8 Zusammenfassung und Ausblick

In der vorliegenden Arbeit wurde untersucht, ob in einer als Farbstoffzelle bekannten nanostrukturierten Solarzelle ein anorganischer Halbleiter aus der Gruppe der Übergangsmetalldichalkogenide als Absorber verwendet werden kann.

Es wurden in Bezug auf die Nanogeometrie geeignete nasschemische und elektrochemische Herstellungsmethoden für die Molybdän- und Wolframsulfide und -selenide getestet. Diese Verfahren haben den Vorteil, dass die als Absorber eingesetzten Materialien nicht in ihrer fertigen Form in die poröse Matrix eingebracht werden müssen, sondern in situ in den Poren selbst aus den Ausgangssubstanzen wachsen. Dadurch lassen sich die beim Mischen von TiO₂ und Absorbern entstehenden mechanischen Belastungen vermeiden (Schichtgitterhalbleiterkristalle reagieren empfindlich auf Druck). Es wurden elektrochemische Abscheidung, diverse nasschemische Methoden, Herstellung mit "Inversen Mizellen", Herstellung von Nano-Röhren und die Carbonylmethode getestet. Die letztere Methode lieferte die höchsten Photoströme, dabei war das WS₂ das effizienteste Material (0.05 mA/cm² - 0.1 mA/cm²).

Bei der nasschemischen Abscheidung wird die Matrix erheblichen Belastungen ausgesetzt, so dass unterschiedliche TiO₂ Substrate entwickelt werden mussten. Dabei konnte die gängige P25-Schicht aufgrund ihrer niedrigen mechanischen Stabilität nicht eingesetzt werden. Als am besten geeignet haben sich die mit Hilfe der Sprühpyrolyse und mit Hilfe der Sol-Gel Methode hergestellten Schichten erwiesen. Diese halten den thermo-chemischen Belastungen (kochendes Lösungsmittel, ca. 180 ℃) stand. Alle hergestellten Substrate wurden mittels Röntgenbeugung als TiO₂ Modifikation Anatas identifiziert. Die Dicke der Schichten wurde mittels Dectac ermittelt und betrug zwischen 4 und 6 µm, die Porosität betrug ca. 60%.

Es wurden auch andere Metalloxide (WO₃, SnO₂, ZnO) als Substrate eingesetzt und mit WS₂ sensibilisiert, dabei hat WO₃ keine, SnO₂ geringe (0.02 mA/cm²) und ZnO die höchsten Effizienzen gezeigt. Mit dem ZnO wurden Photostromdichten bis zu 0,1 mA/cm² erreicht. Effizienzen vergleichbar mit denen des TiO₂ wurden jedoch nicht erreicht. Die ZnO Elektrode sollte hinsichtlich ihrer Struktur und Eigenschaften weiter

entwickelt werden. Insbesondere sollte überprüft werden, ob sich die ZnO-Schicht ähnlich der TiO₂-Schicht mit ZnCl₄ bzw. TiCl₄ verbessern lässt.

Für die WS₂-Schicht wurden verschiedene Optimierungsmöglichkeiten getestet, wie Lösungsmittelvariation, Dauer der Abscheidung, Sulfurisieren, Multistep-Abscheidung oder Nickel als Unterschicht für WS₂. Dabei hat es sich gezeigt, dass durch die Multistep-Abscheidung die Photoströme gesteigert werden. Aus den vielen eingesetzten Lösungsmitteln hat sich das Dichlorbenzol als gleichwertig oder besser als das übliche Cymen erwiesen. Mit WS₂ als Absorber und der Multistep-Abscheidung wurden Photostromdichten von bis zu 0.25 mA/cm² erreicht.

Der Erfolg dieser Abscheidung wurde durch ein komplettes Abdecken der weißen und porösen TiO₂ Matrix sichtbar. Es wurden also auch die tief liegenden und abgeschatteten Partikel bedeckt, was mit gängigen physikalischen Verfahren wie dem Aufdampfen oder Sputtern nicht so einfach zu bewerkstelligen ist.

Durch Ramanmessungen konnte die Herstellung der gewünschten Chalkogenide nachgewiesen werden. Dies war mit Hilfe der Röntgenbeugung (XRD) nicht möglich, vermutlich auf Grund der sehr geringen Kristallgröße und des amorphen Charakters der Absorber. Der letztere resultierte aus der niedrigen Abscheidungstemperatur.

Mittels UV-Vis Absorptionsspektroskopie konnten die Bandlücken der hergestellten Materialien festgestellt werden. Dabei wurde entdeckt, dass die Absorber vielfach zu einer Bandlückenvergrößerung tendieren, was mit ihrer verringerten Partikelgröße erklärt wurde (Quantum-size-Effekt). Die Bandlückenvergrößerung und noch wichtiger die Verschiebung der Leitungsbandkante nach oben auf der Energieskala ist dabei für die Anwendung sehr nützlich. Damit lässt sich nämlich erreichen, dass die Leitungsbandkante von MX₂ Partikeln deutlich über der des TiO₂ liegt, was eine zwingende Voraussetzung für die Injektion von Elektronen ist. Es sollte eine Möglichkeit der Kontrolle der Absorberpartikelgröße gefunden werden (was im Ansatz mit "Inverser Mizellen" Methode versucht wurde), damit die Bandlücke gezielt beeinflusst werden kann. Damit sollte die Bandanpassung besser gelingen und die Effizienz der Elektrode sich steigern lassen.

Die guten Ergebnisse bei der Herstellung der WS₂ Nano-Röhren ("nano tubes") sollten auf die Möglichkeit der Sensibilisierung von TiO₂ überprüft werden. Dazu müssten die

"nano tubes" innerhalb der TiO₂-Substratschicht entstehen. Bei dem Sulfurisierungsprozess sollte darauf geachtet werden, dass die TiO₂-Schicht selbst durch diesen Prozess nicht beschädigt wird.

Die gemessene spektrale Quantenausbeute für die besten Schichten hat das interessante Ergebnis geliefert, dass die Photoströme erst ab einer Anregungsenergie von ca. 1.8 eV fließen. Dies entspricht der Größe der direkten Bandlücke. Die indirekte Bandlücke liegt energetisch zu tief, um Elektronen erfolgreich ins Leitungsband des TiO₂ zu injizieren. Dies unterstreicht erneut die Bedeutung der Position der Leitungsbandkante des Absorbers in diesem System. Diese lässt sich aber nur mit Hilfe der Nanotechnologie in den Bereich steuern, wo eine Sensibilisierung des TiO₂ möglich ist.

Die Photospannungsmessung hat wichtige Erkenntnisse über die Bandlücke der eingesetzten Absorber, aber auch über die Dotierung der Schichten wie auch über die Defektverteilung innerhalb der Bandlücke erbracht.

Die TiO₂-Schichten wurden mit Hilfe diverser anderer Metalloxide und TiCl₄ behandelt. Dabei sollten die TiO₂ Partikel mit einer dünnen, isolierenden Schicht überzogen werden, die die Rekombination der injizierten Elektronen mit der oxidierten Spezies im Elektrolyten reduziert. Dabei wurden die besten Erfolge mit der Behandlung mit TiCl₄ Lösung erreicht, welche die Photostromdichten bis auf das Dreifache erhöht (0.75 mA/cm² – 0.9 mA/cm²). Beschichtungen mit Al₂O₃ und MgO haben zu kleineren Effizienzsteigerungen geführt. Bei den beiden Materialien Yt₂O₃ und Sc₂O₃ haben sich die Photoströme verkleinert.

Schließlich wurden auch die fertigen Elektroden mit chemischen Verbindungen behandelt. Dabei kam es zu einer Vielzahl an interessanten Ergebnissen und es erschlossen sich neue Optimierungsmöglichkeiten.

Es wurde gezeigt, dass der pH-Wert des Elektrolyten einen großen Einfluss auf die Photoströme hat. Dies wird mit dem Verschieben des Ferminiveaus im TiO₂ erklärt, wodurch sich auch die relative Bandlage an der Oberfläche des TiO₂ verändern lässt. Damit können bessere Bedingungen für die Injektion der Elektronen vom WS₂ zum TiO₂ erreicht werden. Durch die Veränderung des pH Wertes konnten die

Photostromdichten von 0.01 mA/cm² bei pH 12 auf 0.1 mA/cm² bei pH 3 (10fach) gesteigert werden.

Die fertigen Elektroden wurden in einer TWEEN 80 Lösung behandelt. Dadurch wurde die Rekombination gesenkt, aber auch entgegen den Erwartungen der Photostrom.

Es wurde das in der Biologie für seine Elektronenleitung bekannte Molekül Cystein eingesetzt. Dieses Molekül hat sich als hervorragend für die Steigerung der Effizienz erwiesen. Die Photostromdichten konnten von 0.2 mA/cm² auf 0.7 mA/cm² gesteigert werden. Auch die Rekombination und der Füllfaktor der Elektroden konnte verbessert werden. Die kombinierten Ergebnisse dieser Behandlungen haben zu neuen Erkenntnissen über die Eigenschaften der Absorbernanopartikel geführt. Es wird vermutet, dass auf Grund des senkrechten Wachstums der Nanopartikel der Strom zum Elektrolyten über die Stufen und Kristallfehler fließt.

Es ist ein wichtiges Ergebnis dieser Forschungsarbeit, dass durch die Kombination von elektrochemischen Verfahren und gleichzeitiger Behandlung von photoaktiven Schichten mit unterschiedlichen Molekülen sich nicht nur eine Effizienzsteigerung erzielen lässt, sondern auch wichtige Erkenntnisse über die Struktur der hergestellten Materialien gewonnen werden können.

Es sollte untersucht werden, ob die viel versprechenden Optimierungsansätze auch kombiniert angewendet werden könnten, was zum Teil erfolgte und zu guten Ergebnissen geführt hatte. So wurden die höchsten Effizienzen mit einer TiO₂ Elektrode erreicht, die mit TiCl₄ behandelt und mit der Multistep-Abscheidung mit WS₂ sensibilisiert wurde. Außerdem sollte in weiterführenden Untersuchungen der Einfluss des Cysteins und des pH-Wertes auf dieses System untersucht werden. Lassen sich die erzielten Ergebnisse direkt auf die WS₂/TiO₂-Elektrode übertragen, sollten sich die erzielbaren Photostromdichten noch mal um den Faktor 5 - 10 erhöhen (von ca. 0.7 mA/cm² auf 7 mA/cm²).

Um die Vorteile des anorganischen Absorber voll auszunutzen, sollte für WS₂/TiO₂-Elektrode ein Festkörperelektrolyt eingeführt werden. Dieser sollte die Nachteile des flüssigen Elektrolyten (Verflüchtigung und Giftigkeit) vermeiden.

Abbildungsverzeichnis:

Abbildung 1.1: Energieschema einer Farbstoffsolarzelle. Schwarze Pfeile zeigen den normalen Ladungstranspo	rt
beim Betreiben der Solarzelle. Rote Pfeile zeigen die möglichen Rekombinationswege	4
Abbildung 2.1: MoS ₂ Kristall (natürliche Probe, polykristallines Material, Fundort: Prokopstollen, Tschechien)	11
Abbildung 2.2: Kristallstruktur WS ₂ , Blick in die 010 Richtung	_ 12
Abbildung 2.3: Schematische Darstellung der Stapel S-Mo-S bzw. S-W-S für die zwei Polytypen, 2H und 3R. Gu	t
erkennbar die gegenseitige Verschiebung der Stapel	_ 14
Abbildung 2.4: Selbstreinigende Kacheln (A) und normale Kacheln (B)	_ 17
Abbildung 2.5: TiO ₂ Antibeschlagbeschichtung	_ 17
Abbildung 2.6: Die Elementarzelle von Rutil	_ 18
Abbildung 2.7: Die Elementarzelle von Anatas	_ 18
Abbildung 2.8: Energiebanddiagramm halbleitender Metalloxide mit großer Bandlücke (TiO ₂ , SnO ₂ , WO ₃) und	die
verwendeten Absorber	_ 20
Abbildung 3.1: Halbleiter-Elektrolyt-Grenzfläche für einen p-Halbleiter (GaAs) im Dunkeln	22
Abbildung 3.2: Stromspannungskennlinie für einen n-Halbleiter im Dunkeln	_ 24
Abbildung 3.3: Belichteter n-Halbleiter	26
Abbildung 3.4: Energie-Diagramm für Halbleiter-Elektrolyt-Grenzfläche im Gleichgewicht für verschiedene	-
Elektrolvtkonzentrationen	28
Abbildung 3.5: Fermilevel Pinning	31
Abbildung 3.6: Unterschiedliches Ferminiveau Pinning für kovalente und ionische Halbleiter	32
Abbildung 37. Veränderung der Randlücke und der Lage der Bänder bei abnehmendem Radius von MoS2	_ 0 _
Nononartikeln	35
Abbildung 3.8: Abbängigkeit der Randlücke von der Größe der Partikel hei MoS.	- 36
Abbildung 3.0: Abhängigkeit der Bandlücke von der Teilchengröße hei 7nO. CdS und PhS ²⁰⁴	- 36
Abbildung 3.9. Abhungigken der Dahundeke von der Tenchengröße bei ZhO, Cas und Tos	_ 30 _ 37
Abbildung 5.10. Aufspallen der Molekulorblidle beim Furikelwachsium	_3/ 1 20
Abbildung 4.1: Schemalische Darstellung der Reflektions- und Fransmissionsmessungen mit der Olorichi Rugel	30
Abbildung 4.2: Schema der LichtAbsorption von 14 Schichten WS ₂	_ 40 _ 42
Abbildung 4.5: Fertige, isolierte Elektrode, rechts Kontaktstelle mit Kupferkabel bedeckt mit Screentec	_ 42
Abbildung 4.4: Kontgenbeugung an einem Kristall	_43
Abbildung 4.5: ERDA Geometrie	_43
Abbildung 4.6: ERDA Auswertung	_ 46
Abbildung 4.7: Unterschiedliche Formen der Streuung	_ 4/
Abbildung 4.8: Hellkennlinie einer Solarzelle	_ 50
Abbildung 4.9: Schaltbild einer Solarzelle	_ 52
Abbildung 4.10: Messaufbau Oberflächenphotospannung	_ 54
Abbildung 5.1: SEM Aufnahme: Kompakte TiO ₂ -Schicht auf FTO Substrat	_ 56
Abbildung 5.2: SEM Aufnahme: Kompakte TiO ₂ -Schicht auf FTO Substrat, Vergröβerung	_ 56
Abbildung 5.3: SEM Aufnahme: Verbesserte, kompakte TiO ₂ Schicht	_ 57
Abbildung 5.4: SEM-Aufnahme TiO ₂ aus TiOSO ₄	_ 58
Abbildung 5.5: SEM-Aufnahme Vergrößerung einer TiO ₂ -Schicht aus TiOSO ₄	_ 58
Abbildung 5.6: XRD Spektrum von TiO ₂ aus TiOSO ₄	_ 59
Abbildung 5.7: SEM Aufnahme: TiO ₂ Partikel hergestellt mit Sol-Gel	_ 60
Abbildung 5.8: SEM Aufnahme: Querschnitt durch Sol-Gel TiO ₂	_ 61
Abbildung 5.9: XRD Spektrum von der SG Lux TiO2-Schicht	_ 61
Abbildung 5.10: XRD Spektrum von FTO-Schicht auf Glas	_ 62
Abbildung 5.11: SEM Aufnahme: TiO ₂ Sprühpyrolyse Schicht, 5000fache Vergrößerung, Substrattemperatur ca.	
200°C	63
Abbildung 5.12: SEM Aufnahme: Poröse TiO ₂ -Schicht aus Sprühpyrolyse. Substrattemperatur 200°C. 33000fac	- he
Vergrößerung	63
Abbildung 5.13: SEM Aufnahme: Kompakte Sprühpvrolyse TiO ₂ Schicht, Substrattemperatur ca. 400°C.	_ 00
15000fache Vergrößerung	64
Abbildung 5 14: XRD Spektrum einer TiO-Schicht Sprühnvrolvse	_ 64
Abbildung 5.15: Dicke der Sol-Gel Schicht	- 65
Abbildung 5.15. Dicke der Sprühmvrolvse Schicht	_05 _65
Abbildung 5.10. Dicke der Sprunpyroryse Schicht	_05 67
Abbildung 5.17. vergieich der AKD-Deugungsspektien (tole Stiche - Andius, bidde Stiche - FIO)	_U/
Abbildung 5.10. Vorbereiten den P25 TiO ₂ Suspension	_09 _60
Abbildung 5.19: vorbereiten der P25 1102 schicht Ausi 1	- 09
Abbilaung 5.20: SEM Aufnahme einer P25 Schicht, Ansicht von oben	- /0
Abbuaung 5.21: SEM Aufnahme vom Querschnitt einer P25 Schicht	_ /0
Abbildung 5.22: SEM 44 h Abscheidung TiF ₄	_71

