3 Nonlinear magneto-optics - theoretical
aspects

The aim of this chapter is to introduce the nonlinear optics in general, and the nonlin-
ear magneto-optical effects, in particular. As a representative of the latter ones is the
magnetization-induced second harmonic generation (MSHG), that is the tool of choice
employed in the present work. Here, the MSHG is used as a method of investigation of
ferromagnetic materials since it has a non-invasive and nondestructive optical character
and it exhibits high surface and interface sensitivity. Moreover, due to its symmetry with
respect to magnetization reversal, provides simultaneously information about the elec-
tron/lattice dynamics as well as spin dynamics.

The chapter is structured as follows: after a brief introduction to nonlinear optics pre-
sented in the first section, a more detailed description regarding the second harmonic
generation process is developed in the next part. The last two sections focus on the origin
of the linear and nonlinear magneto-optical effects and to the description of the MSHG
formalism involved in determining the statical and dynamical properties of ferromagnetic
metals.

3.1 Nonlinear optics

The field of the nonlinear optics was growing with the laser development. One of the
first experiments in which the generation of second harmonic light (in a quartz glass)
was demonstrated [96], took place shortly after the discovery of the laser by Maiman
in 1960. This fact points out the necessity of having high incident optical intensities
involved in order to produce efficient nonlinear processes. Such high electromagnetic field
strengths (intensity is the square of electric field) are achievable, for instance, by focussing
an ultrashort laser pulse that carries high peak power.

The optical response of a medium to an incident electromagnetic wave E(r,t) is described
by the induced electrical polarization P(r,t). Subsequently, the medium response perturbs
the propagation of the optical wave, this mutual dependence giving rise to a richness of
optical phenomena like linear and nonlinear optical reflection, linear transmission etc.
These are used as investigation tools of optical and electronic properties of materials, just
to mention a few potential applications.

Starting from Maxwell equations, one can deduce the optical wave equation for the
propagation of the electric field E(r,t) through a medium under the following form [97]:
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V X V X E(I‘,t) + gﬁE(r,t) = —cﬁﬁ (I',t) (31)
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3 Nonlinear magneto-optics - theoretical aspects

The wave equation describes the optical response of a medium being subject to an in-
coming electromagnetic field. In the right-hand part of eq. 3.1, the time variation of
polarization acts as a source term for the emitted waves, which in the classical physics
picture is the equivalent of an oscillating dipole that radiates light.

Depending on the strength of the incident field, the polarization consists of two contribu-
tions, a linear and a nonlinear one:

P(r,t) = PL(r,t) + PVE(r,t) (3.2)
The linear response of the medium is described by [97]:
+o0 +oo
Pl(r,t) = / dt, / coxV(r —r1,t — t1)BE(ry, t)dr (3.3)
0 —o00

where gg is the dielectric constant in vacuum and the y(!) is the linear susceptibility
tensor. Since the medium response is described by a tensor, has not necessarily the same
directionality as the incoming electric field i.e. can be optically anisotropic.

For stronger optical fields higher orders terms in polarization expression become non-
negligible and should be take into account. Expanding the polarization in power series of
electric field, one obtains:

400 +o00
P(”)(r,t) :/ dtl..dtn/ 50X(”)(r—r1,..,r—rn,t—tl,..,t—tn)E(rl,tl)..E(rn,tn)drl..drn
0

—00
(3.4)
with the total polarization being:

P(r,t) =Y P™(r,1) (3.5)
n

Here, the n-th order polarization is determined by the n-th order nonlinear susceptibility
tensor and the n-th power of the incident electric field. We notice that the nonlinear
susceptibility tensor x(™ has a nonlocal and a non-instantaneous character. In other
words, the induced polarization is not a local (point-like) characteristic and is not produced
simultaneously when the incident light reached the medium under consideration. The
causality principle is fulfilled since in equations 3.3 and 3.4 one integrates over time between
0 and infinity which means that one takes into account only past values of E vector but
not the future ones i.e. t —t, > 0. The non-locality aspect, which is important in the
context of bulk contributions to the SHG process, will be addressed later in this section.
If one assumes an incident monochromatic electromagnetic wave and calculates the
Fourier transformation of equation 3.5, one ends up with the total polarization in frequency

space, which in the dipole approximation reads:

P(w) = PW(W) + PP (2w = w +wsy) + PO (3w = wi + wy +ws3) + ... (3.6)
which is equivalent with:
P = co[\V(W)E(W) + xP(w = w1 + w2)E(w1)E(ws) + ...] (3.7)

The first term in the above equation is the source for linear optical processes like reflection
and absorption whereas the next term describes second-order processes as SHG, SFG and
so on. Examples of second and higher order nonlinearities described by the eq. 3.7 are
given in the table 3.1, all processes being listed with the corresponding nonlinear tensors.
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3.2 Second Harmonic Generation (SHG)

Nonlinear optical process X(Q)

Second harmonic generation P (2w =w+w)
Sum-frequency generation XD (w = w1 + wy)
Difference-frequency generation XP(w = w; — wy)
Optical rectification X200 =w—-w)
Nonlinear optical process X(3)

Third harmonic generation XPBw=w+w+w)
Four-wave mixing 3 (w=w +ws +w3)
Optical Kerr effect X(w=w+w —w)
Nonlinear optical process ™
High-harmonic generation XM(w=w+w+..+(n-1w)

Table 3.1: Examples of second-, third- and higher-order nonlinear optical processes together with
the susceptibility tensors that describe them.

