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Zusammenfassung

Im täglichen Leben müssen wir uns fast ununterbrochen zwischen möglichen Optionen entscheiden:

z.B. ‘Soll ich eine Jeans oder eine Chino tragen?’ oder ‘Soll ich einen Kaffee oder einen Tee trin-

ken?’ usw. Die einfachste Form einer solchen Entscheidung betrifft Entscheidungen, die ausschließ-

lich auf Grund von sensorischen Reizen getroffen werden. Wenn wir z.B. entscheiden müssen, ob

wir die heiße Tasse Kaffee, die wir gerade in Händen halten, sofort trinken können oder ob wir sie

besser noch etwas abkühlen lassen sollten. Solche rein sensorisch getriebenen Entscheidungen

werden als perzeptuelle Entscheidungen bezeichnet und liefern ausgezeichnete Rahmenbedingun-

gen, um die neuronalen Prozesse zu untersuchen, die einer Umwandlung von sensorischen Reizen

in willentliche Handlungen zu Grunde liegen. Anders ausgedrückt, in den Neurowissenschaften wird

die Einfachheit von perzeptuellen Entscheidungen oftmals dazu genutzt, um die Grundlagen von

Entscheidungen im Allgemeinen zu verstehen. In den letzten Jahrzenten haben gerade elektrophy-

siologische Daten aus Tierversuchen unser Verständnis von den zugrundeliegenden neuronalen

Prozessen vorangetrieben. Die Resultate aus dieser Forschung implizieren, dass Entscheidungen

als Handlungsabsichten implementiert sind; und zwar in den Hirnregionen, die auch für die Ausfüh-

rung der resultierenden Handlung zuständig sind. Insbesondere beinhaltet dies ein fronto-parietales

kortikales Netzwerk.

In den hier vorgestellten Arbeiten versuchen wir, diese aus Tierversuchen gewonnen Einsichten,

direkt mit dem vom Menschen abgeleiteten Elektroenzephalogram (EEG) in Verbindung zu brin-

gen. Dazu haben wir das EEG Signal während eines Vergleichs zweier nacheinander präsentierter

Vibrationen untersucht. In vier Studien, die insgesamt sechs Experimente mit dieser einfachen Ver-

gleichsaufgabe beinhalten, konnten wir zeigen, dass die Erkenntnisse, die man aus Tierversuchen

gewonnen hat, übereinstimmend auch aus menschlichen EEG Signalen abgeleitet werden können

und, darüber hinaus, sogar auf bis dato unerforschte Entscheidungen übertragen werden können.

Im Einzelnen bedeutet dies, dass je nachdem wie die Teilnehmer unserer Experimente ihre Ent-

scheidung mitteilen mussten, bzw. je nachdem welche Entscheidungsregel sie anwenden mussten,

ein EEG Korrelat gefunden wurde, welches nicht nur die Entscheidung der Teilnehmer widergespie-

gelt hat, sondern jeweils auch den Hirnarealen zugeordnet werden konnte, die für die Umsetzung

der entsprechenden Entscheidungskonsequenz zuständig waren. Beachtenswert hierbei ist außer-
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dem, dass diese Hirnregionen demselben fronto-parietalen Netzwerk entsprachen, welches auch

in Tierversuchen identifiziert wurde. Darüber hinaus konnten wir zum ersten Mal ein detailliertes

Evidenzsignal in parietalen Hirnarealen nachweisen, welches zwar aus anderen perzeptuellen Ent-

scheidungsstudien bekannt ist, allerdings noch nie zuvor in einer Vergleichsaufgabe berichtet wurde.

Interessanterweise hat uns die Anwendung einer solchen Vergleichsaufgabe zusätzlich ermöglicht,

zu zeigen, dass eben jenes parietale Evidenzsignal scheinbar mehr Informationen beinhaltet als

bisher angenommen. Diese Einsicht lädt wiederum zu Spekulationen ein, ob gegenwärtige Theori-

en zu perzeptuellen Entscheidungen womöglich weiter generalisiert werden können und zu einem

globalen Konzept zur Schätzung von Größenordnungen im Allgemeinen erweitert werden können.
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Abstract

Navigating through everyday life requires deciding between alternatives almost constantly: For in-

stance, ’Should I wear a pair of Jeans or chinos?’ or ’Should I have coffee or tea?’ etc. The simplest

form of decisions we face is based on sensory information only, e.g., when we need to decide

whether we can drink the cup of hot coffee in our hands just now, or whether we should wait a cou-

ple of more minutes. Such purely sensory-driven decisions, which fall into the domain of perceptual

decision making, constitute a prime example for studying the neural processes that are involved in

the transformation of sensory information into behavior. In other words, the simplistic nature of per-

ceptual decision making is often exploited in neuroscience to understand the principles of decision

making in general. Over the last decades, especially electrophysiological recordings in animals have

fostered the understanding of the involved neural processes. The according findings suggested that

decisions are formed as intentions to act in those brain structures, which also implement the ensuing

behavior. In particular, this implicated a fronto-parietal network of cortical areas.

The work presented here aimed at linking these insights from animal research to electroen-

cephalogram (EEG) recordings in humans. In particular, we investigated the EEG signal during a

simple task in which participants compared the frequencies of two vibrations that were sequentially

presented to their index finger. In four studies, comprising six experiments employing this simple

comparison task, we demonstrated that the findings from invasive animal recordings can be directly

related to non-invasive human scalp recordings, and moreover, can even be extended to previously

unexplored decision contexts. That is, depending on response modality and decision rule, we found

a choice-indicative signal originating from those structures that implemented the consequences of

the comparison task, notably, implicating the same fronto-parietal network as suggested by animal

research. Moreover, we identified a fine-grained evidence signal in parietal areas that was previously

known from other perceptual decision making tasks, however, has never been reported in a sequen-

tial comparison task. Interestingly, by using a comparison task, we could reveal that the parietal

evidence signal appears to convey more information than assumed before, inviting for speculations

about whether current theories of perceptual decision making might actually be extended to a more

general framework of magnitude estimation.
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1 Introduction

In everyday life, we are constantly exposed to an overwhelming amount of sensory input. This

plethora of information enters our brain via different sensory pathways where it is further processed

in specialized brain areas. Only a small fraction of the bulk of sensory input eventually yields con-

scious percepts of the things that we see, hear, smell, taste or feel. In certain situations, such

elementary percepts can directly influence our behavior. For instance, before we leave our homes

to go outside, we might be unsure of whether to take a jacket or not. To make a decision regarding

this issue, we can open a window and feel the temperature outside. Or imagine you want to buy a

woolen pullover. Among those that suit your taste, you might choose the pullover that feels softest

on your skin.

These two scenarios describe situations in which we make decisions based on how something

feels on our skin. Whether it is the feeling of temperature or touch, these sensations fall into the

somatosensory domain. Aside from somatosensation, we can of course also form decisions based

on information from our other senses. The study of perceptual decision making is concerned with

these decisions that transform the bare percepts – nourished by any of our various senses – into

overt or covert actions.

In the following, I will provide an overview of how such decisions are investigated within a neuro-

scientific context. I will introduce various approaches on how to operationalize perceptual decision

making, and present the current understanding of the underlying neural processes, based on re-

search conducted in humans and other species. Then, I will turn to my own contribution to the

field and present new insights into human decision making, obtained by examining choice behavior

in combination with electroencephalogram (EEG) recordings during a somatosensory comparison

task. Finally, I will discuss my findings in the light of current theories of perceptual decision making

and provide a new perspective on the prevailing interpretations.

1



1 Introduction

1.1 The study of perceptual decisions

Linking sensations with purposeful behavior – the goal of perceptual decision making – has long

been a focus of scholarly interest, even reaching back to the ancient Greeks (see Glimcher, 2003

for comprehensive historical review). Whereas Aristotle assumed in his de Anima that a nonmaterial

soul must implement the connection between sensation and action (see Aristotle, 1986), already

Descartes proposed that, at least for behaviors that are fully determined by sensory input, i.e., re-

flexes, the link should be found within the material body (see Descartes, 1649, 1664). Interestingly,

Descartes – who believed, like Aristotle, that more complex behaviors (i.e., nondeterministic links

between sensation and action) must involve a nonmaterial soul – paved hence the way for the first

physiological investigations of spinal reflex loops (Sherrington, 1649). These physiological experi-

ments on reflexes, in turn, can be regarded as predecessors of modern neuroscientific studies of

perceptual decision making.

Largely avoiding the quest for the physiological roots of the connection between sensations and

actions, Gustav Fechner was interested in describing this relationship between “body and soul” using

behavioral measures only (see Fechner, 1860). Drawing on exact mathematical formulations used

in physics, Fechner aimed at finding quantitative and qualitative regularities in the relation between

physical properties of objects in the “outside world” and their subjective perception. In other words,

Fechner introduced the study of psychophysics as a means to precisely describe the relationship be-

tween physics and psychology – which has remained the gold standard in behavioral neuroscience

to the present day. In his classic experiments, Fechner himself lifted two weights and judged which

one was heavier, systematically varying temporal and spatial configurations of his experiments (i.e.,

heavier weight first or last to be picked up / positioned to his left or to his right; Fechner, 1860, pp.

183 – 201). Thus, Fechner studied perceptual decision making using a two-alternative forced choice

(2-AFC) task while controlling for possible confounding factors in the experimental setup. The effect

of temporal order of stimulus presentation on choice behavior in 2-AFC tasks also played a major

role in my own studies and will be discussed in detail later (see 1.2.2 The time-order error). With

the advent of signal detection theory (SDT) in psychological research, a powerful theoretical frame-

work became available for investigating the empirical observations from 2-AFC tasks (see Green

and Swets, 1966; Macmillan and Creelman, 2004). Originally, SDT was implemented – as its name

2



1.1 The study of perceptual decisions
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Figure 1.1: Intuition underlying SDT. Upper panel displays a scenario in which no signal was present, and a percept (i.e.,
internal measurement) can be regarded as a sample from a pure noise distribution with mean m0. Lower panel shows
a distribution centered on an existing stimulus (i.e., m1) and an according sample of this distribution can be conceived
as a percept of a (weak) signal. The placement of the (decision) criterion determines the probability of a hit, miss,
correct rejection and false alarm, given that a stimulus was present (s1) or not (s0). (Figure adopted from Macmillan and
Creelman, 2004)

suggests – to provide a mechanistic account of the process underlying the detection of weak signals,

e.g., detecting whether a light is dimly lit or not (Tanner and Swets, 1954). Such “yes-no” detection

tasks have four possible outcomes depending on the presence or absence of a stimulus, and the

observer’s response. In the presence of a stimulus, an observer can correctly detect it (hit) or fail to

do so (miss). In the absence of a stimulus, the observer might correctly report the lack of a stim-

ulus (correct rejection) or erroneously detect a stimulus (false alarm). Conventional approaches to

investigating performance in these tasks focused on the proportion of correct responses only (i.e.,

proportion of hits and correct rejections), and treated false alarms as uninformative random guesses

independent of any sensory information. SDT, however, assumes that false alarms and hits vary

together. In particular, SDT postulates that when faced with a detection task, an observer computes

an internal measurement of the stimulus feature that is to be detected, e.g., the intensity of a poten-

tially lit light (Tanner and Swets, 1954). This internal measurement is noisy, but proportional to the

actual intensity of the stimulus feature in question. Conceptually, the internal measurement can be

regarded as a sample taken from one of two separate but likely overlapping probability distributions.

From a distribution of pure noise in the absence of a signal, or from a noisy distribution centered

on the true intensity of the stimulus feature in case a signal was indeed present (Figure 1.1).† The

†From a modern Bayesian perspective, the internal measurement can be regarded as a single percept of the actual
stimulus feature (e.g., see Petzschner et al., 2015).
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1 Introduction

observer has to apply a simple criterion to this internal measurement in order to decide whether a

stimulus was present or not. Accordingly, this internal measurement is often referred to as a deci-

sion variable (DV) in the context of decision making studies. If the internal measurement (or DV)

falls above the criterion, the observer reports the presence of a stimulus and denies it’s presence

otherwise. In this framework, the four possible outcomes of a “yes-no” detection task (i.e., rates

of hits, misses, correct rejections, and false alarms) are precisely defined by the areas under the

respective probability distributions on either side of the criterion (i.e., as probabilities; Figure 1.1).

Consequently, the four measures are tightly interrelated. That is, they covary depending on the lo-

cation of the decision criterion with respect to the internal measurement. Thus, if the cost of missing

a signal is high (e.g., missing the presence of a tumor in an X-ray image), observers can choose

to set their criterion very low, thereby ensuring few (or no) misses, however, producing a consider-

able amount of false alarms as a trade-off. In other words, the placement of the criterion can be

conceived as a bias in favor of one response over the other. At the same time, no matter where

observers place their criterion, they cannot change their sensitivity for the task at hand. That is,

sensitivity (or accuracy) in SDT (denoted as d’) can be regarded as the distance between the means

of the two hypothetical distributions that correspond to the two possible stimulus configurations (i.e.,

signal present or absent). Thus, observers’ accuracy is assumed to be constant for a given task and

session. Only the criterion, i.e., a response bias, can be willingly changed. Consequently, accuracy

and bias in decision making tasks can be investigated independently using SDT, whereas the con-

ventional measure of proportions of correct responses varies with response bias (see Macmillan and

Creelman, 2004). Importantly, the theoretical considerations underlying SDT were experimentally

confirmed in numerous psychophysical studies (e.g., see Swets, 1986). Moreover, the concepts

introduced for “yes-no” detection tasks can be easily extended to 2-AFC tasks. For instance, the two

distributions from which the internal measurement is assumed to be sampled can be conceived to

represent the two choice alternatives in 2-AFC tasks (see Macmillan and Creelman, 2004). In more

general terms, the distributional form of SDT is nowadays routinely used to model the perception of

all kinds of sensory stimuli, mostly in a Bayesian context (e.g., see Petzschner et al., 2015).
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1.2 Perceptual decision making in neuroscience

1.2 Perceptual decision making in neuroscience

The notion of an internal measurement inherent in SDT provides a direct link to neuroscience. In

fact, Tanner and Swets (1954) already suggested that the internal measurement on which choices

are based, i.e., a DV, is likely implemented by neuronal activity (i.e., the perception of sensory stim-

uli). Applying a simple criterion to the DV would hence suffice to relate neuronal activity to behavior.

Indeed, several decades later William Newsome, Michael Shadlen, and co-workers demonstrated

that the firing rates of specific neurons implemented a DV as hypothesized by SDT (Britten et al.,

1992, 1996). Indeed, Newsome and colleagues identified a dynamically accumulating DV in neu-

ronal activity, extending beyond the implicit assumption of stationarity in SDT (i.e., decisions are

based on a single internal measurement), well in line with classic sequential sampling models as

outlined below (e.g., see review in Gold and Shadlen, 2007). Alongside the work of Newsome and

colleagues, Vernon Mountcastle spearheaded a parallel stream of research investigating perceptual

decisions (e.g., see Mountcastle et al., 1969), which was continued by his student Ranulfo Romo

(e.g., see Mountcastle et al., 1990). The corresponding studies provide an impressive body of work

on perceptual decision making, which will be reviewed in depth afterwards (e.g., see comprehensive

review in Romo and Salinas, 2003).

1.2.1 Visual decisions based on evidence accumulation

To explore the relation of neuronal activity and perceptual decisions, Newsome and colleagues de-

vised a simple 2-AFC task, in which an observer judged the direction of apparent visual motion (see

Newsome and Pare, 1988). In particular, observers had to identify the net motion (e.g., leftward

vs. rightward) in a visually presented random dot kinematogram (RDK). A RDK is a cloud of dots,

with each dot changing position over a brief period of time before being replaced by a new dot at a

random location (see Newsome and Pare, 1988). By varying the proportion of dots that move coher-

ently (i.e., with a fixed spatiotemporal relation), the perceived net motion of the RDK, and hence task

difficulty, can be controlled by the experimenter (e.g., 0% coherence: all dots move independently in

random directions; 100% coherence: all dots move together in the same direction).

Newsome and colleagues trained macaque monkeys to perform such a random dot motion (RDM)

task and recorded neuronal activity from the motion selective middle temporal (MT) visual area (e.g.,

5



1 Introduction

Britten et al., 1992, 1996). Neurons in area MT are known to exhibit complex response patterns to

visual stimuli. Among other things, firing rates of MT neurons are tuned to stimuli moving in a certain

direction through their receptive fields (RFs; Maunsell and Van Essen, 1983). By recording neurons

that were specifically tuned to the motion directions of either choice alternative in a RDM task, Britten

and colleagues (1992) were able to probe the relationship between firing rates of single neurons

and behavior. Indeed, the activity in MT showed the very same pattern as predicted by SDT. That

is, single-trial firing rates could be conceived as being drawn from either of two distinct distributions

of possible firing rates (i.e. high or low), each representing one of the two possible motion directions

(or choices). For instance, neurons that preferred leftward motion exhibited high firing rates when

the net motion in the RDK was leftward, and low firing rates for rightward motion. Notably, the

distance between the distributions of observed firing rates (i.e., high vs. low) reflected the varying

proportions of coherently moving dots (i.e., task difficulty). In line with the notion of accuracy in SDT,

high coherence levels yielded almost completely separated distributions of firing rates, accompanied

by near perfect performance (Britten et al., 1992). Strikingly, when all dots in the RDK were moving

independently in random directions (i.e., 0% coherence), firing rates of MT neurons still predicted

the monkeys’ choices significantly above chance (Britten et al., 1996). That is, firing rates of MT

neurons were linked with choice behavior even in the absence of any physical motion information

in favor of either choice. Additionally, Salzman et al. (1990) provided evidence indicating that the

link is indeed causal. Microstimulating MT neurons tuned to a specific motion direction increased

the probability of monkeys reporting to have perceived motion in that very direction. Taken together,

this series of studies impressively established the behavioral relevance of area MT for simple motion

discriminations as required in the RDM task. Particularly, firing rates in area MT seem to index the

momentarily perceived motion of RDKs which drives decisions in the RDM task.

A fronto-parietal network subserves oculomotor decisions

In the classic RDM experiments, monkeys reported their choices by making a saccade to one of

two visual targets. Saccades denote quick eye movements that are executed in order to shift the

visual focus. Consequently, Newsome and colleagues reasoned that information about decisions in

the RDM task must also be accessible to areas responsible for the preparation of saccades. Specif-

6



1.2 Perceptual decision making in neuroscience

ically, they assumed that cortical areas located hierarchically between area MT and areas directly

responsible for the execution of saccades, i.e., superior colliculus (SC) and frontal eye fields (FEF),

might readout the information from MT and preserve it until a saccade is performed (see Shadlen

and Newsome, 1996). Due to the anatomical projections of MT, the lateral intraparietal (LIP) sulcus

was their preferred target. Neurons in area LIP are active when visual stimuli are presented within

their RFs, or when a saccade is planned into their RFs (e.g., Andersen et al., 1987). To specifically

refer to the latter response property, RFs of LIP neurons are also termed movement fields. Thus, as

a result of the sensory- and motor-related RF properties, LIP is typically considered a sensorimotor

integration area (see Andersen et al., 1987; Andersen, 1995; Colby and Goldberg, 1999; Andersen

and Buneo, 2002), and is likely to play a central role in the sensorimotor transformation at the heart

of perceptual decision making. Shadlen and Newsome (1996, 2001) recorded LIP neurons whose

movement fields were aligned with one of the two targets in the RDM task. The other target was

placed in the opposite direction from this movement field. Not surprisingly, they found that activity

in LIP neurons whose movement fields were aligned with the chosen target was elevated before

responses were given (Shadlen and Newsome, 1996, 2001). These findings simply reflected the

characteristics of the LIP cells according to which they were initially identified, i.e., increased activity

before a saccade was made to their movement field. However, the striking observation was that

the activity in single LIP neurons ramped up during the presentation of RDKs – faster and steeper

for easy than for difficult trials – and hence, was interpreted to reflect evidence for a decision that

was accumulating over time (Shadlen and Newsome, 1996, 2001). When allowing monkeys to re-

port their decision as soon as they committed to a choice, LIP firing rates peaked at the time of

the saccade and reached a fixed level independent of task difficulty, i.e., independent of presented

motion coherence (e.g., Roitman and Shadlen, 2002). Bennur and Gold (2011) finally showed that a

decision-informative signal in LIP was also present when no fixed response mapping was provided

for the RDM task. That is, monkeys had to map their choices onto a spatially undetermined color-

code. Only later, colors were assigned to two visual targets, and monkeys selected a target based

on its color. Still, neurons in LIP encoded the evidence for the upcoming decision, even before colors

were assigned to targets. That is, LIP encoded evidence for oculomotor choices, even though the

target for the ensuing saccade was not yet defined (Bennur and Gold, 2011). Thus, this study was
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1 Introduction

the first to provide direct evidence for the notion that LIP does not solely index an ensuing decision

report, but also tracks decision-relevant evidence independent of the specific motor response.

For decisions that were associated with a fixed motor response, a very similar ramping signal that

tracked evolving oculomotor choices was also found in firing rates of neurons in FEF (e.g., Hanes

and Schall, 1996; Kim and Shadlen, 1999; Ding and Gold, 2012), and SC (e.g., Horwitz and New-

some, 1999; Ratcliff et al., 2003), i.e., in those areas that are directly involved in the execution of

saccades. The apparent redundancy of similar signals in sensorimotor (i.e., LIP) and motor areas

(i.e., FEF and SC) remains highly controversial, however, the different sites might play distinct roles

in decision making. Recently, Hanks et al. (2015) found that rats’ parietal areas reflected graded

evidence for a decision, whereas frontal motor areas indicated a categorized choice signal, possibly

suggesting a gradual signal change from parietal to motor areas. Gold and Shadlen (2003) had pre-

viously shown (in monkeys) that the experimental task per se can influence the extent to which such

a sensorimotor transformation of decision-relevant information can proceed. When the response

mapping was clear in a RDM task (i.e., fixed mapping of choices onto specific saccade directions),

accumulated evidence for a decision was apparently already available to neurons in FEF. Microstim-

ulating FEF, while the RDK was still presented, evoked premature saccades biased towards the later

chosen targets. However, when the response mapping was not fixed and monkeys reported choices

by a saccade to a colored target, whose position was not predictable, microstimulation-evoked sac-

cades during evidence accumulation were not biased at all (Gold and Shadlen, 2003; similar task

as in Bennur and Gold, 2011). These findings are both trivial and remarkable. Of course, an oculo-

motor choice can only be prepared in relevant brain areas (i.e., FEF) when the specifics regarding

the ensuing saccade are known. However, these results also imply a remarkable flexibility within the

decision network, modifying the relay of information within a sensorimotor transformation process

depending on the given circumstances. Taken together, the reviewed findings of parietal and motor

areas imply that both sites might implement distinct functions for perceptual decision making, giving

rise to the notion of a fronto-parietal network subserving decision formation. Parietal areas seem

to represent a more detailed evidence signal, and appear to play the classic role of a sensorimotor

integration area (see Colby and Goldberg, 1999; Andersen and Buneo, 2002). This involves multi-

plexing sensory evidence and choice signals that can be read out by downstream motor areas as
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soon as a motor response is clearly specified (Meister et al., 2013; Park et al., 2014). Nevertheless,

lesioning the relevant parietal areas does not seem to hinder perceptual decision making in general.

In tasks with a fixed choice-to-motor mapping, reversible lesioning of parietal areas had no influence

on decision performance (Erlich et al., 2015; Goard et al., 2016; Katz et al., 2016), whereas motor

areas (Erlich et al., 2015; Goard et al., 2016) and sensory areas (Goard et al., 2016; Katz et al.,

2016) were indispensable. That is, parietal areas do not seem to be mandatory for decision making.

In fact, if the motor mapping is known in advance, and relevant motor areas are intact, these motor

areas appear to be sufficient to enable simple perceptual decisions.

Identifying decision-related activity in this fronto-parietal network, which is also involved in the

preparation and execution of the decision report (i.e., saccades), culminated in the formulation of

an intentional framework of decision making (Shadlen et al., 2008). That is, decisions are thought

to be expressed as intentions to act, and hence, are formed in brain areas that are responsible for

the execution. At the same time, an analogous theory of “affordance competition” was developed

(Cisek, 2007; Cisek and Kalaska, 2010). Cisek and colleagues found that competing actions were

simultaneously prepared in premotor structures until the required action was fully disclosed (Cisek

and Kalaska, 2005). In line with these views – which I will collectively refer to as the intentional

framework of decision making hereafter – de Lafuente et al. (2015) found that, when the decision

report was changed from saccades to reaches in the RDM task, a decision-relevant ramping signal

was identified in the medial intraparietal (MIP) area, also known as the parietal reach region (PRR).

Computational models of evidence accumulation

SDT provided a powerful framework for the analysis of stationary firing rates of single MT neu-

rons during a RDM task, and relate them to the choice behavior of monkeys (see Britten et al., 1992,

1996). Particularly, considering the firing rate from a single trial (i.e., spike count per second) yielded

a DV in the sense of an internal measurement inherent in SDT. The DV could be used to explain

the monkeys’ performance by comparing it to a decision criterion (Britten et al., 1992, 1996). The

ramping firing rates in areas LIP, FEF, and SC, however, suggested a dynamically evolving DV (e.g.,

see Shadlen and Newsome, 1996, 2001) rather than a stationary DV that is read out at the end of a

trial. Hence, Shadlen and Newsome (2001) suggested that the ramping signal in LIP might reflect

9
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the accumulation of the momentarily perceived motion represented in MT. Formally, they proposed

sequential sampling models to explain the accumulation process. These models originate from the

classic work by Wald on sequential tests of statistical hypotheses (Wald, 1945; Wald and Wolfowitz,

1948), and can be considered a direct extension of SDT. That is, whereas SDT implicitly assumed

that decisions are based on a single internal measurement, i.e., a stationary DV, sequential sam-

pling models repeatedly sample these internal measurements while accumulating the outcomes,

i.e., an accumulating DV (see Gold and Shadlen, 2007). Recall that according to SDT, the internal

measurement in a 2-AFC task, i.e., the DV, is conceived as a sample from either of two (possibly

overlapping) distributions that reflect two distinct stimulus configurations (see high vs. low firing rates

in MT depending on preferred or null direction of motion; Britten et al., 1992, 1996). The internal

measurement is hence more or less likely to be drawn from either of the two distributions. Formally,

one probability can be computed given that the sample was drawn from the first distribution, and

a second probability can be computed given that the sample belongs to the other distribution (i.e.,

two likelihoods per sample). Wald (1945) showed that combining the ratio of two such likelihoods for

every sample in a sequence provides an optimal sequential test procedure for deciding from which

distribution the sequence of samples was drawn (see also Wald and Wolfowitz, 1948). Specifically,

this famous sequential probability ratio test can be implemented by summing the logarithm of the

likelihood ratios from each sample (see also Gold and Shadlen, 2007 for an accessible description).

By defining a minimum amount of evidence that has to be accumulated before committing to a de-

cision, a boundary for the sequential sampling procedure can be set. Furthermore, the boundary

can be defined in accordance with classic statistical test procedures (i.e., controlling for alpha and

beta errors), notably, requiring fewer samples than the classic tests under identical conditions (Wald,

1945). Aside from the test’s optimality, the simplicity is appealing as, in principle, such an additive

integration of evidence could be implemented by single neurons (or populations of neurons). How-

ever, the explicit computation of likelihoods for each sample would require detailed knowledge of

the two alternative distributions, i.e., their probability densities, or at a minimum their mean values

(Gold and Shadlen, 2001). To circumvent this problem, Gold and Shadlen (2001) suggested that

instead, an approximation of the log-likelihood ratio may be computed, by pairing neurons with op-

posing response profiles (e.g., one preferring leftward motion, the other rightward). In particular,
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they demonstrated that the differences in firing rates of such neuron pairs – which they name the

neuron and antineuron (e.g., see also Shadlen and Newsome, 1996) – scales with the combined

log-likelihood ratio given the firing rates of both neurons (Gold and Shadlen, 2001). Hence, summing

the differences in firing rates of pairs of opposing MT neurons until a decision boundary is reached,

yields an optimal strategy for solving the RDM task – and neurons in LIP appear to do exactly that

(e.g., Shadlen and Newsome, 2001; Roitman and Shadlen, 2002; Mazurek et al., 2003).

In addition to the work of Shadlen and colleagues, behavioral research on human decision making

has nourished the development of several sequential sampling models (e.g., see recent review in

Ratcliff et al., 2016). These models account for observed choice behavior in great detail by explain-

ing response time variability for correct and incorrect decisions, as well as the accuracy of choices

itself. One aspect that all models have in common is that they describe the accumulation of evidence

as a noisy integration process (e.g., noisy accumulators, a diffusion process or a random walk). In-

corporating randomness enables these models to account for erroneous decisions and variations in

response times. Moreover, all models implement decision boundaries for the accumulation process

that mark the minimum amount of evidence that is necessary to commit to a choice – just like the

test procedure of Wald (see Wald, 1945). In particular, this can be implemented as absolute bounds

for two (or more) totals of evidence, or as relative bounds for a single total of evidence (see Ratcliff

et al., 2016; Gold and Shadlen, 2007). Ratcliff et al. (2003) were the first to directly link recorded

neural activity from monkey SC to one of these models. Specifically, they fitted a drift diffusion model

(DDM; e.g., see Ratcliff and Rouder, 1998) to the observed choice behavior. The virtual traces of

the diffusion process in this model drift towards either choice alternative (specified by a certain drift

rate depending on observed response times), and hence, serve as a single-trial proxy for evidence

accumulation. When averaged across trials, these traces accurately reflected the according mean

firing rates of single cells in SC (Ratcliff et al., 2003). Ever since this first successful application of

the DDM to electrophysiological data, numerous studies have utilized the DDM, or similar models,

to explain neuronal firing as accumulating evidence in perceptual decision making (e.g., Huk and

Shadlen, 2005; Ding and Gold, 2012).
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Accumulation-based decisions in humans

Inspired by the findings from animal research, work in human neuroscience has investigated the

process of evidence accumulation for perceptual decisions along similar lines. Heekeren and col-

leagues (2004) wanted to identify a “neuron/antineuron mechanism” that could be resolved at the

brain-region-specific level using functional magnetic resonance imaging (fMRI). Thus, using similar

principles as in the RDM task, human participants were presented with noisy pictures of either a

face or a house for a fixed period of time. After a delay, they reported via button presses, which of

the two items they had perceived. Importantly, the level of noise that degraded the pictures varied

across trials, to introduce different levels of available evidence, and hence, task difficulty. Perceived

images of faces are known to elicit increases in the blood oxygenation level dependent (BOLD) sig-

nal in the fusiform face area (FFA; e.g., Kanwisher et al., 1997), whereas images of houses are

associated with BOLD signal increases in the parahippocampal place area (PPA; e.g., Epstein and

Kanwisher, 1998). Heekeren et al. (2004) thus reasoned that the perceived evidence for a decision

in this face-vs-house task should scale with the difference in activity between PPA and FFA. More-

over, they hypothesized that a brain area which accumulates this relative evidence should exhibit

a higher BOLD signal for easy trials than for hard trials. That is, assuming a similar accumulation

process as observed in the monkey research, easy trials should lead to a faster increase in neural

activity to a certain threshold value which is maintained until a response is given (see Shadlen and

Newsome, 1996, 2001). Given that fMRI lacks the temporal resolution to identify the dynamics of

this accumulation process, the BOLD signal can only pick up the overall activity during any given trial

(i.e., one accumulation process). Consequently, easy trials (i.e., high activity reached early during

the stimulus presentation) should be associated with a higher BOLD signal than hard trials.† The

only brain area that fulfilled these two postulated requirements (i.e., scaling with differential activity

from PPA and FFA and higher BOLD signal for easy trials) was the left dorsolateral prefrontal cortex

(dlPFC; Heekeren et al., 2004). Notably, when replicating the RDM task in humans, the left dlPFC

also showed higher activity during easy trials as compared to hard trials, independent of the re-

sponse modality, i.e., button presses or saccades (Heekeren et al., 2006). Furthermore, Philiastides

†Note that this reasoning only applies for tasks with a forced delay before responses (see Hanks and Summerfield, 2017).
In response time tasks, the argument actually goes in the opposite direction, i.e., a higher BOLD signal for low evidence
as compared with high evidence, as in this scenario with self-paced responses the accumulation process presumably
ends earlier in easy trials (e.g., see Ho et al., 2009; Kayser et al., 2010; Liu and Pleskac, 2011).
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et al. (2011) showed that an inactivation of the left dlPFC via transcranial magnetic stimulation (TMS)

indeed reduced the performance of participants in the face-vs-house task, most likely by deteriorat-

ing the participants’ ability to integrate evidence (i.e., a decrease in the drift rate of the DDM). Based

on these studies, the left dlPFC was suggested as a generic decision making area that integrates

sensory evidence independent of the ensuing motor actions (see Heekeren et al., 2008). Similarly,

the right anterior insular (aINS) has also been associated with this role (e.g., Ho et al., 2009; Liu and

Pleskac, 2011). Moreover, many fMRI studies have also identified the human homologue of monkey

LIP, i.e., the intraparietal sulcus (IPS), as well as the FEF as being involved in the formation of a

decision (e.g., Heekeren et al., 2006; Ho et al., 2009; Kayser et al., 2010; Liu and Pleskac, 2011).

Taken together, the fMRI literature consistently reports overlapping brain areas as being involved

in perceptual decision making. Besides those areas that are known from animal research, and which

are associated with the preparation of a decision report (i.e., IPS and FEF), additional general-

purpose decision areas have been identified by fMRI (i.e., DLPFC and aINS). Whether these latter

areas are indeed involved in the decision formation per se or whether they are active during decision

making tasks, because they exert some form of cognitive control, remains elusive nevertheless (e.g.,

see Cardoso-Leite et al., 2014). Moreover, the indirect relationship between the sluggish BOLD

signal and the fast neuronal dynamics underlying evidence accumulation leaves some uncertainty

regarding how to interpret fMRI results in this context (see also Hanks and Summerfield, 2017).

On the other hand, EEG and magnetoencephalography (MEG) can capture the dynamics under-

lying the formation of perceptual decisions, however, at the expense of spatial resolution. Although

the relationship between M/EEG signals and fMRI BOLD signals is not completely understood (but

see Logothetis et al., 2001; Scheeringa et al., 2011), the dlPFC was also implicated by MEG find-

ings to be involved in perceptual decision making (Donner et al., 2007). In the RDM task, beta

band power (∼ 12 – 30 Hz) in the dorsal visual pathway (MT, IPS, and dlPFC) was higher for correct

than for incorrect decisions (Donner et al., 2007). This finding supports the notion that the dlPFC is

rather involved in global control processes instead of general-purpose evidence accumulation (see

also Cardoso-Leite et al., 2014). At the same time, in line with the intentional framework of deci-

sion making, Donner et al. (2009) found that a large-scale motor preparation signal in human MEG

recordings tracked the accumulating evidence for perceptual decisions (e.g., see also O’Connell et
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al., 2012). Particularly, the well-known lateralized decrease in beta band activity in preparation of

button press responses (e.g., see Jasper and Penfield, 1949; Pfurtscheller, 1981) scaled with the

proportion of coherent motion in the RDM task (Donner et al., 2009). Furthermore, in analogy to

the micro-stimulation of FEF in monkeys that evoked saccades biased in the direction of subsequent

choices (Gold and Shadlen, 2003), perturbating hand position prior to reporting choices with a reach,

evoked reflexes in human participants that were biased toward the final decision reports (Selen et

al., 2012). In particular, the evolving DV (based on a RDM task) seemed to have proceeded even as

far as the peripheral motor system, as was revealed by electromyographic recordings (Selen et al.,

2012).

Preceding these clearly motor-related signals, a centro-parietal positivity in the human EEG (ab-

breviated CPP) was recently shown to track evidence accumulation in various perceptual decision

making tasks (reviewed in Kelly and O’Connell, 2015). This event related potential (ERP), which

is arguably identical to the classic P300 wave (see Twomey et al., 2015), has been suggested to

be the human homologue of the signal recorded in monkey LIP (see Kelly and O’Connell, 2015).

Specifically, the CPP increased faster and steeper for trials with high evidence as compared to low-

evidence trials (e.g., in the RDM task Kelly and O’Connell, 2013; Twomey et al., 2016), and always

attained a common threshold at the time of the decision report (e.g., O’Connell et al., 2012; Kelly

and O’Connell, 2013; but see Philiastides et al., 2014). Of note, these tasks eliminated any stimu-

lus evoked signals by employing an elegant continuous task design, ruling out possible task-onset

confounds which might have contaminated previous fMRI findings (see Cardoso-Leite et al., 2014).

Given the variety of tasks with different sensory modalities that were employed (e.g., see O’Connell

et al., 2012), the CPP was suggested to reflect a modality-independent (i.e., general-purpose) evi-

dence accumulation signal (see Kelly and O’Connell, 2015). Moreover, the CPP was also found to

index the evidence for a deviant detection in a classic oddball paradigm, further generalizing the role

of the CPP beyond the limits of classic accumulation-based decision making (Twomey et al., 2015).

