Appendix A

Direct Proof that dimA: = dimA; =1

We present here the direct proof that dimA. = dimA. = 1.

Theorem A.0.1.
dimA, = dimA, = 1.

Proof:
First note that H'(A.) > H'(A:) > H' (7. (A.)). From the definition of B it follows that

H (1 (AL)) = H (10 (Ae ~ 0 (BA)) > H([0,1]) — % 0.

It follows that
dimA, > dimA, > 1 (A1)

Now let s > 0 and § > 0. Then for any given € > 0 there is an n € N such that
§ € (227,237 e, (A.2)

We note that the vertical height of the triangular caps in the n-th stage of construction of A, is 2!="
so that 6 > 2 times the vertical height of the triangular caps in the nth construction stage. Since

on

Ag C U Tn,i

i=1

any cover of UfllTn,i is also a cover of A.. By taking balls of radius J with centers in A,, we note
that we can take these balls along an A, ; such that the overlaps ensure that Ai{ ;/5 is covered. By
taking such a cover of A4, ; for each i we have a cover consisting of balls of radius ¢, Bs = { Bs} such

that
U BsoAYV2oA2™,
B;s€Bs

Since
27’1,

A2 5 T 0 A

i=1

we also have that By is a cover of A.. Since with such a cover no more than §/ V2 of the radius of
a ball in Bs will uniquely contribute to the cover of A,, and since the inefficiencies of taking A, ;’s
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that meet at non-uniform angles can not do any worse than forcing us to cover A,, twice, it follows

that
> s <2V2H (An)

BseBs

so that from Lemma 5 we have

> < 2V2(1 4 nl6e?)! 2.
Bs€Bs

Thus, from (A.2) we have

1 16 2\1/2
> o < (223U
Bs€eBs

As Bs is a cover of A, this means

2\1/2
M (AL < (25)52\@%

so that we have
, 1+ nl16e2)1/2
HIPH(4e) = im H;7*(4e) < lim (%fMMTg) =0

Since this is true for all s > 0 it follows that dimA. < 1 and since A. C A. that dimA. < 1.
Combining with (A.1) gives the result. &

A.1 Notes

The proof presented here is our own.
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Appendix B

Weak Flow Monotonicity

The usual generalisation of the smooth mean curvature flow is the weakened flow of varifolds by
their mean curvature. Such flows are also know as Brakke flows due to the founding work show-
ing their existence and some regularity for mean curvature not equal to zero (the mean curvature
equal to zero, also called minimal surfaces, case had already been studied) which is due to Brakke [5].

The regularity theory due to Brakke is the weak version of (though not following from) the reg-
ularity theory presented in Ecker [7], that we have followed.

Allard, see for example [1] and [2], and Almgren [3] studied varifolds, particularly minimal vari-
folds. Allard [2] also looked at varifolds with a fixed boundary and developed a local regularity
theory for such varifolds. Griiter and Jost [13] then translated these ideas to the case where the
minimal varifold had a boundary satisfying the Neumann free boundary conditions. They also de-
veloped the tilde reflection function discussed in Chapter 11.

It would seem then that there should be a theory of varifolds moving by their mean curvature
flow with Neumann free boundary conditions. We have not proven that this is the case. We present
however here a formulation based on the work of Brakke [5] and Griiter and Jost [13] that we believe
is appropriate for such flows. Although we have not shown existence, we show that under this def-
inition, assuming the flow exists in a reasonable sense, then the monotonicity formula of Buckland
translates to the weak flow.

We begin by defining a the Brakke flow integral, which serves in Brakke flow, a similar function
to the integral of mean curvature in the smooth case. We then give our definition of mean curva-
ture flow of varifolds satisfying the Neumann free boundary conditions. We then prove directly the
monotonicity formula.

Definition B.0.1. (Brakke Flow Integral)
Let 11 be a measure on a complete subset N of R™"t1. Should 1 be an n-rectifiable Radon measure
we can define V = v(M,0) to be the varifold associated with . We then use the notations
0V = the first variation of V,
|0V | = the total first variation of V.
Let ¢ € C2(N,RT). Then if
1. plgg>0y is not a Radon measure,

2. [0V|[{¢>0y s not a Radon measure,
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8. [0V || 1¢>0) 18 singular with respect to ji|{s~0y, oT
4. f¢|ﬁ|2du = o0, where H = %X”{d»o}
we define the Brakke flow integral B(u, d) as

B(Ma ¢) = —0C.
Otherwise we define the Brakke flow integral B(p, @) as

Bo) = [ ~ol[ + o5+ Hd < oc

where V =V and S = S(x) = T,p for H"-a.e. x € {¢ > 0}.

