Chapter 8

(Generalised Koch Type Sets and
Relative Centralisation of Sets

We turn now to the generalisation of the sets A. and I'. which in our generalisations turn out to
be two examples of the same sort of set. As already hinted at in Definition 6.2.2 the generalisation
can be seen as increasing the freedom with which the base angles of the triangular caps 9;;‘11- for a
set A. We allow this freedom in two differing strengths. Firstly that 6,,; = 6, ;, ¢,j € {1,...,2"} as
in the construction of A.. Secondly that 6, ; are allowed to vary freely over n and j. A common
restriction to the two variations is that 15, ; C Ty, ; = 6ni < 01, ;. That is, as we take triangular
caps inside of previously constructed ones, the base angles reduce. The rate of reduction in separate

triangular caps may of course vary.

It is clear that the second variation is a direct generalisation of the first. We keep them sepa-
rate, however, since the first allows fewer complications than the second so that some of the results
are able to be proved in a stronger and cleaner form for the first variation.

The original motivation for this investigation stems from an interest in the dimension of these
sets. ' and A, are both examples of the first variation where for I',, 9,1:;- is constant over n and 1,

and for A, 9;?;- varies by strictly decreasing to 0 in n. The motivating question asks whether higher
dimensions than (in this case) 1 can only arise from constructions with a constant base angle as
found in T'.. The answer turns out to be no. Along with a presentation of this answer for both
variations of our generalisation we present various other results concerning measure and rectifiability
relating to our generalisations.

In this chapter we present the two main definitions of the sets in question and show their equivalence
(both definitions are necessary as they will both be used due to the fact that which definition is more
convenient to complete a proof varies with the results that we will prove). We further show another
characterisation of these sets in terms of a bijection from R. We then present some general lemmags
and background results necessary to present the main results concerning measure, rectifiability and
dimension. The main results are then presented in the next and final chapter.

8.1 Equivalent Constructions of Koch Type Sets

We start, quite naturally with definitions, equivalences and characterisations. First of all with a
formal definition of the first variation of the generalisations.
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Definition 8.1.1.
Suppose we can construct a set B as follows:

Let Ao,1 be a base (a line segment in R?) and Ty be a triangular cap on Ap1 with vertical height
eH (A1) with e < 1/100. Let 1(0,€) be the base angles of To.1 and the two shorter sides of To 1
be named A1 1 and Ay 2. We then construct two new triangular caps 111 and 11 2 on A1 1 and A o
with base angles ¥(1,e) < (0,e). We define

2
AO = TO,l and Al = U Tl,i-
i=1

Then suppose we have A, = U?ile- a union of 2™ triangular caps with base angles ¥ (n,e) and
271 shorter sides labelled A, ;, i € {1,...,2""1}. Then construct a triangular cap T,+1; on each

Apt1,i such that the base angles y(n + 1,¢) satisfy v(n+1,¢) < ¢(n,e). Define Api1 = U?i;le-.
Finally define
B =) An
n=0

We then call a set A an A.-type set whenever A € {B,B ~ E(B)}.

Remark: We see that the above is a generalisation as there is no pattern to the size of ¥ (n,¢)
provided that it is non-increasing in n. In T'; ¢(n,e) was constant in n, and in A, ¢ (n,e) reduced
to zero in a prescribed way. By comparison to Constructions 4.1.1 and 4.2.1 it is clear that I'; is
an A.-type set but not clear that A, is an A.-type set. However, through the second form of the
definition and the proof of their equivalence it will be proven that both I'. and A. are A.-type sets.

Then immediately we define the second variation.

Definition 8.1.2.
Suppose we can construct o set B as follows:

Let Ao be a base (a line of positive finite length in R?) (without loss of generality we will gen-
erally assume that Ap; = [0,1] C R) and Tp1 be a triangular cap on A1 with vertical height
eH'(Ap1) with e < 1/100. Let 0y be the base angle of To1 and the two shorter sides of To1 be
denoted A1 and A; . We then construct two new triangular caps 111 and Th 2 on A1 1 and Ao
with base angles 011,012 < 6y. We define

2
AO = TO,l and Al = U Tl,i-
i=1

Then suppose we have A, = U?_ T, ; a union of 2" triangular caps with base angles 0,,; and 2"+!
"shorter sides" (two per triangular cap) labelled A, 11,1 € {1,...,2" T}, Then construct a triangular

cap Tpi1,; on each A,y1,; such that the base angles {9n+17i}§lf satisfy for each i € {1,...,2"}

Ont1,2i—1
O >3 b2
= 9n+1,2i

(i.e. the new base angles for each triangular cap are bounded by the base angle of the nth level that
the new triangular cap is contained in).
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2n+1

Define Apy1 =U;_; Tht1,:. Finally define

5
n=0

We then call a set A a Koch type set whenever A € {B,B ~ E(B)}. We denote the set of all
such sets by K.

Remark:

(1) By choosing 6,,; to be constant in i for each n it is clear that Definition 8.1.2 is a direct
generalisation of Definition 8.1.1. As noted in the remark following Definition 8.1.1 In general any
notation that can be considered in relation to some set A € K, for example 0, ;, T, ;, etc., the
superscript A will denote association with the set A when it may be unclear which set we are talking
about. That is T,j‘,j will denote the triangular cap T, ; associated with the construction of A.

Definition 8.1.3.
Let A e KC. Then

n,t’

on
Aﬁ = U AL
i=1
The second round of definitions for the two variations of generalisation are directly analogous to the
original construction of A, in that we consider A, ; sets instead of the T}, ; sets.

Definition 8.1.4.
Suppose we can construct a set B as follows:

Let Ap1 be a base (a line in R? of positive finite length) and To 1 be a triangular cap on Ag;
with vertical height eH'(Ap1) with € < 1/100. Let 1(0,¢) be the base angles of To1 and the two

shorter sides of Tp1 be named A1, and A, 2. We then construct two new triangular caps 111 and
Ty 2 on A11 and Aq 2 with base angles ¥(1,¢) < 1(0,¢). We define

2
AO = TO,l and Al = U Tl,i-
i=1

Then suppose we have A, = U?ile- a union of 2™ triangular caps with base angles ¥ (n,e) and
2"+l shorter sides labelled Ani, 1 € {1, 0y 271N Then construct a triangular cap Ty+41,; on each

Apt1,; such that the base angles y(n+ 1,¢) satisfy Y (n+1,e) <(n,e). Define /Inﬂ = UfiilAm—.

Finally define
B= A, ~ | 4.
n=0 n=0

We then call a set A an A.~type set whenever A € {B,B ~ E(B)}.

Then immediately we define the second variation.

Definition 8.1.5.
Suppose we can construct a set B as follows:

Let Ao be a base (a line of positive finite length in R?) (without loss of generality we will gen-
erally assume that Ap; = [0,1] C R) and Tp1 be a triangular cap on Ag1 with vertical height
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eH'(Ap1) with e < 1/100. Let 0y be the base angle of To1 and the two shorter sides of To1 be
denoted A1 and Ay 2. We then construct two new triangular caps 111 and Th 2 on A1 and Ao
with base angles 011,612 < 6y. We define

2
AO = TO,l and Al = U Tl,i-
i=1

Then suppose we have A, = U?ile- a union of 2" triangular caps with base angles 0, ; and gn+l
"shorter sides” (two per triangular cap) labelled A, 11,1 € {1,...,2" T}, Then construct a triangular
cap Tpi1,; on each A,y1,; such that the base angles {9n+17i}?i;1 satisfy for each i € {1,...,2"}

Ont1,2i—1
Ops >4 0
= 9n+1,2i

(i.e. the new base angles for each triangular cap are bounded by the base angle of the nth level that
the new triangular cap is contained in).

n+1

Define Apy1 = UZ | Apy1i. Finally define

B= ) d,~ | 4.
n=0 n=0

We then call a set A a Koch type set whenever A € {B,B ~ E(B)}. We denote the set of all
such sets by .

Definition 8.1.6.
Let A € K we then define the edge points of A, E(A) by

oo 2"

EA) =] BT

n=1i=1
where E(Trfi) is as defined in Definition 4.1.2.

Before going on to show that these definitions are equivalent we need the following simple but
important fact.

Lemma 8.1.1.
Let A € K. Then for any sequence {n,i(n)}nen such that T, ;) C Ty—1,i(n—1) for each n € N

lim H'(A, in)) = 0.

n—oo

Proof:
Since, by assumption 6,1 < 7/32 and by construction 6, ;(,, is decreasing in n. It follows from the
inductive definition of the A, ;(,)’s that

Hl(An,i(n)) = (Cosenfl,i(nfl))_lHl(Anfl,i(nfl)) < (00390,1)_17—[1(Anfl,i(nfl)) = CHl(Anfl,i(nfl))

where C' = (cos,1)~" < 1. It follows inductively that H' (A, ;i) < C"H'(Ag,1). Since H'(Aq,1) <
oo by construction, the result follows. &

We now show that these definitions are equivalent.
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Proposition 8.1.1.
Definition 8.1.1 is equivalent to Definition 8.1.4. Definition 8.1.2 is equivalent to Definition 8.1.5.

Proof:
We show these equivalences by showing that should .45 be defined as in Definition 8.1.2 and 4; be
defined as in Definition 8.1.5 with the same T, ;, A, ;, 6,.; etc. then

oo 2™
AQNEAQ C A = UANUA C<ﬂUTnl>

n=0i=1

That E(A;) = E(As) follows from Definition 8.1.6 and the fact that the T,, ; used for 4; and A,
are the same. We thus denote E(A) := E(A;) = E(Az). This will complete the proof since E(A) is
countable and thus H!(E(A)) = 0.

