Souslin algebra as the direct limit of an
increasing chain of small, chain homogeneous Souslin algebras. All the small algebras
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on this chain are isomorphic to the initial algebra B0, which we take from the last
section.

Theorem 2.4.3. Assume ♦+. Then there is a big, chain homogeneous Souslin
algebra.

Proof. Let B0 be the algebra constructed in the proof of Theorem 2.4.2 with its
continuously increasing chain (Ai | i < ω1) of ∞-nice subalgebras. Choose an iso-
morphism ϕ0 : B0

∼= A0. Next choose a Souslin algebra B1 extending B0, such that
there is an extension ϕ1 of ϕ0 witnessing B1

∼= B0. Given ϕν : Bν
∼= A0 for some

ν < ω2 choose in the same manner ϕν+1 : Bν+1
∼= B0.

Now for the limit cases. If λ < ω2 is of countable cofinality, we choose a normal
sequence (iν | ν < µ) with supν<µ iν = λ for some countable limit ordinal µ.

We inductively construct a chain (ψν | ν < µ) of isomorphisms ψν : Aν
∼= Biν

where for ν < ν ′ the map ψν′ extends ψν . Then Bλ is a super-algebra of⋃
ν<µ

Biν =
⋃
α<λ

Bα

isomorphic to Aµ by some extension ψµ of
⋃

ν<µ ψν .
If λ is of uncountable cofinality we simply let Bλ =

⋃
α<λ Bα, the direct limit.

Then we see that Bλ
∼= B0 for λ < ω2 by choosing a cofinal sequence (iν | ν < ω1)

and recursively choosing a chain of isomorphisms ψν : Aν
∼= Biν . This goes through

limit stages ν < ω1 by property (vi) of Theorem 2.4.2. The direct limit Bω2 of the
increasing chain of small Souslin algebras is Souslin as well: the c.c.c. is preserved by
direct limits (i.e. finite support iterations or here simply the union of the Bα). And
then the same holds for distributivity, for if (aij | i, j < ω) is any family of members
of Bω2 then there is some α < ω2 with aij ∈ Bα for all i, j < ω, and Bα witnesses
that the distributivity law is preserved.

Remark 2.4.4. As far as we know, this is the first construction of a big Souslin algebra
assuming the principle ♦+ only. Jensen’s constructions use ♦ and �. In [Jec73, §5]
gives a forcing that adjoins a so-called Souslin mess. This is a partial order of partial
functions generalising the notion of a Souslin tree. The regular open algebra of a large
enough Souslin mess is a big Souslin algebra. Laver has constructed a Souslin mess,
only using ♦ and Silver’s principle W. (W is a strengthening of Kurepa’s Hypothesis
KH cf. [Jec97, (24.16)].) We do not know yet, if and how the principles ♦+ W and
♦+ are correlated.

Proposition 2.4.5. Forcing with Bω2 turns any ground model Souslin tree T , which
is regularly embeddable into Bω2, into a Kurepa tree.
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Proof. Let G ⊂ Bω2 be a V -generic filter, and let A := 〈T 〉cm. For α < ω2 fix in V
an isomorphism ϕα : Bα

∼= A and in V [G] define Gα := Bα ∩G.
Staying in V [G], for α < ω2, the set

bα := {t ∈ T | (∃g ∈ Gα})ϕα(g) ≤A t}

is an ω1-branch of T , and we have V [Gα] = V [bα] for all α < ω2. Finally, if γ < β < ω2

then bβ ∈ V [bβ]\V [bγ], because the map ϕγ is in V . In particular we have bβ 6= bγ.

Since the Iteration Theorem 2.4.3 only assumes the strong properties of the
Souslin algebra of Theorem 2.4.2 we have the following result on the hypotheses
used.

Corollary 2.4.6. Assume that there is a Mahlo cardinal. Then there is a model of
ZFC + ♦ in which there is no Souslin algebra with the properties stated in theorem
2.4.2.

Proof. In [Jen] Jensen considered the generic Kurepa hypothesis GKH:= “there is a
c.c.c. forcing that forces KH in the generic extension”. He shows that if κ is a Mahlo
cardinal then GKH is false in the Levy-style generic extension collapsing κ to become
ℵ2. This partial order always forces ♦ (cf. [Kun80, Exercises VIII.J.5/6]). Finally,
Bω2 is c.c.c. and forces, by the last Proposition, KH.
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Zusammenfassung der Ergebnisse

Das Thema dieser Dissertation ist im Bereich der kombinatorischen Mengenlehre und
der Theorie der vollständigen Booleschen Algebren angesiedelt. Als Rahmentheorie
setzen wir die Axiome der Zermelo-Fraenkel-Mengenlehre mit Auswahlaxiom, kurz
ZFC voraus.

