Chapter 11

Definitions and Background Results

In this chapter we define mean curvature flow with Neumann free boundary conditions (MCFwN{BC),
and mention the necessary results already existing that will be needed to attack regularity theory.
This includes the existence theory of Stahl, as well as his interior estimates. More often however, we
will use the results of Buckland who developed the Monotonicity Formula for mean curvature flow
with Neumann free boundary conditions analogous to Huisken’s Monotonicity Formula.

11.1 Mean Curvature Flow with Neumann Free Boundary
Conditions

We begin by giving the definition of mean curvature flow with Neumann free boundary conditions.
In order to do this we first need to define the support surface.

Definition 11.1.1.

By saying that a smooth hypersurface S C R™*! satisfies the rolling ball condition with ball of
radius r for some r > 0 we mean that for each x € S and p < r there exists an n + 1 dimensional
ball B with radius p such that 0BNS = x.

With this definition we can define our support surface.

Definition 11.1.2. (Free boundary support surface)
Let G be a simply connected C® (n+1)-dimensional subset of R"*t1. Let ¥ := 0G¢ satisfy the rolling
ball condition for balls of mazimal radius 1/kx, and satisfy the condition on the second fundamental
form, As, of ¥

[As|]? +[|[VAs]| < &% < oc.

3. is then said to be a Neumann free boundary support surface. Here, for a set G the notation
G€ indicates the compliment of G.

We will then let G be the domain inside of which a surface will be allowed to flow. The set G will
always denote this domain in this section of the thesis. Similarly, ¥ (when not understood to be
signifying a summation) will always denote a Neumann free boundary support surface or simply,
support surface. In general for any given result, the support surface will be an arbitrary but fixed
Neumann free boundary support surface. This comment is especially important in Lemma 17.1.2
where the comment will be restated. We begin defining the flow with an initial surface.
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Definition 11.1.3. (Initial Surface)
Let M™ denote a smooth orientable n-dimensional manifold with smooth, compact boundary OM™

and set
MO = 1“7‘0(]\471)7

where Fy is a smooth embedding satisfying

8M0 = F0(8M") MO N Z, and
<wvg,vgokFy>(p) = 0 for all OM™, (11.1)

for unit normal fields vy to My and vs to X.

With this initial set up we are now able to define how to let the initial surface flow along the support
surface and thus define mean curvature flow with Neumann free boundary conditions.

Definition 11.1.4. (Mean Curvature Flow with Neumann Free Boundary Conditions)
Let ¥ be a Neumann free boundary support surface. Let I := [0,T) (for some T € (0,00)) be
an interval and let F(-,t) : M™ — R""L be a one-parameter family of smooth embeddings for all
t € I. The family of hypersurfaces (M;)icr, where My = F:(M™), are said to be evolving by mean
curvature with Neumann free boundary conditions on ¥ (or to be a mean curvature flow
with Neumann free boundary conditions on ) if

—

Grpt) = H(p,t) forall (p,t) € M" x 1,

F 50) = FO; (112)

F(p,t) Cc X for all (p,t) € OM™ x I, and
<wvvsoF > (pt) = 0 for all (p,t) € M™ x I.

Here H(p,t) = —H(p,t)v(p,t) denotes the mean curvature vector of the immersions M; at F(p,t),
for a choice of unit normal v for M;.

Remark: We will, in general, suppress the notation referring to the embedding map, using rather
only the position vector x € R"*! instead of F(p,t). With this understanding, we may re-express
the above equations geverning mean curvature flow with Neumann free boundary conditions as

% = H(z) forallze M,
oM, ¢ % and (11.3)
<vvs>(x) = 0 for all x € OM;.

Moreover, we take vy, to be the inner unit normal to G¢, that is the outer unit normal to G on ¥ so
that vs(z) corresponds to the outer unit normal to dM; for all x € OM, for each t € I.

We have thus defined mean curvature flow with Neumann free boundary conditions. The proof

that it is a reasonable definition in the sense that it is well defined and gives interesting solutions
comes from the work of Stahl [29] that we consider in the next section.