As in Lemma 4.2.1 we see that A; U E(A) is closed. Let z € (A2 ~ E) ~ A;. then d, :=
d(m,fh U E) > 0.

Now, for each n € N, z € T,,; for some i so that d(z, A; U E) < diam(T,;) = H*(A,.;). From
Lemma 8.1.1 we have lim, . H'(A,,;) = 0. Hence there is an no € N such that diam(Ty, ;) =
H'(Ayn,,;) < dp which implies d(z, A; + E) < H'(Ay, ) < dx = d(z, A1 + E). This contradiction
implies

oo 2™ oo 2™
mUTmicAlUEandthuS <ﬂ UTm>~ =Ay ~ E(A2) C A;.
n=01:=1 n=01i=1

Next, we note that for each m € NU {0}

- U 4oy

n=0 n=m-+ n=0

CS

Noting that for each m € N, U¥" "7, 11 ; is closed and that

omtl
U A, C U Tt
n=m-+1
we have
—
U A C U Tm+1 i
n=m-+1

Also, we note that for each n € NU {0}, /In = A, so that for each m € NU {0}

s
Cs

A, = | ) A,
n=0 n=0
It follows that for each m € NU {0}
) m >~ m m B m gm+1
() An~ UAn:( U AHUUA,L)N Ud= U Ao~ JArc U T
n=0 n=0 n=m-+1 n=0 n=0 n=m-+1 n=0 =1
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Thus

2m+1

AQNE.AQ CAl UANU m(UA NUno ) ﬂ UTerlz*AZ

m=0 i=1

8.2 Bijective Characterisation of Koch Type Sets

We now show that sets in /C can be characterised by a bijection from R into R?. Since some sets in
K do not have dimension 1 it may seem odd at first glance that such a bijection exists. By quoting
the fact that there is a bijection between R and the Cantor set, however, we see that the concept is
neither new nor foreign in mathematics.

We show also immediately that a certain level of control of the preimage can be retained. To
this end we need the following two definitions.

Definition 8.2.1.
Let A be a Koch type set. We denote the vertices of the triangular cap T, ;i am i, lm,i, and Tp, ;
chosen such that

Tz 004, (ami) =0, T,004, (Im:i) <0, and 7, 004, ,(Tm,:) > 0.

That is a denotes the "top" vertex as we have previously defined, and | and r denote the identical
"left" and "right" base angles.

Definition 8.2.2.
Let A € K and n € N, then o dyadic interval of order n in Ay (or simply, o dyadic intervals of
order n) is defined as an interval D,, of the form

Dy, = [lo,o + 127" (r0,0 — lo,0), lo,0 + (¢ +1)27" (10,0 — lo,0)]

for some i € {0,...,2™ — 1}. For some chosen j € {0,...,2" — 1}, the particular interval D,’ij is
defined by
Dy 5= loo+ 32 ™(ro,0 — lo,), loo + (5 + 127 (ro,0 — lo,0)].

As per usual the superscript A is dropped when the set is understood.

Remark: Note that should Apo be [0,1] on the real line, then the dyadic intervals in Ao are
simply the usual dyadic intervals.

Proposition 8.2.1.
Let A € K. Then there em’sts a sequence of Lipschitz functions F,, : R — R? (these functions will,
in general, be denoted by F2, when the set A € KC being refered to is not clear) such that

F;?(Aoﬁl) = Anfl.

Further there exists a bijection F (which will, in general, be denoted by F*, when the set A € K
being refered to is not clear) such that
F(Ao,1) = A.
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Additionally, denoting the relatively dyadic points of Ap1 by D;
that z's, fOT' {1'17562} = E(Aoyl), xr1 < T2,

D:={y:y=xz1+ (z2 —21)j2 ", n €N, 5 €{0,...,2"}};
we have F(D) = E(A). Finally for each dyadic interval D, ; in Ay,
Fn(DnJ) = An,z’ and f(Dnyz) C Tn,i-

Proof:
Since the proof is the same for any Ag 1, we assume for notational convenience that Ag; = [0, 1].
In this case D is also exactly the set of dyadic rationals in [0,1]. That is D = {j27" :n € N,j €

{0,...,2"}}.

We will define F as the limit of the F,, functions, and then show that it is well defined and has the
required properties. Firstly, we define fy : Ag — R? as

(y, tanbo 1y) €[0,1/2)
foly) = { (z,tanﬂgﬁl%l - Zg) y € [1/2,1]"

We see clearly that fj is a Lipschitz bijection between Ag and A; (since the graph of the function
draws out the triangular cap T({}l) with Lipschitz constant (and Jacobian) Lipfy = Jfo = cosf), L
We then similarly define for each n € N f,, ; : A, ; — R? by

Faily) = O;xi,,i(”z(OAn,i(y))vmnen,z‘(ﬁx(oAn,i(y)) +HY(An,)/2)) ye
= 04t (72(0a,  (9))s tanby i(H' (Ani) /2 = 72 (04, . (1)) y €I’

where I; = O, ([~H'(An;:)/2,0)) and I» = O ([0, H'(An,)/2]). (Note that the (1 —y) factor
in the definition of fo would change to some other appropriate constant should Ag ;1 # [0,1].) We
note in particular that f, ;(A,;) C T,;. Noting also that the two end points of A, ; stay fixed we
can define f, : A, — R? by

fn(y) = fn,z(y) Y€ Ani-

We see then that similarly to the fj situation f,, is a Lipschitz bijection between A,, and A, ; with
Lipschitz constant (and Jacobian in the case A is an A, type set) Lipf,(= J fn) = maxj<i<on 0039;1.

By writing for a collection of functions {g;}I,
0;09i = gn © gn—10° .. © go
we can then define the Lipschitz bijection between Ay and A, .1, F;, : A9 — R? by
Fn=oilofi

which will then have Lipschitz constant (and Jacobian in the A, type set case)

LipF, = JF, = [ [ (cos 6;)~".

=1

This demonstrates the first claim.
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We can then propose a definition for F and indeed we propose the definition of F : 4y — R?
to be
Fly) = lim Fu(y).

We need first of all to show that this function is well defined. To do this we suppose first of all that
Fo(y) € Ant1,i C Togiy,
for some i € {1,...,2""1}. Then
Frot1(y) = frnt+1,i(y) C Ty
Thus by induction, for each n,k € N
Fo(y) € Tov1,i = Fosk(y) € Tngryi

Then, from Lemma 8.1.1, since diam(Ty ;) = H'(An;), diam(T, ;) — 0 as n — oo for any
sequence {n,i(n)},en and thus by setting the sequence {i(y,n)}nen to be the sequence such that
Y € T,i(y,n) for each n € N (so that it is always well defined, we choose arbitrarily i(n) to be chosen
such that y = [,,; for each n for which y is an edge point) it follows that for any € > 0 there is an
ng > 0 such that for all n,m =n + k > ng,

d(Fn(y)a Fm(y)) < diam(Tno—i-l,i(y,n)) <e

so that {F,(y)} is a Cauchy sequence in R? and thus converges. It follows that F is well defined.
We still need to show that F is a bijective function between Ay and A.

We note firstly that for any y € Ay F,(y) € A, so that F(y) € U2 A, and thus

F(A) = |J Fly) c [ An.
n=0

y€Ao

Now, since new edge points a, ; are by the definition of triangular caps always directly over the
center of the base of the triangular cap, it follows that for all e € E, e = a,,; for some n € N and
i€{1,..,2"} and thus e = F,,((2i —1)/2"*""). Since the set {(2i —1)/2""")}, enieqi,....2n) = D the
set of dyadic rationals, it follows that (D) = F which is a claim in our Proposition.

Further, for all y € Ay ~ D, Foyk(y) N Ay C (Apt14kx ~ E) N A, = 0 for each k£ > 0 so that
Fly) ¢ A, for all n € N. It thus follows that

F(Ayg~ D) C GAH— GAHE{A,A—E(A)}CA
n=0

n=0

and thus that
F(Ag)=F(Ap ~D)UF(D) CAUE = A.

We therefore have F : Ay — A. We now need to show that it is bijective. We first show, however,
the final two claims that refer to the relationship of F to the dyadic intervals of Ag .

We quickly mention a sketch of a proof and motivation of the last two claims which will be more
rigorously proven in the following result.
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From the above comment on the image of the dyadic rationals and the definition of F;, for an
n € N it follows that for each i € {1,...,2" !}

1—1 4
o ([ 1] ) = s

This proves also our second last claim. Since, we have from definition that from each n € N and
any © € Ago, Fpt1(x) is in the same triangular cap T),; as F,(z). It follows by induction that
F(z) € T,,;. Since this is true for each z( such that F),(z¢) € T, and from the above this set is
equal to D,, ;. It follows that F(D,, ;) C T, ; which is our final claim in the Theorem.

Continuing with the proof of the bijective property we use the above proven important facts as
follows.

Firstly, that should z,z € Ay with © # 2z we then have that there is an n € N such that
2177 > |z — 2| > 27" and thus there exist i,j € {1,...,2""2} with 4 > |i — j| > 2 and the
property that z € [(i —1)27"72,i2" 2] and 2 € [(j — 1)27"2, j2"2].

It then follows that F,,(x) € T)+2,; and thus, as above, F(z) € T,4+2,;. Similarly F(j) € T)12 ;.

