6 Ergebnisse und Diskussion

6.1 Charakterisierung der optischen Eigenschaften

Für die Berechnung der vorliegenden Absorptionskoeffizienten wurde die Dicke der Schicht aus SEM-Aufnahmen herangezogen. Alle untersuchten Absorber wurden mittels Carbonylmethode hergestellt.

Die indirekte Bandlücke von WS₂ auf Glas beträgt 1.5 eV und auf TiO₂ 1.4 eV. In der Literatur wird als Wert für die indirekte Bandlücke von WS₂ 1.3 eV^{388,389} (+/- 0.15 eV) angegeben. Der Unterschied ergibt sich aus der Partikelgröße. Vermutlich bilden sich bei Abscheidung auf Glas noch kleinere WS₂ Partikel als auf TiO₂. Die letzteren sind wiederum kleiner im Vergleich zu den makroskopischen Kristallen, bei denen die Referenzabsorption gemessen wurde. Da mit abnehmendem Teilchenradius sich die Bandlücke vergrößert (siehe Kapitel 3.4), ist anzunehmen, dass die Teilchengröße bei den Glasabscheidungen kleiner ist als bei den Abscheidungen auf TiO₂. Die TiO₂ Kristalle bieten anscheinend eine bessere Keimunterlage als die amorphe Glasoberfläche.

Die Messungen der direkten Bandlücke von WS₂ ergaben einen Wert von 2.0 eV für die auf Glas und 1.8 eV für die auf TiO₂ abgeschiedenen Schichten. In der Literatur wird für die direkte Bandlücke von WS₂ der Wert von 1.78 eV - 1.89 eV angegeben.^{390,391,392,393,394,395} Es ist also zu erkennen, dass die auf TiO₂ abgeschiedenen WS₂ Absorberschichten etwa die gleiche Bandlücke haben wie Volumenhalbleiter, im Gegensatz dazu ist aber die direkte Bandlücke bei Glasabscheidungen größer. In Tabelle 10 sind die Werte noch mal zusammengestellt:

Tabelle 10: Vergleich der indirekten und direkten Bandlücke bei WS_2 Abscheidungen auf Glas, TiO₂ und Literaturwerte

	Auf Glas	Auf TiO₂	Literaturwerte
WS2 indirekte Bandlücke [eV]	1.5	1.4	1.3 (+/- 0.15 eV) ^{388,389}
WS₂ direkte Bandlücke [eV]	2.0	1.85	1.78 – 1.89 ³⁹⁰⁻³⁹⁵

Für die anderen Schichtgitterhalbleiter wurden die Bandlücke analog der WS₂-Schicht bestimmt. Tabelle 11 gibt eine Übersicht der erhaltenen Werte

	Auf Glas	Auf TiO ₂	Literaturwerte
WSe₂ indirekte Bandlücke [eV]	1.75	1.4	1.16 – 1.4 ³⁹⁶⁻⁴⁰¹
WSe ₂ direkte Bandlücke [eV]	2.0	1.5	1.46 - 1.76 ⁴⁰¹⁻⁴⁰³
MoS₂ indirekte Bandlücke [eV]	1.6	1.1	1.2 - 1.7 ⁴⁰⁵⁻⁴¹³
MoS₂ direkte Bandlücke [eV]	2.0	1.5	1.69 - 2.27 ⁴⁰⁵⁻⁴⁰⁹
MoSe₂ indirekte Bandlücke [eV]	1.8	1.15	0.95 – 1.22 ⁴¹⁴⁻⁴²³
MoSe₂ direkte Bandlücke [eV]	1.95	1.2	1.35 - 1.47 ⁴¹⁴⁻⁴²³

Tabelle 11: Bandlücken der eingesetzten Absorber gemessen mittels UV-Vis-Spektroskopie und Literaturwerte

Die Auswertung der Messungen ist in Abbildung 6.3 - Abbildung 6.14 auf den folgenden Seiten gegeben.

Die Messung der indirekten Bandlücke von WSe₂ auf TiO₂ ergab 1.4 eV, der direkten Bandlücke 1.5 eV. Die indirekte Bandlücke beträgt bei auf Glas abgeschiedenem WSe₂ ca. 1.75 eV, die direkte 2.0 eV. Auch hier zeigt sich, wie schon bei WS₂, dass die WSe₂-Schichtgitter auf TiO₂ besser wachsen als auf dem amorphen Glas. In der Literatur werden für WSe₂ Werte von 1.16 eV bis 1.4 eV für die indirekte Bandlücke,^{396,397,398,399,400,401} und 1.46 eV - 1.76 eV^{402,403,404} für die direkte Bandlücke angegeben. Bei dieser Abscheidung ist es bemerkenswert, dass die Werte für Abscheidung auf Glas sich stark von den Werten für die Abscheidung auf TiO₂ unterscheiden. Insgesamt liegt die Bandlücke der Titanoxidabscheidung näher am klassischen Wert für die Bandlücke von WSe₂ von 1.5 eV als die Bandlücke des Absorbers bei der Abscheidung auf Glas.