To define Brakke flow with Neumann free boundary conditions for varifolds we need, as in the smooth
case, a support surface. We use in the case the same Neumann free boundary support surface ¥ as
we did for the smooth case which we defined in Definition 11.1.2. With such a support surface we
can define Brakke flow with Neumann free boundary conditions as follows:

Definition B.0.2. (Brakke flow with the Neumann free boundary condition)
Let 3 := OG be a free boundary support surface in R and let {p:}1>0 be a 1-parameter family of
measures on the complete subset G of R*1.
{tt}e>0 is then said to be a Brakke flow with the Neumann free boundary condition if
1. 4 is a measure on G for each t > 0

2. D,,,(¢) < B(u, ¢) for all ¢ € C2(R"L R*) and t > 0, and

8. [divgyXdus = — [ X - Hdp, for all vector fields X € CL(R™!, R"1) with X (z) € T,X for
each x € X.

where S(x) = T,u: wherever it exists for all t > 0 and

D—Mt(¢) — lim sup Hs (¢) - Mt(¢)
s—t s—t
is the upper derivate of pu; with respect to time.
Remark: Both Allard in [2] and Griiter and Jost in [13] retain a strict condition that the entire
varifold remain within a ball of radius 1. I do not see at present a particular need for this assumption.

We will also make the following additional assumptions:
0:(z) € {0,1} H™-a.ex € R H'aet >0, (B.1)

where 6, is the multiplicity function associated with .. This is not only a simplifying assumption
but is also necessary in the regularity theorems of Brakke [5] 6.12 as well as those in [7] and [8]. Also

. sup HoBa()

<D< . B.2
rzeRn+1 R>0 Wan - ( )

which is the stronger of the locally finite measure assumptions needed in many of the referenced
works on varifolds.

Under this definition of Brakke flow with Neumann free boundary we have the following mono-
tonicity formula.
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Theorem B.0.1. Monotonicity Formula for Weak Flows

On the assumption that Definition B.0.1 provides for a well defined flow of varifolds with Neumann
free boundary conditions, for any Brakke flow with the Neumann free boundary conditions, {ii:}t>o,
supported on X satisfying (B.1) and (B.2), for any (z,s) € ¥ x RT, 6 € (0,2/5], and all s — 19 <

t<s
2

— 25 _65—1 25 _55—1 = SL'D:@
D, <ec““ ’ /npnz((z,t)dut) < e / H— = P22 i
2%>)
where, as in the smooth case we define
4
ety = (1= (22) oy, — 200r)
x,t) = — T — 40nT
e ) .

1 . T®q
Tao = | — 0| + |z — 20[”
@ =x—2(<x,Dd>—d)Dd

where d is the signed distance function from %, the Neumann boundary support surface,

(3/160n)%/°
T0 ‘= 5
a5>)

S = T, wherever it is defined, 7(t) = s —t and C = C(n).

Proof:
We adapt Bucklands proof to varifolds. In order to do this we list some necessary identities. We
need Brakke 5.8 and 3.5 from [5]. We will need the fact that [divgXdu, = — [ X - Hdy, for

X € CHR"™ R™*!) tangent to X on X from our definition. We note that from Proposition 11.3.4
(5), that < Dr,,,vs >= 0. We can then calculate that

2/12 2 2%2 2 ’ %
Dn=4 By 1-— /£2—7‘)‘5 (reg —40n7) | Dry, =: n*Dry,
) )

+

which is compactly supported, that

1 1 . reo
D o = — 8(16(r2 T)5+1)TD p— *D .
Pre (4mr)/2 8(16(Kk%ET)% + 1)T6 ; T =0 Hlwo

which is not compactly supported and that
D(1pry) = nDpry, + prsDn
which is compactly supported. Together the above equations give
< Dn,vs;, >=< n*Dry,,vsy >=n" < Dry,,vs >=0,

< Dppsy, Vs >=< p*Dryy,vs >= p* < Dry,,vs >=0,
and thus

< D(pry)s Vs >=<NDpuy,,vs; > + < pry D, vss >= 0.
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Since D(npyy, ), Dn € CLR™ ! R* 1) which implies that

/ divs D(Npry)dpe + D(pes) - Hdpy = 0,

and
/ divs D(n)dpis + D(n) - Hdpuy = 0.

We see also that < p.,, D1, vs >= pey. < Dn,vs >= 0 and that p,,, Dn € CL(R"1 R™*1) 50 that

/ divs(prs, Dn)dpis + (pas D) - Hdpy = 0.

Additionally, we note the identities that for appropriately smooth functions and vector spaces

%g = %ng < Dg,H >, (B.3)
divg(gX) = gdiveDf+ < Vgg, X >, (B.4)
Asfg=fLsg+glsf+2<Vsf,Vsg> (B.5)

and -
Agg = divsDg+ < Dg, H > . (B.6)

We will also use, as in the smooth case, from Proposition 11.3.6 and Theorem 11.3.1 that
d
——A <0
(5-2s)ns

Q(Prz) < Cprgh® ™,

and

where C' is dependent only on n.

Now, by Brakke 3.5, the definition D;(¢) < B(u¢, ¢) implies that for any nonnegative test func-
tion ¢ = ¢(x,t) € CH(R"F! x RT RT) and t € RT

7 ; .9
Diu(é) < [ ~6lHP+ D65 + G odu
We note then firstly that np.,, € CL(R"*! x R, R") and thus is a valid test function to be used.