Abbildung 5.23: SEM 44 h Abscheidung TiF4, Vergrößerung	_ 71
Abbildung 5.24: SEM 40 Minuten Abscheidung Ti F_4 bei 70°C	_ 71
Abbildung 5.25: SEM 40 Minuten Abscheidung TiF ₄ bei 70°C Vergrößerung	71
Abbildung 5.26: SEM Querschnittsaufnahme von TiO ₂	72
Abbildung 5.27: XRD Spektrum von SnO ₂ getempert	73
Abbildung 5.28: SEM SnO ₂ , links oben Vergrößerung	74
Abbildung 5.29: XRD Spektrum von WO ₃ getempert	75
Abbildung 5.30: SEM WO ₃ , links oben Vergrößerung	76
Abbildung 5.31: XRD-Spektrum ZnO-Schicht - blaue Kurve, FTO - rote Kurve	78
Abbildung 5.32: SEM ZnO-Film	79
Abbildung 5.33: XRD Spektrum WO ₃ Rods	82
Abbildung 5.34: XRD Spektrum WS ₂ Tubes	83
Abbildung 5.35: TEM Aufnahme von WS ₂ Röhren	83
Abbildung 5 36: TEM Vergrößerung von WS ₂ Röhren	84
Abbildung 5.37: Links: Suspensionen von MoS ₂ Nanopartikeln bestimmter Größe, rechts: Veränderung der	_ 0 .
Randlücke mit der Größe der Nanonartikel	85
Abbildung 5 38: Schema inverser Mizellen	- 86
Abbildung 5.30: Schlenkapparatur	- 87
Abbildung 5.0: JEM Aufnahme: Inverse	- 07
Abbildung 5.40. TEM Aufnahme: Inverse	00 _ 88
Abbildung 5.41. TEM Aufnahme: Inverse Mizellen	_ 00 _ 22
Abbildung 5.42. TEM Aufnahme. Inverse Mizellen	_ 00 _ 00
Abbildung J.45: TEM Aufnahme: Inverse Mizelien	_ 00
Abbildung 5.44: XKD Spektrum Kainoaische Abscheidung WS_2 , rot-Signale von SnO, schwarz-Signale von Zinn	90
Abbildung 5.45: Vergroßerung der XRD Messung von WS_2 - kathodische Abscheidung	_ 90
Abbildung 5.46: Streifender Einfall XRD Spektren, Einfallswinkel 0.2°, 0.4°, 0.8°, 1.6°, 3.2°, 6.5°, von schwarz z	zu
	_ 92
Abbildung 5.47: XRD Spektrum Streifender Einfall, Vergrößerung von Peak 102 FTO	_ 92
Abbildung 5.48: Dectac Dickenbestimmung einer elektrochemisch abgeschiedenen Probe	_93
Abbildung 6.1: Direkte Bandlücke von WS ₂ auf Glas und auf TiO ₂	_ 98
Abbildung 6.2: Indirekte Bandlücke von WS ₂ auf Glas und auf TiO ₂	_ 98
Abbildung 6.3: Indirekte Bandlücke von WSe ₂ auf TiO ₂	100
Abbildung 6.4: Direkte Bandlücke von WSe ₂ auf TiO ₂	100
Abbildung 6.5: Indirekte Bandlücke von WSe ₂ auf Glas	100
Abbildung 6.6: Direkte Bandlücke von WSe ₂ auf Glas	100
Abbildung 6.7: Indirekte Bandlücke von MoS ₂ auf TiO ₂	100
Abbildung 6.8: Direkte Bandlücke von MoS ₂ auf TiO ₂	100
Abbildung 6.9: Indirekte Bandlücke von MoS ₂ auf Glas	101
Abbildung 6.10: Direkte Bandlücke von MoS ₂ bei Glas	101
Abbildung 6.11: Indirekte Bandlücke von MoSe2 auf Glas	101
Abbildung 6.12: Direkte Bandlücke von MoSe ₂ auf Glas	101
Abbildung 6.13: Indirekte Bandlücke von MoSe ₂ auf TiO ₂	101
Abbildung 6.14: Direkte Bandlücke von MoSe ₂ auf TiO ₂	101
Abbildung 6.15: Ramanspektrum von WS ₂	104
Abbildung 6.16: Ramanspektrum MoS ₂	106
Abbildung 6.17: Ramanspektrum WSe ₂	108
Abbildung 6.18: Ramanspektrum MoSe ₂	109
Abbildung 6.19: Spektrale Quanteneffizienz bei mit WS ₂ sensibilisiertem TiO ₂	111
Abbildung 6.20: Photospannungsmessung bei einer MoS ₂ Probe gesputtert auf TiO ₂	113
Abbildung 6.21: Photospannungsmessung bei einem natürlichen MoS_2 Kristall	113
Abbildung 6.22: Photospannungsmessung von TiO ₂	114
Abbildung 6.22: Photospannungsmessung von MoS ₂ (auf TiO ₂ Carbonylmethode)	114
Abbildung 6.24: Photospannungsmessung der WS ₂ Probe (auf TiO ₂ , Carbonylmethode)	115
Abbildung 6.25: Photospannungsmessung der MoSe, Probe (auf TiO, Carbonylmethode)	116
Abbildung 6.26. Photospannungsmessung hei den WSe. Proben (auf TiO. Carbonylmethode)	117
Abbildung 6.20. I notosputnungsmessung bei den WSe2 I toben (duj 1102, Catboliyimemode)	11/
durchashand Dunkalstrom)	110
Abbildung 6.28. Energishändendigengemme der 4 Absorber und TiO	110
Abbildung 6.20: TiO sensibilisiert mit WSe duei Dueben (mit jeuvale Dhate und Duebeletuem abiebe Erster)	119
Aboutung 0.29. 1102 sensibilisien mit wse2, arei Froben (mit jeweus Photo- una Dunkelstrom, gleiche Farbe),	120
<i>F Jeue zeigen die Kichlung des Fholosiroms (gestricheit – Photosirom, aurchgenena - Dunkelstrom)</i>	120
Abbildung 0.50: 1102-Schicht sensibilisiert mit MoSe2	122
Abbuaung 0.51: Photo- und Dunkelstrommessung bei MoS_2	123
Abbutating 0.32: Dunkelstrommessung einer WO_3/WS_2 -Elektrode (Carbonylmethode, Multistep-Abscheidung) _	125

Abbildung 6.33: Photo- und Dunkelstrommessung einer ZnO/WS ₂ -Elektrode (Carbonylmethode, Multistep-	176
Abscheidung)	120
Aboliaung 0.54: Photo- una Dunkeistrommessung einer ShO ₂ /wS ₂ -Elektroae (Carbonyimeinoae, Multisiep-	177
Abscheidung)	!27 120
Abbildung 7.1: Messung des Photostroms bei verschiedenen Lichtintenstitäten	129 121
Abbildung 7.2: SEM Aufnahme IIO_2 sensibilisiert mit WS_2	131
Abbildung 7.3: SEM Vergroßerung von WS ₂ Ablagerungen	131
Abbildung 7.4: TEM Aufnahme TiO ₂ sensibilisiert mit WS_2	132
Abbildung 7.5: Vergrößerung der WS ₂ -Schichten	132
Abbildung 7.6: Photo- und Dunkelstrommessung einer sulfurisierten Probe (gestrichelt - Photostrom, durchgehe – Dunkelstrom)	nd 134
Abbildung 7.7: Photo- und Dunkelströme bei WS- Proben mit Nickel als Unterschicht (gestrichelt – Photostrom	
durchoehend – Dunkelstrom)	136
Abbildung 7.8: SEM Aufnahme Nickel Snikes	137
Abbildung 7.0: SEM Aufnahme Vergrößerung Nickel Spikes (Mitte) um ihn herum WS. Kristalle	137
Abbildung 7.10: Photo Dunkalstrommessung lange Abscheidungsdauer WS. Pfeile zeigen die Pichtung des	.57
Dependence (astrichalt Photostrom durchashand Durkalstrom)	120
Abbildung 7.11: Vomuendate Lögungsmittel	120
Abbildung 7.11. Verwendele Losungsmiller	! 39 1 10
Abbildung 7.12: Photo- und Dunkelströmmessung, Abscheidung von WS ₂ in Dichtorbenzoi	140
Abdulaung 7.15: Photo- una Dunkelstrommessung, Carbonyimethoae, biaue Kurve – Abschelaungsaauer 10 s,	
schwarze Kurve Abscheidungsdauer 20 s, rote Kurve – Abscheidungsdauer 2 min (gestricheit – Photostrom,	
durchgehend Dunkelkennlinie)	141
Abbildung 7.14: Photostrommessung einer TiO_2/WS_2 -Elektrode (Carbonylmethode)	142
Abbildung 7.15: Beschichtung mit Yttrium, von unten nach oben (grün, rot, schwarz): 6 Dips, Blindprobe, 2 Dips	; , , -
	145 146
Abbildung 7.10: Beschichtung mit Scandium, 4 Dips (untere Kurve, rot), Blindprobe (obere Kurve, schwarz)	140 147
Abbildung 7.17: Beschichtung mit MgO, 2 Dips	147 140
Abbildung 7.18: Beschichtung mit MgO mit 4 Dips, mehrmaliges Scannen	148
Abbildung 7.19: Beschichtung von TiO ₂ mit Al_2O_3 , Kennlinien der Photo- und Dunkelströme (gestrichelt –	
Photoströme, durchgehend – Dunkelströme)	149
Abbildung 7.20: Photostrommessung von unbehandelten und mit TiCl ₄ behandelten Elektroden	150
Abbildung 7.21: TWEEN 80	153
Abbildung 7.22: Behandlung mit TWEEN 80, 1% Lösung, Photoströme	154
Abbildung 7.23: Behandlung mit TWEEN 80, 5% Lösung, Photoströme (schwarz – vor der Behandlung, blau –	
nach 1 h, grün – nach 17 h, rot – nach 24 h Behandlung)	155
Abbildung 7.24: Zeitlicher Verlauf der Photoströme nach der TWEEN 80 Behandlung, im Innern Entwicklung de	?r
Photoströme innerhalb der ersten Stunde	155
Abbildung 7.25: Aufwachsen von WS ₂ auf TiO ₂	157
Abbildung 7.26: Cystein Strukturformel Abbildung 7.27: Cysteine 3D (gelb-Schwefel,	158
Abbildung 7.28: Vergleich der unbehandelten Probe (schwarz) und nach 1 h Cystein Behandlung (rot), gestriche	elt
– Photoströme, durchgehend - Dunkelströme	159
Abbildung 7.29: 5 und 24 h Cystein Behandlung (gestrichelt – Photoströme, durchgehend – Dunkelstrom) I	160
Abbildung 7.30: Zusammenfassung der Entwicklung der Photoströme nach der Behandlung mit Cystein	161
Abbildung 7.31: Verhalten von TWEEN 80 und Cystein an WS ₂	162
Abbildung 7.32: Strom-Spannungskennlinie einer mit WS ₂ sensibilisierten TiO ₂ Elektrode und ins Wasser	
eingetauchten Elektrode (gestrichelt – Photoströme, durchgehend – Dunkelströme)	164
Abbildung 7.33: Mott-Schottky Plot von einem Einkristall des Anatas ⁴⁶⁶	166
Abbildung 7.34: pH Abhängigkeit von Flachbandpotential bei TiO ₂ , gestrichelt wurde das Niveau der unteren	
Kante des Leitungsbandes vom WS ₂ eingezeichnet	167
Abbildung 7.35: Photoströme bei unterschiedlichen pH-Werten, wässrige Iodidlösung	168
Abbildung 7.36: pH-Wert Abhängigkeit des Flachbands von TiO ₂ und defektreichem WS ₂ (gestrichelt)	169

Tabellenverzeichnis:

Tabelle 1: Abstände zwischen den einzelnen Atomlagen für MoS ₂ und WS ₂ in hexagonaler Form	13
Tabelle 2: Abmessungen der Elementarzelle und Symbole der Raumgruppe nach Schönflies für die in 2H und 3	R
kristallisierende Variante der Mo- bzw. W-Chalkogenide	15
Tabelle 3: Die physikalischen Daten von TiO ₂	19
Tabelle 4: Porosität der TiO ₂ -Schichten	66
Tabelle 5: Vergleich der Partikelgrößen von TiO ₂ berechnet mittels Scherer-Gleichung aus den XRD-Signalen	
HWB	68
Tabelle 6: Partikelgröße SnO ₂	74
Tabelle 7: Auswertung der Partikelgröße bei WO3	76
Tabelle 8: Größe der ZnO Partikel berechnet mittels Scherer-Gleichung	78
Tabelle 9: ERDA-Messung der Zusammensetzung der elektrochem. abgeschiedenen Schichten	95
Tabelle 10: Vergleich der indirekten und direkten Bandlücke bei WS ₂ Abscheidungen auf Glas, TiO ₂ und	
Literaturwerte	99
Tabelle 11: Bandlücken der eingesetzten Absorber gemessen mittels UV-Vis-Spektroskopie und Literaturwerte.	99
Tabelle 12: Vergleich der Ramanmessungen aus der Literatur und von selbst hergestellten Schichten	105
Tabelle 13: Vergleich der Ramanspektren	107
Tabelle 14: Ramanspektrumpeaks bei MoSe ₂ -Proben und Referenz MoSe ₂	109
Tabelle 15: Messung der Photoströme und Einsatzpunkte der Photoströme bei den eingesetzten Absorbern	
(Carbonylmethode)	124
Tabelle 16: Zusammenfassung: Andere Metalloxide als Ersatz für TiO ₂ , Photoströme und Einsatzpunkte der	
Photoströme	128
Tabelle 17: Zusammenfassung Optimierungsversuche von Carbonylmethode, Photoströme und Einsatzpunkte a	der
Photoströme	143
Tabelle 18: Einfluss der eingesetzten Oxide, Photoströme und Einsatzpunkte der Photoströme	152

Anhang 1 Die Herleitung der Ramanstreuung

Im statischen elektrischen Feld wirkt auf den Kern und das Elektron eine Kraft, durch die ein Dipol induziert wird:

$$\mu = \alpha * E \qquad (1)$$

mit a= Polarisierbarkeit

Die Oszillation des elektromagnetischen Feldes ist durch folgende Gleichung gegeben:

$$E = E_0 * \cos 2\pi * v_0 * t$$
 (2)

mit v₀ Frequenz des Lichts

Rayleigh

(1) in (2) eingesetzt liefert also:

$$\mu(t) = \acute{\alpha}^* E_0^* \cos 2\pi^* v_0^* t$$
 (3)

Da die Kerne ihre Lage ändern und Elektronen folgen abhängig vom Kern-Kern Abstand, wird die Polarisierbarkeit zeitabhängig moduliert:

$$\dot{\alpha} (t) = \dot{\alpha}_0 + \dot{\alpha}_{vib} E_0 cos 2\pi v_{vib} \qquad (4)$$

(mit $\dot{\alpha}_0$ = Polarisierbarkeit des Moleküls bei GG-Lage der Kerne, $\dot{\alpha}_{vib}$ = Änderung der Polarisierbarkeit mit der Kernbewegung, v_0 = Frequenz der Molekülschwingung) (4) in (3) und Umformung liefert also:

$$\mu(t) = \dot{\alpha}^{*} E_{0}^{*} \cos 2\pi^{*} v_{0}^{*} t + \underbrace{\frac{1}{2}}_{2} \dot{\alpha}_{vib}^{*} E_{0}^{*} \cos 2\pi^{*} (v_{0} + v_{vib})^{*} t + \underbrace{\frac{1}{2}}_{2} \dot{\alpha}_{vib}^{*} E_{0}^{*} \cos 2\pi^{*} (v_{0} - v_{vib})^{*} t}_{2}$$

Stokes

Da bei Raumtemperatur die meisten Moleküle im Vibrationsgrundzustand sind, ist die Stokes Streuung intensiver als die Anti Stokes Streuung.