Bei den Abscheidungen von MoS_2 auf Titandioxid und auf Glas hat sich folgendes ergeben:

Die indirekte Bandlücke von MoS₂ abgeschieden auf TiO₂ beträgt ca. 1.1 eV (Abbildung 6.7), die direkte Bandlücke ca. 1.5 eV (Abbildung 6.8). Der Verlauf der Absorption ist flacher als erwartet, vermutlich enthalten die Schichten viele Defekte. Es ist bekannt, dass durch solche Defekte Materialien auch unterhalb der Bandlücke Licht absorbieren können, was zu einem flacheren Verlauf der Absorption um die Bandlücke führt. Der Verlauf der Absorption bei der Abscheidung auf Glas wird in Abbildung 6.9 und Abbildung 6.10 gezeigt.

Bei der Abscheidung auf Glas beträgt die indirekte Bandlücke von MoS_2 ca. 1.6 eV, und die direkte Bandlücke ca. 2.0 eV. Wie schon bei WS_2 und WSe_2 sind die Bandlücken der auf Glas abgeschiedenen Absorber größer als die auf dem TiO₂. In der Literatur werden für MoS_2 Werte von 1.69 eV - 2.27 eV für die direkte Bandlücke,⁴⁰⁵⁻⁴⁰⁹ und 1.2 eV - 1.7 eV^{405,406,407,408,409,410,411,412,413} für die indirekte Bandlücke angegeben. Bei der MoS_2 Abscheidung wird deutlich, dass die auf Glas abgeschiedenen Schichten wie schon bei den anderen Absorbern eine größere Bandlücke aufweisen als die auf TiO₂. Der Unterschied im Vergleich zu den anderen Absorbern besteht darin, dass bei der Abscheidung auf Glas die Werte für die Bandlücke eher mit den Literaturwerten übereinstimmen als die Werte bei der Abscheidung auf TiO₂.

Die Verkleinerung der Bandlücke kann sich aufgrund der Bänderlage negativ auf die Sensibilisierung von TiO₂ auswirken. Da im Normalfall die Lage der Leitungsbänder von TiO₂ und von MoS₂ auf der Energieskala nahezu übereinstimmt (Abbildung 2.8), kann es bei einer Verkleinerung der Bandlücke bei MoS₂ dazu kommen, dass das Niveau des Leitungsbandes von MoS₂ unter dem Niveau von TiO₂ liegt. In diesem Fall ist eine Sensibilisierung im herkömmlichen Sinne nicht möglich. Das würde erklären, warum bei den Photostrommessungen nur bei den WS₂ Absorbern Signale gemessen wurden, im Gegensatz zu den MoS₂ Absorbern.

Bei den Abscheidungen von MoSe₂ auf Glas hat die Messung einen Wert von 1.8 eV für die indirekte Bandlücke (Abbildung 6.11), und 1.95 eV für die direkte Bandlücke (Abbildung 6.12) ergeben. In der Literatur werden für die indirekte Bandlücke von MoSe₂ Werte von 0.95 eV - 1.22 eV angegeben, und für die direkte Bandlücke Werte von 1.35 eV - 1.47 eV.^{414,415,416,417,418,419,420,421,422,423} Bei der Abscheidung auf TiO₂ beträgt die indirekte Bandlücke 1.15 eV (Abbildung 6.13) und die direkte Bandlücke 1.2 eV (Abbildung 6.14). Die Werte für die Abscheidung auf TiO₂ stimmen sehr gut mit den Literaturwerten überein. Bei der Abscheidung auf Glas waren die Bandlücken wie schon bei den anderen Materialien vergrößert.

Zusammengefasst lässt sich sagen, dass bei den drei Absorbern WS₂, WSe₂ und MoSe₂ die Bandlücken von den Abscheidungen auf TiO₂ gut mit den Literatur übereinstimmen, währenddessen bei der MoS₂ Abscheidungen die Bandlücke kleiner war. Dies kann einer der Gründe für die schlechte Sensibilisierung mit MoS₂ gewesen sein, da dadurch die ohnehin ungünstig liegende Leitungsbandkante energetisch noch tiefer lag.

6.2 Ramanmessungen

Im Folgenden (Abbildung 6.15) ist das Ramanspektrum der WS₂ Probe und der verwendeten Referenzen WS5C1 und WSJ346 gegeben.