In sum, this selected review of human M/EEG research is well in line with results from the animal

literature. That is, a parietal signal appears to track evidence accumulation for decisions that are

based on the integration of noisy sensory input, and motor structures that are responsible for the

decision report also have access to this information – at least when a clear response mapping is
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provided. The overall agreement between human and animal research also includes the previously

discussed findings from the fMRI literature that also implicated a fronto-parietal network subserving

perceptual decision making.

1.2.2 Vibrotactile frequency comparisons

All studies described up to now were based on judgments of single noisy percepts, mostly in the

visual domain. In these studies, the presence of noise allowed the experimenters to control the

difficulty of according decisions, and forced observers to accumulate sensory information until they

reached a specific percept, or no further evidence was presented. Aside from this accumulation-

based approach, there is another popular way to investigate perceptual decision making by examin-

ing how a stimulus is evaluated in comparison to a percept held in working memory. In this scenario,

two stimuli are presented sequentially and the observer is asked to compare both stimuli based on a

specific stimulus feature. These tasks come in many flavors, ranging across all stimulus modalities,

here, however, I focus on a variant that uses vibrotactile stimuli. This somatosensory version has

been extensively studied in monkeys, yielding one of the most complete pictures of the processes

involved in a sensorimotor transformation from perception via decision to action (see Romo and de

Lafuente, 2013 for a review). Vernon Mountcastle pioneered this work, and introduced the vibrotac-

tile comparison task to the study of electrophysiology in monkeys, training them to decide whether

the second stimulus had a higher or lower frequency than the first one (e.g., Mountcastle et al., 1969,

1990). The frequencies of the stimuli in this task typically lie in the range of 5 – 50 Hz, as in this

range, the involved mechanoreceptors in the skin (Meissner’s corpuscles) are most sensitive (e.g.,

Talbot et al., 1968). On a more descriptive level, these stimuli are known to create a so-called ‘flutter’

sensation. In order to compare two such flutter stimuli, a cascade of cognitive operations associated

with different neural processes must be completed: (1) the frequencies of both stimuli (f1 and f2)

have to be reliably encoded; (2) f1 has to be kept in working memory during the retention interval;

and (3) a comparison between f2 and the memory trace of f1 has to be computed and transformed

into a motor response (comprehensive review in Romo and de Lafuente, 2013). A summary of the

most important findings from Romo and colleagues is provided in the following paragraph.

In a typical setup of the frequency comparison task, both flutter stimuli (with frequencies f1 and
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f2) were sequentially presented to the glabrous skin at the monkeys’ fingertip, interleaved by a brief

retention interval (typically a couple of seconds; see Romo and de Lafuente, 2013). The animals

decided whether f2 < f1 or f2 > f1 and reported their decisions via a button press after the sec-

ond stimulus, either immediately or after a short delay period (again, typically a couple of seconds).

Electrophysiological recordings from contralateral primary somatosensory cortex (SI) revealed that

quickly adapting (QA) neurons in Brodman areas (BAs) 3b and 1 encoded the frequencies of the

flutter stimuli during presentation (Mountcastle et al., 1990; Hernández et al., 2000). The QA neu-

rons in BA 3b receive afferent inputs (via the Thalamus) from rapidly adapting mechanoreceptors

(Meissner’s corpuscles) in the skin, and BA 1 in turn is innervated by neurons from BA 3b (e.g., Tal-

bot et al., 1968; Mountcastle et al., 1969). Most of the recorded neurons in SI encoded the stimulus

frequency by discharging periodically and phase-locked to the stimuli (e.g., Mountcastle et al., 1990).

However, a fraction of neurons did not convey the exact temporal structure of the stimuli, rather they

encoded stimulus frequencies by a monotonically increasing rate code, i.e., the higher the stimulus

frequency, the higher the average firing rate during stimulus presentation (e.g., Hernández et al.,

2000). Notably, the monkeys’ behavioral performance was better explained by the activity of neu-

rons that employed a rate code (Hernández et al., 2000; Salinas et al., 2000; Luna et al., 2005). That

is, evaluating mean firing rates of neurons (i.e., rate code) in the framework of SDT (i.e., comparing

them against a decision criterion just like the firing rates from MT in the RDM task; see Britten et

al., 1992, 1996) revealed that the resulting neurometric response functions were very similar to the

psychometric response function computed from behavioral performance (Hernández et al., 2000).

Neurometric functions computed from the periodicity in neuronal firing (i.e., temporal code), on the

other hand, predicted a much higher performance than observed, suggesting that monkeys did not

use this detailed information for their decisions. Moreover, neurons in secondary somatosensory

cortex (SII), the subsequent region along the somatosensory processing hierarchy, almost exclu-

sively encoded stimulus frequencies using a rate code (Salinas et al., 2000). These observations

led to the conclusion that the behaviorally relevant information in this tactile comparison task is likely

conveyed via a rate code, and not by a temporal code (e.g., Hernández et al., 2000; Salinas et al.,

2000; Luna et al., 2005). Interestingly, the rate code in SII could be either positively or negatively

correlated with the stimulus frequency (i.e., either increasing or decreasing firing rates with higher
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stimulus frequencies; Salinas et al., 2000). This dual coding scheme was also observed in all other

downstream brain areas that were involved in the frequency comparison task at later stages, i.e.,

in prefrontal cortex (PFC), ventral, medial, and dorsal premotor cortex (vPMC, mPMC, dPMC; see

Hernández et al., 2010). Particularly, during the retention interval – in the absence of any sensory

input – the firing rates of neurons in all of the listed frontal regions (most prominently in PFC) were

found to scale with the frequency that had to be kept in working memory, i.e., f1 (e.g., Romo et al.,

1999; Brody et al., 2003; Barak et al., 2010; Jun et al., 2010; Hernández et al., 2010). In the deci-

sion phase of the task, when both stimuli had to be compared, firing rates, especially in premotor

cortices, scaled with the differences between f2 and f1 (e.g., Hernández et al., 2002; Romo et al.,

2002, 2004; Jun et al., 2010; Hernández et al., 2010). Notably, the correlation of firing rates and

differences between f2 and f1 was reversed for incorrect decisions, associating the recorded neural

activity with the monkeys’ actual choices (e.g., Hernández et al., 2002; Romo et al., 2002, 2004).

The central role of the PMC in decision formation was further supported by a study investigating

monkeys’ local field potentials (LFPs). Haegens et al. (2011) found that the beta band power (∼15 –

30 Hz) in LFPs recorded from mPMC and dPMC was also modulated by the difference between f2

and f1, suggesting that choice-related information can also be read-out at a larger scale than single-

cell firing. Specifically, beta band power was always higher for “f2 > f1” choices as compared to

“f2 < f1” choices, irrespective of whether decisions were correct or incorrect (Haegens et al., 2011).

Importantly, the choice-related PMC signals in LFPs, as well as in the neuronal firing rates, were

specific to the comparison task, and did not merely represent the motor preparation of the decision

report. That is, when monkeys were instructed in advance how to respond, regardless of the stimuli,

both the beta band modulation and the firing rate modulation were no longer observed (Hernández

et al., 2002; Romo et al., 2002, 2004; Haegens et al., 2011). Finally, that such a choice-related

signal was primarily observed in premotor structures is – analogously to the choice signals in FEF

and LIP during oculomotor choices – in line with an intentional framework of decision making, as

monkeys always reported their choices by button presses in the vibrotactile comparison task.
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Computational models of the frequency comparison task

Recall that Romo and colleagues observed a dual coding scheme in the firing rates of neurons

throughout the comparison task in all brain areas except for SI (i.e., either positive or negative cor-

relation with encoded quantity; see Romo and de Lafuente, 2013). They argued that this coding

scheme with two oppositely tuned neuronal populations may be exploited to improve discrimination

performance in the task (Romo and Salinas, 2003). Specifically, an appropriate subtraction of ac-

tivity from both pools can result in an increase in discrimination capacity (when assuming that an

ideal observer forms decisions based on the difference in firing rates; Romo and Salinas, 2003).

Such a subtraction of oppositely tuned neuronal activity could in general provide more robust repre-

sentations at any stage of the task (i.e., during encoding, working memory and comparison; Romo

and Salinas, 2003). Interestingly, note that a similar mechanism has also been suggested by Gold

and Shadlen (2001) in the context of the RDM paradigm (i.e., the neuron/antineuron hypothesis),

possibly hinting at a general principle of robust neural coding. For the vibrotactile comparison task,

Machens et al. (2005) implemented this idea in a neural network model based on mutual inhibition

between two oppositely tuned neuronal pools. In brief, the model accounts for the firing rate modu-

lations observed in frontal cortex during encoding and working memory (i.e., representing f1), and

decision making (i.e., representing f2 - f1) by reaching different attractor states at the different stages

of the task. An important property of this model is the recurrent connectivity within the two pools

of neurons to create a line attractor. In plain words, this line attractor allows for stable/sustained

activity with varying firing rates depending on f1 during the working memory phase of the task (see

Wang, 2001; Miller et al., 2003). To generate such a line attractor, however, the model requires

some manual fine tuning, and consequently, does not reflect the heterogeneity of firing rates typi-

cally observed in neuronal recordings, i.e., the model is “too good” (Jun et al., 2010). Barak et al.

(2013) solved these problems (i.e., manual tuning and lack of heterogeneity) by demonstrating that

also more realistic model configurations (i.e., recurrent random neural networks) can be trained to

exhibit the desired activity patterns. Finally, these attractor models can also be used to mimic the

conceptual models associated with accumulation-based decision making (i.e., evidence accumu-

lation in RDM task; Wang, 2002), providing a possible link between both streams of research via

biologically-inspired modeling (comprehensive review in Deco et al., 2013).
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The time-order error

Remarkably, none of the available models of the frequency comparison task considers that the tem-

poral order of stimulus presentation has a strong influence on choices in sequential comparisons

(see Fechner, 1860). That is, in the vibrotactile comparison task, comparing 20 Hz with 24 Hz is

not the same as comparing 24 Hz with 20 Hz – one of the presentation orders results in a higher

proportion of correct responses than the other. Yet, a symmetry in performance between presenta-

tion orders is usually assumed for modeling or analysing behavioral data in this context (e.g., see

Hellström, 2003 for an extensive critique). Early psychophysical work investigated and quantified

the effect of temporal order in comparison tasks on the level of stimulus pairs, and referred to the

mismatch in performance between presentation orders as the time-order error (TOE; or time-order

effect; e.g., Fechner, 1860; Köhler, 1923; Lauenstein, 1933; Woodrow, 1935; Jamieson and Petru-

sic, 1975; comprehensive review in Hellström, 1985). Notably, the TOE varies across observers,

and hence, needs to be quantified individually. Conceptually, the TOE was early on suggested to

be caused by a shift/assimilation of the remembered first percept toward a reference value (e.g.,

Köhler, 1923; Lauenstein, 1933; Woodrow, 1935). Formally, this idea led to a model of “sensa-

tion weighting”, which suggests that the two stimuli are weighted differently relative to a reference

value (Hellström, 1985; see also Michels and Helson, 1954). This reference value was found to be

closely related to the physical mean of the applied stimulus set (e.g., see Hellström, 1985), which

has been consistently replicated in more recent work, including the vibrotactile frequency compari-

son task (e.g., Preuschhof et al., 2010; Karim et al., 2012; Sanchez, 2014). Consequently, the TOE,

which is traditionally defined for a single stimulus pair, can also be embedded within a more global

perspective. That is, in a sequential comparison task, observers appear to compare the second

stimulus not only with the first stimulus, but also with the mean of all previously presented stim-

uli (i.e., the mean of the stimulus set over the course of an experiment). This idea can be readily

incorporated within the framework of Bayesian inference (e.g., Ashourian and Loewenstein, 2011;

Sanchez, 2014), however, the TOE is still largely neglected in the context of perceptual decision

making (but see Preuschhof et al., 2010).
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Vibrotactile frequency comparisons in humans

The literature on human perceptual decision making in the vibrotactile frequency comparison task

is rather scarce (reviewed in Pleger and Villringer, 2013). Only a few fMRI studies are available that

identified brain areas which were active during the different stages of the task (Preuschhof et al.,

2006; Pleger et al., 2006; Li Hegner et al., 2007; Kostopoulos et al., 2007). The studies found that the

BOLD signal increased during stimulus encoding in somatosensory cortices (SI and SII), prefrontal,

and premotor areas (Preuschhof et al., 2006; Li Hegner et al., 2007), during the retention interval in

prefrontal as well as in parietal areas (Preuschhof et al., 2006; Kostopoulos et al., 2007), and in SI,

prefrontal, premotor and motor areas during the decision phase (Preuschhof et al., 2006; Pleger et

al., 2006), in general agreement with the results from monkey electrophysiology. Moreover, Pleger

et al. (2006) demonstrated that the absolute difference between the two stimulus frequencies scaled

positively with the BOLD signal in left dlPFC for correct but not for incorrect trials. Together, the

results from fMRI research are consistent with the findings from animal research, again, suggesting

an additional role of dlPFC in perceptual decision making (see Heekeren et al., 2008).

In a series of EEG studies, Spitzer and Blankenburg showed that, in analogy to the work in mon-

keys, the encoding and working memory aspects of the vibrotactile comparison task can be recorded

at the human scalp level in the form of large-scale oscillatory signatures (Spitzer et al., 2010; Spitzer

and Blankenburg, 2011, 2012; Spitzer et al., 2014). Specifically, during the presentation of the flutter

stimuli, somatosensory steady-state evoked potentials (SSEPs) were recorded from contralateral

SI (e.g., Tobimatsu et al., 1999; Spitzer et al., 2010). That is, the EEG signal showed a power

increase in the frequency band that corresponded to the stimulus frequency, temporally confined

to the stimulus presentation. Possibly, these SSEPs directly reflect the phase-locked firing of neu-

rons identified in monkey SI (e.g., see Hernández et al., 2000). During the retention interval of the

task, Spitzer et al. (2010) found that upper beta band power (∼20 – 30 Hz) in the PFC, specifically

the right inferior frontal gyrus (IFG), increased with the frequency of the stimulus that was kept in

working memory (i.e., f1; Spitzer and Blankenburg, 2011, 2012). Notably, these findings imply that

the PFC represented the content kept in working memory, in analogy to the firing rate code known

from monkey electrophysiology (see Romo et al., 1999). The role of prefrontal upper beta band in

working memory processing was further generalized to other stimulus features, as well as to other
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1.3 Aims of the thesis

stimulus modalities in the context of the sequential comparison paradigm (Spitzer and Blankenburg,

2012; Spitzer et al., 2014). Moreover, impairing IFG function with TMS, deteriorated performance in

a vibrotactile working memory task, providing causal evidence for the crucial involvement of IFG in

working memory processing (Auksztulewicz et al., 2011).

Taken together, the results obtained from human studies, using both fMRI and EEG, are well in

line with the seminal electrophysiology work in monkeys using the vibrotactile frequency compari-

son task. Here, the EEG results are of particular interest. EEG recordings provided the temporal

resolution to investigate different stages of the task, and revealed oscillatory signatures that were

directly related to according observations in the monkey data. Strikingly, however, no study has yet

investigated the decision phase of the vibrotactile frequency comparison task using human M/EEG

recordings, which was thus the first goal of the present thesis.

1.3 Aims of the thesis

The primary goal of this thesis is to bridge the gap between the work in monkeys and humans on

perceptual decision making in the vibrotactile frequency comparison task (Studies 1 - 3). Further-

more, it aims at advancing the current understanding about how the two introduced major streams

of research in the field can be brought closer together within an intentional framework of decision

making (Studies 2 and 3). Finally, the thesis investigates whether the role of the CPP in perceptual

decision making also generalizes to the vibrotactile frequency comparison task, and whether the

CPP may hence indeed index a generic proxy of evidence for perceptual choices (Study 4).
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2 Summary and Discussion of Results

In order to achieve the stated aims, 64-channel EEG data (BioSemi, ActiveTwo) was recorded in

six experiments utilizing the vibrotactile frequency comparison task (see Figure 2.1). The six ex-

periments varied in response modality, response timing, and response mapping, however, the com-

parison task per se remained the same in all variants. Participants were briefly presented with two

vibrotactile stimuli to their left index finger (250 ms each, separated by 1000ms), and had to decide

whether the frequency of the second stimulus (f2) was higher or lower than the frequency of the first

stimulus (f1). All stimuli exhibited frequencies in the flutter range (i.e., 12 - 32 Hz), with f1 randomly

taking 16, 20, 24 or 28 Hz, and f2 varying by ± 2 or ± 4 Hz. In Studies 3 and 4, also trials with

identical stimulus frequencies were included in the experiments (i.e., f1 = f2). Participants were not

aware of this possibility, and always indicated whether f2 > f1 or f2 < f1. Notably, in all experiments,

participants completed over 1000 trials, yielding rich data sets for EEG analysis. In the following,

I briefly summarize the main findings of each study, before giving a more detailed description and

discussion of the individual study results. In Study 1 (Herding et al., 2016), participants were asked

f1 f2retention

250ms 1000ms 250ms

delay

2500ms

immediate 
responses

delayed 
responses

Study 1 Study 2

Study 3

Study 4

button presses
(right-handed)

saccades

spatial mapping
(clear motor mapping)

color mapping
(no clear motor mapping)

Legend

Figure 2.1: Overview of the studies presented in this thesis, and the according experimental designs. All experiments
employed the same stimulus protocol, but varied in how participants were instructed to report their decisions. Each gray
box refers to a single experiment. The colored frames indicate which experiment(s) were investigated in which of the four
studies.
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to report their decisions immediately after the presentation of the second stimulus by a button press.

Upper beta band power†, most likely originating from mPMC, was modulated by the choices of par-

ticipants well before the decision report, irrespective of whether decisions were correct or incorrect.

In particular, “f2 > f1” choices were accompanied by higher beta band power than “f2 < f1” choices,

just as in monkey LFPs recorded from PMC (Haegens et al., 2011).

In the second study (Herding et al., 2017), the same setup was used, except that participants had

to report choices by horizontal saccades. In line with the findings from Study 1, we found again that

premotor upper beta band power was higher for “f2 > f1” choices than for “f2 < f1” choices for both

correct and incorrect decisions. This time, however, a more lateral part of PMC was implicated as

the most likely source of the modulation, importantly, including FEF. That is, in line with an intentional

framework of decision making (see Shadlen et al., 2008), the same choice-informative signal as be-

fore was found (i.e., choice-modulated upper beta band power), again originating from the premotor

structure that is involved in the ensuing decision report (i.e., in line with Study 1).

For Study 3 (Ludwig et al., submitted), a response delay was introduced to the experimental setup,

forcing participants to postpone their decisions for 2500 ms. In particular, this study comprised two

experiments. In the first experiment, decisions were associated with a fixed motor mapping as before

(i.e., left vs. right button press), whereas in the second experiment, choices were associated with

a spatially undetermined color-mapping. That is, participants selected targets via button presses

based on the color of targets (i.e., yellow vs. blue), with each color indicating one of the choice

alternatives (i.e., “f2 > f1” vs. “f2 < f1”). The colored targets only appeared at the end of the re-

sponse delay – with equal probability on either side of a computer screen in front of the participants

– eliminating the possibility of preparing a specific motor response beforehand. When a fixed motor

mapping was given (i.e., no color-mapping required), effectively identical results as in Study 1 were

found during the response delay. That is, upper beta band power over premotor areas was higher

for “f2 > f1” than for “f2 < f1” choices. When choices were not associated with a well-defined motor

response, i.e., a color-mapping was required, the same modulation of upper beta band power was

observed, however, now over occipital/parietal regions. Also these findings can be interpreted in

an intentional framework of decision making. In the absence of a clear motor mapping, choices

†Technically, we investigated spectral amplitude, i.e., the square-root transform of spectral power, in Studies 1 and 2 (see
Herding et al., 2016, 2017 for details). For clarity, however, we will collectively refer to the observed effects as modulations
of beta band power in this thesis.
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2 Summary and Discussion of Results

needed to be mapped onto a more abstract intention, i.e., selecting a target on the left or on the

right based on its color (see Shadlen et al., 2008). Such an abstract intention is most likely repre-

sented in parietal cortex (see de Lafuente et al., 2015; see also Andersen and Buneo, 2002), and

cannot be passed along to premotor structures, as a specific motor response is not yet known (see

microstimulation of FEF in Gold and Shadlen, 2003).

In Study 4 (Herding et al., submitted), EEG data from all experiments were pooled to investigate

whether the idea of the CPP as a domain-general proxy of decision evidence also extends to the

vibrotactile comparison task (see Kelly and O’Connell, 2015). That is, data from studies 1 - 3,

as well as data from two more experiments, were analyzed together, yielding a total of 116 data

sets from six experiments. The two additional data sets were recorded in a setup identical to the

one of Study 3, however, requiring participants to respond with saccades instead of button presses

(separate manuscript on oscillatory choice signatures in preparation). The CPP was indeed found

to index evidence for decisions in the frequency comparison task, i.e., a modulation by the signed

(perceived) difference between f2 and f1, immediately after the second stimulus. Later, however, the

CPP switched to representing the absolute (perceived) difference between f2 and f1. This finding

refines the current understanding of the CPP, and suggests that the CPP first represents the signed

quantity on which a decision is based, and later the confidence in that decision.

2.1 Behavioral model of choices and confidence for all studies

In all of the experiments, we observed a strong influence of the TOE on choice behavior. That is,

participants showed the tendency of comparing f2 not only with f1, but also with the mean of the

stimulus set (fmean; see 1.2.2 The time-order error). In other words, the quantity that determined

choices in the given task could be best described by a difference between f2 and a representation

of f1 that deviates from its physical value towards fmean. Since we were interested in identifying EEG

signatures that represented this very quantity on which decisions are based, we needed a formal

description of these subjectively perceived frequency differences (SPFDs) for each stimulus pair and

each participant. Therefore, we introduced a measure corresponding to a mean-biased version of

f1 – which we will call f1 ′ – as a weighted average of the mean of all stimulus frequencies and the

physical value of f1 (see also sensation weighting; e.g., Hellström, 1985; Michels and Helson, 1954):
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2.1 Behavioral Model

f1 ′ = ws · f1 +wm · fmean (2.1)

wherews andwm denote the respective weights for both quantities, withws+wm = 1. We assumed

that the difference between f2 and f1 ′ (i.e., f2 − f1 ′) is evaluated at the time of stimulus comparison,

and can be conceived as an approximation of the SPFD driving choices for any given stimulus pair.

In this intuitive formulation, the influence of the TOE is simply explained by the weight that is given

to fmean – the larger wm, the larger the TOE.

Following the principles of SDT (i.e., a percept can be seen as a sample from a distribution cen-

tered on the true stimulus), this intuition can be readily implemented in the framework of Bayesian

inference (see Figure 2A in manuscript of Study 4; Herding et al., submitted). That is, f1 ′ can be

realized as the expected value of a Gaussian posterior distribution of f1, when assuming a Gaussian

prior centered on the stimulus set (i.e., with mean fmean). Note that in contrast to previous Bayesian

models of the TOE (e.g., see Ashourian and Loewenstein, 2011; Sanchez, 2014; Petzschner et

al., 2015), we assumed that only the remembered percept of f1 is shifted towards fmean (i.e., f1 ′),

whereas f2 is assumed to be perceived as it is. In other words, we propose that the perception of

f1 (retrieval from working memory) is qualitatively different from the perception of f2 (newly arriving

stimulus).†

Now, let σ2stim denote the variance of the likelihood function for a given stimulus (i.e., 1/σ2stim is the

precision with which a stimulus can be encoded; identical for f1 and f2), and σ2prior the variance of

the prior distribution (i.e., 1/σ2prior is the precision with which the mean of the stimulus set can be

estimated), then

f1 ′ =
1

σ2stim
σ2prior

+ 1
· f1 +

1
σ2prior

σ2stim
+ 1
· fmean. (2.2)

That is, in this Bayesian formulation, the ratio of σ2stim and σ2prior determines the weights that are

assigned to f1 and fmean for describing the perception of f1 ′, as introduced in eq. (2.1) (see also

Ashourian and Loewenstein, 2011; Herding et al., 2016). We used variational Bayes, as imple-

†Also the first ideas of the mechanisms behind the TOE proposed this view (e.g, Boas, 1882; Köhler, 1923).
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2 Summary and Discussion of Results

mented in the VBA toolbox (Daunizeau et al., 2014), to estimate σ2stim, σ2prior and an overall bias term

(i.e., a decision criterion as known from SDT) for each participant based on individual choices. More

precisely, we fitted the difference distribution between the likelihood function of f2 and the posterior of

f1 to the observed proportions of “f2 < f1” choices for any given stimulus pair (for intuition see Figure

2A in manuscript of Study 4; Herding et al., submitted). Importantly, this model clearly outperformed

a “null” model that was based on the physical frequency differences for nearly all recorded data sets

(i.e., f2 − f1; Bayes Factors > 3 for 106/116 data sets; for details see manuscript of Study4; Herding

et al., submitted).

One advantage of formulating the model in the framework of Bayesian inference, and drawing on

concepts of SDT, is that the model parameters can be interpreted in a meaningful way. Although we

did not exploit this possibility extensively in the presented studies, we could at least show that the

estimated parameters were highly correlated with individual behavioral measures across participants

in a sensible way. That is, we found that the precision with which participants were able to encode

stimulus frequencies (i.e., 1/σ2stim) correlated with their d’ values. At the same time, the precision with

which participants were assumed to represent the mean of the stimulus set (i.e., 1/σ2prior) matched

the size of the TOE, and predicted how much the suggested model would exceed the “null” model

in explaining the observed choices (all correlation coefficients > 0.8; see Study 1; Herding et al.,

2016). In other words, the introduced mechanism accounted for the influence of the TOE just as

intended. To further explore the underlying mechanisms of the TOE, we suggest for future studies,

to systematically vary the duration of the retention interval in the task, and to investigate how the

TOE is affected by this. Many studies suggest that the TOE increases with longer retention intervals,

however, the overall picture in the literature is rather diffuse (see Hellström, 1985 for review of early

work; Preuschhof et al., 2010; Ashourian and Loewenstein, 2011). The presented model can be

easily extended to incorporate an independent mechanism that explicitly accounts for the influence

of varying retention intervals. That is, the precision of f1-representation (i.e., 1/σ2stim) can be modeled

to change over time until a comparison with f2 is computed, simply by introducing a multiplicative

factor to σ2stim in eq. (2.2) (see Sanchez, 2014). A factor larger than one would correspond to an

increase of the TOE, and might be associated with long retention intervals, whereas a factor below

one would indicate a decrease of the TOE, possibly observed for short retention intervals. Hence,
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2.1 Behavioral Model

this time-dependent mechanism would introduce an additional means to explain the varying impact

of the TOE on choice behavior.

Another advantage of the Bayesian model formulation is its distributional form. That is, based on

the difference distribution between the likelihood of f2 and the posterior of f1, we could compute a

measure of confidence derived from SDT (e.g., Sanders et al., 2016; Hangya et al., 2016). In brief,

the difference distribution allowed us to compute the average perceived evidence for correct and

incorrect decisions, given any stimulus pair (i.e., the center of mass of the distribution on either side

of the decision criterion; see Figure 2B in manuscript of Study4; Herding et al., submitted). The

average perceived evidence, in turn, is proportional to the average confidence for a given (correct or

incorrect) choice (see Sanders et al., 2016). Hence, we could also infer confidence levels based on

our behavioral model without having recorded explicit confidence ratings (see manuscript of Study

4).

Finally, it should be noted that the suggested model is formulated in very generic terms. That is,

there is no apparent reason to assume that it is specific to the vibrotactile frequency comparison task.

In fact, a similar Bayesian account was used to explain the influence of the TOE (or contraction bias,

as it is called by the authors) on choices in sequential comparisons of two visually presented lines

(i.e., a comparison of their lengths; Ashourian and Loewenstein, 2011). Furthermore, we suggest

that the proposed model might also extend beyond the scope of mere perceptual comparison tasks.

In particular, we argue that, as soon as two quantities have to be compared in a sequential fashion,

the here described mechanisms of Bayesian inference should apply. In other words, we predict

that the TOE should also be observed in sequential comparisons of two (continuously quantifiable)

values that are not solely driven by sensory input. Indeed, we found preliminary evidence that

choosing one of two sequentially presented snacks is affected by the TOE in the same way (however,

weaker) as choices are affected in the vibrotactile frequency comparison task (see also Hogarth and

Einhorn, 1992; Trueblood and Busemeyer, 2011 for further examples of the TOE beyond perceptual

comparisons). These promising results are planned to be pursued in future research, investigating

whether also the here identified correlates in the EEG signal extend beyond perceptual decisions.
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2 Summary and Discussion of Results

2.2 Study 1 - Upper Beta Band Oscillations in Human Premotor Cortex

Encode Subjective Choices in a Vibrotactile Comparison Task

As reviewed in the Introduction, the vibrotactile comparison task has been studied extensively in

non-human primates using electrophysiological recordings, leading to one of the most complete un-

derstandings of the processes involved in perceptual decision making (see Romo and de Lafuente,

2013 for review). Human EEG recordings, on the other hand, have only investigated correlates

of working memory processes in this task until now (e.g., Spitzer et al., 2010). In the initial study

(Herding et al., 2016), we hence aimed at filling this void, and tried to link the previous human EEG

findings (i.e., on working memory) with the work in monkeys (on decision making). In particular, up-

per beta band power in human EEG recordings was found to represent the working memory content

during the retention interval of the vibrotactile frequency comparison task (i.e., f1; e.g., see Spitzer

et al., 2010). At the same time, beta band power in LFPs recorded from PMC encoded choices

of monkeys during the decision phase of the task (Haegens et al., 2011). Here, we investigated

whether these findings can be brought together, i.e., whether the results from monkey research are

directly transferable to human EEG recordings.

We recorded 64-channel EEG data while participants completed the vibrotactile frequency com-

parison task introduced above. Participants were asked to indicate whether f2 > f1 or f2 < f1 via

button presses, always with their right hand, i.e., index vs. middle finger button presses. Impor-

tantly, the response mapping was counterbalanced across participants to avoid a direct mapping of

choices onto button presses, which might have been associated with specific motor preparatory sig-

nals. In order to investigate oscillatory signatures of decision making, we analyzed time-frequency

transformed, response-locked EEG data. That is, we examined at which frequencies spectral power

correlated with the differences between f2 and f1 before responses were given. In particular, we

used subjectively perceived frequency differences (SPFDs) between f2 and f1 (i.e., f2 − f1 ′) as

estimated from our Bayesian model (see 2.1 Behavioral model above).

We found that upper beta band power (∼20 - 30 Hz) in medial-frontal electrodes (FCz, FC2, C2)

was modulated by SPFDs well before decisions were reported (∼750 - 350 ms before responses

were given). Importantly, the modulation changed its sign between correct and incorrect trials. That

is, for correct decisions, beta band power was positively correlated with SPFDs, whereas for incorrect
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2.2 Study 1 - Oscillatory EEG signatures of somatosensory decisions

decisions, a negative correlation was observed. Investigating these relations more closely, revealed

that the modulation was in fact driven by participants’ choices and not by the graded values of

SPFDs. More precisely, upper beta band power could be divided into two classes. Higher power

was associated with “f2 > f1” choices, whereas “f2 < f1” choices were accompanied by relatively

lower power – irrespective of whether choices were correct or incorrect. Moreover, when analyzing

the data separately for both response mappings, we found the same modulation with very similar

scalp topographies for both mappings, suggesting that the choice signal in the beta band was likely

independent of the specific motor response. A source reconstruction implicated mPMC (also known

as supplementary motor area, SMA) as the most likely origin for the effect observed at the scalp

level.

Remarkably, our results were qualitatively the same as reported for monkey LFPs. That is, fre-

quency band, location, and the modulation per se (i.e., “f2 > f1” choices associated with higher beta

band power than “f2 < f1” choices) were in fact identical (see Haegens et al., 2011). Beyond this

notable agreement, our data even imply that the choice-selective beta band modulation is specific to

premotor structures, as we found it by analyzing a globally recorded signal. Moreover, our findings

align well with previous human EEG work on oscillatory signatures of working memory processes:

upper beta band power was found to scale with f1 during the retention interval of the task (e.g.,

see Spitzer et al., 2010). These findings, together with our results, suggest that upper beta band

oscillations might index the quantity that is relevant at different stages of the vibrotactile comparison

task. Notably, this interpretation of upper beta band oscillations is markedly different from the clas-

sic sensorimotor beta band, which is also used to study decision making. That is, power decreases

over contralateral primary motor cortex are reliably found to reflect the accumulating evidence for

a decision when choices are reported by lateralized button presses (e.g., see Donner et al., 2009;

O’Connell et al., 2012). Nevertheless, sensorimotor beta band activity and the identified upper beta

band activity in premotor structures are not mutually exclusive. The here reported premotor signal

might indicate the categorical decision outcome, i.e., the content on which a decision is based, which

is ultimately transformed into a specific motor response, possibly detectable in classic sensorimotor

beta signals, such as the lateralized power decrease.

In sum, Study 1 successfully linked human and monkey research, and additionally, extended the
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2 Summary and Discussion of Results

previously identified role of upper beta band oscillations from working memory processes to decision

making.

2.3 Study 2 - Response-Modality-Specific Encoding of Human

Choices in Upper Beta Band Oscillations during Vibrotactile

Comparisons

In the context of the vibrotactile comparison task, the work in non-human primates, as well as our

previous study (Study 1), was restricted to investigating decisions that were reported by button

presses. In the visual domain on the other hand, a large body of work focused on perceptual de-

cisions that were reported by saccades, finding that oculomotor brain regions play a central role in

decision formation (e.g., see Gold and Shadlen, 2007 for review). These studies gave rise to the

formulation of an intentional framework of decision making, which proposes that decisions are rep-

resented as intentions to act in brain structures that are associated with the execution of the decision

report (see Shadlen et al., 2008). The previous findings from both monkey and human research in

the context of the vibrotactile comparison task, are also in general agreement with an intentional

framework of decision making, as choice-related signals were consistently found in mPMC/SMA

(e.g., see Hernández et al., 2002; Haegens et al., 2011; Herding et al., 2016). Here, we aimed

at directly relating the findings from oculomotor decision making to the work in the somatosensory

domain. In particular, we probed whether the previously reported choice-selective upper beta band

modulation is only observed for button press responses (see Haegens et al., 2011; Study 1; Herding

et al., 2016), or whether it is preserved when saccades are used for responding. If it is preserved,

will it be transferred to the oculomotor system in accordance to an intentional framework of decision

making?

We applied the same experimental setup as in Study 1, however, asked participants to indicate

decisions by horizontal saccades instead of button presses. Again, choices were dissociated from

specific motor responses by counterbalancing the choice-to-saccade mapping across participants.

Based on the findings from Study 1, i.e., beta band power was modulated by participants’ choices

and not by the graded SPFDs, we contrasted time-frequency transformed EEG data directly between
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choices, including both correct and incorrect trials in the analysis.

We found that upper beta band power (∼24 - 32 Hz) in frontal electrodes (FC2, FC4) was modu-

lated by choices clearly before decisions were reported (∼ 750 - 450 ms prior to decision report) –

just as observed in Study 1. That is, “f2 > f1” choices were accompanied by higher power than “f2 <

f1” for correct as well as for incorrect decisions. By inspecting the time courses of upper beta band

power, extracted for different levels of SPFDs, we could furthermore confirm that the modulation

was indeed categorical (i.e., by choice), and not driven by the graded SPFDs. Moreover, a separate

analysis of the data for either fixed saccade-to-choice mapping, yielded again very similar scalp to-

pographies of the choice-modulated beta band signal, corroborating the notion that the modulation

is independent of a specific motor response. Finally, the most likely cortical sources of the effect

were located again in premotor areas, however, in more lateral parts as in Study 1, now, including

FEF.

These results confirmed our previous findings (Study 1) by showing that the choice-selective mod-

ulation of upper beta band power was also present for a different response modality. Additionally,

our findings suggest that the beta band signal might indeed be effector specific in accordance to

an intentional framework of decision making (see Shadlen et al., 2008). That is, the most likely

sources of the effect were now located in FEF, which is known to be involved in saccade planning

(e.g., Schall et al., 1995). Moreover, FEF is also long known to be involved in decision formation,

however, typically in accumulation-based decision making in the visual domain (e.g., see Glimcher,

2003; Gold and Shadlen, 2007). Here, we could show for the first time that when the vibrotactile

comparison task is combined with oculomotor responses, a choice-indicative signal known from a

different response modality (i.e., upper beta band power), is simply transferred to the new response

modality (i.e., saccades).

In sum, Study 2 confirmed the findings from Study 1 in all aspects, and extended them to a new

response modality that has never been probed in the context of vibrotactile comparisons before.

Hence, the results from this study established a direct link between the two major lines of research

in perceptual decision making (i.e., Romo’s work on vibrotactile comparisons and Shadlen’s work

typically based on oculomotor responses), and provided further evidence in favor of an intentional

interpretation of perceptual decisions.
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2.4 Study 3 - Oscillatory EEG Signatures of Postponed

Somatosensory Decisions

In Studies 1 and 2, decisions were followed by an immediate and well-defined motor response.

However, in a more realistic setting, decisions are usually neither associated with a direct motor

response, nor is the ensuing action fully defined at the time of a decision. Such rather abstract

decisions, which are decoupled from a specific motor response, were targeted in the current study.