Since from Lemma 6.2.1 we know that for any n € N T}, 45 ; N T, 12 ; = 0 whenever 4 > |i — j| > 2
it follows that F(x) # F(z) and therefore that F is injective.

For surjectivity, we consider an arbitrary element y € A. For all n € N, y € T, j,,n) for some
i(y,n) € {1,...,2"}. Then, again from F, ([4=r,5]) = Ant1,; we see that it is instructive to
consider the intervals

]:_l(An,i(y,n)) = [(l(yvn) - 1>2_na i(y’ n)Q_n] =: Dn,i(y,n)-

Since T 41,i(y,n) C Thi(y,n) for each n it follows that Dy, 1 iy nt1) C Dy iy,n) for each n. We now

observe yo = N2 Dy, i(y,n)- For this yo

Fn(y0> C Fn(Dn,l(y,n)) - An,i(y,n) C Tn,i(y,n)

for each n. Thus for each n € N, |F,,(yo) — y| < diam(T}, ;(y.n))- Since this diameter goes to zero as
n approached infinity it follows that

Fyo) = lim Fo(yo) =y
From well definedness and the arbitrariness of y the surjectivity and thus bijectivity of F follows. <

We now show some results on the structure of F which expand on the last two points of the previous
results, as well as embellishing the proof somewhat. We show that the function can be looked at as
a function on each dyadic interval. A in any given triangular cap is a bijection between A in this
cap and a dyadic interval in Ag . These results make it much easier to track images and pre-images
and thus also to track how much measure has come from, or gone to where.

Proposition 8.2.2.
Let A € K be constructed from a base [0,1]. Suppose that {F,}52, are the Lipschitz functions such
that

FA:= lim F,

n—oo
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. . A
pointwise on Ag,

Fn = O?:Ofi
and writing 12, a2, and r,; as the edge point of A;?,i adjoining Af,i_l (or (0,0) should i = 1), the

centerpoint of A7}, and the edge point of Az, adjoining Az, ., (or (1,0) should i = 2") respectively.
Then for n € N and i € {1,...,2"} we have

Ani = Fooa(( =127, 427"), B (AR) = (- 12774277,

Ini = Foo1(277(i — 1))
Tri = Fpn—1(27™4)
and that F,,_; preserves relative distances. That is for each x,y € [(i — 1)27™,i27"]
[Fn—1(2) = Fue1(y)| = pnjilz =y

for some p,, ; € R.
Remark: Of the claims stated we are most interested in and thus emphasise

Ani = Fooa([(i = 1)277,0277), F (AR) = (- 12770277,

which gives us in essence a trace of the movement of a dyadic interval as it approaches the limit
set A. With this we can follow the track either forward or backwards to identify which parts of
A or Ay have positive measure given information about the measure of the other of A and Ay .
The other claims are stated here as an aid to proving the inductive step which is the key to the proof.

Proof:
We prove the statement by induction on n.

From the definition of Afl, A{‘)Q and the definition

_ [ (y,tanboy)  y €10,1/2)
foly) = { (z,tanGO?(jl — yz)/) ye1/2,1]"

It follows that A{';, = Fy([0,1/2]), A, = Fy([1/2,1]), that Fy '(Afy) = [0,1/2], Fy '(4f,) =
[1/27 1], that Fo(O) = (0,0) = l11, that Fo(l) = (1,0) =T12, and hence that F0(1/2) =711 = 112.

We see also that the preservation of relative distances holds with p; ; = tcm@(ﬁl for i = 1,2. The
claim thus holds for n = 1.

Now suppose that the claim is true for each n < m for some m € N.

We note that for any arbitrary i € {1,...,2m*1} there is a j € {1, ...,2™} such that i € {2j — 1,25}.
Now since Az, ; = Frn_1([(j — 1)27™,j371])

Fn([(G = 1)277,527"]) = fm © Fony ([(G = 1)27™,5277"]) = frm(Am.5)-

Since F,_1((j —1)27™) = 1A | F,(j27™) = A

=1t +m; and Fp, preserves relative distances we also have

Fro((j—1)2"m 42 m =4

mjo
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and thus (044 (Fr-1((j— 1)2=™+427m~1))) = 0. Thus, again from relative distance preservation
T2(Oaa (Fn-1([(G = 1277, (G = 1)27™ +27"71)) = [-H'(A])/2,0 =: L
and
7O (Froa (1 — D2 427771, j27m))) = (0,1 (A2)/2) = .

It follows then from the definition of f,,[j—1)2-m jo-m]

Faily) = Ogi,i(”m(oAm(y))atﬁman(ﬂz(oAn,i(y)) +HY(A,:)/2)) ye
it Oar [(m2(0a, (), tanbn(H' (Ani) /2 = 72(0a, . (1)) y €I’

and from the definition of Aﬁlﬂ’k, ke {l,..,2™ 1) that
A i10jm1 = Fn(((24 - 22774 (25— )27

A;?erl,Qj = Fm([(2j - 1)2_7”_17 2j2_m_1])

and since we know Fj, is a bijection that
Fot (Afi0-1) = (27 = 2)27"71,(2) = )27, and

F_I(Aﬁwrmj) =[(2j — 1)27™ 1, 2527,

Further,
Fol(2j —1)27™71), F((25 — 2)27™ 1) € E(Afp 4105-1)

and
Fn((2j — 127" 1), Fp(2j27™7 1) € E(A;?LH,QJ‘)

from which it must therefore follow that
Fon((27 = D277 = 1041y 2j-1) = litm1)25);

Fm((QJ - 2>2—m—1) = lfm+1)(2j71) and that

F(2j27"71) = T(én+1)(2j)-

Further, since Fy,—1|[(2j—1)2-m 2j2-m=] Preserves relative distance with [}, 1 ()~ Fpn—1(y)| = pm—1,5]7—
y| for all z,y € [(25 — 1)27™,2527™], from the definition of f,,(y) and F,, = f, o Fi,,—1 it follows
that F),, preserves relative distances on [(2j—2)27™1 (25 —1)27™ ! and [(2j —1)2~™~ !, 2527 ™~ 1]
with

Pm.2j-1 = Pm.2j = (tanb;)} ) )pm—1.;.

By substituting in ¢ for 25 — 1 or 25 as necessary it follows that all required properties are satisfied
for m + 1 with the choice of i € {1, ...,2™"1}. Since the choice of i was arbitrary this completes the
inductive step and thus the proof. O
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8.3 Further Characterisations and Properties of Sets in
Equiped with these results we are able to give a list of nomenclaturial definitions that will be
instrumental in describing our results.
Definition 8.3.1.
Let A € K. We introduce i(n,z) := N x Ay — N defined by
i(n,z)={ie{l,...2"} rx e T/ }.

We write ~ ~

02 =067 = lim 6.
and define the functions TI4 I13, ﬁf,i :R— R for and x € ANT, by

oo

ﬁA (.Z‘) = H(Cosef,i(n,x))_l
=0

n

I (z) = H(COSGA )", and

n,i(n,x)
=0
I, = I (2),

for any x € ANTA, which will be independent of which x € T, is used. The superscript A is

n,t n,t

dropped when the set A is understood.
Further B
Ap i={z € A:1I(z) <m}
A= F AR
Ay = {z € A:Tl(z) > m}
A;«Li =F (Amyt)
Ao = {z € A:TI(z) = o0}
AL =F 1 (Ax).

Also, for each a € R we define B
T, li={recAy:0)<a}

Y, = F(r;h
Yol :={r€Ay:02>a}, and
Yar = F(T}).

As with the other notations, when the A € K we are referring to is unclear we add a superscript A,
for example (AZ)A.

Two further definitions relating to sets being used will now be presented. Firstly a variant of the
angle between sets, and then a generalisation of the i(n, z) notation.

Definition 8.3.2.

Let L1, Ly be any two straight lines in R? and L', L? be the extensions of these lines to simply
connected lines of infinite length in both directions. We then denote the smaller of the two types of
angles that occur at the intersection of L' and L? by 1/)5;
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Definition 8.3.3.
Let A € K and B C Ao,o. Suppose that for some n € N, i(n,x) is uniform for all x € B. Then we
will sometimes for convenience denote this common value i(n, B).

Further notations will occasionally be used, but not regularly and so will be defined as they are used.
We continue now with further definitions and properties relating to the previous two definitions.
These properties will be necessary in dealing with the main results in the next chapter concerning
the sets in K.

Definition 8.3.4.
We define, for r € R, the collection A™ by

A" :={A: Ais an A, type set and 04 = r}.

We now state formally, to connect to the previous work, the A" sets to which our previous sets I'.
and A. belong.

Proposition 8.3.1.
I, e Aten™ (29) gnd A, € AY.

Proof:

That T'. € Atan”'(29) follows from the definition of I'. since we can calculate from the construction
that 0 = tan~'(2¢). Since 6} . is constant and from the proof of Lemma 6.4.1 lim,, o 02 = 0 it
follows that A € A°. %

We now wish to investigate some of the properties possessed by F and resultant from the definitions
that we have just made. We first look at two results concerning the 6, ;. We see that the stretch
(and when F has appropriate properties the Jacobian) that occurs to each A, is described by a
product of the base angles. Secondly, we consider a convergence equivalence of this stretch factor
to a convergence of the sum, which can be thought of as a test of whether a set A € K spirals
infinitely or not. We also would like to have a result concerning the density of A around the image
of a considered point in Ay ¢. An appropriate result does exist. It is, however, most conveniently in
the next section as a Corollary of results presented there. With these two results we conclude the
section.