3.2 Second Harmonic Generation (SHG)

As an example for a second order nonlinear optical processes, we take the case of second
harmonic generation, being the main tool of investigation in this work. Actually, the
SHG is a degenerate case of sum-frequency generation (SFG) i.e. w = wy + we with both
incident photons having the same frequency w; = ws = w. Thus, one can write, within
electric-dipole approximation®, the nonlinear polarization governing the SHG process as :

P (2w) = eox? (2w)E(w)E(w) (3.8)
In a cartesian coordinate system, the polarization can be express as:

2 2
P (2w) = eox\7) (2w)E; () Ey(w) (3.9)
where the subscripts i, j, £ run over the cartesian coordinates z, y, and z. The above
relation shows that the i-th component of the second-order polarization is induced by the
j-th and k-th components of the incoming electric field at the fundamental frequency.

3.2.1 SHG - microscopic formalism

Microscopically the second-harmonic generation process is described by a nonlinear sus-
ceptibility tensor that can be deduced within the density matrix formalism of quantum
mechanics and has the following expression [97]:

< Lk|r|3,k >< 3,k|r|2, k >< 2, k|rg|1, k >
” 2(4) :—Neg/dk 9 9 'a 714 9 .7
X ]k( ) { [2hw — E31 (k) — Zhrgl][hw — Egl(k) — ZhPQl]

fl (k) + XNR}’
(3.10)

"Within electric-dipole approximation one takes into account just the contribution from the oscillating
electric dipoles induced by the incident electromagnetic field. The contributions from the magnetic field
part of the light wave and from the electric quadrupoles are much weaker and are usually neglected.
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5> 7 T
w w
2w 2w
[2> 7y 7y
w w
1> 1V 1l Vv

(a) (b) (c)

Figure 3.1: Schematic description of the SHG process showing the involved optical transitions at
fundamental frequency w and at the second-harmonic frequency 2w among real (thick line) and
virtual levels (dashed line). The initial, intermediate and final energetic levels are denoted by |1),
|2), and |3), respectively.

where the optical transitions take place among |1),|2) and |3) states, which denote the
initial, intermediate and the final state, respectively. The density of electrons per volume
was noted by Ne? with the Fermi distribution factor being f; (k) for the state |1,k > with
the electron wave vector k. The cartesian coordinate operator is r; jx and the Al is the
linewidth of the transitions between two electronic states. The non-resonant susceptibility
terms are denoted by yV.

As it can be observed, just the resonant part of the nonlinear tensor is written explicitly, as
is the relevant part for our future discussions. It is clear that the SHG can be resonantly
enhanced if the photon energies of the involved transitions match either the energetic
interval between states |1) and |2) at fundamental frequency or between |1) and |3) at
2hw. These two situations are illustrated in the figure 3.1 b,c.

For a better illustration of the resonance condition that might appear in a SHG process,
we have simulated the magnitude of the susceptibility tensor and of the corresponding
phase for a resonance situation at 2hw and hw according to eq. 3.10 (for simplicity without
matrix elements and the Fermi function). At this point the phase of the second-order
susceptibility can be understood as the phase of a complex number: Y3 = \X(Q)] - e,
The result of the computation is displayed in the figure 3.2. Here we observe a sharp
increase of | X(Q)] and a 180° phase change as the photon energy is crossing the resonance
at the fundamental hw or at the second-harmonic 2hw photon energy. Thus, in a SHG
measurement one can identify the presence of a SHG resonance by monitoring the behavior
of the SHG signal (SHG intensity scales with the magnitude of |x(?)|, see eq. 3.18) and
of the phase. The phase can be retrieved in a separate measurement that is described in
detail in chapter 5. The values of involved parameters in the simulation are I's;=1/20 and
I'y1=1/40.

3.2.2 SHG - symmetry considerations

As we have seen above the second-order nonlinear effects are governed by a third-rank
susceptibility tensor y(2). It consists of 27 independent components and because generally
is a complex number the total number of components which should be take into account
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Figure 3.2: The calculated magnitude of the second-order susceptibility tensor and of the corre-
sponding phase change in the case of a double resonance with w,.s equal to 2w and w photon
frequencies, according to the first term in the formula 3.10. Note the 180° phase change for each
of the encountered resonance.

is 4. This fact makes the evaluation of the SHG response of a certain medium in a
quantitative manner a difficult task. It is the symmetry of the involved system which
reduces the number of non-zero tensor components and thus simplifying the computation
of the SH signal. A general symmetry framework is developed on the base of Neumann’s
principle [98], which states that the symmetry exhibited by a certain system is possessed
by every physical property of that system. In other words, the system properties should
be invariable with regard to the symmetry operations that define the space group of the
system.

