
5 Non-Statistical Approaches

While most modern approaches to information extraction are based on a statistical
models, the field has been originally dominated by non-statistical approaches, and
any discussion of the work in this area would be incomplete without covering them.
Most non-statistical approaches are focused on learning extraction rules from the
annotated training data, while a few others rely heavily on provided knowledge bases
such as ontologies or thesauri.

Since the focus of our own work is in the area of statistical approaches, the discus-
sion of non-statistical trainable systems has been limited to representatives of a few
typical models. Please see [Sie05b] for other rule-learning and knowledge-based ap-
proaches, such as case-based approaches and approaches based on automatic pattern
and template creation. That paper also contains additional details on the algorithms
presented in the following sections.

5.1 Covering Algorithms

A number of IE systems are based on covering (separate-and-conquer) algorithms
[Für99], a special type of inductive learning. These systems learn rules that extract
the tagged attribute values from an annotated training set. After learning rules that
cover a part of the training instances, they remove (separate) these instances from the
training set and continue to learn rules that cover (conquer) some of the remaining
instances, looping until all or most of the training instances are covered. What is
regarded as an instance and which features are considered depends on the system.

Crystal: Crystal [Sod95, Sod97a] is one of the earliest trainable IE systems. It builds
on a chunk parser that identifies syntactic constituents (subject, verb phrase, direct
and indirect object, prepositional phrases) and a domain-specific dictionary that spec-
ifies semantic classes for all words. Crystal looks for constituents that fit predefined
conceptual types (e.g. diagnosis, symptom) and subtypes (a diagnosis is either con-
firmed, ruled-out, suspected, pre-existing, or past).

The definitions learned to extract subtypes identify a constituent to extract if certain
constraints are fulfilled by the surrounding constituents. Constraints may test for word
sequences contained in a phrase or for semantic classes of the head noun or a modifier
of a phrase. For example, an “absent symptom” is extracted from the direct object if
the head of the direct object is of the class [Sign or Symptom], the verb is “denies” in
the active voice, and the subject includes the word “patient” and has the head class
[Patient or Disabled Group]. Negative constraints are not supported.

In a later work [Sod01], the problem of negation is solved by learning different kinds
of semantic relations (classes) in a predefined order. Since rules for negative cases are

35

5 Non-Statistical Approaches

learned first, specialized negative rules such as verb group includes “not observed” are
learned (and applied) first, and the examples covered by these rules are removed prior
to learning general rules like verb group includes “observed” for the positive case.

Crystal learns suitable definitions by generalization, i.e. bottom-up: each training
instance is used as a highly constrained initial definition. Crystal tries to unify“similar”
definitions by relaxing constraints. Two definitions are unified by finding the most
restrictive constraints that cover both.

For template unification (multi-slot extraction), Crystal treats each subset of at-
tribute combinations as a concept to be learned—this can result in data sparseness.
Crystal does not extract exact phrases, it only identifies a constituent to extract from.
These are the major limitations of the system.

Whisk: The Whisk system developed later by the same author [Sod99] is aimed at
handling a larger range of texts, from free texts as found in newspapers and books to
semi-structured texts (often ungrammatical or in “telegram style”) that are common
on the World Wide Web or in advertisements.

Whisk is targeted at handling template unification (multi-slot extraction) at the
sentence level. The learned rules similar to regular expressions; they can contain ver-
batim text, character classes (e.g. digit), and wildcards like “*” which lazily skips any
characters until the next part of the pattern can match. In addition to the hard-wired
character classes, semantic classes of equivalent terms can be defined by the user, e.g.
a class Bdrm that contains different forms and abbreviations of the term “bedroom.”

Rules are derived top-down (starting with the most general rule) by a covering
algorithm. For judging the quality of rules, Whisk uses the Laplacian expected error:
Laplacian = e+1

n+2 , where n is the number of extractions made and e is the number of
errors among these. In case of a tie, the more general rule is used. The found rules
might not be optimal due to the limitations of hill climbing—each specialization is
evaluated in isolation, so if two specializations (adding two terms) must be applied
together to yield a better rule (according to the Laplacian), they will not be found.