Lemma 8.3.1.
Forany Ac K,neNandie{1,..,2"}

H' (Ag) 1 1
HH (AL = 7 :
’ 2n ]1;[1 cos(@ij,l)
Proof:
By considering the right angled triangle consisting of Aﬁyi, half of the base A;;LL ; of the triangular

cap in which A;‘,i arises and the line connecting the ends that don’t meet, we see that

H (Aﬁfl,j)
2H (A7)

HY(AA )
= cos(02 ,, ) sothat H}(A2,) = —— ==

( n,Dn,l) ( n,z) 2008(07€7Dn 1)
Thus repeating this step inductively we get

Hl(Aﬁij)

LAd )y = —— ol
H (AL ) 2c08(97’3,Dn,¢)
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= TTeoston, )7 | 2 (af)
7=0
as required. o
Proposition 8.3.2.
Let Ac A® and x € A. Then
H(Cos(as,i(n,m)))il < 00 = Z(es,l(n,m))2 < o0.
n=0 n=0

Proof:
We note that er?,i(n,a:) < /32 for all A € A° n € N, and x € A. Further we write M :=

HZO:()(005(97‘31.(71,35)))*1 and calculate

ln(M) =ln (H (cos(es,i(n,x)))_l> = Z ln((cos(e;;‘,i(n,x)))_l)'
n=0 n=0

We also use the relatively simple inequality, easily verifiable, that there exists a real co > C > 1
such that for all 6 € [0, 7/32]

1
592 < In((cosf)™t) < CH*.
(This can be proven either by using a Taylor series expansion or by comparing the second and (at

zero disappearing) first derivatives of ¢?” and (cosf)~! with respect to 0 for 6 sufficiently close to
zero.) We can now calculate

- 1 _ 1

Sk 2 S Inl(cos ) ™) (= i)

n=0 n=0

L oy pa 2
n=0
It follows that -
M < 00 <= In(M) < 0o <= > (07, ) < 0,
n=0

which completes the proof. &

8.4 Properties of The Bijective Functions

We now examine some important properties of the functions F;, and the function F. In order to work
with F properly we must first check that it has some basic properties. We show that the function
F is continuous and measurable. We show that images of compact sets are compact. We show that
positive measure is preserved. A less well behaved, but nonetheless important, property is that,
under conditions on A7, sets of positive measure have images of infinite measure. We additionally
prove the A € K version of Corollary 8.4.1. First of all, however, we prove that parts of the limit
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function F can be expressed as Lipschitz functions. Recalling that ﬁf) can be seen as the stretching

(or Jacobian) factor of F it would seem sensible that when this is bounded, we are actually looking
at a Lipschitz function. We show that this is true after defining how to bound the Jacobian. We
make bounds by simply looking at the restriction of the function to pre-image sets on which II4 is
bounded.

Definition 8.4.1.

Let A € K, then we define Fr, = F|y-1.

Lemma 8.4.1.

For m € R, Fy, := F|y—1 is Lipschitz with LipF,, < Cm?.

Proof:
Let z,y € A,,,!, and without loss of generality let y < z. There are then two cases to consider

L {ty+(1—t)z:te(0,1]} C A}, and
2. otherwise.

Case 1 is the simpler. In this case we have F,|jy.o) = Fljy.) and M(2) € [y,z]. Tt follows from the
construction of the F,, from which F is defined as a limit that

d(F,(y), F(x)) < md(y,x), for all n € N,
which implies

d(F(y), F(z)) < limsup d(F,(y), F,.(z)) < limsupmd(y, z) = md(y, x).

n—oo n—oo

For case 2 we know that there must exist a z € (y, x) such that II(z) > m and therefore there is an
no € N such that y,o ¢ T, ;. ., and indeed i(no, y) < i(no,z) < i(no,x).

It follows that we can find a minimum such ng and therefore an n; € N such that i(nq,2) — 3 <
i(n1,y) <i(ni,z) — 2 and such that for all n < ny i(n,y) € {i(n,z) — 1,i(n, x).

From this, it follows firstly that for each n < n; [y,z] C T;;‘Z.(n e T;;‘Z.(n ») Which implies that
Frl1y,z) has Lipschitz constant

LipFnU“yd] < max{ﬁﬁo (z), ﬁ,‘?o (y)} <m

so that
d(Fng (y), Fo (7)) < md(y, ).

It also follows from the choice of n; that

d(F(y), F(z)) <2 max HY(A?

ngfl,i(ngfl,w))'

we{z,y}
Now, using Lemma 6.2.1 we know
A A A _
T‘-Z(OA;‘UJ(TIUM (Tno,i(no,y) N Tno,i(noyx))) N OA;‘,O,MM) (Ano,i(noﬁy)) =0
and thus
d(F, F, > H(AL > 1 nin 14l
( no (y), no (:L')) = ( no,i(no,y)-i—l) = iwnel.}},lz ( no—l,iw(no—l))
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the latter following since Aﬁo i(no.y)+1 18 & shorter side of either A;;‘O_l i(no—1.4) OT Aﬁo_l i(no—1.2)"
Since
A = A
ye Tnoyi(no,y)Jrl =1<1II (y) <m

’nofl
and ~
reTA (= 1<IO2 () <m

no,i(no,z)+ no—1 =
it follows that

max Hl(A;;‘ofl,i(nofl,w))Sm min Hl(Aﬁgfl,i(ngfl,w))'

we{z,y} we{z,y}
Thus 1
Aoy (), Pro(2)) = 5 max H(AL iyt
Hence

d(F(y), F(z)) <2 max Hl(Aﬁgfl,i(ngfl,w)) < Amd(Fpy(y), Fno(2)) < 4m2d(y,x).

wefz,y}
Combining the two cases gives us, using m > 1
d(F(y), F(x)) < max{m,4m?}d(x,y) = 4m3d(z,y)

for each z,y € AL
Proposition 8.4.1.
Let A € K and let F be the function related to A. Then

1. F is continuous,

2. should B C Ay be closed, then F(B) C A is compact,

3. if B C Ag is such that H'(B) > 0 then H'(F(B)) > H'(B)/6 > 0,

4. if HY(AZL) > 0 then HY(Ax) = oo,

5. if OY(HY, ALY z) > 0 then ©'(H!, A, F(x)) = o0, and

6. F is H'-measurable.

Proof:
As we are considering only one A we shall omit the A superscripts.

For (1), since for all constructions A that we consider we have 6y o < 7/32 we see that

(cos(m/32))~!

diam(T,.) = H'(A,.) < 5

H' (An-1,.)
which inductively gives us

diam(T, ;) < (M)n H (Ao).

Since cos(m/32) > 1/2, (cos(m/32))71/2 < 1 so that

lim diam(T,,.) = 0.

n—oo
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It follows that for all € > 0, diam(T,,.) < €/2 for all n greater than some sufficiently large ng.
Consider 1,22 € Ap such that |21 — 22| < 27", Then

c 1—1 3 U v 1+1

T, T2 2.8 "o on’ 9n
for some i € {1,...,2" — 1}, so that since F([(i — 1)27",i27"]) C T, for each n € N and each
ie{l,..,2"} F(x1),F(x2) € Tny,i UTn,,it1, which implies

|F(x1) — Flao)| < diam(Thy,i—1) + diam(Ty, ;) < €.

For (2), since Ag is bounded, so to is any closed subset of Ag, thus should B be a closed subset of
Ay it is also compact. It then follows from the fact that F is continuous that F(B) is closed and
indeed bounded since F(A4y) C [0,1] x [0, 1] and thus also compact.

For (3), let our set, for convenience be denoted K. Let H'(K) > 0, say H!(K) =: 3. It fol-
lows that there is a §y > 0 such that for all 0 < § < dg H}(K) > g

Now, let § < §p and {Bs} be a d-cover of F(K) and consider a B € Bs. By Lemma 6.2.1
we see that there is an n(B) € N such that whether or not center(B) € F(K) BN F(B) C

Tf(B),i(B) 1Y Tn(B) (s Y Tn(B) (B)+1 for some B(B) € {2,..., on(B) _ 1} with

) diam(B) .
dzam(Tf(B)’) length(A% (B),) € (T),dmm(B))
so that
i(B)+1
diam(B) > Z diam(TﬁB)").
j=i(B)—1
In this case we also have
i(B)+1 i(B)+1
F(BNF(K)) C U FH Tuw),) = U E (b)(An(B)J)
Jj=i(B)— j=1(B)—

which, since F),(p) is an expansion map, gives three intervals I j, j = 1,2,3 with
diam(Ip, ;) = length(Ip ;) < length(Aypy,;) < diam(B) < 6.

It follows that

i(B)+1
> diam(Ip,;) < 3diam(B).
j=i(B)-1
Since
F(K)c |J BNFK))
BeBs
it follows that
i(B)+1

K C U U IBJ'

BeB;s j=i(B)—1

86



i(b)+1

which implies that {{I5 ;}pen;} is a 0 cover of K and thus that

j=i(B)—1
i(B)+1
OED I ELLES
BeB;s j=i(B)—
and therefore :
i(B)+1
. 1 158 p
Z dmm(B) > g Z Z IB,] 55 = g
BEB; BeBs j=i(B)—1

Since this is true for any such d-cover of F(K) we see that H}(F(K)) > % for any 0 < Jp and
therefore that

HY (F(K)) = lim H(F(K)) > lim g > 0.