As an example, let us take the case of centrosymmetric medium i.e. a medium that posses
inversion symmetry. This type of medium symmetry is the widest met in nature and is
also relevant for our further considerations. Now one can write eq. 3.7 in a compressed
manner for the case of a SHG process:

P = ¢o[\VE + \PEE + \®)EEE + ..] (3.11)

Under the inversion symmetry operation the P and E should change the sign since both
are polar vectors. Under the effect of the inversion operation relation 2.11 becomes :

-P = ¢o[—xYE + P EE — y\®® EEE + .. ] (3.12)

The above equations are both valid when x(2)=0. That means, in general, for these
type of materials the even order susceptibility tensors are 0, within the electric-dipole
approximation. However, there are regions of the centrosymmetric materials where the
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3 Nonlinear magneto-optics - theoretical aspects

inversion symmetry is broken. For instance, at the surface of a medium or at the interface
between two materials where locally the inversion symmetry is lifted.

Therefore, for centrosymmetric materials and within the electric-dipole approximation,
the SHG process has an intrinsic sensitivity to surfaces and interfaces where the inversion
symmetry is broken.

Coming back to our discussion regarding the number of non-vanishing independent
components of X(Q), for the particular case of the SHG process, owing to the identical
frequency of involved photons the total components number is reduced from 27 to 18.
This is determined by the identity XZ(JZ% = X% Thus, one can write the SHG nonlinear
polarization expression under the following form:

E.E,

E E

P, Xzzxx Xxyy Xzzz Xzyz Xzxz Xzoy EyEy
Py = Xyzz Xyyy Xyzz Xyyz Xyzxz Xyzy 2EZ 5z (3-13)

P, Xzzx Xzyy Xzzz Xzyz Xzzz  Xzzy 2EyE

X z

QEZEy

The elements of (2 tensor can be further reduced by taking into account the particular
symmetry of the system. Moreover, choosing a certain crystallographic orientation of
the surface and experimental geometry (light polarization, azimuthal orientation of the
sample) the number of tensor components that contributes to the generation of SH signal
is further decreased.

Since we are interested in the hcp(0001) surface, in the following the calculation of
tensor components for this particular surface orientation is presented. The deduction of
the tensor components is straightforward since one has to check the invariability of these
components under each symmetry operation of the group that defines the symmetry of
the system. This can be written under the following form:

Xijk = Z T T 5 Theker Xirjoner (3.14)
igrks

For instance, the transformation matrix T has the following elements for the case of
cos¥U sin¥ 0
rotation with the angle ¥ along z axis (normal to the surface): —sin¥ cos¥ 0
0 0 1
The hep (hexagonally closed-packed) unit cell of bulk gadolinium has a Dgj, symmetry
whereas the (0001) surface posses an effective Cg, symmetry. By surface here is meant
the first two atomic layers that form the stacking sequence along ¢ axis in the hcep unit
cell. At the first sight, considering the first two layers at the Gd(0001) surface one ends
up with a Cs, symmetry. However, an effective Cg,, symmetry of the Gd(0001) surface has
been revealed by a combined X-ray photoelectron diffraction (XPD) and LEED study [99].
Also we have checked this issue by applying an additional rotation operation of 60° to the
tensor components obtained for C3, symmetry. Both even and odd tensor components
reproduce the tensor elements of Cfg, symmetry. Therefore, in our further consideration
we take the Gd(0001) surface as having a Cg, symmetry.
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3.2 Second Harmonic Generation (SHG)

’ p-P ‘ p-S ‘ s-P ‘ s-S ‘ mix-P mix-S
even 22.2,7XX,XZX - zyy | - | 222,2XX,XZX,Zyy yZy
odd (Ml|y) | xxx,xzz,2zx - Xyy | - | XXX,XyY,X2Z,2ZX yXy
odd (M]|x) - VXX, y2Z | - | yyy XXY,Z2Y VXX, VYY,YZZ
odd (M]|z) - yXZ - - XZY,7ZXy yXZ

Table 3.2: List of the allowed tensor components for a Cg, surface symmetry for various polar-
ization geometries and magnetization directions. For simplicity we denote the tensor components
just by their indices.

Applying relation 3.14 for a system with a Cg, symmetry one ends up with the allowed
tensor components for hep(0001) surface:

Xzxzz = Xyyzs  Xzzz = Xzyys Xzzz

In the presence of magnetization the symmetry of the system is lowered but the inversion
symmetry is not lifted since the magnetization is an azial vector i.e. does not change the
sign under inversion symmetry. Thus, the surface and interface sensitivity is not lost for a
magnetized system but the expression for the x() tensor becomes more complicated since
one has to deal with a higher number of components. For the transversal geometry (see
figure 3.4) used in this work, magnetization lies in the plane of the sample which lowers
the symmetry from Cg, to Co. Considering the magnetization direction parallel to y axis
and the optical incidence plane determined by z and z axes, the additional allowed tensor
components are:

Xae  Xdyy Xad 0 xR 0
0 0 0 xier 0 xod (3.15)
Xeaw Xagy Xezz 00 X O

Some of the new tensor components behave odd with respect to magnetization reversal i.e.
xP (M) = —x®(=M) while some do not change the sign x® (M) = x®(=M). From
now on, the latter ones will be denoted under even tensor components while the former
ones under odd tensor components. The even and odd tensor components of x(?) for a Cg,
surface symmetry as a function of magnetization orientation and polarization geometry
are listed in the table 3.2.