Research with monkeys utilizing the RDM task showed that LIP is also involved in the formation of

these abstract decisions (Bennur and Gold, 2011). That is, monkeys were trained to map decisions

onto a color code, and report choices by making a saccade to one of two targets, selecting a target

according to its color (e.g., if leftward motion, chose green target). Importantly, the color of targets

was dissociated from the target locations, and was only revealed either before, during or after stim-

ulus presentation. Firing rates of LIP neurons encoded the evidence for a decision even before the

targets’ colors were disclosed, i.e., before the monkeys knew to which target a saccade had to be

prepared. On the other hand, FEF does not seem to have access to decision-relevant information in

such a scenario (see Gold and Shadlen, 2003). Microstimulating FEF during stimulus presentation

evoked saccades that were biased towards the later selected target, i.e., saccades that incorporated

decisional evidence, however, only when a fully defined motor mapping was provided beforehand,

but not when a mapping onto a spatially undetermined color code was required. In the current study,

we adapted a similar color mapping scheme to the vibrotactile comparison task, and compared it

with a direct motor mapping in the same task. In other words, we investigated how choice-selective

signals in the EEG signal might be influenced by varying the consequences of the decision outcome,

i.e., a mapping onto a well-defined motor response or onto a color code.

This study comprised two experiments, both deploying the same vibrotactile comparison task as

in Studies 1 and 2, this time, however, with a response delay. We recorded EEG data while par-

ticipants completed one of these two variants, which differed from each other in that choices were

either reported according to a fixed spatial mapping (i.e., select left vs. right target via button press)

that was consequently also associated with a fixed motor mapping (i.e., press left-arrow vs. press

right-arrow), or according to a color mapping (i.e., select blue vs. yellow target via button press).

That is, 2000 ms after the presentation of f2, two target dots appeared on the left and on the right
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side of a screen in front of the participants. On each trial, one of the targets was blue, whereas

the other target was yellow (counterbalanced across trials). After another 500 ms, a response cue

was provided, and participants reported their decisions. For the experiments with a fixed spatial

mapping, the colors of the targets were irrelevant and choices were reported by selecting a target

according to its location (e.g., if “f2 > f1”, chose left target). Analogously, for the experiment with a

color mapping, choices were indicated by selecting a target based on its color (e.g., if “f2 > f1”, chose

yellow target). Importantly, the response rules were counterbalanced across participants in both ex-

periments to fully dissociate decisions from the decision report. Another novelty in the current study

(as compared to Studies 1 and 2) comprised the presentation of trials with two identical stimulus

frequencies (i.e., f1 = f2) in 25% of all comparisons. Participants were not aware of this possibility,

and were instructed to always respond whether f2 > f1 or f2 < f1. For the analysis of EEG data, we

contrasted the time-frequency transformed EEG signal between both choice alternatives (including

correct and incorrect trials) to identify time-frequency windows in which spectral power was modu-

lated by participants’ choices. Additionally, we were interested in whether also f1 or f2 alone might

be represented by oscillatory signals during the response delay, in analogy to the identified working

memory processes during the retention interval of the task (e.g., Spitzer et al., 2010).

For the experiment with a fixed spatial/motor mapping, we found essentially the same modulation

of upper beta band power as reported in Study 1. That is, after the presentation of f2, but before

the response cue, upper beta band power in medial prefrontal electrodes (11 electrodes; strongest

in F1, F2, AF4) was higher for “f2 > f1” choices as compared to “f2 < f1” choices, for both correct

and incorrect decisions (including trials with f1 = f2). The most likely sources of this modulation

were again located in premotor areas. When no well-defined motor mapping was provided, and a

color mapping was required, we still found the same choice-selective modulation of upper beta band

power, however, in parietal electrodes (CP3, CP1, CPz, CP2, CP4, and Pz). A source reconstruction

of this effect suggested PPC as the most likely origin. In addition to these choice effects, we also

found that f1 and f2 alone were indexed by upper beta band power in right prefrontal electrodes (AF4,

F2, F4, F6, FC6, FC4, FC2) after the presentation of f2, but before the choice-selective modulation

was observed.

Our findings again confirm the notion of upper beta band power indexing choices in the vibrotactile
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comparison task, notably, also when responses are postponed, and even when no well-defined

motor response is associated with a choice. Depending on whether a motor response could be

prepared or not (fixed spatial mapping vs. color mapping), this modulation was either observed

in PMC or in PPC. Arguably, the color-mapping condition also provided some spatial information

about the ensuing choice (i.e., target dots were always at same locations). A choice-informative

signal in PPC can hence be related to the idea of parietal areas implementing intentional or saliency

maps of the visual field (e.g., see Andersen and Buneo, 2002). Moreover, these findings align well

with results from monkey electrophysiology that also found decision signals in premotor structures

only when a specific motor mapping was provided (Gold and Shadlen, 2003). Otherwise, parietal

areas showed decision-related neural activity (Bennur and Gold, 2011). The modulation of upper

beta band power by f1 and f2 during the response delay, nicely extends the previous findings on

working memory processes associated with beta band power (e.g., Spitzer et al., 2010). That is,

the response delay arguably constitutes an additional working memory phase in the given task, and

during this delay, apparently not only the decision outcome, but also the quantities that were used

to compute this outcome were still maintained. The availability of this information might allow for a

flexible re-evaluation of the decision at later times.

In sum, Study 3 showed that the choice-selective modulation of beta band power is also present

when decisions are not associated with an immediate and fully defined motor response. Moreover,

the obtained results support the notion of distinct roles for premotor and parietal areas during deci-

sion formation, dissociating both sites based on the decision consequences (i.e., a motor response

vs. a more abstract mapping).

2.5 Study 4 - Centro-parietal EEG Potentials in Perceptual Decision

Making: From Subjective Evidence to Confidence

In Studies 1 - 3, we successfully identified oscillatory signals in the human EEG that indexed par-

ticipants’ choices in the vibrotactile frequency comparison task. In a number of different response

contexts, we consistently found that upper beta band power was modulated by the categorical de-

cision outcome of the comparison between f1 and f2. That is, we identified a binary modulation
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of beta band power: “f2 > f1” choices were always associated with higher beta band power than

“f2 < f1” choices. However, we did not observe any signal that corresponded to the graded SPFDs

between f1 and f2 (i.e., f2 − f1 ′), although this signed quantity needs to be evaluated in order to

make an informed choice. In fact, it can be seen as the evidence for a decision in the vibrotactile

comparison task. Recently, a series of studies suggested that the CPP in the human EEG signal

(most likely identical to the classic P300) serves as a domain-general proxy of accumulating evi-

dence in perceptual decision making (see review in Kelly and O’Connell, 2015). In particular, these

findings suggest that the CPP might correspond to a similar accumulation-to-bound signal as known

from monkey LIP recordings (but see Philiastides et al., 2014). Notably, these previous studies were

constrained to experimental setups in which unsigned evidence had to be evaluated, and hence,

also the CPP could only be related to this form of undirected evidence. For instance, in a RDM task,

the CPP indexed the proportion of coherently moving dots, however, ignoring the direction of motion

(i.e., same modulation by coherence for leftward and rightward motion; Kelly and O’Connell, 2013).

In the current study, we examined whether the CPP might also index directed or signed evidence. In

particular, we probed whether the CPP might represent the signed quantity that underlies decision

making in the vibrotactile comparison task, i.e., SPFDs. Since decisional evidence in the given task

is represented by a signed quantity, we additionally investigated how the absolute strength of evi-

dence, i.e., the absolute values of SPFDs, might influence the EEG signal. In fact, these absolute

values correspond to a measure of confidence based on SDT that was shown to be a valid proxy

of explicit confidence ratings (i.e., statistical decision confidence; Sanders et al., 2016; also see 2.1

Behavioral model and Figure 2 in manuscript; Herding et al., submitted).

We pooled the data from Studies 1 - 3, plus two additional data sets obtained from two experiments

identical to those described in Study 3, however, requiring saccade responses. This gave us in total

116 EEG data sets of participants completing the vibrotactile frequency task. The varying response

contexts across tasks were only interesting as to investigate whether the CPP indexes evidence

independent of different response requirements. We used SPFDs as well as their absolute values

as covariates in a multiple regression analysis of broadband single-trial EEG data, to separately

assess the influence of both measures on the CPP.

For all response contexts, we consistently found that, immediately after f2, the CPP was modu-
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lated by the signed SPFDs, and later by the absolute values of SPFDs. Strikingly, the early modu-

lation was also observed when only trials with two identical stimuli were considered (i.e., f2 = f1).

That is, in these trials, no objective frequency differences were present (i.e., f2 − f1 = 0). However,

our behavioral model predicted non-zero SPFDs (i.e., f2 − f1 ′ 6= 0), which modulated the CPP even

in the absence of any objective evidence. Notably, all modulations by SPFDs were only observed

for correct trials, associating a successful discrimination of f1 and f2 with an accurate representation

of the perceived frequency difference in the CPP. Moreover, we found that the early CPP (i.e., dur-

ing the modulation by signed SPFDs) was correlated with the choice-indicative level of upper beta

band power known from the previous studies – at least for those studies that required an immedi-

ate transformation of evidence into a motor response (Studies 1 and 2). Based on the framework

of statistical decision confidence, we furthermore found that the late CPP corresponded to a valid

measure of confidence. That is, the amplitude of the late CPP (1) correlated with performance;

(2) increased with increasing evidence (i.e., higher absolute values of SPFDs) for correct trials, but

decreased for incorrect trials; (3) was at the same intermediate level for correct and incorrect trials

if evidence was at its lowest (i.e., absolute values of SPFDs ≈ 0); and (4) predicted performance

even when the same amount of evidence was provided. Lastly, the most likely cortical sources of the

observed effects were located in overlapping parts of IPS for both the early and the late modulation,

and additionally in IFG, only for the late modulation.

Our findings corroborate the notion that the CPP is involved in perceptual decision making, how-

ever, the simplistic interpretation as an accumulation-to-bound signal might need to be refined based

on our results. That is, we suggest that the CPP first indexes the (signed) quantity on which a deci-

sion is based, and then switches to indicate the confidence that the decision was correct. In support

of the interpretation of the late part of the CPP, EEG decoding studies also showed that a simi-

lar parietal potential scales with certainty in decision making around the time of a decision report

(Philiastides et al., 2014; Gherman and Philiastides, 2015). Notably, the refined interpretation of the

CPP is not at odds with previous results (e.g., see Kelly and O’Connell, 2015). We argue that a

distinct modulation of the CPP by evidence and confidence was simply overlooked up to now (or

rather, could not be detected), due to the experimental settings that were used to study the CPP. In

particular, previous studies used tasks in which unsigned/undirected evidence had to be evaluated,
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confounding evidence with confidence. In contrast, we used a comparison task, in which decisions

were informed by a signed quantity, allowing for a natural distinction between the signed and the ab-

solute value of this quantity – which in turn index different measures (i.e., evidence and confidence,

respectively). Besides refining the notion of the CPP, our data possibly provide the missing graded

evidence signal in the vibrotactile frequency comparison task. That is, in line with the distinct roles

of the nodes in a fronto-parietal network subserving perceptual decision making (see Hanks et al.,

2015), we found that a parietal signal indicated a graded evidence signal, which was additionally

correlated with a categorical choice signal in premotor areas (Studies 1 and 2).

In sum, Study 4 suggests a refined interpretation of the CPP during perceptual decision making,

first indexing evidence, and later confidence. Additionally, the results provide, for the first time, a

graded evidence signal in PPC during decision formation in the vibrotactile comparison task.
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3 General Discussion

By scrutinizing the vibrotactile frequency comparison task, this thesis aimed at (i) closing the gap

between monkey and human data, (ii) providing first evidence for a direct link between the two major

streams of research in perceptual decision making via an intentional framework (i.e., a link between

Romo’s and Shadlen’s work), and (iii) examining the role of the CPP in sequential comparisons.

(i) In remarkable agreement with the monkey literature, we found that upper beta band power

indexed participants’ choices for correct and incorrect decisions in the vibrotactile comparison task.

That is, frequency band (upper beta band), location (premotor structures, if choices were associated

with a fixed motor mapping), and the overall pattern (i.e., increased upper beta band power for

“f2 > f1” choices as compared with “f2 < f1” choices) of this large-scale oscillatory signature were

in fact identical to a previously identified choice signal in monkey LFPs (Haegens et al., 2011).

Moreover, we were able to show for the first time that this particular choice signal also generalizes

to novel response modalities (i.e., saccades), as well as to more abstract decision consequences

(i.e., a color mapping). Specifically, the choice-selective modulation of upper beta band power was

relocated to according effector-specific (or consequence-implementing) brain structures in these

scenarios (i.e., to FEF and PPC, respectively). Hence, the choice-informative signaling in upper

beta band power might indicate a common theme for providing the relevant input to those brain

areas that are responsible for the realization of a decision.

(ii) By combining the vibrotactile comparison task with saccade responses, which are usually used

in visual, accumulation-based decision making, we were able to directly compare the findings from

both of these major paradigms in perceptual decision making (i.e., oculomotor decision making vs.

vibrotactile comparisons; e.g., see Glimcher, 2003; Gold and Shadlen, 2007; Romo and de Lafuente,

2013). As noted before, when saccades were used for indicating decisions in the vibrotactile com-

parison task, the choice-indicative beta band signal was observed in an according effector-specific
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3.1 The role of (upper) beta band activity in perceptual decision making

premotor area (i.e., FEF), which has also been strongly implicated in forming decisions based on

visual evidence-accumulation (e.g., see Glimcher, 2003; Gold and Shadlen, 2007). Hence, we could

effectively link both major streams of research within an intentional framework of decision making.

Moreover, we were able to show that the notion of an intentional framework of decision making also

covers more abstract intentions, such as the intention to chose a target of a certain color (based on

the outcome of a comparison between two vibrotactile stimuli).

(iii) Finally, the link between the two major lines of research could be further intensified by reveal-

ing that the CPP also indexes decisional evidence in the vibrotactile frequency comparison task.

While the CPP is well-known to track an evolving evidence signal in accumulation-based decision

paradigms (e.g., see review in Kelly and O’Connell, 2015), it has never before been reported in a

2-AFC comparison task. In particular, we were able to demonstrate that the CPP not only indexes

evidence for a decision in these tasks, but likely also the confidence in the corresponding choice

afterwards. That is, our data corroborate the notion that the CPP indexes evidence for perceptual

decisions. At the same time, however, the novel insight that the CPP might convey more information

than previously thought, demands for a refined interpretation of the CPP in decision making.

Since the individual study results were already discussed in the previous section, in the following,

the broader implications of the overall findings are discussed in the context of prevailing theories of

perceptual decision making.

3.1 The role of (upper) beta band activity in perceptual decision

making

The most prominent motif of our findings is the involvement of (upper) beta band activity during

decision formation. However, the functional role of beta band activity in general is still unclear and

highly debated. When beta band oscillations are associated with perceptual decision making, mostly

the classic sensorimotor beta rhythm is concerned (∼ 15 - 25 Hz). That is, prior to a voluntary limb

movement, power in this lower beta range is known to decrease over contralateral motor areas

– specifically over the primary motor cortex (MI) – in preparation of a motor act, and to rebound

afterwards (e.g., see Jasper and Penfield, 1949; Pfurtscheller, 1981). The preparatory part is often
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exploited to investigate an evolving decision variable. In particular, experiments are designed in

such a way that participants are required to report decisions with their right or with their left hand

in order to distinguish between choice alternatives. Remarkably, the lateralized decrease in beta

band power over contralateral MI was found to scale with the accumulating evidence for a decision

in this setting (e.g., Donner et al., 2009; O’Connell et al., 2012). In our studies, however, participants

were required to always respond with their right hand (Studies 1 and 3), or by making a saccade to

a visual target (Study 2), effectively ruling out that we might have simply observed a variant of the

classic sensorimotor beta band desynchronization.

Notably, beta band power was also reported to scale with accuracy of perceptual judgments (Don-

ner et al., 2007). In particular, it was higher for correct than for incorrect decisions during a RDM task

in brain areas along the the dorsal visual pathway (i.e., MT, IPS and dlPFC). The authors explicitly

emphasized that the observed beta band signature did not reflect a representation of the content on

which a decision was based, but rather that this form of modulation by accuracy “indexes the compu-

tations transforming such representations into actions” (Donner et al., 2007). Hence, although this

interpretation at least suggests an active role in cognitive processing for beta band activity, the given

interpretation contradicts the representational modulation of upper beta band power as observed in

our data. Possibly, the relation between beta band power and accuracy, with a likely source also in

dlPFC, suggests a link to the fMRI findings that identified the same region to exhibit a higher BOLD

signal for easy trials as compared to hard trials (Heekeren et al., 2004, 2006). Accordingly, we also

found a modulation of prefrontal beta band power by performance (i.e., increased beta power for

correct as compared with incorrect decisions), however, only after a decision was reported and ac-

cording performance feedback was provided (unpublished observation in Studies 1 and 2). In sum,

this form of beta band signature can possibly be associated with a feedback (i.e., top-down) signal

exerting some form of cognitive control. Notably, such a role is typically also ascribed to beta (or

alpha) band oscillations in (micro)circuit models (e.g., see Wang, 2010 for comprehensive review).

Engel and Fries (2010) tried to unify the sensorimotor and cognitive aspects of beta band activity,

by suggesting that the beta band might signal the status quo in both domains. In particular, in both

sensorimotor and cognitive contexts, beta band activity should remain the same if no changes occur,

should decrease if a novel, unpredicted event occurs, and should increase if the current state has to
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be actively maintained. This generalized formulation can account for both signatures of beta band

activity as described above, however, it cannot account for the content representation in upper beta

band power as observed in the vibrotactile frequency comparison task. Recall that beta band power

was always higher for “f2 > f1” choices than for “f2 < f1” choices, irrespective of whether decisions

were correct or incorrect. In other words, upper beta band power indicated the perceived outcome

of the comparison between f1 and f2 – already categorized according to the two choice alternatives

– as we argue, to inform the ensuing decision consequence (i.e., either a motor response or a color

mapping). Additionally, we found that also f1 and f2 alone were indexed by prefrontal upper beta

band power after the presentation of f2, during a response delay (Study 3). This signature of upper

beta band activity is well in line with previous human EEG studies that found prefrontal upper beta

band power to scale with f1 during the retention interval between both stimuli (e.g., Spitzer et al.,

2010). Together, these findings imply that upper beta band power might index task-relevant content

during different stages of the task (see also Herding et al., 2016). In particular, given the respective

brain structures, in which the modulations were observed, upper beta band activity might reflect the

input to the brain systems that are responsible for further processing of the relevant content. That

is, PFC for an update of working memory, mPMC for informing button press responses, FEF for

informing saccade responses, and PPC for informing a mapping onto a (spatially constrained) color

code.

Based on the close correspondence to the large body of work on electrophysiological data in

monkeys, we suggest a pragmatic approach to interpreting the observed beta band modulations.

That is, we propose that beta band oscillations (in LFPs and EEG) directly reflect the known firing

rate code, only recorded on a larger scale. Hence, finding a link between the firing rate code and

an according modulation of power in the beta band can provide a mechanistic explanation of the

observed large-scale effects. Recall that a network model, utilizing varying attractor states, is readily

available to account for the firing rates observed at different stages of the vibrotactile comparison

task (Machens et al., 2005; Barak et al., 2013). Therefore, a straightforward idea would be to extend

the underlying mechanisms of the model to account for oscillatory signals. Although technically

demanding, conceptually, this would simply mean to model the attractor states at different stages of

the tasks as stable limit cycles instead of stable fixed points (e.g., see Breakspear, 2017 for review

41



3 General Discussion

on dynamical systems for large scale activity). Even if such a model could be constructed, it would

be based on the assumption that ongoing beta oscillations are modulated at different stages of the

task. However, whether beta band oscillations are indeed ongoing during active cognitive processing

is currently questioned (Sherman et al., 2016). In particular, the authors found that in human and

animal data (monkeys and rats), beta bursts, whose exact timing is variable across trials, can lead to

the impression of ongoing oscillations when analyzing trial-averaged data. Moreover, they provided

a biologically-inspired network model that was able to reproduce the observed beta bursts in both

human and animal data with remarkable detail. Most interestingly, the suggested model links the

firing rates of certain neurons in the proposed network with the amplitude (i.e., oscillatory power)

of the beta bursts. That is, this model provides a possible mechanism to directly link firing rate

modulations, as known from the seminal work of Romo and colleagues (see Romo and de Lafuente,

2013), to the oscillatory signals observed in LFP and EEG recordings (see Haegens et al., 2011;

Herding et al., 2016, 2017). Future work, however, will need to clarify in a first step whether the

observed modulations in beta band activity are indeed driven by underlying bursting activity or rather

by ongoing oscillations.

In sum, the modulation of upper beta band power that we observed in the vibrotactile comparison

task is not captured by any of the popular theories of beta band activity. Therefore, we propose

to take the signal as it is: neural activity that indexes task-relevant content at different stages of

the task. Such a signal is well-known from single-neuron firing rates in monkeys, notably, in cor-

responding brain areas. Hence, instead of relating the observed beta band modulation to existing

theories, the goal should be to find a mechanistic explanation of how firing rate modulations translate

into modulations of beta band power. To this end, pursuing the idea of beta band bursting seems

currently very promising.

3.2 The fronto-parietal network in perceptual decision making

Animal research – mostly focusing on oculomotor decisions – implicated a fronto-parietal network

underlying decision formation (e.g., Glimcher, 2003; Gold and Shadlen, 2007). Importantly, the in-

volved areas were also associated with the preparation and planning of the decision report, leading

to the formulation of an intentional framework of decision making (Shadlen et al., 2008; see also
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Cisek, 2007). Moreover, recent studies suggested a gradual change in the decision signal from

parietal to frontal areas (Hanks et al., 2015). In particular, parietal areas appeared to signal a more

detailed, graded evidence signal, whereas frontal (motor) areas were found to index a categorical

choice signal. In full accordance with these results from animal research, we found a graded ev-

idence signal in parietal areas (i.e., the early CPP; Study 4), and a categorical choice signal in

frontal premotor structures – or more generally speaking – in brain areas that implemented the con-

sequences of a decision (i.e., choice-selective modulation of beta band power; Studies 1 - 3). In

other words, our data suggest that the term “fronto-parietal” network might need to be refined in

order to account for a more functional distinction of involved brain areas.

3.2.1 Do parietal areas serve as a quantity processing module?

Whereas the here reported categorical choice signal was effectively identical to known signatures

from monkey research (i.e., the choice-selective upper beta band modulation), the parietal signal

indicating fine-grained evidence (i.e., the CPP) revealed some interesting novel aspects when com-

pared to the literature. That is, previous studies investigated the CPP in experimental paradigms that

required the accumulation of undirected evidence, and found that the CPP scaled with this unsigned

quantity (see Kelly and O’Connell, 2015). For instance, in a RDM task, the CPP indicated the per-

ceived proportion of coherently moving dots, but concealed the according motion direction (Kelly and

O’Connell, 2013). Based on these findings, the CPP was interpreted as an accumulation-to-bound

signal in line with the seminal work in monkeys by Shadlen and colleagues (but see Philiastides et

al., 2014). Here, in the vibrotactile comparison task, however, the CPP first scaled with a signed

quantity that corresponded to the evidence for a decision, and later with the absolute value of the

quantity, likely indexing confidence. Notably, these findings are at odds with an interpretation of the

CPP as an accumulation-to-bound signal. Presumably, this exciting revelation was only possible,

because we applied a paradigm, in which decisions were based on the comparison of two (abstract)

quantities (f2 vs. f1), rather than on judging noisy sensory input presented over time. Specifically,

we propose that a decision in a 2-AFC comparison task is based on evidence that can be expressed

on the same continuous axis for both choice options, with the alternative options being distinguished

by opposing signs. Hence, the evidence for a choice can be computed as a single signed quantity.
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In an accumulation-based 2-AFC task, on the other hand, we suppose that evidence is represented

on two distinct, strictly positive axes, one for each alternative (e.g., proportion of rightward motion

and proportion of leftward motion). As a result, two strictly positive quantities (i.e., absolute val-

ues) that index the evidence for either choice alternative would need to be computed separately.†

Assuming that the (absolute) strength of evidence is a valid proxy for confidence, evidence and

confidence are indistinguishable in this scenario. Consequently, distinct neural processes under-

lying these two measures can hardly be resolved using tasks with indistinguishable measures of

evidence and confidence. Taken together, the novel modulations of the CPP in our data (i.e., first

signed, then absolute evidence in a comparison task), as compared to previous work (i.e., only

absolute evidence for accumulation-based decisions), can possibly be explained by the suggested

differences in evidence representations in the respective tasks. In particular, in accumulation-based

decision making, the CPP might reflect the sum of the independently computed positive quantities

indicating the evidence for either choice option (possibly implemented by two competing neuronal

populations; see Mazurek et al., 2003; Shadlen and Kiani, 2013), whereas in comparison tasks, the

CPP might indicate a single signed quantity. As a simple, testable prediction of our interpretation,

we expect the same modulations of the CPP as reported here in an oddball paradigm with ‘deviant’

stimuli varying in both directions (on a quantitative scale) from the ‘standard’, potentially only if the

sign of the deviation has to be reported (i.e., a direct extension to Twomey et al., 2015).

Assuming that our hypothesis of different evidence representations in accumulation-based deci-

sions and explicit comparisons is true, this would further imply that, depending on which experimen-

tal paradigm is deployed, every neuronal decision signal should differ accordingly. In particular, one

might wonder whether a change in experimental paradigm (i.e., using a comparison task instead of a

RDM task) would reveal different neuronal activity in monkey PPC as well? That is, would those neu-

rons that usually track the accumulating evidence for a decision index the signed quantity reflecting

a comparison instead? Unfortunately, Romo and colleagues never recorded from those PPC areas

in question (i.e., intraparietal areas) during the vibrotactile comparison task, however, research on

the “sense of number” has probed these areas in a very similar context, i.e., in a delayed-match-

to-sample paradigm (e.g., see Nieder and Dehaene, 2009 for a recent review; see Nieder, 2017

†This distinction is conceptually comparable to the differentiation between diffusion models (e.g., drift diffusion model) and
accumulation models (e.g., race model; see Smith and Ratcliff, 2004).
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for the relation between vibrotactile frequency comparison and his delayed-match-to-sample task).

Interestingly, neurons in PPC (notably not exactly in those areas that were recorded by Shadlen

and colleagues) were found to encode numerosity (or quantity) during the retention interval of the

delayed-match-to-sample task, importantly, not only displaying a ‘labeled-line’ code (i.e., preference

of one particular numerosity; e.g., see Nieder and Miller, 2004), but also using a ‘summation’ code

(i.e., monotonic scaling with numerosity; Roitman et al., 2007). Hence, neurons in PPC are in fact

known to encode quantities. However, whether those neurons, which are usually associated with

the accumulation of evidence, are also capable of encoding quantities, remains to be shown. If this

was the case, the accumulation-to-bound signal usually observed in PPC firing rates during RDM

tasks, could be interpreted as an estimation of a quantity instead. That is, in order to solve the RDM

task, monkeys might try to estimate the number of dots that move coherently. As soon as they have

perceived the minimum amount of coherently moving dots that convinced them to have seen motion

in a certain direction, they report it. In the end, our results invite for speculations about whether the

framework of perceptual decision making, based on the seminal work by Shadlen and colleagues,

might possibly be extended to a general framework of quantity estimation.

3.2.2 Functional connectivity within the fronto-parietal network

Remarkably, the graded parietal evidence signal (i.e., CPP) and the categorical choice signal (i.e.,

beta band power) were correlated on a single-trial level, at least when a direct mapping of decisions

onto motor responses was provided (Study 4). Several recent studies, however, questioned whether

such a relation can be causal (Erlich et al., 2015; Goard et al., 2016; Katz et al., 2016). In particular,

reversible lesioning of parietal areas had no impact on choice behavior, whereas sensory and mo-

tor areas were indispensable. Importantly, these studies probed decisions in which a fully-defined

motor response was associated with the decision report. When such a response mapping is pro-

vided, studies in animals and humans have shown that premotor areas (or even muscle activity)

represent the evidence for an ensuing decision (Gold and Shadlen, 2003; Selen et al., 2012). That

is, in such a context, with a clear choice-to-motor mapping, decision information in parietal areas

might be redundant, and a direct pathway to respective motor areas might be sufficient to drive

decisions. With this in mind, further studies, which do not provide a fixed motor mapping for the
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decision report, are required to definitely rule out a causal involvement of parietal areas in decision

formation. Alternatively, parietal and frontal areas might not be causally related, but rather share the

same (sensory) input that is independently integrated at both sites. We propose that, if such inde-

pendent processing pathways exist, they might possibly also serve different purposes. Whereas a

pathway to premotor structures likely serves the realization of an ensuing decision report, a parietal

signal might nourish further cognitive processes, such as confidence assessments of the decision

(see Kiani and Shadlen, 2009). In line with such an interpretation, we found that the CPP (i.e., most

likely originating from PPC) first indexes evidence, i.e., the signed quantity on which a decision is

based, and later, confidence in the corresponding choice. That is, the fine-grained evidence signal

in parietal areas might allow for an explicit access to this detailed information for further evaluations

of the decision.

In sum, we also found activity in a “fronto-parietal” network to underlie the formation of decisions

in the vibrotactile frequency comparison task. In accordance with animal research, decision sig-

nals exhibited a gradual change from more detailed evidence representations in parietal areas to

categorical choice signals in “frontal” areas, or rather, in areas that implemented the consequences

of a decision. Given the questionable causal relation within this “fronto-parietal” network, we pro-

pose that both sites might process information independently, and possibly serve different functions.

Specifically, parietal structures can be interpreted to compute a more detailed representation of de-

cisional evidence in order to allow for further processing of such information, for instance, to evaluate

confidence. As a consequence, we hypothesize that lesioning parietal cortices might not effect de-

cision performance per se (see Erlich et al., 2015; Goard et al., 2016; Katz et al., 2016), however, it

might prevent explicit access to the information on which a decision was based, i.e., a dysfunctional

PPC might impair confidence judgments.

3.3 Conclusion

This thesis investigated human EEG correlates of perceptual decisions in the vibrotactile frequency

comparison paradigm. In remarkable alignment with the animal literature, we found a fronto-parietal

network subserving the formation of decisions in this task. In particular, decision signals within
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3.3 Conclusion

this network exhibited a gradual change from fine-grained sensory evidence representations in pari-

etal areas to categorical choice signals in consequence-implementing areas (i.e., either premotor

or posterior parietal areas). The sensorimotor gradient and the temporal relation of both signals

(i.e., stimulus-locked sensory evidence and a response-locked choice signal), furthermore invites

for speculations about their functional nexus. In particular, both signals were positively correlated on

a single-trial level. However, to probe the tempting suspicion that this relation might be causal (with

parietal areas driving those areas that implement the consequences of a decision; see also Meister

et al., 2013; Park et al., 2014), further dedicated investigations of this connection are necessary (but

see Erlich et al., 2015; Goard et al., 2016; Katz et al., 2016 for some evidence speaking against this

notion).

Whereas the choice-indicative modulation of upper beta band power in this task was indeed al-

ready known from the monkey literature (Haegens et al., 2011), it has never been demonstrated in

large-scale human EEG recordings before. Moreover, we were able to show for the first time that this

particular choice signal indeed seems to be effector-specific, corroborating an intentional interpreta-

tion of the beta band effect. On the other hand, the graded, parietal evidence signal (i.e., the CPP)

has been previously shown to track the evolving evidence in accumulation-based decisions (e.g.,

see Kelly and O’Connell, 2015). Yet, the CPP has never been associated with indexing evidence in

a 2-AFC comparison task. Here, we demonstrated for the first time that the CPP not only indexes

the signed quantities on which decisions are based in this task, but also revealed that the CPP ap-

pears to indicate the confidence in according choices afterwards. Strikingly, the CPP even reflected

the subjectively perceived evidence for decisions that were formed in the absence of any objective

sensory evidence (i.e., when f2 = f1). That is, our behavioral model predicted that, due to the TOE,

participants perceived small differences between f1 and f2, even if both stimuli were identical, and

these perceived differences apparently modulated the CPP. Notably, we used this subjective mea-

sure of perceived differences for all stimulus pairs (i.e., also when f2 6= f1), and in all of our analysis,

implying that all of the reported effects index subjective decision signals.

On a final note, the Bayesian model that was used to estimate the subjectively perceived dif-

ferences is formulated in very general terms. At the same time, also the TOE is known to be a

generic effect influencing all kinds of sequential comparisons (e.g., visual comparisons: Ashourian
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3 General Discussion

and Loewenstein, 2011; belief updates: Hogarth and Einhorn, 1992). We believe that the here pre-

sented model can account for the influence of the TOE on choice behavior in any given context. In

other words, we hypothesize that the principles of Bayesian inference might provide a universal ex-

planation for the mechanisms of the TOE. Consequently, when assuming that the same conceptual

principles govern the TOE in different circumstances, one might wonder whether also the underly-

ing neural signatures are the same in different scenarios. In particular, we speculate that the here

reported decision signals, i.e., the CPP and the choice-selective upper beta band modulation, also

extend to other (decision) contexts, and might possibly even relate to more general processes, such

as the estimation of magnitudes in general (e.g., see Nieder and Dehaene, 2009 for review).

In sum, the unpretentious vibrotactile comparison paradigm that was scrutinized in this thesis,

provides a wide range of possibilities to study both the neural and theoretical priniples that govern

the formation of perceptual decisions. The insights that can be gained in this perceptual context

might eventually also elucidate our understanding of decision making in a broader sense, and might

possibly extend to even more general cognitive processes that determine more complex behaviors.
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Upper Beta Band Oscillations in Human Premotor
Cortex Encode Subjective Choices in a Vibrotactile

Comparison Task

Jan Herding1,2*, Bernhard Spitzer1*, and Felix Blankenburg1,2

Abstract

■ Comparisons of sequentially presented vibrotactile frequen-
cies have been extensively studied using electrophysiological
recordings in nonhuman primates. Although neural signatures
for working memory aspects of such tasks were recently also
identified in human oscillatory EEG activity, homologue cor-
relates of the comparison process are yet unknown. Here, we
recorded EEG activity while participants decided which of two
sequentially presented vibrotactile stimuli had a higher frequency.
Because choices in this type of task are known to be system-
atically biased by the time-order effect, we applied Bayesian
modeling to account for individual choice behavior. Using
model-based EEG analysis, we found that upper beta band
amplitude (∼20–30 Hz) was modulated by participants’ choices.