Anti Stokes

Anhang 2 Getestete Herstellungsmethoden für Absorber und Metalloxidsubstrate

Die folgenden Materialien wurden als Absorber auf dem TiO₂ getestet, haben jedoch keine nennenswerte Photoströme erzielt. Aus diesem Grund wurden sie nicht weiter untersucht

Absorber:

Herstellung von SnS (Nach Brunck,^{472,473} modifiziert Schmidt 2004):

1. Lösung:

1 g Ascorbinsäure und 0,5 g SnCl₄ 5aq werden in 13 ml H₂O dest. gelöst. Dann werden 0,15 ml SnCl₂ 2aq zugegeben. Der pH Wert wird mit Hilfe von KOH auf 8 eingestellt.

2. Lösung:

1,6 g Natriumdithionit werden in 10 ml H_2O dest. gelöst. Beide Lösungen werden gemischt und auf ca. 80 °C erhitzt. Die Abscheidungsdauer beträgt 2 Stunden. Es entstehen schwarze, rot transparente Filme.

Herstellung von SnS (Nach Beutel,⁴⁷⁴ modifiziert Schmidt 1998):

1. Lösung:

0,5 g Ascorbinsäure, 0,5 g Weinsäure und 0,2 g $SnCl_2$ 2 aq werden in 15 ml H₂O dest. gelöst. Der pH Wert wird mit Hilfe KOH auf 5 eingestellt.

2. Lösung:

0,8 g Natriumthiosulfat wird in 10 ml H₂O dest. gelöst.

Beide Lösungen werden gemischt. Die Abscheidung wird bei Zimmertemperatur durchgeführt und dauert 12 h. Es entstehen leuchtend hell rote Filme.

Herstellung von Sn₂S₃ (Nach Brunck,^{472,473} modifiziert Schmidt 2004)

1. Lösung:

0,5 g Ascorbinsäure und 0,4 g SnCl4 5aq werden in 15 ml H₂O dest. gelöst.

2. Lösung:

1,5 g Natriumdithionit (85%) wird in 12 ml H_2O dest. gelöst.

Beide Lösungen werden gemischt. Die Abscheidungsdauer beträgt 2 - 9 Stunden und wird bei Zimmertemperatur durchgeführt. Das Gefäß sollte luftdicht verschlossen sein. Es entstehen spiegelnde, ockerfarbene Filme.

Herstellung von Sb₂S₃ (Nach Brunck,^{472,473} modifiziert Schmidt 2005)

1. Lösung:

0,2 g Kaliumantimontartrat und 0,1 g Weinsäure werden in 14 ml H₂O dest. gelöst. Der pH Wert beträgt 2.

2. Lösung:

1,5 g Natriumdithionit wird in 14 ml H₂O dest. gelöst.

Beide Lösungen werden zusammengemischt. Die Abscheidungsdauer beträgt 4 h bei Zimmertemperatur. Es entstehen glatte, ockerfarbene Filme.

Herstellung von Sb₂S₃ (Nach Hansen⁴⁷⁵)

1. Lösung:

0,3 g Kaliumantimontartrat und 3 ml Eisessig (oder 1 g Ascorbinsäure oder 1 g Weinsäure) werden in 14 ml H_2O dest. gelöst.

2. Lösung:

1,5 g Natriumthiosulfat wird in 14 ml H₂O dest. gelöst.

Beide Lösungen werden gemischt. Die Abscheidungsdauer beträgt bei pH 3 und Zimmertemperatur 3 - 10 Stunden.

Es entstehen ockergelbe (3 Stunden) oder ockerrote (10 Stunden) Filme die bläulich transparent sind. Um Filme größere Dicke herzustellen, muss die Abscheidung im säurefreiem Bad bei 100 ℃ erfolgen (4 - 5 Stunden).

Herstellung von Bi₂S₃ (Nach Beutel,⁴⁷⁴ modifiziert Schmidt)

Lösung 1:

Schritt A: 2,6 g Bi(NO₃) 5 aq und 18 ml 50% Triethylamin (50%)werden in einem Mörser homogenisiert.

Schritt B: Die entstandene Suspension wird in ein Becherglas mit 36 ml H₂O dest. überführt. Es sollte eine klare Lösung entstehen. Falls nicht, sollte die Lösung erwärmt und noch mal abgekühlt werden.

Schritt C: 5,3 g Weinsäure werden in 36 ml H₂O dest. aufgelöst und zur Lösung 1 hinzugefügt.

Lösung 2: 7,5 g Natriumthiosulfat 5 aq werden in 97 ml H₂O dest. gelöst.

Es werden jeweils 12 ml von Lösung 1 und Lösung 2 mit 6 ml Ethanol gemischt. Die Abscheidung wird bei Zimmertemperatur durchgeführt und dauert 20 h. Es entstehen braune, rot transparente Filme auf FTO.

Herstellung von Cu₂S (Nach Girard,⁴⁷⁶ mod. Grozdanov⁴⁷⁷ 1994)

Lösung 1: 1 ml CuSO₄ (1 M) und 2 ml Natriumthiosulfat (1 M) werden in 28 ml H₂O dest. gelöst. Es entsteht ein grünliche Lösung. Diese Lösung wird mit 100 μ L Eisessig versetzt. Die Abscheidungsdauer beträgt 40 min bei 75 °C. Es entstehen orange-braun transparente, schwärzlich-braun reflektierende Filme.

Herstellung von MoS₂ (Nach Schmidt 2005)

Lösung 1: 0,3 g Ammoniummolybdat werden in 7 ml H₂O dest. gelöst.

Lösung 2: 0,9 g Ammoniumthiosulfat und 5 ml 25% NH_3 werden zu 7 ml H_2O dest. zugesetzt (alternativ 1.7 g Natriumthiosulfat).

Lösung 3: 1,3 g Ascorbinsäure werden in 7 ml H₂O dest. aufgelöst.

Für die Abscheidung werden zunächst Lösungen 1 und 2 gemischt. Danach wird die Lösung 3 hinzugefügt. Die Einwanderungsdauer in poröse TiO₂-Schichten beträgt max. 14 Stunden bei 100 ℃.

Herstellung von MoS₂ (SILAR, Sartale/Lokhande⁴⁷⁸ 2001)

Tauchbad A: 0,124 g (NH₄)MoO₄ werden in 100 ml H₂O dest. gelöst. Die Konzentration beträgt 10^{-3} M.

Tauchbad B: 4,8 g Na₂S 9aq werden in in 100 ml H₂O dest. gelöst (entspricht 0,2 M Na₂S)

Tauchbad A wird angesäuert (pH 3, H₂SO₄ oder Weinsäure). Das Substrat wird abwechselnd in die beiden Bäder eingetaucht und dazwischen mit H₂O dest. gespült.

Herstellung von MoS₂ (elektrochemisch, Patil⁴⁷⁹ 1999)

Lösung 1: 0,3 g (NH₄)MoO₄ werden gelöst in 15 ml H₂O dest.

Lösung 2: 1,1 g $(NH_4)_2S_2O_3$ oder 1,9 g $Na_2S_2O_3$ 5aq werden gelöst in 15 ml H₂O dest. Beide Lösungen werden gemischt. Die elektrochemische Abscheidung erfolgt bei Zimmertemperatur.

Herstellung von MoS₂

MoO₃, N₂H₄(Hydrazin), Se in Pyridin bei 300 °C 12 h. 40nm Partikel^{480,481}.

Abscheidung von MoS₂ bei 60 °C:

50 mg Ammoniumthiomolybdat werden in 3 ml H₂O dest. gelöst und mit 4 ml NH₃ 25% versetzt. In einer zweiten Lösung werden 2 g Natriumdithionit in 13 ml H₂O dest. gelöst. Die beiden Lösungen werden gemischt. Der Abscheidungsprozess wird zunächst bei Zimmertemperatur eingeleitet (1 h) und danach bei 50 °C fortgesetzt (4 h lang). Zuletzt werden die Schichten bei 400 °C getempert, am besten unter Inertgas (O₂-Ausgasung, Leitfähigkeitssteigerung)

Elektrochemische Herstellung von WS₂

Lösung 1: 0,5 g H_2WO_4 , 1,2 ml NH_3 25% werden zu 15 ml H_2O dest. hinzugefügt und gerührt

Lösung 2: 2,2 g $(NH_4)_2S_2O_3$ oder 3,48 g $Na_2S_2O_3$ 5aq oder 3,7 g $Na_2S_2O_3$ 5aq werden in 15 ml H_2O dest. gelöst.

Beide Lösungen werden zusammengerührt. Die elektrochemische Abscheidung erfolgt bei einer Temperatur von ca. 40 °C.

Elektrochemische Herstellung von MoSe2

Elektrochemisches Bad:

0,6 g Selenstaub werden in 20 ml H_2O dest. gelöst. In einem zweitem Gefäß werden 0,4 g Ammoniummolybdat in 2 ml H_2O dest. gelöst. Beide Lösungen werden gemischt.

Herstellung von MoSe₂

0,2 g Ammoniumheptamolybdat und 2 g Ascorbinsäure werden in 12 ml H_2O dest. gelöst.

In einem zweitem Gefäß werden 2,4 g Na₂SO₃ und 0,6 g Na₂SeO₃ gelöst. Beide Lösungen werden gemischt und bei 100 $^{\circ}$ C 40 h abgeschieden.

Herstellung von WSe₂

0,3 g Ammoniumwolframat und 2,0 g Ascorbinsäure werden in 12 ml H₂O dest.

gelöst. In einem zweitem Gefäß werden 2,4 g Na₂SO₃ und 0,6 g Na₂SeO₃ in 12 ml H₂O dest. gelöst. Beide Lösungen werden gemischt und bei 100 °C 40 h abgeschieden.

Herstellung von WSe₂

Lösung 1: 0,4 g Ammoniumwolframat werden in 6 ml H_2O dest. gelöst. , 2 ml NH_3 25% werden dazugegeben.

Lösung 2: 0,15 g Selen werden mit 2,0 g Na₂SO₃ gemischt und in 7 ml H₂O dest. gelöst.

Lösung 1 und 2 mischen.

5 g Ascorbinsäure werden in 15 ml H₂O dest. gelöst (in Wärmebad) und zur gemischten Lösung 1 und 2 dazugegeben. Die Abscheidung findet bei 100 $^{\circ}$ C und dauert 20 h.

Herstellung von WSe₂

0,2 g Kaliumnatriumtartat und 0,15 Ammoniumwolframat werden in 3,5 ml H₂O dest. gelöst. In einer zweiten Lösung werden 0,65 g Na₂SO₃ und 0,2 g Na₂SeO₃ in 5 ml H₂O dest. gelöst. In einer dritten Lösung werden 0,75 g Ascorbinsäure in 6,5 ml H₂O dest. gelöst. Alle drei Lösungen werden gemischt und bei 80 °C bzw. 100 °C abgeschieden (15 h).

Herstellung von Na₂SeSO₃

Es wird eine Lösung von Na_2SO_3 in H_2O dest. hergestellt (z.B. 4,0 g Na_2SO_3 in 14 ml H_2O dest.). In dieser Lösung werden 0,6 g Selen gelöst.

Herstellung der Metalloxide - Substrate:

Herstellung von TiO₂

(Nach Hattori⁴⁸²(1998))

18,6 ml Ethanol, 1,24 ml Titanisopropanol, 1.23 ml Acetylaceton und 4 mg NH₄F werden zusammengerührt. Es entsteht ein gelb-orange farbenes Sol. Dieses kann z.B mit der Dip-Coating Methode auf die Substrate aufgetragen werden. Die aufgetragen Schichten müssen noch bei 450 °C getempert werden.

(Nach Li Bin⁴⁸³ (2004))

0,6 ml Titanisopropanol werden in 30 ml Petrolether gelöst. Die Substrate werden in die Lösung eingetaucht und der Luft hydrolysiert. Durch die Anzahl der Tauchvorgänge kann die Dicke der Schicht variiert werden. Die so entstandenen Schichten werden bei 450 °C getempert (10 min)

(Nach Jander⁴⁸⁴ (1987))

3 g TiOSO₄, 1,5 ml H₂SO₄ werden zu 30 ml H₂O dest. hinzugefügt und gerührt. Nach ca. 2 h entsteht eine klare Lösung. In diese Lösung werden die Substrate hineingestellt. Die Abscheidung dauert ca. 20 h und erfolgt bei einer Temperatur von 100 °C.

TiO₂ – Paste (Bandara^{485,486} 2005)

6 g Oxids werden mit 600 μ L HNO₃ (65%) gemischt. So entstanden Suspension trennt sich leider auf. Sie kann mit der Lösung a oder Lösung b gemischt werden, dadurch entsteht eine stabile Suspension.

Herstellung von ZnO

Nach Jimenez-Gonzales⁴⁸⁷ (1998)

1,4 g ZnAc₂ 2aq werden gelöst in 10 ml Methanol. Nach 24 h Alterungsprozess ensteht ein viskoses Gel. Die Substrate werden in das Gel eingetaucht und an der Luft bei 50 $^{\circ}$ getrocknet. Danach werden sie bei 450 $^{\circ}$ getempert.

Nach Krunks⁴⁸⁸ (1995)

1,1 g ZnAc₂ 2aq, 8 mg AlCl₃, 7 Tropfen Eisessig werden zu einer Lösung aus 10 ml H₂O dest. und 15 ml Isopropanol hinzugefügt und gerührt. Diese Lösung wird auf erhitzte Substrate gesprüht (400 ℃). Nach der Sprühpyrolyse werden die Schichten zwecks besserer Leitfähigkeit noch unter Inertgas nachgetempert.

Nach Schmidt (2005)

0,75 g Zn(NO₃)₂, 0,75 g NH₄F, 0,4 g Harnstoff, 10 mg SnCl₂ 2aq und 100 μ L NH₃ 25% werden mit 33 ml H₂O dest. gerührt. Die Abscheidungsdauer beträgt 1 Stunde bei Zimmertemperatur oder 4 h bei 50 °C. Zuletzt werden die Substrate an der Luft getempert (400 °C)

Herstellung von ZnO Pulver

Nach Rensmo et al 1997

30 g Zn(NO₃) 6aq werden in 100 ml H₂O dest. gelöst, 10 g 2(NH₄)₂CO₃ werden in 50 ml H₂O dest gelöst. Beide Lösungen werden gemischt Das so entstandene Zinkcarbonat (weiser Niederschlag)wird mehrmals mit H₂O dest. gewaschen, bei einer Temperatur von etwa 250 °C getrocknet und anschließend bei 450 °C getempert. Das Pulver lässt sich nach dem Nazeeruddin/Grätzel Verfahren zu einer Paste/Suspension verarbeiten welche sich ausgezeichnet für Schichtenherstellung eignet.

Herstellung von WO₃

Nach Gaikwad⁴⁸⁹ (2005)

1,7 g WOCl4 werden in 10 ml Ethanol gelöst. Das entstandene Mischung kann auf das Substrat aufgetragen werden und soll an der Luft trocknen. Die so entstandene Schicht wird bei 550 °C getempert. Um geeignete Dicken zu erreichen, kann das Verfahren mehrmals anwendet werden.

Nach Lokhande⁴⁷⁹ (1998)

0,37 g Ammoniummetawolframat werden in 25 ml H_2O dest. gelöst und auf das erhitzte Substrat gesprüht (ca. 300 °C). Durch die Anzahl der Sprühvorgänge kann die Dicke der Schicht variiert werden.