Brakke, 5.8, proved the fact that SL.H = H p-a.e. whenever |0V,| is a Radon measure. Therefore
either for each ¢ Dipt(¢p) = —oo so that Di(ut(npky)) = —oo completing the proof or

_ — = 0 - d
Du(@) < [ ~ol + Do+ g odue = [ ~6lHP + odu
We now seperate our ¢ by choosing specifically choosing ¢ = np,, so that

_ q d
Dijue(nprs) = /—npmlHl2 + P A
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Recalling that < Dnpy,,,vs >= 0 for all z € ¥ so that Dnp,,, is an appropriate vector field for
our divergence theorem which we may use since {u;};cr+ is a Brakke flow for the Neumann free
boundary condition. That is we know

/ divg(z) Dnprsdpe = — / Dipys - Hdpy

and in a similar fashion to the previous discussion we have

/ divs(prs DN)dpe + (prs D) - Hdpy = 0.

so that using identities (B.3) to (B.6) and Proposition 11.3.6 we have

_ d
Dipie(nprs) = / —npns | H|* + = NP dpie

= / NP HI? + %npm + divs Dnpps + Dnpps - H
—2(div(prs, D7) + (prg D7) - ﬁ)dut

/ —npws [ H|* + d =3Pz + Bsnpres

~2(prsdiv(Dn) + pry (D) - H+ < Vs ppy, D) >)dpse
/ Npws | H|? +o d NPrs + PrsDsn + N8Py,
=2(prpDsnt < Vsmen >)dpu

d
= / s | H[* + 2 Ps — Prs g1+ NAgprs dite

. d d
= /—npmlHl2 +n (dt + As) Prs + Prs (E - As) ndp

_ d
< /*WNZIHI2 +1n <dt + As) Pros At

. d .
= /*77m@ZIHI2 +1 <dtpl<éz + divs Dpry, + Dpry, - H>
Next, using (B.3) and Brakke 5.8 we have

_ N d . _
Dt,ut(npm:) < /_77/)52|H|2 + n(apfﬁz + d“)SDpfi): + Dpﬁ): : H)

0 .
/77 < pnz|H| pnz + divs Dpyy, + 2D py, H) dput

. 8 . .
- /U(*PK2|H|2 + a_p"uz + divs Dppy + 2D pry, - H)dpy
/77 pf'i):|H| + ot pfﬁz} + divgDpyy, + 2D+ Prs; -H

. |D pnz|2+ [D+py?
Prs;

= / (5 Pz + divsDpps +

d/,Lt

|DLPK2|2

%)
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2

_ D+ .
—Lrs )dpue

q—
Prs
5 _ Dlpx
- /77<Q(pnz)‘H72
Prs
Cr¥r0-1 /Wmdut _/

e(t) = eCmééraa—l, teRT, and i(t) = /77pNE (, O)dps t € R+

2
) dpuy

ﬁ_%
Prs:

2
dpuy

IN

We now write

and calculate

D, (ecnééraafl) /Upng (2, ) = lil:ljllp e(r)z(rz :te(t)Z(t)
= limsup e(r)i(r) — e(t)i(r) + e(t)i(r) — e(t)i(t)
r—t r—t

We note that

msup SO0 —e@i0) el —eft)
r—t r—t n st —
d
i( )dte(t)
= i(t) - C,i2267_6—1ec,€22675571
< oo.
Also
Dilr) — e(t)i(t o
lim sup e(t)i(r) —e(®)i(t) _ e(t) limsupM
r—t r—t nst —
= () Depa(prs)
DL 2
>

which is finite unless [ |H|?du; = —oo in which case Diju(¢) = —oo by definition for all ¢ €
C?(R™1 R*) which would in any case complete the proof. In the former case, we can then take
the limiting supremums seperately to find

Dy (S50 / Npws (2, 0)dpns) < —CrEI1OmT0 / Moy + CEE 7O~ 1CRET 0 / NP Aty

2

— 5 DJ_
Ry
1 2
= eang‘s'r‘s&*l/ ﬁ,% dhi,
Prs
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B.1 Notes

The Brakke flow integral, Definition B.0.1 was first introduced by Brakke [5], though an excellent
discussion can be found in Ilmanen [16]. The definition of Brakke flow with Neumann free boundary
conditions is a combination of the features of the Brakke flow, see Brakke [5] or Ilmanen [16] and
those of the minimal varifold definitions with boundary in Allard [2] and Griiter and Jost [13]. For
general background theory on rectifiable varifolds and Radon measures, an excellent source is Simon
[25]. The same theory specifically oriented to varifolds flowing by Brakke flow is discussed in Brakke
[5] and Ilmanen [16]. The monotonicity formula, Theorem B.0.1 is our own. Ideas for Theorem
B.0.1 were drawn from Buckland [6] who translated Huisken’s ([14]) original monotonicity formula
to the smooth mean curvature flow with Neumann free boundary conditions and from Ilmanen [17]
who translated Huiskens original monotonicity formula to Brakke flows without boundary.
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