
Chapter 3

Image potential state dynamics

of electrons at Cu(100)

3.1 Introduction

At a metal surface two types of electronic states can be found which don’t

exists in a bulk metal. These states are intrinsic surface states and image

potential states, respectively. They differ in their charge density localization

relative to the surface. Intrinsic surface states are more or less localized at the

surface atomic layer. The existence of these states was predicted theoretically

by Tamm [73] and Shockley [74]. Image potential states are localized mostly

in the vacuum region. They were predicted by Echenique and Pendry [75]

and found experimentally by inverse photoemission experiments a few years

later [76, 77].

The concept of image potential states is quite easy to understand. An

electron in front of a conducting metal surfaces moves in a Coulomb like

attractive image potential [78], which can be idealized as

V (z) = − e2

4z
. (3.1)

The potential [in Eq. (3.1) we use units in which 4πε0 = 1] is created by

the electron interacting with a positive image charge at the same distance
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CHAPTER 3. IMAGE POTENTIAL STATE DYNAMICS

z inside the solid (see Fig. 3.1). An electron, transferred from the bulk for

instance by a laser, can be trapped in this attractive potential at the surface.

The trapping time can be considerably long if the metal has a projected

band gap along z (the surface normal) in the relevant energy region near the

vacuum energy (Evac = 0) where the image charge states are situated. The

eigenstates of the trapped electron then form a hydrogen like Rydberg series

with energies En [79]

En =
−A

(n + a)2
. (3.2)

In principle there is an infinite number of image potential states with energies

En converging towards the vacuum energy. In Eq. (3.2) the influence of the

metal surface on En is modeled in an approximate fashion by a quantum

defect a in analogy to the treatment of an alkali atom, for example, in atomic

physics. For the most metal surfaces investigated to date, a is in the range

0 ≤ a ≤ 0.5. For the simplest model with an infinite surface barrier these

states should have an infinite lifetime, and the constant A in Eq. (3.2) is

then 1/16 of a Rydberg, i.e., A = 0.85 eV. In a real system the trapped

electron couples to the electronic degrees of freedom inside the metal, i.e.,

electron-hole pairs are created for example, and the electron decays back

into the metal after a finite time. Because the image charge wave functions

are almost completely localized outside the surface (see below), the lifetimes

are in many cases significantly longer than those of electronic excitations

inside the metal [78]. In particular high-lying states can “live” for many

picoseconds.

Image potential states are very useful model systems for a systematic

investigation of the electron dynamics at surfaces including energy and phase

relaxation effects due to the “non rigidity” of the surface.

There have been many theoretical calculations (based on models or first

principles) to obtain the energies of image potential states (see for example

Refs. [75, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88] or [89], and references therein).

The theoretical calculation of lifetimes for image potential states has also

attracted much interest. A first and simple estimate, based on the extent
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3.1. INTRODUCTION

Figure 3.1: Sketch of the electric field lines for an electron at a distance z in

front of a conducting metal surface (solid lines). In an idealized picture this

field can be explained by assuming the existence of a positive image charge

inside the solid at −z (field lines are indicated by dashed lines).

of penetration of the image state wave function into the bulk was given in

Ref. [75]. Subsequently more sophisticated scattering calculations within the

self-energy formalism were performed (Refs. [90, 91, 92, 93]).

Experimentally image potential states have been intensively examined

as well. First by inverse photoemission spectroscopy (see Refs. [94, 95,

96, 80, 97, 98] and later by time-independent Two-Photon-Photo-Emission

(2PPE) spectroscopy (Refs. [99, 100] and [101]). The latter is a pump probe

type technique which will be described in more detail below. Thanks to

these investigations the energies of image potential states for many noble

and transition metals are now known. These time-independent experiments,

however, were often restricted to the lowest two image potential states due

to the limited energy resolution. Also investigations of image-type surface

states using tunneling spectroscopy were performed [102]. However, here not

the “pure” image states are probed, since the field of the tunneling junction

distorts the image potential (3.1) somewhat.

More insight into the nature of image potential states can be obtained by
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CHAPTER 3. IMAGE POTENTIAL STATE DYNAMICS

femtosecond Time-Resolved-Two-Photon-Photo-Emission (TR-2PPE) spec-

troscopy. With this technique the lifetimes of image potential states can

directly be measured in the time domain. By using femtosecond pulses

with large spectral width a coherent excitation of several higher image po-

tential states is enforced. Using a probe laser, one can then monitor the

electronic wave packet motion in the form of a quantum beat spectrum.

In this way the energies of higher lying image states (n > 2) become ac-

cessible. TR-2PPE experiments have been carried out for various surfaces

such as Cu(100) [17, 16, 18], Ag(111) and Ag(100) [103, 104, 105], Cu(111)

[106, 107, 108]. More recently, also Angle-Resolved Spectra (AR-TR-2PPE)

have been recorded for various, notably stepped surfaces [109]. These give

information also on the lateral motion of the electron on the surface.

In this thesis TR-2PPE experiments on a clean Cu(100) surface (Refs.

[17, 16, 18]) will be modeled. We use strictly the one electron approximation,

neglect lateral motion of the electron (see below), and further consider two

cases:

(i) Treatment of the electron dynamics in the image potential states with-

out any dissipative effects by means of the time-dependent Schrödinger

equation.

(ii) Solution of the open quantum system Liouville-von Neumann equa-

tion, where the interaction with the bulk electrons is treated in a semi-

phenomenological way as “dissipation”.

These two models will be explained in detail in the next sections. In particu-

lar the second example is of the non rigid surface type. The inclusion of finite

lifetime effects turns out to be of central importance for the interpretation

of the experimental data.

First, let us have a closer look at the experiments themselves [16, 17, 18].

In Fig. 3.2 a sketch is given to illustrate what actually happens during

the course of a TR-2PPE experiment. The first step is the excitation of

conduction band electrons just below the Fermi energy (EFermi ≈ −4.6 eV)
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Figure 3.2: Sketch of the 2PPE experiment for Cu(100). On the left side the

occupied conduction band states below the Fermi energy are shown, together

with the unoccupied conduction band states. For Cu(100) these bulk states

below the vacuum level (Evac = 0) are separated from a continuum of empty

metal states above Evac by a large band gap of ≈ 6 eV. Inside the band

gap, the “Rydberg” series of the image potential states is situated. First

electrons are excited form states below the Fermi energy into image potential

states by the pump pulse (ωpump) and after a certain delay time probed as

photoelectrons by the probe pulse (ωprobe).
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CHAPTER 3. IMAGE POTENTIAL STATE DYNAMICS

into image potential states by a “blue” femtosecond laser pulse of appropriate

energy (h̄ωpump = 4.7 eV). Due to the finite band width of the pump laser

pulse, for higher image potential states generally not a pure state but a

superposition of many image potential states is excited. After a certain delay

time ∆τ the electrons inside the image potential are probed by a second “red”

femtosecond laser pulse (h̄ωprobe = 1.57 eV) which transfers the electrons in

non bonding continuum states above Evac. The ejected photoelectrons are

then detected and energy-analyzed according to their kinetic energy Ekin.