Whisk incorporates active learning, so only a small part of the training corpus needs
to be tagged in advance. The system proceeds by selecting three kinds of untagged
instances for hand-tagging by the user: instances covered by a rule (which will either
increase the support of the rule or force further refinement), “near misses” (to check
and adapt the boundaries of rules), and a random sample of instances not covered by
any rule (to check whether there are still rules to discover).

A disadvantage is that semantic classes must be predefined by the user, they are
not learned by the system. Another drawback is the strict ordering constraints of each
rule—different rules must be learned for each possible arrangement of attributes.

(LP)2: (LP)2 [Cir01] learns rules to add SGML/XML tags to a text. (LP)2 is based
on tagging rules that insert a single (starting or ending) SGML tag into the text. This
means that the task of each rule is to recognize the start or the end of a supposed
attribute value in the text, not to extract/tag a whole attribute value (or several
attribute values) at once, as in most other systems.

36

5.2 Relational Rule Learners

The tagging rules are learned from the hand-tagged training corpus. Rules are
learned bottom-up, taking an instance as an initial rule whose constraints are sub-
sequently relaxed (e.g. requiring only a lexical class instead of a specific word) or
completely dropped. The k best generalizations of each initial rule found by a beam
search are stored in a “best rules pool.” As (LP)2 is a covering algorithm, the training
instances covered by a rule in this pool are removed from the training set.

(LP)2 proceeds in four steps:
1. The tagging rules from the “best rules pool” are applied.
2. Contextual rules are applied to resulting text. These are tagging rules whose

overall reliability was not high enough for the best rules pool but that perform
better when restrained to the vicinity of tags inserted in the first step (for
example, a rule that inserts an end tag is applied provided that a corresponding
start tag occurred some words before).

3. Correction rules do not add or delete tags, they only change the position of a
tag, moving it some words forward or backward.

4. Finally, invalid markup (unclosed tags etc.) is deleted in a validation step.
In the Amilcare system, (LP)2 is employed in a“LazyNLP”setting where the amount

of utilized linguistic information can be dynamically adjusted [Cir02]. The learner ini-
tially induces rules without any linguistic knowledge; then it iterates adding linguistic
information, stopping when the effectiveness of the generated rules no longer increases.
The adequate amount of linguistic input is learned for each attribute separately, since
recognizing a person name might require more NLP input than recognizing a date or
time.

(LP)2 is targeted at fragment extraction and does not perform any template unifica-
tion. In Amilcare a shallow discourse representation module is added for this purpose
[Han02, Sec. 5]. Attribute values are unified in templates or subtemplates with the
nearest preceding attribute values of a suitable type. E.g. when describing hotels, ad-

dress data and room types (single room, double room) will be attached to the last
mentioned hotel; price information might in turn be attached to the last mentioned
room type.

5.2 Relational Rule Learners

The basic approach of the systems presented in this section is similar to those of
the previous section—indeed, they are based on covering algorithms too. The main
difference is that the systems presented here explicitly take relations—especially po-
sitional relations—between a (potentially unlimited) number of features into account,
while those in the previous section are limited to predefined (finite) combinations of
features.

Rapier: The Rapier [Cal98a, Cal03] system uses syntactic (POS tags) and semantic
(WordNet classes) information to induce rules for attribute values. Each rule con-
sists in three parts, a pre-attribute value pattern, a pattern for the actual attribute

37

5 Non-Statistical Approaches

value and a post-attribute value pattern. Each pattern contains an ordered list (whose
length might be zero for pre/post-attribute value patterns) of constraints that restrict
the POS tag, the semantic class, and/or the word itself (disjunctions are allowed).
Instances are most specific rules with all their constraints set. The pre- and post-
attribute value patterns of instances contain every word from the start / to the end
of the document, there is no “context window” of limited length.

New rules are created by randomly selecting two rules and creating the least general
generalization for the attribute value pattern. Actually, there are several reasonable
generalizations (different values of a constraint can be disjuncted or the constraint
can be simply dropped), so each of these generalizations is re-specialized by adding
generalized pieces of the pre- and post-attribute value patterns of the original rules.
A list of n best candidates is kept until the best generalization is found.