Abbildung 6.15: Ramanspektrum von WS₂

In der Literatur gibt es zahlreiche Ramanmessungen von WS₂.^{424,425,426,427,428,429} Es zeigen sich 4 identische Peaks beim Vergleich mit Messungen von Sourisseau et al und J. W. Chung: 178 cm⁻¹, 350 cm⁻¹, 417 cm⁻¹, und 480 cm⁻¹. Typisch für WS₂ sind die Peaks bei 350 cm⁻¹ und bei 417 cm⁻¹. Diese sind deutlich für beide Referenzproben und etwas schwächer bei der durch CBD abgeschiedenen WS₂ Probe zu erkennen.

Der erste der beiden wird als E_{2g} Mode bezeichnet, und entspricht der Bewegung der W und S Atome in der x-y Ebene. Das zweite Signal um 417 cm⁻¹ herum wird die A_{1g} Mode bezeichnet und entspricht der Bewegung der S Atome entlang der Z-Achse der Einheitszelle. Diese beiden Messsignale treten sowohl bei den Referenzproben als auch bei der mit chemischer Badabscheidung hergestellten Schicht auf. Die kleineren Peaks bei 178 cm⁻¹ und 480 cm⁻¹ werden den sog. SOR (second order Raman) zugeordnet, die durch Phononkopplung (p≠0) zustande kommen.

Auffallend ist die Verschiebung aller Peaks zu niedrigeren Wellenzahlen. In der folgenden Tabelle 12 werden noch mal die Literaturwerte mit den Messergebnissen verglichen:

WS ₂ Kristall	WS ₂ Kristall	WS ₂ Film Chung	WS ₂ Film Chung	Eigenes WS ₂
Sourisseau	Chung	Hohes Verhältnis	niedriges	Pulver
[cm ⁻¹]	[cm⁻¹]	c(=)/c()	Verhältnis	[cm⁻¹]
		[cm ⁻¹]	c(=)/c()	
			[cm ⁻¹]	
178	176.2	174.3	174.3	170
356	355.1	353.3	350.5	350
421	422.5	420.7	419.8	417
480	481.1	478.3	478.3	471

Tabelle 12: Vergleich der Ramanmessungen aus der Literatur und von selbst hergestellten Schichten

Chang deutet die Verschiebung als Änderung der Filmzusammensetzung. Je niedriger der Anteil der senkrecht zur c-Achse stehenden Ebenen ist, desto höher ist die Verschiebung zu niedrigen Wellenzahlen. Da bei unseren Absorbern die Verschiebung am höchsten ist, deutet dieses Ergebnis auf eine hohe Anzahl von senkrecht auf den TiO₂ wachsenden WS₂-Schichten hin. Dieses Ergebnis wird später auch durch die Messungen der mit TWEEN 80 behandelten Schichten bestätigt.

Als nächstes wurden die mit MoS₂ sensibilisierten Schichten auf ihre Resonanzspektra untersucht, dazu gibt es in der Literatur zahlreiche Untersuchungen.^{430,431,432,433,434,435}

Abbildung 6.16: Ramanspektrum MoS₂

Als Referenzen dienten im Institut gesputterte und mit Gasphasentransport hergestellte Proben. In der Tabelle 13 werden die gemessenen Werte, die Referenzwerte und die Literaturwerte verglichen. Es finden sich zahlreiche gemeinsame Peaks, unter anderem bei 146, 178, 354, 384, 420, 461, 572 und 645 cm⁻¹. Damit konnten die MoS₂-Proben eindeutig identifiziert werden, da die Übereinstimmung mit dem Ramanspektrum der Referenzen sehr gut war.

Tabelle 13: Vergleich der Ramanspektren

Einkristal I MoS2 ⁴³⁶ [cm ⁻¹]	PL-MoS ₂ 5000 Å ⁴³⁷ [cm ⁻¹]	PL-MoS₂ 30*50 Å [cm⁻¹]	IF-MoS₂ 200 Å [cm⁻¹]	Symmetrie Zuordnung	Probe 1A Carbonyl [cm ⁻¹]	Probe 4B Carbonyl [cm ⁻¹]	Referenz Gesputtert [cm ⁻¹]	Referenz Altenburg [cm ⁻¹]
177	179	180	179	A _{1g} (M)-LA(M)	180	-	182	180
		226	226	LA(M)				
			248		240			
			283	E _{1g} (Γ)				
382	384	381	378	E _{2g} (Γ)	381	383	385	381
407	409	408	406	A _{1g} (Γ)	419	-	415	409
421 ⁴³⁸	419		schwach				421	421
465	460	455	452	2*LA(M)	460		470	465
		498	496	Eckphonon	498	498		
526	529			$E_{1g}(M)+LA(M)$			525	530
		545	543					
572	572	557	563	2* Ε _{1g} (Γ)	schwach	schwach	572	570
599	601	595	593	$E_{2g}^{1}(M) + LA(M)$			602	600
641	644	635	633	$A_{2g}(M) + LA(M)$	schwach	schwach	623	620