In these experiments, one has two key parameters leading to two key

modes in which the experiment can be carried out. If the pump probe delay

∆τ is kept fixed and the photoelectron signal is recorded as a function of the

electron kinetic energy Ekin, one has an “energy resolved 2PPE” spectrum.

If, on the other hand, the signal at a fixed kinetic energy is recorded as a

function of the delay time ∆τ , one obtains a TR-2PPE spectrum. The energy

resolved 2PPE spectrum gives information on the energies of the (low-lying)

image states, and - through the linewidths - some information on dissipation

effects (lifetime and pure dephasing). The time resolved spectra show char-

acteristic, damped “quantum beats”. The location of these “beats” contains

information on the energy differences between (high-lying) image potential

states, while the amount of damping reflects the strength of dissipation.
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3.2. MODEL AND EIGENSTATES

3.2 Model and eigenstates

3.2.1 Model and potential

In the following, a single electron moving in an effective potential V (z) cre-

ated by all nuclei and all other electrons will be considered. The eigenfunc-

tions of the electron in the image state potential are centered, in particular

for the higher states, far away from the surface (see section 3.2.3). Therefore,

at least for low-index surfaces the surface corrugation can be neglected and

the electron’s 3D wave function can be well approximated by

ψn,k‖(r, z) = N eik‖r ψn(z) . (3.3)

Here, k‖ is the electron momentum parallel to the surface [r = (x, y)], ψn(z)

is the component of the electronic wave function oriented along the surface

normal, and N is a normalization factor. The eigenenergies corresponding

to Eq. (3.3) are

En,k‖ =
h̄2k2

‖
2me

+ En , (3.4)

where the first term stands for the free lateral motion of the electron of mass

me, and En is a quantized energy state describing the motion perpendicular to

the surface. In the uncorrugated surface model the entire problem then comes

down to finding the eigenstates of the electron moving along z according to

Ĥ0ψn(z) =

[
− h̄2

2me

d2

dz2
+ V (z)

]
ψn(z) = Enψn(z) , (3.5)

where V (z) is the effective one electron potential mentioned above. The

eigenstates En in (3.5) can be classified as (bound and unbound) bulk states

and as bound and unbound image charge states, respectively, as will be

demonstrated below.
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CHAPTER 3. IMAGE POTENTIAL STATE DYNAMICS

Model potential

To construct the local one electron pseudo potential V (z), a functional form

suggested by Chulkov et al. [89] in connection with a slab model is used.

This potential is parameterized as follows:

V1(z) = A10 + A1 cos

(
2π

as
| z |

)
, | z |< D (3.6)

V2(z) = −A20 + A2 cos (β(| z | −D)) , D <| z |< z1 (3.7)

V3(z) = A3 exp [α (| z | −z1)] , z1 <| z |< zim (3.8)

V4(z) =
exp [λ (| z | −zim)]

4 (| z | −zim)
, zim <| z | , (3.9)

and V (z) = V1(z) + V2(z) + V3(z) + V4(z), where Vi(z) (i = 1, ..., 4) is set

to zero outside the corresponding interval given above. There are only four

independent parameters in the model, namely A10, A1, A2 and β; further, D

is one half of the thickness of the slab which has been chosen to represent

the Cu(100) surface. In the following a slab consisting of 601 layers of Cu

atoms will be used, each one separated by the lattice constant as. In this

case, D = 1024.5 a0. All other parameters are determined by forcing the

potential and its first derivative to be continuous. The potential parameters

relevant for Cu(100) are shown in Table 3.1. The first term of the potential

[Eq. (3.6)] describes the bulk potential which is terminated at the two surface

atomic layers at z = ±D which exist in a slab model. The parameters A10

and A1 have been fitted to the experimental width and position of the energy

gap, respectively [89]. Eqs. (3.8) and (3.7) model the solid-vacuum interface

region with a smooth transition towards a pure screened Coulomb potential

[Eq. (3.9)] for large distances from the surface layer. In Eq. (3.7) the

parameters A2 and β were determined to fit the energies of the first image

potential state or the surface state [89].

The parameters determined in Ref. [89] accurately reproduce results form

density functional theory, and key features such as the band gap and binding

energies of the image potential states. In Fig. 3.3 the potential around

the surface region of Cu(100) is given with a graphic illustration of some of
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(a) Independent parameters

as(a0) A10(eV) A1 (eV) A2(eV) β(a−1
0 )

3.415 -11.480 6.10 3.7820 2.5390

(b) Other parameters

z1(a0) A20(eV) A3 (eV) α(a−1
0 ) λ(a−1

0 ) zim(a0)

1.54667 9.162 -11.8363 0.573659 1.14732 2.27253

Table 3.1: Potential parameters for Cu(100) from Ref. [89]. (a) gives the

independent parameters (b) the remaining parameters calculated by demand-

ing the potential and its first derivative to be continuous in z. Note that z1

and zim are given relative to the surface atomic layer at z = 0. Their actual

value in Eqs. (3.8) and (3.9) depends on D and therefore on the number of

atomic layers in the Cu slab.

the potential parameters. Interestingly, for this potential the image plane

position (zim) is obtained automatically, from the values of A10, A1, A2 and

β. Fig. 3.5 (a) below shows the potential curve V (z) over the full range of

z values (from ≈ −4500 a0 to ≈ +4500 a0) that was actually used in the

calculation with the 601 layer slab.

67



CHAPTER 3. IMAGE POTENTIAL STATE DYNAMICS

−10 −5 0 5 10
z/[ao]

−20

−15

−10

−5

0

V
(z

)/
[e

V
]

A10

A1

A2 

A20

z1 zim

Figure 3.3: The one dimensional effective potential used for electrons at

Cu(100) near the surface atomic layer (which was placed here for convenience

at z = 0). The dotted lines indicate the atomic layer positions. Values

of certain potential parameters are indicated by dashed lines and arrows,

respectively.
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3.2.2 Evaluation of eigenstates: The mapped Fourier

grid method

Since all dynamical calculations below to simulate 2PPE spectra will be per-

formed in an eigenstate basis, the next step is the evaluation of the electronic

eigenfunctions ψn(z) for the potential used, i.e., the solution of Eq. (3.5).