11.2 Stahl’s contribution and related results
Stahl’s work is important here as it provides the proof that we are studying anything at all, and

provides some technical PDE results that prove essential in later work. We first state Stahl’s theorem
stating that the mean curvature flow with Neumann free boundary conditions exists.
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Theorem 11.2.1. (Stahl’s existence Theorem)

For any Neumann free boundary support surface, ¥, and initial surface My there exists a unique
solution to (11.2), the mean curvature flow with Neumann free boundary conditions, on a mazimal
time interval [0,T) which is smooth for t > 0 and in the class C*T*'+/2 for t > 0 and any
a € (0,1). Moreover, if T < co then

sup{|A[*(z,t) :x € M"} — 00 ast — T. (11.4)

Since the flow is smooth (that is M; is smooth ¢ € [0,T)) it follows that there are no singularities
in this set and thus we are interested in My.(Mry is the ‘limit surface’ which we define formally in
Definition 13.1.2 which can be written as the set of all points x = lim; .o x;, where z;;, € M;, for a
sequence t; /' T, that is all points ‘reached by the surface’.) For this to produce meaningful results
we need T' < oo which we will now assume to be the case for the remainder of this Thesis.

The direct PDE approach of Stahl in [29] and [28] lead to important technical results. In par-
ticular the interior derivative estimates of the second fundamental form. Which in our notation and
set up, can be stated, as can be seen in Buckland [6], as follows.

Theorem 11.2.2.
Let (My)¢cjo,1) be a mean curvature flow with Newmann free boundary conditions. Suppose that for
some o € R™1, R> 00 < t; <T there exists a Cy € R such that

Az, 1) < —5

for allx € Br(xo) andt € (t;—R?,t1) then there exists, for each k € N, a constant Cy, = Cr(n, k, Cp)
such that for all x € My N\ Brjoayc(co))(®o) and t € (t; — R?/4,t1)

Ck

|VFA(z, )] < TRTD

The main use of the interior estimates is to be able to apply the Arzela-Ascoli Theorem to sequences
of flows (in particular parabolic blowups of flows. What blowups are will be discussed later) in
order to obtain a smooth limit flow. The Theorem of Arzela-Ascoli is actually a theorem in Analysis
applying to functions. However, since mean curvature flow with Neumann free boundary conditions
can be formulated as a system of equations for which the Arzela-Ascoli Theorem is applicable (See
Stahl [29]) we can also apply it here. The form of the Arzela-Ascoli Theorem that we will be using
will be stated following a definition of a type of convergence that is used in the theorem and in
general will be important to us.

Definition 11.2.1.

Let {(Mtj)te[tj,o) }ien be a sequence of mean curvature flows with Neumann free boundary conditions
with t; \, —00 as j — oo. Let (M)i<o be a mean curvature flow with Neumann free boundary
conditions. We then say that (Mg ) converges smoothly to (M,) if the respective families of em-
bedding maps, {F}}, representing the mean curvature flows with Neumann free boundary conditions

converge to the limiting family of embedding maps {F;} in C*.

We then say that (Mt]) converges weakly to (M;) if for each t <0 and ¢ € CL(R"T! R)

lim [ ¢dH" = [ ¢dH™.

I J My M,
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Remark: Note that smooth convergence implies weak convergence, a fact that we will regularly use
in the remainder of the thesis.

We can now state the Arzela-Ascoli Theorem.

Theorem 11.2.3.

Let {(M¢)ie—t,,0)}jen be a sequence of mean curvature flows with Neumann free boundary conditions
supported respectively on the support surfaces ;. Suppose also that there exists, for each k € N,
constants C), such that

[VEA;1? < Cy

for all t € [t;,0) and x € U; C R™™! (where U; is open). Suppose also that U; x [t;,0) — R" 1 x
(—00,0) as sets. Then there exists a smooth limit flow (M;).<o to which the flows (M} )iy, o)
converge smoothly.