6—0

For (4), let M > 0. Then since 1}, is Radon and

- = U{zGA;ol:ﬁn(z)>M}

neN

it follows that there is an ng € N with

~ 1 Afl
H ({z € A} : 1L (2) > M}) > w > 0.
We set Aooln0 ={r e Al : ~n0(:z:) > M}. It follows that with X := {i € {1,...,2"} : T},,; N
H ( (Aoolno)) = Z Hl(Fno fo'e) no) N Tng z)
i€X
> MZH g N[2770 (i — 1), 2704])
zEX
1

We then apply (3) to each set A"¢ € K defined as the subconstruction (and subset) of A starting
with AJ°" = A, ; to find

H (Fry (AL 0) N Ty i
HIF o Bl (g (A5ha,) 1Ty ) > 2 zeBosnn) (o)
and thus that
HYF(AL) = D> HYF oyl (Fuy(ALl ) N Tayi)
1€eX
1 1
> EZH (Fno oono)mT”loZ)
1€X
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We therefore now have
MH'(AL)
12 '

o0, N o0, N

HY(F(ALL,)) > %Hl(Fno (A ,,) >
Since this is true for each M > 0 it follows that
HYF(AL)) > HNF(AL,,)) = oo.
For (5), suppose x € Al is such that ©'(H!, A L, z) > 0.

Consider F(z) and let p > 0. We know firstly from definition that there is an ng > 0 such that
F.(x) € B,)o(F(x)) for all n > ng and thus, since from the proof of (1) diam(T), ;) — 0 as n — oo,
there is an ny > ng such that diam(T,,,.) < p/4 and thus Ul__ T}, (2 n1)4+j C Bp(F(2)).

For the remainder of (5) we write i := i(n1,2) We now, temporarily have two cases to consider,
namely CASE I that F,,(x) € E(T,, ;) and CASE II that F,(x) € T,,,; — E(Ty, i)

CASE I:
In this case F,,,(x) € Ty, N Th,i—1 Or Fy,(x) € Ty, i N Ty, 41, without loss of generality let us
suppose that it is the latter case. Then

r=142"" € [(i —1)27", i+ 1)27™] = F, Y(Ani UAniv1).

Since ©Y(H!, AL x) > 0it follows that H*(AZIN[(j—1)27", j27™] > 0 for at least one j € {i,i+1}.
Without loss of generality let us assume that j = i. Then

HUFL AL N An) =

ni

I, (@Y (AZ! N [ - 1)27™,227™))
> A NG 127 i2m)
> 0.

CASE II:
In this case F,,, () € Ty, i — E(T},,;) so that

v ((i—1)27™ 27" C [(i — 1)27™,i27 "] = F, Y (An.).

Thus since ©'(H, A, 2) > 0 it follows that H' (A N [(i —1)27"1,i27™1]) > 0 and therefore

HUE A N A ) = T, ()R A N [ - 127 i27™))
> HYAZ N[ —1)27™,i27™])
0.

>

That is, in either case there is a n € N and i € {1,...,2"} such that T,,; C B,(F(z)) and
HYF1(ALL) > 0. Applying (iv) to the A; € K resulting from the subconstruction of A on
T, it follows that H' (Ao NT), ;) = oo and thus that H'(B,(F(z)) N Aw) = oc. Since this is true
for all p > 0 it follows that

el(HlaAOO’]:(x)) = 00,
completing the proof of (5).

For (6), we note that the open sets of A with respect to H! measure are U N A for U open in
the usual sense in R?. Now consider an open set in A, V := U N A for some U open in R?.
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Let 7p := U{T1; : Th; C U} and in general 7, := U{T},; : T}, ; C U}. We claim that
U (T, N A).

Clearly ,NACUnNAfor all n € N and thus U2 (7, NA) CUNA=YV.

Conversely, let « € V. Then z € A and there exists p > 0 such that B,(z) C U. Since we
know that for any A € K, and z € A

lim diam(Tnyi(n@)) =0
there exists n, € N such that diam(T,, in, ) < p/2. Then T, im, o) C By(xr) C U thus
Ty, i(nyz) C Tn, and thus x € 7,,,,.
Since z € A we have x € 7,,,NA and thus z € U, (7x,,, NA). It follows that V' C ,~; (Zp,,, NA).
Now, for each n € N7, N A= Uier, Tn,i N A for some (possibly empty) index I,, C {07 1, w2 =11,
Thus F~Y7, N A) = UZ.€ 1, Dni where D,, ; is the i-th dyadic interval of order n. Thus

Flv)y=r"1 (GTQA) Uf (7T, NA) = GUDW

n=1:€l,

which is a Borel set in Ag ¢ and thus H!-measurable. It follows that for any Borel set B € A F~1(B)
is a Borel set in Apo. Thus, finally, if B is a H!-measurable set in A, F~1(B) is a H!-measurable
set in Ag . The fact that the measurability of the inverse images of measurable sets follows from
the measurability of the inverse images of open sets is standard measure theory and is discussed in,
for example, Rudin [24] or Bartle [4]. &

As a corollary we can now present the result mentioned in the previous section addressing the density
of points in A, type sets. The density is important as it will be the key to the existence or non-
existence of approximate tangent spaces to A, and therefore an essential ingredient in discussing the
rectifiability of sets in K.

Corollary 8.4.1.
Let A be an A. type set. Then either A is the image of a Lipschitz function or for each y € A

O (H' Ay) =

Proof:

Since IT4(z) is constant in z either II* = oo or I* = C' < co. In the first case Proposition 8.4.1 (5)
gives immediately that ©(H', A,y) = oo for all y € A. In the latter case we see that A5' = Ay, so
that by Lemma 8.4.1 F = Fl4, = }"|A61 = Fc is a Lipschitz function. &

We are now in a position to present the omitted proofs from Chapter 6 regarding the measure of A,
and A.. The result for A, can be presented directly. For convenience we restate the Lemma before
providing it’s proof.

Lemma 6.3.1
A, is not weakly locally H!-finite.
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Proof:
By Proposition 6.3.1

(A;})AE ={z e A{?E : H(COSGS,Z(n,I))il = o0} = A64€
n=0

and thus Ao, = A.. It then follows from Proposition 8.4.1 (4) that
HY(AL) = H'(Ao) = oo. (8.1)

Now, for each y € A. and each p > 0 there is an n € N such that y € T}, ;(,,,,) C B,(y). This can be
ensured since, by Lemma 4.3.1, diam(T}, i(n.,)) — 0 as n — oo. Since, by the symmetry of construc-
tion AcNTy,; is a H' (A, i(n,y)) scale copy of A, it follows that H' (B, (y)NA:) > HY(ANT, i(n,y) =
HA,, iny) ) HUAL).

By (8.1) it follows that 7!(B,(y) N A.) # oo. %

Before proving the necessary result concerning 4. we need to complete it’s construction in the
sense that we need be more explicit about the selection of the set B4<. We do this in the following
definition.

Definition 8.4.2.

Let FA< be the bijective function associated with A.. Let {d;}32, be an ordering of the dyadic
points, D, in [0,1] = Af's. Take B := {By( )i(di)}32, to be an open covering in [0, 1] of D such that
oo 2p; < 1/2. We know this is possible since the dyadic points are countable and hence H' (D) = 0.

Define Bi's := Ajs ~ UgcpB so that HY(B{*) > 0, B{* is closed and thus B is compact.

Define then By‘s := FA<(B{*<). From Proposition 8.4.1 By is compact. Since B** N D = {),
E(A.) = FA(D) and F4 is a bijection it also follows that B3> N E(A.) = 0. Further, since B3
is compact R? ~ B{lf is open. Combining these two fact we see that for each x € E(A.) there exists
a pr > 0 such that B, (z) N By'* = 0. Take any such collection of balls B, (x). We then define

BA: = U B,, ().

z€E(A:)

Note that By C A. ~ BA< = A..

Remark: Certainly there are many possible choices for B and in this sense we have still not given
a definite definition of A.. For our purposes, however, it does not matter which set of admissible radii
po are chosen. Any set of radii can thus be chosen and then fixed, providing a definite definition of A..

Lemma 6.3.2
HY(A:) = .
Proof:

Since A. D B we see that (FA4<)"'(A.) D B{*. Now, by definition By'* = F#<(B3*) and
HY(B{**) > 0. Further, by Proposition 6.3.1 I« (z) = oo for all € A, and thus for all z € B;*.
Hence (A')# D Bf** and thus using Definition 8.4.2 H'((AZ!})A<) > 0. Tt then follows from
Proposition 8.4.1 (4) that H'(A.) > H!((Ax)?e) = . O
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To complete the preliminary results required for our study of measure and rectifiability of sets
in IC we have one more lemma concerning density to consider. It is this final general density lemma
that will be applied in the proof of non-rectifiability of those Koch sets which are not rectifiable
(which ones they are will be made clear later). It shows the presence of infinite density almost
everywhere in the image of any measurable subset of AJ! of positive measure. In order to prove
this Lemma, however, we first need a couple of general measure theoretic results showing that the
set of points density one are sufficiently large in a set of positive measure in Aj . The second is a
condition of non-rectifiability.

Proposition 8.4.2.
Let B C Ay be H'-measurable, then

H'({z € B: 0 (H',B,z) = 1}) = H'(B).