Wieting⁴³⁹ unterscheidet für MoS₂ 4 wichtige Raman Modi, davon drei basale, also entlang einer Mo-S Schicht, und eine senkrecht zu den Schichten, entlang der c-Achse. Zwei davon treten bei den Proben auf: $E_{2g}(\Gamma)$ bei 381 cm⁻¹ bzw. 383 cm⁻¹, und A_{1g} bei 419 cm⁻¹ (bei nur einer Probe). Verschiebungen gegenüber den theoretische Werten können zum Teil auf Verunreinigungen innerhalb des Materials zurückgeführt werden. Die mit Hilfe der Carbonylmethode hergestellte Schicht zeigt somit am ehesten die gewünschte Zusammensetzung. Es konnten keine Literaturquellen zur Ramanmessung von WSe₂ gefunden werden. Die Proben konnten somit nur mit den Referenzkristallen verglichen werden, diese wurden mit Hilfe von Gasphasentransport hergestellt.

Abbildung 6.17: Ramanspektrum WSe₂

Bei der Referenz WSe₂_17 und den sulfurisierten Proben^{a,b} gibt es 4 gleiche Peaks: 99 cm⁻¹, 140 cm⁻¹, 179 cm⁻¹ und 220 cm⁻¹. Bei der nicht sulfurisierten Probe WSe₂_2 ist kein Ramansignal zu erkennen. Anscheinend ist das entstandene Material zunächst amorph, und es kristallisierte erst nach der zusätzlichen Temperung in H₂S.

^a Die Probe wurde 1h bei 450 °C in H₂S getempert

^b WSe₂_S, ist die selbe Probe wie WSe₂_S2, welche über einen längeren Zeitraum gemessen wurde, um das Messsignal zu verstärken

Für MoSe₂ zeigte sich folgendes Ramanspektrum:

Abbildung 6.18: Ramanspektrum MoSe₂

Auch hier konnten die Proben nur mit einem Referenzkristall verglichen werden. Dieser wurde ebenfalls mittels Gasphasentransport hergestellt.

In Abbildung 6.18 sind die Spektren zweier Proben (MoSe₂_5_D und MoSe₂_7_D) und der Referenzprobe RC 11 gezeigt. Die Spektren weisen viele Gemeinsamkeiten auf (Tabelle 13).

Tabelle 14: Ramanspektrumpeaks bei $MoSe_2\mathchar`-Proben und Referenz <math display="inline">MoSe_2$

Referenz [cm ⁻¹]	141	240	285	315	438	449	579	595
MoSe ₂ _5_D [cm ⁻¹]	143	250	290	315				
MoSe ₂ _7_D [cm ⁻¹]	143	240	285	315	438	449	579	595

Wegen der guten Übereinstimmung zwischen den Referenzwerten und gemessenen Werten für die Probe wurde die entstandene Substanz als MoSe₂ identifiziert.

6.3 Quantenwirkungsgrad

An der Probe mit den höchsten Photoströmen wurde die spektrale Quantenausbeute gemessen. Diese gibt nicht nur Auskunft über die Effizienz der Licht-zu-Strom Umwandlung, sondern auch über die wellenlängenabhängige Verteilung dieser Effizienz. Damit kann die Größe der Bandlücke bestimmt werden, was auch für die vorliegende Probe gemacht wurde. Die Messung der spektralen Quanteneffizienz wurde nur für TiO₂/WS₂-Elektroden durchgeführt, weil die monochromatische Lichtquelle sehr schwach war, und somit nur bei besten Proben eine Messung möglich war.

Abbildung 6.19: Spektrale Quanteneffizienz bei mit WS₂ sensibilisiertem TiO₂

Aus dem Diagramm ist zu erkennen, dass die Effizienz ab einer Photonenenergie von ca. 1.8 eV ansteigt, darunter beträgt sie nahe zu Null. Daraus kann geschlossen werden, dass nur Elektronen, die mit einer Energie größer 1.8 eV angeregt werden, ins TiO₂ injiziert werden können. Unter dem Diagramm ist die Lage des Valenzbandes, des Leitungsbandes und die nötige Energie für einen direkten und für einen indirekten Übergang gegeben. Die indirekte Bandlücke von WS₂ beträgt ca. 1.3 eV und die

direkte ca. 1.8 eV. Anscheinend liegt der indirekte Übergang energetisch zu tief, als dass die Elektronen wirksam ins Leitungsband des TiO₂ transportiert werden können.

Ein weiterer Grund für die schlechte Quanteneffizienz zwischen 1.3 eV - 1.8 eV ist die schlechtere Absorption von WS₂ in diesem Bereich, was auch in den Absorptionsmessungen sichtbar wurde. Wirklich gut absorbiert dieses Material erst ab der Energie der direkten Bandlücke. Der Grund dafür ist, dass bei der indirekten Anregung drei Teilchen zusammentreffen müssen, ein Elektron, das angeregt werden soll, ein Photon, mit der nötigen Anregungsenergie und ein Phonon (quantisierte Gitterschwingung), das den nötigen Impuls für die indirekte Anregung liefert. Dieser Prozess ist viel unwahrscheinlicher als die direkte Anregung, bei der nur Elektron und Photon zusammentreffen müssen.