The modulation emerged ∼750 msec before a behavioral re-
sponse was given and was source-localized to premotor areas.
Importantly, the choice-dependent modulation of beta band
amplitude was invariant to different motor response mappings
and reflected the categorical outcome of the subjective compar-
ison between the two frequencies. Consistently, this pattern
was evident for both correct and incorrect trials, indicating that
the beta band amplitude mirrors the internal representation of
the comparison outcome. Our data complement previous find-
ings in nonhuman primates and corroborate that the beta band
activity in premotor areas reflects the categorical outcome of a
sensory comparison prior to translation into an effector-specific
motor command. ■

INTRODUCTION

Over the last decades, studies in nonhuman primates have
identified neuronal mechanisms that underlie memory-
based perceptual decisions in the somatosensory do-
main (reviewed in Romo & de Lafuente, 2013). In their
seminal work, Romo and colleagues used a vibrotactile
two-alternative forced-choice (2AFC) task. Monkeys were
trained to decide whether the second of two sequentially
presented vibrotactile stimuli (with frequency f2) had a
lower or higher frequency than the first one (with fre-
quency f1). Thus, f1 served as the (variable) reference
value against which f2 had to be compared. Electrophys-
iological recordings in several parietal and frontal brain
areas revealed a cascade of neuronal processes involved
in this task (see Romo & de Lafuente, 2013, for details):
(i) during presentation of the tactile stimuli, firing rates in
primary and secondary somatosensory cortices (SI and
SII) scaled monotonically with the frequency of the stim-
uli (Hernández, Zainos, & Romo, 2000); (ii) firing rates of
neurons in the PFC were parametrically modulated by
the values of f1 during the entire retention interval of
the task (Romo, Brody, Hernández, & Lemus, 1999; see
also Barak, Tsodyks, & Romo, 2010); (iii) crucially, corre-
lates of the comparison process underlying the percep-

tual decision were evident in firing rates of medial and
ventral premotor cortex (mPMC and vPMC, respectively;
Romo, Hernández, & Zainos, 2004; Hernández, Zainos, &
Romo, 2002). More specifically, neuronal activity in these
areas reflected the (to-be-evaluated) signed frequency dif-
ference between f1 and f2. Consequently, the premotor
cortex could be regarded as a candidate area in which
the comparison between the sample stimulus (i.e., f2)
and the memory trace of f1 is computed.
More recently, recordings of monkey local field poten-

tials (LFPs) showed that the central role of the premotor
cortex in sequential frequency comparisons is also ex-
pressed in terms of oscillatory activity. The spectral pow-
er of beta band LFP oscillations (∼18–26 Hz) recorded
from the mPMC mirrored the categorical decisions of
the monkeys (Haegens et al., 2011). Specifically, the beta
band power was significantly increased when monkeys
indicated that f2 was higher than f1, both for correct
and incorrect choices. Hence, a decision-related signal
in the vibrotactile 2AFC task is not only encoded in the
firing rates of single neurons (cf. Romo et al., 2004;
Hernández et al., 2002) but also in synchronized ensem-
ble activity on the neural population level, corroborating
a central role of neural oscillations in information pro-
cessing (e.g., see Siegel, Donner, & Engel, 2012).
Along these lines, recent studies in humans found os-

cillations in a similar frequency band (∼20–30 Hz) to re-
flect working memory (WM)-related processes during
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the retention interval of vibrotactile 2AFC tasks (Spitzer
& Blankenburg, 2011; Spitzer, Wacker, & Blankenburg,
2010). In particular, EEG recordings showed that upper
beta power recorded over PFC scaled parametrically with
the frequency that had to be kept in WM (Spitzer &
Blankenburg, 2011; Spitzer et al., 2010). However, the
decision-related aspects of the vibrotactile 2AFC task have
not been investigated in human EEG recordings yet.
In this study, we aimed to close the gap between the

results from invasive electrophysiological studies of deci-
sion processes in monkeys, on the one hand, and the
available findings of WM correlates in oscillatory human
EEG data, on the other. In particular, we asked whether
human oscillatory EEG signals may encode the decision-
relevant quantity (i.e., the difference between f2 and f1)
that reflects the comparison of both stimuli (cf. Haegens
et al., 2011). To answer this question, we optimized the
sequential frequency comparison paradigm to allow for
an artifact-free analysis of EEG data during the decision
period of the task. Moreover, we applied Bayesian model-
ing to account for a well-known systematic order effect in
choice behavior that is commonly observed in sequen-
tial 2AFC comparisons: the so-called time-order error/
effect (TOE; cf. Sanchez, 2014; Karim, Harris, Morley,
& Breakspear, 2012; Ashourian & Loewenstein, 2011;
Preuschhof, Schubert, Villringer, & Heekeren, 2010;
Woodrow, 1935; Fechner, 1860). The TOE refers to
the finding that, in 2AFC tasks, participants tend to
compare the second stimulus against a weighted aver-
age of the mean of the whole stimulus set and the first
stimulus, instead of the first stimulus alone (cf. Karim
et al., 2012). Our Bayesian model yielded individual
estimates of these subjectively perceived frequency
differences for each stimulus pair as a proxy for the in-
ternal representation of the trial-specific f1-versus-f2
comparison. Using time–frequency (TF) analysis, we
studied decision-related oscillatory EEG signals by exam-
ining in which frequency bands spectral amplitude was
correlated with the estimated subjective frequency differ-
ences. We found such decision-related signals in the form
of categorical EEG amplitude modulations in the upper
beta band over premotor areas, in notable agreement
with recent invasive recordings in monkeys.

METHODS

Participants

Twenty-four healthy, right-handed volunteers (21–
35 years; 14 women) participated in the experiment
after giving written informed consent. The study was
approved by the local ethics committee at the Freie
Universität Berlin. Six participants (three men, three
women) were excluded from the analysis because of
chance-level behavioral performance (<60% correct an-
swers, five participants) or excessive EEG artifacts (one
participant).

Stimuli and Behavioral Task

Suprathreshold vibrotactile stimuli were applied to the
left index finger using a piezoelectric Braille stimulator
(QuaeroSys Medical Devices, Schotten, Germany). The
16 pins (4 × 4 matrix, consistent peak amplitude
∼0.46 mm) of the stimulator’s display were driven by a
sinusoidal carrier signal (fixed at 133 Hz) that was
amplitude-modulated by a lower-frequency sinusoid
(varied between 12 and 32 Hz). The resulting stimulation
created the sensation of a tactile “flutter” stimulus (Romo
& Salinas, 2003; Talbot, Darian-Smith, Kornhuber, &
Mountcastle, 1968) at the modulation frequency (i.e.,
12–32 Hz), whereas the spectrum of the physical driving
signal was confined to frequencies above 100 Hz (e.g.,
Tobimatsu, Zhang, & Kato, 1999). Thus, the risk of physi-
cal artifacts in the EEG analysis range (<100 Hz) was min-
imized. To mask the sound of the stimulator, white noise
of ∼80 dB was played during the whole experiment via
loudspeakers that were placed below a TFT monitor in
front of the participant (e.g., Spitzer & Blankenburg,
2011; Spitzer et al., 2010). Throughout the task, a fixation
cross was displayed at the center of the TFT monitor. On
each trial, two brief vibrotactile stimuli (with frequencies f1
and f2) were presented for 250 msec each, separated by a
retention interval of 1000 msec (Figure 1A). Such short-
lived stimulations evoke only transient signals in EEG data
and hence facilitate a clean analysis of the decision period
immediately after the second stimulus. The values of f1
were randomly chosen from 16, 20, 24, or 28 Hz; f2 could
differ from f1 by ±2 or 4 Hz (Figure 1B). Thus, partici-
pants could not predict the difference f2 − f1 based on
f1. After presentation of the second stimulus, participants
indicated whether f2 or f1 was higher by pressing one of
two buttons with their right index or middle finger, re-
spectively. Importantly, the response assignment of the
buttons was reversed for half of the participants, such that
the mapping of choices onto specific button presses
(which might have been associated with specific motor
preparatory signals) was fully counterbalanced across par-
ticipants. Twenty milliseconds after each response, perfor-
mance feedback was provided in form of two “plus” or
“minus” signs indicating correct or incorrect responses, re-
spectively, presented to the left and to the right of the fix-
ation cross for 190 msec. The next trial started after a
variable intertrial interval (1500–2000 msec). Participants
completed seven blocks of 160 f1-versus-f2 comparisons
(each block lasted ∼12 min), for a total of 1120 trials. Be-
fore the experiment started, participants performed ∼50
practice trials.

Bayesian Model

To estimate the individually perceived subjective fre-
quency differences that can account for TOE-like biases
in sequential comparison tasks, we fitted a Bayesian infer-
ence model to the behavioral data. The model we used
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was adopted from earlier work (cf. Sanchez, 2014;
Ashourian & Loewenstein, 2011).

In the model, stimulus frequencies are represented on
a logarithmic scale according to Weber’s law. Each stim-
ulus frequency Fi is assumed to have a neural represen-
tation RFi that is a noisy realization of the true (hidden)
stimulus frequency: RFi ¼ Fi þ z with z∼N 0;σ2

stim

� �
. In

other words, the probability of the neural representation
RFi for a given stimulus with frequency f* is defined by a
normal distribution with mean μstim, and variance σstim

2 :

p RFi Fi ¼ f *j Þ∼N μstim;σ
2
stim

� ��
This distribution is also known as the likelihood of the
stimulus frequency f*. It was assumed that each partici-
pant encodes all stimulus frequencies with fixed, individ-
ual precision described by a likelihood function with
(individual) variance σstim

2 . The a priori knowledge about
the stimulus set (range of stimulus frequencies) was
taken into account by a normal distribution with mean
μprior = fmean (mean frequency of the stimulus set) and
variance σprior

2 (estimated for each participant):

p Fið Þ∼N μprior;σ
2
prior

� �

Thus, the posterior distribution Fi RFij Þð , which denotes
the percept of the respective stimulus (cf. Petzschner,
Glasauer, & Stephan, 2015), is given by

p Fi RFij Þ∼p RFi Fij Þ⋅p Fið Þðð
To account for the TOE, we assume that only the per-

cept (i.e., posterior) of f1 incorporates a priori knowl-
edge about the stimulus set as outlined above. Because

both likelihood and prior are normally distributed, also
the posterior distribution of f1 can be obtained by a nor-
mal distribution:

pf 1 Fi RFij Þ∼N μpost;f1;σ
2
post;f1

� ��

with mean μpost;f1 ¼ σ2
post;f1⋅

μprior
σ2
prior

þ μstim
σ2
stim

� �
and variance

σ2
post;f1 ¼

1
1=σ2

prior þ 1=σ2
stim

The posterior of f2 was defined to be equal to the like-
lihood of the given stimulus frequency f2*:

pf 2 Fi RFij Þ ¼ p RFi Fi ¼ f2 *j Þðð
Consequently, the mean and variance of pf 2 Fi RFij Þð are

given by μpost,f2 = μstim = f2* and σpost,f2
2 = σstim

2 , respec-
tively. The probability of “f1 > f2”1 for two given stimulus
representations can then be formulated as

pð}f1 > f2}jRf1;Rf2Þ ¼ bþ
Zþ∞

−∞

pf1ðf1 Rf1j Þ

�
Zf1

−∞

pf2 f2 Rf2j Þ df2 df1ð

including a term b to account for a potential overall re-
sponse bias. The model was fitted to the choices of indi-
vidual participants by optimizing the free parameters
σstim
2 , σprior

2 , and b using variational Bayes as imple-
mented in the VBA toolbox (Daunizeau, Adam, & Rigoux,
2014). On the basis of the estimated parameters, we

Figure 1. Experimental paradigm and behavioral data. (A) Illustration of the experimental paradigm. Two vibrotactile stimuli with different
frequencies (f1 and f2) were sequentially presented to the left index finger, delayed by 1000 msec. After the offset of f2, participants indicated which
of the two stimuli had a higher frequency. (B) Each colored square represents a stimulus pair (f1, f2) used in the experiment. Warm and cold colors
indicate trials with f2 > f1 and f1 > f2, respectively. (C) PCRs as expected according to Weber’s law and under the assumption that the physical
difference f2 − f1 describes the comparison of f1 and f2. (D) Grand mean of PCRs as observed in the data. With higher f1, the performance for trials
with f2 > f1 increased, whereas the performance for f1 > f2 trials decreased. These two trends intersect at the f1 value that approximates the
mean of the stimulus set (cf. regression to the mean). (E) Same as in C with RTs in seconds.
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quantified the subjectively perceived stimulus differences
for each stimulus pair and each participant. Subjectively
perceived stimulus differences are defined as the
differences between the posterior means of the stimuli,
that is, μpost,f2 − μpost,f1 with μpost,f1 = f10 and μpost,f2 =
f2. Figure 3A shows a graphical illustration of the model.
To assess the model’s goodness-of-fit, we compared

the individual model fits with a “null” model in which
decisions were only based on the physical stimulus dif-
ferences (f2 − f1). That is, the posteriors of f1 and f2
are both directly represented by their respective likeli-
hood function, and only σstim

2 and b was to be estimated.
Bayes factors (BFs) were computed for each participant
to quantify the goodness-of-fit of the subjective decision
model relative to the “null” model while accounting for
differences in model complexity (e.g., see Kass & Raftery,
1995).
In addition, we evaluated the predictions of the subjec-

tive decision model on an independent test set to control
empirically for overfitting. In particular, we randomly di-
vided the trials of each participant condition-wise into a
training set and into a test set. Parameters of the model

were estimated on the training set and then applied for
fitting the test data (cf. Figure 4B–D).

EEG Recording and Analysis

EEGwas recorded from64 electrodes (ActiveTwo,BioSemi,
Amsterdam, The Netherlands) positioned in an elastic cap
according to the extended 10–20 system. Four additional
electrodes were used to register horizontal and vertical
eye movements. Individual electrode locations for each
participant were obtained prior to the experiment using
a stereotactic electrode-positioning system (Zebris Medical
GmbH, Isny, Germany). The EEG data were digitized at
2048 Hz, offline down-sampled to 512 Hz, high- and low-
pass filtered (with cutoff frequencies of 0.5 and 48 Hz,
respectively), and re-referenced to a common average
montage. Eye blinks were corrected using adaptive spatial
filtering based on individual calibration data (for details, see
Ille, Berg, & Scherg, 2002). In addition, trials with signal
amplitudes exceeding a threshold of 80 mV (before low-
pass filtering) were excluded from further investigations
(12.2% of trials on average). The analyses were done in

Figure 2. A Bayesian inference model explains choice behavior of each participant well. (A) Graphical illustration of the model described in the
Methods section. The y-axes show frequency values on a logarithmic scale. Top: Displays how f1 is represented at different stages of the task. The
pink distribution corresponds to the likelihood function of f1, the black distribution reflects the prior, and the purple distribution is the posterior
of f1 with new mean f10. The likelihood of f2 (pink distribution, bottom) is used as the posterior of f2 and is compared with the posterior of f1.
The task illustration at the bottom serves as a temporal guideline. See text for details. (B) Comparison of each participants’ PCRs (squares; obtained
from test data set) with simulations from individually optimized models (lines; based on training data set). (C) Scatter plot of d0 versus the precision
of stimulus encoding estimated for each participant. (D) The magnitude of the TOE (increase of bias to choose “f2 > f1” with increasing f1) scattered
against precision of the prior distribution across all participants. (B–D) Compare models estimated on training data with behavioral measures
obtained from independent test data. The color code in C and D refers to distributions and parameters in A.

Herding, Spitzer, and Blankenburg 671



MATLAB (The MathWorks, Natick, MA) using the SPM8
toolbox (Wellcome Department of Cognitive Neurology,
London, UK; www.fil.ion.ucl.ac.uk/spm), including the
FieldTrip toolbox for EEG/MEG data (Radboud University

Nijmegen, Donders Institute; fieldtrip.fcdonders.nl). Un-
less stated otherwise, only trials with correct choices were
used for analysis.

Time–Frequency Analysis

The artifact-free EEG data were segmented into epochs
from −2500 to 1000 msec relative to the time of the but-
ton press to examine the decision period of the task (i.e.,
response-locked analysis). TF representations of spectral
power between 4 and 48 Hz (in steps of 2 Hz) were com-
puted every 50 msec by applying a Morlet wavelet trans-
formation with a sliding window of 7 cycles length (i.e.,
TF bin = 50 msec × 2 Hz). Exploratory analysis of higher-
frequency bands (up to 100 Hz), using a multitapered
Fourier transformation with three Slepian tapers and a
sliding window length of 400 msec, yielded no significant
effects.
For the main analysis of decision-relevant signals

(Figure 4), the TF transformation was applied to single-trial
response-locked data, yielding a measure of ongoing
“whole” power. Power changes in overall “evoked” (i.e.,
phase-locked) and “induced” (i.e., non-phase-locked)
activity were analyzed on stimulus locked data (−2250
to 2250 msec relative to f2 onset). Evoked power asso-
ciated with each stimulus pair (f1, f2) was assessed by
applying the TF transform to the average (time domain)
waveform of the corresponding trials. Induced power
was computed by applying the TF transform to single

Figure 3. Stimulus-evoked and task-induced TF activity. (A) Grand mean
of stimulus-evoked power for an exemplary stimulus pair. The evoked
power is displayed as percentage change with respect to a baseline before
presentation of f1 (−1000 to 0 msec from first stimulus). Data are shown
for representative electrodes as indicated in inset. (B) Grand mean of
induced power, collapsed across all correct trials. The TF map shows
relative change in percent (same baseline as in A) and is averaged across
electrodes indicated in inset. See text for details.

Figure 4. TF analysis revealing choice modulated signal in upper beta band. (A) t map of group statistics pooled over electrodes FCz, FC2, and
C2 (inset) that showed a significant relationship between beta band amplitude and subjective stimulus differences (f2 − f10). Histogram on top of the
TF map indicates the distribution of onset times of the second stimulus. (B) Scalp topography of the significant TF cluster (dashed rectangle in A).
(C) Estimated cortical source of TF cluster from A and B. (D) Grand mean of time courses of response locked narrow band amplitude (20–30 Hz)
in electrodes from A. Data were grouped into seven classes of estimated subjective frequency difference before computing the grand mean. The
gray area marks the time interval in which the second stimulus was typically presented (central 50%). The black bar indicates time window in which time
courses were significantly split according to choices (see text for details). (E) Same as in D for incorrect trials. Note that correct and incorrect trials in
D and E were defined based on the modeled subjective frequency differences.

672 Journal of Cognitive Neuroscience Volume 28, Number 5



trials from which the ERP, associated with the respective
stimulus pair (f1, f2), was subtracted beforehand.

Statistical Analysis

The response-locked single-trial TF data were square root
transformed (yielding spectral amplitudes) to approximate
normally distributed data (see Kiebel, Tallon-Baudry, &
Friston, 2005). To decrease intersubject variability, TF data
were smoothed with a 3 Hz × 300 msec FWHM Gaussian
kernel (e.g., Litvak et al., 2011; Kilner, Kiebel, & Friston,
2005). For individual participants, we regressed the spec-
tral amplitude in each TF bin of each channel on the zero-
centered estimates of subjective frequency differences
across trials: We created a vector (across single trials) of
subjective frequency differences (i.e., f2 − f10) for each
participant, subtracted the mean value, and used the vec-
tor as a predictor for between-trial variations of spectral
amplitude in each TF bin. Hence, we estimated TF maps
that quantified the linear relation between the individual
subjective frequency differences (i.e., the results from
our Bayesian model) and the spectral amplitude in each
TF bin. To identify times, frequencies, and channels for
which this linear relationship was significantly different
from zero, we used cluster-based permutation testing
(Maris & Oostenveld, 2007). We compared the summary
statistics of the observed data (one-sample t test across par-
ticipants in each TF bin) with a distribution of summary
statistics obtained from 500 randomly sign-flipped permu-
tations. A cluster was defined as a group of adjacent TF bins
that all exceeded a cluster-defining threshold of pthreshold <
.001 (uncorrected). Clusters that exceeded a family-wise
error (FWE)-corrected threshold of pcluster < .05 (corrected
for time, frequency, and channels) were considered to be
statistically significant.

Time Courses

On the basis of the distribution of subjective frequency
difference values across participants, we binned the
values into seven levels, such that for every level at least
one stimulus pair (i.e., subjective frequency difference
value) from each participant was available (i.e., [−0.66 to
−0.33]; [−0.33 to −0.18]; [−0.18 to −0.09]; [−0.09 to
0]; [0 to 0.09]; [0.09 to 0.17]; [0.17 to 0.4]). Individual
EEG data were grouped according to these levels to assess
grandmean time courses and to localize the cortical source
of the choice-modulated beta band signal as follows.

Source Reconstruction

The cortical sources of amplitude modulations observed
on the scalp level were localized using the 3-D source
reconstruction routines provided by SPM8 (Friston,
Henson, Phillips, & Mattout, 2006). On the basis of the
individually recorded electrode positions for each partic-
ipant (substituted by default 10–20 locations for two par-

ticipants because of technical difficulties), a forward
model was constructed using a 8196-point cortical mesh
of distributed dipoles perpendicular to the cortical sur-
face of a template brain (cf. Friston et al., 2008). The lead
field of the forward model was computed using the
three-shell boundary elements method EEG head model
available in SPM8. Multiple sparse priors (Friston et al.,
2008) under group constraints (Litvak & Friston, 2008)
were used to invert the forward model. For each condi-
tion, the results of model inversion were summarized in a
3-D image that reflected spectral source amplitude in the
TF window of interest. Relevant contrasts of these 3-D
images served as an estimate for subject-specific source
locations and were used for group level statistical analysis
(see Litvak et al., 2011). Anatomical reference for source
estimates was established on the basis of the SPM anat-
omy toolbox (Eickhoff et al., 2005) where possible.

Choice-modulated beta band activity was localized
using the preprocessed response-locked EEG data (i.e.,
in the time domain). Additionally, the data were band-
pass filtered in the frequency range of the TF cluster
identified on the scalp level (±1 Hz to ensure that no in-
formation is lost at the cluster borders; see Figure 4A).
Before inverting the forward model, single trials of each
participant were grouped according to the seven levels of
subjective frequency differences (see Time Courses). The
3-D images summarizing each condition were computed
over a representative TF window (20–30 Hz; −750 to
−350 msec from button press). To identify cortical
sources in which beta band amplitude was modulated
by subjective frequency differences, the 3-D images were
weighted by a contrast vector analogously to the sensor
space analysis. Source estimates were statistically ana-
lyzed on the group level using conventional t tests and
displayed at a threshold of p < .01 (uncorrected).

RESULTS

Behavioral Results

On average, participants made correct choices on 74.0%
of all stimulus pairs. For detailed analysis, we performed a
within-subject ANOVA with the factors Difficulty (±4 Hz
vs. ±2 Hz stimulus difference) and Sign (positive vs. neg-
ative stimulus difference) on proportions of correct re-
sponses (PCRs), using a logit-transform to account for
nonnormality of the residuals. The analysis revealed sig-
nificant main effects of the factors Difficulty ( p< .001) and
Sign ( p= .014) and a significant interaction of the two fac-
tors ( p = .001). As expected, a larger proportion of tri-
als were judged correctly when the (physical) f2 − f1
frequency difference was ±4 Hz (81.0% correct) compared
with trials where the difference was only ±2 Hz (67.0%;
p< .001; paired t test; see difficulty effect, Table 1). We also
observed more correct responses for positive (77.8%
correct) compared with negative frequency differences
(70.3%; p = .014 paired t test; see sign effect, Table 1),
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which indicates an overall response bias toward “f2 > f1”
choices (mean criterion shift: 0.0881; p = .0076; one-
sample t test).

An ANOVA (2 × 2 × 2 repeated-measures design with
factors Correct/incorrect, Difficulty, and Sign) of the
median RTs showed a significant main effect for the fac-
tor Accuracy ( p < .001) and two significant interactions
(Accuracy × Sign and Accuracy × Difficulty, all ps < .001).
More precisely, the median RT with respect to f2 stimulus
onset was on average shorter for correct trials (826 msec)
than for incorrect trials (927 msec; p < .001; paired
t test). The precise pattern of interaction effects in the
RT data is detailed in Table 1.

Bayesian Inference Model Describes Individual
Choice Behavior

Assuming that the difference f2 − f1 (both frequencies
on logarithmic scale according to Weber’s law) describes
the comparison of vibrotactile frequencies in our task,
one would expect PCRs as illustrated in Figure 1B. That
is, PCRs for trials with |f2 − f1| = 4 Hz should always be
higher than for trials with |f2 − f1| = 2 Hz, independent
of the specific frequency values of f1 and f2. However, we
observed strong and systematic departures from such re-
sponse behavior (Figure 1D and E). In particular, the pro-
portion of “f2 > f1” choices increased with increasing f1,
whereas the proportion of “f1 > f2” choices increased
with decreasing f1 (Figure 1D). Both trends intersected
at the mean frequency of the stimulus set. This system-
atic and symmetric bias reflects the characteristic influence
of the TOE on choices in sequential 2AFC comparison tasks
(cf. Sanchez, 2014; Preuschhof et al., 2010).

In other words, the observed choice pattern suggests
that participants showed a tendency to compare f2 with
the mean of the stimulus set (i.e., with a representation
of f1 that had regressed to the mean of the stimulus set).
As a consequence, the mere difference of the physical
magnitudes f2 − f1 is not sufficient to account for the

comparison process that drives decisions in our task
(Figure 2B vs. C; cf. Hellström, 2003). Hence, we used
a Bayesian model (cf. Petzschner et al., 2015; Sanchez,
2014; Ashourian & Loewenstein, 2011) that accounts
for the influence of the TOE and yields estimates of the
subjectively perceived frequency differences (f2− f10) for
each stimulus pair and participant (see Bayesian model
and Figure 2A). In our model, the posterior distribution
of f1 is used to describe the representation of f1 by in-
corporating a priori knowledge about the stimulus set
as well as the actual value of f1. Consequently, the poste-
rior (centered on f10) is closer to the mean of the stimu-
lus set than the true value of f1 (cf. f1 vs. f10 in Figure 2A).
Simulated choices based on comparing f2 with f10 (i.e.,
f2 − f10) approximated the PCR on the test data set for
each participant very well (Figure 2B). Furthermore, the
estimated model parameters accounted for individual dif-
ferences in behavioral measures across participants. The
estimated precision of stimulus encoding (1/σstim

2 ) was
clearly correlated with conventional d0 values (r = .87,
p < .001; Figure 2C), whereas the individual influence
of the TOE was well described by the participants’ preci-
sion of prior knowledge (1/σprior

2 ; r = .85, p < .001;
Figure 2D). In other words, the higher the influence of
prior knowledge on the percept of f1, the larger the in-
fluence of the TOE on choices (cf. Karim et al., 2012). As
anticipated, also the estimated values of the bias term b
were highly correlated with individuals’ general response
bias toward responding “f2 > f1” or “f1 > f2” indepen-
dent of any stimulus information (i.e., criterion shift;
r = .92, p < .001). Using BFs to quantify the quality of
the proposed model (as compared with a “null” model
based on the physical differences f2 − f1) provided pos-
itive evidence (BF > 3) in favor of the proposed model
for each participant (all BFs > 7, strong evidence with
BF > 20 for 12 participants; cf. Kass & Raftery, 1995). Fur-
thermore, BFs were also highly correlated with the in-
dividual influence of the TOE on choice behavior (r =
.96, p < .001), indicating that accounting for the TOE is
the reason for the improved model fit.

Table 1. Behavioral Data

Frequency Difference of Stimuli ( f2 − f1) in Hz

Difficulty Effect Sign Effect−4 −2 2 4

PCR (%) 75.9 ± 5.8 64.8 ± 4.9 69.3 ± 3.5 86.2 ± 4.1 −
( p < .001)*

−
( p = .014)*

RT correct
(msec)

842.2 ± 58.1 867.7 ± 54.7 818.0 ± 65.0 777.9 ± 57.7 32.9 ± 14.1
( p < .001)*

57.0 ± 28.8
( p < .001)*

RT incorrect
(msec)

917.6 ± 78.4 889.2 ± 75.8 933.1 ± 69.6 971.6 ± 81.0 −33.4 ± 30.7
( p = .034)*

−49.0 ± 37.7
( p = .014)*

PCRs and RTs as a function of the physical frequency difference f2− f1. Mean values ± 95% confidence interval are shown. Difficulty effect compares
easy (±4 Hz) and difficult (±2 Hz) trials in a paired t test. Sign effect compares trials with a positive (2 and 4 Hz) and negative (−4 and −2 Hz)
frequency difference in a paired t test. RTs showed significant effects of difficulty and sign for correct and incorrect trials, however, in opposing
directions (cf. interactions in ANOVA of RTs). PCRs were logit-transformed before testing, because of nonnormally distributed residuals. Asterisks
indicate statistically significant results.
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Stimulus-evoked Activity and Task-induced
TF Modulations

At first, we verified the presence of well-documented so-
matosensory stimulus effects in the EEG recordings.
Figure 3A illustrates the TF representation of steady-
state-evoked potentials collapsed across representative
electrodes (Fz, F2, FC2, FCz, CP6, CP4, P4, P6; see inset,
Figure 3A) during stimulus presentation for an exemplary
stimulus pair (f1 = 20 Hz; f2 = 24 Hz). As expected, the
evoked TF spectrum prominently mirrors the frequency
and duration of the presented stimuli (Figure 3A).
The TF representation of the grand-average induced

power (Figure 3B) mimicked the typical pattern reported
in previous EEG studies of vibrotactile 2AFC tasks (e.g.,
Spitzer et al., 2010). Results are shown for illustrative
electrodes C3, C4, C5, C6, CP3, CP4, CP5, CP6, and
POz (see inset, Figure 3B). Throughout the trial, a
marked increase in occipital alpha band activity (8–
12 Hz) was evident (Figure 3B). Furthermore, we ob-
served a power decrease over bilateral somatosensory
areas during/after f1 presentation in the alpha/mu (8–
12 Hz) to beta (15–25 Hz) frequency bands (Figure 3B).
This power decrease was followed by a rebound (i.e., a
recovery with subsequent increase beyond baseline/
previous level) of beta band power in electrodes over
contralateral (i.e., right hemispheric) somatosensory
areas (∼400 to 800 msec after f1; Figure 3B). Finally, in
the time interval between f2 stimulus offset and partici-
pants’ responses, we observed a decrease in beta band
power peaking over ipsilateral (left) primary motor cortex
(electrode C3; Figure 3B). All effects reported here passed
a conservative test on statistical significance (cluster-
based permutation test, pthreshold < .001, and pcluster <
.05, FWE-corrected).

Beta Band Oscillations in Premotor Areas Encode
Choice Independent of Response Mapping

To test if the frequency comparison (f1 vs. f2) was
reflected in oscillatory EEG activity, we used the subjec-
tively perceived frequency differences as inferred from
our Bayesian model (i.e., f2 − f10) as regressors for a lin-
ear regression analysis of each participant’s single-trial TF
spectra. The analysis revealed a positive relationship be-
tween the upper beta band amplitude (∼20–30 Hz) and
the subjective frequency differences in medial–frontal
electrodes (FCz, FC2, and C2; inset Figure 4A) well be-
fore responses were given (−750 to −350 msec from
response; pcluster = .019, FWE-corrected; Figure 4A, dashed
rectangle). More specifically, high values of the signed
subjective frequency differences (i.e., the decision-relevant
quantity f2 − f10) were associated with high amplitudes,
whereas low (i.e., negative) values were reflected by low
amplitudes. The scalp topography (Figure 4B) and 3-D
source localization (Figure 4C) of the TF cluster suggest
that the beta band modulation originated from premotor

areas (Brodmann’s area 6, peak coordinates in MNI space:
20,−6, 68). Qualitatively very similar results were obtained
when using physical frequency differences (i.e., f2− f1) for
the analysis, which is an expected outcome given that
subjective and physical frequency difference values were
highly correlated (r ≥ .7 for every participant).

In a control analysis, we checked whether the ob-
served modulation of upper beta band amplitude could
have been explained by the values of f2 alone: We re-
peated the main analysis as described above on a subset
of data in which only trials were considered with f2 values
that could lead to either choice (i.e., “f2 > f1” and “f2 <
f1”). With this reduced data set, we found the same mod-
ulation of upper beta band amplitude (∼20–30 Hz) con-
sistent in location (FC2) and time (−850 to −500 msec
from response; pcluster = .074, FWE-corrected), indicating
that the modulation was indeed decision related. Fur-
thermore, we tested whether the overall response bias
in behavior might have contributed to the finding that
“f2 > f1” choices are associated with a higher upper beta
band amplitude. To this end, we computed another con-
trol analysis using only data of participants that showed
no substantial response bias (absolute value of criterion
shift < 0.1; six participants). Despite the reduced sam-
ple size, this analysis still revealed the same tendency
of “f2 > f1” choices being reflected in a higher beta band
amplitude (for correct and incorrect choices).

Figure 4 (D and E) shows the grand mean time courses
of upper beta band amplitude for correct and incorrect
trials. Importantly, the definition of correct and incorrect
was based on the modeled subjective frequency differ-
ences, that is, we classified objectively incorrect trials
(e.g., “f2 > f1” choice, but f2 < f1) as subjectively correct
(and vice versa) if choices were in accordance with the
subjectively perceived frequency difference as inferred
from Bayesian modeling (e.g., f2 > f10; 16 participants
showed at least one of these swaps). For subjectively cor-
rect trials (Figure 4D), we computed the grand mean
time courses for each of the seven subjective difference
levels as inferred from Bayesian modeling (see Methods).
Note that the aforementioned swaps from objectively
incorrect to subjectively correct trials (and vice versa)
only occurred in the two subjective difference levels bor-
dering zero (the lightest blue and the lightest red in
Figure 4D). Taking these swaps into account led to a sig-
nificant increase in the difference of beta band amplitude
between the two affected levels of subjective difference
as compared with using the objective definition of cor-
rect and incorrect trials (paired t test, p = .019). Overall,
beta band amplitude appeared categorically modulated
according to the two types of choice, rather than being
linearly modulated by the subjective frequency difference
values. The black bar in Figure 4D indicates a time win-
dow within which pairwise statistical tests of beta band
amplitude between choice categories (“f2 > f1” or “f2
< f1”) were significantly different (paired one-sided
t test, p < .05, false discovery rate-corrected), whereas

Herding, Spitzer, and Blankenburg 675



none of the pairwise tests reached significance within
choices ( p > .05, false discovery rate-corrected). For sub-
jectively incorrect trials (i.e., choices that were not in line
with the modeled subjectively perceived frequency differ-
ences), we computed the grandmean time courses for two
classes only (f2 > f10 and f10 > f2; Figure 4E) because of
insufficient trial numbers for some levels of subjective
frequency differences in individual participants. Impor-
tantly, a categorical bifurcation of upper beta band ampli-
tude according to choices was also observed for
subjectively incorrect trials (black bar: paired one-sided
t test, p < .05; Figure 4E). Taken together, the upper
beta band activity seems to reflect the internal representa-
tion of a subjective quantity (i.e., the subjective com-
parison outcome) that determines choices (correct and
incorrect) in the given task.

Finally, we asked if the choice-related modulation of
beta band amplitude depended on a specific mapping
of choices onto button presses. Therefore, we divided
participants into two groups according to their response
mapping (i.e., whether the index or middle finger was
used to indicate “f2 > f1”). For each group, we investi-
gated separately whether the medial–frontal beta band
amplitude was in the same way choice-modulated as ob-
served for the entire group (i.e., higher beta band activity
for “f2 > f1” choices for correct and incorrect trials). On
the basis of the results above, we pooled correct and in-
correct trials and compared the average beta band ampli-
tude between “f2 > f1” and “f1 > f2” choices for each
participant. Figure 5 displays the two group level scalp
topographies of the difference in beta band amplitude
(between choices) for the previously identified TF cluster
(−750 to−350 msec from response, 20–30 Hz). The beta
band modulations in the two groups were of the same
sign (i.e., higher beta band amplitude for “f2 > f1”
choices), showed considerable topographical overlap
(cf. white dots in Figure 5A and B span cluster for whole
group), and were statistically indistinguishable (indepen-
dent two-sample t test comparing both scalp topogra-
phies revealed no clusters, all ps > pthreshold). In other

words, the choice-related modulations of beta band am-
plitude were not systematically linked to the subsequent
execution of a specific motor response associated with
either choice.

DISCUSSION

We investigated oscillatory EEG signatures of perceptual
decisions that are based on comparing two sequen-
tially presented vibrotactile frequencies f1 and f2. Medial–
frontal upper beta band amplitude (∼20–30 Hz) was
modulated by participants’ choices, regardless of the specific
motor response mapping. In particular, choices of “f2 >
f1” were always accompanied by higher beta band am-
plitude than “f1 > f2” choices. Importantly, these choice-
related modulations of oscillatory activity were evident
clearly before responses were given and were source-
localized to premotor areas. Our findings extend previous
studies linking neuronal activity in PMC of nonhuman pri-
mates to vibrotactile comparisons (Haegens et al., 2011;
Hernández et al., 2002, 2010; Romo et al., 2004). Neuronal
firing rates in vPMC and mPMC were shown to be mo-
dulated by the signed difference between vibrotactile
frequencies (i.e., f2 − f1; Hernández et al., 2002, 2010;
Romo et al., 2004). Moreover, Haegens et al. (2011) re-
ported a choice-related signal on the population level, that
is, in form of amplitude modulations of beta band oscilla-
tions in monkey PMC. Here, for the first time, we extend
these findings to human observers with remarkable consis-
tency in terms of quality (higher amplitudes for “f2 > f1”
choices independent of accuracy andmotor response), pu-
tative source (PMC), and frequency (beta band). Because
we recorded EEG from the whole scalp, our data addition-
ally suggest (within the scope of EEG) that such modula-
tions of beta band amplitude prior to overt responding
might in fact be specific to premotor areas. Notably,
Haegens et al. (2011) used a delayed response protocol,
whereas our task allowed an immediate response. This
difference is likely to explain why Haegens et al. (2011)
found the choice-related modulation of beta band am-
plitude accompanied by a beta peak, whereas we see the
same effect on top of an overall beta band desynchroniza-
tion (i.e., power decrease; most likely because of the prep-
aration of the ensuing button press and propagated via
volume conductance from left motor cortex to those elec-
trodes that show the choice-related amplitude modulation).
In contrast to previous studies investigating decision

processes in the vibrotactile comparison task, we did
not use the physical frequency differences (f2 − f1) to
characterize choices in this task. Instead, we modeled
subjectively perceived frequency differences (f2 − f10)
for each stimulus pair based on individual behavioral data.
Thus, we could account for a characteristic bias in choice
behavior commonly observed in 2AFC comparison tasks
(cf. TOE; Sanchez, 2014; Ashourian & Loewenstein, 2011),
while obtaining a proxy for the putative internal represen-
tation of the underlying comparison (i.e., the subjectively

Figure 5. Choice-dependent modulation of premotor upper beta
activity was invariant to the individual motor response mapping.
(A) Scalp topography of choice modulated beta band activity (20–30 Hz;
−750 to −350 msec from button press) for response mapping f1 > f2:
index finger; f2 > f1: middle finger. (B) Same as in A for reversed
response mapping (f1 > f2: middle finger; f2 > f1: index finger). White
dots in A and B mark the significant electrodes identified in main
analysis.
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perceived frequency difference f2 − f10). Expanding on
classic psychophysical models (cf. Sanchez, 2014; Karim
et al., 2012; Hellström, 1979, 1985), subjectively perceived
frequency differences in our parsimonious model were
defined as the difference between f2 and a weighted aver-
age of f1 and the mean of the stimulus set, expressed in
terms of Bayesian inference (cf. Petzschner et al., 2015).
For each participant, the model based on subjectively per-
ceived frequency differences (f2 − f10) explained the be-
havioral data significantly better than a comparable
model based only on physical/objective differences (f2 −
f1; BF > 7 for all participants). Although both models
yielded qualitatively similar results in the EEG analyses,
the subjective difference model permitted a considerably
more fine-grained scale of individual frequency differences
(16 subjective frequency differences vs. 4 physical frequency
differences), revealing that the time courses of beta band
amplitude clearly separated into only two distinct choice-
specific levels. The EEG analysis based on subjectively
perceived frequency differences thus indicates more con-
clusively than an analysis using physical frequency dif-
ferences that the observed amplitude modulation in
the beta band during decision-making is presumably cat-
egorical, rather than parametric (monotonic). This sug-
gests that premotor beta band amplitude does not
represent the (relative or absolute) decisional evidence
per se, but rather the categorical outcome of the internal
comparison (see also Haegens et al., 2011). Under this
view, additional, potentially more finely graded compar-
ison processes are likely to occur upstream of the large-
scale oscillatory signal disclosed in the present analysis.
Notably, the present amplitude modulation in the beta

band was inverted for incorrect trials, underpinning the
interpretation that this activity corresponds to an internal
representation of the subjective decision outcome. In
other words, the beta band amplitude reflects whether
an observer is about to choose “f2 > f1” or “f1 > f2.” Im-
portantly, the choice outcome was disentangled from
specific motor responses in our study, in contrast to
studies that exploit lateralized EEG signals in preparation
for a motor response to predict decisions (e.g., Polanía,
Krajbich, Grueschow, & Ruff, 2014; O’Connell, Dockree,
& Kelly, 2012; Schurger, Sitt, & Dehaene, 2012; Donner,
Siegel, Fries, & Engel, 2009). In the present work, par-
ticipants indicated decisions by pressing one of two
buttons, always with their right hands, using different fin-
gers. We counterbalanced the response mapping across
participants and found the same modulation of beta band
amplitude no matter which finger was used to respond.
Similarly, Haegens and colleagues showed that the
choice-related modulation of beta band amplitude in mon-
keys was absent when no f1-versus-f2 comparison was re-
quired, but a prespecified button was pressed (Haegens
et al., 2011; see also Romo et al., 2004; Hernández et al.,
2002). Both approaches converge on showing that the beta
band amplitude modulations in premotor areas are deci-
sion related (i.e., choice-selective) and not merely linked

to a (specific) motor response (i.e., effector-selective; see
e.g., Polanía et al., 2014; O’Connell et al., 2012; Schurger
et al., 2012; Donner et al., 2009). Taken together, upper
beta band amplitude in PMC seems to represent subjective
choices (i.e., the subjectively categorized outcome of a
quantitative comparison) that are not yet expressed in spe-
cific motor terms.