The effect of the even and odd tensor components on the SHG process can be readily
seen by considering two cases with different magnetization direction: transversal and
longitudinal (see figure 3.4) for a s-polarized incident light. According to table 3.2 for
transversal geometry we have two tensor components: one even x.y, and one odd Xgzyy
i.e. for a s-polarized fundamental. Both of them give a p-polarized SHG output. For
longitudinal geometry we have the same even component X.,, but an odd term xyyy,
which means a p-polarized SHG from the even term and a s-polarized SHG from the
odd term. Thus, upon magnetization reversal, one obtains in the transversal geometry a
change in the SHG intensity whereas for the longitudinal configuration the effect is the
rotation of the SHG polarization.
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3 Nonlinear magneto-optics - theoretical aspects

One way to obtain the even and odd components is to expand susceptibility tensor in
powers of magnetization M:

ax®@
oM

YA M) = x?(0) + M + ... (3.16)
The first term in right-hand side represents the even tensor component and the next term
in the development is the odd term that is proportional to the magnetization. Based
on these considerations, one can write an effective tensor that describes the total SHG
response from a magnetized material under the form:

dd
XTI (M) = x5 + x2f (3.17)
where X?ﬁ” and Xg%lc are linear combinations of tensor components and the corresponding
Fresnel factors that are allowed by system symmetry and experimental geometry. Such a
simplification is valid when the Fresnel coefficients f;;;, might be considered constants and

(2)

when only the relative changes in x, K are relevant. Thus one can write the expression for

the SH intensity as:

I2w) = | fiex 1 (w)? (3.18)
0,5,k

Bulk contributions to P(?) (2w)

It should be noted, that at the surface one can encounter high electric field gradients due
to the boundary existence, that can add higher order contributions to the second order
nonlinear polarization. These contributions have a non-local character and are described
by a fourth-rank tensor which is allowed in the bulk of centrosymmetric materials. There-
fore, beside probing the surface/interface one might have also components to the SHG
yield that contain information about the bulk of the investigated system. Moreover, when
the volume of the studied system is considerable the small bulk contribution might add
together and thus having a significant contribution to the total SHG response. In order to
account for the bulk contributions to the SHG response, the equation 3.8 can be written
now in the following form:

P (2w) = PP(2w) + P?(2w) = eox? (2w)E(w)E(w) + cox YEW)VE(w)  (3.19)

Here, the D and Q superscripts stand for dipole and quadrupole contributions, respectively.
In general, the non-local component of total polarization consists of electric quadrupoles
and magnetic dipoles sources which according to [97] are described by:

2w
c

P?(2w) = a[E(w)V]E(w) + SE(w)[VE(w)] + i < ) v[E(w) x B(w)] (3.20)
where «, 8 and v are phenomenological constants. The first two terms in equation have
electric quadrupole character whereas the last term describes the magnetic dipole contri-
bution.

In the electric-dipole approximation one takes into account just the local contributions
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3.2 Second Harmonic Generation (SHG)

to the total induced polarization of the medium. Experimentally, it is difficult to distin-
guish between surface and bulk contributions to the total SHG response from a certain
material. However, there are reports [100, 101] in literature where has been shown that
under special circumstances (employing certain experimental geometries) one can sepa-
rate these contributions. Since during this work we never observed a measurable bulk (i.e.
nonlocal) contribution to the SHG response of the investigated systems of Gd(0001) and
Y (0001) films on W(110) substrate, we neglect this in our further considerations. It has
been shown [44], that in the case of second harmonic generation the local and nonlocal
contributions are of comparable strength if there is a non-resonant transition involved.
We will see later for the case of gadolinium that the SHG response is resonantly enhanced
via the surface state components [102], a fact that makes us more confident in excluding
any bulk contribution to the total SHG yield for this particular system.

3.2.3 SHG radiation depth

An interesting point is the spatial extent over which the SH signal is radiated. A general
answer to this issue is the region over which the bulk electronic density exhibits a vari-
ation due to the presence of a surface (or interface) that produces a perturbation of the
translational symmetry along the z axis i.e. normal to the surface. Thus, from symmetry
considerations only, a quantitative information cannot be retrieved.

Another way of viewing these variations of the charge density at the surface is qual-
itatively reproduced in the framework of jellium model [103] by the so called Friedel
oscillations. In this model the discrete positions of the ionic charges are replaced by a
continuous positive background and the electronic density exhibits a damped oscillatory
behavior inside the jellium in order to screen the background. The damping length is
proportional to the background density. Usually the charge density of jellium is specified
by the corresponding Wigner-Seitz radius in atomic units. For the case of Gd, the Wigner-
Seitz cell radius is 7, is 3.762 a.u. [105] (the inverse value of rs denotes the background
density) and therefore the source of SHG in this case is restricted within two atomic layers
(one Gd layer is 2.89 A).

This link between the jellium model and SH polarization is illustrated in the figure 3.3,
which displays the case of a metal with rs=4 (i.e. close to Gd value) and consequently
a large distance over which the electronic density oscillates. Here are depicted the cal-
culated electronic density (determines the linear optical response) and the second-order
polarization produced by an electric field normal to the surface. What is interesting here
is the spatial distribution of the second harmonic polarization P»(z): the dominant con-
tribution to Py(z) comes from a surface layer as thin as ~4A (accounting for both sides
of the surface) and its maximum lies in the vacuum region where the equilibrium electron
density decays exponentially. Thus we come to the same result as above that for Gd with
rs=3.762 a.u. the SHG source is located within a region of around two atomic layers. We
have to be aware that jellium model is just a simple approximation of the real electronic
structure at the surface of metals. However, it can give an important insight about the
spatial extent that contributes to the generation of SH radiation.