These eigenfunctions are evaluated with the so called mapped Fourier grid

method [110]. The (unmapped) Fourier grid method was originally proposed

in Refs. [111], [112], and [113], and further developed in Refs. [114] and

[115, 116]. The grid mapping for grid based methods has been employed first

in [117] for electronic structure theory. In the following the combination of

these methods will be described for the one dimensional problem arising here,

but the mapped Fourier grid method can be applied to any dimensionality,

for nuclear dynamics [118], and even for explicitly time-dependent problems

[119].

Fourier grid methods in general have the advantage of scaling only moder-

ately in their computation time with the number of grid points N , according

to N log2N when the Fast Fourier Transform algorithm is used (see Appendix

A.1). However, the FFT requires an equidistant grid. In our application the

grid point density is determined by the fast variation of V (z) in the bulk

and close to the surface, while the potential at greater distances from the

surface (where the higher image states are located) is very flat (see Fig. 3.5

(a) below). To avoid too large grid point densities over the whole z range of

interest, the mapped Fourier grid method is most useful. By rewriting the

kinetic energy operator it becomes possible to use a non equidistant, physical

grid, with high density in the bulk and near surface region, while far away

from the surface the grid spacing can be chosen quite large. In this way it

becomes possible to calculate even very high lying image potential states (up

to n = 15) which extend thousands of Angstroms into the vacuum, with high

accuracy.

To illustrate the mapped Fourier grid method to solve the eigenvalue

problem of Eq. (3.5), let us first describe the “ordinary” Fourier grid method.
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Here, a grid is defined by points zi (i = 1, . . . , N) equally spaced over the

coordinate z. Then one can use Dirac δ functions located at those grid points,

as a basis to expand any wave function ψ(z):

ϕi(z) = δ(z − zi) (i = 1, ..., N) . (3.10)

Expressed in the basis spanned by the functions (3.10) the kinetic energy

operator T̂ = − h̄2

2m2
e

d2

dz2
and the potential V (z) become N × N matrices T

and V. V is diagonal in coordinate representation, while T is diagonal in

the momentum representation, which is connected by a Fourier transform to

the coordinate representation. By using the appropriate Fourier transform

one can easily compute the Hamilton matrix H = T +V and diagonalize it

to obtain the eigenvalues and corresponding eigenfunctions. Due to the grid

representation the minimal de Broglie wavelength and so the maximal kinetic

energy that can be represented are determined by the sampling theorem

(chapter 12 of Ref. [58]). Accordingly the maximal kinetic energy that can

be represented by a grid spacing ∆z = zi+1 − zi is

Ekin,max =
1

2 me

p2
max , (3.11)

where pmax = h̄ π
∆z

. So the grid spacing has to be chosen small enough to

resolve the highest momentum included in the desired eigenfunctions. As

outlined above, within the bulk and close to the surface the electron can gain

a large momentum pmax requiring ∆z to be small. In contrast, for large z,

pmax is small and so ∆z can be chosen large. Hence, when the FFT algorithm

with an equidistant grid is used to transform back and forth between coor-

dinate and momentum space, and when simultaneously the “inner” and the

“outer” regions of V (z) are of interest, the number of grid points N becomes

prohibitively large. This is a storage problem but also a computation time

problem, because the diagonalization of the N × N Hamilton matrix scales

as N3.

This problem can be circumvented by introducing an equidistant “aux-

iliary” grid in a new coordinate q which is related to a non equidistant,
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Figure 3.4: Illustrative example for the mapped grid procedure. Here a non

equidistant, “physical” grid in z is related to a “auxiliary” grid in q. The

grid in q has a constant grid spacing with ∆q = 0.25. The mapping function

chosen is z(q) = 1
2
(z + z2). One can see that the actual grid spacing in z

depends on the derivative of the mapping function [i.e., the steeper the slope

of z(q) the larger the local grid spacing in z.]

“physical” grid in z through the mapping function z(q). The physical grid

is used to represent the momenta, the auxiliary grid to do the FFT. The

mapping procedure is illustrated in Fig. 3.4 for the example of a mapping

function z(q) = 1
2

(z + z2), and five grid points. One can see that the local

physical grid spacing in z depends on the derivative of z(q). A steep slope of

z(q) produces a large grid spacing in z, while if z(q) is flat the grid spacing

∆z is small.

To apply the mapping procedure, we rewrite the Hamiltonian Ĥ0 in Eq.
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(3.5) as

Ĥ0 = V (z(q)) − h̄2

2me

(
∂q

∂z

∂

∂q

)2

. (3.12)

There are different methods to apply the kinetic part of the Hamilton op-

erator, which differ in the numerical effort and stability (see for example

[118]). Here, the most stable one to evaluate T̂ψ(q) is used, which proceeds

as follows:

1. Transform ψ(q) to momentum space (by FFT) and apply ∂
∂q

, i.e., eval-

uate ikqψ(kq).

2. Back transform ψ(kq) (by inverse FFT) and apply ∂q
∂z

, i.e., evaluate
∂q
∂z

ψ(q).

3. Repeat step 1.

4. Repeat step 2 and multiply by −h̄2

2me
.

The algorithm requires four Fourier transforms to calculate T instead of two

for an equidistant grid in z, but we need much fewer grid points N in the

mapped case (see below).

Figure 3.5 shows the potential V (z) (a), the inverse mapping function

q(z) (b) and its derivative ∂q
∂z

(c) for the problem at hand. z(q) is evaluated

by cubic spline interpolation between 100 points (q, z) which are chosen to

reproduce the prespecified grid spacing inside the solid ∆zsolid and in the

image potential region ∆zvacuum. The chosen grid parameters are given in

Table 3.2. The mapping function and its derivative are inverted numerically.

The advantage of this purely numerical approach is that any topology of

the mapping function is possible. A disadvantage is that one encounters

oscillations in the derivative [Fig. 3.5 (b)]. However, it was made sure that

these oscillations don’t affect the accuracy of the calculation.

It can also be seen in Fig. 3.5 that in the slab the potential is symmetric

with respect to z = q = 0. Therefore the numerical effort can be further

reduced by using symmetry adapted basis functions. We can construct N/2
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zmin,max(a0) ∆zsolid(a0) ∆zvacuum(a0)

± 4464.2 ≈ 0.3 ≈ 2.25

Table 3.2: Grid parameters used for evaluation of the electronic eigenstates.
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Figure 3.5: Potential V (z) for the electron at Cu(100) (a). In the middle

on can see the 601 Cu layers with the vacuum regions attached on both

sides. The surface layers are located at z = ±D = ±1024.5 a0. (b) shows

the inverse mapping function q(z) used for evaluation of eigenstates; the

derivative
(
dz
dq

)−1

is given in (c). For the inverse mapping function a large

derivative means a small grid spacing along z (inside the Cu slab and close

to the surface), and a small derivative a large grid spacing (for the vacuum

regions).
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symmetry adapted basis functions of gerade symmetry,

ϕi,g(q) = c [δ(q − qi) + δ(q + qi)] (3.13)

and N/2 basis functions of ungerade symmetry (u)

ϕi,u(q) = c [δ(q − qi) − δ(q + qi)] . (3.14)

Here c is the appropriate normalization factor given by the condition∫ +∞

−∞
ϕi,k(q)∗ϕj,l(q)

∂z

∂q
dq = δklδij . (3.15)

In this basis the elements of the (2 × 2) block diagonal Hamilton matrix are

as follows:

H(i,k),(j,l) = δkl

∫ +∞

−∞
ϕi,k(q)∗Ĥ0ϕj,l(q)

∂z

∂q
dq . (3.16)

By diagonalizing (3.16) we obtain N
2

eigenstates ψgn of gerade (g) symmetry

and the corresponding eigenenergies, and N
2

ungerade (u) eigenfunctions ψun

and the corresponding energies. The classification of the eigenstates as gerade

or ungerade, is due to the slab approach which introduces an inversion center.