Proof:
Since B is H!-measurable we know that for all p > 0

1= (2p)7"H (By()) = (2p) " (H(By(z) N B) + H'(B,(z) N B°))
so that
1= tim (2) (M} (B, @) N B) + 2 (B,(x) 1 B%) = ©1 (WL, B,x) + 0! (!, B, ).
p—
From standard theory (see for example [Simon3] Theorem 3.5) we know ©'(H!,C,z) = 0 for H'-

almost all x € C°¢ for any H!'-measurable set C' with H'(C) < co. Hence ©'(H!, B¢, z) = 0 for
H!-almost all z € B and thus

OYH, B,x)=1-0Y(H', B¢, z)=1
for H'-almost all 2 € B. The result follows. O
Proposition 8.4.3.

Let A C R2. Let 0 be an L'(H',R% R) positive function on A. Suppose that B is a subset of A of
positive measure that satisfies 0(x) > r >0 for all x € B. Let x € B satisfy

O (H', A, z) > O(H!, B,z) = 0.
Then A does not have a 1-dimensional approximate tangent plane for A at x with respect to 0.

Proof:

Let P be any potential approximate tangent plane for A at x with respect to any potential mul-
tiplicity function 6 and let ¢ € CP(R*R) be radially symmetric with xp,(0) < ¢ < Xp,() and
0(z) [ ¢dH* = Cy for each P € G(1,2). Then we note

Co = lim At / PNz — ))0(2)dH (2)
- A
> lim A7t / 0(z)dH"
A—0 BNBy(z)
1
= rlim A_l—H (BN Bx(z))
A—0 A
= 2r0'(H' A, )
00.
It is therefore impossible that A have an approximate tangent plane at x with respect to 6. O
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Lemma 8.4.2.
Let A€ K and HY (BN AZ) > 0 for some measurable subset B C Ao . Then there exists

By C BN A;ol,
HY(B;) =HY (BNAL

such that
@1(7_{1’]:(31),]:(3:)) =00

for all x € B;.

In particular, if A € K and H*(AZL) > 0, then for H'-a.e. z € AL}
Ol (H', A, F(z)) > O (H', A, F(x)) = .

Proof:
We note from Proposition 8.4.2 that ©'(H!, BN AL, z) = 1 for H'-a.e. x € BN AZl. We thus
choose

By:={reBnAl:0'H',BNnAl z) =1},

noting that H'(B;1) = H' (BN AZ!) as required.

Choose y € B; arbitrarily. We then note that from the definition of ©' there must exist an ro > 0
so that for all r < rq, (2r)"*HY(B,(y) N By) > 7/8.

We now claim that for any dyadic interval D 3 y with |D| := H'(D) < ro/2 H'(D N By) > 3/4|D)|.
We see this by selecting v := max{d(y,z) : z € E(D)} (where E(D) as elsewhere denotes the

endpoints of D). Then v < |D| < r¢ and D C B,(y). Thus

Hl(Bmev(y)) 1 _Hl(Bl N By(y)) 1
= < j—
27 2y 8
which implies
HY(BS$ N D) - 2HY (B N B, (y)) - 1
| D] - 2~y 4
and thus
HY(B;ND) |D|-HYB{ND) 3

- > (D]~ |Dl/ID| " =,
D D) i

proving the claim.

In particular, the claim holds for any dyadic interval D,,, > y of order m > mgy where mg is chosen
such that 270 < ry. Then, selecting, independently from one another, 1 > p > 0 and M € R with

Hl(Amg,i(y,mo)) = diam(TmO’i(yymo)) > p.

We choose m > my such that diam(T, iy,m)) € (p/2,2p) and T, ;¢y.m) C Bp(y). Note that
Fﬁl(Amﬁi(yym)) =AnN Tm,i(y,m)- That is, defining B; := .7:(31)

HY(By(y) N B1) = H (B N Tpiymy)) = HHF (D) N By).

Since, for all € BiN Dy, [117_(cosb,, i(z.n)) " = oo there exists a go € N such that for each ¢ > go
and defining

q
B? .= {ac € BiNnD,,: H (cosGmi(g,;yn))_1 > M}

n=m-+1
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we have
H'(B?) > HY(B1 N Dy,)/2.

If this were not true then since B¢ C Bt for each ¢ it would follow that
> Hl(Bl NnD )
1 q < m
H ( U B ) <
g=m-+1

o0

and thus there would exist x € B N D,, such that Hn:m+1(0050n,i(l7n))_1 < M < oo. This contra-
diction confirms the above statement.

We then note . 5
Hl(Bl) > §H1(B1 N Dm) > §|Dm|

and that since for all € D,,, for all x € By

o - m B P
H(cos@nﬁi(xyn)) > H(cos@nyi(m,n)) s m
n=0 n=0 m

Denoting dyadic intervals of order g by Dy, it then follows that for § := F(y)
Hl(Bl N Bp(g)) > Hl(Bl N Tm,z(y,m))

> H BN U T4o,i(Dagya0)
Dy, NBI0#)
= Z Hl(Bl N T‘ZOai(ququ))
D gy NBI0 #(
> Z Hl(FQU(DQOﬁBl))
DgyNBI0 #(

q0
= > TI(osbuiny,.q) ' Doy 1 B

D4y N B0 £0 n=0

40
p _
> Dy Z H (c08040,i(D 4 00)) "H (Dygy N B1)
™ DgoN B0 £) n=m+1

Mp

Dyo,NB20 £

- 2Py |J  DunB
Dy NBI0#£(
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Since this is true for any p < diam(T,,i(y,mo))

o HMBiNB,(§) _ 3M
1 1 = S bt A2V Sttt
O (H",B1,9) ;1{% 2% T

Since this is true for each M € R we have
O (H', By, 7)) = oco.
As this is true for any y € B; it follows that
O'(H', F(By), Fy) = >

for each y € By completing the first part of the proof.

For the final part of the proof we note that Ag ¢ is itself measurable and that Ao N A = Al It
follows from the above that there is a set B C A} with H(B) = H!(A}) so that

oY (H', F(B), F(z)) = 0o

for all x € B. Since Agp D ALl D B, F(Aoo) = A4, F(AL) = A and H'-ae. z € A7, x € B it
follows that for all z € B and thus H!-a.e. in AL

O (HY, A, F(z)) > ©'(H!, A, F(z)) > O (H', F(B), F(z)) = oo,
which completes the proof. &

This completes the preliminary results that we need for the rectifiability and measure results on sets
in KC.

8.5 Relative Centralisation of Semi-Self-Similar Sets

We now look at some preliminary results that we will need for results on dimension. We will reduce
all of our questions to an application of the results of Hutchinson [15] to get our dimension results.
We do this, in essence, by a comparison principle. We show that sets in IC depending on properties
of #* can be dimension invariantly rearranged so that they are supersets of some sets to which
Hutchinsons results apply and subsets of others. By considering sequences of such rearrangements
we can deduce the dimension of our sets from the dimensions of the sets to which we are comparing.

It is in fact true that we could, in principle, apply Hutchinson’s results directly. However, the
parameters of the sets and "self-similarity" functions cannot be (at least not easily) extracted from
sets in K. Thus actually giving an explicit dimension directly is not possible.

Our comparison principle, or rearrangement involves separating each triangular cap in a partic-
ular approximation to some A € K, T, and moving each separately by an orthogonal transformation
in such a way that each of the newly positioned triangular caps remain disjoint. We do this by
placing each inside of a triangular cap of another, larger, T;, from some other A’ € K. Since all
Hausdorff measures are translation invariant it follows that Hausdorff dimension is also translation
invariant and thus the union of the replaced triangular caps is the same dimension as the original
caps. We can in this way compare the dimension of A to that of each T;f‘/ and thus of A’. It will be
by selecting appropriate A’ that we will prove our dimension results.

We start by defining the transformation process, which, due to the placing of one set into parts
of another, we call centering. That is one set is centered in the bigger one.
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Definition 8.5.1.
Let Ay, Ay C R%2. We say that we can center Ay in Ao (or that Ay can be centered in As) written
Ay = Ag if for each m € N there exists sets A1, and Aay, such that

ﬂ Agm C Az, Agm C Agm—1) for all m €N,

m=1

A1 C () Atmy Aim C Aigno1)  for all m € N;
m=1

ny(m)

that for each m € N there exists ni(m),na(m) € N, ni(m) < na(m), disjoint sets {Ai1m;};2, ~ and
disjoint sets { Aam; }?i(lm) such that

na(m) ni(m)
U Ao C Aoy and A1, C U Ay
j=1 =1

that the sets A;, Aim and Aim; are all H*-measurable for i = 1,2 each a € R and appropriate
m,j € N and that there exist orthogonal transformations Tn’i;’Az :R2 = R2 forj =1,...,n1(m) such
that

T (Armg) C A

If Ay —° Ay we write
ni(m)

Civt = | 5 (Aumg).
j=1

J

Aoy

Figure 8.1: Centralisation of semi-self-similar sets
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Remark:

For any A;, A; € K we can set n1(m) = na(m) = 2™ and for each i € {1,2} Ay := T := U?ZleJ—
and A;mj = T, ;. In this case, as we shall see, if 97‘?,11. < 97‘?;‘; for each n and 4, we have, ignoring the
negligible set of edge points E, A; —¢ As.