Besides the choice-related modulations, we also found
typical patterns of sensorimotor beta band oscillations
(∼15–25 Hz) that are routinely observed during somato-
sensory and motor tasks. That is, when a tactile stimulus
is presented or anticipated, beta band activity is known to
decrease over somatosensory areas and to rebound
∼600 msec afterwards (e.g., Van Ede, de Lange, Jensen,
& Maris, 2011; Bauer, Oostenveld, Peeters, & Fries,
2006; Pfurtscheller, 1981; Jasper & Andrews, 1938). In
preparation for and during a voluntary hand movement,
the same pattern of beta band desynchronization, fol-
lowed by a rebound, can be observed over contralateral
motor areas (e.g., Pfurtscheller, 1981; Jasper & Penfield,
1949). However, it appears unlikely that the choice-related
amplitude modulations in the upper beta band we ob-
served over premotor areas are epiphenomena of these
classic sensorimotor signals: We confined our analysis to
response-locked data to render confounding effects of
motor preparation unlikely in the first place. In response-
locked data, systematic RT variations should affect beta
band amplitude only in form of systematically time-shifted
stimulus-locked signals (e.g., a beta band rebound after f2).
However, the observed time courses of upper beta band
amplitude showed no sign of any time-shifted components
(Figure 4D and E). Lastly, we can also rule out that the ob-
served modulations in the upper beta band might be ex-
plained by generally higher f2 values in “f2 > f1” choices.
When using a subset of data, including only trials in which
f2 values could lead to either choice, we still found the
same beta band amplitude modulations in electrodes over
premotor areas. Taken together, the reported findings are
highly unlikely to be the result of a systematic stimulus or
response artifact.

In addition to a notable consistency between our re-
sults and previous work in nonhuman primates (e.g.,
Haegens et al., 2011), our findings also connect well with
human EEG studies that investigated parametric WM cor-
relates. In vibrotactile comparisons with longer delay pe-
riods, Spitzer and colleagues found that upper beta band
amplitude (∼20–30 Hz) in PFC was systematically modu-
lated by the to-be-maintained vibrotactile frequency infor-
mation (Spitzer & Blankenburg, 2011; Spitzer et al., 2010).
In particular, during the retention interval of the task, the
frequency of the first stimulus (f1) was encoded by the
upper beta band amplitude. Further work suggests that
upper beta band amplitude might encode analogue WM-
related quantity information in a supramodal, generalized
fashion (Spitzer, Gloel, Schmidt, & Blankenburg, 2014;
Spitzer & Blankenburg, 2012). From this perspective,
the present results suggest that the upper beta band
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amplitude in respective brain areas (PFC and/or PMC)
seems to represent task-relevant quantities during the ac-
cording phases of the vibrotactile comparison task. That is,
a detailed representation of absolute quantity during re-
tention (in form of parametric modulations in PFC, see al-
so Barak et al., 2010; Romo et al., 1999) and a categorical
representation of the comparison outcome relating to ei-
ther choice before responding (in form of categorical,
choice-dependent modulations in PMC, see also Haegens
et al., 2011; Romo et al., 2004; Hernández et al., 2002).

The present finding should be differentiated from a
previously reported association of beta band amplitude
with the accuracy of a decision (Donner et al., 2007).
Donner and colleagues found that in a visual motion de-
tection task beta band amplitude in the dorsal visual
pathway was higher for correct trials than for incorrect
trials. As discussed by the authors, this finding may relate
to the computations that are involved in forming a deci-
sion and, in particular, might index the confidence of a
decision. In contrast, the results of this study provide ev-
idence for the upper beta band amplitude to represent a
quantity on which a perceptual decision is based (see
also Siegel, Engel, & Donner, 2011; Donner et al., 2007;
deCharms & Zador, 2000). Together with recent studies
of WM (see also Spitzer et al., 2014), the present results
might suggest beta band activity as a “spectral fingerprint”
(see Siegel et al., 2012) of large-scale neural activity in-
volved in the internal evaluation of analogue/quantitative
information. However, it remains to be shown in future
research how such content representation arises mecha-
nistically in the amplitude of upper beta band oscillations.

To conclude, during vibrotactile frequency compari-
sons, upper beta band amplitude (∼20–30 Hz) in premo-
tor areas was modulated by the choice of participants,
independent of a specific motor response and regardless
of the correctness of the choice. The topography, timing,
and frequency range of the reported signal are in notable
agreement with previous findings in nonhuman primates
performing an analogue task. In particular, premotor
upper beta band amplitude encoded subjective choices
prior to translation into an effector-specific motor com-
mand. Hence, we suggest that this signal is an internal
representation of the subjective categorical outcome of
the comparison underlying perceptual decisions in the
vibrotactile comparison task.
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Note

1. The expression “f1 > f2” refers to a choice, whereas f1 > f2
describes the relation between the physical values of f1 and f2.
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Perceptual decisions based on the comparison of two vibrotactile frequencies have
been extensively studied in non-human primates. Recently, we obtained corresponding
findings from human oscillatory electroencephalography (EEG) activity in the form of
choice-selective modulations of upper beta band amplitude in medial premotor areas.
However, the research in non-human primates as well as its human counterpart was
so far limited to decisions reported by button presses. Thus, here we investigated
whether the observed human beta band modulation is specific to the response modality.
We recorded EEG activity from participants who compared two sequentially presented
vibrotactile frequencies (f1 and f2), and decided whether f2 > f1 or f2 < f1, by performing
a horizontal saccade to either side of a computer screen. Contrasting time-frequency
transformed EEG data between both choices revealed that upper beta band amplitude
(∼24–32 Hz) was modulated by participants’ choices before actual responses were
given. In particular, “f2 > f1” choices were always associated with higher beta band
amplitude than “f2 < f1” choices, irrespective of whether the choice was correct or not,
and independent of the specific association between saccade direction and choice.
The observed pattern of beta band modulation was virtually identical to our previous
results when participants responded with button presses. In line with an intentional
framework of decision making, the most likely sources of the beta band modulation
were now, however, located in lateral as compared to medial premotor areas including
the frontal eye fields. Hence, we could show that the choice-selective modulation of
upper beta band amplitude is on the one hand consistent across different response
modalities (i.e., same modulation pattern in similar frequency band), and on the other
hand effector specific (i.e., modulation originating from areas involved in planning and
executing saccades).

Keywords: beta band, EEG, decision making, vibrotactile, saccade

INTRODUCTION

One of the most complete pictures of neural processes involved in perceptual decision making
emerges from the seminal work that has been done in the somatosensory domain over the last years
(see Romo and de Lafuente, 2013 for a comprehensive review). Romo and colleagues scrutinized
neuronal activity in non-human primates during all stages of a vibrotactile two-alternative forced
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choice (2AFC) task. In this task, monkeys had to compare two
frequencies (f1 and f2) that were presented one after another,
separated by a short working memory (WM) period. Decisions
about whether f2 > f1 or f2 < f1 had to be reported via button
press after the presentation of f2. Electrophysiological recordings
revealed that firing rates in somatosensory cortices (primary and
secondary; SI and SII) scaled with the stimulus frequency during
presentation (Hernández et al., 2000), whereas prefrontal cortex
(PFC) firing rates mirrored f1 (i.e., the frequency) during the
WM period (Romo et al., 1999; see also Barak et al., 2010).
Most importantly, firing rates in medial and ventral premotor
cortex (mPMC and vPMC) encoded the upcoming choices of the
monkeys for correct and incorrect decisions (Hernández et al.,
2002; Romo et al., 2004).

More recently, Haegens et al. (2011) showed that the monkeys’
choices in the vibrotactile 2AFC task were also reflected by
amplitude modulations of beta band oscillations (∼18–26 Hz)
in premotor local field potentials (LFPs). Applying the same task
in a human electroencephalography (EEG) study, we found that
this result also translates into beta band oscillations recorded at
the scalp (Herding et al., 2016). In particular, the amplitude of
upper beta band oscillations (∼20–30 Hz), most likely originating
from medial premotor areas, was higher when participants chose
“f2 > f1” as compared to “f2 < f1,” for correct and for incorrect
decisions. These findings match the results of Haegens et al.
(2011), and hence, nicely complement the body of work by Romo
and colleagues in non-human primates (see above).

According to the notion of an intentional framework of
decision making, neural correlates of decisions should be found
in brain areas that are involved in the planning and execution of
the ensuing motor response (e.g., Cisek, 2007; Shadlen et al., 2008;
Cisek and Kalaska, 2010). The work in non-human primates, as
well as our recent study, required choices to be reported by a
button press. Thus, observing choice-specific neural activity in
premotor areas, for planning and informing an ensuing button
press, is in line with an intentional framework of decision
making. The importance of the intentional framework has been
fostered in particular by the extensive body of work compiled by
Shadlen and co-workers (reviewed in Gold and Shadlen, 2007).
In the visual domain, perceptual decisions that are expressed
by saccades, involve those brain areas that are responsible for
saccade planning/execution, i.e., lateral intraparietal area (LIP;
e.g., Shadlen and Newsome, 1996), frontal eye fields (FEF; e.g.,
Kim and Shadlen, 1999), and superior colliculus (SC; e.g., Ratcliff
et al., 2003).

Taken together, each of the two major lines of research on
perceptual decision making in non-human primates (cf. Gold
and Shadlen, 2007; Romo and de Lafuente, 2013) appears to
converge towards the notion of an intentional framework of
decision making. However, the findings from both approaches
(vibrotactile button press decisions and visual saccade decisions)
have not yet been linked, and thus it is still unclear whether
the respective results are directly transferable. In the present
study, we aimed to bridge the gap between these two lines of
research. We used the vibrotactile 2AFC task typically utilized
by Romo and colleagues combined with saccade responses as
applied in most of the work by Shadlen and colleagues. In

particular, we investigated whether the choice-specific beta band
modulation that we observed in our recent study (Herding et al.,
2016) would still be present when participants were asked to
respond with saccades instead of button presses. If so, can such
a modulation be attributed to a brain area that is involved in the
planning and execution of saccades as predicted by an intentional
framework of decision making? To address these questions, we
recorded EEG data of human participants during the vibrotactile
2AFC task, where choices were indicated by horizontal saccades.
We contrasted the time-frequency (TF) transformed response-
locked EEG data between both alternative choices (“f2 > f1” vs.
“f2 < f1”) to reveal oscillatory signatures of decision making
before responses were given. In line with the results from our
previous study with button press responses (Herding et al., 2016),
we found again a choice-selective modulation of upper beta band
oscillations (∼24–32 Hz) in frontal electrodes. However, source
localization of the choice signal suggested more lateral premotor
areas as compared to medial premotor areas for the button press
responses, importantly, including FEF.

MATERIALS AND METHODS

Participants
Twenty four healthy, right-handed volunteers (20–36 years;
nine males) participated in the experiment after giving written
informed consent in accordance with the Declaration of Helsinki.
The study was approved by the local ethics committee at the
Freie Universität Berlin. Two participants (both female) were
excluded from the analysis due to near chance-level behavioral
performance (<60% correct answers), resulting in 22 data sets for
further analysis.

Stimuli and Behavioral Task
Supra-threshold vibrotactile stimuli with constant peak
amplitude were applied to the left index finger using a
piezoelectric Braille stimulator (QuaeroSys, Schotten, Germany).
The stimuli consisted of amplitude-modulated sinusoids with a
fixed carrier frequency of 137 Hz. The amplitude-modulation
of this carrier signal with frequencies 12–32 Hz created the
sensation of tactile ‘flutter’ (see Talbot et al., 1968; Romo and
Salinas, 2003), while the spectrum of the physical driving signal
was limited to frequencies above 100 Hz (e.g., Tobimatsu et al.,
1999). Thus, the risk of physical artifacts in the EEG analysis
range of interest (<100 Hz) was minimized. The sound of the
stimulator was masked by white noise of ∼80 dB that was
played throughout the experiment (e.g., Spitzer et al., 2010;
Spitzer and Blankenburg, 2011). Participants were comfortably
seated ∼60 cm in front of a TFT monitor. A fixation cross was
displayed at the center of the screen to minimize eye movements.
On each trial, two flutter stimuli were successively presented
for 250 ms each (with frequencies f1 and f2), interleaved by a
retention interval of 1000 ms (see Figure 1A). The values of
f1 were randomly drawn from 16, 20, 24, or 28 Hz, whereas f2
differed from f1 by±2 or 4 Hz (Figure 1B). After presentation of
the second stimulus the central fixation cross vanished and two
target dots (diameter of ∼0.5◦ visual angle) appeared on the left
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FIGURE 1 | Experimental paradigm and stimulus set. (A) Illustration of a single trial. Participants were presented with two vibrotactile stimuli (with frequencies f1
and f2) at the left index finger, while holding central fixation until the offset of the second stimulus. Afterwards, they decided whether f2 > f1 or f2 < f1 by means of a
horizontal saccade. Online feedback was provided immediately after the decision via color change of the selected dot (green for correct, red for incorrect trials).
(B) The set of all possible frequency combinations of f1 and f2 that were applied in this study. Color-coded squares each indicate one stimulus pair with according f1
and f2 values.

and on the right side of the screen (∼12◦ visual angle off-center).
Participants indicated whether f2 > f1 or f2 < f1 by making a
saccade to the right or to the left target, respectively. Importantly,
the response assignment of saccade directions was reversed for
half of the participants, such that the mapping of choices onto
specific saccades (which might have been associated with specific
motor preparatory signals) was fully counterbalanced across
participants. Responses were registered as soon as participants
fixated one of the targets for 200 ms. According choices were
evaluated online to provide immediate (with a latency of 20 ms)
performance feedback by changing the color of the selected target
dot for 200 ms (green for correct, red for incorrect choices).
After the feedback, the central fixation cross reappeared and
replaced the target dots to indicate the beginning of a new trial.
Participants had to fixate the central cross to start the new trial.
After a variable time interval (1500–2000 ms) a new stimulus
pair was presented. Participants completed seven blocks of 160
f1-vs-f2 comparisons (each block lasted ∼15 min including
eye-tracker calibration), for a total of 1120 trials. Before the
experiment started, participants performed∼50 practice trials.

Eye-Tracking
A Tobii T60 eye-tracker was used to record participants’ eye
movements during each trial (binocular sampling at 60 Hz).
The T60 is integrated into a 17′′ TFT monitor, and is able
to track participants that are comfortably seated in front of
the monitor (i.e., no chin rest required). Online evaluation of
the participants’ gaze directions was implemented with custom
code using the Tobii toolbox for MATLAB. Thus, we could
check whether participants kept the gaze on the central fixation
cross during each trial (with tolerance of ∼3◦ visual angle), and
displayed a warning message if this was not the case (“Please
keep fixation throughout the trial”). Additionally, we could read
out participants’ choices (200 ms fixation on target dot with
tolerance of∼3◦ visual angle) and provide performance feedback
online. To maintain a high tracking accuracy, the eye-tracker was
calibrated before the beginning of each block using a standard
5-dot calibration procedure.

Behavioral Analysis Using Bayesian
Modeling
We estimated subjectively perceived frequency differences
(SPFDs) based on the observation that participants do not
compare f2 with the physical value of f1 (cf. Hellström, 1985,
2003), but rather with a value slightly shifted toward the mean
of all presented stimulus frequencies (cf. Preuschhof et al., 2010;
Ashourian and Loewenstein, 2011; Karim et al., 2012; Sanchez,
2014). Using the framework of Bayesian inference, we introduced
this shifted version of f1, which we call f1′, as the expected value
of the posterior distribution of f1 when using a Gaussian prior
centered over all presented frequencies. Three free parameters
(the variance of the likelihood distribution of f1, the variance
of the prior distribution, and an overall response bias) were
estimated in this model based on each participant’s choices
(further details in Herding et al., 2016). The SPFDs are then
defined as the differences f2–f1′ for each stimulus pair. To assess
the quality of the SPFD model, we computed Bayes factors (BFs)
comparing the model with a “null” model (based on the physical
frequency differences f2–f1) while accounting for differences in
model complexities (e.g., Kass and Raftery, 1995).

EEG Recording and Analysis
EEG (ActiveTwo; BioSemi) was recorded at 2048 Hz (offline
down-sampled to 512 Hz) from 64 electrodes positioned in an
elastic cap according to the extended 10–20 system. Individual
electrode locations for each participant were obtained prior
to the experiment using a stereotactic electrode-positioning
system (Zebris Medical GmbH, Isny, Germany). Four additional
electrodes were used to register the horizontal and vertical
electrooculogram (hEOG and vEOG). For preprocessing, EEG
data were first re-referenced to a common average montage,
and then high- and low-pass filtered (with cut-off frequencies
of 0.5 and 48 Hz, respectively). Eye blink artefacts in the EEG
data were corrected using adaptive spatial filtering based on
individual calibration data informed by the vEOG signal (see Ille
et al., 2002). The artefact-free EEG data were segmented into
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epochs from −2500 to 1000 ms relative to the time of saccade
onset (based on the hEOG signal) in order to examine EEG
oscillations before choices were reported (i.e., response-locked
analysis). Based on visual inspection, noisy trials were excluded
from further investigations (10.5% of trials on average). To get a
time-resolved representation of spectral power in the EEG signal,
Morlet wavelet transforms of short segments of EEG data were
computed every 50 ms. The lengths of these segments depended
on the frequency of the applied wavelet (i.e., 4–48 Hz resolved
with 1 Hz), and always spanned seven cycles (e.g., 700 ms for
10 Hz, 350 ms for 20 Hz). The resulting TF representations of
the EEG data were hence resolved at 50 ms and 1 Hz (i.e., TF
bin = 50 ms × 1 Hz). All analyses were done in MATLAB (The
MathWorks) using the SPM12 toolbox (Wellcome Department of
Cognitive Neurology, London1), including the FieldTrip toolbox
for EEG/MEG data (Radboud University Nijmegen, Donders
Institute 2).

Statistical Analysis
The response-locked single-trial TF data were square root
transformed (yielding spectral amplitudes) to approximate
normally distributed data (see Kiebel et al., 2005). Additionally,
TF data were smoothed with a 3 Hz × 300 ms FWHM (full
width at half maximum) Gaussian kernel to decrease inter-
subject variability (e.g., Kilner et al., 2005; Litvak et al., 2011).
For each participant, we used the smooth TF images of all
trials to estimate the average TF maps for either choice category
(i.e., f2 < f1 and f2 > f1 trials) separately for correct and
incorrect decisions. That is, we implemented a general linear
model (GLM) with 2x2 factorial design (factors: “f2 < f1/f2 > f1”;
“correct/incorrect”), and estimated the interaction terms. We
contrasted the average TF maps within each participant to
identify interaction effects between both factors (i.e., between
“f2 < f1/f2 > f1” and “correct/incorrect”; contrast vector =
[−1 1 1 −1]), as this resulted in contrasting the actual choices
of participants disregarding whether choices were correct or
incorrect (i.e., chose “f2 > f1” vs. chose “f2 < f1”). The
resulting contrast images hence showed the difference in spectral
amplitude for each TF bin between both choices (i.e., “f2 > f1”
choices minus “f2 < f1” choices) considering correct and
incorrect trials. To identify time, frequencies, and channels for
which this contrast was consistently different from zero across
participants, we used cluster-based permutation testing (Maris
and Oostenveld, 2007). We compared the summary statistics of
the observed data (one-sample t-test across contrast images of
all participants in each TF bin) with a distribution of summary
statistics obtained from 500 randomly sign-flipped permutations.
Consistent with our previous work focusing on strong and focal
effects (Herding et al., 2016), a cluster was defined as a group of
adjacent TF bins that all exceeded a cluster-defining threshold
of pthreshold < 0.001 (uncorrected). Clusters that exceeded a
family-wise error (FWE) corrected threshold of pcluster < 0.05
(corrected for time, frequency, and channels) were considered
to be statistically significant. Additionally, we probed whether

1http://www.fil.ion.ucl.ac.uk/spm
2http://www.fieldtriptoolbox.org

a significant modulation by choice was observed individually
for correct and incorrect trials within the identified TF cluster.
Hence, we computed a conjunction analysis of the choice
modulation between correct and incorrect trials (i.e., conjunction
of contrasts: [−1 1 0 0] AND [0 0 1 −1]; cf. Friston et al., 2005;
Nichols et al., 2005). As described above, we identified significant
TF clusters using cluster-based permutation testing separately for
correct and incorrect trials, and inspected whether the resulting
clusters overlapped. For this analysis, we used a cluster-defining
threshold of pthreshold = 0.01 (uncorrected), and only corrected
for channels that displayed a choice-modulation in the previous
analysis of interaction effects.

Source Reconstruction
The cortical sources of choice-modulated beta band activity
observed on the scalp-level were localized using the 3D source
reconstruction routines provided by SPM12 (Friston et al., 2006).
Based on the individually recorded electrode positions for each
participant, a forward model was constructed using an 8196-
point cortical mesh of distributed dipoles perpendicular to the
cortical surface of a template brain (cf. Friston et al., 2006).
The lead field of the forward model was computed using the
three-shell Boundary Elements Method (BEM) EEG head model
available in SPM12. The forward model was inverted using a
smoothness prior (called ‘COH’ in SPM; cf. Litvak et al., 2011),
which is similar to the LORETA approach (Pascual-Marqui et al.,
1994). That is, the inverse solution preferred source activity
with only proximal sources showing correlated activity while
the total energy of source activity was minimized. Additionally,
we applied group constraints for the model inversion, which
effectively restricted the inverse solution to explain individual
data using the same set of sources across participants (cf.
Litvak and Friston, 2008). Preprocessed response-locked single-
trial EEG data before TF transformation (i.e., in the time-
domain) were used to invert the forward model. Before model
inversion, the single-trial data were additionally tailored to
the time interval of the choice modulation identified on the
scalp level (i.e., −750 to −450 ms before responses were
given). According to the interaction terms of the 2x2 factorial
design (see above), the results of the model inversion were
summarized in four 3D images that reflected average spectral
source power in a representative TF window (i.e., 24–32 Hz;
−700 to −500 ms from saccade onset). These images were
obtained by computing wavelet transforms of single-trial source
activity, and then averaging the source power across trials for each
condition of interest. The 3D images were then used to contrast
source power between choices for each participant, analogously
to the conjunction analysis in sensor space (i.e., conjunction
of contrasts: [−1 1 0 0] AND [1 −1 0 0]). The conjunction
analysis yielded only sources that exhibited significantly higher
beta band power for “f2 > f1” choices than for “f2 < f1”
choices in both correct and incorrect trials (i.e., testing the
conjunction null; cf. Friston et al., 2005; Nichols et al., 2005).
The results of this mass-univariate statistical test are displayed
at a significance level of p < 0.001 (uncorrected) indicating the
most probable sources of the effect observed at the sensor-level.
Anatomical reference for source estimates was established on the

Frontiers in Human Neuroscience | www.frontiersin.org 4 March 2017 | Volume 11 | Article 118



fnhum-11-00118 March 13, 2017 Time: 16:44 # 5

Herding et al. Vibrotactile Comparisons with Oculomotor Responses

basis of the SPM anatomy toolbox (Eickhoff et al., 2005) where
possible.

Time Courses
To get further insights into the effects obtained from the
TF analysis, we extracted underlying time courses from the
statistically significant TF cluster separately for correct and
incorrect trials. For correct trials, we computed the time courses
individually for different levels of SPFDs. Based on all observed
SPFD values (differences of log-transformed frequency values),
we defined six levels of SPFD (i.e., [< −0.18]; [−0.18 to −0.09];
[−0.09 to 0]; [0 to 0.09]; [0.09 to 0.17]; [> 0.17]). We specified
the levels symmetrically around a SPFD of zero (corresponding
to chance-level performance), and in such a way that each
participant had at least one stimulus pair for each level. Based
on the identified TF cluster, we computed the grand average time
courses of upper beta band amplitude (24–32 Hz) for each level
of SPFD. For incorrect trials, we separated the trials only into two
classes (due to low trial numbers for some levels of SPFD) with
SPFD < 0 and SPFD > 0, i.e., f2 < f1 and f2 > f1, and computed
the grand average time courses.

RESULTS

Behavioral Results
On average, participants made correct choices on 74.4% of
all stimulus pairs. We performed a within-subject analysis of
variance (ANOVA) with the factors “difficulty” (±4 vs. ±2 Hz
stimulus differences) and “sign” (positive vs. negative stimulus
differences) on proportions of correct responses (PCRs), using
a logit-transform to account for non-normality of the residuals.
The analysis revealed significant main effects of the factors
difficulty (p < 0.001) and sign (p = 0.001), and a significant
interaction of the two factors (p < 0.001). As expected, a larger
proportion of trials were judged correctly when the physical f2–f1
frequency difference was ±4 Hz (80.9% correct) compared with
trials where the difference was only ±2 Hz (67.8%; p < 0.001;
paired t-test; see difficulty effect Table 1). We also observed more
correct responses for positive (78.1% correct) compared with
negative frequency differences (70.6%; p = 0.006 paired t-test;
see sign effect Table 1), which indicates an overall response bias

toward “f2 > f1” choices (mean criterion shift: 0.12; p = 0.003;
one-sample t-test).

An ANOVA (2x2x2 repeated measures design with factors
“correct/incorrect,” “difficulty,” and “sign”) of the median
response times (RTs) showed a significant main effect for
the factor “correct/incorrect” (p < 0.001), and two significant
interactions (“correct/incorrect” × “sign”, p = 0.001 and
“correct/incorrect”× “difficulty”, p= 0.004). More precisely, the
median RT with respect to f2 stimulus onset was on average
shorter for correct trials (570.4 ms) than for incorrect trials
(620.5 ms; p < 0.001; paired t-test). For correct trials, RTs were
faster for trials with f2 > f1 (548.1 ms) as compared to f2 < f1
(599.1 ms; p = 0.001; paired t-test), whereas for incorrect trials
the pattern was reversed (665.1 ms when f2 > f1, and 604.9 ms
when f2 < f1; p = 0.002; paired t-test; all patterns of interaction
effects in the RT data are detailed in Table 1). Thus, participants
were in general faster when choosing “f2 > f1,” no matter whether
this choice was correct or incorrect. This is in line with the overall
response bias toward “f2 > f1” choices (see above). Accordingly,
when computing criterion shifts separately for fast and slow trials
of each participant (i.e., median split of RTs), fast responses
displayed a much stronger bias toward “f2 > f1” choices than slow
responses (p < 0.001, paired t-test). In fact, whereas participants
clearly favored “f2 > f1” choices in fast trials (mean criterion
shift: 0.31; p < 0.001, one sample t-test), in slow trials the bias
was actually reversed (mean criterion shift:−0.11; p= 0.009, one
sample t-test).

Upper Beta Band Oscillations in Right
Frontal Electrodes Encode Choices
before Responding
To test if choices were reflected in oscillatory EEG activity
before a response was given, we compared average TF maps
of f2 < f1 and f2 > f1 trials in response-locked data, while
considering that any possible effect of choice should switch
sign between correct and incorrect trials (i.e, we checked for
an interaction effect of the factors “f2 < f1/f2 > f1” and
“correct/incorrect”). The analysis revealed that upper beta band
amplitude (∼24–32 Hz) in right frontal electrodes (FC2, FC4;
inset Figure 2A) was significantly higher for “f2 > f1” choices
well before responses were given (−750 to −450 ms from
response; pcluster = 0.034, FWE corrected; Figure 2A, dashed

TABLE 1 | Behavioral data.

Frequency difference of stimuli (f2–f1) in Hz

−4 −2 2 4 Difficulty effect Sign effect

PCR (%) 75.9 ± 4.4 65.3 ± 3.5 70.5 ± 4.3 86.1 ± 3.7 n/a (p < 0.001)∗ n/a (p = 0.002)∗

RT correct (ms) 590.2 ± 44.8 608.0 ± 48.3 554.5 ± 47.1 541.6 ± 44.7 −15.4 ± 9.0 (p = 0.002)∗ −51.1 ± 28.6 (p = 0.001)∗

RT incorrect (ms) 615.9 ± 64.9 593.9 ± 60.7 651.5 ± 58.1 678.6 ± 68.2 24.5 ± 19.0 (p = 0.014)∗ 60.2 ± 34.8 (p = 0.002)∗

Proportion of correct responses (PCRs) and response times (RTs) as a function of the physical frequency difference f2–f1. Mean values ± 95% confidence interval (CI)
are shown. ‘Difficulty effect’ compares easy (±4 Hz) and difficult (±2 Hz) trials in a paired t-test. ‘Sign effect’ compares between trials with positive (2 and 4 Hz) and
negative (−2 and −4 Hz) frequency differences in a paired t-test. PCRs and RTs showed significant effects of difficulty and sign. RTs showed both effects for correct and
incorrect trials, however, in opposing directions (cf. interactions in ANOVA of RTs). PCRs were logit-transformed before testing, due to non-normally distributed residuals.
We omitted average differences of logit-transformed PCRs for both effects to avoid confusion (indicated by n/a). Asterisks indicate statistically significant results.
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FIGURE 2 | Choice-selective modulation of upper beta band amplitude. (A) Time-frequency (TF) map displaying t-values from group analysis of interaction
effect (“f2 < f1/f2 > f1” × “correct/incorrect”), averaged over electrodes FC2 and FC4 (see inset) spanning a statistically significant cluster. Histogram on top
indicates the distribution of stimulus onset times of the second stimulus. (B) Scalp topography of TF window centered on significant cluster as indicated in (A).
(C) Results of the conjunction analysis between correct and incorrect trials averaged over electrodes FC2 and FC4 (inset). The TF map displays the minimum of
t-values when combining choice-selective modulation computed separately for correct and incorrect trials. (D) Scalp topography corresponding to the TF window
indicated in (C). (E) Most likely source location of the choice-selective beta band modulation.

rectangle). The scalp topography of the TF cluster shows that the
effect also spreads to parietal electrodes and displays a second,
weaker peak in left frontal electrodes (Figure 2B; the cluster
extended to both sites for a lower cluster-defining threshold of
pthreshold = 0.01). Notably, steady-state evoked potentials (SSEPs)
of vibrotactile stimuli are known to lead to a narrow-band power
increase in the EEG signal at frequencies corresponding to the
stimulus frequency in electrodes contralateral to stimulation (e.g.,
Tobimatsu et al., 1999). For f2 > f1 trials, f2 was generally
higher (25 Hz on average) than for f2 < f1 trials (19 Hz on
average). Hence, correct choices of “f2 > f1” were primarily
accompanied by SSEPs in the upper beta band, whereas correct
choices of “f2 < f1” were mainly associated with SSEPs in lower
frequencies. Given that the reported effect partly overlapped with
the presentation of f2, we were concerned whether the alleged
choice-selective modulation of upper beta band amplitude was
driven by the systematic differences in SSEPs between choices.
Importantly however, the systematic relationship between SSEPs
and choices can only compromise our findings for correct trials.
Therefore, we computed a conjunction analysis between correct
and incorrect trials to probe whether the observed beta band
modulation was the same for both correct and incorrect trials.
Indeed, we found overlapping significant TF clusters in the upper

beta band (∼25–30 Hz) approximately 500 ms before responses
were given in previously identified electrodes FC2 and FC4
(correct: −600 to −400 ms; 26–35 Hz; pcluster = 0.044; incorrect:
−1000 to −400 ms; 20–33 Hz; pcluster = 0.004; cf. Figure 2C).
Remarkably, the effect was even stronger for incorrect trials
than for correct trials. Displaying the minimum t statistics
between correct and incorrect trials reveals that only right frontal
electrodes show the choice-selective modulation of upper beta
band amplitude consistently for correct and incorrect trials
(Figures 2C,D). Accordingly, the most probable source of the
effect was found in the right precentral gyrus including FEF (MNI
coordinates of cluster peak: 18, −12, 70; p < 0.001, uncorrected;
Figure 2E). Taken together, we can largely rule out a major
contribution of SSEPs to the observed beta band modulation.

Next, we looked at the choice-selective beta band modulation
independently for correct and incorrect choices by separately
computing the according grand mean time courses of upper
beta band amplitude (24–32 Hz; Figure 3). The time courses
for correct trials show that beta band amplitudes separate
categorically according to choices (Figure 3; correct trials). That
is, the according choice category modulated upper beta band
amplitude, but not the specific values of the SPFD. Notably,
the SPFDs described participants’ choices more accurately than
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FIGURE 3 | Time courses of upper beta band amplitude (24–32 Hz)
separately for correct (upper) and incorrect trials (lower). Correct trials
are split into six levels of subjectively perceived frequency differences (SPFDs)
as inferred from a Bayesian inference model that describes choice behavior in
this task better than physical differences (see text for details). Despite this
fine-grained partitioning, time courses are separated solely according to
choice categories. Incorrect trials were split only into two classes (according
to f2 > f1 and f2 < f1, due to low trial numbers) and still showed a higher beta
band amplitude for (incorrect) “f2 > f1” choices (i.e., f2 < f1, blue line) than for
“f2 < f1” choices (i.e., f2 > f1, red line). Shaded areas denote the time interval
in which the second stimulus was typically presented (central 50%).

the physical differences in each trial (strong evidence in favor
of our model, i.e., BFs > 20, for 20/22 participants). For
incorrect trials, we only distinguished between SPFD > 0 and
SPFD < 0 (i.e., f2 > f1 and f2 < f1), and found that upper
beta band amplitude was still higher for (incorrect) choices of
“f2 > f1” (Figure 3; incorrect trials). Reiterating the results of
our conjunction analysis, the identified modulation of beta band
amplitude by choices was neither driven solely by correct trials
nor solely by incorrect trials. Interestingly, for incorrect trials
beta band amplitude was separated according to choices already
well before the presentation of the second stimulus. Such a pre-
stimulus difference might possibly explain why participants made
erroneous choices in according trials (i.e., as the result of a bias),
and would foster the interpretation of upper beta band amplitude
as a precursor of the ensuing decision report.

In a control analysis, we examined whether the observed
modulation of upper beta band amplitude was possibly related to
the present variations in RTs according to choices. In particular,
RTs for “f2 > f1” choices were always faster as for “f2 < f1”
choices, for both correct and incorrect trials. That is, the same
interaction as in the EEG data was also present in RTs (see
Table 1). Thus, if faster RTs were associated with higher beta band
amplitude in electrodes FC2 and FC4, the RT variations would
be an alternative explanation of the observed modulation in beta
band amplitude. We computed correlations between single-trial

FIGURE 4 | Scalp topographies of choice-selective beta band
modulation for both saccade-to-choice mappings. White dots
correspond to electrodes spanning the significant TF cluster in the main
analysis based on all participants. (A) Choices of “f2 > f1” were associated
with a rightward saccade, whereas “f2 < f1” choices required a leftward
saccade. (B) Opposite mapping as described in (A).