Schmidt (2005):

Eine Spatelspitze WCl₆ oder WCl₄ wird in ca. 3 ml Ethanol gelöst. Diese Lösung wird auf das Substrat aufgetragen und bei 450 °C getempert. Durch mehrmaliges Auftragen lässt sich die Filmdicke steigern

Herstellung SnO₂ (Nach Schmidt 2000)

0,6 g NH₄F, 0,3 g KF, 0,5 g Harnstoff und 1,2 g SnCl₂ 2aq werden gelöst in 100 ml H₂O dest.. Die Abscheidung erfolgt bei 80 $^{\circ}$ C und dauert etwa 15 h. Die SnO*nH₂O Schicht wird bei 450 $^{\circ}$ C getempert.

(Nach Yoon⁴⁹⁰ 1993)

0,08 g NH₄F, 2,8 g SnCl₄ 5aq und 30 ml Isopropanol werden mit 10 ml H₂O dest. gemischt. Die so entstandene Lösung wird auf das erhitzte Substrat ($350 \circ C - 450 \circ C$) gesprüht (Sprühpyrolyse).

Anhang 3 Abkürzungen

CIS	Kupfer-Indiumdisulfid oder Kupfer- Indiumdiselenid
ERDA	"Elastic Recoil Detection Analysis" Elastische Rückstreuanalyse
FF	"fill factor" Füllfaktor
FTO	"fluorinated tin oxide", Fluor-dotiertes Zinnoxid, für p-leitendes Glas
FWHM	"Full wide at half maximum" Halbwertsbreite
HMI	Hahn-Meitner-Institut Berlin
MPP	"maximum power point"
NHE	"normal hydrogen electrode", Normal- Wasserstoffelektrode
REM	Raster-Elektronenmikroskop
SCE	"saturated calomel electrode",Kalomelelektrode mit gesättigter KCI-Lösung (0,241V vs. NHE)
SEM	"scanning electron microscope" siehe REM
SPV	"surface photovoltage" Obeflächenphotospannung
TEM	Transmissionselektronenmikroskopie
Tween80	Polyethoxysorbitanoleat
UV	ultravioletter Spektralbereich des Lichts
U _{oc}	"open curcuit potential" Leerlaufspannung
ISC	"short curcuit" current, Kurzschlußstrom
VIS	"visible", sichtbarer Spektralbereich des Lichts
VS.	"versus", gegen
XRD	X-Ray Diffraction, Röntgenbeugung

Symbole und Konstanten

ρ	Spezifischer Widerstand [Ωcm]
μ	elektrochemisches Potential
cox/ cred	Konzentration von Akzeptor und Donator
α	Absorptionskoeffizient [cm ⁻¹]
X	Elektronenaffinität
h ⁺	Positive Ladung, Loch
m_e^*/m_e	Effektive Elektronenmasse der
	Leitungsbandelektronen
σ	Leitfähigkeit
μ_{e}	Elektronenbeweglichkeit
E	Dielektrizitätskonstante
τ	Lebensdauer
$e\phi_b$	Größe der Bandverbiegung
D	Diffusionskonstante
E _(Red/Ox)	Redoxpotential
EC	Energie von Leitungsband
EV	Energie von Valenzband
E _F	Fermienergie
E _G	Bandlücke
e	Elektron
1	Strom [A]
k	Boltzmannkonstante
L _{Debye}	Debyelänge
n	Brechungsindex
N _D	Dichte der Donatoren
N _A	Dichte der Akzeptoren
R	Widerstand
U	Spannung
U _{FB}	Flachbandpotential
W	Raumladungszonenweite

R: Allgemeine Gaskonstante 8, 314 J mol⁻¹ K⁻¹

N Avogadrosche Konstante 6, 022 x 10²³ mol⁻¹

- k: Boltzmannsche Konstante 1, 381 x 10-23 J K-1
- q: Elementare elektrische Ladung 1, 602 x 10⁻¹⁹ C
- F: Faradaysche Konstante 9, 649 x 10⁴ C mol⁻¹
- c: Lichtgeschwindigkeit 2, 998 x 10° m s¹
- h: Plancksches Wirkungsquantum 6, 626 x 10³⁴ J s

Danksagung

An dieser Stelle möchte ich mich bei allen bedanken, ohne deren Hilfe diese Arbeit nicht möglich gewesen wäre, ganz besonders bei

... Prof. Tributsch, der mir dieses spannende Dissertationsthema überlassen hatte, mich immer mit seinem fachlichen Rat unterstützte, und mir viele wissenschaftliche Anregungen gab. Auch wegen seinem faszinierenden Interesse und Wissen über die Vorgänge in der Natur war er mir immer ein Vorbild.

... Prof. E. Rühl dafür, dass er sich sofort bereit erklärt hatte, diese Dissertation als Zweitgutachter zu übernehmen.

...Iris Dorbandt für ihre Unterstützung im Laboralltag und ihre stetige Hilfsbereitschaft.

...Bernhard Neumann für die nette Gesellschaft im Büro und in Uppsala und die vielen fachlichen ("wenn die Fermienergie in der ganzen TiO₂ Schicht gleich ist, dann …") und nicht fachlichen Diskussionen.

...Dr. T. Moehl für die Einführung in die elektrochemische Photostrommessung.

...Dr. S. Seegers für seine Hilfe beim Sputtern und Tempern von WS₂ und MoS₂.

...Dr. Peter Bogdanoff für die Unterstützung in allen möglichen praktischen und theoretischen Labor- und Chemiefragen und seine vielen, schönen REM Bilder.

...ebenfalls bei Ulrike Blöck für die unzähligen TEM und REM Aufnahmen, auch unter Zeitdruck am Ende der Arbeit.

... Dr. Gerrit Schmitthals, für seine Unterstützung bei Computerfragen und für gemeinsame Segelstunden auf der schönen Havel.

... Dr. Sebastian Fiechter für die Einführung in das seltsame Eigenleben unserer XRD Apparatur, die Auswertung der XRD, und die interessanten Gespräche über Architektur und Literatur.

...Sabrina Barheine für ihre engagierte Mitarbeit an den elektrochemisch abgeschiedenen Schichten.

... Matthias Junghänel, weil er mich immer auf dem neuesten Stand der Farbstoffsolarzellenherstellung und –forschung gehalten hat, und für die perfekte Durchführung des WM-Tippspiels, mit seinen täglichen Zwischenberichten. Für das Ergebnis der WM kann er leider nichts für.

...Dr. W. Bohne für die Durchführung der ERDA Messung und die Diskussion der Ergebnisse.

...Dr. Thomas Dittrich, für die Einführung in die Oberflächenphotospannungsmessmethode, die Diskussion der Ergebnisse und seine grossartige Hilfe beim Disputationsvortrag.

...Dr. A. Belaidi, für seine viele Anregungen rund um TiO₂ und ETA Solarzelle.

...bei unseren Sekretärinnen, Miriam und Karin, für ihre freundliche und fröhliche Art und dafür, dass sie mir immer sagen konnten welches Formular mit wie vielen Unterschriften versehen werden muss.

... bei Andre Greif für seine Korrekturvorschläge.

...ganz besonders bei Ulrike Koslowski für die Korrektur meiner Arbeit, was viel Zeit in Anspruch genommen hatte, dabei insbesondere ihre sehr hilfreichen Vorschläge zur Gliederung und die Verbannung des Wortes "man" aus meiner Arbeit.

Ich bedanke mich auch herzlich bei Herr Schmidt, den letzten Universalgelehrten, Alchemisten und Goethe Verehrer, für seine Hilfe bei den vielen chemischen Abscheidungen und seine motivierte Forschungsarbeit.

... meinen Eltern, dafür dass sie mich in meinem akademischen Werdegang immer unterstützt hatten.

... meiner Frau Barbara für die Unterstützung während der ganzen Zeit, weil sie trotz der vielen Arbeit noch Zeit gefunden hatte, um diese Dissertation zu korrigieren – wofür sie auch mindestens Bachelor in Chemie verdient hätte – und weil sie mir ihr schönes Lächeln geschenkt hatte.

Und bei Emilka, weil sie mich jeden Morgen so schön verabschiedet hatte: "Tatuś idzie do pracy, pa pa".

Literaturverzeichnis:

¹International Energy Agency, www.iea.org

- ² Peter Würfel, Physik der Solarzellen, Spektrum Akademischer Verlag. 8
- ³ Journal of Physical Chemistry B, 109, 22876, (2005)
 ⁴ Thomalla M. Tributsch H. C. R. Chimie 9 (2006)
- ⁵ Tributsch, H.; Gerischer, H.: Ber. Bunsenges. Phys. Chem. 73 (1969), 251
- ⁶ Meier, H.; J. Phys. Chem. 69 (1964), 719
- ⁷ Dare-Edwards, M. P.; Goodenough, J. B.;Hamnett, A.; Seddon, K. R.; Wright, R. D., Faraday Discuss. Chem. Soc. 70 (1981), 285
- ⁸ Gerischer, H., Tributsch, H.: Ber. Bunsenges. Phys. Chem. 72, 437 (1968)
- ⁹ Tributsch H., Technische Universität München, Dissertation, (1968)
- ¹⁰ O'Reagan, B., Grätzel, M.: Nature 353 (1991), 737
- ¹¹ Y. Ren; Z. Zhang; S. Fang; M. Yang; S. Cai. Solar Energy Materials & Solar Cells 71, 253 (2002)
- ¹² U. T. Würfel. Diplomarbeit, Ruprecht-Karls-Universität Heidelberg, (2001)
- ¹³ Gazotti, W. A.; Girotto, E. M.; Nogueira, A. F.; De Paoli, M.-A. Sol. Energy Mater. Sol. Cells (2001). 69. 315
- ¹⁴ Bach, U.; Lupo, D.; Comte, P.; Moser, J. E.; Weissortel, F.; Salbeck, J.; Spreitzer, H.; Grätzel, M. Nature 395 (1998), 583
- ¹⁵ Dai, Q.; MacFarlane, D. R.; Howlett, P. C.; Forsyth, M. Angew. Chem., Int. Ed. (2005), 44, 313
- ¹⁶ Wang, P.; Dai, Q.; Zakeeruddin, S. M.; Forsyth, M.; MacFarlane, D. R.; Grätzel, M. J. Am. Chem. Soc. 126 (2004), 13590
- ¹⁷ Cao, F.; Oskam, G.; Searson, P. C. J. Phys. Chem. 99 (1995), 17071
- ¹⁸ Wang, P.; Zakeeruddin, S. M.; Moser, J.-E.; Grätzel, M. J. Phys. Chem, B 107 (2003), 13280
- ¹⁹ Meng, Q.-B.; Takahashi, K.; Zhang, X.-T.; Sutanto, I.; Rao, T. N.; Sato, O.; Fujishima, A. Langmuir 19 (2003), 3572
- ²⁰ Tennakone, K.; Fernando, C. A. N.; Dewasurendra, M. J. J. Photochem, 38 (1987), 75
- ²¹ O'Regan, B.; Schwartz, D. T. Chem. Mater. 7 (1995), 1349
- ²² O. Kohle, M. Graetzel, A.F. Meyer, Adv. Mater. 9 (1997) 904
- ²³ M. Graetzel, J. Photochem. Photobiol. C: Photochem. Rev. 4 (2003) 145
- ²⁴ A. Barkschat, T. Moehl, B. Macht, H. Tributsch, PCCP (submitted for publication)
- ²⁵ B. Macht, M. Turrion, A. Barkschat, P. Salvador, K. Ellmer, H. Tributsch, Solar Energy Mater. Sol. Cells 73 (2002) 163
- Macht, B. Degradationsprozesse in Ru(bpca)₂(NCS)₂-sensibilisierten Farbstoffsolarzellen auf Titandioxidbasis, Freie Universität Berlin, Dissertation, (2002) 26
- ²⁷ Grünewald, R. Tributsch, H. J. Phys. Chem. B. 101 (1979), 2564
- ²⁸ Thomalla M. Tributsch H. C. R. Chimie 9 (2006)
- ²⁹ M. Hilgendorff, V. Sundström, J. Phys. Chem. B 102, (1998) 10505
- ³⁰ N. J. Cherepy, G. P. Smestad, M. Grätzel, J. Z. Zhang, J. Phys. Chem. B 101, (1997) 9342
- ³¹ Y. Tachibana, J. E. Moser, M. Grätzel, D. R. Klug, J. Durrant, J. Phys. Chem. 100, 20056 (1996)
- ³² B. Burfeindt, T. Hannappel, W. Storck, F. Willig, J. Phys. Chem. B 100, 16463 (1996)
- ³³ F. Cao, G. Oskam, G. J. Meyer, P. C. Searson, J. Phys. Chem. B 100, 17021 (1996)
- ³⁴ A. Solbrand, H. Lindström, H. Rensmo, A. Hagfeldt, S. E. Lindquist, S. Södergren, J. Phys. Chem. B 101, 2514 (1997)
- ³⁵ A. Hagfeldt, M. Grätzel, Chem. Rev. 95 (1995), 49
- ³⁶ B. Enright, D. Fitzmaurice, J. Phys. Chem. 100 (1996) 1027
- ³⁷ F. Cao, G. Oskam, G. Meyer, P. C. Searson, J. Phys. Chem. 100, (1996) 17021

- ⁴⁰ L. Dloczik, O. Ileperuma, I. Lauermann, L. M. Peter, E. A. Ponomarev, G. Redmond, H. J. Shaw, I. Uhlendorf, J. Phys. Chem. B 101, (1997) 10281
- ⁴¹ A. Shiga, A. Tsujiko, T. Die, Sh. Yae, Y. Nakato, J. Phys. Chem. B 102 (1998) 6049
- ⁴² Hagfeldt A. Grätzel M. Chem. Rev. 95 (1995) 49
- ⁴³ H. Cachet, J. Bruneaux, G. Folcher, C. Levy-Clement, c. Vard, M. Neumann-Spallart, Sol. En. Mat. 46 (1997) 101
- ⁴⁴ A. Zaban, A. Meier, B. A. Gregg, J. Phys. Chem. B 102 (1998) 4522
- ⁴⁵ B. O'Regan, J. Moser, M. Anderson, M. Grätzel, J. Phys. Chem. 94 (1990) 8720
- ⁴⁶ G. Rothenberger, D. Fitzmaurice, M. Grätzel, J. Phys. Chem. 96 (1992) 5983
- ⁴⁷ F. Pichot, B. A. Gregg, J. Phys. Chem. B 104, 6 (2000)
- ⁴⁸ K. Schwarzburg, F. Willig, J. Phys. Chem. B 103, 5743 (1999)
- ⁴⁹ G. Korn, "Ladungsträgertransport in farbstoffsensibilisierten Solarzellen auf Basis von nanoporösem TiO₂, Dissertation, (2003) Universität Stuttgart
- ⁵⁰ A. Hagfeldt, M. Grätzel, Chem. Rev. 95, 49 (1995)
- ⁵¹ A. Hagfeldt, M. Grätzel, Acc. Chem. Res. 33, 269 (2000)
- ⁵² N. Papageorgiou, M Grätzel, W. F. Maier, J. Electrochem. Soc. 144, (1997)
- ⁵³ K. J. Vetter, Elektrochemische Kinetik, Springer Verlag Berlin, (1961), 136
- ⁵⁴ Dane, Jansen, Electrochim. Acta 13 (1968), 507
- ⁵⁵ Y. Liu A. Hagfeldt, X.-R.-Xiao, St.-E. Lindguist, Sol. En. Mat. 55 (1998), 267
- ⁵⁶ S. Y. Huang, G. Schlichthörl, A. J. Nozik, M. Grätzel, A. J. Frank, J. Phys. Chem. B 101 (1997), 2576
- ⁵⁷ V. Macagno, M. C. Giordano, A. J. Arvia, Electrochim. Acta 14 (1969) 335
- ⁵⁸ B. O'Regan, J. Moser, M. Anderson, M. Grätzel, J. Phys. Chem. 94, 8720 (1990)
- ⁵⁹ B. A. Gregg, F. Pichot, S. Ferrere, C. L. Fields, J. Phys. Chem. B 105, 1422, (2001)
- ⁶⁰ A. Hagfeldt, M. Grätzel, Acc. Chem. Res. 33, 269 (2000)
- ⁶¹ A. Hagfeldt, M. Grätzel, Chem. Rev. 95, 49 (1995)
- ⁶² G. R. R. A. Kumara, K. Tennakone, V. P. S. Perera, A. Konno, S. Kaneko, M. Okuya, J. Phys. D: Appl. Phys. 34, 868 (2001)
- ⁶³ J. Nelson, Phys. Rev. B 59, 15374 (1999)
- ⁶⁴ S. A. Haque, Y. Tachibana, D. R. Klug, J. R. Durrant, J. Phys. Chem. B 102, 1745 (2000)
- ⁶⁵ G. Schlichthörl, N. G. Park, A. J. Frank, J. Phys. Chem. B 103, 782 (1997)
- ⁶⁶ L. Dloczik, O. Ileperuma, I. Lauermann, L. M. Peter, E. A. Ponomarev, G. Redmond, H. J. Shaw, I. Uhlendorf, J. Phys. Chem. B 101, 10281 (1997)
- ⁶⁷ F. Cao, G. Oskam, G. J. Meyer, P. C. Searson, J. Phys. Chem. B 100, 17021 (1996)
- ⁶⁸ A. Solbrand, H. Lindström, H. Rensmo, A. Hagfeldt, S. E. Lindquist, S. Sodergren, J. Phys. Chem. B 101, 2514 (1997)
- ⁶⁹ B. A. Gregg, F. Pichot, S. Ferrere, C. L. Fields, J. Phys. Chem. B 105, 1422 (2001)
- ⁷⁰ S. Y. Huang, G. Schlichthörl, A. J. Nozik, M. Grätzel, A. J. Frank, J. Phys. Chem. B 101, 2576 (1997)
- ⁷¹ H. Schlichthörl, S. Y. Huang, J. Sprague, A. J. Frank, J. Phys. Chem. B 101, 8141 (1997)
- ⁷² J. S. Salafsky, W. H. Lubberhuizen, E. van Faassen, R. E. Schropp, J. Phys. Chem. B 101, 2576 (1997)
- ⁷³ B. A. Gregg, F. Pichot, S. Ferrere, C. L. Fields, J. Phys. Chem. B 105, 1422 (2001)
- ⁷⁴ H. Tributsch, L. Pohlmann, Science 279 (1998) 1817
- ⁷⁵ H. Tributsch Coordination Chemistry Reviews 248 (2004) 1511
- ⁷⁶ W. Jaegermann, H. Tributsch, Progress in Surface Science, 29(1/2), 1, (1988)