Beside its intrinsic surface sensitivity derived from symmetry constraints, SHG is par-
ticular sensitive to electronic structure at the surface e.g. surface states [106], interface
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Figure 3.3: Tllustration of the spatial distributions of the second harmonic polarization (solid line)
and first order electronic polarization (dashed line) produced by an electric field at a metal surface
(with rs=4), calculated within a semi-infinite jellium model. The dashed-dotted line represents
the normalized electronic density in equilibrium and the z; and 25 indicate the centroid positions
of ny(z)and P»(z), respectively. From [104].

states [107] and quantum-well states [108]. The sensitivity is furthermore increased if the
optical transitions involved in the SHG process are resonant. This brings us to the case of
Gd(0001) surface, which exhibits a d_2-like surface state that is localized in the top-most
atomic layer (89% of the surface state charge density is located in the first atomic layer
[27]). We will see in chapter 5 that at the Gd(0001) surface the SHG process is resonantly
enhanced via the surface state (see figure 5.11). Thus we can say that for the case of
Gd(0001) surface the SHG process is extremely surface sensitive, probing most likely the
first two atomic layers (accounting for the charge gradient of the surface state). This arises
partially from the common symmetry restriction (within electric-dipole approximation) of
the SHG source at the surface, and due to the presence of the surface state via which the
SHG process evolves resonantly enhanced.

3.2.4 SHG - macroscopic formalism

For a quantitative evaluation of the SHG response of a certain material one can use the
phenomenological formalism developed by Sipe et al. [109]. Following their approach one
can compute the second-harmonic field using as input parameters the Fresnel coefficients
for fundamental f(w) and SH frequencies F(2w), the susceptibility tensor x(?), the effective
depth over which SHG is radiated ¢ and the incident laser intensity |E(w)|?. The condensed
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3.2 Second Harmonic Generation (SHG)

Figure 3.4: Experimental configuration of the SHG process in reflection employed in this work. The
fundamental and second harmonic beams are depicted by the dashed and solid lines, respectively,
while their polarization orientation is described by ¢ (fundamental) and ® (second harmonic)
angles. ¢ is the angle of incidence and the external magnetic field H sets the magnetization
orientation of the system and determines the transversal magneto-optical geometry.

formulation of this expression is given as [110, 44]:

9
B(2w) = —F(2w)x P (w) [E(w)¢ (3.21)
The Frenel coefficients are given by:

242 a2
by cos™ ¢

t2sin? ¢
APFC 'COS [ S2t12) COS2 ¢
F(2w) = Agsin @ D f(w) = _ (322)
ApN?F;cos ® 2fstpts cos psin @
o 2o fot2 cos?
2fctpts cos ¢ sin ¢

for the second harmonic and fundamental radiation, respectively. In the above relations
the following contracted notation was used:

sin 2 cos
fs: L4 fc:\/l_ 527 tp: Ld

n(w)’ n(w) cos @ + fe

2cos 21Ty
P/S T ioa

ty =

= @) +oos g N '=n(2)

cosp

(3.23)

where ¢ and ® denotes the polarization direction for fundamental and second harmonic,
respectively (0° for p polarization and 90° for s polarization, see figure 3.4). The lower-
case letters describe the quantities at the fundamental frequency whereas capital letters
denotes SH related quantities. The angle of incidence is denoted by ¢. N and n are
the refractive indexes at second-harmonic and fundamental frequency, respectively, 4,
denotes the amplitude of the output SHG for p and s polarized light, ¢,/ the transmission
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coefficients for p and s polarized light, while f; and f. represent the projection of the
fundamental wavevector on the coordinate system of the sample.

The Fresnel coefficients reflect the linear optical response of the medium at the fun-
damental and the second-harmonic frequencies, and enter in the SH field formula (and
consequently in the SHG intensity) as multiplying factors. This fact is useful since one
can increase the SHG yield by choosing the optimal geometry (angle of incidence, wave-
length). On the other hand, the fact that the SH field (eq. 3.21) depends on the optical
properties of the system at both, SH and fundamental frequency, makes a straightforward
interpretation of the SHG response, sometimes, to be difficult. Thus, one should be aware
of this fact when trying to obtain quantitative information from the SHG transients in
general [111].

From eq.3.21 we have seen that the SH field is proportional to the square of the incident
electric field, which gives the same square dependence between the SH I, and the funda-
mental I, intensities. It is of interest here to see what are the experimental parameters
that influence the SHG intensity. The SHG intensity is given by:

E,/A)?
Lo, o / X2 (t)dt o (Ep/A) (3.24)
T
where E,, A, T are the pulse energy, laser focus area, and pulse duration respectively. We
notice that the SHG signal is material dependent through x(? and it can be optimized by
varying one or more parameters that enter in the above equation.

3.3 Magneto-Optics

3.3.1 Linear magneto-optics

The interaction between the light and matter, with the latter one being magnetized - either
under the influence of an external magnetic field or showing a spontaneous magnetization
- is described in the framework of magneto-optics. Assuming moderate level of incident
optical intensities the response of the medium is a linear one (see previous section). The
magneto-optical effects manifest themselves as a change in the state of polarization and/or
intensity upon light reflection or transmission from magnetized material. In reflection this
effect is known as magneto-optical Kerr effect (MOKE), and in transmission under Faraday
effect. Both these phenomena resemble similar features, namely are proportional to the
magnetization and scale with the thickness of the medium under investigation .