RTs and beta band amplitude for each participant, however, the
obtained correlation coefficients scattered randomly around zero
across participants (one sample t-test of correlation coefficients;
mean ρ = −0.021, p = 0.245). Additionally, we checked for the
same correlation within each choice category, but again, did not
find any connection (one sample t-test of correlation coefficients;
“f2 > f1” choices: mean ρ=−0.013, p= 0.463; “f2 < f1” choices:
mean ρ=−0.018, p= 0.408). Hence, we can largely rule out that
the reported modulation of beta band amplitude can be attributed
to systematic RT variations. We also probed whether the overall
response bias toward “f2 > f1” choices could explain the observed
modulation in the beta band. To this end, we repeated the main
analysis only using data from participants showing no such bias,
or even a bias in the opposite direction (criterion shift < 0.1,
10 participants). These participants did also not show systematic
differences in RTs between choices (i.e., “f2 > f1” vs. “f2 < f1”
choices) neither for correct nor for incorrect trials (paired t-test
between choices, p= 0.224 and p= 0.352). Despite the markedly
reduced sample size, we observed the same pattern of upper
beta band amplitude being higher for “f2 > f1” choices than for
“f2 < f1” choices.

Finally, we tested whether the observed choice-selective
modulation in the beta band was consistent for both specific
mappings of choices onto saccade directions. Hence, we split
participants according to their response mapping (i.e., right
saccade = “f2 > f1” or right saccade = “f2 < f1”), and
repeated the analysis of TF data separately for both groups
(N = 11). We did not find any statistically significant differences
between both groups (independent two-sample t-test, no clusters
with p < pthreshold before saccade onset), but rather found a
considerable agreement in the topography of the choice-selective
beta band modulation (Figure 4).

DISCUSSION

In the current study we investigated oscillatory EEG signatures
of perceptual decisions based on the comparison between
two sequentially presented vibrotactile frequencies f1 and f2.
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Participants decided whether f2 > f1 or f2 < f1 by performing
a horizontal saccade, where the association between saccade
direction and choice was counterbalanced across participants.
We found that the amplitude of upper beta band oscillations
(∼24–32 Hz) in right frontal electrodes was modulated by
participants’ choices before responses were given, regardless of
whether choices were correct or incorrect, and independent of
the specific saccade-to-choice mapping. In particular, “f2 > f1”
choices were always associated with a higher beta band amplitude
than “f2 < f1” choices. Notably, the same modulation pattern
of beta band amplitude was recently shown when participants
(non-human primates and humans) completed the same task,
but reported choices by button presses (Haegens et al., 2011;
Herding et al., 2016). In analogy to these studies, we found in
the current data that premotor areas were implicated as the most
likely source of the choice-selective signal, however, now with a
focus on distinct lateral parts, including FEF.

The crucial role of premotor cortex in decision formation
during the vibrotactile 2AFC task was established by the
seminal work of Romo and colleagues with non-human primates
(reviewed in Romo and de Lafuente, 2013). Electrophysiological
recordings in mPMC and vPMC showed choice-selective
differences in premotor firing rates before actual responses were
given by button presses (Hernández et al., 2002, 2010; Romo et al.,
2004). Similar to the current data, this modulation was observed
as early as during the presentation of the second stimulus
(Hernández et al., 2002, 2010; Romo et al., 2004), and was
shown to be behaviorally relevant, as the modulation was inverted
for incorrect choices (Hernández et al., 2002). Conversely, the
choice-selective differences in firing rates disappeared when no
comparison of f1 and f2 was necessary in order to respond
(i.e., a visual cue guided action), dissociating the finding from
mere motor preparation (Hernández et al., 2002, 2010; Romo
et al., 2004). To dissociate specific left/right saccade preparation
(i.e., lateralized parietal alpha/beta band decrease; see Carl et al.,
2016) from choices in the current study, we counterbalanced the
mapping from saccade direction to choice across participants.
We found that both mappings led to very similar results when
according data were analyzed separately (i.e., for either half of the
participants). Hence, the reported choice-selective modulation
of beta band amplitude is most likely independent of specific
saccade preparation. Moreover, we did not find any additional
lateralized choice effects (i.e., for neither half of the participants)
as a consequence of a consistent mapping between saccade
direction and choice (cf. lateralized beta band decrease before
decision reports by button presses, e.g., Donner et al., 2009).

Typically, beta band oscillations (∼15–25 Hz) are associated
with sensorimotor processing. That is, beta band amplitude is
known to decrease over somatosensory areas in anticipation and
during the presentation of tactile stimuli, as well as to rebound
afterwards (e.g., Jasper and Andrews, 1938; Pfurtscheller, 1981;
Bauer et al., 2006; van Ede et al., 2011). In preparation for
and during voluntary hand movements like button presses, the
same pattern of beta band decrease followed by a rebound
over contralateral motor areas is also reliably observed (e.g.,
Jasper and Penfield, 1949; Pfurtscheller, 1981). Likewise, several
studies suggest that a decrease in beta band amplitude over

contralateral posterior parietal areas accompanies the execution
of saccades (e.g., Pesaran et al., 2002; Brignani et al., 2007;
Carl et al., 2016). Moreover, Jo et al. (2016) recently reported
a negative correlation between the level of beta band amplitude
over motor areas before initiating voluntary button presses and
according RTs. Given that in the current study RTs varied
systematically in the same way as the (upper) beta band was
modulated by choice (i.e., faster responses for “f2 > f1” than for
“f2 < f1” choices for correct and incorrect trials), we carefully
examined whether the observed beta band modulation could
be attributed to these RT variations. However, RTs were not
correlated with upper beta band amplitude, neither over all
trials, nor within the separate choice categories (i.e., “f2 > f1”
or “f2 < f1”). More likely, the variations in RTs are related to
the observed response bias toward “f2 > f1” choices, i.e., the
preferred choice is also accompanied by faster responses. In favor
of this interpretation, fast trials exhibited a stronger bias than
slower trials. Moreover, the bias disappears when introducing a
response delay to the task (unpublished observation), suggesting
that the tendency for choosing “f2 > f1” might be confined to
decisions under time pressure. To rule out that the response
bias itself accounts for the observed beta band modulation,
we additionally analyzed EEG data separately for participants
that showed no substantial bias (or even a bias in the opposite
direction) and no systematic RT differences between choices.
Despite the reduced sample size, we still found the same tendency
of “f2 > f1” choices being accompanied by higher beta band
amplitude than “f2 < f1” choices, for correct and incorrect trials.
Taken together, the reported modulation of upper beta band
amplitude by participants’ choices is unlikely to be related to
systematic shifts of sensorimotor beta band effects due to RT
variations or an overall response bias.

Rather, our finding aligns well with previous work that
established a link between prefrontal upper beta band oscillations
and WM content in the same task (i.e., f1 values; see Spitzer
et al., 2010; Spitzer and Blankenburg, 2011), and thus further
supports the notion of upper beta band oscillations encoding
different task-relevant entities at according processing stages of
the vibrotactile 2AFC task (cf. Herding et al., 2016). In the context
of decision making, given location (i.e., premotor areas) and
characteristics (i.e., representation of content on which choice is
based, independent of specific motor response) of the observed
effect, we propose that this entity might reflect the input to
the (pre)motor system which is in charge of the subsequent
response. In particular, beta band amplitude might signal the
decision outcome which in turn informs the ensuing action
that is planned in effector-specific brain areas. How the beta
band modulation might be implemented in detail, however,
remains an open question. A recently proposed biophysically
principled computational model was able to reproduce beta
bursts in human MEG and animal LFPs (monkey and mouse)
in great detail (Sherman et al., 2016). Interestingly, the model
predicts modulations of the burst amplitudes by changes in
the firing rates of some neurons in the network. Hence, this
model might provide a new angle on how the firing rate
code revealed by Romo and colleagues (e.g., see Romo and
de Lafuente, 2013 for review) might be directly translated into
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amplitude modulations in the beta band as reported here, and in
previous work (Haegens et al., 2011; Herding et al., 2016).

Besides the considerable agreement between our current
results and previous work in the vibrotactile 2AFC task, the
findings presented here are notably the first ones based on
decisions with saccade responses in this paradigm. In the
visual domain, however, extensive research has investigated
perceptual decision making utilizing saccades for responding
in non-human primates (reviewed in Glimcher, 2003; Gold
and Shadlen, 2007). The large body of work compiled by
Shadlen and colleagues presents coherent evidence that choices,
which are expressed by saccades, are reflected in the firing
rates of various oculomotor brain areas, i.e., LIP (e.g., Shadlen
and Newsome, 1996), FEF (e.g., Hanes and Schall, 1996; Kim
and Shadlen, 1999), and SC (e.g., Ratcliff et al., 2003). More
precisely, in the random dot motion (RDM) task, LIP activity
was shown to reflect the accumulated evidence (i.e., motion
information) provided by visual area MT (e.g., Ditterich et al.,
2003; Hanks et al., 2006) peaking at RT (e.g., Shadlen and
Newsome, 2001). A similar accumulation-to-bound signal was
found in FEF (Hanes and Schall, 1996) and SC (Ratcliff et al.,
2003) using a visual search task. In general, LIP, FEF, and
SC seem to play similar roles in saccade target selection and
spatial attention by implementing salience or relevance maps
with gradually less abstract representations of the visual field
(see e.g., Colby and Goldberg, 1999; Andersen and Buneo, 2002;
Fecteau and Munoz, 2006; Schall, 2015). In the visual RDM task,
however, Katz et al. (2016) recently questioned the causal role
of LIP for decision making by showing that a pharmacological
inactivation had no effect on task performance, whereas area
MT (i.e., the momentary evidence) proved to be indispensable.
Notably, the source reconstruction of the present choice-selective
modulation of upper beta band modulation suggested areas in
the precentral gyrus including FEF as likely sources. Hence,
our findings are remarkably consistent with the work in non-
human primates investigating decisions reported by saccades (cf.
Hanes and Schall, 1996; Kim and Shadlen, 1999). Contrasting
the results from the current study with our previous work,
in which participants completed the same task but responded
with button presses, reveals that the signal (i.e., choice-selective
modulation of upper beta band amplitude) remained the same,
however, the topography and the suggested source locations
differ considerably. In particular, whereas button press responses
implied medial premotor areas as a putative source of the choice
signal, saccade responses hinted at source locations including

FEF. Hence, both studies observed the same choice-selective
signal, however, found sources that are associated with the
planning of respective motor responses in an effector specific
way.

In line with the aforementioned studies, our findings thus
support the notion of an intentional framework of decision
making (e.g., Cisek, 2007; Shadlen et al., 2008; Cisek and Kalaska,
2010), which proposes that decisions are expressed in form of
intentions to act. As a consequence, neural correlates of decision
making should be found in brain areas that are involved in the
planning/preparation of the action that is used to express the
choice, independent of the specific task at hand. In this light,
also the work of Romo and colleagues is in agreement with
an intentional framework of decision making. Choices in the
vibrotactile 2AFC task were always reported by button presses,
and choice-selective neuronal activity was found in mPMC and
vPMC (Hernández et al., 2002, 2010; Romo et al., 2004; Haegens
et al., 2011). Here, we provide novel evidence that a combination
of the vibrotactile 2AFC task with another response modality (i.e.,
saccades) translates the choice-selective signal to corresponding
effector-specific brain areas. Hence, we could effectively bridge
the gap between the work of Romo and colleagues (vibrotactile
2AFC) and the work of Shadlen and colleagues (oculomotor
responses), and show that their findings are transferable within
an intentional framework of decision making.
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Abstract 

 In recent EEG studies, the vibrotactile frequency comparison task has been used to 

study oscillatory signatures of perceptual decision making in humans, revealing a choice-

selective modulation of premotor upper beta band power shortly before decisions were 

reported. Importantly, these studies focused on decisions that were indicated immediately 

after stimulus presentation, and for which a direct motor mapping was provided. Here, we 

investigated whether these effects also extend to postponed decisions, and how a response 

mapping that is dissociated from a specific motor command influences the putative beta-band 

choice signal. We recorded EEG data in two separate experiments, both employing the 

vibrotactile frequency comparison task with delayed decision reports. In the first experiment, 

delayed choices were associated with a fixed motor mapping, whereas in the second 

experiment, choices were mapped onto a color code concealing a specific motor response 

until the end of the delay phase. In between stimulus presentations, as well as after the second 

stimulus, prefrontal beta band power indexed stimulus information held in working memory. 

Beta band power also encoded choices during the response delay, notably, in different 

cortical areas depending on the provided response mapping. In particular, when decisions 

were associated with a specific motor mapping, choices were represented in premotor 

cortices, whereas the color mapping resulted in a choice-selective modulation of beta band 

power in parietal cortices. Together, our findings imply that how a choice is expressed (i.e., 

the decision consequence) determines where in the cortical sensorimotor hierarchy an 

according decision signal is processed. 

 

Keywords 

beta band, decision making, response context, vibrotactile, intentional decisions 
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Introduction 

 A key question regarding perceptual decision making concerns the functional role of 

sensory cortices, association cortices, and motor cortices in the transformation of sensory 

information into motor actions. Besides the highly influential studies on perceptual decisions 

in the visual domain (for reviews see Heekeren et al., 2008; Gold and Shadlen, 2007), 

intensive research in the somatosensory domain has yielded seminal insights into the 

processes underlying a sensorimotor transformation from perception via decision to action 

(see Romo and de Lafuente, 2013, for a comprehensive review). In particular, employing a 

vibrotactile sequential frequency comparison (SFC) task, in which monkeys had to decide 

whether the second of two serially presented vibrations had a higher or a lower frequency 

than the first one, Romo and colleagues revealed specific activity patterns of single neurons 

during sensory processing, working memory (WM), and decision making. That is, during 

stimulus presentation, single neurons in the primary somatosensory cortex encoded the 

stimulus frequencies (f1 or f2) by a monotonically increasing rate code (Salinas et al., 2000). 

In the retention interval, i.e., during WM maintenance, neurons in prefrontal cortices showed 

a sustained parametric in- or decrease in firing rates as a function of f1 (Brody et al., 2003; 

Romo et al., 1999). In the decision phase of the task, firing rates (Hernández et al., 2002) 

recorded from medial premotor cortex (MPC), as well as the power of beta band oscillations 

in corresponding local field potentials (LFPs, Haegens et a., 2011), finally encoded the 

monkeys’ upcoming choices. Further research investigated whether stimulus information (i.e. 

stimulus frequencies, f1 and f2) and choice information (i.e., the signed differences, f2-f1) 

was also maintained in the corresponding brain structures when decisions had to be 

postponed (Lemus et al., 2007). Indeed, both stimulus frequencies and the signed differences 

informing choices were indexed by neuronal firing rates of MPC neurons until monkeys’ 

reported their choices.  
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Recent work has started to translate the findings from monkey electrophysiology 

recordings during the different stages of the SFC task to human Electroencephalography 

(EEG) studies (Spitzer et al., 2010, 2012; Spitzer and Blankenburg, 2011, 2014; Herding et 

al., 2016; 2017). In particular, during the retention interval of the task, prefrontal beta band 

power (20 – 25 Hz) has been found to scale with the frequency that had to be maintained in 

WM (i.e., f1) in analogy to the monkey data (Spitzer et al., 2010; Spitzer and Blankenburg, 

2011). Notably, the same modulation of beta band power during WM processing has also 

been observed for other sensory modalities and different analogue stimulus properties 

(Spitzer et al., 2012; Spitzer and Blankenburg, 2014), drawing a coherent picture of beta band 

power representing quantitative WM content in a generic way. Also during the decision phase 

of the task, beta band power has been suggested to convey task-relevant information, namely, 

the subjectively perceived outcome of the comparison between f2 and f1 (i.e., f2 < f1 or f2 > 

f1; Herding et al., 2016, 2017). Importantly, this choice-indicative signal originated from 

effector-specific premotor structures, i.e., from MPC when responses were reported by button 

presses (Herding et al., 2016), and from the frontal eye fields (FEF) when saccades were 

required to indicate decisions (Herding et al., 2017). Together, these findings are well in line 

with an intentional framework of decision making, which proposes that decisions are formed 

as intentions to act in those brain structures, which are also involved in the execution of the 

according action (see Shadlen et al., 2008). 

In the current study, we investigated the role of oscillatory EEG signals in the SFC 

task when decision reports were postponed. In particular, we aimed at extending previous 

findings concerning WM processing and decision making also to a delayed response setting. 

We recorded EEG data in two separate experiments. Both experiments deployed the 

vibrotactile SFC task with delayed decision reports, however, decisions were either 

associated with a fixed motor mapping or with a mapping onto a color code. With the delayed 
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response design, we intended to probe whether the response delay might constitute an 

additional retention interval of the task. That is, we asked the following questions: (i) Does 

sensory information vanish once a decision has been made, or do we find reactivations of 

stimulus information during the delay period, as suggested by monkey data? (ii) Are 

participants’ choices indexed by upper beta band power just as observed for immediate 

decision reports (i.e., in an intentional space), or is this information referenced by the usual 

(generic) prefrontal WM signatures? Additionally, we wanted to pursue the idea of an 

intentional framework of decision making and contrasted clearly intentional decisions (i.e., 

associated with a fixed motor mapping) with more abstract decisions (i.e., based on a color 

mapping), leading to the final question: (iii) How are perceptual decisions processed if no 

fixed motor mapping is associated with a choice, i.e., if subjects cannot prepare a specific 

action as a consequence of their decision, but have to decide in a more abstract space? 

 

Materials & Methods  

Participants 

We acquired EEG data from a total of 35 (23 female; 21 – 40 years old) right-handed 

participants completing the delayed SFC tasks (17 in the first experiment, and 18 in the 

second experiment; see Figure 1). Informed consent was obtained from each participant prior 

to the experiment, and the study was approved by the local ethics committee at the Freie 

Universität Berlin and was in accordance with the Declaration of Helsinki. 

 

Stimuli & Task 

 Both experiments consisted of the same SFC task but varied in the way subjects were 

instructed to report their decisions (see below). Supra-threshold vibrotactile stimuli with a 

constant peak amplitude were presented to the left index finger using a 16-dot piezoelectric 
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Braille display (4x4 quadratic matrix; 2.5 mm spacing) controlled by a programmable 

stimulator (Piezostimulator; Quaerosys, Schotten, Germany). The driving signals of the 

stimuli were generated by modulating the amplitude of a sinusoidal carrier signal (fixed at 

133 Hz) using frequencies in the flutter range (i.e., 12 – 32 Hz). Thereby, subjects only 

perceived tactile flutter (i.e., the modulation frequency corresponding to the envelope of the 

stimulus function; e.g., see Tobimatsu et al., 1999), while possible artifacts in the EEG data, 

associated with the physical driving signal, were constrained to frequencies above 100 Hz, 

well outside the frequency range of interest (5 – 45 Hz). The sound of the Braille display was 

masked by white noise (~ 80 dB), presented via loudspeakers, throughout the experiments. 

The experiments were implemented in Matlab (The MathWorks), using the Psychophysics 

Toolbox extensions (Brainard, 1997; Kleiner et al, 2007) and custom Matlab code. 

 

- Figure 1 about here -  

In each trial, two vibrotactile stimuli (250 ms each), separated by a short retention 

period (1000 ms), were presented to the subjects’ left index finger, while they fixated a cross 

in the center of a computer screen. The first stimulus could take one of four possible 

frequencies (f1: 16, 20, 24, or 28 Hz; randomly varied). In 75% of the trials, the frequency of 

the second stimulus (f2) differed by +/- 2 or 4 Hz from f1. In the remaining 25% of trials, f2 

was identical to f1 (f2 = f1). These trials were introduced to study decisions independent 

from any sensory evidence. We did not inform subjects that both stimuli could be identical, 

and asked them to always respond whether f2 < f1 or f2 > f1. In both experiments, 2000 ms 

after the offset of f2, two colored target dots (diameter of 1° visual angle) were displayed to 

the left and to the right of the fixation cross (12° of visual angle off-center). One of the 

targets was blue, whereas the other one was yellow (counterbalanced over sides across trials). 

After another 500 ms, a response cue was provided (i.e., the fixation cross disappeared), and 
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subjects reported their choices (i.e., “f2 < f1” or “f2 > f1”). In Experiment 1, the colors of the 

targets were irrelevant and subjects were instructed to ignore them. Instead, choices were 

associated with the spatial location of targets (i.e., select left vs. right target), and 

consequently, subjects indicated their decisions by applying a fixed motor mapping, allowing 

to prepare a specific action during the response delay (e.g., if “f2 < f1”, press left-arrow 

button). Conversely, in Experiment 2, subjects reported their decisions by selecting a target 

based on its color (i.e., select blue vs. yellow target). Since the colored targets only appeared 

at the end of the response delay (i.e., 2000 ms after f2) and the specific spatial configuration 

was unpredictable (i.e., blue dot was equally likely on either side of the screen), the color 

mapping prevented the preparation of a specific motor response during the delay phase. 

Importantly, the association between the specific locations/colors (i.e., left/right and 

blue/yellow) and choices (i.e., “f2 < f1” or “f2 > f1”) was counterbalanced across participants 

in both experiments to dissociate decisions from the specific decision consequence. Of note, 

subjects fixated the center of the screen during the whole trial, even during responding, 

although the fixation cross disappeared to cue a response. The raw EEG signal was 

scrutinized by careful visual inspection. All trials exhibiting saccades were excluded from the 

analysis. After a short training session of 20 trials, subjects performed eight full experimental 

blocks, each containing 128 trials resulting in a total of 1024 frequency comparisons. 

 

EEG recording  

EEG was recorded using a 64-channel active electrode system (ActiveTwo; BioSemi) 

with electrodes placed according to the extended 10-20 system. Three additional electrodes 

were used to record the vertical and horizontal electrooculogram (vEOG and hEOG, 

respectively). Single electrode locations were registered using a stereotactic electrode 

positioning system (Zebris Medical) prior to recording. 
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EEG analysis 

EEG analyses were performed using SPM8 (Wellcome Department of Cognitive 

Neurology, London, UK; www.fil.ion.ucl.ac.uk/spm/), FieldTrip (Oostenveld et al., 2011) 

and custom Matlab code. 

Preprocessing included co-registration of the channels to the individual electrode positions, 

rejection of noisy channels, average referencing, adaptive spatial filtering to correct for eye-

blink artifacts (based on templates obtained from the vEOG; see Ille et al., 2002), as well as 

high-pass filtering (0.5 Hz). The continuous recordings were segmented into epochs from 

2250 ms before the onset of the second stimulus (i.e. 1000 ms before the onset of the first 

stimulus) to 500 ms after the response cue. Artifact rejection was done by careful visual 

inspection of the entire EEG-data in addition to automatically marking epochs with 

amplitudes greater than 150 µV.  

Induced Activity: To examine purely induced, i.e. non-phase locked responses, the event-

related potential (ERP) of each stimulus pair was subtracted from every trial. Time-frequency 

(TF) representations of corresponding single-trial spectral power between 5 and 45 Hz 

(resolved in steps of 1 Hz) were computed every 50 ms by applying a Morlet wavelet-

transformation with a sliding window of seven cycles length (i.e., TF bin = 50 ms x 1 Hz). 

Changes of spectral power are reported as event-related (de)synchronizations (ERD/ERS) in 

individual frequencies (Pfurtscheller and Aranibar, 1977). That is, ERD/ERS provide a 

measure for the percentage change in spectral power relative to a pre-stimulus baseline (-

2000 ms to -1300 ms, for parametric effects by f1; -1000 ms to 0 ms, for parametric effects of 

f2, f2 – f1, & choice). To restrain inter-trial and inter-subject variability, time frequency data 

were convolved with a 3 Hz x 300 ms Gaussian smoothing kernel (Kilner et al., 2005). 

Statistical analysis: We used the framework of general linear models (GLM) to implement 
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different single-trial factorial designs for repeated measures, depending on the factors of 

interest (i.e., f1, f2, f2 – f1, or choices). The resulting parameter estimates (i.e., TF maps of 

average spectral power for each factor of interest) were weighted with specific contrast 

weights. To analyze parametric effects of f1, we implemented a one-factorial design with 

four factor levels representing the four possible f1 conditions (16, 20, 24, and 28 Hz), and 

tested for a parametric modulation in the resulting TF maps using a linear contrast vector (f1-

contrast: [-0.75 -0.25 0.25 0.75]). Possible parametric effects of f2 were investigated 

analogously (i.e., one-factorial design; five factor levels for possible f2: 18, 20, 22, 24 and 26 

Hz; linear contrast vector: [-1 -0.5 0 0.5 1]), however, this analysis was performed only on a 

subset of trials in which f2 and f2-f1 were independent, because in the full stimulus set 

factors f2 and f2-f1 were somewhat correlated. Analyzing only data from this subset 

prevented us from confounding the signed differences (f2-f1) with f2-stimulus information 

and vice versa. To investigate decision effects, i.e. oscillatory signals coding the difference 

between f2 and f1, we estimated subjectively perceived frequency differences (SPFDs) as a 

refined measure for the quantity on which decisions are based in the SFC task (see Herding et 

al., 2016, 2017). In brief, we modeled subjects’ choices in the framework of Bayesian 

inference, motivated by the observation that participants do not seem to compare f2 with the 

physical value of f1 (cf. Hellström, 1985, 2003), but rather with a value slightly shifted 

toward the mean of all presented stimulus frequencies (cf. Preuschhof et al., 2010; Ashourian 

and Loewenstein, 2011; Karim et al., 2012; Sanchez, 2014). We introduced this shifted 

version of f1, which we call f1′, as the expected value of the posterior distribution of f1 when 

using a Gaussian prior centered over all presented frequencies. Three free parameters (the 

variance of the likelihood distribution of f1, the variance of the prior distribution, and an 

overall response bias) were estimated in this model based on each participant’s choices 

(further details in Herding et al., 2016). The SPFDs were then defined as the differences f2–
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f1′ for each stimulus pair, yielding 16 individually refined difference measures for each 

participants (as compared to four objective differences: -4, -2, 2, and 4 Hz). Based on all 

observed SPFD values (differences of log-transformed frequency values), we defined six 

levels of SPFD (i.e., [< −0.18]; [−0.18 to −0.09]; [−0.09 to 0]; [0 to 0.09]; [0.09 to 0.17]; [> 

0.17]) to allow for a sensible grouping of data across subjects while maintaining subjective 

information. We specified the levels symmetrically around a SPFD of zero (corresponding to 

chance-level performance), and in such a way that each participant had at least one stimulus 

pair for each level. For incorrect trials, we separated trials only into two classes (due to low 

trial numbers for some levels of SPFD) with SPFD < 0 and SPFD > 0, i.e., f2 < f1 and f2 > 

f1. We used these discrete levels of SPFDs to implement a one-factorial design with six 

factor levels corresponding to the above-defined levels of SPFDs. The six TF maps resulting 

from GLM estimation (i.e., average spectral power per SPFD level) were contrasted using 

subject-specific contrast vectors defined by the median of individual SPFDs per factor level. 

Up to this point, all analyses were calculated using correct trials from comparisons 

with f2 ≠ f1, and all trials with f2=f1 (no correct/incorrect judgment possible). To investigate 

effects of choices on spectral power, we also included incorrect trials as an additional factor 

into the analysis, leading to a one-factorial design with eight levels (i.e. six levels for correct 

trials + two levels for incorrect trials, see above). We contrasted the resulting TF maps using 

a categorical choice contrast, instead of a linear contrast as before, in order to reveal true 

choice effects (i.e., chose “f2 > f1” vs. chose “f2 < f1”). In particular, since such a choice 

modulation should be expressed as opposing modulations by SPFDs in correct and incorrect 

trials, we assessed choice effects by applying a categorical interaction contrast between both 

factors (i.e., SPFDs x correct/incorrect: [-1/3 -1/3 -1/3 1/3 1/3 1/3 1 -1]). 

On the group-level, contrast images were tested for significant effects using a cluster based 

permutation test (Maris and Oostenveld, 2007). For effects of f1, f2, and f2-f1’ we compared 
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the summary statistics of the observed data (one-sample t-test pooling across participants 

from all four experiments; n = 35) with a distribution of summary statistics obtained from 

1000 randomly sign-flipped permutations. For choice effects we followed the same 

procedure, but computed the respective tests for each experiment individually. A cluster was 

defined as a group of adjacent TF bins that all exceeded a cluster-defining threshold of 

pthreshold < .005 (uncorrected). Clusters that exceeded a family-wise error (FWE)-corrected 

threshold of pcluster < .05 (corrected for time, frequency, and channels) were considered to be 

statistically significant. Due to strong a priori assumptions on the topographical distribution 

of signals encoding quantity information (Spitzer et al., 2010, Spitzer and Blankenburg 

2011), for parametric WM (or delay activity) effects of f1, f2 and f2-f1’, we applied FWE-

correction only for right frontal electrodes (AF4, F2, F4, F6, FC6, FC4, FC2). For choice 

effects, we corrected over all electrodes. 

Source reconstruction The cortical sources of amplitude modulations observed on the scalp 

level were localized using the 3-D source reconstruction routines provided by SPM8 (Friston 

et al., 2006). On the basis of the individually recorded electrode positions for each 

participant, a forward model was constructed using an 8196-point cortical mesh of distributed 

dipoles perpendicular to the cortical surface of a template brain (cf. Friston et al., 2008). The 

lead field of the forward model was computed using the three-shell boundary elements 

method EEG head model available in SPM8. Conventional minimum norm priors under 

group constraints (Litvak and Friston, 2008) were used to invert the forward model. For each 

condition, the results of model inversion were summarized in a 3-D image that reflected 

spectral source amplitude in the TF window of interest. Relevant contrasts of these 3-D 

images served as an estimate for subject-specific source locations and were used for group 

level statistical analysis (see Litvak et al., 2011). The signal was localized using the 

preprocessed stimulus-locked EEG data (i.e., in the time domain). Additionally, the data were 
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bandpass filtered in the frequency range of the TF cluster identified on the scalp level (±1 Hz 

to ensure that no information is lost at the cluster borders). The 3-D images summarizing 

each condition were computed over a representative TF window. To identify cortical sources 

in which the respective amplitude was modulated by f1, f2, f2-f1’, or by choice, the 3-D 

images were weighted by a contrast vector in analogy to the sensor space analysis. Source 

estimates were statistically analyzed on the group level using conventional t-tests and 

displayed at a threshold of p < .05 (uncorrected). Anatomical reference for source estimates 

was established on the basis of the SPM anatomy toolbox (Eickhoff et al., 2005). 

 

Results 

Behavior 

 Proportions of correct responses (PCRs) were analyzed using a two factorial 2 x 4 

ANOVA including the between-subject factor Experiment (2 levels) and the within-subject 

factor f1-frequency (4 levels). We used Greenhouse-Geisser correction to correct for degrees 

of freedom and hence p-values for violated assumptions of sphericity. Table 1 shows the 

PCRs across f1-frequencies for the two experiments. There was no main effect for the factor 

Experiment (F (1, 33) = 1.56, p = 0.22), but a significant main effect for f1-frequency (F 

(2.11, 69.63) = 12.28, p < 0.001). Within-subject contrasts revealed that performance 

accuracy was significantly lower for f1 = 16 and 28 Hz compared to f1 = 20 and 24 Hz. No 

interaction between both factors was observed (F (2.11, 69.63) = 0.05, p = 0.96). 

 

- Table 1 about here - 
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EEG  

Parametric effects of f1 Figure 2 A shows parametric effects of f1 during the retention 

interval and the response delay pooled over both experiments. Here, we identified two 

significant clusters. First, in the retention interval after the offset of f1 and before the onset of 

f2, beta band power (15 – 20 Hz) exhibited a parametric modulation by f1 from -800 to -400 

ms in electrodes AF4, F2, and F4 (pcluster = 0.04, FWE-corrected over a priori defined set of 

electrodes). That is, the higher the f1-frequency, the higher the beta band power. During the 

response delay, we found a similar modulation 650 to 900 ms after the onset of f2 in 

electrodes AF4, F4, F6, FC6, and FC4 (pcluster = 0.02, FWE-corrected over a priori defined set 

of electrodes). The topographical distributions (extracted from the marked time-frequency 

windows) show that the signal for both of these parametric effects was mostly carried by 

right frontal electrodes. Source reconstruction revealed that this modulation most likely 

originated from the right IFG, area 45.  

Parametric effects of f2 Figure 2 D shows parametric effects of f2 during the response delay 

pooled over the two experiments. Including all trials of the orthogonal subset in the analysis, 

we did not find any effect of f2. To increase the signal to noise ratio we excluded trials with 

f2 ≠ f1 from further analysis (as in these trials frequencies cannot be successfully 

discriminated). We identified a significant cluster indicating a positive parametric modulation 

by f2 in electrodes AF4, F2, F4, and F6 (pcluster = 0.04, FWE-corrected over a priori defined 

set of electrodes) in the frequency range from 30 to 35 Hz, 1600 to 1800 ms after the onset of 

f2. As shown in Figure 2 E, this effect is mainly driven by an overall lower beta band power 

for f2 = 18 Hz. However, the significant cluster seems to indeed be the result of a parametric 

modulation by f2. Source reconstruction localized the modulation by f2 also within right IFG, 

area 45.  

Parametric effects of SPFDs Figure 2 G shows parametric effects of subjectively perceived 
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frequency differences (SPFDs) between f2 and f1 (f2-f1’) pooled over all participants from 

both experiments. We identified a significant cluster (pcluster < 0.04, FWE-corrected over a 

priori defined set of electrodes) in the response delay in the frequency range from 16 to 29 

Hz, 600 to 900 ms after the offset of f2 in electrodes F6, FC4, and FC2, indexing a positive 

modulation of beta band power by SPFDs.  

 

- Figure 2 about here - 

 

Choice Effects Figure 3 shows the effects of choices for either experiment. In the beginning, 

we sought to find effects in trials with f2 ≠ f1, and to confirm any observed modulation by 

choices in trials with f2 = f1. The analysis of trials with f2 = f1, however, did not reveal any 

significant choice modulations, possibly because this analysis only comprised 25% of all 

trials (max. 256 trials per subject), which was likely not enough data to find significant 

effects of this kind. Nevertheless, as our Bayesian model predicted small but non-zero 

SPFDs, even for trials with f2 = f1 (i.e., no physical difference), we were able to divide these 

trials as well into correct and incorrect trials (i.e. trials with positive SPFDs and choice 

f2>f1/f2<f1 were classified as correct/incorrect, whereas trials with negative SPFDs and 

choice f2>f1/f2<f1 were classified as incorrect/correct). These trials could thus also be 

grouped into the known SPFD classes, allowing for a combined analysis with all the other 

trials (i.e., f2 ≠ f1), choice effects reported in the following were computed on all trials, 

irrespective of whether they were correct or incorrect. That is, the time-frequency maps 

display the group statistics of the interaction contrast between the sign of the frequency 

difference (f2<f1/f2>f1) and correct/incorrect decisions. 

In Experiment 1, there was a significant cluster (pcluster = 0.01, FWE-corrected) in eleven 

(pre)frontal electrodes (see Figure 3 C), strongest in F1 and F2, highlighting a positive 
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modulation by choices in frequencies from 30 to 40 Hz at a time around 750 to 1050 ms after 

the onset of f2. In particular, the power in this frequency range was higher for “f2 > f1” 

choices as compared with “f2 < f1” choices. A source reconstruction localized this choice 

modulation to the left medial premotor cortex (MPC).  

In Experiment 2, we found a significant cluster (pcluster = 0.04, FWE-corrected) with positive 

effects in seven parietal electrodes (see Figure 3 F), strongest in CP1, CPz, and CP2 (higher 

power for response ”f2 > f1”). This cluster was evident in a frequency range between 27 to 32 

Hz around 1200 to 1550 ms after the offset of f2. A source reconstruction suggested the 

posterior parietal cortex (PPC) in the left hemisphere as the most likely origin of the choice 

modulation in this experiment. 

 

- Figure 3 about here - 

 

Discussion 

 In the present study we investigated oscillatory EEG correlates of decision making in 

the vibrotactile SFC task with delayed responses. We introduced different response mappings 

in two separate experiments to explore the influence of decision consequences on relevant 

choice signals. We also focused on oscillatory signatures of WM processing, and probed 

whether individual stimulus information, alongside of choice information, was maintained 

during the delay phase of this task. During the main retention interval, i.e. between f1 and f2, 

we observed a parametric modulation of spectral power in right prefrontal beta band 

oscillations (15 - 25 Hz) by the frequency of the first stimulus (f1). During the ensuing 

response delay (or “second retention interval”), parametric power modulations by f1, f2, as 

well as by the estimated subjectively perceived frequency differences (SPFDs; f2-f1’) were 

also evident in right prefrontal electrodes, spanning similar frequencies (15 – 35 Hz). 
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Depending on the response mapping, we moreover found different cortical sources of choice-

selective modulations in the upper beta band (~25 - 40 Hz). These sources indicated that 

choices mapped onto a specific action (Experiment 1) were represented in premotor areas. In 

contrast, choices associated with a mapping onto a color code (Experiment 2) were processed 

in parietal areas. Notably in contrast, all observed choice-related power modulations were 

inverted for incorrect trials, underpinning the behavioral relevance of the respective signals. 