If the slab thickness is chosen big enough gerade and ungerade states come

in (almost) degenerate pairs, and either set (gerade or ungerade eigenstates)

or a combination of both can be used as a basis for dynamical calculations

with (almost) identical results (see below).

3.2.3 Evaluation of eigenstates: Results

The eigenstates are evaluated in an energy range from ≈ −6.25 to ≈ +2.18

eV relative to the vacuum energy Evac = 0. The eigenvalues for functions of

gerade symmetry are given schematically in Figure 3.6. The first 83 states

represent bound, bulk electronic states extending up to the upper edge of

the conduction band, some of them below, some above the Fermi level at

EFermi = −4.62 eV. Then follow the image potential states, located in the

band gap of Cu(100), the first 15 of which are shown as an inset in Fig. 3.6.
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In principle there is an infinite number of bound states in an Coulomb like

potential, but as a discrete grid is used here only a finite number of them

can be resolved. Above the image potential states one finds the states corre-

sponding to the unbound continuum typical for a H-like Coulomb potential.

Their energies are positive (> Evac), and in our discrete numerical approach

practically identical to those of a particle in a one dimensional box. In our

example the borders of the box are given by the two surface atomic layers,

because in the energy range shown the image state continuum wave functions

lie in the Cu(100) band gap and practically cannot penetrate into the bulk.

(I) Image states: Wave functions and energies

Let us now investigate the image states in more detail. We denote those

by ψn, where n is the image state quantum number, starting from n = 1.

(Note that so far ψn has been used for all states supported by V (z) – see

(3.5) for example.) Convergence tests showed that the grid chosen accurately

determines the eigenenergies of up to n = 15. Therefore, in the dynamical

calculations (section 3.4) 15 image states will be included. The n = 15

image state wave function (of ungerade symmetry) is shown in Fig. 3.7 (a)

for illustration. Note that this wave function ψu15 extends several thousands

of Angstroms into the vacuum region! Note also that according to Table

3.2 using a small grid spacing of ∆zsolid = 0.3a0 over the whole z range,

representing this wave function would have required a grid consisting of ≈
30000 points. With the mapping procedure we need only 10540 points. In

Fig. 3.7 (b) we also show the three lowest image state wave functions (u) ψu1 ,

ψu2 , and ψu3 . These are much less extended than ψu15. In the ideal situation of

an infinite surface barrier (pure Coulomb potential), the image charge wave

functions are given by the expression

ψn = NzRl=0
n

(z

4

)
. (3.17)

Here, Rl=0
n is the radial part of a ns wave function for a H atom [78] expanded

along z (by the argument z/4), and N is a normalization factor. The “real”

75



CHAPTER 3. IMAGE POTENTIAL STATE DYNAMICS

0 200 400 600
State Nr.

−10

−8

−6

−4

−2

0

2

E
n

er
g

y/
[e

V
]

84 89 94
−0.7

−0.4

−0.1

Figure 3.6: Electronic eigenenergies for the Cu(100) model potential

V (z) (gerade symmetry only), obtained by solution of the time-independent

Schrödinger equation (3.5). The inset shows a magnification or the first 15

image potential states. On the left one can see the upper part of the conduc-

tion band. On the right “particle in a box” like continuum energies of the

image potential are shown.
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wave functions of Fig. 3.7 reflect this behaviour, but show also some im-

portant differences. In particular the wave functions penetrate slightly into

the bulk region. The amount of penetration is an approximate measure for

the lifetime of the respective image states (see below). Quantitatively we

calculate the penetration of image state ψn into the bulk by

pn =

∫ zim

−zim
| ψn(z) |2 dz . (3.18)

Simple considerations [101] suggest that pn scales approximately with the

inverse of the third power of (n + a) (a being again the quantum defect):

pn = d(n + a)−3 . (3.19)

Hence, the higher image states have a smaller penetration into the bulk.

The expectation (3.19) is nicely confirmed out by our numerical experiment

which shows a strict linear relationship between p
−1/3
n and n (Fig. 3.8), giving

d = 0.11 and a = 0.24.

As suggested by Eq. (3.2) the energies of the image states are ap-

proximately (infinite barrier model) inversely proportional to (n + a)2, with

A = 0.85 eV. In Fig. 3.8 also 1√−En
is shown as a function of n, confirming

excellent agreement with (3.2) with A = 0.854 eV and a = 0.24.
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Figure 3.7: (a) Eigenfunction (u) of highest image potential state used in

the propagations (n = 15). The wave function is shown along the physical

coordinate z. Note that ψu15 is still well placed inside the grid boundaries. (b)

The lowest three image states (u). Only the part located around the right

surface atomic layer at z = 1024.5 a0 is shown. Note their similarity to H ns

wave functions, and the slight penetration into the bulk region. The dotted

line gives the image plane position at z = 1026.8 a0.
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state energy lifetime

n En − EFermi τn

(eV) (fs)

here [18] here [18] [120]

1 4.056 4.04 22 40±6 30

2 4.453 4.45 112 120±15 132

3 4.547 4.545 337 300±20 367

4 4.582 4.580 756 630 –

5 4.599 4.598 1431 1200 –

6 4.608 4.608 2423 2000 –

Table 3.3: Image state energies En − EFermi relative to the Fermi energy,

and lifetimes τn based on the penetration of the wave functions into the bulk.

The data of this work (“here”) are compared to experimental values [18] and

other theoretical calculations [120].

(II) Image states: Lifetimes

Since the image state wave functions penetrate into the bulk [Eq. (3.19)],

they can interact with the bulk electrons. This leads to electron-electron

scattering processes (electron-hole pair creation), resulting in a finite lifetime

τn for the image state ψn. A simple heuristic formula by which these lifetimes

can be evaluated, is [101]:

τn = b(En − EFermi)
1

pn
(3.20)

Here pn is given by Eq. (3.19), and b is a metal specific constant (b = 0.13 1
eVs

for Cu [101]).