11.3 Buckland’s contribution and related results

After the ground setting work of Stahl, the next step of reseach on mean curvature flow with Neu-
mann free boundary conditions in the classical sense was conducted by Buckland in his doctoral
thesis [6]. The main contribution of his that we are interested in is the general Monotonicity For-
mula. We will in fact need a Localised Monotonicity Formula that we develop in the following
chapters, but it is based on Bucklands general formula. Further, the properties of the distance and
reflection functions of Griiter and Jost, and the properties of Buckland’s test function 7, +, and the
modified backward heat kernel developed by Buckland will become important to us.

The central idea of Buckland, and thus, the central idea of the Localised Monotonicity Formula
presented in this Thesis, is based on the following expansion formula, proven in Buckland [6]

Proposition 11.3.1. (Buckland’s Expansion Formula)
Let M = (M¢)ieo.1) be a solution of (11.2) and Uan open subset of R" ™1 containing M. For any

functions f,g: U x [0,T) — R, where f € C3(U), % € C3(0), g € C*(U) and ¥ € C°(U), we have
the following general expansion formula:

N 112
S, Sodne = = [y, ol H = 252\ dyu+ Jyy, FQUa + [y 9 (f = Dan) Sy 5
+ forr, (9 < Df,vs > —f < Dg,vs >)do,

where here and henceforth the operator @ is defined by

a DL 2
" + divpg, Dg + | gg| (11.6)

Q(g) = Bt

Remark: In general the measure p; is the Hausdorff n-measure restricted to the related M; times
the multiplicity of the surface. That is

[ (A) = / 0dH™
M,NA

where 6 is the multiplicity function. Similarly o; will denote the Hausdorff n — 1-measure restricted
to the boundary of the associated surface 0M; times the multiplicity of the surface. As we will later
impose for the classical case that the multiplicity be identified with 1 u; and o; will denote exactly
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Hausdorff n-measure restricted to M; and Hausdorff n — 1-measure restricted to 0M;. The notation
with H™, or H"~! will be used interchangeably with y; and o; depending on notational convenience.

The general idea for drawing monotonicity from Proposition 11.3.1 is to choose f and g such that
the last two terms of (11.5) disappear and that the second term is controlled by f and g themselves.

We will introduce Buckland’s choices of f and g, that also become important here, shortly. In
order to do so, however, we need to introduce Griiter and Jost’s reflection function and some of its
properties. So that we may introduce the reflection function we first need to discuss the distance
function, where we are taking the distance from an arbitrary point to the support surface 3.

Definition 11.3.1.

Let X = OG be a Neumann free boundary support surface. For any point x € R"*!, we denote the
minimum distance of x to ¥ by dx(x) := dist(x,X), whenever it is well defined. We then define the
signed distance function by

d(z) == {d;é()x) Z.fZ T (11.7)

We note the following standard result concerning the distance function.

Proposition 11.3.2.
Let G C R™! with ¥ = 0G € C* for some k > 2. Then there exists an € > 0 such that d € C*(3.),
where Y. is the e-tubular neighbourhood of 32 given by

Y. = {x e R"" . dy(2) < e}

On this neighbourhood, the nearest point projection R*1 — X also exists. This projection will be
denoted by ms;.

Remark: Due to the rolling ball condition with maximal radius ', it can be shown (see [6]) that
for 3 a Neumann free boundary conditions support surface 3. O ¥/, so that the distance function
and nearest point projection functions are also well defined on ¥ ...

We are mainly interested in the distance function only as it is necessary for the definition of the
reflection function of Griiter and Jost. However it is also important to note the following,.

Proposition 11.3.3.
Let 3 be a Neumann free boundary support surface and let xo € .. Then

1. Dd(z¢) = vs (75 (20)),
2. ||D%d|| < k(1 — drx)~", and
3. ||D3d|| < k%(1 — drs) 3,

where || - || refers to the mazimum norm and vs is the unit normal to ¥ that points in the direction
of increasing signed distance. We will henceforth set vs. to always denote vy,. Further we will take
vs(z) to mean vy (ms(x)). Since the vector function vs, will not be used in any other way this
simplifies notation without creating confusion.