It would have been a simpler statement of definition to restrict to the case A;, 4> € K. How-
ever, as we shall see we will need to apply the definition where A; and As are subsets of elements
of K where certain triangular caps have been simply removed in the construction of A; and As. In
any case, to make the definition intuitively easier to understand we may always think of each A; as
an element of /C with triangular caps removed, each A;,, as a union of a subcollection of the T’rﬁjj

A;
and each A;,,; as a Tm,j-

In the case that A; and As are actually in C we can restate the definition as follows:

Definition 8.5.2. K version

Let Ay and Ay be Ac type sets. We say that we can center Ay in As (or that Ay can be centered
in As) written Ay —° As if for each n € N and i € {1,..,2"} there are orthogonal transformations
’Z;f}il’A2 such that 7::1;’& (T,’:;) C T;:f.

If Ay —°¢ Ay then we write
gn
Ay, A
CploAz = LJTnz1 Q(Tfé%)-

i=1

We now look at some properties relating to centering. The first is more a property of A. type sets
that gives a condition allowing one A. type set to be centered into another. The second is a version
of the important Lemma 6.2.1 for general sets A € K. A corollary makes explicit the property for
which this second result is necessary. Thirdly we show that any fixed portion of I'c, no matter how
small, is sufficient as a comparison set with dimension equal to that of I'.. Finally we show a more
general result showing that the dimension comparison works (at least in a sense sufficient for our
needs), thus justifying the use of centering.

Proposition 8.5.1.
Let Ay and Ay be A, type sets. Let 9,?,% be denoted by 01 and 9,’372, be denoted by 042 for each n € N.

(The 9,’?7, denots 9;?711- for any choice of i. We can drop the i in this case because for A. type sets 0, .
is independent of i.) Then, if T(fll C T(ff and 021 < 042 for each n € N then A} —° As.

Proof:
We know that T(fll C T(ff so that by denoting the identity transformation by ¢ we have 76’1411"42 =1
and thus

T (T € Tet.

We then continue the proof by induction on n. Assume that
A1,Ag A A
7, (T,0) T3

for some n € Ny and each i € {1,...,2"}. Consider some arbitrarily chosen j € {1,...,2"} with
’Z’Tf]?’AQ (Tf;) C Tfj and therefore since diam(T;) = H'(AZ,) for each A. type set A it follows
that

1 Aq 1 Az
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Now, 9;?;1 < 9;311 by hypothesis and thus also, by Lemma 8.1.1

1 —
HUALL ays) = 5leos(011) 7 A ALY <

n+1,2j+k B (005(97?11))717'{1(/133) = Hl(Afj—l,Qj-i-p)

N | —

for each k,p € {—1,0}.

Combining these, it follows that Tfil,g j+% can be mapped into Tfjmj 4+ by placing Afjrmj 4y in
the center of Aﬁilﬂj 4 for k € {~1,0}. By defining Tn‘:ll’gé 1 to be the orthogonal transformation
that does this it follows that
A1, A A A
1, ok (Tn-il,Qj-',-k) C T 04k
for k € {—1,0}. Since j was arbitrary we have ’Z;ﬁrll’f such that
A1, As (A A
T, (T ) C T
for all i € {1,...,2"*1} which completes the inductive step in n. &

Lemma 8.5.1.
Suppose that A € K and that T'. —¢ A for some € > 0. Then

1. should two neighbouring caps T, and T;éi 11 be contained in another necessarily earlier trian-

n,s

gular cap Tn‘jj(i) (m < n) then

YT TA, < 294

A
miv1 < 200, 5y < 2051,

2. As in Lamme 6.2.1 should 2 < |i — j| < 3 then

m | Oas | U Ty | | nmaOan (T7) = {znim2s 2nin1}) = 0;

Jili—gl<2
similarly should |i — j| = 1 then
72 (Oag, (T25)) N 7elOy (T) = omims2na}) = 0,

and

3. for eachn €N and i € {1,...,2"}

T AN (T = 0

)

for each j such that |i — j| > 2.

Proof:
Since by definition (Definition 8.1.2) we see that 05, < /32 and should T;!; C T;!; then 6;}, <62, ..
Since these are the only properties of triangular caps and their related angles necessary to prove
claims (1) and (2) for T'; and A. in Lemma 6.2.1 we see that the proof holds here in an identical
manner.

For (3) we see that the claim is trivial for Aél and Afi (i = 1,2) since there is nothing to check in
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that there is no 4, j pairing in either AZ' or A{! such that |i — j| > 2.

We now prove the result by induction on n. That is, we assume that for some p € N and for
each i € {1,...,27}
A HY (AT (AN
TPJ NN P (Tp,i) - (Z)
for each j such that |i—j| > 2, and show that the same holds for p+1. Take any i € {1,...,2P"!} and

note that Tzﬁu C T;}il (for i1 equal to the integer element of {i/2, (i 4+ 1)/2}). Since Hl(Ag_iu) <

.y
H'(A,5,) it follows that

1 re Hl AFE )
NH (A’)“”)(Tzﬁl,ﬂ c NH( P“«H)(Tp' ).

1

It follows that NHI(Agil«i)(T;}FM) N T;}H’j = ( for each j such that Tpﬁu o Tpf‘k for some
ke {Zl —1,41,%1 + 1}

Without loss of generality we can assume that the affected j € N are those satisfying j ¢ {i —
2,...,i+ 3}. It therefore only remains to show that

1eple HE Al
NH ( p+1,1)(T};4+1’Z_> Cc N ( p+1,11)(T;Z_1>

for j € {i—2,i+2,i+3}.
We note now that for each such j, |i — j| < 3 and in particular

(i—1)—(i—2) <3, [(+1)—(+2)]<3, |(i+1)—(i+3)<3and|(i+1)—i<3.
We also note that since I'. <—¢ A and that since H'(Al<

p+1,i
HY (AL, ) = HY(A)s, ) for each i, j € {1,...,2P T}

) is constant in ¢ it follows that

It now follows from (2) in the hypothesis of this lemma that

OA;’H,Fl(TﬁH@) C (*Oole(A;‘H,zel)/Q] xR C (~o0, *Hl(Agil,i)/Q] xR
and that
Opa,  (Th1s) C MY (A i1)/2,00) xR C [H' (A}, ,)/2,00) x R,
Thus

d(T;zﬁi-l,igaT;zﬁi-l,i) = d(OA
It follows that

(T;}i—l,i—Q)aoA (T;}H,i)) > Hl(AgiLi)-

A A
p+1,i—1 p+1,i—1

Tzfi—Q N Nﬁl(Azr;iLi)(Tzﬁrl,i) — @

The same principles apply to give essentially identical arguments showing that

T;‘z+] N NHl(Agil’i)(T}ffl,i) — @
for j € {2,3} completing the proof. O

The above lemma can also be seen as a restriction on spiralling for sets in K. The particular
application of the above lemma that we will be needing is expressed in the following corollary.

Corollary 8.5.1.
Let A € K be such that T. —°¢ A for some ¢ > 0. Then for any n € NU{0}, ¢ € {1,...2"} and any
ball B,(x) satisfying
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1. pe (HNA5)/2, H (AL5)), and
2. By(z) N Tf;‘,i # 0,
then Bp,(x) N T,fj # () for maximally 3 different j € {1,...,2"}.

Proof:
From (1) and (2) in the hypothesis of this corollary it follows that B,(z) C N HI(A%Z‘)(T%). Thus a

triangular cap, T';, can only meet B)() if it meets N Hl(Aifi)(Trfi).

Since, from Lemma 8.5.1 T, N NHI(Azfi)(T,fi) = () for |i — j| > 2 it follows that the only tri-
angular caps, T, that can meet NHI(AEZ')(TJ‘,I') and thus By (z) are T, for j € {i —1,4,i+ 1}.

7,37

Since |{¢ — 1,4,4 + 1}| = 3 the proof is complete. &

Proposition 8.5.2.
Suppose

r=nun;
n=0j€l,
where I,, C {1,...,2"} and |I,,| > 2"~2"0 for some fived no € N and each n € NU{0}. Then
dimT. = dim[ ..
Proof:~ 5
Since I'. C T'; it is clear that dimI', < dimI'.. We need to show that dimI'. < dimI;.

Let n € R be such that H"(I':) = oo. There there exists a dy > 0 such that for each § < dg
HIT:) > M > 0.

Let now {B? 221 be a 6/5 cover of .. Since I'. is a countable intersection of compact sets it
is a compact set and thus for some Q) € N, {B;-S }?:1 is a §/5 cover of .. Without loss of generality
we can further assume that {diam(B?)}?zl is decreasing in j.
For each j € {1, .., Q} there exists n; € NU {0} such that

diam(BY) € (diam(T,*,)/2, diam(T, < ,)].

By selecting ¢ small enough, we can assume that ng —2no > 1 which makes the remaining argument
more @sthetically pleasing. We also note that since {diam(Bf-)}?i1 is decreasing in j {nj}?zl is
increasing in j.