³⁸ Jörg Ferber, Dissertation, Albert-Ludwigs-Universität Freiburg in der Breisgau, (1999)

³⁹ O. Knebel, I. Lauermann, J. P. Pohl, I. Uhlendorf, IPS 12, Berlin, (1998)

- ⁷⁷ Wilson, J. A. Yoffe, A. D.: Adv. Phys. 18 (1969), 193
- ⁷⁸ J. A. Wollam, R. B. Somoano, Mater. Sci. Eng. 31 (1977), 289
- ⁷⁹ L. F. Matheiss, Phys. Rev. B. 8 (1973), 3719

- ⁸¹ W. J. Schutte, J. L. De Boer, F. Jellinek, J. Solid State Chem. (1987), 70, 207
- ⁸² Rapoport, L.; Bilik, Y.; Feldman, Y.; Homyonfer, M.; Cohen, S. R. Tenne, R. Nature 387 (1997), 791
- ⁸³ Chhowalla M, Amaratunga GA. Nature 407 (2000) 6801

⁸⁴ Okamoto, Y.; Katsuyama, H.; Yoshida, K.; Nakai, K.; Matsuo, M.; Sakamoto, Y.; Yu, J. H.; Terasaki, O. J. Chem. Soc., Faraday Trans. (1996), 92, 4647

⁸⁵ Dejong, A. M.; Debeer, V. H. J.; Vanveen, J. A. R.; Niemantsverdriet, J. W. J. Phys. Chem. 100 (1996), 17722

⁸⁶ Miremadi, B. K.; Morrison, S. R. J. Catal. 103 (1987), 334

⁸⁷ Muller, A. Polyhedron 5 (1986), 323

⁸⁸ Ruizhitzky, E.; Jimenez, R.; Casal, B.; Manriquez, V.; Ana, A. S.; Gonzalez, G. AdV. Mater. 5 (1993), 738

⁸⁹ Danot, M.; Mansot, J. L.; Golub, A. S.; Protzenko, G. A.; Fabritchnyi, P. B.; Novikov, Y. N.; Rouxel, J. Mater. Res. Bull. 29 (1994), 833

⁹⁰ Miremadi, B. K.; Morrison, S. R. J. Appl. Phys. 67 (1990), 1515

⁹¹ Divigalpitiya, W. M. R.; Frindt, R. F.; Morrison, S. R. Science 246 (1989), 369

92 Rapoport, I.; Bilik, Y.; Tenne, R. Nature 387 (1997), 6635

⁹³ Homyonfer, M.; Mastai, Y.; Hershfinkel, M.; Volterra, V.; Hutchison, J. L.; Tenne, R. J. Am. Chem. Soc. 118 (1996), 7804

94 Margulis, L.; Dluzewski, P.; Feldman, Y.; Tenne, R. J. Microsc. 181 (1996), 68

⁹⁵ Gee, M. A.; Frindt, R. F.; Joensen, P.; Morrison, S. R. Mater. Res.Bull. 21 (1986), 543

⁹⁶ Feldman, Y.; Frey, G. L.; Homyonfer, M.; Lyakhovitskaya, V.; Margulis, L.; Cohen, H.; Hodes, G.; Hutchison, J. L.; Tenne, R. J. Am. Chem. Soc. 118 (1996), 5362

⁹⁷ Feldman, Y.; Wasserman, E.; Srolovitz, D. J.; Tenne, R. Science 267 (1995), 222

⁹⁸ Hershfinkel, M.; Gheber, L. A.; Volterra, V.; Hutchison, J. L.; Margulis, L.; Tenne, R. J. Am. Chem. Soc. 116 (1994), 1914

⁹⁹ Tenne, R.; Margulis, L.; Hodes, G. AdV. Mater. 5 (1993), 386

¹⁰⁰ Homyonfer, M.; Alperson, B.; Rosenberg, Y.; Sapir, L.; Cohen, S. R.; Hodes, G.; Tenne, R. J. Am. Chem. Soc. 119 (1997), 2693

¹⁰¹ Tenne, R.; Margulis, L.; Genut, M.; Hodes, G. Nature 360 (1992), 444

¹⁰² Jun Chen, Nobuhiro Kuriyama, Huatang Yuan, Hiroyuki T. Takeshita, and Tetsuo Sakai J. Am. Chem. Soc. 123 (2001), 11813

¹⁰³ D. Tonti Dissertation, Freie Universität Berlin, (2000)

¹⁰⁴ Hind, S. P. Lee, P. M.: J. Phys. C 13 (1980), 349

¹⁰⁵ Agarwal, M. K. Patel, P. D. Vijayan, O.Phys. Stat. Sol. (a) 78 (1983), 103

- ¹⁰⁶ Axel Barkschat, Dissertation, Freie Universität Berlin, (2004)
- ¹⁰⁷ Goodenough, J. B. Ramasesha, S. K.: Physik der nicht tetraedrisch gebundenen binären Verbindungen III. Madelung, L. (Hrsg.) ;Schulz, M. (Hrsg) Weiss (Hrsg): Landolt-Börstein, Neue Serie Bd. 17g. Berlin, Heidelberg, New York, Tokyo: Springer Verlag, (1984), 299

¹⁰⁸ Al-Hilli, A. A. Evans, B. L., J. Cryst. Growth 15 (1972), 93

¹⁰⁹ Tributsch, H.: Electronic Structure, Coordination Photoelectrochemical Pathways and Quantum Energy Conversion by Layered Transition Metal Chalkogenides. Aruchamy, A. (Hrsg.): Photoelectrochemistry and Photovoltaics of Layered Semiconductors. 1. Auflage. Dordrecht, Boston, London: Kluwer Academic Publishers, (1992), 83

¹¹⁰ Williams, P. M. ; Shepherd, F. R.: J. Phys. C 6 (1973), L36

⁸⁰ J. R. Lince, M. R. Hilton, A. S. Bommannavar, Thin Solid Films, 264 (1995), 120

¹¹¹ Tributsch, H.: Ber. Bunsenges. Phys. Chem. 81 (1977), 361

- ¹¹⁹ Nazeeruddin, M. K.; Grätzel, M.: J. Am. Chem. Soc. 115 (1993), 6382
- 120 O'Regan, B. ; Grätzel, M.: Nature 353 (1991), 737
- ¹²¹ K. Kalyanasundaram, M. Grätzel Coordination Chemistry Reviews 77 (1998) 347
- ¹²² Fujishima, A. ; Honda, K.: Nature 238 (1972), 37

¹²³ Kazuhito Hashimoto, Hiroshi Irie and Akira Fujishima, Japanese Journal of Applied Physics 44, (2005), 8269

- ¹²⁴ J. Adv. Oxidat. Technol. 1998, 3 (3 4). Special issue dedicated to the Third International Conference on TiO₂ Photocatalytic Purification and Treatment of Water and Air, Orlando, FL, September 23 (1997).
- ¹²⁵ Hoffman, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Chem. Rev. 95 (1995), 69
- ¹²⁶ Ollis, D. F.; Pelizzetti, E.; Serpone, N. Serpone, N., Pelizzetti, E., Eds.; John Wiley Sons Inc.: (1989) ¹²⁷ Hur, J. S.; Koh, Y. Biotechnol, Lett. 24 (2002), 23

¹²⁸ KiKuchi, Y.; Sunada, K.; Iyoda, T.; Hashimoto, K.; Fujishima, A. J. Photochem. Photobiol. A: Chem. 106 (1997), 51

- ¹²⁹ Goswami, D. Y.; Trivedi, D. M.; Block, S. S. J. Sol. Energy 119 (1997), 92
- ¹³⁰ Sunada, K.; Kikuchi, Y.; Hashimoto, K.; Fujishima, A. Environ. Sci. Technol. 32 (1998), 726

¹³¹ Sun, R. D.; Nakajima, A.; Fujishima, A.; Watanabe, T.; Hashimoto, K. J. Phys. Chem. B 105 (2001), 1984

¹³² Lee, H. Y.; Park, Y. H.; Ko, K. H. Langmuir 16 (2000), 7289

¹³³ Watanabe, T.; Fukayama, S.; Miyauchi, M.; Fujishima, A.; Hashimoto, K. J. Sol-Gel Sci. Technol. 19 (2000), 71

¹³⁴ Miyauchi, M.; Nakajima, A.; Fujishima, A.; Hashimoto, K.; Watanabe, T. Chem. Mater. 12 (2000), 3

¹³⁵ Sakai, N.; Fujishima, A.; Watanabe, T.; Hashimoto, K. J. Phys. Chem. 105 (2001), 3023

¹³⁶ Watanabe, T.; Nakajima, A.; Wang R.; Minabe, M.; Koizumi, S.; Fujishima, A.; Hashimoto, K. Thin Solid Films 351 (1999), 260

¹³⁷ Sakai, N.; Wang, R.; Fujishima, A.; Watanabe, T.; Hashimoto, K. Langmuir 14 (1998), 5918

¹³⁸ Wang, R.; Hashimoto, K.; Fujishima, A.; Chikuni, M.; Kojima, E.; Kitamura, A.; Shimohigoshi, M.; Watanabe, T. Adv. Mater. 10 (1992), 135

¹³⁹ Wang, R.; Hashimoto, K.; Fujishima, A.; Chikuni, M.; Kojima, E.; Kitamura, A.; Shimohigoshi, M.; Watanabe, T. Nature 388 (1997), 431

¹⁴⁰ www.titaniumart.com/photocatalysis-ti02.html

¹⁴¹ www.titaniumart.com/photocatalysis-ti02.html

- ¹⁴² O. Madelung, A. Goldmann und E. E. Koch (Hg.). Numerical Data and Functional Relationships in Science and Technology Nr. 17g in III. Springer Verlag (1984)
- ¹⁴³ H. Tang Electronic properties of anatase TiO₂ investigated by electrical and optical measurements on single crystals and thin films Dissertation, Ecole Polytechnique Federale de Lausanne, (1995)

¹⁴⁴ G. Blondeau, M. Froment, A. H.-L. Goff Thin Solid Films 42 (1997) 147

¹⁴⁵ D. Mardaer P. Hones Materials Science and Engineering B 68 (1999), 42

¹⁴⁶ A. Eucken A. Büchner Zeitsch. Phys. Chem. B 27 (1935) 321

¹⁴⁷ S. Roberts Phys. Rev. 76 (1949) 1215

¹¹² Lewerenz, H. J. ; Heller, A. Di Salvo, F. J.: J. Am. Chem. Soc. 102 (1980), 1877

¹¹³ H. Tributsch, Z. Naturforsch. 32a, 972, (1977)

¹¹⁴ K. K. Kam, B. Parkinson, J. Phys. Chem. 86, 463, (1982)

¹¹⁵ W. Kautek, H. Gerischer, H. Tributsch, J. Electrochem. Soc. 127, 2471, (1980)

¹¹⁶ Coehoorn, C. Haas, J. Dijkstra, C. J. F. Flipse, R. A. deGroot, and A. Wold, Phys. Rev. B 35, 6203 (1987).

¹¹⁷ Coehoorn, C. Haas, J. Dijkstra, C. J. F. Flipse, R. A. deGroot, and A. Wold, Phys. Rev. B 35, 6195 (1987)

¹¹⁸ Tributsch, H. ; Bennet, J. C.:. J. Electroanal. Chem. 81 (1977), 97

- 148 A. Hagfeldt M. Grätzel Chem. Rev. 95 (1995), 49
- ¹⁴⁹ J. Ferber Elektrische und optische Modellierung von Farbstoffsolarzellen Dissertation Albert-Ludwigs-Universität Freiburg i. Brsg. (1999)
- ¹⁵⁰ D. Fitzmaurice Sol. En. Mat. 32 (1994) 289
- ¹⁵¹ G. Rothenberger, D. Fitzmaurice M. Grätzel J. Phys. Chem. 967 (1992) 5983
- ¹⁵² B. O'Regan, J. Moser, M. Anderson M. Grätzel J. Phys. Chem. B 94 (1990) 8720
- ¹⁵³ R. Könenkamp, R. Henninger P. Hoyer J. Phys. Chem. B 97 (1993) 13
- ¹⁵⁴ J. Weidmann Einfluss der Grenzflächenkonditionierung auf poröses TiO₂ und die Farbsoffsensibilisierte poröse TiO₂ Injektionssolarzelle Dissertation, Technische Universität München (1998)
- ¹⁵⁵ R. Könenkamp R. Henninger Appl. Phys. A 58 (1994) 87
- ¹⁵⁶ L. Dloczik, O. Ileperuma J. Phys. Chem. B 101 (1997) 277
- ¹⁵⁷ O. Knebel I. Lauermann J. P. Pohl I. Uhlendorf (Hg.) Investigation of the TCO/nanocrystalline TiO₂ electrode of dye-sensitized solar cells (1998)
- ¹⁵⁸ Electrochemistry at Semiconductor and Oxidized Metal Electrodes, S. R. Morrison (1980)
- ¹⁵⁹ Suresh Chandra, Photoelectrochemical Solar Cell, Electrocomponent Science Monograph, Vol. 5, Gordon and Breach Science Publishers
- ¹⁶⁰ Y. V. Pleskov, Y. Gurevich Semiconductor Electrochemistry (1989)
- ¹⁶¹ R. Memming Semicoductor Electrochemistry, Wiley Verlag, (2000)
- ¹⁶² Photoelectrochemical Solar Cells, Suresh Chandra, Volume 5, Gordon and Breach Science Publishers
- ¹⁶³ Gerischer, H. Phys. Chem. 26 (1960), 325
- ¹⁶⁴ Memming, R. Comprehensive Treatise of Electrochemistry; Plenum Press: New York, (1983); Vol. 7
- ¹⁶⁵ Nozik, A. J. Annu. Rev. Phys. Chem. 29 (1978), 189
- ¹⁶⁶ Gerischer, H. Physical Chemistry: An Advanced Treatise; Academic: New York, (1970); Vol. 9A.
- ¹⁶⁷ Gerischer, H. Advances in Electrochemical Engineering; Interscience: New York, (1970); Vol. 9A
- ¹⁶⁸ Gerischer, H. Z. Phys. Chem. 27 (1960), 48
- ¹⁶⁹ Gerischer, H. Z. Phys. Chem. 26 (1960), 223
- ¹⁷⁰ Lohmann, F. Z. Naturforsch. 22A (1967), 843
- ¹⁷¹ Gerischer, H. J. Electroanal. Chem. Interfacial Electrochem. 58 (1975), 263.
- ¹⁷² Wilson, R. H. J. Appl. Phys. 48, 4292 (1977)
- ¹⁷³ Reiss, H. J. Electrochem. Soc. 125, 937 (1978)
- ¹⁷⁴ Reichman, B., Fan, F. R. Bard, A. J. J. Electrochem. Soc. 127, 333 (1980)
- ¹⁷⁵ Laser, D. J. Electrochem. Soc. 126, 1011 (1979)
- ¹⁷⁶ Frank, S. N. Bard, A. J. J. Am. Chem. Soc. 99, 4667 (1997)
- ¹⁷⁷ Gerischer, H. Surf. Sci. 18, 97 (1969)
- ¹⁷⁸ Chazalviel, J. N. J. Electrochem. Soc. 129, 963 (1982)
- ¹⁷⁹ Chazalviel, J. N. J. Electrochem. Soc. 127, 1822 (1980)
- ¹⁸⁰ Chazalviel, J. N. Surf. Sci. 88, 204 (1979)
- ¹⁸¹ Butler, M. A. Ginley, D. S. J. Electrochem. Soc. 127, 1273, (1980)
- ¹⁸² Boddy, P. J. Brattain, W. H. J Electrochem. Soc. 109, 812 (1962)
- ¹⁸³ Koval, C. A.; Torres, R. J. Am. Chem. Soc. 115 (1993), 8368
- ¹⁸⁴ Koval, C. A.; Segar, P. R. J. Am. Chem. Soc. 111 (1989), 2004
- ¹⁸⁵ Turner, J. A.; Nozik, A. J. Appl. Phys. Lett. 41 (1982), 101
- ¹⁸⁶ Cooper, G.; Turner, J. A.; Parkinson, B. A.; Nozik, A. J. J. Appl. Phys. 54 (1983), 6463
- ¹⁸⁷ Gabouze, N. F. B., Gorochov, O., Cachet, H., Yao, N. A. J. Electroanal. Chem. 237 (1987), 289