Table 3.3 compares calculated lifetimes (3.20) for various image states,

with those obtained by experiment [18], and by a more sophisticated scat-

tering theoretical approach [120]. Also shown are the energies En − EFermi

and compared to experimental data. Except for n = 1 one can see an excel-

lent agreement with the experimental data for both the energies En and the
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Figure 3.8: The quantities 1√−En
and 1

3
√
pn

for image states, plotted against

the image state quantum number n. These quantities should scale propor-

tional to n according to the approximate scaling laws (3.2) and (3.19). From

this plot A = 0.854 eV and a = 0.24.

lifetimes τn. For example for n = 3 the rather simple model (3.20) gives a

lifetime of 337 fs, the more elaborate calculations which are using the elec-

tron self-energy [120] give 367 fs compared with an experimental value of

300±20 in [18]. For higher image states, much longer lifetimes are obtained

according to an approximate scaling law τn ∝ n3 [75].

(III) Other eigenstates of Ĥ0 used for dynamics

The other states included in the eigenstate basis used in the dynamical calcu-

lations below are chosen as follows. Because a one electron pseudo potential

is used the electron-electron interaction is already implicitly included in the
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potential term. This should be no problem for the image potential and con-

tinuum states, because only a small amount of electron density is transferred

into these states by the pump and probe laser pulse and one can simulate

the dynamics in these state in a one electron picture. Contrary for the bulk

conduction band states the electron dynamics simply cannot be simulated in

a one particle fashion. But since one here is not interested in the dynamics

in these states, but rather the dynamics in the image potential states, which

is initiated by a transition from the conduction band states, one can simply

neglect all effects arising from the electron-electron interaction between the

conduction band states. To this end we carry out various dynamics calcula-

tions in which only a single, bound, occupied conduction band state is taken

into account as initial state. Various propagations are carried out with a

number of possible initial states in the proper energy range below the Fermi

level, and the results are incoherently averaged (with equal weighting) over

the initial conditions to arrive at the final results. Altogether 17 initial,

occupied bulk states are taken into account with energies from -5.49 eV to

EFermi = -4.62 eV. Since h̄(ωpump + ωprobe) = 6.27 eV, one can therefore de-

tect kinetic energies from 6.27 − 5.49 = 0.78 to 6.27 − 4.62 = 1.65 eV for

the photo ejected electrons. This is the range of the energy-resolved 2PPE

spectra to be modeled in section 3.4.

Finally three different basis sets of different size (and hence different com-

putational effort) are applied in the propagations below. All basis sets contain

one state of gerade symmetry below the Fermi energy and the first 15 image

potential states of ungerade symmetry. In the “full basis set” all continuum

states of gerade symmetry (≈ 140) are used in the interesting energy range

from 0.7 to 1.8 eV above Evac. This splitting into gerade ↔ ungerade ↔ ger-

ade eigenstates is mainly motivated by numerical reasons and has some (but

reasonable) “physical” consequences on the system dynamics, which will be

outlined in the next section. To reduce the numerical effort another basis set

with only 29 continuum states located within the energy window that can be

reached by h̄(ωpump + ωprobe) from the initial bound state is used. This basis
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set will be denoted as “29C basis” in the following. For the calculations of

the time resolved 2PPE signals for a fixed photoelectron energy sometimes

only one continuum function is taken into account (“1C basis”). Test calcu-

lations show that the error introduced by these approximations is reasonably

small (for further details see section 3.4.3).

(IV) Dipole matrix elements

Below, the semiclassical dipole approximation is used to couple the system

to an external laser field. The Hamilton operator is then

Ĥ(t) = Ĥ0 − ε(t)µ̂ (3.21)

where µ̂ = ze is the dipole operator of the electron. In the energy represen-

tation, one needs the dipole matrix elements

µij = 〈ψi(z) | e z | ψj(z)〉 . (3.22)

For the chosen basis sets and the symmetry of the system µij is only non

zero for transitions from the initial bulk state into an image potential state

and from an image potential state into a continuum state (g → u or u → g

transitions). So in our approach transitions between different image poten-

tial states and different continuum states are neglected. This is a reasonable

assumption since these transitions are far off resonance for those laser fre-

quencies used.

The dipole transition matrix elements connecting a “typical” occupied

bound state ψB of gerade symmetry below the Fermi energy (EB = −4.713

eV), to the first 15 image potential states ψn (of ungerade symmetry) are

shown in Fig. 3.9 (solid line). Also given are transition elements connecting

the (ungerade) image potential states with a “typical” unbound continuum

state ψC of gerade symmetry (EC = 1.552 eV) (dashed line). We note that

the B → image states transition matrix elements are particularly large for

low n, i.e., a bulk electron excited by the pump laser has a good chance

to end up in one of the lowest image states which are located close to the
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Figure 3.9: Dipole matrix elements connecting a “typical” bound, bulk

state ψB (gerade) below the Fermi energy (EB = −4.713 eV), to the first 15

image potential states ψn (ungerade) (solid line). The same for a “typical”

unbound continuum state ψC (EC = 1.552 eV) of gerade symmetry (dashed

line).

surface. Similarly, the creation of a photo ejected electron (image states →
C) by absorption of a probe photon is most likely for the lowest n. Therefore,

only electrons located close to the surface can be excited with high probability

thus reflecting the fact for high-n states the electron is almost “free” and does

not absorb a photon. This causes characteristic quantum beats in the time

resolved 2PPE spectra as will be shown below. Despite the dipole matrix

elements decay quite rapidly with n, the simple ∝ n−3 scaling anticipated in

Ref. [17] is not really compatible with the actual numerical results.
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3.3 Propagation methods

For the simulation of 2PPE spectra 3 different, time-dependent quantum

dynamical models of increasing complexity have been employed. The time-

dependent approach is appropriate for the pump probe experiments at hand,

and the fully quantum mechanical treatment is necessary since the dynamics

of electrons is of interest. The three different models are:

1. In the “QM model” the Schrödinger equation for the system is solved.

This is an ideal model in which dissipation is neglected.

2. In the “ER model” the open quantum system Liouville-von Neumann

equation is solved with energy relaxation (finite lifetime of image states)

included. Also dephasing effects are included, but only those associated

with energy relaxation.

3. In the “FD model” also a Liouville-von Neumann equation is solved.

This time, however, not only lifetime effects (energy relaxation) but

also pure dephasing (phase relaxation) is included on top of dephasing

related to energy relaxation.

For all propagation schemes the 2PPE signal is calculated from the popu-

lations of the continuum states after the end of the second pulse. These

populations are then averaged over all initial bulk states used. The energies

of the continuum states are the kinetic energies of the electrons, correspond-

ing to the photoelectron energies measured in the experiments.