Semantic classes are generalized by finding the nearest common ancestor in the
WordNet hypernym hierarchy (dropping the constraint if no common ancestor ex-
ists). Instances covered by the found best generalization are subsequently ignored and
further rules are learned based on the other instances.

Rapier has also been extended to use active learning [Tho99].

SRV: SRV [Fre98b] considers any combination of simple features (mapping a token
to a value, e.g. word length: 5, character type: alpha, POS tag: noun) and relational
features (mapping a token to another token, e.g. next-token, subject-verb). Feature
values can be sets, e.g. all synonyms and hypernyms (superordinate concepts) listed
by WordNet are combined in a set for each token. Different rule sets are learned for
classifying each text fragment as an instance or non-instance of a single attribute
value; there is no component for template unification or other postprocessing.

The learning algorithm is similar to the relational rule learner FOIL [Qui95]. SRV
learns top-down, greedily adding predicates of some predefined types: the number of
tokens in the fragment (length), whether a condition is matched by one or several
(some) or by all (every) tokens in the fragment; position specifies the position of a
token in a some predicate, relpos constrains the ordering and distance between two
tokens. Rules are validated and their accuracy estimated by three-fold cross validation;
the three resulting rule sets are merged. The accuracy estimations are available for
each prediction.

An advantage of relational learners is their being able to acquire powerful relational
rules that cover a larger and more flexible context than most other rule-learning and
statistical approaches. The downside is that the large space of possible rules can lead
to high training times and there is no guarantee of finding optimal rules (local maxima
problem).

5.3 Wrapper Induction

The approach of wrapper induction (WI) is mainly targeted at structured and semi-
structured documents that have been generated automatically, e.g. Web pages offering
products or listing events.

38

5.3 Wrapper Induction

Stalker: Stalker [Mus01] is a classical WI algorithm that covers documents that can
be described in the so-called embedded catalog (EC) formalism. This formalism repre-
sents a document as a tree whose leaves contain the relevant data (items of interest for
the user). The inner nodes contain lists of k-tuples (e.g. of restaurant descriptions).
Each item in a tuple is either a leaf or another (embedded) list. Extraction is based
of the EC description of a document and an extraction rule that extracts the contents
of each node or tuple from the contents of its parent. List nodes require an additional
list iteration rule that splits the list into tuples.

Extraction rules are based on groups of successive tokens called landmarks. Start
rules locate the start of an item by find the first matching landmark from the begin
of the parent; end rules locate the end of the item by finding the last matching
landmark before the end of the parent. The text matched by a landmark itself can
either be included (SkipUntil condition) or excluded (SkipTo condition) from the item
text. Rules can combine several conditions, e.g. SkipTo(Name) SkipTo() means
that the item starts immediately after the first HTML tag that follows the word
Name. They can refer to specific tokens or to wildcards like Number, Punctuation, or
HtmlTag.

Disjunctions (either . . . or) are allowed to handle formatting variations. Disjunctions
are ordered so the first successful match is used. Each node is extracted independently
of the other nodes within its parent, so no fixed ordering is required. Rules are learned
by a covering algorithm that tries to generate rules until all instances of an item are
covered (without false extractions, if possible) and returns a disjunction of the found
rules. Rules with fewer false extractions (or more correction extractions, in case of a
tie) are preferred when ordering the disjunction.

In a later work [Mus03], several variants of Stalker are combined in a Co-Testing
approach to support active learning.

Boosted Wrapper Induction: Typical WI algorithms such as Stalker are only suited
for documents whose structure and layout are regular and consistent. They are in-
adequate for free text, where information is mainly expressed in natural language.
The BWI (Boosted Wrapper Induction) system [Fre00a] aims at closing this gap and
making WI techniques suitable for free text.

The rules learned by BWI are simple contextual patterns for finding the start and
end of the field to extract. A pattern has two parts: a token sequence that immediately
precede/follow the field to extract (outside) and a token sequence starting/ending it
(inside); these sequences can also contain wildcards. These specialized simple patterns
will often reach high precision but low recall because there are many other ways to
express a fact, especially in natural language texts. To address this issue, a large
number of simple patterns are learned and their results combined. For this purpose
BWI applies the technique of boosting, i.e. repeatedly applying the learning algorithm
to the training data, each time adjusting the weight of training examples to emphasize
those examples where the algorithm failed before.