We now introduce the reflection function of Griiter and Jost that is so important to our analysis.
Just as importantly is the ‘radius’ function related to the reflection function that we also now define.
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Definition 11.3.2.
For any x € X ,.,, we define
Z:=z—-2(<z,vs —ds)Vsigma

to be the tilde-reflection of = across X and set
= |z|® + |7|?.
Furthermore, for any o € R™! we define the translated r function
Ty i= | — 20]* + |ac/_—\_3?0|2,

where the reflection 90/—\_;0 is then actually the reflection of x — xy around ¥ — xy.

Remarks:
1) Using the fact that Dd = vy, we can also write

Z=x—2(<z,Dd>—d)Dd. (11.8)

2) The motivation for the definition of this reflection function will not become naturally clear in this
thesis. We note however, that the original very important property of this reflection is that on X
(when 0 € ¥) < z + &, vy, >= 0, a fact that is not shared by the usual reflection function.

3) We note that in the special case of a planar support surface > > 0 # = z and thus » = 2|z|?. This
reduction to a simple case, allows the boundaryless case to be retrieved from the boundary case by
reflection around the boundary.

Those properties of the reflection function proven by Buckland that we need are as follows.

Proposition 11.3.4.
Let 3 be a Neumann free boundary support surface. Then for any x € 3., we have the following
estimates:

1. Hm,.i):_,o T=cx
2. |Z| = |x — 2dDd)|

2 32]z%kx 16]z|* k2
3. |Dr|* <8r+ Todry T (odns)?”

. N 20nks || Ank%|z)?
4. |divpyg, Dr — 4n| < T—drs T (—dns)?’ and

5. < Dr,vs >=0 for all x € X.
To this we add the following property that will become important in our area bounds.

Proposition 11.3.5.
Let Y be a Neumann free boundary support surface and let xo € X. Then for all x € R**!

|x — x|

g < |z — 0| < 3|z — 20l

It then also follows that
10]z — xo)?

5 <1y < 10|z — zo|?
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Proof:
From (2) in Proposition 11.3.4 and using that |Dd| = 1 we have \:E/:/xo| = |z — 20 — 2dDd| <

e~
—~—

|z —x0|+2|d|. However, since z¢ € %, d(z) < |x— 0|, thus |:E/:/xo| < 3|z —wxo|. Since z—x9 = = — g
we have reciprocally that |« —x¢| < 3|x — x|. The result follows from the definition of r,, and these
two facts. ¢

We now introduce the two functions involved in the monotonicity formulas introduced by Buck-
land. The first is a time dependent localisation function on the support of which certain important
properties hold.

Definition 11.3.3.
Let . be a Neumann free boundary support surface with ky > 0. Then for any xo € X3, to € R and
6 € (0,2/5] we define Buckland’s localisation function 7, ., : R"*' xR — R by

4

2
2K
n(zo,to)(‘r7 t) = (1 - (([{,2 TtE )6) (Tmo — 40’117‘,50)) , (11.9)
¥ 'to

+

where 1, = to—t. Should (xo,to) be understood, we write simply n. We further define the following
number which proves to be critical:

3 \2/6
(z50m)

2
55!

TO ‘=

The fundamental properties of Buckland’s localisation function we present below are mostly due to
Buckland. However, as we will need to have differing time centers and an additional lower bound,
we present the properties we will need below.

Proposition 11.3.6.
Let ¥ be a Neumann free boundary conditions support surface. Let xo € X, 6 € (0,2/5] and t; € R.
Then for each t € [t; — 710,t1) we have

nxg,tl S 25Ga

$pt Ny, C {2 € R | — xolry < (/-@227')6} N1 /ky,

- <9 t ,
17dl€2 = on sp 7710,151

d
(E — AM,,) Nro,ty < 0,

spt Neo.t1 — R as ky — 0.

Further, for each t € [0,T) we have
n—1as ky — 0.

Additionally,
1
Nz, ty Z 2_56 on B(q—o/2)1/2($0) X (tl — T(),tl — 7'0/2].