3.3.1 Wave packet dynamics

For the dissipation free case the (closed) system dynamics is given by the

time-dependent Schrödinger equation

ih̄Ψ̇(t) = Ĥ(t)Ψ(t) (3.23)

with Ĥ(t) = Ĥ0− ε(t)µ̂, where µ̂ is the dipole operator introduced above and

ε(t) the external electric field of the pump and probe laser pulses, respectively.
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ε(t) is chosen here as

ε(t) = εo,pump(t) cos(ωpumpt) + εo,probe(t) cos(ωprobet) , (3.24)

where the pulse envelopes are chosen as cos2 functions:

εo,i(t) = εmax,i cos2

[
π

2σi
(t− tp,i)

]
. (3.25)

Here, εmax,i is the maximum field strength for pulse i (= pump or probe),

σi is the pulse width, and tp,pump and tp,probe the times by which pump and

probe pulses are maximal. The delay time between both pulses is ∆τ =

tp,pump − tp,probe. Finally, ωpump is the frequency of the pump pulse chosen as

h̄ωpump = 4.7 eV and h̄ωprobe = 1.57 eV for the probe pulse, in accordance

with the experiments [17]. The widths of the pulses were also chosen as the

experimental ones, i.e., σpump = 95 fs and σprobe = 70 fs. The maximal field

strengths were chosen εmax,i = 0.001 Eh

ea0
for both pulses. Test calculations

showed that the shape of the 2PPE spectra is nearly independent on the

choice of εmax,i (if chosen from reasonable ranges), even when εmax,pump and

εmax,probe are different. Also, replacing the cos2 pulses by Gaussians has only

minor effects.

The Schrödinger equation is solved using (another) split operator tech-

nique [121] during the period when either pump or probe or both pulses are

“on”. Accordingly, the wave packet at time t + ∆t derives from the wave

packet at time t as:

| Ψ(t + ∆t)〉 = (e−iĤ0∆t/(2h̄) ·U†e−iε(t)µ̃∆t/h̄U · e−iĤ0∆t/(2h̄)) | Ψ(t)〉 . (3.26)

Here, µ̃ is the diagonal dipole operator in its eigenfunction space and U the

transformation matrix from the eigenfunctions of Ĥ0 to those of µ̂. The time

step chosen is ∆t = 0.097 fs. In the absence of an external field (i.e., when

the delay time ∆τ between the pulses is so large that they don’t overlap),

the wave function can be propagated in a single step since Ĥ0 is diagonal in

the field-free eigenstate basis:

| Ψ(t2)〉 =e−iĤ0(t2−t1)/h̄ | Ψ(t1)〉
=

∑
n

e−iEn(t2−t1)/h̄cn(t1) | ψn〉〈ψn | Ψ(t1)〉 .
(3.27)
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Here t1 is the time where the first laser pulse stops and t2 where the second

one starts, and En and ψn are the eigenenergies and eigenfunctions of Ĥ0,

and the cn(t1) are the expansion coefficients at the end of pump pulse.

The initial condition used in (3.23) is

Ψ(0) = ψB , (3.28)

where ψB is one of the (17) selected bound bulk states below the Fermi level.

3.3.2 Open system density matrix theory

The Liouville-von Neumann equation for an open quantum system [15, 122]

is used to model the dissipation arising from the interaction between the

electron located in the image potential with the bulk electrons:

∂

∂t
ρ̂ = − i

h̄

[
ˆ̃H, ρ̂

]
+ ˙̂ρD . (3.29)

Here, the first term on the right hand side determines the change of the

density operator ρ̂ due to the Hamiltonian evolution, including electron-field

coupling. For not too strong system-bath coupling ˆ̃H can be taken as the

system Hamiltonian Ĥ(t). The second term on the right hand side describes

the coupling of the “system” (the active electron), to the “bath” (of inactive

bulk electrons). This term accounts for energy relaxation and energy relax-

ation related phase relaxation, as well as for pure dephasing (see below).

The Liouville-von Neumann equation is solved within the Lindblad dynami-

cal semigroup approach [123, 124] which includes the Markov approximation

for the dissipative part. If the field-free system eigenstate basis is used, the

equations of motion for the diagonal and the off-diagonal elements of the

density matrix become

∂ρnn
∂t

=
N∑
p

[− i

h̄
[Vnp(t)ρpn − ρnpVpn(t)]︸ ︷︷ ︸

system-field coupling

+ (Wnpρpp −Wpnρnn)]︸ ︷︷ ︸
energy relaxation

(3.30)
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and

∂ρmn
∂t

= − i

h̄

[
(Em − En) ρmn +

N∑
p

[Vmp(t)ρpn − ρmpVpn(t)]

]
− γmnρmn ,

(3.31)

respectively. The diagonal element ρnn is interpreted in density matrix theory

as the population of state n. The off diagonal elements ρmn are the so called

coherences which determine, for example, the linewidths in spectroscopy.

The diagonal elements are influenced by the coupling of the system to the

field, and to the bath. Hence, one source of population transfer between

states is due to the field-coupling terms Vmn(t) in Eq. (3.24):

Vmn(t) = −µnmε(t) . (3.32)

The electron-field coupling leads also to the build up of coherences [Eq.

(3.31)].

The coupling of the active electron to the “bath” leads also to population

transfer, modeled by the energy relaxation rates Wmn

Wmn =
1

T1m,n

. (3.33)

The characteristic timescale for population (energy) transfer is T1m,n . Fur-

ther, coherences can decay by dephasing effects. These are described by a

dephasing rate γmn in (3.31), which has two contributions:

γmn =
1

2T1m,n

+
1

T ∗
2m,n

. (3.34)

The first term on the right hand side is related to the energy relaxation time

T1m,n , while the second one accounts for pure dephasing on a timescale T ∗
2m,n

.

The finite time T1m,n is microscopically motivated by inelastic interaction of

the system (active electron) with the bath (the bulk electrons). The pure

dephasing time T ∗
2m,n

leads to a loss of coherence but no population transfer

between states m and n, and is due to elastic interaction between the system

and the bath. Experimentally [18] is was found that the pure dephasing
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rates can be “controlled” if the Cu surface is covered with CO adsorbates;

a higher coverage with CO leads to much faster dephasing. Here we will

restrict ourselves to the clean Cu(100) surface for which, however, still some

amount of pure dephasing is present [18].