Classically, the MOKE effect can be explained by the action of the Lorentz force on the
electrons excited by the incident electromagnetic wave. Although this picture has for sure
a high pedagogical usefulness, it does not account for the reality since one needs magnetic
fields in order of 10* tesla to obtain the observed amplitude of the MOKE signal.
Macroscopically, in a phenomenological approach, the dielectric tensor that describes the
optical response of the medium (optically isotropic) can be written as:

e O 0
e(w) = 0 eg O (3.25)
0 0 e42

44



3.3 Magneto-Optics

| M —»
Polar Transversal Longitudinal

Figure 3.5: Experimental geometries for linear and nonlinear magneto-optics that are defined by
the orientation of magnetization M direction with respect to the optical incidence plane (dashed
rectangle) and the sample. For the polar case the magnetization is perpendicular to the sample
surface and in the plane of incidence, for transversal geometry the M vector lies in the plane of
the sample and perpendicular to the plane of incidence while for the longitudinal situation M is
parallel with the plane of incidence and the sample surface.

In the presence of magnetization the medium becomes optically anisotropic, the effects
induced by the presence of magnetization being described by the off-diagonal tensor com-
ponents. These ones fulfill the Onsager identity [112] which illustrates the breaking of the
time-reversal symmetry in the presence of magnetization:

£ij(M) = —&4;(—M)

Taking this expression into account the dielectric tensor for a magnetized medium becomes:

Exx Exy Exz
ew)=| —€zy €z Eyz (3.26)
Exz Eyz Eaxx

In eq. 3.26 the formula of the dielectric tensor is deduced for the general case when the
magnetization has an arbitrary orientation.
As for the second-order susceptibility, expanding ;; in powers of M one obtains:

88@‘

eij(M) = e55(0) + 57

M (3.27)

where the part independent of magnetization (in a first approximation) denotes the diag-
onal components of the dielectric tensor while the part proportional with magnetization
determines the antisymmetric off-diagonal tensor components in equation 3.26.

Until now we have seen that the MO effects are due to the off-diagonal components of
the dielectric tensor. But the question is what is the physical picture behind these effects
or how the magneto-optics comes about? For sake of simplicity let us follow the Kerr
effect scenario: the incident linearly polarized light can be described as a superposition of
left and right circularly polarized components with equal amplitudes. As the light travels
through the magnetized medium, its constituent parts will "see” different medium with
different refractive indexes. This will result, first, in different propagating velocities and
implicitly there will be a phase shift between the two modes which produces the rotation of
the polarization plane. Second, different absorption rates for the two circularly polarized
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waves will change their relative amplitudes and modify the polarization state from linear
to elliptical. Their combined effect will produce an elliptically polarized output radiation
with the polarization plane rotated with respect to the incident wave polarization axis.

These two effects are quantified by Kerr ellipticity ex and rotation 6x contributions to
the complex Kerr angle: Oy = 0y + icg. Writing these quantities in terms of dielectric
tensor components, one obtains e.g. for a magnetized medium in the polar geometry
(M | 2):

Ok ~ L~ M
62?2?
The above relation shows the origin of the small linear magneto-optical effects, which is
the low magnitude of the magnetization-induced off-diagonal components of the dielectric
tensor in comparison to the diagonal ones. We will see that this in not the case for the
nonlinear magneto-optics, as detailed in the next section.

Depending on the involved MOKE geometry (see figure 3.5) one can map out the mag-
netization orientation in real space. For example in longitudinal geometry the in-plane
magnetization can be probed, this characteristic being used in magnetic domains imag-
ing. In polar configuration the projection of magnetization along z axis is determined,
this geometry finds applications in magneto-optical recording [113]. Although MOKE is
primarily a bulk sensitive technique since it averages over the optical penetration depth,
one can resolve thicknesses in monolayer or even sub-monolayer range of a ferromagnetic
material [114].

On a microscopic level, there is the combined effect of the spin-orbit coupling and the
exchange interaction together with the selection rules for optical transitions that give
rise to the observed magneto-optical effects. The optical transition in the electric-dipole
approximation have different absorption probabilities for left and right circularly polarized
light as can be seen in the figure 3.6. Writing the imaginary part of the non-diagonal
component of conductivity tensor that determines the magneto-optical activity [115], one
can identify on a microscopic scale the source of the magneto-optical effects:

9

7'1'62
) = g 22 H BN SN < 1 > P] <ilpel > Plosi—e) (529

with f(E) representing the Fermi-Dirac function, fw being the energetic interval between
the initial |7 > and final state |f > and 6(wyp; — w) describing the energy conservation.
If the difference between the matrix elements for dipole transitions corresponding to left
| < ilps+|f > | and right | < i|p_|f > | circularly polarized light vanishes (the case of a
paramagnet) than there is no net magneto-optical effect.

The above picture provides just a qualitative understanding regarding the origin of MO
effects on a microscopic level. It was shown [116, 117] that is the change of the electronic
wavefunctions due to the spin-orbit coupling rather than the energy eigenvalues shift which
accounts for the proper order of magnitude of the MO effects.