Proof:
All of the properties except the last,

1
Mzotr 2 e O By /2y172(20) X (t1 — 10,11 — 70 /2],
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follow from Bucklands Proposition 4.1.1 in [6]. It only remains to show this last property. For this
we note, from Proposition 11.3.5, that | — x| < 3|z — 2|. We then calculate directly as follows:

Moo (,1) = (1 _ ( (:gf)5)2 (ras —40n7‘)>

4

+

o B 2242010z — z0|?K2 :
= (3/160n)% N
85—
> (1—35(3/160n) /941
1
> —.
= 256

&

We now look at the backward heat kernel. We define first the usual backward heat kernel as used
in Huisken’s original monotonicity formula.

Definition 11.3.4.
We define the usual backward heat kernel p: R"™' xR — R by

1 z|?

t) = ——— e 4t

Also the translate around (x¢,ty) € R x R of p is defined by

_lz—xg|?

0
= e Aio-t
ot (:0) = gy gy o Jort<to
An important property of the usual backward heat kernel is that Q(p) = 0. We state this formally
below. The proof is simply direct calculation.

Proposition 11.3.7.
Let (M;) be a mean curvature flow with Neumann free bounday conditions and (x¢,ty) € R**! x R.
Then for each t € [0,T) and x € My ~ OM,

Q(p(zo,to)) =0.

The backward heat kernel needs to be altered to be used in the boundary case. The main two
properties we need are that ) of the backward heat kernel be controllable, and that its derivative
is perpendicular to vy so as to get rid of the boundary term. To do this we define the following
modified backward heat kernel.

Definition 11.3.5.
Let ¥ be a Neumann free boundary support surface and 6 > 0. We then define the modified
backward heat kernel p,. : R"" x (—00,0] — R by

1 T
prs(@:8) = (—47rt)n/2 N T

Furthermore for any vo € R™! and to € R we define the translates

1
Prs,zo,to (:L', t) = (

N A —

= 8116(kE )0+ )T

n/2 ’
47Ty,)

where v, =ty —t. Whenever the x¢ and to are understood we will write simply prs, for prs zo.to-
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With this modified backward heat kernel we do not have Q(p.s) = 0 in analogy to the Q(p) = 0
result for the usual backward heat kernel. However we continue to have what proves to be sufficient
control, as embodied in the following theorem. The Theorem is essentially due to Buckland, we show
here, however, that the same theorem holds for a larger range of times, which becomes important to
the regularity results, in particular through Theorem 14.2.1 and the Clearing Out Lemma (Lemma
16.2.1) later on.

Theorem 11.3.1.

Let M = (My)epo,r) be a mean curvature flow with Neumann free boundary conditions supported
on the support surface ¥.. Let xg € X, § € (0,2/5] and t1,t2 € R. Then for all t € [t1 — 1), over the
support of Nz 1, (x, 1), we have

Q(pK/Z7IU7t1) < C(n)pﬁzyxoytlﬁ%%jil
where T = t1 —t.

Proof:
We proceed as in [6]. Without loss of generality we let zp = 0. As in [6] we then calculate for
the broader class of perturbed backward heat kernels p := p,.04 (@ = a(7))-where in general for
X0 € R™1! and to € R

1 o~ S0

Pa,xo,to (:L', t) = W

- n a'r r divpg, Dr | Dr|?
Qlp)<p (g " 8(a+1)?r 8@+ 172 8(a+1)r  (B(a+t 1)7)2>

Using Proposition 11.3.4 and the fact that (1 — dkx)~! < 2 on spt 7y, ¢, it follows that

an a'r 10nks|x| + 87m22|x|2)> (64|z|3112 + 64|z|*kE — 8ar>

@) =p <2(a + 17 8(a+1)37 2(a+1)7 (8(a+1)7)?

Now choosing, a(7) = c¢(k%7)?, where ¢ > 0 is to be chosen later, and noting a’(7) > 0, that we are
in spt 7,1, and (k47)° < 1 for 7 < 79, we have

plk2r)? [ en 2216 — o
Q) = (a+1)r (7 Ot R e ) '

Hence, choosing ¢ = 16 gives pa.0.t, = Prs.0.4 and Q(p) < 1TnprZ70-1 %

One additional important property of Bucklands localisation function and the modified backward
heat kernel has not yet been mentioned. It is this property that allows for the boundary terms in
(11.5) to be nullified.