The T1 and T ∗
2 times are chosen as follows. A bath temperature of zero

Kelvin is used and therefore all rates for upward transitions induced by the

bath are identical to zero and so the corresponding T1 times are ∞. Further

it is assumed that dissipation acts only on the image potential states and has

no effect on the continuum states. Finally the T1 relaxations are assumed

to transfer population only from the image potential states into the bound

state ψB below EFermi which was selected as an initial state and from where

the electron is excited by the pump pulse. Dissipative transitions between

the image potential states are neglected. This means that Eq. (3.33) is

approximated as

Wmn =


δmB

1
τn
, if n = image state

0 , else
(3.35)

and τn is the (inelastic) lifetime of image state n. For the latter we take

the experimental lifetime of τ1 = 40 fs for image state n = 1 [18], but the

calculated lifetimes τn according to the penetration formula (3.20) for all

higher n. The calculated lifetimes of the lower image states up to n = 6 have

been given already in Table 3.3 - a complete list up to n = 15 is provided

in Table 3.4. As mentioned earlier, there are more elaborate theoretical

calculations of image potential state lifetimes (for an overview see Ref. [78]),

but since the simple model given in Eq. (3.3) is known to be fairly accurate

for image potential states with n ≥ 2, here these lifetimes are used. It should

also be noted that the more sophisticated theoretical models rarely have been

applied to image states with n > 3.

However, one must assume that in reality most of the relaxation is not

into the initial bulk state alone but into unoccupied states above the Fermi

energy as suggested in Eq. (3.35). In other words the lifetime of image state
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n,
1

τn
=

∑
m�=n

1

T1m,n

, (3.36)

has in reality contributions from all (empty) final states m �= n below n. To

estimate the error introduced by the simplification (3.35) a test calculation

was made where the image potential states were allowed to decay also in

other bulk continuum states (with zero dipole transition matrix elements).

The difference between these two approaches turned out to be very small so

that the final state resolution of dissipation appears to be unimportant.

The pure dephasing processes are again assumed to act only on coherences

between two image potential states m and n . The pure dephasing rates are

parameterized as
1

T ∗
2m,n

=
c

4

(
1

τm
+

1

τn

)
. (3.37)

Three different values for c are used, namely 0.5 (“weak” pure dephasing),

1.0 (“normal” pure dephasing) and 2.0 (“strong” pure dephasing). The ex-

perimental data [18] suggest that the normal dephasing model should be the

most appropriate for the clean Cu(100) surface. Unfortunately, the experi-

mentally measured T ∗
2 values have a very large uncertainty. Several selected

T ∗
2 times for “normal” pure dephasing are given in Table 3.4.

A matrix propagator based on a Newton polynomial of 16-th order is

used to solve the Liouville-von Neumann equation (for further details see

Refs. [125] and [126]). The time step chosen is 0.048 fs.
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n τn/[fs] T ∗
2n,n+1

/[fs] T ∗
2n,n+2

/[fs] T ∗
2n,n+3

/[fs] T ∗
2n,n+4

/[fs]

1 40 117.989 143.01 151.958 155.649

2 112.342 336.94 391.218 416.656 429.458

3 336.686 931.709 1090.23 1182.46 1236.97

4 755.824 1978.34 2304.52 2521.07 2664.02

5 1430.96 3598.75 4156.25 4559.63 4847.51

6 2423.29 5915.12 6767.12 7421.22 7915.3

7 3794.04 9049.73 10258.9 11227.8 11991.4

8 5604.41 13124.9 14753.7 16101 17198.1

9 7915.62 18263.1 20373.4 22162.5 23657.4

10 10788.9 24586.7 27240.4 29534.3 31490.8

11 14285.4 32218 35476.9 38338.2 40820.2

12 18466.3 41279.5 45205.1 48696.4 -

13 23393 51893.7 56547.7 - -

14 29126.5 64182.8 - - -

15 35728.3 - - - -

Table 3.4: Lifetimes τn and several pure dephasing times T ∗
2 used in the

density matrix FD and ER models. These times are evaluated using Eqs.

(3.20) (except for τ1), and (3.37) with a “normal” pure dephasing strength

(c = 1).

90



3.4. RESULTS AND DISCUSSION

3.4 Results and discussion

In the following the calculated 2PPE spectra for the different models given

in the previous section will be compared with each other and with experi-

mental data from [17, 18] and [16]. All the experimental curves shown in this

section were measured in the group of Prof. U. Höfer (Marburg), who kindly

made these data available. First in section 3.4.1 energy resolved spectra for

different delay times will be examined. Then in section 3.4.2 time resolved

cuts through these spectra for fixed photo electron energies will be used to

gain more detailed insight into the coherent system dynamics.

3.4.1 Energy resolved spectra

Fig. 3.10(b) shows the experimental energy resolved 2PPE signals at zero

delay time ∆τ between pump and probe pulse in comparison to theoretical

results obtained in the full dissipation (FD) model with “normal” pure de-

phasing. In Fig. 3.10(a) the FD model data is compared to the QM model,

where no dissipation was included. For all cases one can see three peaks

centered around Ekin = 1.0 eV, 1.4 eV and 1.5 eV. The first two peaks cor-

respond to electrons photo ejected from image states n = 1 and 2. The third

peak comes from the image states with n > 2, for which the level spacing is

already so small that they cannot be individually resolved energetically. The

assignment is based on energy conservation for the photo ionization step, i.e.,

h̄ωprobe + En = Ekin(n) , (3.38)

where Ekin(n) is the kinetic energy of the electron photo ejected from image

potential state n with energy En. With h̄ωprobe = 1.57 eV and E1 ≈ −0.56

eV, E2 ≈ −0.17 eV, E3 ≈ −0.07 eV (see Table 3.3 with EFermi = −4.62 eV),

we get Ekin(1) ≈ 1.01 eV, Ekin(2) ≈ 1.4 eV, Ekin(n > 2) ≥ 1.5 eV.

Let us first compare the experimental spectrum with the results from

the FD model (“normal” pure dephasing) [Fig. 3.10(b)]. One can see that

the FD model reproduces the experimental peak position and width nearly
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perfectly for the n = 1 image potential state. In both spectra the linewidth

[Full Width at Half Maximum (FWHM)] of the n = 1 peak is Γ1 ≈ 70 meV.

For the higher image potential states the agreement concerning the position

and width is still very good. Both theory and experiment only resolve the

first two peaks clearly. There is some quantitative deviation between theory

and experiment with respect to peak intensities. For example, the ratio of

intensities of the n = 1 to the higher-n peaks is too small in theory, making

the n ≥ 2 peaks relatively more pronounced than in experiment. This may

be due to the possibility that the n = 1 image state wave function is not

accurately enough represented by the model, and hence the transition dipole

moments to and from this states are not, either. (Recall that the lifetime

τ1 when calculated based on the penetration argument was clearly too low.)

Despite these deviations in detail, the overall trends also in the intensities

are correct.