 

Maintenance of stimulus information throughout the task 

Memory-based perceptual decisions entail the comparison of an active representation of 

sensory information with previously presented sensory information maintained in WM 

(Hayden and Pasternak, 2013). For memory-based decisions in the somatosensory domain, a 

vibrotactile SFC task has been extensively used to study the underlying neural processes in 

monkeys (Romo et al., 1999; Hernández et al., 2010; for review see Romo and de Lafuente, 

2013) and in humans (Li Hegner et al., 2010; Pleger et al., 2006; Spitzer et al., 2010; 2012; 

Spitzer and Blankenburg, 2011; 2014). Specifically, during the retention phase of the task, 

the PFC has been implicated by animal work (e.g., Romo et al., 1999), as well as by several 

human EEG studies (e.g., Spitzer et al., 2010; Spitzer and Blankenburg, 2011), to index the 

content that has to be maintained in WM, i.e., f1. In overall agreement with the monkey 

literature, and directly replicating the previous EEG studies, we found that the power of beta 

band oscillations in prefrontal electrodes was modulated by f1 during the retention interval of 

the task. Other studies have generalized this effect to visual and auditory WM (Spitzer and 

Blankenburg, 2012) as well as to different analogue stimulus features (Spitzer et al., 2014). 

Taken together, these findings suggest that the large-scale oscillatory beta band effect in the 

human EEG signal might reflect an internal estimate of an abstract quantity ascribed to the 

relevant stimulus feature held in WM (Spitzer et al., 2011; Spitzer and Blankenburg, 2014). 
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In previous studies, subjects usually reported their decision right after the presentation of the 

second stimulus. Only a few studies in monkeys investigated how stimulus information and 

decision evidence are further processed in cases where the decision report is delayed, i.e. 

when a decision has to be stored in WM (e.g., Lemus et al., 2007; Hernández et al., 2010; 

Haegens et al., 2011). Here, an interesting question is whether only information about the 

decision is maintained in WM or if stimulus information, on which the decision was based, is 

stored alongside, e.g., to reevaluate the decision. If such stimulus information was also 

retained during the decision delay, one could expect to observe similar effects as indexing the 

maintenance of f1 (see above). Indeed, we observed a parametric modulation of prefrontal 

beta band power as a function of f1 and f2 during the response delay. Further, a ROI-based 

analysis indicated that decisional evidence in the form of SPFDs (f2-f1’) was also represented 

in right prefrontal beta band power. The present findings thus complement earlier studies of 

the delayed SFC task, in which firing rates in monkeys’ medial premotor cortex (MPC) 

monotonically encoded f1, f2, and f2-f1 (Lemus et al., 2007). Our results further extend the 

original findings by Spitzer et al. (2010) in multiple ways: we show that the maintenance of 

f2 and a reactivation of f1 during the forced response delay induced the same parametric 

modulations of beta band power as f1 in the (initial) retention interval. Further, we show that 

this modulation was not only evident for single stimulus features but also for dynamic 

combinations of quantitative estimates such as the subjectively perceived differences between 

f2 and f1. From an ecological perspective, maintaining stimulus information over the course 

of the response delay is an appealing concept (even though decisions have been already 

formed after the presentation of f2, and responses can possibly be prepared), because time 

resources are exploited, and the flexibility to adapt to changing affordances is preserved 

(Lemus et al., 2007).  
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Oscillatory choice signals are represented in the space of their consequences 

In the field of perceptual decision making, two main hypotheses about the neural 

implementation of decision formation have evolved over the last decades. On the one hand, 

the intentional framework views decision making as a selection between a limited set of 

affordances or intentions, processed in areas related to motor planning (Cisek and Kalaska 

2010; Shadlen et al. 2008). On the other hand, a modality-transcending general decision 

module is assumed, supposedly located in the dorsolateral prefrontal cortex (Heekeren et al., 

2008) or in the anterior insular (Ho et al., 2009; Lui and Pleskac, 2011). Curiously, the 

findings obtained in the vibrotactile SFC paradigm (reviewed in Romo and de Lafuente, 

2013) have rarely been linked to either of these two conceptual frameworks, possibly because 

most of the work with the SFC task focused exclusively on decision reports by button 

presses. In the context of button press responses, however, the available results appear to be 

in favor of an intentional framework of decision making. Choice-selective signals were 

consistently reported in recordings from premotor areas that are known to be involved in the 

preparation of the according decision reports (e.g., Hernández et al., 2002, 2010; Romo et al., 

2004; Haegens et al., 2011; Herding et al., 2016). Conversely, firing rates in PFC were shown 

to reflect upcoming choices (Jun et al. 2010; Hernández et al., 2010), which might be 

interpreted in favor of a general decision module. However, in two recent EEG studies, we 

provided more evidence for an intentional interpretation of perceptual decisions by showing 

that the same choice signal appears to originate from different effector-specific premotor 

structures, depending on the response modality (Herding et al., 2016, 2017). That is, we 

found a choice-indicative modulation of upper beta band power (i.e., increased beta band 

power for “f2 > f1” choices as compared to “f2 < f1” choices; see also Haegens et al., 2011) 

most likely originating from MPC when responses were reported by button presses, and with 

a source in FEF when saccades were used to indicate responses. In the current study, we 
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further corroborated the idea of an intentional framework of decision making and extended 

these findings to postponed decision reports in the vibrotactile SFC task, but notably, only 

when choices were associated with a fixed motor mapping (Experiment 1). In line with 

previous animal studies (Lemus et al., 2007; Haegens et al., 2011), we could hence show that 

choice information was also maintained in premotor areas during a forced response delay. In 

particular, we found the same choice signal in upper beta band power that was previously 

only associated with immediate decision reports in the vibrotactile SFC task (see Haegens et 

al., 2011; Herding et al., 2016, 2017). Interestingly, a recent study in rats also substantiated a 

causal role of frontal motor cortices for maintaining choice information (Goard et al., 2016). 

In a memory-guided visual decision task, the authors showed that after optogenetic inhibition 

of frontal motor cortices, but not of parietal or sensory areas, maintenance of choice 

information was disrupted. 

Besides premotor structures, the PPC has been strongly implicated in the formation of 

perceptual decisions, especially in the visual domain, and when responses were reported by 

saccades (for review see Shadlen and Gold, 2007). Specifically, firing rates of single neurons 

in PPC (i.e., in lateral intraparietal area; LIP) were shown to reflect accumulating evidence 

for oculomotor decisions, peaking at the time of the decision report (e.g., Shadlen & 

Newsome, 2001; Roitman & Shadlen, 2002). Recently, Bennur and Gold (2011) 

demonstrated that LIP appears to index evidence for subsequent choices also when decisions 

are dissociated from a specific oculomotor action. The authors applied a variant of the classic 

random dot motion (RDM) task, in which choices (i.e., perceived motion direction) were 

associated with a color mapping similar to the one used in the current study (e.g., if leftward 

motion, chose red target). Monkeys were trained to make a saccade to one of two visual 

targets based on the targets’ colors, which were only revealed either before, during, or after 

stimulus presentation. Crucially, firing rates of LIP neurons encoded sensory evidence for a 
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decision (i.e., perceived net motion) even before the colors of the targets were disclosed, i.e., 

before a specific action could be prepared. Only after the motor mapping was clear, firing 

rates in LIP started to encode the direction of the subsequent saccade as known from previous 

work (e.g., Shadlen & Newsome, 2001; Roitman & Shadlen, 2002). In line with these 

insights, we found that the usual choice-indicative modulation of upper beta band power with 

a most-likely source in PPC was observed when choices were associated with a color 

mapping that concealed a specific motor action (Experiment 2). That is, the lack of a specific 

motor mapping led to a relocation of a known choice signal from premotor cortices 

(Experiment 1) to PPC (Experiment 2). Whereas the signal in MPC lends itself to a 

straightforward interpretation (i.e., informing a subsequent button press), an interpretation of 

the choice-informative signal in PPC is a bit speculative. Since the color mapping arguably 

also conveyed some spatial information about the ensuing choice (i.e., target dots were 

always at same locations), we suggest that a choice-informative signal in PPC can possibly be 

interpreted with respect to the idea of PPC implementing intentional or saliency maps (e.g., 

see Andersen and Buneo, 2003). 

Together, our findings suggest that the information that determines a decision (here, the 

categorized comparison outcome) is processed in cortical areas that implement the 

consequences of that decision, i.e., in PMC when a motor mapping is provided, and in PPC 

when a non-motor (i.e., color) mapping is required. In other words, the sensorimotor 

transformation at the heart of perceptual decision making appears to proceed as far as 

possible, constrained by the given circumstances. Accordingly, monkeys’ FEF seem to have 

access to evolving decisional evidence only when a specific motor mapping is provided for a 

decision report (Shadlen and Gold, 2003): microstimulation of FEF reliably evoked an 

involuntary saccade of the monkeys before they could indicate their choices in a RDM task. 

Importantly, this evoked saccade was deflected towards the later chosen response targets, 
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only when a specific motor mapping was provided in advance. Conversely, Katz et al. (2016) 

questioned the causal role of LIP for decisions under these circumstances. The authors 

showed that a pharmacological inactivation of LIP had no effect on decision performance in a 

RDM task, whereas area MT (i.e., source of the sensory evidence) proved to be 

indispensable. Hence, when a specific action is associated with a choice, LIP activity seems 

to be largely redundant for a decision (Katz et al., 2016), whereas FEF appears to encode 

choices solely under these conditions (Gold and Shadlen, 2003). Taken together, these results 

suggest that premotor areas (i.e., FEF) and PPC (i.e., LIP) play distinct roles in decision 

making, dissociated by the level of abstractness in the resulting action consequence. In line 

with previous monkey data (Bennur and Gold, 2011), we here provide first evidence for a 

similar dissociation in the opposite direction when a non-motor mapping is required (i.e., a 

choice signal in PPC but not in premotor structures).  

To conclude, we systematically investigated the influence of different response mappings 

(motor mapping vs. color mapping) in postponed decisions based on vibrotactile frequency 

comparisons. We found that overall, stimulus information, decisional evidence, and choices 

were represented in beta band power throughout the task, i.e., also after the presentation of 

the second stimulus. We found that choices that could be mapped onto specific actions were 

encoded in premotor areas involved in the planning and preparation of the according motor 

response. Conversely, choices that were not associated with a specific action, but rather 

required a more abstract response mapping, were encoded in posterior parietal regions. In 

sum, our findings are well in line with an intentional framework of decision making, and 

clearly emphasize that the consequences of a decision (i.e., how it is expressed) determine 

where the crucial information that informs this decision (i.e., what is it based on) is 

processed. 
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Tables 

 

Table 1     

Behavioral Results     

PCR     

f1 (Hz) 16 20 24 28 

Experiment 1 63.9±5.3 72.0±4.4 72.1±4.7 67.4±3.9 

Experiment 2 67.5±5.2 75.1±4.3 74.6±4.5 70.9±3.8 

 

 

 

 

 

 

 

 

 

 

 

 

Note: Percent of correct responses (PCRs) and 95% confidence 

intervals for each f1 condition in Experiments 1 and 2. 
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Captions to figures 

 

-  Figure 1 

Schematic of the task and the overall experimental design. F1 was presented for 250 ms, 

followed by a retention interval of 1000 ms. Subsequently, f2 was presented for 250 ms, 

followed by a 2000 ms response delay. Thereafter, the response mapping (RM) in form of 

two colored targets was presented lateral to the fixations cross. Note, that the response 

mapping was only relevant in Experiment 2. In Experiment 1 the dots were also presented to 

ensure consistency over the experiments. After another 500 ms the fixation cross disappeared 

(response cue; RC) and the subject reported its decision.  
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- Figure 2 

Induced parametric activity as a function of f1 and f2 stimulus frequencies and their 

subjectively perceived differences. A Statistical parametric map of the effect of oscillatory 

power as a function of f1 averaged over a priori defined electrodes. The significant clusters 

(pretention = 0.04; pdelay = 0.02; FWE-corrected over a priori defined set of right frontal 

electrodes) are marked by dashed rectangles. B Time-courses of oscillatory power in a 

frequency range from 15 Hz to 20 Hz for the four f1 stimulus frequencies (16, 20, 24, and 28 

Hz) averaged over electrodes showing a significant effect. C Upper part: Topographical scalp 

distributions of the two marked time-frequency windows in the retention interval and the 

delay (dashed rectangles). Lower Part: 3D source localization for the parametric modulation 

by f1 for the indicated time-frequency window (dashed rectangle). D Same as A for effects as 

a function of f2 (pcluster = 0.04; FWE-corrected over a priori defined right frontal electrodes). 

E Time-courses of oscillatory power in a frequency range between 30 Hz and 35 Hz for the 

five f2 stimulus frequencies of the orthogonal subset (18, 20, 22, 24, and 16 Hz) F Same as C 

for effects of f2. G Same as A for effects as a function of f2-f1’ (pcluster = 0.04; FWE-

corrected over a priori defined right frontal electrodes). H Time-courses of oscillatory power 

in a frequency range between 15 Hz and 25 Hz for the four f2-f1 stimulus frequency 

differences (-4, -2, 2, and 4 Hz) I Same as C for effects of f2-f1. 
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- Figure 3 

Statistical parametric maps, topographical distributions, and estimated sources of the choice 

contrast and the significant clusters in Experiments 1 and 2. A Significant cluster for choices 

with a fixed motor mapping (Experiment 1; pcluster = 0.01, FWE-corrected) B Time-courses of 

oscillatory power in a frequency range between 30 Hz and 40 Hz for the six SPFD classes C 

Upper part: Topographical scalp distributions of the marked time-frequency windows for 

Experiment 1 (dashed rectangles). Lower part: 3D source reconstructions of the modulations 

by choice for the respective experiments. D Significant cluster for choices with flexible 

decision-to-response mapping (Experiment 2; pcluster = 0.04, FWE-corrected) E Time-courses 

of oscillatory power in a frequency range between 29 Hz and 32 Hz for the six SPFD classes. 

F Same as C for Experiment 2. 
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Schematic of the task and the overall experimental design. F1 was presented for 250 ms, followed by a 
retention interval of 1000 ms. Subsequently, f2 was presented for 250 ms, followed by a 2000 ms response 
delay. Thereafter, the response mapping (RM) in form of two colored targets was presented lateral to the 

fixations cross. Note, that the response mapping was only relevant in Experiment 2. In Experiment 1 the 
dots were also presented to ensure consistency over the experiments. After another 500 ms the fixation 

cross disappeared (response cue; RC) and the subject reported its decision.  
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Induced parametric activity as a function of f1 and f2 stimulus frequencies and their subjectively perceived 
differences. A Statistical parametric map of the effect of oscillatory power as a function of f1 averaged over 
a priori defined electrodes. The significant clusters (pretention = 0.04; pdelay = 0.02; FWE-corrected over a 

priori defined set of right frontal electrodes) are marked by dashed rectangles. B Time-courses of oscillatory 
power in a frequency range from 15 Hz to 20 Hz for the four f1 stimulus frequencies (16, 20, 24, and 28 Hz) 
averaged over electrodes showing a significant effect. C Upper part: Topographical scalp distributions of the 

two marked time-frequency windows in the retention interval and the delay (dashed rectangles). Lower 
Part: 3D source localization for the parametric modulation by f1 for the indicated time-frequency window 

(dashed rectangle). D Same as A for effects as a function of f2 (pcluster = 0.04; FWE-corrected over a priori 
defined right frontal electrodes). E Time-courses of oscillatory power in a frequency range between 30 Hz 
and 35 Hz for the five f2 stimulus frequencies of the orthogonal subset (18, 20, 22, 24, and 16 Hz) F Same 
as C for effects of f2. G Same as A for effects as a function of f2-f1’ (pcluster = 0.04; FWE-corrected over a 
priori defined right frontal electrodes). H Time-courses of oscillatory power in a frequency range between 15 
Hz and 25 Hz for the four f2-f1 stimulus frequency differences (-4, -2, 2, and 4 Hz) I Same as C for effects 

of f2-f1.  
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Statistical parametric maps, topographical distributions, and estimated sources of the choice contrast and 
the significant clusters in Experiments 1 and 2. A Significant cluster for choices with a fixed motor mapping 
(Experiment 1; pcluster = 0.01, FWE-corrected) B Time-courses of oscillatory power in a frequency range 

between 30 Hz and 40 Hz for the six SPFD classes C Upper part: Topographical scalp distributions of the 
marked time-frequency windows for Experiment 1 (dashed rectangles). Lower part: 3D source 

reconstructions of the modulations by choice for the respective experiments. D Significant cluster for choices 
with flexible decision-to-response mapping (Experiment 2; pcluster = 0.04, FWE-corrected) E Time-courses 
of oscillatory power in a frequency range between 29 Hz and 32 Hz for the six SPFD classes. F Same as C for 

Experiment 2.  
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Abstract 26 

Recent studies suggest that a centro-parietal positivity (CPP) in the human EEG signal tracks the 27 

absolute (i.e. unsigned) strength of accumulated evidence for choices that require the integration of 28 

noisy sensory input. Here, we investigated whether the CPP might also reflect the evidence for 29 

decisions that are based on a quantitative comparison between two sequentially presented stimuli 30 

(i.e., a signed quantity). We recorded EEG data while participants decided whether the latter of two 31 

vibrotactile frequencies was higher or lower than the former in six different variants of this task (n = 32 

116). To account for known biases in sequential comparisons, we applied a behavioral model based 33 

on Bayesian inference that allowed us to estimate subjectively perceived frequency differences as 34 

well as statistical decision confidence. We used the perceived differences as a measure of subjective 35 

evidence. The sign indicated which alternative was favored, and its absolute value reflected the 36 

strength of evidence for that alternative. Immediately after the second stimulus, the signed value of 37 

subjective evidence was reflected in the CPP. Strikingly, this early modulation was even seen in trials 38 

without any objective evidence for either choice. After the modulation by signed evidence, the CPP 39 

represented the absolute strength of perceived evidence. Notably, this late modulation exhibited all 40 

features of statistical decision confidence. Finally, the CPP was also correlated with previously 41 

identified choice-selective premotor beta band amplitudes. Together, our data suggest that the CPP 42 

first indexes choice-relevant (signed) evidence, and later a measure of confidence. 43 
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Significance statement 44 

How is decisional evidence represented by neural signals? Recent studies suggested that a well-45 

known EEG signature might actually index this long sought signal. In particular, the P300 wave – now 46 

often termed centro-parietal positivty (CPP) – was found to track the evolving evidence for various 47 

perceptual decisions that required temporal accumulation of evidence. Here, we show that the CPP 48 

also indexes instantaneous evidence driving decisions based on quantitative comparisons. 49 

Additionally, we revealed that the CPP conveys more information than previously assumed. That is, 50 

the CPP first indexed the signed quantity on which choices were based, and then reflected decision 51 

confidence. Hence, our data support the idea of the CPP as a decision signal, however, demand for 52 

refinements in its interpretation. 53 
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Introduction 54 

Recent studies have suggested a centro-parietal positivity (CPP) in the EEG signal (arguably identical 55 

to the classic P300 component) as a modality-independent proxy of accumulated evidence in 56 

perceptual decision making tasks (e.g., Kelly & O’Connell, 2015; Philiastides et al., 2014). In particular, 57 

when classifying a noisy sensory stimulus interval into one of two categories, the CPP increased faster 58 

and peaked earlier the weaker the interfering noise was, i.e., the clearer the presented evidence (e.g., 59 

random dot motion (RDM) discrimination: Kelly & O’Connell, 2013; face-vs-car discrimination: 60 

Philiastides et al., 2014). Moreover, the CPP reached a fixed threshold at the time of the decision 61 

report, suggesting a threshold-crossing for response initiation (e.g., O’Connell et al., 2012; but see 62 

Philiastides et al., 2014). Together, these findings capture the hallmarks of popular sequential-63 

sampling models of evidence accumulation (e.g., see Smith and Ratcliff, 2004), and may relate to 64 

similar, or even homologue neuronal processes as identified in the parietal cortex of non-human 65 

primates (e.g., Roitman and Shadlen, 2002; Gold and Shadlen, 2007; Shadlen and Kiani, 2013). 66 

The link between decisional evidence and the CPP is not limited to decisions that require the 67 

accumulation of noisy sensory input over time. In an auditory four-stimulus oddball paradigm, the 68 

differences between ‘deviant’ and ‘standard’ stimuli (i.e., the evidence for a ‘deviant’ detection) 69 

modulated the CPP in the very same way as it was modulated by the strength of evidence in 70 

accumulation-based decisions (Twomey et al., 2015). Notably, the three ‘deviant’ stimuli in this task 71 

were always higher in pitch than the ‘standard’ stimulus, eliminating the necessity to evaluate the 72 

sign of the difference (i.e., higher or lower) between ‘deviant’ and ‘standard’. 73 

In all of the aforementioned EEG studies, a parietal potential tracked the strength of evidence during 74 

perceptual decision making, however, without indicating for which choice alternative (i.e., unsigned 75 

evidence; e.g., Kelly and O’Connell, 2013; Philiastides et al., 2014). In the RDM task for instance, only 76 
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the proportion of coherently moving dots modulated the CPP, without differentiating between the 77 

directions in which the dots moved (Kelly and O’Connell, 2013).  Here, we examined whether the CPP 78 

might also index the choice alternative, in addition to the amount of evidence, if we apply a 79 

sequential comparison task. In particular, does the CPP indicate the decision-relevant signed evidence 80 

for choices that involve a quantitative comparison? We used a classic vibrotactile two-alternative 81 

forced choice (2-AFC) task, in which participants compare two stimulus frequencies (f1 and f2), and 82 

decide whether the second one was higher or lower than the first one (comprehensive review on 83 

monkey electrophysiology in Romo and de Lafuente, 2013). In this paradigm, a choice-specific (i.e., 84 

binary) modulation of upper beta band (~20 – 30 Hz) amplitude in premotor cortex, decoupled from 85 

the motor response, was recently observed in human EEG recordings (Herding et al., 2016, 2017), 86 

replicating previous findings from monkey LFPs (Haegens et al., 2011). A representation of the graded 87 

differences between f1 and f2 (i.e., the signed evidence), however, has not yet been identified in the 88 

human EEG. For the current study, we pooled EEG data over six experiments, utilizing the same 89 

vibrotactile 2-AFC task while varying response modality, response timing, and response mapping (N = 90 

116). We estimated subjective evidence and difficulty (i.e., the subjectively perceived signed and 91 

absolute difference between f1 and f2, respectively) using a Bayesian inference model of choice 92 

behavior. This way, we accounted for known biases in sequential comparisons due to the so-called 93 

time-order effect/error (TOE; cf. Fechner, 1861; Woodrow, 1935; Hellström, 1985, 2003). Moreover, 94 

the behavioral model allowed us to derive a measure of confidence grounded in statistical decision 95 

theory (i.e., statistical decision confidence). Using the behavioral model, we found that the CPP was 96 

first modulated by the subjectively perceived signed difference, and later by its absolute value (i.e., 97 

the absolute strength of evidence).  98 
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 99 

Materials and Methods 100 

Experimental Design 101 

Participants: A total of 129 datasets were obtained from healthy, right-handed volunteers (21 – 40 102 

years; 76 females) who participated in six different variants of the experiment. Most participants 103 

were students from the Freie Universität Berlin, and some participated in more than one variant of 104 

the experiment. All studies were approved by the local ethics committee at the Freie Universität 105 

Berlin, and participants gave written informed consent before an experiment started. Thirteen 106 

datasets were excluded due to chance-level behavioral performance (<55% correct answers) and/or 107 

excessive EEG artifacts, leaving 116 datasets for further analyses. 108 

 109 

Stimuli and behavioral task: In all six variants of the experiment, stimuli and comparison task were 110 

identical. Only the response modality and response timing varied across experiments (Figure 1). 111 

Supra-threshold vibrotactile stimuli with constant peak amplitude were applied to the left index finger 112 

using a piezoelectric Braille stimulator (QuaeroSys Medical Devices, Schotten, Germany). The stimuli 113 

consisted of amplitude-modulated sinusoids with a fixed carrier frequency of 133 Hz (n.b., 137 Hz in 114 

Experiment 2). Amplitude-modulation of this carrier signal with frequencies between 12 – 32 Hz was 115 

used to create the sensation of tactile ‘flutter’ (see Talbot et al., 1968; Romo and Salinas, 2003), while 116 

limiting the spectrum of the physical driving signal to frequencies above 100 Hz (e.g., Tobimatsu et al., 117 

1999). Thus, the risk of physical artifacts in the EEG analysis range of interest (<100 Hz) was 118 

minimized. The sound of the stimulator was masked by white noise of ~80 dB that was played 119 

throughout the experiment (e.g., Spitzer et al., 2010; Spitzer and Blankenburg, 2011). Participants 120 

were comfortably seated ~60 cm in front of a TFT monitor. A fixation cross was displayed at the 121 
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center of the screen to minimize eye movements. On each trial, two flutter stimuli were successively 122 

presented for 250 ms each (with frequencies f1 and f2), interleaved by a retention interval of 1000 ms 123 

(see Figure 1). The frequencies of the first stimulus (f1) were randomly drawn from 16, 20, 24 or 28 124 

Hz, whereas f2 differed from f1 by +/- 2 or 4 Hz. In four variants of the experiment (Experiments 3 - 6), 125 

f2 was identical to f1 in 25% of the trials, without participants knowing. Participants were instructed 126 

to always decide whether f2 > f1 or f2 < f1.  127 

In Experiments 1 and 2, participants indicated choices immediately after presentation of the second 128 

stimulus either by pressing one of two buttons with the right index or middle finger (Experiment 1), or 129 

by making a saccade to one of two target dots (Experiment 2). The target dots (diameter of ~0.5° 130 

visual angle) appeared on the left and on the right side of the screen (~12° visual angle off-center). 131 

Importantly, the response assignment of the two buttons and of the two saccade directions was 132 

reversed for half of the participants. This way, the mapping of choices onto specific motor responses 133 

(which might have been associated with specific motor preparatory signals) was fully counterbalanced 134 

across participants (see also Herding et al., 2016, 2017). In Experiments 3 and 4, participants reported 135 

choices analogously to Experiments 1 and 2, however, only after a delay of 2500 ms. In Experiments 5 136 

and 6, an additional mapping of choices onto a color-code (blue vs. yellow) was required to report 137 

decisions after the delay. In the experiments with delayed responses (Experiments 3 – 6), 2000 ms 138 

after the presentation of f2, a blue and a yellow target dot (diameter of ~1° visual angle) appeared on 139 

the left and on the right side of the screen (fully counterbalanced across trials; ~12° visual angle off-140 

center). In Experiments 3 and 4, the colors of the dots were irrelevant, and participants selected 141 

targets based on a fixed association between direction and choices (counterbalanced across 142 

participants). In Experiments 5 and 6, each color was associated with one of the two choice options 143 

(counterbalanced across participants). Participants selected a target based on its location 144 
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(Experiments 3 and 4) or color (Experiments 5 and 6) after another 500 ms either by pressing the left-145 

arrow or right-arrow button with the right index or middle finger (Experiments 3 and 5), or by making 146 

a saccade onto the target (Experiments 4 and 6). See Figure 1 for a graphical summary of the 147 

experimental designs. 148 

In Experiments 1 and 2, participants received performance feedback after each trial, and completed 149 

seven blocks of 160 f1-vs-f2 comparisons (each block lasted ~15 minutes including eye-tracker 150 

calibration) for a total of 1120 trials. In Experiments 3 – 6, feedback based on the performance for 151 

trials with f1 ≠ f2 was provided after each block, and participants completed eight blocks of 128 152 

frequency comparisons (each block lasted ~12 minutes including eye-tracker calibration) for a total of 153 

1024 trials. Before each experiment, participants performed ~50 practice trials.  154 

Note that the influence of the different response conditions was not subject to the current study. 155 

Oscillatory signatures in the EEG signal that are related to these response manipulations have been 156 

reported elsewhere (Experiment1: Herding et al., 2016; Experiment 2: Herding et al., 2017), or the 157 

according manuscripts are in preparation (Experiment 3 – 6). 158 

 159 

Eye-tracking: In Experiment 2, a Tobii T60 eye-tracker (Tobii Technology, Danderyd, Sweden) was 160 

used to record eye movements of participants during each trial (binocular sampling at 60 Hz). The T60 161 

is integrated into a 17’’ TFT monitor, and is able to track participants that are comfortably seated in 162 

front of the monitor (i.e., no chin rest required). In Experiments 4 and 6, eye movements were 163 

recorded (monocular sampling at 500 Hz) using an EyeLink 1000 Desktop Mount with a chin rest (SR 164 

Research, Ottawa, Canada). Online evaluation of the participants’ gaze directions was implemented 165 

with custom code using the Tobii toolbox and psychtoolbox 3 for MATLAB (Brainard, 1997; 166 

Cornelissen et al., 2002). Thus, we were able to monitor that participants kept the gaze on the central 167 
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fixation cross during each trial (with tolerance of ~3° visual angle), and displayed a warning message if 168 

this was not the case (“Please keep fixation throughout the trial”). Additionally, we read out 169 

participants’ choices (200 ms fixation on target dot with tolerance of ~3° visual angle) and provided 170 

performance feedback online, either after each trial (experiment 2) or after each block (experiments 4 171 

and 6). To maintain a high tracking accuracy, the eye-tracker was calibrated before the beginning of 172 

each block using a standard 5-dot (Tobii T60) or 9-dot (EyeLink 1000) calibration procedure. 173 

 174 

Statistical Analysis 175 

Behavioral model of choices and confidence: In order to explain the observed choice pattern, we 176 

fitted a Bayesian inference model to individual behavioral data, and thereby, estimated subjectively 177 

perceived frequency differences (SPFDs; Figure 2A, for details see Herding et al., 2016; see also 178 

Ashourian and Loewenstein, 2011; Sanchez, 2014). In brief, the model targets to account for a known 179 

bias in sequential comparisons (cf. Hellström, 1985, 2003). That is, participants tend to compare f2 180 

not only with the physical value of f1, but also with the average frequency of all presented stimuli 181 

(e.g., Preuschhof et al., 2010; Ashourian and Loewenstein, 2011; Karim et al., 2012; see time-order 182 

effect for core principle: e.g., Fechner, 1820; Woodrow, 1935, Hellström, 1985). In other words, the 183 

quantity that drives choices in the given task is best described by the difference between f2 and a 184 

representation of f1 that deviates from its physical value toward the mean frequency of the stimulus 185 

set. In our model, we introduce this shifted quantity – which we will call f1’ – as a weighted average of 186 

the mean of all stimulus frequencies and the physical value of f1 – implemented in terms of Bayesian 187 

inference. In particular, f1’ is the expected value of the Gaussian posterior distribution of f1, assuming 188 

a Gaussian prior centered on the frequencies of the stimulus set (cf. Figure 2A). The model was fitted 189 

to the choices of individual participants by optimizing three free parameters (i.e., variance of stimulus 190 
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likelihood σ²stim, prior variance σ²prior, and a decision criterion c) using variational Bayes as 191 

implemented in the VBA toolbox (Daunizeau et al., 2014). In order to assess the model’s goodness-of-192 

fit, we computed Bayes Factors (BFs) to compare each model fit with a “null” model in which 193 

decisions were based on the physical stimulus differences (i.e., f2 – f1). Notably, the model of SPFDs 194 

as well as the “null” model followed Weber-Fechner’s law and implemented the representation of 195 

frequency values on a logarithmic scale (cf. Herding et al., 2016). 196 

Based on the individual model fits, we quantified the SPFD for each stimulus pair by the difference f2 197 

– f1’, yielding 16 SPFD values for Experiments 1 and 2, and 20 SPFD values for Experiments 3 – 6. At 198 

the same time, the difference distribution between the likelihood of f2 and the posterior of f1 199 

(centered on f1’) additionally allowed us to compute a measure of confidence based on statistical 200 

decision theory (e.g., Sanders et al., 2015, Hangya et al., 2016; Figure 2B). The difference distribution 201 

describes the distribution of percepts that are associated with a given stimulus pair, i.e., with the 202 

SPFD between both stimuli. According to statistical decision theory (or signal detection theory), a 203 

single percept can be conceived as a sample d from this distribution, and a choice based on this very 204 

percept depends on where the sample is located with respect to a decision criterion c (i.e., choose f2 205 

> f1 if d > c). The distance between the sample and the criterion (i.e., |d - c|) can be transformed into 206 

the probability of a correct response given the percept d, which in turn is a measure for confidence 207 

(Lak et al., 2014; Urai et al., 2017; Figure 2B). For each participant, we estimated average confidence 208 

based on this approach for SPFDs on the interval [-0.4, 0.4]. For each SPFD on this interval, we drew 209 

100,000 samples from the individual difference distributions (i.e., based on the estimated 210 

parameters), and computed the associated confidence for each sample. Confidence values were then 211 

averaged separately for correct and incorrect trials. Since results were roughly symmetric across zero, 212 

the average confidence was grouped according to absolute values of SPFDs (e.g., -0.2 and 0.2), and 213 
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respective mean values were computed. The illustration in Figure 2B was obtained by simulating data 214 

from an unbiased observer (c=0) with σ²stim  = 0.05 and σ²prior  = 0.347. 215 

 216 

EEG recording and analysis: In all experiments, EEG (ActiveTwo; BioSemi) was recorded at 2048 Hz 217 

(offline down-sampled to 512 Hz) from 64 electrodes positioned in an elastic cap according to the 218 

extended 10-20 system. Individual electrode locations for each participant were obtained prior to the 219 

experiments using a stereotactic electrode-positioning system (Zebris Medical GmbH, Isny, Germany). 220 

Additional electrodes were used to register the horizontal and vertical electrooculogram (hEOG and 221 

vEOG). For preprocessing, EEG data were high- and low-pass filtered using a non-causal FIR filter (with 222 

cut-off frequencies of 0.1 and 30 Hz, respectively), and re-referenced to a common average montage. 223 

Eye blink artifacts in the EEG data were corrected using adaptive spatial filtering based on individual 224 

calibration data informed by the vEOG signal (see Ille et al., 2002). For experiment 2, in which 225 

participants gave immediate responses by saccades, we used the same approach informed by the 226 

hEOG signal to remove artifacts of horizontal saccades from the EEG signal. The artifact-free EEG data 227 

were segmented into epochs from -2250 to 2000 ms relative to the presentation time of the second 228 

stimulus in order to examine evoked EEG responses after the second stimulus as well as to compute 229 

control analyses after the first stimulus. Noisy trials were identified by careful visual inspection, and 230 

were excluded from further analysis (14.8 % of trials on average). The remaining single-trial data were 231 

baseline-corrected relative to the 100 ms preceding stimulus onset. All analyses were done in 232 

MATLAB (The MathWorks) using custom code, functions of the SPM12 toolbox (Wellcome 233 

Department of Cognitive Neurology, London; www.fil.ion.ucl.ac.uk/spm), and the FieldTrip toolbox for 234 

EEG/MEG data (Radboud University Nijmegen, Donders Institute; fieldtrip.fcdonders.nl).  235 

 236 
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Multiple regression and group-level analysis: For each participant, we implemented a multiple 237 

regression analysis of the preprocessed single-trial EEG data. At each time point, we regressed the 238 

EEG data onto the SPFDs (i.e., f2 – f1’) and their absolute values (i.e., |f2 – f1’|) over trials, separately 239 

for correct and incorrect choices. The resulting regression coefficients quantified how strongly the 240 

trial-specific values of the regressors (i.e., f2 – f1’ and |f2 – f1’|) were related to trial-by-trial 241 

variability in the EEG data. To identify time periods and channels for which this relation was 242 

consistently different from zero across participants, we used cluster-based permutation testing (Maris 243 

and Oostenveld, 2007). We compared the summary statistics of the observed data (one-sample t-test 244 

of regression coefficients across all data sets at each time point) with a distribution of summary 245 

statistics obtained from 500 randomly sign-flipped permutations. A cluster was defined as a group of 246 

adjacent time points that all exceeded a cluster-defining threshold of pthreshold < 0.005 (uncorrected). 247 

Clusters that exceeded a cluster-based family-wise error (FWE) corrected threshold of pFWE < 0.05 248 

(corrected for time and channels) were considered to be statistically significant. 249 

 250 

Event-related potentials (ERPs): To visualize the effects identified in the statistical analysis as classic 251 

ERPs, we binned the individual 16 values of SPFDs (i.e., differences of log-transformed stimulus 252 

frequencies; one per stimulus pair with f1 ≠ f2) into six discrete levels across participants (i.e., [< -253 

0.18]; [-0.18 to -0.09]; [-0.09 to 0]; [0 to 0.09]; [0.09 to 0.17]; [> 0.17]). The grand average ERPs were 254 

computed separately for each level. We defined the six levels symmetrically around a SPFD of zero 255 

(corresponding to chance-level performance), and in such a way that each participant had at least one 256 

stimulus pair per level. Since SPFDs were generally small for trials with identical stimuli (i.e., f1 = f2), 257 

we used only four levels for the computation of ERPs in these trials (i.e., [< -0.09]; [-0.09 to 0]; [0 to 258 