Proposition 11.3.8.
Let 3 be a Neumann free boundary support surface, xqg € ¥ and tg € R. Then for all z € &

1. < Dngyte,vs >=0, and
2. < Dpl{z@oﬁ(ﬂ vy, >= 0.

Before continuing to other background results we state Bucklands Monotonicity Formula, which,
although not directly used in this thesis, forms the basis of our local monotonicity formulas proved
and used later in the Thesis.
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Theorem 11.3.2.

Let My be a family of hypersurfaces evolving by mean curvature with Neumann free boundary con-
ditions supported on the support surface X for all t € [0,T) and § € (1/3,2/5]. Then for all
te[T —1,T) and any 9 € ¥ we have

2

_, Dlp
—= NPks duta

4 (60”2267% / npmdut) < T / H
dt M, M,

where n and p., are translated around (zg,T) and C is a constant depending only on n.

Rs

11.4 Parabolic Rescaling

The observance of the behaviour of the flows under parabolic rescaling is also found to be very useful
in proving our results. It allows us to work with the asymptotic behaviour of the flows without losing
all of the mass of the surface.

Definition 11.4.1.

Let M = (M¢).epo,1) be a solution of mean curvature flow with Neumann free boundary conditions
on the Neumann free boundaary support surface ¥.. Let zo € R™™! and to € (0,T]. Then for
(z,t) € My UX % [0,t9) and any A > 0 we define the parabolic rescaling of M by a factor of ),
or simply the parabolic rescale (or blow up), to be the change of variables (z,t) — (y, s) given by

y:)\*l(zil,o) and s:/\*z(t—to)_
This definition implies the following equivalences
TEM &y N (Mygyy —x0) = Mégxg,to),A

and
reEY ey (E -1 =25

Mégx”’to)’A and X3° will be written simply as M)} and X respectively when the x¢ and to are under-
stood.

In the parabolically rescaled setting we have

Proposition 11.4.1.
Under parabolic rescaling the hypersurface ¥5° is a Neumann free boundary support surface and the

resclaed flow M, §I“’t“)’A is a mean curvature flow with Neumann free boundary conditions supported
on the Neumann free boundary support surface ¥3°. Further the induced measures i and ps of the

surfaces M; and MEEOA gre related by
dpe(x) = N"dps (y).

Proposition 11.4.2.
Under parabolic rescaling we have

Nxoto = 77 and Prs,xo,to T )‘_nﬁkﬁz

(y.s) = (1 - (M) (r(v) +40ns>>

where
4

(—s)°

+
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and

r(y)
Pars (Y, 5) = qu“wﬂfnz)w)s.
—4ans

Here r(y) = |y|*> + |§|® as in Definition 11.3.2 where the reflection §j is taken with respect to the
rescaled support surface 33°.

Proposition 11.4.3.
Let X be a Neumann free boundary support surface and § € (1/3,2/5]. Then for each s < 0 we have
L y—y,
2. pAAKz: (y7 S) - p(y7 S), and
3. n—1
uniformly on compact sets as A\ — 0, where § is the tilde reflection of y around X. Furthermore,
as A — 0 we have spt ) — R"H1,

All previous results also clearly allow for rescaled versions, since parabolic rescaling is only really
a change of variables. In particular we can write the rescaled version of Buckland’s monotonicity
formula as follows.

Theorem 11.4.1.
Let M = (M;)icjo,1) be a mean curvature flow with Neumann free boundary conditions supported on
the support surface $. Then for any A\ > 0, to € (0,7] and zo € & we have for all s € [-1o\71,0)

> DLpy 2
_ Y Pres Aasess i,

d [ c(-(ws)?s) 5 C(—(rns)2s)°
el Kx)“s < _ Kx)“s
dS (e Ms(mo,to))\ UPAnEst - € Ms(mo,to))\ H

where H is the mean curvature of the surfaces M gnd € = C(n).