6.4 Messung der Oberflächenphotospannung

Am Hahn-Meitner-Institut gibt es die Möglichkeit, die noch nicht sehr bekannte Oberflächen-Photospannungsmessmethode zur Charakterisierung der Proben anzuwenden. Diese ermöglicht, kontaktlos und ohne Elektrolyten Eigenschaften wie Ladungstransport, Beweglichkeit, Absorption in der Schicht und Rekombination in der Probe zu beurteilen. Die Messungen wurden an den Systemen Glas/FTO/TiO₂/(W, Mo)(S, Se) durchgeführt. In Abbildung 6.20 und Abbildung 6.21 sind Photospannungsmessungen für gesputtertes MoS₂ auf Floatglas (MoS₂-Schichtdicke 100 nm) und einen natürlich gewachsenen MoS₂-Kristall zu sehen.

Bei der gesputterten Probe setzt ein Signal oberhalb der direkten Bandlücke von 1.8 eV ein. Unterhalb der 1.8 eV ist das Photospannungsmesssignal sehr schwach. Beim natürlichen Kristall findet eine Ladungstrennung schon ab einer Photonenenergie von ca. 1.1 eV statt, dies spricht für eine Vielzahl von Defekten. Bei einem positiven Signal werden die durch das Licht angeregten Elektronen schneller ins Innere des Halbleiters transportiert als die Löcher, die an der Oberfläche getrappt werden. Damit kann der Rückschluss getroffen werden, dass beide MoS₂ Proben n-leitend sind. Dies wird durch den Vergleich mit der PV-Messung an TiO₂ bestätigt (Abbildung 6.22). Auch hier liegt eine positive Photospannung vor und für TiO_2 ist die n-Leitung bereits hinreichend bewiesen worden.

Das positive Photospannungssignal beim TiO₂ steigt ab einer Energie von ca. 3.2 eV stark an, was mit den Literaturwerten für die Bandlücke von Anatas übereinstimmt.

Abbildung 6.22: Photospannungsmessung von TiO₂

In der nächsten Abbildung ist die Photospannungsmessung der hergestellten MoS₂ Proben zu sehen (hergestellt mit der Carbonylmethode):

Abbildung 6.23: Photospannungsmessung von MoS_2 (auf TiO₂, Carbonylmethode)

Im Vergleich zum TiO₂ fallen Photospannungen bei den Proben geringer aus, dies spricht für eine nicht so gute Kristallinität der abgeschiedenen Substanzen. Alle MoS₂ Proben zeigen eine n-leitende Charakteristik, wie auch TiO₂. Hervorzuheben ist die gute Übereinstimmung von zwei der gemessenen Proben mit den Literaturwerten. Ab einer Photonenenergie von 1.3 eV steigt das Photospannungssignal stark an, dies entspricht dem Literaturwert für die indirekte Bandlücke von MoS₂. Bei der dritten MoS₂ Probe steigt das Signal schon ab einem Wert von ca. 1.0 eV an, ähnlich dem natürlichen Kristall (Abbildung 6.21). Dieses Verhalten lässt auf eine Vielzahl an Defekten in dieser Probe schließen, die zu vielen Zuständen innerhalb der Bandlücke führen. Daraus resultierend steigt das Photospannungssignal auch bei einer Lichtanregung mit einer Energie unterhalb der Bandlücke.

In Abbildung 6.24 sind die Photospannungsmessungen der WS₂-Schichten dargestellt.

Abbildung 6.24: Photospannungsmessung der WS_2 Probe (auf TiO₂, Carbonylmethode)

Bei diesen Schichten steigen die Photospannungssignale schon ab einer Photonenenergie von. 1.0 eV an und erreichen ihr Maximum bei einem Wert von ca. 1.8 eV. Dies ist der aus der Literatur bekannte Wert für die direkte Bandlücke von WS₂. Das frühe Ansteigen des Signals schon ab einem Wert von ca. 1.0 eV ist untypisch, da die indirekte Bandlücke von WS₂ bei einem Wert von 1.3 eV liegt. Aus diesen Messungen kann geschlussfolgert werden, dass die Probe auch unterhalb der Bandlücke absorbiert, was für eine Vielzahl an Defekten spricht. Die in Abbildung 6.19

gezeigten geringen Photoströme unterhalb von 1.8 eV sind deswegen vermutlich auf eine zu tiefe Lage des Leitungsbandes zurückzuführen.