- ¹⁸⁸ Bard, Al J., Bocarsly, A. B., Fan, F. F., Walton, E. G.; Wrighton, M. S. J Am. Chem. Soc. 102 (1980), 3671
- ¹⁸⁹ Kohl, P. A.; Bard, A. J. J. Electrochem. Soc. 126 (1979), 59
- ¹⁹⁰ DiQuarto, F., Bard, A. J. J. Electrochem. Soc. 126 (1979), 59
- ¹⁹¹ J. Bardeen, Phys. Rev. 71, 717 (1947)
- ¹⁹² Kurtin, S., McGill, T.C. and Mead, C.A., Phys. Rev. Lett. 22, 1433 (1969)
- ¹⁹³ R. Memming, Semiconductor Electrochemistry (Wiley-VCH, Weinheim, 2001)
- ¹⁹⁴ A.J. Nozik, Physica E 14 (2002) 115
- ¹⁹⁵ Tito Trindade, Chem. Mater. 13 (2001), 3843
- ¹⁹⁶ A. D. Yoffe, Advances In Physics, 42 (1993), 173
- ¹⁹⁷ Arnim Henglein, Chem Rev. 89 (1989), 1861

¹⁹⁸ David M. Adams, Louis Brus, Christopher E. D. Chidsey, Stephen Creager, Carol Creutz, Cherie R. Kagan, Prashant V. Kamat, Marya Lieberman, O Stuart Lindsay, Rudolph A. Marcus, Robert M. Metzger, M. E. Michel-Beyerle, John R. Miller, Marshall D. Newton, Debra R. Rolison, Otto Sankey, Kirk S. Schanze, James Yardley and Xiaoyang Zhu, J. Phys. Chem. B 107 (2003), 6668

¹⁹⁹W.J.Albery, P.N.Bartlett, J. El. Soc.131, (1984), 2892

- ²⁰⁰ A. D. Yoffe Advances In Physics, (1993), 42, 173
- ²⁰¹ Wilcoxon, J. P.; Samara, G. A. Phys. ReV. B 51 (1995), 7299.
- ²⁰² Wilcoxon, J. P.; Newcomer, P.; Samara, G. A. J. Appl. Phys. 81 (1997), 7934.
- ²⁰³ T. R. Thurston and J. P. Wilcoxon J. Phys. Chem. B 103 (1999), 11
- ²⁰⁴ AL. Efros, A. L. Efros, Fiz. Tekh. Poluprovodn. 16, 1209 (1982) [Sov. Phys. Semicond. 16, 772 (1982)]
- ²⁰⁵ J. P. Wilcoxon, P. A. Samara, Phys. Rev. B, 51, 7299 (1995)
- ²⁰⁶ Haase, M.; Weller, H.; Henglein, A. J. Phys. Chem. 92 (1988), 482
- ²⁰⁷ Wang, Y.; Suna, A.; Mahler, W.; Kasowski, R. J. Chem, Phys. 87 (1987), 7315.
- ²⁰⁸ Spanhel, L.; Haase, M.; Weller, H.; Henglein, A. J. Am. Chem. Soc. 106 (1987), 5649.
- ²⁰⁹ Detlef W. Bahnemann, Claudius Kormann, Michael R. Hoffmann J. Phys. Chem. 91 (1987), 3789
- ²¹⁰ J. I. Pankowe Optical Processes in Semiconductors, Dover Publications, (1971)

²¹¹ Bohne, W., Röhrich, J., und Röschert, G. Nuclear Instruments and Methods in Physical Research B

136, (1998). ²¹² Barbour, J. und Doyle, B. In Handbook of Modern Ion Beam Materials Analysis, Tesmer, J. und Nastasi, M., Hrsg. Materials Research Society, Pittsburgh (1995).

²¹³ http://www.hmi.de/isl/ana/erda-1.html

- ²¹⁴ Sze, S. Physics of Semiconductor Devices, 2nd ed.; New York, (1981)
- ²¹⁵ Lewerenz, H. J.; Jungblut, H.: Photovoltaik Grundlagen und Anwendungen. 1. Auflage. Berlin, Heidelber: Springer Verlag, (1995)
- ²¹⁶ Wagemann, Grundlagen der photovoltaischen Energiewandlung
- ²¹⁷ Goetzberger, A.; Voss, B.; Knobloch, J.: Sonnenenergie: Photovoltaik. 2. Auflage. Stuttgart: Teubner-Studienbücher, (1997)
- ²¹⁸ Wurfel, P.: Physik der Solarzellen. 1. Auflage. Heidelberg, Berlin, Oxford: Spektrum Akademischer Verla, (1995)

²¹⁹ B.I. Lemon, J.T. Hupp, J. Phys. Chem. 101 (1996) 14578.

- ²²⁰ K. Schwarzburg, F. Willig, J. Phys. Chem. 101B (1997) 2451.
- ²²¹ L.A. Lyon, J.T. Hupp, J. Phys. Chem. 99 (1995) 15718.
- ²²² S. Södergren, H. Siegbahn, H. Rensmo, H. Lindström, A. Hagfeldt, S.-E. Lindquist, J. Phys. Chem. 101B (1997) 3087. (b) D.W. Bahnemann, M. Hilgendorff, R. Memming, J. Phys. Chem. 101B (1997) 4265.
- ²²³ R.U. Flood, D.J. Fitzmaurice, J. Phys. Chem. 99 (1995) 8954.

²²⁵ B. Enright, D. Fitzmaurice, J. Phys. Chem. 100 (1996) 1027. (b) R. Flood, B. Enright, M. Allen, S. Barry, A. Dalton, H. Tynan, D. Fitzmaurice, Sol. Energy Mater. Sol. Cells 39 (1995) 83.

²²⁶ B. O'Regan, M. Grätzel, D. Fitzmaurice, Chem. Phys. Lett. 183 (1991) 89. (b) B. O'Regan, M. Grätzel, D. Fitzmaurice, J. Phys. Chem. 95 (1991) 10526.

²²⁷ P.E. Dejongh, D. Vanmaekelbergh, Phys. Rev. Lett. 77 (1996) 3427. (b) P.E. Dejongh,
 D.Vanmaekelbergh, J. Phys. Chem. 101 (1997) 2716.

²²⁸ J.Z. Zhang, Acc. Chem. Res. 30 (1997) 423.

- ²²⁹ A. Solbrand, H. Lindström, H. Rensmo, A. Hagfeldt, S.-E. Lindquist, S. Södergren, J. Phys. Chem. 101B (1997) 2514. (b) H. Rensmo, H. Lindström, S. Södergren, A.K. Willstedt, A. Solbrand, A. Hagfeldt, S.-E. Lindquist, J. Electrochem. Soc. 143 (1996) 3173.
- ²³⁰ Takatsugu Watanabe, Hideki Hayashi, Hiroaki Imai Solar Energy Materials & Solar Cells 90 (2006) 640
- ²³¹ Li, Bin, Chin, Sci, Bull, 49, 123, (2004)
- ²³² Satoshi Yamabi, Hiroaki Imai, Thin Solid Films 434 (2003) 86
- ²³³ Toko, T.; Yuasa, A.; Kamiya, K.; Saka, S. J. Electrochem. Soc. 138 (1991), 2279
- ²³⁴ Ruhman, M. M.; Tanaka, H.; Soga, T.; Jimbo, T.; Umeno, M.IEEE 2000, 806
- ²³⁵ Katoh, K.; Tsuzuki, A.; Torii, Y.; Taoda, H. J. Mater. Sci. 30 (1995), 837
- ²³⁶ Atashbar, M. Z. IEEE-NANO (2001), 544
- ²³⁷ Arie Zaban, Suzanne Ferrere, Julian Sprague, and Brian A. Gregg, J. Phys. Chem. B 101 (1997), 55

²³⁸ Zhang, X. T.; Liu, H. W.; Taguchi, T.; Meng, Q. B.; Sato, O.; Fujishima, A. Sol. Energy Mater. Sol. Cells (2004), 81, 197.

²³⁹ Watanabe, Sol. Ene. Mats. Cells, 90 (2006) 640

²⁴⁰ Jae-Ho Chung, Yong-Sahm Choe, Dae-Seung Kim Thin Solid Films 349 (1999) 126

- ²⁴¹ A. Kolmakov, D.O. Klenov, Y. Lilach, S. Stemmer, M. Moskovits, Nano Lett. 5 (2005) 667
- ²⁴² Q. Wan, T.H. Wang, Chem. Commun. (2005) 3841
- ²⁴³ Z. Ying, Q.Wan, Z.T. Song, S.L. Feng, Nanotechnology 15 (2004) 1682
- ²⁴⁴ S.V. Kalinin, J. Shin, S. Jesse, et al., J. Appl. Phys. 98 (2005) 044503

²⁴⁵ E. Comini, G. Faglia, G. Sberveglieri, D. Calestani, L. Zanotti, M. Zha, Sens. Actuators B Chem. 111 (2005) 2

²⁴⁶ C. Baratto, E. Comini, G. Faglia, G. Sberveglieri, M. Zha, A. Zappettini, Metal oxide nanocrystals for gas sensing, Sens. Actuators B Chem. 109 (2005) 2

²⁴⁷ A. Kolmakov, Y.X. Zhang, G.S. Cheng, M. Moskovits, Adv.Mater. 15 (2003) 997

²⁴⁸ R. Ramamoorthy, P.K. Dutta, S.A. Akbar, J. Mater, Sci. 38 (2003) 427

²⁴⁹ M.S. Arnold, et al., J. Phys. Chem., B 107 (2003) 659

²⁵⁰ M.J. Zheng, et al., Chem. Mater. 13 (2001) 3859

²⁵¹ G. Ansari, et al., Thin Solid Films 295 (1997) 271

²⁵² C. Can, I. Garcia, A. Götz, L. Fonseca, E. Lora-Tamayo, M.C. Horrillo, I. Sayago, J.I. Robla, J. Rodrigo, J. Gutirrez, Sens. Actuators, B, Chem. 65 (2000) 244

²⁵³ R.E. Cavicchi, R.M. Walton, M. Aquino-Class, J.D. Allen, B. Panchapakesan, Sens. Actuators, B, Chem. 77 (2001) 145.

- ²⁵⁴ M.W.J. Prins, K.-O. Grosse-holz, J.F.M. Cillessen, L.F. Feiner, J. Appl. Phys. 83 (1998) 888.
- ²⁵⁵ B. L. Abrams A1 and J. P. Wilcoxon Critical Reviews in Solid State and Materials Sciences 30 (2005) 153
- ²⁵⁶ J. Cho, C.S. Kim, S. Yoo, Electrochem. Solid-State Lett. 3 (2000) 362
- ²⁵⁷ Z.R. Dai, J.L. Gole, J.D. Stout, Z.L. Wang, J. Phys. Chem., B 106 (2002) 1274
- ²⁵⁸ Z.R. Dai, Z.W. Pan, Z.L.Wang, Solid State Commun. 118 (2001) 351
- ²⁵⁹ Z.W. Pan, Z.R. Dai, Z.L. Wang, Science 291 (2001) 1947

²²⁴ N.S. Foster, C.A. Koval, J.G. Sczechowski, R.D. Noble, J. Electroanal. Chem. 406 (1996) 213.

²⁶² J.X. Wang, D.F. Liu, X.Q. Yan, H.J. Yuan, L.J. Ci, Z.P. Zhou, Y. Gao, L. Song, L.F. Liu, W.Y. Zhou, G. Wang, S.S. Xie, Solid State Commun. 130 (2004), 89

- ²⁶³ N. G. Park, Langmuir 20 (2004), 4264
- ²⁶⁴ Thin Solid Fihns, 247 (1994) 195 Idriss Bedja a, Surat Hotchandani, Robert Carpentier, K. Vinodgopal and Prashant V. Kamat
- ²⁶⁵ M. Akhtar, R. M. Paiste and H. A. Weakliem, J. Electrochem. Soc., 135 (1988) 1597.
- ²⁶⁶ S. Passerini, B. Scrosati and A. Gorenstein, J. Electrochem. Soc., 136 (1989) 3394.
- ²⁶⁷ M. T. Nguyen and L. H. Dao, J. Electrochem. Soc., 136 (1989) 2131.
- ²⁶⁸ T. Oi, Annu. Reo. Mater. Sci., 16 (1986) 185.
- ²⁶⁹ C. M. Lampert, Solar Energy Mater., 11 (1984) 58
- ²⁷⁰ T. Oi, Annu. Reo. Mater. Sci., 16 (1986) 185.
- ²⁷¹ N. S. Gaikwad, J. Electrochemical Soc. 152 (2005) 411
- ²⁷² P. S. Patil, C. D. Lokhande, Vortrag HMI (1998)
- ²⁷³ C. Santato, M. Odziemkowski, M. Ulmann, J. Augustynski, J. Am. Chem. Soc. 123 (2001) 10639
- ²⁷⁴ C. Santato, M. Ulmann, J. Augustynski, J. Phys. Chem. B 105 (2001) 936
- ²⁷⁵ K. Sayama, Chem. Mater. 10, (1998) 3825
- ²⁷⁶ Nazeeruddin, J. Am. Chem. Soc. 115, (1993) 6382
- ²⁷⁷ A.R. Hutson, Phys. Rev. 108 (1957) 222

- A.K. Hutson, Phys. Rev. 108 (1957) 222
 ²⁷⁸ D.C. Look, J.W. Hemsky, J.R. Sizelove, Phys. Rev. Lett. 82 (1999) 2552
 ²⁷⁹ Llorca, J.; Homs, N.; Sales, J.; Fierro, J.-L. G.; de la Piscina, P. R. J. Catal. 222 (2004) 470
 ²⁸⁰ W.P. Kang, C.K. Kim, Sens. Actuators B 13/14 (1993) 682
 ²⁸¹ C.R. Gorla, N.W. Emanetoglu, S. Liang, W.E. Mayo, Y. Lu, M. Wraback, H. Shen, J. Appl. Phys. 85 (1999) 2595 ²⁸² K. Keis, L. Vayssieres, S.E. Lindquist, A. Hagfeldt, Nanostruct. Mater. 12 (1999) 487
- ²⁸³ R.Wun, J.Wu, C.S. Xie, J. Zhang, A.H.Wang, Mater. Sci. Eng., A Struct. Mater.: Prop. Microstruct.
 Process. 329 (2002) 196
 ²⁸⁴ D.S. Boylo, K. Govondor, P. O'Brion, Cham. Commun. 1 (2002) 80