Note that since |I,,,| > 2"@ 2" it follows that

Q
{i :The 0| B) # (Z)}
i=1

Next, for each j € {1,...,Q} there exists a 7Y such that T!¢

5,05 Nyt

T,f;k NBY =0 for k & {ij —1,i;n,i;+ 1} and thus

> gne—2no

N B9 # 0. By Corollary 8.5.1

i]‘Jrl
. T 5 . 1N I _ nQ—mn;
{i: T N B < [T, 0 | Thepp| =3-2mem
k=i;—1
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It follows that

Q
<> i T551035¢@}|<23 2neTny, (8.2)

2nQ —2ng S

Q
{i :The, N B # (Z)}
=1

Further, by the selection of n; and Corollary 8.5.1

ij+1 )
TI 67
U Tuikc NG (T ) B

nj,i;
k=ij—1

where 35’5 is the ball of 5 times the radius of B;-S of common centre with B?. It follows that
{i WCB‘”}|>3 2o,

Define now fj»7 to be the orthogonal transformation on R* satisfying fi7(T),5) = 7. Define
then

576 ii,m d,
ByY = fi (Jk)(Bj5)

for k € {1,...,2270} where

j—1
m(j, k) = min {2’”,3k —1+43.2%0 ng—m} :

=1
Then,
min{2n1,3~22"0} 22710 22n0
H( 8,k
U fuec U@y, g < U Bt
i=1

which, transfering to an expression in terms of triangular caps in the thh level of approximation

gives, by construction, that
min{2"@,3.22"02"Q "1}

T, sk
U T,:,C By
i=1
In the same way, for general j € {1,...,Q} we have
min{2"#,3-22"0 S°7_ 2"~ "} 2270

U e U 8"
k=1

i=min{2"J,1+43-22n027 T"i=1 ST L oni T

which implies
min{2"Q,3.22702"Q " S o™i} 9270

anC UBsz

i=min{2"Q,143.22702"Q " "i—1 S/l oni ~"y
Therefore

Q 22m0 min{2"Q,3.22m02"Q " Y7 2ni~ ™}

Q
ok r
Jus® > U U Tngi
J=1 k=1 J=1i=min{2"Q,14+3.22m02"Q ""i—1 31 onj ="}

min{29,3.22"0 329 2mQ 7"}

— U T i

i=1
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Since from (8.2)

Q
3. 92n0 Z gne—mni _ 92no Z 3.2m@~"n > 9ne
j=1
we have
Q
min { 29,3 2710 ) "gne=n b = 9ne
=1
and thus
22710
sk
I.C U e i C U U B
7=1 k=1

{{35 k} > 2" is thus a d-cover of T'. for § < &y so that we can calculate

Q 20 am 8k am 9 ram g
M < Z Z <d733)> 227105772 <d BJ)> 22”05”2 (d (B ))

7j=1 k=1

Since this is true for each ¢- cover of I'. it follows that H"( c) > M272m0577 > (). Since this is true
for all sufficiently small § H"(T'.) > M272"5-" > (. Thus

dimI'. = sup{n : H"(T.) > 0} > sup{n : H"(T.) = oo} = diml ..
¢

We now prove the crucial step for the result we need to get our desired dimension results, saying
that if one set can be centered in another then the expected result that it has a smaller dimension
than the other holds.

Lemma 8.5.2.
Suppose

A= U

n=0jel,
where I, C {1,...2"} for each n € N and A’ € K. Then
1. if A —=°T. for some e >0 dimA < diml..
2. if |I,| > 27720 for some ng € NU {0} and each n € NU {0} and
NUri—a
n=0jel,
for some € > 0, then dimI'. < dimA.
Proof:

. . . . /
For notational convenience we will write T, as T;:',.

For (1) we note first that for each n € N and j € I,, there are at most two Tj | ; with i € I,,4y
satisfying T/ +1 ; C T . It is also true, by construction, that for ech n € N and j € {1,...,2"} that

there are exactly two i e {1,...,2""1} such that ngrl ‘ Tg;
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Since also for each n € N and 4,5 € {1,...,2"} T,E ° is the image of an orthogonal transforma-

tion of T,E % it can always be arranged that should T,ﬁrl,i C T;ﬁj then, with 7" ¢

w1k and T};j selected
such that

AT /A A AT ;A .
7;1+1,i(Tn+1,i) CTyy, and 77 (T,;) C 1,5
FE FE
Tn-i—l,k c Tn,l' (83)

Now, let 1 be such that H"(I'.) = 0. Then H](I'.)) = 0 for all § > 0. Now take any 6 > 0, { > 0
and any collection of balls {B?}>°, with I'. C U2, BY, diam(B5) < 6 for all j € N and

> diam(B?) !
> aln) <fj <.
j=1
We can assume without loss of generality that Bf- NT. # 0 for each j.
Now, for each B? there exists n; € N such that
diam(BY}) € (H' (T ;)/2, H (T )]

and from Lemma 6.2.1 there exists i; € {1,2,...,2"} such that B? N T,Sj?,k = () for each k ¢
{i; —1,4;,1; + 1}. Further, for each T};;k such that B9 N T};;k #0,T,*, C B where B! is the ball

77/] 5
of equal radius to B? but with 4 times the radius.

We then consider the collection {{B?k}izl};?‘;l defined by

By = (T, )7 H(BY).

nj,i;—2+k
Now, let = € A and take the sequence i(n, z) such that = € Tfi(n 2) for each n € N. Further, let &,
o AT, .
be the sequence satisfying 7 = (T, .)) C T)5. -

Then, by (8.3) T}; %, 18 a decreasing sequence of triangular caps in the construction of I'. and
therefore there exists a y € R? such that

ﬂTchnay;ﬁ@.

n=0

Then y € T'. and y € B? for some j € N. Further, since diam(Tgakn) — 0 as n — oo and

diam(Trl;fkn) > cliam(TEerkn+1

> diam(Tijcn)/Q
for each n € NU {0} there exists m € N such that
T::

m,kom,

NB) #0 and diam(B)) € (diam(T)7, )/2,diam(T7, ).
Thus T};f k., C B? and hence
2 €T ) C (T )N TR ) C (T4 )NBY) =B,

m,i(m,x) m,i(m,x)
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for some k € {1,2,3}.

Since this is true for each z € A,

co 3
AcJ U B

j=1k=1

>~ 3 diam(B2},) iam(B°
HI(A) SZZa(n) <+> =3. 2"2 <w> < 12C.

Since this is true for each d,¢ > 0 it follows that H"(A) = 0. Since this is true for each n such that
H"(T.) = 0 it follows that dimA < dimT'..

Thus

For (2) we follow the same proof idea. We need, however, to make some important changes. Firstly,

we note that since both -
- r,
Le= ﬂ U T”h]

n=0j€l,

and A have the same indexing and since the T\ %’s are orthogonal transformations of each other we
can always assume that

T A/l A
Zz,j (Tn,j) C Tn,j

for each n € N and j € I,, and in particular we can assume that

S m nz(nz)

implies that T;;‘Z(n ) TA for each n € NU {0} and thus, using the construction of A’

n+1,i(n+1,z)
n=0

for some y € R2.

Let now n € R be such that H"7(A) = 0 so that H](A) = 0 for each § > 0. Now take any

8,¢ > 0 and a collection of balls {BS}%2, with A C U2, diam(BJ) < é for each j € N and

ia ) <dmm(B5)> <c.

Again, without loss of generality, we may assume that B;-S N A #  for each j.

Now, for each B5- there exists x € AN B5 and thus T4

n,i(n,x
Since dwm(Tnj

)ﬂBf- # () for each n € N U {0}.
(nm))ﬂ()asnﬂooand

diam(T":

n,i(n,x

r.
)) > diam(T,, Ji(n+1,m)

) > dmm(TEZ(n :,:))
for each n € NU {0}, there exists an n; € NU {0} such that

TA . ) NB}#0 and diam(B]) € € (diam(T"* )/ 2, diam( 71; z(n,,z))] (8.5)

nyi(ny, nyi(ny,
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Using now Corollary 8.5.1 we see that
BéﬂTAk_(Z) for k%{i(nj,x)—l,i(nj,x) (nJa )+1}

Therefore there exist orthogonal transformations 11, 7}2, Tj3 such that

Ty (BY) > ' (TFe ) for ie{0,1,2} (8.6)

nj,z(n],z) 1+i\ " ng,i(ng,x)—141
where B;-S is the ball of identical centre to B;-S but with 4 times the radius.

We then consider the collection {{B?k}izo};?‘;l defined by

= (T, ) (T (BD)

where i is chosen such that B N7, , , = 0 for k ¢ {0,1,2} which we know exists from Corollary
8.5.1.

Now let y € T, and take the sequence i(n,y) such that y € TTI; Then by (8.4) we see that

i(ny)"
A _ I, A T.
0# 2 () Ty = () Tniiny Tniiny)
n=0 n=0

for some z € R2. Then z € B? for some j € N. Further, as calculated in obtaining (8.5) we see that
there exists an m € NU {0} such that

Tﬁ,i(m,y) NB#0 and diam(BY) € (dmm(Tf

m,t

(o) 2 diam (T )

Thus, by (8.6) 7' <A (T%= )¢ T}, for some k € {0,1,2} and hence

m,i(m,y) \" m,i(m,y)

yET 0 (T8 )T Tw(BY)) = B,

m.i(m,y)

Since this is true for each y € I'.

Thus X 5
- s diam(B diam B5
HIT) <> an) <7J> =3. 2’72 <7(>> < 12¢.
Jj=1k=1
Since this is true for each J,( > 0 it follows that H"(T'.) = 0. Since this is true for each 1 such that
H"(A) = 0 it follows that dimI'. < dimA.

Now, since |I,,] > 2772 for some ng € NU{0} and for each n € NU{0}, it follows from Proposition
8.5.2 that dimI'. = dimI'. and thus that dimI'. < dimA. &

This completes the presentation of the necessary preliminary results and thus the chapter. In
the following chapter we look at the theorems proving various results about the actual measure,
rectifiability and dimension of A. type sets and Koch type sets.
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8.6 Notes

Dyadic intervals, Definition 8.2.2, are by no means here an original concept, being simply a natural
family of intervals. Discussions of dyadic intervals can be found in Koeller [19] and [20]. The
remainder of the material presented in this chapter is our own.
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