3.3.2 Magnetization-induced second-harmonic generation

Previously we have discuss in detail the linear magneto-optical effects since these resem-
ble several common features with, and are the basis for understanding of the nonlinear
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Figure 3.6: Microscopic picture of linear magneto-optical effects on a ferromagnetic material: the
initial degeneracy of the ground electronic states is lifted by the presence of spin-orbit coupling
while the exchange interaction produce a energetic shift A, of the electronic states with different
spin orientation. The optical transitions for left (LCL) and right-handed (RCL) circularly polarized
light evolve according to the selection rules Al = £1 and Am; = £1. The overall effect is a different
absorption probability for LCL and RCL that produces the rotation of polarization plane for the
outgoing light [115].

magneto-optics, that is the topic of this section. Due to its linear optical character MOKE
gives information about the magnetization behavior in the bulk region (within the optical
penetration depth) of the materials. Although can reach atomic monolayer sensitivity
[113, 114] of ferromagnetic films, MOKE lacks the surface or interface specificity.

Magnetization-induced second-harmonic generation, also known as the nonlinear magneto-
optical Kerr effect (NOLIMOKE or NOMOKE), as a nonlinear optical process provides
(within electric-dipole approximation) the surface and interface sensitivity (see preceding
sections) and simultaneously gives a measure of the magnetization in the probed region.
Similar to MOKE, the MSHG is linear in magnetization M but is nonlinear in the optical
field. Beside these characteristics, MSHG can access buried interfaces of e.g. magnetic
multilayered structures, with evident applications in magnetic data storage.

Although the SHG was first demonstrated in early 1960-ties [96], MSHG is a relatively
young tool of investigation of ferromagnetic materials. The MSHG effects were first pre-
dicted in the theoretical work of Pan et al. [11], where it was shown that magnetization
could induce a component of measurable magnitude to the total SHG response from a
ferromagnetic material. The first experimental proof came from the work of Reif et al.
[118] performed on the iron Fe(110) surface. Since then, the nonlinear magneto-optics field
experienced a tremendous development which was partially triggered by the continuous
interest in the physics of magnetic multilayered structures and their potential applications
as well as the development of the ultrafast laser sources. The application range of MSHG
covers a large spectrum starting from imaging of magnetic domains to investigation of spin
dynamics on ultrafast time scales, and from investigation of spin reorientation transition
of thin magnetic films to magnetic quantum wells. These are just a few examples that
give a rough overview about the applicability of MSHG. For a better overview of the work
done in this field, the reader is referred to the review of Kirilyuk [107].
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As for the case of linear magneto-optics, the origin of the nonlinear magneto-optical
effects rely on breaking of the time-reversal symmetry. In addition, breaking of space-
inversion symmetry provides a high surface and interface sensitivity. These two symmetry
considerations being fulfilled simultaneously, make the nonlinear magneto-optics in gen-
eral and especially MSHG a very reliable investigation method of electronic and magnetic
properties at surfaces and interfaces. Analogous to MOKE, in the case of MSHG the
magnitude of the magnetization-induced effects is proportional to the ratio between the
magnetic and non-magnetic tensor components ¢.e. odd and even with regard to magne-
tization reversal, respectively. Thus, both effects, MSHG and MOKE, resemble a similar
feature namely are proportional with the magnetization of the investigated system. For
the case of MOKE, the odd (off-diagonal) tensor components are usually small which ex-
plains the low magnitude effects encountered in linear magneto-optics. This is not the
case of MSHG where the even and odd tensor components are of comparable magnitude,
and therefore giving rise to much higher effects compared to linear magneto-optics. An
illustrative example here is Ni, where for the same wavelength range, a ratio of the odd
and even tensor components of 0.03 was found for linear magneto-optics whereas for the
nonlinear magneto-optics a value of 0.27 was determined [117].

In general, for a ferromagnetic material the nonlinear source of the SH signal can be
described by the second-order nonlinear polarization having the following form [107, 119]:

P2 (2w) = XEE; (@) By(w) + Xl B () Be(w) My (3:29)

where the first term on the right-hand side describes the non-magnetic effects while the
second is determined by the presence of magnetization. Defining [119] the magnetization-
induced susceptibility tensor as:

XEJZI)C(M) = Xz('jklMl (3.30)

one can express the susceptibility tensor giving rise to MSHG effects as a sum of second-
order susceptibility components that behave even and odd with respect to magnetization
reversal. Thus, one can write:

2 2
X = i + DXy (M) (3.31)

Experimentally one measures the SHG intensity for opposite magnetization directions,
which can be written as:

I (2w) | Bepen (2w) + Eoqq(2w)]? (3.32)

where Feyen(2w) and Eyqq(2w) are the even and odd SH fields generated by the nonlinear
polarization described in eq. 3.29. The magnetization orientation is denoted by up and
down arrows in the formula. Further on, the above equation becomes:

I (2w) o | Bopen (2w)|? + | Eodd(2w)]? % 2| Eeven (2w) || Eoga(2w)| cos ¢ (3.33)

where cos ¢ represents the relative phase between the even and odd second harmonic fields.
From here we see that the magnetization effects come from the cross term in the right-
hand side of eq. 3.33, which gives the interference between the even and odd SH fields
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and contains also their mutual phase ¢. Hence, the phase between odd and even fields
is a non-negligible quantity and should also evaluated from experiment. Its importance
can be seen immediately by assuming a ¢=90° value that gives a zero value for the cross
term, which is equivalent with no magnetization-induced SHG signal. How to measure the
relative phase between even and odd fields and the involved formalism will be presented
in the chapter 5.