In der nächsten Abbildung sind die Photospannungssignale der MoSe₂ Proben zu sehen (Abbildung 6.25):

Abbildung 6.25: Photospannungsmessung der MoSe₂ Probe (auf TiO₂, Carbonylmethode)

Bei allen MoSe₂ Proben waren die Photospannungssignale, wie auch bei den hier vorgestellten, negativ, was für eine p-Leitung der Proben spricht. Die Signale fangen bei ca. 1.0 eV an, steigen dann bis etwas 1.3 eV an, fallen dann wieder und steigen ab ca. 1.5 eV noch mal stark an. In der Literatur werden für die indirekte Bandlücke von MoSe₂ Werte von 0.95 eV - 1.26 eV angegeben, und für die direkte 1.35 eV - 1.47 eV. Verlauf beider Bandlücken kann Der also sehr schön anhand der Photospannungssignale verfolgt werden. Es ist deutlich zu sehen, dass das Signal bei der direkten Bandlücke viel größer ist, was durch die bessere Absorption hervorgerufen wird.

In Abbildung 6.26 sind die Photospannungen der WSe₂-Proben dargestellt:

Abbildung 6.26: Photospannungsmessung bei den WSe_2 Proben (auf TiO₂, Carbonylmethode)

In der Literatur werden für die indirekte Bandlücke von WSe₂ Werte von 1.2 eV - 1.55 eV angegeben, und für die direkte Bandlücke 1.57 eV - 1.775 eV. Die Photospannungsmesssignale bei unseren Proben steigen jedoch erst deutlich später, ab einer Anregungsenergie von 2.2 eV. Dies kann - ähnlich den WS₂-Proben - auf Quantum-size-Effekte zurückgeführt werden. Eine solche deutliche Veränderung der Bandlücke beim WSe₂ wurde bei den anderen Absorbern nicht beobachtet. Daraus lässt sich schließen, dass bei der WSe₂ Abscheidung vermutlich viel kleinere Partikel entstehen als bei den Abscheidungen der anderen Absorber.

6.5.a Carbonyl Methode

6.5.a.1 Photoströme bei WS₂

Bei den mit WS₂ (Carbonylmethode) sensibilisierten TiO₂-Schichten wurden folgende Dunkel- und Photoströme gemessen.

Abbildung 6.27: Photo- und Dunkelstrommessung TiO_2-Schicht sensibilisiert mit WS_2 (gestrichelt – Photostrom, durchgehend - Dunkelstrom)

Der Dunkelstrom liegt bei 0.03 mA/cm² und ist vergleichsweise niedrig. Die Photostromdichte beträgt ca. 0.25 mA/cm². Der Einsatzpunkt des Photostroms liegt bei

-0.6 V vs. SCE. Im Vergleich zu den anderen Absorbern waren bei dieser Abscheidung die Photoströme am höchsten.

Wenn wir uns noch mal die relative Lage der Bänder der 4 genutzten Absorber und des TiO₂ in Erinnerung rufen:

Abbildung 6.28: Energiebänderdiagramm der 4 Absorber und TiO₂

So ist es leicht zu sehen, warum gerade WS₂ so günstig ist. Die Lage des Leitungsbandes ist von allen 4 Absorbern am höchsten, so dass eine Injektion des Elektrons ins Leitungsband des TiO₂ gerade bei diesem Halbleiter am wahrscheinlichsten erscheint.

6.5.a.2 Photoströme bei WSe₂

Bei den mit WSe₂ sensibilisierten Elektroden wurden niedrigere Photoströme festgestellt als bei den mit WS₂ sensibilisierten Elektroden:

Abbildung 6.29: TiO₂ sensibilisiert mit WSe₂, drei Proben (mit jeweils Photo- und Dunkelstrom, gleiche Farbe), die Pfeile zeigen die Richtung des Photostroms (gestrichelt – Photostrom, durchgehend - Dunkelstrom)

In Abbildung 6.29 ist ein typisches Verhalten bei WSe₂ Sensibilisierung zu sehen. Die Photostromdichten sind insgesamt sehr niedrig und überschreiten nicht 0.05 mA/cm². Zum besseren Vergleich wurden auch die Dunkelströme gezeigt. Diese liegen in der gleichen Größenordnung wie bei WS₂. Auffallend ist, dass die Einsetzpunkte für die Photoströme sehr unterschiedlich sind. Bei der ersten Elektrode liegt dieser bei ca. -0.7 V vs. SCE (rote Kurve), bei der zweiten bei ca. -0.57 V vs. SCE, bei der dritten bei ca. -0.3 V vs. SCE (blaue Kurve). Alle Elektroden zeigten sowohl anodische als

auch kathodische Photoströme, je nach angelegtem positiven oder mehr negativen Potential. Zum Beispiel wurden bei der blauen Kurve zwischen -0.7 V vs. SCE und -0.3 V vs. SCE kathodische Photoströme gemessen. Bei -0.3 V vs. SCE hat dieses Verhalten zu anodischen Photoströmen umgeschlagen. Bei den anderen Proben konnte ein ähnliches Verhalten beobachtet werden, d.h. positive Photoströme bei positiven Potentialen vom Umschlagspunkt gesehen, negative Photoströme bei negativen Potentialen vom Umschlagspunkt gesehen.