ﬁAHE

The main interest in parabolic rescaling is usually the limiting surface or flow (when it exists) arising
from letting A go to zero. In particular, our last preliminary result gives the existence of such a limit
surface, ensuring also that it is non-empty provided that the Type I assumption is satisfied.

Definition 11.4.2.

A mean curvature flow with Neumann free boundary conditions, (Mt).cjo,) is said to satisfy the
type I assumption at time to € (0,7 if

_Cu
(to —t)1/2
on the surfaces My for all t € [0,T) and some constant Cy > 0. For the remainder of the thesis Cy
will always be understood to be a type I constant.

JA(,8)] < (11.10)

The type I assumption in this case is necessary because it ensures that the limit flow will not be
empty. In particular it assures the existence of the below defined limit point.

Definition 11.4.3.
We define the limit point function Y : M™ — R by

T(p) := lim F(p,1),

for any point p € M™. The existence of this limit follows directly from the type I assumption and

the fact that

aF -
= =
dt

We then say that Y(p) is the limit point of p.
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With these definitions we can now state a limit existence theorem.

Theorem 11.4.2.

Let M = (M;)icjo,1) be a smooth properly embedded mean curvature flow with Newmann free bound-
ary conditions supported on the support surface ¥ satisfying the type I assumption at time ty € (0, T
and let xo = Y(p) for some p € M"™. Then for every sequence \; \, 0, corresponding to t /' T,

there is a subsequence {\;, } such that the rescaled surfaces M:\jk converge smoothly to a non-empty
embedded limit surface, M’ = (M])s<o such that

1. (M}) evolves by mean curvature flow for s < 0;
2. If p & OM™ then M| has no boundary;

8. If pc OM™ then M| has boundary OM; C X, , where X!, is a hyperplane through the origin
y=0 and<1§,u/g\;0 >=0 on OM].

11.5 Notes

The problem of mean curvature flow with Neumann free boundary conditions, as has been made
apparent is not new, though Definitions 11.1.2-11.1.4 follow Buckland’s presentation [6]. Theorem
11.2.1 is due to Stahl in his ground setting works [29] and [28]. Theorem 11.2.2 is due to Stahl
[29] formulated (albeit already in rescaled form) in the presented way by Buckland [6]. Smooth
convergence in the sense of Definition 11.2.1 is a standard differential geometric concept, just as
weak convergence is a standard measure theoretic concept. (See for example Ecker [7] or Evans and
Gariepy [10].) The Arzela-Ascoli Theorem, Theorem 11.2.3, is actually a functional analysis result
that can be applied here due to the formulability of MCFwNfBC in terms of functions. Discussion of
the form used here can be found in, for example, White [32]. Proposition 11.3.1 follows from standard
differential geometric identities, a proof can be found in Buckland [6]. Although the reflection
function, Definition 11.3.2, is due to Griiter and Jost [13], we follow Buckland’s [6] treatment for
Definitions 11.3.1 and 11.3.2 as well as Propositions 11.3.2, 11.3.3 and 11.3.4. Proposition 11.3.5
is our own observation. Buckland’s localisation function is due to Buckland [6] as are all points of
Proposition 11.3.6 excepting the last which is our own observation. The usual backward heat kernel
was first used effectively in mean curvature flows by Huisken [14], though the modified backward heat
kernel, Definition 11.3.5, is due to Buckland [6]. Theorem 11.3.1 comes in principle from Buckland,
the separation of time centres is, however, our own variation. Proposition 11.3.8 and Theorem 11.3.2
are due to Buckland [6]. The principle of parabolic rescaling is standard in the treatment of mean
curvature flow, see for example Huisken [14], Ecker [7] and Buckland [6]. The particular implications
in the MCFwNIBC case as presented in Propositions 11.4.1, 11.4.2 and 11.4.3 as well as Theorem
11.4.1 are, however, due to Buckland [6]. For previous applications of the type I assumption one
could look to Huisken [14], Stone [30], and Buckland [6] amongst others. The limit flow existence
theorem, Theorem 11.4.2, is due to Buckland [6].
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