In this work we have used the transversal magneto-optical geometry in a p-P polarization
configuration. This experimental geometry has been chosen since we are interested in
the in-plane magnetization component (of ferromagnetic Gd(0001) films) and the highest
number of even and odd tensor components contribute to the SHG response (see table
3.2). The latter fact ensures a high sensitivity of the SHG process to the magnetized
medium through the cross term in eq 3.33. Also for the p-P geometry the magnitude of
the Fresnel factors is higher that further enhances the SHG efficiency (see eq. 3.21).

In order to get information about the magnetization of the probed region, one can
determine from the measured SH intensities the magnetic contrast or magnetic asymmetry.
This is defined as the relative variations of the SHG intensity for opposite magnetization
directions and it has the below form:

IT(2w) — I'(2w)

= 3.34
P~ T w) + IH(2w) (3:34)
Taking into account the relation 3.33 one can write the magnetic contrast as:
E
p 2 | Eodd cos ¢ (3.35)
|Eeven’

considering? that % < 1. Since the magnetic contrast and the phase can be measured

in the experiment, one can deduce the value of the even and odd SH fields. Moreover,
accounting for the eq. 3.30 one obtains a direct relationship between the magnetic contrast
and magnetization of the probed area:

3
X
(2)

Xeven

P2 M cos ¢ (3.36)

Based on the above considerations, we can consider the magnetic contrast as a good
measure of the magnetization in the probed region.

Time resolved MSHG

The measured observable in a time-resolved MSHG experiment is the intensity of second
harmonic signal for opposite directions of magnetization and as a function of delay time
between pump and probe beams. As has been shown previously, the SH intensity con-
sists of even and odd fields with respect to magnetization reversal, which monitor [17]
the electron (phonon) and spin subsystems, respectively. We are interested in the time
evolution of the second-harmonic fields as a function of pump-probe delay. The first step

2The validity of the condition % < 1 is demonstrated in chapter 5 for the case of Gd(0001) surface.
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in their determination is computing the sum and difference of SHG intensities for opposite
magnetic fields, accounting for eq. 3.33:

IN(t) + IH(t) = 2[B2,en (1) + Elqa(t)] (3.37)

I1(t) — I'(t) = 4Beven(t) Eoqa(t) cos ¢(t) (3.38)

To deduce the transient SH fields, the ratios between the measured intensities for positive
and negative time delays (in absence of the pump pulse) are computed under the form:

O IT(t) £ It)
- IT(to) £ I (to)
In obtaining the upper expression in terms of transient SH fields we neglect the factor

| Epqa(2w)|? since |Eoqq(2w)? << |Feven(2w)|? (as shown above). The resulting pump-
induced variations in the second-harmonic fields are written as:

Ee’uen(t) o
7E€ven(t0) =/ RT(t) (3.40)

R(t)* (3.39)

Boda(t)cosg(t) _ R (t) (3.41)

Eoda(to)cosd(to) R*(t)
The normalized ratio of the even field denote the dynamics of the electron system while
the ratio of the odd fields gives measure of the magnetization dynamics in the probed
region [17]. In the following, and throughout the thesis, the time-resolved SHG data will
be presented under the following form:

Eeven t
Avven = VET() — 1 ~ Levenld) 4 (3.42)
Eeven(tO)

_ R . Eoda(t)coso(t)
Boas = R*(t) lNEodd(to)COSéf)(to) ! (3.43)

Accounting for the expression 3.30 one can write the A,q4 as [119]:

M(t)
M (to)

Aodd ~ a(t,w) -1 (3.44)

with the prefactor defined as:

(3)
— Xodd(t) . cos(t)
a(t,w) = X(()?i)d(to) cos(to)

(3.45)

From the above equations we notice that A,;q measures the transient magnetization of
the system multiplied by a factor that depends on the relative phase between the SH fields
and the normalized ratio of the third-order susceptibility. In principle one can measure the
relative phase in a time-resolved manner. For the case of Gd(0001) such measurements
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are hindered by the relatively low SHG signal and the inherent technical difficulty of
measuring SHG phase in UHV. However, spectroscopic measurements of the phase [119]
(see chapter 5) in the static case performed on Gd(0001) yield a value ¢ < 20° that gives

cos ¢(tp) ~1. Time-resolved MSHG measurements performed on Ni samples in air [120]
cos ¢(t)
cos ¢(to)
~1. Accounting for the Ni experiment and since for the Gd(0001) surface cos ¢(tg) ~1 we
cos ¢(t)
cos ¢(to)
on Gd(0001). From the spectroscopic behavior of the A,gq and Acyen, we deduce a minor
role of the susceptibility ratio in the dynamics of A,gq [119]. Thus, we can conclude that

the quantity A,qq reflects, mostly, the dynamics of the surface magnetization.

showed the pump-induced variations of the phase to be small and consequently

~1 is valid for time-resolved MSHG measurements performed

can conclude that
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