Das Vorzeichen der Photoströme kennzeichnet in der Regel die Art der Dotierung eines Halbleiters in einer photoelektrochemischen Solarzelle (siehe 3.1.b): anodische (positive) Photoströme bei einem n-Halbleiter, kathodische (negative) Photoströme bei einem p-Halbleiter. Da unser Material beide Eigenschaften zeigt, muss es zwangsläufig aus beiden Sorten bestehen. Je nach dem, welches Potential gerade angelegt wurde, fließt ein Teil des Stroms in die falsche Richtung und geht somit verloren. Durch unterschiedliche Mischverhältnisse an p- und n-Halbleitern, lässt sich so der Umschlagspunkt des Photostroms verschieben, wie in Abbildung 6.29 gut zu beobachten ist.

Leider wirkt sich dieses Verhalten negativ auf die Effizienz der Solarzelle aus, denn die Solarzelle arbeitet bei "falsch" angelegter Spannung nicht als Stromgenerator sondern als Verbraucher. Dies erklärt die geringen Photostromausbeuten bei den WSe₂-Elektroden.

6.5.a.3 Photoströme bei MoSe₂

Bei den mit Hilfe der Carbonylmethode MoSe₂ sensibilisierten TiO₂-Schichten konnte für keine der Proben ein Photostrom festgestellt werden (Abbildung 6.30):

Abbildung 6.30: TiO₂-Schicht sensibilisiert mit MoSe₂

Diese beiden Voltamogramme wurden mit zwei Proben aufgenommen. Bei keiner der beiden konnten Photoströme festgestellt werden. Die Dunkelströme betragen maximal 0.04 mA/cm² (-0.6 V vs. SCE). Peaks bei ca. -0.65 V vs. SCE weisen auf eine Oxidation von Selenprodukten aus dem Herstellungsprozess hin.

Die MoSe₂ Proben sind die einzigen Absorber aus der untersuchten Gruppe, die keine Photoströme gezeigt haben. Bei der Photospannungsmessung wurde nur bei den MoSe₂ Proben p-Leitung festgestellt. Dies deutet darauf hin, dass bei der Sensibilisierung von TiO₂ die Absorber unbedingt n-leitenden Charakter besitzen müssen.

6.5.a.4 Photoströme bei MoS₂

Die TiO₂ wurden mit MoS₂ sensibilisiert. Dabei wurden folgende Photo- und Dunkelströme gemessen:

Abbildung 6.31: Photo- und Dunkelstrommessung bei MoS2

Die Photostromdichte beträgt ca. 0.02 mA/cm^2 und ist vergleichsweise niedrig. Der Einsatzpunkt des Photostroms liegt bei -0.2 V vs SCE, der Dunkelstrom beträgt ca. 0.002 mA/cm^2 . Aus dem Vergleich der Bänderlage in Abbildung 6.28 kann erkannt werden, dass MoS₂ die ungünstigste Bänderlage von allen 4 Absorbern besitzt. Deswegen ist es überraschend, dass in diesem Fall Photoströme fließen können, auch wenn sie vergleichsweise niedrig sind. Vermutlich werden die Elektronen in diesem Fall nicht ins Leitungsband des TiO₂ injiziert, sondern können über Traps, die sich unterhalb des Leitungsbandes befinden, transportiert werden.

6.5.a.5 Kurzzusammenfassung Carbonylmethode

In der Tabelle 15 sind die Photoströme und die Einsatzpunkte der Photoströme für die eingesetzten Absorber zusammengefasst:

Tabelle 15: Messung der Photoströme und Einsatzpunkte der Photoströme bei den eingesetzten Absorbern (Carbonylmethode)

	Einsatzpunkt des Photostroms	Photostromdichte
Absorbermaterial	[V vs. SCE]	[mA/cm ²]
WS ₂	-0.63	0.25
WSe ₂	-	0.01
MoSe ₂	-	-
MoS ₂	-0.2	0.02

Bei der MoSe₂/TiO₂-Elektrode konnten keine Photoströme festgestellt werden. Bei der WSe₂/TiO₂-Elektrode wurde kleine Photostromdichte von ca. 0.01 mA/cm² beobachtet, jedoch habe diese ihr Vorzeichen von negativ zu positiv gewechselt. Bei der MoS₂/TiO₂-Elektrode wurde kleine Photostromdichte beobachtet (0.02 mA/cm²), der Einsatzpunkt lag bei -0.2 V. Bei der WS₂/TiO₂-Elektrode wurde die höchste Photostromdichte von ca. 0.25 mA/cm² erzielt. Auch der Einsatzpunkt des Photostroms war bei dieser Abscheidung am höchsten (-0.63 V vs. SCE). Insgesamt hat die Abscheidung von WS₂ die besten Ergebnisse geliefert. Aus diesem Grund wurde die Kombination WS₂/TiO₂ für weitere Optimierungsversuche verwendet.