- ²⁸⁴ D.S. Boyle, K. Govender, P. O'Brien, Chem. Commun. 1 (2002) 80
 ²⁸⁵ X.M. Sun, X. Chen, Z.X. Deng, Y.D. Li, Mater. Chem. Phys. 78 (2003) 99
 ²⁸⁶ C. Pacholski, A. Kornowski, H. Weller, Angew. Chem., Int. Ed. Engl. 7 (2002) 41
 ²⁸⁷ Y. Dai, Y. Zhang, Q.K. Li, C.W. Nan, Chem. Phys. Lett. 358 (2002) 83
- ²⁸⁸ H. Kim, W. Sigmund, Appl. Phys. Lett. 81 (2002) 2085
- ²⁸⁹ H. Rensmo, K. Keis, H. Lindström, S. Södergren, A. Solbrand, A. Hagfeldt, and S.-E. Lindquist J. Phys. Chem. B, 101, (1997) 2598
- ²⁹⁰ Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphry, B. R.; Mueller, E.; Liska, P.; Vlachopoulos, N.; Grätzel, M. J. Am. Chem. Soc. 115 (1993), 6382
- ²⁹¹ Agarwal M. K., Patel P. D., Talele L. T. Laxminarayana D., Phys. Stat. Sol. A, 90, K107, (1985)
- ²⁹² Aharwal M. K. Talele L. T., Solid State Commun. 59, (1986) 549
- ²⁹³ O'Hare P. A. G., J. Chem. Thermodynamics, 19, (1987) 675
- ²⁹⁴ El-Mahalawy S.H. Evans B.L., Phys. Stat. Sol. (b), 79, (1977) 713
- ²⁹⁵ Saito, M. Anderson, R. B. J. Catal. 63 (1980) 438
- ²⁹⁶ Eggertsen, F. T.; Roberts, R.M. J. Phys. Chem. 63 (1959) 1981
- ²⁹⁷ Busetto, L., Iannibello, A.; Pincolini, F.; Trifiro, F. Bull. Soc. Chim. Belges 90 (1981)
- ²⁹⁸ Breysse, M.; Frety, R.; Lacroix, M.; Vrinat, M. React. Kinet. Catal. Letters 26 (1984) 97
- ²⁹⁹ Portefaix, J. L.; Breysse, M.; Cattenot, M.; Frety, R.; Lacroix, M.; Vrinat, M. Polyhedron 5 (1986) 229
- ³⁰⁰ K. Ellmer, C. Stock, K. Diesner and I. Sieber, Journal of Crystal Growth, 182, (1997), 389

²⁶⁰ M.S. Arnold, et al., J. Phys. Chem., B 107 (2003) 659

²⁶¹ J.Q. Hu, X.L. Ma, N.G. Shang, Z.Y. Xie, N.B. Wong, C.S. Lee, S.T. Lee, J. Phys. Chem., B 106 (2002) 3823

- ³⁰¹ S. Seeger, R. Mientus, J. Röhrich, E. Strub, W. Bohne and K. Ellmer, Surface and Coatings Technology 200, (2005), 218
- ³⁰² Zabala, J. M.; Grange, P.; Delmon, B. Compt. Rend. C 279 (1974) 725
- ³⁰³ Arnoldy, P.; van den Heijkant, J. A. M.; de Bok, G. D.; Moulinjn, J. A. J. Catal. 92 (1985) 35 55, 37 39, 45
- ³⁰⁴ Romanowski, W. (Roczniki Chem. 37 (1963) 1077 1081; C.A. 60 (1964) 6467
- ³⁰⁵ Eggersten, F. T.; Roberts, R. M. Anal. Chem. 22 (1950) 924
- ³⁰⁶ J.H. Zhan, Z.D. Zhang, X.F. Qian, C. Wang, Y. Xie, Y.T. Qian, J. Solid State Chem. 141 (1998) 270
- ³⁰⁷ N. Berntsen, T. Gutjahr, L. Loeffler, J.R. Gomm, R. Seshadri, W. Tremel, Chem. Mater. 15 (2003) 4498
- ³⁰⁸ S.I. Nikitenko, Y. Koltypin, Y. Mastai, M. Koltypin, A. Gedanken, J. Mater. Chem. 12 (2002) 1450
- ³⁰⁹ Y.D. Li, X.L. Li, R.R. He, J. Zhu, Z.X. Deng, J. Am. Chem. Soc. 7 (2002) 1411
- ³¹⁰ S.I. Nikitenko, Y. Koltypin, Y. Mastai, M. Koltypin, A. Gedanken, J. Mater. Chem. 12 (2002) 1450
- ³¹¹ Millan M. Mdleleni, Taeghwan Hyeon, and Kenneth S. Suslick J. Am. Chem. Soc. (1998), 120, 6189
- ³¹² M. W. Peterson, M. T. Nenadovic T. Rajhit R. Herakat, J. P. Goral, A. J. Nozik J. Phys. Chem. 92 (1988), 1400
- ³¹³ Y. Feldman, E. Wasserman, D.J. Srolovitz, R. Tenne, Science 267 (1995) 222
- ³¹⁴ L. Margulis, G. Salitra, R. Tenne, M. Talianker, Nature 365 (1993) 113
- ³¹⁵ R. Tenne, L. Margulis, M. Genut, G. Hodes, Nature 360 (1992) 444
- ³¹⁶ M. Chhowalla, G.A.J. Amaratunga, Nature 407 (2000) 164
- ³¹⁷ M. Homyonfer, Y. Mastai, M. Hershfinkel, V. Volterra, J.L. Hutchison, R. Tenne, J. Am. Chem. Soc. 118 (1996) 7804
- ³¹⁸ M. Jose-Yacaman, H. Lorez, P. Santiago, D.H. Galvan, I.L. Garzon, A. Reyes, Appl. Phys. Lett. 69 (8) (1996) 1065
- ³¹⁹ P.A. Parilla, A.C. Dillon, K.M. Jones, G. Riker, D.L. Schulz, D.S. Ginley, M.J. Heben, Nature 397 (1999) 114.
- ³²⁰ A. Zak, Y. Feldman, V. Alperovich, R. Rosentsveig, R. Tenne, J. Am. Chem. Soc. 122 (2000) 11108
- ³²¹ Y. Feldman, V. Lyakhovitskaya, R. Tenne, J. Am. Chem. Soc. 120 (1998) 4176
- ³²² Y. Feldman, G.L. Frey, M. Homyonfer, V. Lyakhovitskaya, L. Margulis, H. Cohen, G. Hodes, J.L. Hutchison, R. Tenne, J. Am. Chem. Soc. 118 (1996) 5362.
- ³²³ A. Rothschild, J. Sloan, R. Tenne, J. Am. Chem. Soc. 122 (2000) 5169.
- ³²⁴ A. Rothschild, G.L. Frey, M. Homyonfer, M. Rappaport, R. Tenne, Mat. Res. Innovat. 3 (1999) 145.
- ³²⁵ Kroto, D.R.M. Walton, J. Am. Chem. Soc. 122 (2000) 10155
- ³²⁶ Kroto, D.R.M. Walton, Chem. Mater. 12 (2000) 1190
- ³²⁷ W.K. Hsu, B.H. Chang, Y.Q. Zhu, W.Q. Han, H. Terrones, M. Terrones, N. Grobert, A.K. Cheetham, H.W. J. Am. Chem. Soc, 122, 10155 (2000)
- ³²⁸ C.M. Zelenski, P.K. Dorhout, J. Am. Chem. Soc. 120 (1998) 734
- ³²⁹ M. Remskar, Z. Skraba, M. Regula, C. Ballif, R. Sanjines, F. Levy, Adv. Mater. 10 (1998) 246
- ³³⁰ M. Remskar, Z. Skraba, M. Regula, C. Ballif, R. Sanjines, F. Levy, Adv. Mater. 10 (1998) 246
- ³³¹ C.M. Zelenski, P.K. Dorhout, J. Am. Chem. Soc. 120 (1998) 734
- ³³² Rapport, L.; Bilik, Y.; Homyonfer, M.; Cohen, S. R.; Tenne, R. Nature (1997), 387, 791
- ³³³ Chhowalla, M.; Amaratunga, G. A. J. Nature 407 (2000), 164
- ³³⁴ Chen, J.; Li, S. L.; Xu, Q.; Tanaka, K. Chem. Commun. (2002), 1722
- ³³⁵ Alperson, B.; Homyonfer, M.; Tenne, R. J. Electroanal. Chem. 473 (1999), 186
- ³³⁶ Mdleni, M. M.; Hyeon, T.; Suslick, K. S. J. Am. Chem. Soc. 120 (1998), 6189.
- ³³⁷ Zak, A.; Feldman, Y.; Lyakhovitskaya, V.; Leitus, G.; Popovitz- Biro, R.; Wachtel, E.; Cohen, H.; Reich, S.; Tenne, R. J. Am. Chem. Soc. 124 (2002), 4747.

- ³³⁸ Dominko, R.; Arcon, D.; Mrzel, A.; Zorko, A.; Cevc, P.; Venturini, P.; Goborscek, M.; Remskar, M.; Mihailovic, D. Adv. Mater. 14 (2002), 1531.
- ³³⁹ Chen, J.; Li, S. L.; Tao, Z. L.; Zhang, L. Z. Int. J. Nanosci. 1 (2002), 295.
- ³⁴⁰ Chen, J.; Kuriyama, N.; Yuan, H. T.; Takeshita, H. T.; Sakai, T. J. Am. Chem. Soc. 123 (2001), 11813.
- ³⁴¹ Rothschild, R.; Cohen, S. R.; Tenne, R. Appl. Phys. Lett. 75 (1999), 4025.
- ³⁴² Homyonfer, M.; Alperson, B.; Rosenberg, Y.; Sapir, L.; Cohen, S. R.; Hodes, G.; Tenne, R. J. Am. Chem. Soc. 119 (1997), 2693.
- ³⁴³ H. A. Therese, Jixue Li, U. Kolb, W. Tremel, Solid State Science 7, (2005) 67
- ³⁴⁴ I. Capek, Advances in Colloid and Interface Science 110 (2004) 49
- ³⁴⁵ Isabelle Lisiecki, J. Phys. Chem. B 109 (2005), 12231
- ³⁴⁶ Johan Sjiiblom, Ritva Lindbergh, Stig E. Friberg C Advances in Colloid and Interface Science

95 (1996) 125

- ³⁴⁷ A. Henglein, Chem. Rev. 89 (1989), 1861
- ³⁴⁸ Dorothy Farrell, Sara A. Majetich, and Jess P. Wilcoxon J. Phys. Chem. B 107 (2003), 11022
- ³⁴⁹ J. P. Wilcoxon and P. P. Provencio J. Phys. Chem. B 103 (1999), 9809
- ³⁵⁰ Takayuki Hirai, Tsuyoshi Saito, and Isao Komasawa J. Phys. Chem. B 104 (2000), 11639
- ³⁵¹ Takayuki Hirai, Tatsufumi Watanabe, and Isao Komasawa J. Phys. Chem. B 104 (2000), 8962
- ³⁵² Sotirios Modes and Panagiotis Lianos J. Phys. Chem. 93, (1989), 5855
- ³⁵³ Takayuki Hirai, Makiko Ota Materials Research Bulletin 41 (2006) 19
- ³⁵⁴ Indika U. Arachchige, Jaya L. Mohanan, and Stephanie L. Brock Chem. Mater. 17 (2005), 6644
- ³⁵⁵ J. P. Wilcoxon, R. L. Williamson, and R. Baughman J. Chem. Phys. 98, (1993) 9933
- ³⁵⁶ M.P. Pileni, Catalysis Today 58 (2000) 151

³⁵⁷ M. Fernandez-Garcia, A. Martinez-Arias, J. C. Hanson, and J. A. Rodriguez, Chem. Rev. 104 (2004), 4063

- ³⁵⁸ F. Parsapour, D. F. Kelley, and R. S. Williams Phys. Chem. B 102 (1998), 7971
- ³⁵⁹ T. R. Thurston and J. P. Wilcoxon J. Phys. Chem. B 103 (1999), 11
- ³⁶⁰ F. Parsapour and D. F. Kelley J. Chem. Phys. 104, (1996), 4978
- ³⁶¹ R. Doolen, R. Laitinen, F. Parsapour, and D. F. Kelley J. Phys. Chem. B 102 (1998), 3906
- ³⁶² J. P. Wilcoxon, P. P. Newcomer, and G. A. Samara J. Appl. Phys. 81, (1997), 7934
- ³⁶³ J. P. Wilcoxon, G. A. Samara, Phys. Rev. B., 51, (1995) 7299
- ³⁶⁴ J. P. Wilcoxon, J. Phys. Chem. B 104 (2000), 7334
- ³⁶⁵ J. M. Huang, 1, R. A. Laitinen, and D. F. Kelley, Physical Review B 62, (2000) 10995

³⁶⁶ Arunkumar Lagashetty, Vijayanand Havanoor, S Basavaraja And A Venkataraman Bull. Mater. Sci. 28, (2005), 477

- ³⁶⁷ Wilcoxon, United States Patent, 5147841, Method for the preparation of metal colloids in inverse micelles and product preferred by the method
- ³⁶⁸ M. Larson F. W. Moore, Inorganic Chemistry, 3, (1964) 285
- ³⁶⁹ Kuniaki Murase, Hidenori Uchida, Tetsuji Hirato, Yasuhiro Awakura, J. Electrochem. Soc. 146, (1999) 531
- ³⁷⁰ Yitzhak Mastai, Gary Hodes, J. Phys. Chem. B 101 (1997), 2685
- ³⁷¹ Junichi Nishino, Sunao Chatani, Yukifumi Uotani, Yoshio Nosaka, J. of Electroanal. Chem. 473 (1999) 217
- ³⁷² R. P. Raffaelle, H. Forsell, T. Potdevin, R. Freidfeld, J. G. Mantovani, S. G. Bailey, S. M. Hubbard, E. M. Gordon, A. F., Hepp, Solar Energy Materials and Solar Cells 57 (1999) 167
- ³⁷³ S. J. Lade, C. D. Lokhande, Materials Chemistry and Physics, 49, (1997) 160
- ³⁷⁴ M. A. Anderson, S. Gorer, R. M. Penner, J. Phys. Chem. B101 (1997), 5895