Wir wollen eine Teilmenge K einer vollständigen Booleschen Algebra B als Kette
bezeichnen, falls K von der kanonischen partiellen Ordnung <B auf B linear angeord-
net wird. Die Menge der Ketten von B ist durch die Teilmengenbeziehung induktiv
geordnet, so dass aus einer einfachen Anwendung des Zornschen Lemmas sofort die
Existenz maximaler Ketten folgt. Wir wollen eine Boolesche Algebra als ketten-
homogen bezeichnen, wenn alle ihre maximalen Ketten zueinander isomorph sind.

Die Ausgangsfrage für diese Dissertation war, ob es unter geeigneten mengen-
theoretischen Voraussetzungen eine atomlose und kettenhomogene, vollständige Boo-
lesche Algebra B gibt, deren maximale Ketten aber nicht isomorph zum reellen Ein-
heitsintervall sind.

Dieser Frage liegt die Beobachtung zugrunde, dass jede maximale Kette K einer
vollständigen, kettenhomogenen Booleschen Algebra B stets eine vollständige, lineare
Ordnung mit Endpunkten ist und die abzählbare Antikettenbedingung c.c.c. erfüllt,
d.h. jede Familie paarweise disjunkter, offener Intervalle von K ist abzählbar.

Somit ist unser Problem eng mit Souslins Hypothese SH verknpft, welche postu-
liert, dass jede vollständige und dichte, lineare Ordnung, welche die c.c.c. erfüllt,
ordnungsisomorph zu einem Intervall der reellen Zahlen ist. Wenn wir SH annehmen,
folgt sofort, dass die Antwort auf unsere Ausgangsfrage negativ ausfällt.

In den 1960’er Jahren wurde aber bewiesen, dass SH unabhängig von ZFC ist,
d.h. im Falle der Konsistenz von ZFC ist sowohl ZFC + SH als auch ZFC + ¬SH
konsistent. Ein Gegenbeispiel zu Souslins Hypothese nennen wir eine Souslin-Gerade,
die assoziierten vollständigen Booleschen Algebren Souslin-Algebren. Das wichtigste
technische Hilfsmittel sind hier die sog. Souslin-Bäume. Ist B eine Souslin-Algebra,
so sind alle maximalen Ketten von B Souslin-Geraden. Unsere Ausgangsfrage lässt
sich nun wie folgt umformulieren:
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Ist es konsistent relativ zu ZFC, dass es eine kettenhomogene Souslin-
Algebra gibt?

Als Hauptresultat meiner Dissertation ist die positive Beantwortung dieser Frage
anzusehen, siehe Theoreme 2.3.2, 2.4.2 und 2.4.3 des Kapitels Maximal chains in
Souslin algebras. Unter Annahme der Theorie ZFC + ♦+, einer Erweiterung, die
konsistent ist relativ zu ZFC, gebe ich u.a. die Konstruktion einer kettenhomogenen
Souslin-Algebra mit maximalen Homogenitätseigenschaften und auch die Konstruk-
tion einer großen, kettenhomogenen Souslin-Algebra B an, d.h. B wird von keiner
Teilmenge der Mächtigkeit ℵ1 vollständig erzeugt.

Um diese Konstruktionen zu ermöglichen, habe ich die bestehende Darstellungs-
theorie für Souslin-Algebren ausgebaut und konnte letztere für die folgenden weiteren
Ergebnisse anwenden.

1. In den Abschnitten 1.2-1.4 des Kapitels Subalgebras of small Souslin algebras
wird die Strukturtheorie für reguläre Einbettungen zwischen Souslin-Algebren
entwickelt.

2. Für die Klasse der sog. stark homogenen Souslin-Bäume konnte ich ein beste-
hendes Dekompositionsresultat erweitern (siehe Theorem 1.5.10 in Subalgebras
of small Souslin algebras) und ein neues angeben (Theorem 1.5.3, ebd.).

3. Schließlich konnte ich diese Zerlegungen verwenden, um Beispiele von Souslin-
Bäumen zu konstruieren, die gewisse Starrheitseigenschaften für Souslin-Bäume
voneinander isolieren und damit eine Frage von Fuchs und Hamkins beant-
worten, vgl. [FH06, Question4.1].



Danksagung

Mein Dank gilt in erster Linie meiner Betreuerin Sabine Koppelberg, die mich mit
dem Gebiet der Booleschen Algebra vertraut gemacht hat und mich in den letzten
Jahren immer wieder auf Ungenauigkeiten oder Fehler in meinen zum Teil recht
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