Es ist zu erkennen, dass nur n-leitende Proben (siehe 6.4, Photospannungsmessung) TiO₂ sensibilisieren können. Dabei liefert WS₂, der Halbleiter mit der energetisch höchstem Leitungsband die höchsten Photoströme. Im Prinzip sollten aufgrund der relativen Lage der Leitungsbänder auch andere Metalloxide mit WS₂ sensibilisiert werden können. Aus diesem Grund wurden WO₃, ZnO und SnO₂ getestet. Die Metalloxide wurden mit WS₂ sensibilisiert (Carbonylmethode und Multistep-Abscheidung).

6.5.b.1 WO₃ als Ersatz für TiO₂

Abbildung 6.32: Dunkelstrommessung einer WO₃/WS₂-Elektrode (Carbonylmethode, Multistep-Abscheidung)

Bei den WO₃-Schichten wurden keine Photoströme gemessen. Es wurden lediglich die in Abbildung 6.32 gezeigten, hohen Dunkelströme festgestellt.

6.5.b.2 ZnO als Ersatz für TiO₂

Abbildung 6.33: Photo- und Dunkelstrommessung einer ZnO/WS_2 -Elektrode (Carbonylmethode, Multistep-Abscheidung)

Bei der ZnO-Schicht wurde kleine Photostromdichte nachgewiesen. Sie liegt im Bereich von 0.1 mA/cm². Im Vergleich zu den TiO₂-Schichten, die mit dem gleichen Verfahren sensibilisiert wurden (Carbonylmethode, WS₂, Multistep-Abscheidung) sind sie um 60% niedriger ausgefallen. Der Einsatzpunkt des Photostroms und auch des Dunkelstroms liegen bei -0.4 V vs. SCE. Dies ist positiver als bei den TiO₂/WS₂-Elektroden, und ist ein Zeichen für die erhöhte Rekombination.

6.5.b.3 SnO₂ als Ersatz für TiO₂

Abbildung 6.34: Photo- und Dunkelstrommessung einer SnO₂/WS₂-Elektrode (Carbonylmethode, Multistep-Abscheidung)

Bei den SnO₂-Schichten waren die Photostromdichten in der gleichen Größenordnung wie bei den ZnO-Schichten (0,02 mA/cm²). Im Vergleich zu den TiO₂-Schichten, die mit dem gleichen Verfahren hergestellt wurden (Carbonylmethode, Multistep-Abscheidung), sind die Photoströme um 60% niedriger. Der Einsatzpunkt des Photostroms liegt bei -0.6 V vs. SCE, und ist damit negativer als bei den ZnO-Schichten, was auf die kleinere Rekombination schlussfolgern lässt.

6.5.b.4 Kurzzusammenfassung andere Metalloxide

In Tabelle 16 sind die Ergebnisse der Sensibilisierung von WO_3 , SnO_2 und ZnO mit WS_2 (Carbonylmethode) zusammengefasst:

Eingesetztes Oxid	Einsatzpunkt des Photostroms [V vs. SCE]	Photostromdichte [mA/cm ²]
WO ₃	-	-
ZnO	-0.4	0.1
SnO ₂	-0.65	0.02

Tabelle 16: Zusammenfassung: Andere Metalloxide als Ersatz für TiO_2, Photoströme und Einsatzpunkte der Photoströme

Die besten Ergebnisse wurden mit ZnO als Substrat erzielt. Dabei wurden 0.1 mA/cm² gemessen bei einem Einsatzpotential von -0.4 V vs. SCE. Bei den SnO₂-Schichten waren die Photostromdichten viel kleiner, sie lagen bei 0.02 mA/cm². Dafür lagen die Einsatzpotentiale des Photostroms günstiger bei -0.65 V vs. SCE. Schließlich konnte WO_3 überhaupt nicht sensibilisiert werden.

Bei keinem der drei eingesetzten Metalloxide konnten Effizienzen ähnlich der Abscheidung auf TiO₂ erreicht werden. Daraus kann geschlossen werden, dass für die erfolgreiche Sensibilisierung die richtige Bandlage zwar eine notwendige, aber nicht eine hinreichende Bedingung ist. Weitere Parameter müssen eine wichtige Rolle spielen, wie z.B. die Dotierung, die Größe der Partikel und damit die Größe der Gesamtoberfläche, die Beweglichkeit der Ladungen innerhalb einer porösen Schicht oder die Anzahl an Defekten innerhalb der Partikel und an ihrer Oberfläche. Diese Parameter müssten bei den neuen Oxiden untersucht werden, um eine Effizienzsteigerung zu erreichen.