0.09]; [> 0.09]). 259 
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 260 

Source reconstruction: The cortical sources of the observed modulations on the scalp-level were 261 

localized using the 3D source reconstruction routines provided by SPM12 (Friston et al., 2006). Based 262 

on the individually recorded electrode positions for each participant, a forward model was 263 

constructed using an 8196-point cortical mesh of distributed dipoles perpendicular to the cortical 264 

surface of a template brain (cf. Friston et al., 2006). The lead field of the forward model was 265 

computed using the three-shell Boundary Elements Method (BEM) EEG head model available in 266 

SPM12. Multiple sparse priors (Friston et al., 2008) under group constraints (Litvak and Friston, 2008) 267 

were applied to invert the forward model. For model inversion, we used a representative time 268 

interval (i.e., -200 to 1500 ms relative to f2) of ERPs that were computed separately for each level of 269 

SPFDs (see ERPs above) drawing on all trials including those with identical stimuli (i.e., f1 = f2). The 270 

results of the inversion were summarized in six corresponding 3D images (i.e., one for each level of 271 

SPFDs) that reflected source activity averaged over a time window of interest. In particular, summary 272 

images were computed for an early (250 to 500 ms) and a late (500 to 800 ms) time window capturing 273 

the two effects observed at the scalp level (i.e., modulation by signed evidence and strength of 274 

evidence, respectively). For each time window, contrasting the 3D images within each participant 275 

analogously to the sensor space analysis served as an estimate for subject-specific source locations of 276 

both effects. The results of conventional group-level statistical analyses of these source images (see 277 

Litvak et al., 2011) are displayed at a significance level of p < 0.001 (uncorrected). Anatomical 278 

references for source estimates were established on the basis of the SPM anatomy toolbox (Eickhoff 279 

et al., 2005) where possible. 280 

 281 

Single-trial correlation of CPP and upper beta band amplitude: In order to explore the relationship 282 
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between the CPP and premotor choice-specific upper beta band amplitude (cf. Herding et al., 2016, 283 

2017), single-trial correlations between these two measures were computed. Notably, only for 284 

experiments 1 and 2; only these experiments required immediate responses, and hence, a direct 285 

transformation of evidence into a motor response. For each participant, the magnitude of the CPP in 286 

every trial was specified by a single value for the early and for the late effect, respectively. In 287 

particular, the single-trial EEG signal from electrode CPz was averaged over a brief time period during 288 

which a modulation of the CPP by the signed values of SPFDs (i.e., 250 – 500 ms) or by its absolute 289 

values (i.e., 500 – 800 ms) was observed. Additionally, a measure of the upper beta band amplitude in 290 

electrodes over premotor areas was computed for each trial. Using response-locked time-frequency 291 

representations of the single-trial data (reported in Herding et al., 2016, 2017), average beta band 292 

amplitude was computed over a time-frequency cluster that exhibited a significant modulation by 293 

participants’ choices (i.e., electrodes FC2, FCz, and C2; 20 – 30 Hz; -750 to -350 ms from responses for 294 

experiment 1, cf. Herding et al., 2016; electrodes FC2 and FC4, 24 – 32 Hz, -750 to -450 ms from 295 

responses for experiment 2, cf. Herding et al., 2017). We used correct and incorrect trials to compute 296 

the single-trial correlations for each participant. The correlation coefficients from both experiments 297 

were pooled (N = 45), and a one-sample t-test was computed to assess whether a consistent 298 

correlation was present across participants. 299 
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Results 300 

Behavioral Results 301 

Pooled over all experiments, participants made on average 72.5% correct choices. To test whether 302 

performance varied across the six experiments and across the different frequency differences, we 303 

performed a two-way repeated measures ANOVA on proportions of correct responses (PCRs) with 304 

between-subject factor ‘Experiment’ (experiments 1 – 6), and within-subject factor ‘Frequency 305 

Difference’ (-4, -2, 2, and 4 Hz stimulus difference). We used logit-transformed PCRs to account for 306 

non-normally distributed residuals. The analysis revealed no significant performance differences 307 

between experiments (main effect ‘Experiment’, p = 0.125; interaction ‘Experiment’ x ‘Frequency 308 

Difference’, p = 0.182). Within each experiment, PCRs varied significantly with the factor ‘Frequency 309 

Difference’ (p < 0.001). For further insights into this effect, we computed post-hoc paired t-tests for 310 

each study separately to evaluate the influence of difficulty (+/- 4 Hz  vs. +/- 2 Hz differences), and 311 

sign of the frequency differences (positive vs. negative differences). As expected, a larger proportion 312 

of trials were judged correctly when the (physical) f2 − f1 frequency difference was ±4 Hz compared 313 

with trials where the difference was only ±2 Hz in all experiments (all p < 0.001; paired t-test; see 314 

difficulty effect, Table 1). In experiments 1 and 2, we additionally observed more correct responses 315 

for positive compared with negative frequency differences (p = 0.03, and p = 0.002; paired t-test; see 316 

sign effect, Table 1), which indicated an overall response bias toward “f2 > f1” choices only in these 317 

experiments that required immediate responses (mean criterion shifts: 0.116 and 0.126 with p = 318 

0.029 and p = 0.002; one-sample t test). 319 

 320 

Bayesian inference model yields good approximations for signed subjective evidence and 321 

experienced difficulty 322 
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As known from many 2-AFC studies that require the comparison of two sequentially presented 323 

stimuli, participants often show a particular choice pattern (e.g., Preuschhof et al., 2010; Ashourian et 324 

al., 2011; Karim et al., 2012; see squares in Figure 3A and B). For trials with f2 > f1 (i.e., f2 - f1 = 2 Hz or 325 

4 Hz), participants performed better with increasing f1, whereas for trials with f2 < f1 (i.e., f2 - f1 = -2 326 

Hz or -4 Hz), the opposite is seen (Figure 3A). In other words, the probability to choose f1 decreases 327 

with increasing f1 for all frequency differences (interestingly also for those trials with no frequency 328 

difference; Figure 3B). Our previously proposed Bayesian inference model (Herding et al., 2016) can 329 

account for this choice pattern (lines in Figures 3A and B). Moreover, with the individually estimated 330 

SPFDs (i.e., f2 – f1’) we obtained a subjective, fine-grained measure that reliably predicted 331 

participants’ choices. Hence, we used the signed SPFDs as a proxy for signed subjective evidence 332 

towards a decision in this task (Figure 3C). Computing BFs to formally assess the quality of our 333 

Bayesian model provided positive evidence (BF > 3) in favor of the SPFD model for 91.4 % of the 334 

participants (106/116), and strong evidence (BF > 20) for 87.9 % (102/116; Figure 3E). Accordingly, the 335 

absolute values of the SPFDs (i.e., |f2 - f1’|) correlated significantly more with participants PCRs than 336 

the absolute values of the physical differences (i.e., |f2 – f1|), rendering SPFDs also an improved 337 

predictor of subjectively experienced difficulty (paired t-test, p < 0.001; Figure 3D).  338 

 339 

CPP first reflects signed subjective evidence and then absolute strength of evidence 340 

We computed a multiple regression analysis on the epoched EEG data using the signed SPFDs (i.e., f2 341 

– f1’) as well as their absolute values (i.e., |f2 – f1’|) as single-trial regressors. This way, we could 342 

independently assess correlations of scalp potentials with signed subjective evidence and with the 343 

absolute strength of evidence. For a first analysis, we only used trials in which objective sensory 344 

evidence was present (i.e., physically different stimuli with f2 ≠ f1). For correct decisions, we found 345 
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that a centro-parietal positive ERP after the second stimulus was positively correlated with the signed 346 

subjective evidence early on (168 – 709 ms, 35 electrodes, strongest in P1, Pz, CPz, CP4, CP2, and P2 347 

with pFWE = 0.002). Later, however, the same ERP was positively correlated with the absolute strength 348 

of the evidence (273 – 953 ms, 33 electrodes, strongest in P1, CPz, Cz, C2, CP2, and P2 with pFWE = 349 

0.002; scalp topographies in Figure 4). The overall profile of the underlying ERP strongly resembled 350 

the classic P300 or CPP (see time courses in Figure 4). For incorrect decisions, the above mentioned 351 

modulations by subjective evidence vanished, however, the overall profile of the ERP remained 352 

unchanged conforming to the shape of a typical P300 or CPP (not shown). Directly comparing the 353 

modulations between correct and incorrect decisions revealed significant differences (i.e., interaction 354 

effects) in both the modulation by signed subjective evidence (326 – 367 ms and 418 – 455 ms, 355 

electrodes P1, P3, P5, PO7, and PO3 with pFWE = 0.022 and pFWE = 0.032) and in the modulation by 356 

absolute strength of evidence (723 – 750 ms, electrodes CP5, P7, PO7, O1, Iz, and O2 with pFWE = 357 

0.028). In sum, the CPP reflected the signed and absolute subjective evidence only for correct trials – 358 

even significantly more than for incorrect trials. Hence, a faithful representation of the subjective 359 

evidence is tightly linked to correct decisions, implying the behavioral relevance of the CPP.  360 

The significant positive correlations in centro-parietal electrodes were accompanied by significant 361 

negative correlations in bilateral fronto-temporal electrodes for all described effects, hinting at the 362 

rough orientation of underlying dipole generators (see scalp topographies in Figure 4). In general 363 

agreement with the scalp topographies, the reconstructed source locations suggest that the 364 

modulation by signed subjective evidence originates from left superior parietal lobule (SPL; Brodman 365 

area 7A; MNI peak coordinates: -24, -62, 54) in the posterior parietal cortex (PPC; Figure 5). On a 366 

considerably lower significance level (p < 0.05; uncorrected), also the right SPL is implicated as a likely 367 

source. The modulation by the absolute strength of subjective evidence additionally suggested 368 
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probable sources in bilateral inferior frontal gyrus (IFG, Brodman area 44/45, MNI peak coordinates: -369 

54/+48, 14, 12; Figure 5). 370 

We challenged our findings in a series of control analyses to exclude confounding factors as the 371 

driving forces behind the observed effects. First and foremost, we examined whether the observed 372 

modulations of the CPP were driven by the outer most stimulus pairs alone. That is, in the given 373 

stimulus set, some choices could have been based on exceptionally high or low f2 alone, possibly 374 

associated with qualitatively distinct percepts. We excluded these outer most stimuli from the 375 

stimulus set and repeated the multiple regression analysis on the remaining subset of data (inset 376 

Figure 6). In particular, the subset only included trials in which f2 could lead to either choice (i.e., f2 377 

alone did not predict the correct decision in these trials), leading to markedly reduced trial numbers 378 

for the analysis (i.e., 400 and 288 trials per subject were dismissed for experiments with immediate 379 

and delayed responses, respectively). Nevertheless, the results were qualitatively identical to those 380 

obtained when using the full set (Figure 6). After the presentation of f2, the CPP was first modulated 381 

by the signed subjective evidence (295 – 578 ms, 24 electrodes, strongest in Pz, CPz, CP1, CP2, P1, and 382 

P3 with pFWE = 0.002) and then by the absolute strength of evidence for correct decisions (486 – 676 383 

ms, 14 electrodes, strongest in CPz, Pz, POz, CP1, CP2, and P1 with pFWE = 0.002), but not for incorrect 384 

decisions (no clusters). A significant interaction between correct and incorrect trials was only 385 

observed for the late modulation by absolute strength of evidence (602 – 654 ms, electrodes P1, P3, 386 

PO7, PO3, POz, and PO4 with pFWE = 0.026). With respect to the computation of ERPs, excluding the 387 

outer most stimuli, led to fewer trials falling into the most extreme bins of SPFDs (cf. ERPs in Material 388 

and Methods). In particular, this concerned large negative and large positive SPFDs (dark blue and 389 

dark red in upper panel of Figure 6) with 26 and 78 participants respectively contributing data to the 390 

grand average ERPs (i.e., 35 trials per individual ERPs on average). For comparison, all 116 participants 391 
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contributed individual ERPs (based on 67 trials on average) to the grand average for the remaining 392 

levels of SPFDs. Note, however, that the computation of ERPs only served displaying purposes. The 393 

statistical analysis was based on single-trials (i.e., not binned into discrete levels of SPFDs), and hence 394 

unaffected by any imbalances in trial numbers per discrete levels of SPFDs. Taken together, this 395 

analysis ruled out that the outer most stimulus pairs alone accounted for the observed modulations in 396 

the EEG signal.  397 

In a further control analysis we focused on the observation that for some participants SPFDs were 398 

distributed asymmetrically around zero due to an overall response bias. Hence, the corresponding 399 

absolute values were not fully independent from the signed SPFDs. We therefore orthogonalized the 400 

absolute values with respect to the signed SPFDs before computing the multiple regression once 401 

more, and again obtained qualitatively identical results (modulation by signed SPFDs: 264 – 537 ms, 402 

29 electrodes, strongest in Pz, CPz, POz, CP2, CP4, and P1 with pFWE = 0.002; modulation by absolute 403 

values of SPFDs: 279 – 947 ms, 32 electrodes, strongest in Pz, CPz, CP1, CP2, P1, and P3 with pFWE = 404 

0.002). Next, we explored whether the EEG signal was possibly also affected after the first stimulus by 405 

the quantity that had to be kept in working memory (i.e., in analogy to the presumed subjective 406 

difference quantity on which the decision is based). That is, we studied whether we could find a 407 

parietal potential that was modulated by f1 in a similar way as the CPP was modulated by SPFDs after 408 

the second stimulus. We did not find any comparable effect (i.e., no cluster with comparable spatial 409 

and temporal configuration). Finally, when examining the data from each experiment (cf. Materials 410 

and Methods) separately, we found the same pattern of modulations by subjective evidence as with 411 

the pooled data. In all experiments, the CPP was first modulated by the signed subjective evidence, 412 

and then by the strength of subjective evidence for correct (all effects with pFWE < 0.014, except for 413 

Experiment 3, with pFWE = 0.178 and pFWE = 0.248 for the early and late modulation, respectively), but 414 



 

 20

not for incorrect decisions (no clusters in parietal electrodes, except for Experiment 2 showing a 415 

negative modulation by the absolute strength of evidence with pFWE = 0.018). 416 

 417 

Signed subjective evidence modulates CPP even during judgements of physically identical stimulus 418 

pairs 419 

We repeated the multiple regression analysis with signed SPFDs and their absolute values as 420 

regressors, this time, however, only using trials without any physical evidence for a decision. In 421 

particular, we only used trials with two identical stimuli (i.e., f1 = f2: 12 Hz vs 12 Hz, 16 Hz vs 16 Hz, 20 422 

Hz vs 20 Hz, 24 Hz vs 24 Hz). Although the physical difference f2 – f1 is always zero for these trials, 423 

crucially, the individually estimated SPFDs yielded non-zero values for each stimulus pair. This is a 424 

direct consequence of the known biases in choice behavior that are typically observed in sequential 425 

comparison tasks (i.e., comparing f2 with mean-biased f1’ instead of the physical value of f1). Based 426 

on the non-zero SPFDs, we were hence able to divide trials according to decisions that were in line 427 

with the estimated SPFDs (i.e., SPFD < 0: f1 chosen, and SPFD > 0: f2 chosen), and those that were not 428 

(i.e., SPFD < 0: f2 chosen, and SPFD > 0: f1 chosen). This way, we could divide trials into “consistent” 429 

and “inconsistent” with respect to the model outcome. Remarkably, for “consistent” decisions, we 430 

found the same positive correlation of the CPP with signed SPFDs as for correct trials in which physical 431 

evidence for a decision was actually present (236 – 246 ms, electrodes PO3, POz, Pz, CP6, CP4, CP2, 432 

P2, P4, P6, P8, and PO8, pcluster = 0.016, FWE corrected, Figure 7). For decisions identified as 433 

“inconsistent”, no such correlation was found. A comparison between “consistent” and “inconsistent” 434 

trials revealed that the modulation of the CPP by signed subjective evidence was significantly 435 

different (i.e., an interaction effect) between both sets of trials (322 – 338 ms, electrodes P3, P5, PO3, 436 

Oz, POz, Pz, P2, P8, PO8, and PO4, pcluster = 0.044, FWE corrected). Notably, the separation of trials 437 
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into these two sets was solely based on the modeled SPFDs, and yet, we were able to observe a 438 

significant difference in the EEG signal. On the other hand, the absolute values of the SPFDs did not 439 

modulate the CPP in trials with identical stimuli. Only a more anterior cluster became statistically 440 

significant for “consistent” decisions (268 – 279 ms, electrodes F1, F3, Fz, F2, F4, FC2, and FCz, pcluster = 441 

0.03, FWE corrected), however, not in the interaction between “consistent” and “inconsistent” trials. 442 

 443 

Late modulation by absolute strength of evidence conforms with statistical decision confidence 444 

That the CPP was correlated with the absolute values of SPFDs faintly suggested that this late 445 

modulation might index the level of confidence in a decision. However, in order to make a more 446 

convincing point, we sought further evidence in support of this idea. In particular, we checked 447 

whether the late CPP conforms with the predictions of statistical decision confidence (cf. Sanders et 448 

al., 2016, Hangya et al., 2016). In this framework, confidence exhibits four key characteristics that can 449 

be tested without the need for explicit confidence ratings, simply based on statistical decision theory 450 

(or signal detection theory): (1) confidence is positively correlated with PCRs; (2) confidence increases 451 

with evidence strength for correct choices, but decreases for incorrect choices (see Figure 2B for 452 

intuition); (3) when (almost) no evidence is available (i.e., in very hard trials), confidence exhibits the 453 

same intermediate level for correct and incorrect choices; (4) for the same strength of evidence, high-454 

confidence trials still yield higher PCRs than low-confidence trials.  455 

Concerning (1), as reported in our main results, we found that the late CPP was positively correlated 456 

with the absolute values of SPFDs, which in turn were highly correlated with PCRs (Figure 3D). For (2) 457 

and (3) we extracted single-trial amplitudes of the CPP (mean amplitude between 500 and 800 ms 458 

after f2 in electrode CPz), and grouped these amplitudes according to the discrete levels of absolute 459 

SPFDs separately for correct and incorrect trials (i.e., three levels for trials with f2 ≠ f1: [0 to 0.09]; 460 
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[0.09 to 0.17]; [> 0.17]; two levels for trials with f2 = f1: [0 to 0.09]; [> 0.09]). As predicted by 461 

statistical decision confidence, we found that the CPP amplitude increased with evidence strength for 462 

correct trials, and (initially) decreased for incorrect trials, in remarkable alignment with the average 463 

confidence computed from individual model fits (Figure 8). Moreover, for the most difficult trials (i.e., 464 

least evidence strength), the CPP amplitude was at the same intermediate level for correct and 465 

incorrect trials (Figure 8B). Notably, predictions (2) and (3) were also reflected in CPP amplitudes 466 

when considering only trials with f2 = f1 (Figure 8B, right panel). Lastly, we did a median split of our 467 

data based on CPP amplitudes to simulate a division into high- and low-confidence trials (4). We 468 

compared PCRs between high- and low-amplitude trials for each of the three levels of evidence 469 

strength (i.e., [0 to 0.09]; [0.09 to 0.17]; [> 0.17]), and found that for the intermediate and high level 470 

of evidence strength, PCRs were significantly higher in trials with a high CPP amplitude as compared 471 

to trials with a low CPP amplitude (paired t-test, both p < 0.001). Taken together, the late CPP mirrors 472 

all aspects of a measure of confidence as defined by statistical decision theory. 473 

 474 

CPP correlates with upper beta band amplitude over effector-specific premotor areas 475 

Finally, we explored whether the observed modulation of the CPP was related to previously identified 476 

choice-specific modulations of upper beta band amplitude over premotor areas in the same data (i.e., 477 

experiments 1 and 2 as reported in Herding et al., 2016, 2017). That is, beta band power was shown 478 

to be higher for “f2 > f1” choices as compared to “f2 < f1” choices, regardless of whether the choice 479 

was correct or incorrect. Indeed, we found a positive correlation between the amplitude of the CPP 480 

during the early modulation by signed SPFDs and the beta band amplitude (one-sample t-test across 481 

single-trial correlations of participants, mean rho = 0.03, p < 0.001). Notably, we obtained the same 482 

positive correlation when considering data from both experiments separately (experiment 1: mean 483 
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rho = 0.03, p = 0.016; experiment 2: mean rho = 0.02, p = 0.002). The late CPP (i.e., during the 484 

modulation by absolute SPFDs) was also positively correlated with single-trial beta band amplitudes 485 

(mean rho = 0.02, p = 0.006). However, when considering both experiments separately, only data 486 

from experiment 1 showed a significant positive correlation (mean rho = 0.02, p = 0.02), but not data 487 

from experiment 2 (mean rho = 0.01, p = 0.15). Importantly, average response times in experiments 1 488 

and 2 (~ 862 ms and ~ 603 ms) render a causal relation between the late CPP (i.e., 500 – 800 ms after 489 

f2) and choice-specific upper beta band amplitude unlikely. For the early CPP (i.e., 250 – 500 ms after 490 

f2), on the other hand, a causal role in choice selection seems chronologically possible, nevertheless, 491 

remains to be thoroughly investigated. 492 
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Discussion 493 

In the current study, we investigated human ERP signals during the comparison of two sequentially 494 

presented vibrotactile stimuli (with frequencies f1 and f2). We pooled a sizeable amount of data (N = 495 

116) over six different variants of this task, varying in response modality, response timing, and 496 

response mapping, whereas stimuli and comparison task remained unchanged. Despite the variations, 497 

we consistently found that the CPP after the second stimulus was first modulated by the signed 498 

subjective evidence in favor of the ensuing decision (i.e., signed SPFDs), and later by the absolute 499 

strength of evidence (i.e., absolute values of SPFDs). Notably, both modulations were only observed 500 

for correct decisions, linking a successful discrimination of f1 and f2 with a faithful representation of 501 

the perceived stimulus difference (i.e., SPFDs) in the CPP. Even in the absence of any objective 502 

differences between f1 and f2 (i.e., f1 = f2), the CPP indexed the signed values of SPFDs, but not its 503 

absolute values. This observation implies that the CPP indexes endogenous evidence for subsequent 504 

decisions (see CPP in the absence of stimuli in O’Connell et al., 2012). Accordingly, we found a 505 

correlation between the early CPP and choice-selective upper beta band amplitudes in effector-506 

specific premotor areas. The late modulation by the absolute values of SPFDs on the other hand 507 

seems to index the confidence in a decision. The putative neuronal sources of both early and late CPP 508 

modulation were located in SPL (Brodman area 7A; primarily in the left hemisphere), whereas the late 509 

modulation by absolute differences additionally exhibited likely sources in bilateral IFG (Brodman area 510 

44/45). 511 

Several studies of the broadband human EEG signal have shown that the CPP reflects the accumulated 512 

evidence for perceptual decisions which require the integration of noisy sensory input over time for 513 

immediate and delayed responses (e.g., O’Connoll et al., 2012; Kelly and O’Connell, 2013; Philiastides 514 

et al., 2014, Twomey et al., 2016). These findings might be directly linked to seminal work on visual 515 
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perceptual decision making in monkeys that implicated the PPC as a key site for evidence 516 

accumulation (see Shadlen and Kiani, 2013). A recent study showed that also in other tasks, i.e., in a 517 

classic oddball paradigm, the CPP, or rather the P300, was modulated by the evidence in favor of a 518 

successful ‘deviant’ detection (i.e., a modulation by the difference between ‘deviant’ and ‘standard’ 519 

stimulus; Twomey et al., 2015). Our findings are in general agreement with these reports of the CPP, 520 

and in particular, extend the latter observation beyond the limits of a mere detection task. Moreover, 521 

we were able to trace the modulations of the CPP by subjective evidence back to a source in PPC, 522 

consistent with the results from monkey electrophysiology.  523 

On closer inspection, our results are, however, crucially different from previous reports of the CPP in 524 

perceptual decision making. Until now, all studies that associated the CPP with decisional evidence, 525 

found a modulation of the CPP by the evidence within a single choice category, but never a 526 

modulation by evidence across choice alternatives (e.g., O’Connell et al., 2012; Kelly and O’Connell, 527 

2013; Philiastides et al., 2014; Twomey et al., 2015; Twomey et al., 2016). That is, the CPP was shown 528 

to track the strength of available evidence, albeit concealing for which choice alternative. In 529 

particular, Kelly and O’Connell (2013) showed that only the proportion of coherent motion, 530 

independent of direction (i.e., leftward or rightward), modulated the CPP in a RDM task (see also 531 

Twomey et al., 2016). Moreover, Philiastides et al. (2014) were able to discriminate different levels of 532 

presented evidence based on a parietal potential (i.e., likely the CPP), no matter whether an image of 533 

a face or a car was shown. However, a classification between faces and cars was not possible. In the 534 

current study, we report for the first time that the CPP was modulated by both the amount of 535 

evidence and the choice alternative at the same time (i.e., by signed evidence in form of SPFDs). Only 536 

later, the absolute strength of evidence alone (i.e., absolute values of SPFDs; independent of the 537 

specific choice category) was reflected by the CPP as known from previous work. We propose that the 538 
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early modulation by the signed values of SPFDs indexes the evidence on which a decision was based. 539 

The late modulation by the absolute values of SPFDs, on the other hand, might refer to the confidence 540 

in the decision. 541 

Interpreting the late CPP modulation by absolute values of SPFDs as confidence is based on the 542 

observation that the late CPP complies in all respects with the definition of statistical decision 543 

confidence (see Sanders et al., 2016, Hangya et al., 2016). Importantly, according to the classic 544 

definition of confidence, statistical decision confidence refers to the probability that a choice is 545 

correct (given the evidence), and was recently shown to align with human confidence judgements 546 

(Sanders et al., 2016). That is, this framework allows to infer confidence levels even in the absence of 547 

explicit confidence ratings. That the CPP, or rather the P300, might indicate confidence has been 548 

suggested for a long time (e.g., Squires et al., 1973; Sutton et al., 1982; Curran, 2004), and also more 549 

recent work reiterated this idea. Gherman and Philiastides (2015), for instance, reported a higher 550 

amplitude of the CPP for choices that were made with high certainty as compared to choices with low 551 

certainty (see also Philiastides et al., 2014). Moreover, although the CPP has been typically reported 552 

to reach a fixed level at the time of the response report (see Kelly and O’Connell, 2015, but 553 

Philiastides et al., 2014), when considering false alarm trials, a clearly lower amplitude was observed, 554 

possibly indexing lower confidence in those trials (Figure 2C in O’Connell et al., 2012). The lack of 555 

differences in CPP amplitudes at response time for the remaining results might be related to the task 556 

demands per se. By applying continuous task designs (e.g., O’Connell et al., 2012, Kelly and O’Connell, 557 

2013), decision-unrelated stimulus evoked EEG signals were elegantly avoided, however, an 558 

additional level was added to the task, requiring the detection of stimuli. This might have led to a 559 

rather constant level of confidence before committing to a decision (see Discussion in Philiastides et 560 

al., 2014). The reconstructed sources of the confidence signal in bilateral IFG appear unusual at first 561 
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glance, however, recent fMRI studies also implicated the IFG in the processing of confidence (Hebart 562 

et al., 2016; Sherman et al., 2016). 563 

Finally, the present vibrotactile 2-AFC task has been used extensively by Romo and colleagues during 564 

electrophysiological recordings from monkeys (reviewed in Romo and deLafuente, 2013). In this 565 

research, premotor areas were identified as one of the first sites to show decision-related firing rate 566 

patterns that encoded the differences between f1 and f2 (Hernández et al., 2002, 2010; Romo et al., 567 

2004). Furthermore, a choice-specific (i.e., binary) amplitude modulation of large-scale upper beta 568 

band oscillations (~20 – 30 Hz) in premotor areas was recently identified in monkey local field 569 

potentials (Haegens et al., 2011) as well as in human EEG data (Herding et al., 2016, 2017). With the 570 

current results, we provide first evidence for a previously missing EEG signature that indexes the fine-571 

grained subjective evidence in favor of the ensuing choices. Given the stimulus-locked early onset of 572 

the CPP modulation by signed evidence, the response-locked character of the beta band modulation, 573 

the conceptually reasonable gradient (i.e., choices are based on evidence), and the source locations of 574 

both findings (i.e., evidence in parietal cortex and choice in premotor cortex), we presume that the 575 

CPP precedes and potentially drives the beta band effect. In fact, using the data from Experiments 1 576 

and 2 with immediate responses (i.e., with a direct translation from evidence to choices), we found a 577 

positive correlation between single-trial CPP magnitude (during the early modulation by signed 578 

evidence) and the level of beta band amplitude (during the choice modulation). This observation 579 

indeed hints at a connection between CPP and beta band amplitude, and deserves a more thorough 580 

investigation in future research. 581 

To conclude, our data corroborate the notion of the CPP tracking evidence in perceptual decision 582 

making (see Kelly and O’Connell, 2015). Using a vibrotactile 2-AFC comparison task, we could show, 583 

however, that the interpretation of this signal is not as simple as previously assumed. Our results 584 
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revealed that the CPP first indexes signed subjective evidence, and only later the absolute strength of 585 

evidence. We propose that the early modulation reflects the quantity on which a decision is based, 586 

whereas the late modulation might index decision confidence. In the context of the vibrotactile 2-AFC 587 

task, our findings suggest that the fine-grained signed evidence that is reflected early in the CPP might 588 

index the input to more categorical choice representations, e.g., in effector-specific premotor areas 589 

(see Haegens et al., 2011; Herding et al., 2016, 2017). 590 
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Table 1. Behavioral data 691 

 Frequency difference of stimuli 

(f2 – f1) in Hz 

 -4 -2 2 4 difficulty effect sign effect 

Exp.1  
74.8 

±6.3 

63.4 

±5.5 

68.9 

±4.0 

85.0 

±2.9  
p < 0.001 p = 0.030 

Exp. 2 
75.9 

±4.4 

64.7 

±3.5 

70.8 

±4.4 

86.1 

±4.3  
p < 0.001 p = 0.002 

Exp. 3 
74.3 

±6.1 

64.2 

±6.0 

65.2 

±5.2 

78.1 

±5.7  
p < 0.001 p = 0.615 

Exp. 4 
77.7 

±8.8 

65.4 

±7.7 

66.2 

±5.5 

79.8 

±6.6  
p < 0.001 p = 0.871 

Exp. 5 
78.8 

±5.5 

66.6 

±4.2 

67.8 

±4.5 

81.1 

±5.8  
p < 0.001 p = 0.388 

Exp. 6 
74.2 

±5.9 

63.1 

±4.3 

66.9 

±5.3 

80.6 

±5.0  
p < 0.001 p = 0.067 

pooled 
75.9 

±2.4 

64.5 

±2.0 

67.7 

±1.9 

81.8 

±2.0  
p < 0.001 p < 0.001 

 

Proportion of correct responses (PCRs) in % as a function of the physical frequency difference f2 – f1 for each experiment. 692 

Mean values ± 95% confidence interval are shown. 'Difficulty effect' compares easy (+/- 4 Hz) and difficult (+/- 2 Hz) trials 693 

in a paired t-test. 'Sign effect' compares trials with a positive (2 and 4 Hz) and negative (-4 and -2 Hz) frequency difference 694 

in a paired t-test. PCRs were logit-transformed before testing, due to non-normally distributed residuals. 695 
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Figure 1: Task and stimuli. One after another, two vibrotactile stimuli with frequencies f1 and f2 were briefly presented to 696 

the left index finger of participants who had to decide whether f2 > f1 or f2 < f1. Response timing (immediate / delayed), 697 

response modality (saccade / button press), and response mapping (direction / color) varied over six variants of the task 698 

(exp. 1 – exp. 6). Inset, The stimulus set that was used in all experiments, with the exception of zero-difference trials (gray) 699 

which were not used in exp. 1 and exp. 2. Each square represents one stimulus pair with f1 (x-axis) and f2 (y-axis). The 700 

color-code denotes the physical stimulus differences f2 – f1. 701 



 

 36

Figure 2: Behavioral model for choices and confidence. A, Graphical illustration of the behavioral model based on Bayesian 702 

inference. Y-axes display frequencies on a logarithmic scale. Top: Representation of f1 during different stages of the task. 703 

Pink distribution represents the likelihood function of f1. Black distribution is the prior centered on the stimulus set. 704 

Purple distribution is the posterior of f1 with shifted mean f1’. Lower: The likelihood of f2 (pink distribution) is used for the 705 

comparison with the posterior of f1. Subtracting the posterior of f1 from the likelihood of f2, yields a difference 706 

distribution which is used to fit the probability to chose f1 to the behavioral data of each participant by optimizing  σ²stim,  707 

σ²prior, and decision criterion c. B, Intuition of statistical decision confidence. The distance between perceived evidence and 708 

decision criterion is proportional to confidence. Average perceived evidence is displayed separately for correct and 709 

incorrect trials (green and red bar, respectively). Difference distribution for hard (f2 – f1’ = 0.1) and easy (f2 – f1’ = 0.3) 710 

trials illustrate that confidence increases with evidence strength for correct trials, but decreases for incorrect trials. 711 
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Figure 3: Behavioral and modeling results. A, Grand average of observed (squares) and modeled (lines) proportions of 712 

correct responses (PCRs) plotted separately for each f1 (x-axis) and each physical stimulus difference f2 – f1 (color-code). 713 

B, Same as in A, but for probabilities to chose f1. Note that the blue squares/lines are identical as in A, and the red 714 

squares/lines correspond to 1-PCRs from A. C, Probabilities to chose f1 for each stimulus pair of each participant (dots), 715 

color-coded for physical stimulus differences (f2 – f1), and plotted against subjectively perceived frequency differences 716 

(SPFD; f2 – f1’). The solid black line represents the modeled probability to chose f1, averaged over all participants +/- 95% 717 

confidence interval (dashed lines). D, Histogram of correlation coefficients from all participants obtained from correlating 718 

absolute physical differences (|f2-f1|) with PCRs (gray), and from correlating absolute values of SPFDs (|f2-f1’|) with PCRs 719 

(black). E, Histogram of Bayes factors (BFs), comparing the SPFD model with a “null” model (based on physical stimulus 720 

differences) for each participant. Red line marks threshold for positive evidence in favor of SPFD model (BF > 3). 721 
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Figure 4: CPP is first modulated by signed subjective evidence and then by the absolute value, displayed for trials with 722 

available physical evidence (i.e., f2 ≠ f1). Lower, Scalp topographies of t-values reflecting group-level statistics for 723 

modulations by signed subjective evidence (f2 - f1’) and by the absolute strength of evidence (|f2 – f1’|). Displayed 724 

topographies are averages over 250 ms windows, starting at 0 with the onset of the second stimulus. The modulation by 725 

signed subjective evidence peaks clearly earlier (250 – 500 ms topography) than the modulation by the absolute strength 726 

of evidence (500 – 750 ms topography). Upper, ERPs from electrode CPz (white dot in scalp topographies), are computed 727 

separately for six levels of SPFDs, and display a modulation by the signed values of the SPFDs and then by the absolute 728 

values of the SPFDs. Black dots denote samples at which the electrode was part of a statistically significant cluster (p < 729 

0.05; FWE corrected) indicating a modulation by signed subjective evidence (upper) or by the absolute strength of 730 

evidence (lower). 731 
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Figure 5: Source reconstructions for the early CPP modulation by signed subjective evidence (red), and the late 732 

modulation by the absolute strength of evidence (blue). 733 
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Figure 6: CPP modulation persists when using a subset of trials in which f2 alone does not predict decision outcome (i.e., 734 

f2 and f2 – f1 are orthogonal). Inset in upper left corner highlights the stimulus pairs that were used for this analysis (see 735 

also Figure 1). Same conventions as in Figure 3. Note that only the grand average ERPs for the most negative and most 736 

positive level of SPFDs (dark blue and dark red) were affected by using a reduced dataset (see text for details). 737 
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Figure 7: CPP is modulated by signed subjective evidence even in the absence of physical evidence (i.e., f2 = f1). Same 738 

conventions as in Figure 3. Lower, The modulation by subjective evidence peaks in the same time window as the 739 

modulation for trials with f2 ≠ f1 (250 – 500 ms topography), and displays a similar topography (cf. Figures 3 and 4). A 740 

modulation by the absolute strength of evidence is not observed. Note the different scale of t-values. Upper, ERPs from 741 

electrode Pz (white dot in scalp topographies) are computed separately for four levels of SPFDs, and display a weak 742 

modulation by the signed values of the SPFDs. The black dots denote the brief interval at which the electrode was part of a 743 

statistically significant cluster indicating a modulation by signed subjective evidence. Gray dots additionally mark samples 744 

at which a significant modulation by signed subjective evidence was observed without correcting for multiple testing (one-745 

sample t-test, p < 0.05). Note that a considerably reduced set of trials (25% of all presented trials) and participants 746 

(Experiments 3 – 6; 73/116 participants) was available for this analysis. 747 
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Figure 8: Late CPP corresponds to statistical decision confidence. A, Average statistical decision confidence based on 748 

simulations from behavioral models of each participant. Confidence increases with evidence strength (i.e., |f2 – f1’|) for 749 

correct trials, and decreases (initially) for incorrect trials. For very hard trials (|f2 – f1’| = 0), confidence is at the same 750 

intermediate level for correct and incorrect trials. B, Average amplitude (+/- standard error of mean) of late CPP (500 – 751 

800 ms) exhibits same pattern as predicted by simulations shown in A, for trials with and without objective evidence (i.e., 752 

f2 ≠ f1 and f2 = f1, respectively). 753 
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