While one of the goals of BWI is to make WI algorithms suitable for free (un-
structured) text, BWI still performs significantly worse on free text than on highly or

39

5 Non-Statistical Approaches

partially structured text [Kau02]. Most patterns learned from free text merely memo-
rize specific training examples. Also the algorithm is biased towards overfitting to the
particularities of the training data—the final rounds of boosting actually lower the
reliability of the results. Both precision and recall on free texts can be increased by
incorporating the output of a shallow parser into the model, splitting the text into a
number of noun, verb, and prepositional phrase segments [Kau02, Sec. 8].

5.4 Hybrid Approaches

The IE2 system [Aon98] submitted by SRA International to the MUC-7 conference
is an early IE system that combines classical hand-written rules with trainable com-
ponents in an interesting way. The output of a standard named entity recognizer is
complemented by a custom component that recognizes domain-specific attribute val-
ues (e.g. different kinds of vehicles). Another component recognizes domain-specific
types of noun phrases and relations between them (e.g. employee of, location of). Both
these components are based on hand-written rules, no learning is involved.

However, the IE2 system goes further than most other IE approaches in also han-
dling template unification beyond the sentence level. For coreference resolution, differ-
ent strategies are employed: one strategy uses simple hand-written rules, but another
one learns decision trees from a tagged corpus. Optionally these strategies are com-
bined in a hybrid method where the decision tree algorithm works on a subset of
possible candidates chosen by the hand-written rules.

IE2 also handles event merging, i.e. deciding whether or not two descriptions refer
to the same event and can be merged. Here hand-written rules are combined with
external knowledge sources to check the consistency of locations (Miami is in Florida)
and times (can Wednesday and tomorrow refer to the same day within the current
text?).

While in most aspects IE2 is a typical representative of the classical hand-written
rules approach that was dominant in the MUC conferences, its hybrid nature has
interesting traits. Template unification and event merging beyond the sentence level
are complex challenges that so far have been largely out of reach for learning systems.
Combining trainable modules with external knowledge sources and specialized hand-
written code could be a viable approach to tackle problems where single-paradigm
solutions fail.

5.5 Knowledge-based Approaches

There are only a few extraction algorithms that are mainly based on knowledge
sources. This section describes the thesaurus-based TIMES system as an exemplary
algorithm. For other knowledge-based algorithms, see [Sie05b, Sec. 4].

The TIMES system developed by Bagga and Chai [Bag97] requires a number of
knowledge sources: the WordNet thesaurus, a general English dictionary, a domain-
specific dictionary, and a gazetteer of location names. Texts are preprocessed with an
entity recognizer that identifies named and numeric entities and a partial parser.

40

5.5 Knowledge-based Approaches

Training is done by a user through a graphical interface. For each of the head
words identified by the parser, the user selects the appropriate sense (concept) if
WordNet defines several senses for this word. Then the user builds a semantic network
to represent the content of each training text. Selected head words from the text are
stored as nodes or relations within the network. For example, from the phrase IBM

Corp. seeks jobs candidates in Louisville, the user might build a relation seek between
two nodes IBM Corp. and job candidate.

The text-specific extraction rules created this way are then generalized according
to the hypernym/hyponym (super-/subordinate terms) relations defined in WordNet.
Generalization replaces a term by its hypernym n steps higher in the WordNet hi-
erarchy. For named entities (NE), the category determined by the NE recognizer is
generalized. E.g. IBM Corp. is identified as a company—generalizing this concept one
step yields business, concern; three steps yields organization. A generalized rule matches
any terms that are hyponyms of the generalized term. Increasing the generalization
level results in higher recall at the cost of precision, because the generalized rules find
instances missed by specialized rules but also produce more false positives.

In later versions of the system, the user only has to mark the target information to
extract from a text. The system automatically builds relations between the marked
information and generalizes extraction rules to the most suitable level [Cha99]. Since
the hypernyms of a word are sense-dependent, the extended version also learns rules
for sense disambiguation of head words based on the user-provided word senses.

41