- ³⁷⁵ R. Elbaum, Shimon Vega, G. Hodes, Chem. Mater. 13 (2001), 2272
- ³⁷⁶ S. J. Lade, M. D. Uplane, C. D. Lokhande, Materials Chemistry and Physics 53, (1998) 239
- ³⁷⁷ J.D. Klein, R. D. Herrick, D. Palmer, C. R. Sailor, Chem. Materials 5 (1993), 902
- ³⁷⁸ S. Gorer, G. S. Hsiao, M. G. Anderson, R. M. Stiger, J. Lee, R. M. Penner, Electrochimica Acta, 43, (1998) 2799
- ³⁷⁹ J. Jebaraj Devadasana,c, C. Sanjeevirajaa, M. Jayachandran Journal of Crystal Growth 226 (2001)
 67
- ³⁸⁰ A. Albu-Yaron, C. Levy-Clement and J. L. Hutchison, Electrochemical and Solid-State Letters, 2 (1999) 627
- ³⁸¹ E. Ponomarev, R. Tenne, A. Katty, C. Levy-Clement, Solar Energy Materials and Solar Cells 52 (1998) 125
- ³⁸² E.A. Ponomarev, M. Neumann-Spallart, G. Hodes, C. Levy-Clement, Thin Solid Films 280 (1996) 86
- ³⁸³ E. A. Ponomarev, A. Albu Yaron, R. Tenne, and C. Levy Clement, J. Electrochem. Soc., 144, (1997) L277
- ³⁸⁴ A. Albu-Yarona, C. Levy-Clement, A. Kattya, S. Bastidea, R. Tenne Thin Solid Films 361 (2000) 223
- ³⁸⁵ Petra Elisabeth de Jongh, "Photoelektrochemistry of Nanoporous Semiconductor Electrodes", PhD Thesis, Utrecht, Nederlands, (1999)
- ³⁸⁶ C. Rost, I. Sieber, C. Fischer, M.C. Lux-Steiner, R. Könenkamp, Materials Science and Engineering B69–70 (2000) 570–573
- ³⁸⁷ Chatzitheodorou, G.; Fiechter, S.; Kunst, M.; Luck, J.; Tributsch, H.; Strahlenchemie, B.; Kernchemie, B. Mater. Res. Bull. 23 (1988), 1261.
- ³⁸⁸ M. Ashokkumar, A. Kudo, N. Saito and T. Sakata Chemical Physics Letters 229 (1994), 383
- ³⁸⁹ S. Nakade, M. Matsuda, S. Kambe, Y. Saito, T. Kitamura, T. Sakata, Y. Wada, H. Mori, and S. Yanagida Materials Chemistry and Physics 78 (2002) 234
- ³⁹⁰ Kam K.K., Parkinson B.J., J. Phys. Chem., 86, (1982) 463
- ³⁹¹ Donay V. Gorochow O., J. de Chimie Physique, 83, (1986) 4
- ³⁹² Agarwal M.K., Vashi M.N. Jani A.R., J. Cryst. Growth, 71 (1985) 415
- ³⁹³ Srivastava S.K Avasthi B.N., J. Mat. Sci., 20, (1985) 3801
- ³⁹⁴ Baglio J. A., Calabrese G. S., Kamieniecki E., Kershaw R., Kubiak C.P., Ricco A.J., Wold A., Wrighton M. S. Zoski G. D., J. El. Chem. Soc., 129, (1982) 1461
- ³⁹⁵ R. Cabrera, Hector D. Abrufia, J. El. Chem. Soc. 135, (1988) 1436
- ³⁹⁶ W. Kautek, H. Gerischer and H. Tributsch J. El. Chem. Soc. 127, (1980) 2471
- ³⁹⁷ Kam K. K., Chang C. L. Lynch D. W., J. Phys. C, 17, (1984) 4031
- ³⁹⁸ Kam K. Parkinson B.J., J. Phys. Chem. 86, (1982) 463
- ³⁹⁹ Lewerenz C. J., Ferris S. D., Doherty C.J. Leamy H.J., J. El. Chem. Soc. 129, (1982) 418
- ⁴⁰⁰ Baldassare L. Cingolania., Physica Scripta 37, 385, (1988)
- ⁴⁰¹ Srivastava S.K. Avasthi B.N., J. Mat. Sci. 20, 3801, (1985)
- ⁴⁰² M. K. Agarwal Journal of Crystal Growth 71(1985) 415
- ⁴⁰³ H. Tributsch, Ber. Bunsengesell. Phys. Chem., 81 (1977), 361
- ⁴⁰⁴ Anneda A. Fortin E. Raga F., Can. J. Phys.57, 368, (1979)
- ⁴⁰⁵ Baglio J. A., Calabrese G. S., Kamieniecki E., Kershaw R., Kubiak C.P., Ricco A.J., Wold A., Wrighton M. S. Zoski G. D., J. El. Chem. Soc. 129, 1461, (1982)
- ⁴⁰⁶ Agarwal M. K., Patel P. D., Talele L. T. Laxminarayana D., Phys. Stat. Sol (a) 90, K107 (1985)
- ⁴⁰⁷ Neville R. A. Evans B.L., Phys. Stat. Sol (b), 73, 597, (1976)
- ⁴⁰⁸ Beal A. R. Hughs H. P., J. Phys. C, 12, 881, (1979)
- ⁴⁰⁹ Kam K.K. Parkinson B. J., J. Phys. Chem. 86, 463, (1982)
- ⁴¹⁰ Huisman R., de Jonge R., Haas C. Jellinek F., J. Sol. State Chem., 3, 56, (1971)
- ⁴¹¹ Grant A.J., Griffiths T.M., Pitt G.D. Yoffe A.D., J. Phys. C, 8, L17, (1975)

- ⁴¹² Wieting T.J. Verble J. L., Phys. Rev B, 3, 4286, (1971)
- ⁴¹³ Kaplan R., Il Nuovo Com., 38B, 526, (1977)
- ⁴¹⁴ W. Kautek, H. Gerischer, and H. Tributsch, J. El. Chem. Soc. 127, 2471, (1980)
- ⁴¹⁵ Grant A.J., Griffiths T. M. Pitt G.D. Yoffe A.D., J. Phys. C, 8, L17, (1975)
- ⁴¹⁶ Agarwal M. K., Patel P.D., Talele L. T. Laxminarayana D., Phys. Stat. Sol (a) 90, K107, (1985)
- ⁴¹⁷ El-Mahalawy S.H. Evans B.L., Phys. Stat. Sol. (b) 79, 713, (1977)
- ⁴¹⁸ J. Baglio, Gary S. Calabreset, Emil Kamieniecki, Robert Kershaw, Clifford P. Kubiak, Antonio J. Riccot, Aaron Wold, Mark S. Wrighton, Glenn D. Zoskis, J. El. Chem. Soc. 129, 1461, (1982)
- ⁴¹⁹ Carlos R. Cabrera, Hector D. Abrufia, J. El. Chem. Soc. 135, 1436, (1988)
- ⁴²⁰ Ber. Bunsenges. Phys. Chemie, 83, 655, (1979)
- ⁴²¹ Kam K.K. Chang C.L. Lynch D.W., J. Phys. C, 17, 4031, (1984)
- ⁴²² Kam K.K. Parkinson B.J., J. Phys. Chem., 86, 463, (1982)
- ⁴²³ Hiusman R., de Jonge R., Haas C. Jellinek F., J. Sol State Chem. 3, 56, (1971)
- ⁴²⁴ J. S. Zabinski, M. S. Donley, S. V. Prasad, N. T. Mcdevitt Journal Of Materials Science 29 (1994) 4834
- ⁴²⁵ P. M. Rafailov, C. Thomsen, K. Gartsman, I. Kaplan-Ashiri, and R. Tenne, Physical Review B 72, 205436 (2005)
- ⁴²⁶ L. Joly-Pottuz, J. M. Martin, F. Dassenoy, M. Belin, G. Montagnac, B. Reynard, N. Fleischer, Journal Of Applied Physics 99, 023524 (2006)
- ⁴²⁷ C. J. Carmalt, I. P. Parkin, E. S. Peters, Polyhedron 22 (2003) 1499
- ⁴²⁸ S.V. Prasad, N. T. McDevitt, J. S. Zabinski, Wear 237 (2000) 186
- 429 J-W. Chung, Z.R. Dai, K. Adib, F.S. Ohuchi, Thin Solid Films 335, (1998) 106
- ⁴³⁰ T.J. Wieting, J.L. Verble, Phys. Rev. B, 3, (1971) 4286
- ⁴³¹ Yan Qui Zhu, Toshimori Sekine, Yan Hui Li, M. W. Fay, Yi Min Zhao, C.H. Patrick Poa, Wen Xin Wang, M. J. Roe, P. D. Brown, N. Fleischer, Reshef Tenne, J. AM. CHEM. SOC. (2005), 127, 16263
- ⁴³² Gitti L. Frey, Reshef Tenne, Phys. Rev. B, 60, (1999) 2883
- ⁴³³ Tomoyaki Sekine, Kunimitsu Uchinokura, Tsuneo Nakashizu, Etsuyuki Matsuura, Ryozo Yoshizaki, J. Phys. Soc. Jap. 53, (1984) 811
- ⁴³⁴ Da-Yung Wang, Chi-Lung Chang, Zie-Yih Chen, Wie-Yu Ho, Surf. Sci. and Techn. 120 121 (1999)
 629
- ⁴³⁵ C.J. Carmalt, Polyhedron 22, (2003) 1255
- ⁴³⁶ Y. Feldman, G. L. Frey, M. Homyonfer, V. Lyakhovitskaya, L. Margulis, H. Cohen, G. Hodes, J. L. Hutchison, and R. Tenne, J. Am. Chem. Soc. 118, 5362, (1996)
- ⁴³⁷ Gitti L. Frey and Reshef Tenne, Physical Review B 60, (1999) 2883
- ⁴³⁸ Y. Feldman, E. Wasserman, D. J. Srolovitz, and R. Tenne, Science 267, 222 (1995)
- ⁴³⁹ T. J. Wieting, L. J. Verble, Physical Review B, 3, 4286, (1971)
- ⁴⁴⁰ Edmond Payenb, Slavik Kasztelanb, Jean Grimblotb and Jean Pierre Bonnelle Catalysis Today 4, (1988), 57
- ⁴⁴¹ A. Matthäus, A. Ennaoui, S. Fiechter, S. Tiefenbacher, T. Kiesewetter, K. Diesner, I. Sieber, and W. Jaegermann J. Electrochem. Soc., 144, 1013 (1997)
- ⁴⁴² A. Ennaoui, S. Fiechter, K. Ellmer, R. Scheer, K. Diesner Thin Solid Films 261 (1995) 124
- ⁴⁴³ M. Regula, C. Ballif, M. Remskar, and F. Levy J. Vac. Sci. Technol. A 15, (1997) 2323
- ⁴⁴⁴ O. Lignier, G. Couturier, and J. Salardenne J. Appl. Phys. 82, (1997) 3182
- ⁴⁴⁵ M. Regula, C. Ballif, F. Levy Journal of Crystal Growth 193 (1998) 109
- ⁴⁴⁶ O. Lignier, G. Couturier, J. Salardenne Thin Solid Films 338 (1999) 75

⁴⁴⁸ Kim, S.-S.; Yum, J.-H.; Sung, Y. E. Sol. Energy Mater. Sol. Cells (2003), 79, 495

- ⁴⁵⁰ Palomares, E.; Clifford, J. N.; Hague, S. A.; Lutz, T.; Durrant, J. R. J. Am. Chem. Soc. (2003), 125, 475
- ⁴⁵¹ Palomares, E.; Clifford, J. N.; Hague, S. A.; Lutz, T.; Durrant, J. R. Chem, Commun. (2002), 1464.
- ⁴⁵² Tennakone, K.; Bandara, J.; Bandaranayake, P. K. M.; Kumara, G. R. A.; Konno, A. Jpn. J. Appl. Phys., Part 2 (2001), 40, L732.

⁴⁵³ Kumara, G. R. A.; Konno, A.; Tennakone, K. Chem. Lett. 2 (2001), 180

- ⁴⁵⁴ Philippe de Rouffignac, Jin-Seong Park and Roy G. Gordon Chem. Mater. (2005), 17, 4808 ⁴⁵⁵ Alexei V. Emeline, Svetlana V. Petrova, Vladimir K. Ryabchuk and Nick Serpone Chem. Mater.
- (1998), 10, 3484 B. Ulrici, W. Ulrici, N.N. Kovalev, Optical absorption in SrO single crystals, Sov. Phys. Sol. St. 17, 2305 (1975)
- ⁴⁵⁷ Sov. Phys.:JETP Letter 22, 36 (1975)
- ⁴⁵⁸ L Yan, L B Kong, Q Li and C Kong Semicond. Sci. Technol. 18 (2003) L39
- ⁴⁵⁹ Thomas Moehl "Untersuchung von Schichtgitterhalbleitern mittels photoelektrochemischer Mikrowellenreflexion", Dissertation, Freie Universität Berlin, (2005)
- ⁴⁶⁰ A. A. Tsyganenko, F. Can, A. Travert F. Mauge, Applied Catalysis A: General 268 (2004) 189
- ⁴⁶¹ F. Mauge, J. Lamotte, N. S. Nesterenko, O. Manoilowa, A. A. Tsyganenko, Catalysis Todav 70. (2001) 271

- ⁴⁶² van de Lagemaat, J.; Frank, A. J. J. Phys. Chem. B (2000), 104, 4292.
 ⁴⁶³ Bisquert, J.; Zaban, A. Appl. Phys. A (2003), 77, 507.
 ⁴⁶⁴ Kambili, A.; Walker, A. B.; Qiu, F. L.; Fisher, A. C.; Savin, A. D.; Peter, L. M. Physica E (2002), 14, 203.
- ⁴⁶⁵ Fisher, A. C.; Peter, L. M.; Ponomarev, E. A.; Walker, A. B.; Wijayantha, K. G. U. J. Phys. Chem. B (2000), 104, 949. ⁴⁶⁶ de Jongh, P. E.; Vanmaekelbergh, D. Phys. Rev. Lett. (1996), 77, 3427.
- ⁴⁶⁷ L. Kavan, M. Graetzel, S. E. Gilbert, C. Klemenz, and H. J. Scheel J. Am. Chem. Soc. (1996), 118, 6716
- ⁴⁶⁸ Bryce P. Nelson, Roberto Candal, Robert M. Corn, Marc A. Anderson, Langmuir (2000), 16, 6094
- ⁴⁶⁹ McEvoy, A. J. Etman, M. Memming, R., Electroanal. Chem. 190, 225 (1985)
- ⁴⁷⁰ Lewerenz, H. J., Gerischer, H. Lübke, M., J. Electrochem. Soc. 131, 100, (1984)
- ⁴⁷¹ Meyer, Klein, Lang, Pettenkofer, Jägermann, Surf. Sci. 269/270, 909, (1992)
- ⁴⁷² O. Brunck, Ann. Chem. 336 (1904) 281

- O. Brunck, Ann. Chem. 336 (1904) 281
 ⁴⁷³ O. Brunck, Ann. Chem. 327 (1903) 240
 ⁴⁷⁴ E. Beutel, Monatshefte Chemie 58 (1931) 302
 ⁴⁷⁵ G. J. Hansen, Ber. Otr. Chem. Ges, 72 (1939) 535
 ⁴⁷⁶ J. Grozdanow, Semicond. Sci. and Technol. 9 (1994) 1234
 ⁴⁷⁷ J. Girard, Ann. Chim. Analyt. 4 (1899) 382
 ⁴⁷⁸ Sartale, Lokhande, Materials Chem. Phys. 71 (2001) 94

- ⁴⁷⁹ P. S. Patil, C. D. Lokhande, Vortrag HMI (1998) Sprühpyrolyse WS₂
 ⁴⁸⁰ J. H. Zhang, Z.D.Zhang, Materials Research Bulletin 34, 497, (1999)
- ⁴⁸¹ Xianhui Chen, Rong Fan, Chem. Mater. (2001), 13, 802
- ⁴⁸² A. Hattori, Chemistry Letters 27 (1998) 707
- ⁴⁸³ B. Li, Chinese Sci. Bull. 49 (2004) 123
- ⁴⁸⁴ G. Jander, Einf. Anorg. Chem. Praktikum Leipzig (1987) 131 ⁴⁸⁵ J. Bandara, Sol. Energy Materials and Solar Cells 85 (2005) 385
- ⁴⁸⁶ J. Bandara, Sol. Energy Materials and Solar Cells 88 (2005) 341
- ⁴⁸⁷ Jiminez Gonzales, Sol. Energy Materials and Solar Cells 52 (1998) 345
- ⁴⁸⁸ M. Krunks, Thin Solid Films 270 (1995) 33

⁴⁴⁷ Stefan Seeger, "Herstellung und Charakterisierung der Schichtgittersulfide MoS₂ und WS₂ für photovoltaische Anwendungen" Dissertation, TU-Berlin, 2006, <u>http://opus.kobv.de/tuberlin/frontdoor.php?source_opus=1295</u>

⁴⁴⁹ Kay, A.; Grätzel, M. Chem. Mater. (2002), 14, 2930

⁴⁸⁹ N. S. Gaikwad, G. Waldner, A. Brüger, A. Belaidi, S. M. Chaqour, and M. Neumann-Spallart J. Electrochem. Soc. 152, G411 (2005)

 $^{\rm 490}$ K. Y. Yoon, Sol. Energy Materials and Solar Cells 17 (1993) 317