If we now compare the theoretical data from the QM model with the

FD model spectrum [Fig. 3.10(a)], one can see, that for zero delay time ∆τ

dissipation only affects the intensity of the first two peaks, corresponding to

those image potential states with the shortest lifetimes. One also notes that

the linewidth is mainly determined by the laser pulse and not by the finite

lifetime (intrinsic linewidth) of the image potential state. For n = 1 one gets

a width of Γ1 ≈ 60 meV for the “dissipation free” QM model, which is only

≈ 10 meV narrower than for the FD model. Therefore, here it is not possible

to determine the lifetime from the linewidth and vice versa. The relationship

between intrinsic linewidth Γ and the lifetime τ is

Γ τ ≥ h̄ . (3.39)

For n = 1 this results in an intrinsic linewidth of Γ1 ≥ 16 meV for a lifetime

of τ1 = 40 fs. The “>” accounts for additional broadening due to pure

dephasing effects, which are expected to be not that important, however, for

clean Cu(100).

More accurate information about the lifetimes of the first three image

potential states can be obtained by recording several energy resolved 2PPE
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Figure 3.10: (a) Calculated 2PPE signal at zero delay time ∆τ for the full

dissipation (FD) model with “normal” pure dephasing, and the dissipation

free QM model (29C basis set). (b) Comparison between the experimental

2PPE [17] signal with the FD data. The region above Ekin = 1.46 eV is

scaled by the factor of ten in intensity for the experimental spectrum. The

linewidths Γ1 (FWHM) for n = 1 are indicated by arrows in (a) for the QM

model, and in (b) for the FD model and experimental data, respectively.
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spectra for different delay times ∆τ . These spectra are given in Fig. 3.11 (a)

(theoretical data for the FD model with “normal” pure dephasing), and Fig.

3.11 (b) (experimental data). The upper part of the graphs shows spectra

for delay times from -70 fs to +200 fs, the second spectrum in each graph

being the one for zero delay time, which was already shown in Fig. 3.10(b).

Delay times of up to 800 fs are considered in the lower part of 3.11. One can

see that after ∆τ = 200 fs the peak for n = 1 has nearly vanished both in

theory and experiment. This is because the n = 1 population has already

almost completely decayed into the bulk by the time the probe pulse arrives

(recall that τ1 = 40 fs.) After ∆τ = 800 fs, also the peaks for n = 2 and

3 are virtually unvisible (the large remaining peak in the theoretical spectra

corresponds to states with n > 3), because τ2 = 112 and τ3 = 337 fs according

to Table 3.4. Through a careful examination of peak intensities for different

delay times one can therefore determine the lifetimes for the first three image

potential states. Unfortunately, due to the large spectral width of the laser

pulses – and in the experimental case noise and low signal intensity – no

accurate information can be extracted for the image potential states n > 3

from the energy resolved spectra.

3.4.2 Time resolved spectra

In the time domain much more information about the image potential states

can be obtained. Due to the considerable bandwidth of the pump pulse

(remember here in all cases σpump = 95 fs and σprobe = 70 fs) a coherent

superposition of higher image potential states (n > 2) is excited. The lower

limit for the energetic width of the pump pulse is ∆E ≥ h̄
σpump

= 7 meV.

This means that for n = 1 and n = 2 with a level spacing of ∆E2,1 =

E2 − E1 = 397 meV (see Table 3.3) the finite bandwidth of the pump pulse

has no effect. However, E4,3 = 35 meV, ∆E6,5 = 10 meV, and ∆E8,7 = 4

meV, demonstrating that the higher-n states are never excited “alone”.

For simplicity let us first examine the results for the QM model, where

no effects of dissipation have been included. Fig. 3.12 shows a contour plot
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Figure 3.11: (a) Calculated energy resolved 2PPE signals for different delay

times ∆τ between pump and probe pulse, for the FD model with “normal”

pure dephasing (29C basis set). The small numbers on the left indicate the

pump probe delay time. The first five spectra at the top of the graph have the

same intensity scale. For the others the scale is given by the large numbers

at the left. (b) The corresponding experimental 2PPE signals [16].
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of the calculated energy and time resolved 2PPE signal for delay times from

∆τ =-0.2 ps to ∆τ = 1.5 ps for the dissipation free QM model. In this

two dimensional spectrum the photo electron signal is a function of the two

key parameters, namely the pump probe delay time and the electron kinetic

energy. So a one dimensional cut for a fixed delay time along the kinetic

energy axis gives an energy resolved 2PPE spectrum like the ones shown in

section 3.4, while a one dimensional cut for a fixed kinetic energy along the

delay time axis results in a TR-2PPE spectrum.

In Fig. 3.12 one can see an almost constant signal as a function of ∆τ

for the image potential states n = 1 and 2 after the pulses are completely

separated. The peak for higher image potential states around above Ekin =

1.5 eV shows a distinct quantum beat pattern caused by coherences between

these states. This can be explained by a coherent motion of an electron

wave packet created by the pump pulse. The motion of this wave packet will

be discussed below. In a simple classical picture one can say the electron

moves back and forth in front of the surface. Then it can only be efficiently

transferred into continuum states when located near the surface, because far

away from the surface the electron is almost a free electron and therefore does

not adsorb a photon [see section 3.2(IV)]. Therefore, the TR-2PPE signal

shows the proximity of the moving electron to the surface and the oscillation

period of its motion. As one can already see from Fig. 3.12, there is not

only a single frequency but many different ones, depending on Ekin. This is

because in the appropriate quantum mechanical picture there are coherences

between many image potential states and each coherence contributes with its

own beating frequency νij = (Ej−Ei)/h to the spectrum. This also explains

why the isolated peak for very high energies (around Ekin = 1.56 eV) at zero

delay time, shows no recurrence at longer ∆τ on the time scale shown. This

peak is mainly due to the creation of a electronic wave packet consisting of

high lying image potential states (n ≥ 10). In this energy region the level

spacing is very small and therefore the oscillatory periods for coherences of

neighboring states are large. For example for n = 10 and n = 11 the period
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Figure 3.12: Theoretical two-dimensional 2PPE signal as a function of

electron kinetic energy Ekin and delay time ∆τ , for the dissipation free QM

model (29C basis set). The contour lines are at 1, 0.5 , 0.25, 0.125 signal

intensities (arb. units), and chosen to resolve especially the quantum beat

patterns for the peaks n > 2.

T10,11 = ν−1
10,11 = h

E11−E10
is already 2.1 ps. If one now keeps in mind that

many neighboring states contribute to the wave packet in this region, one

can simply not expect recurrences on the time scale of shorter than 2 ps.

To include the effects of energy and phase relaxation, the same spectrum

was calculated within the FD model. The result is shown in Fig. 3.13, as a

surface plot of the 2PPE signal as a function of the kinetic energy and the

pump probe delay time. The energetic region of the higher image potential

states is scaled by a factor of five in the energy axis and the signal intensity.

One can see the rather rapid decay of the signals for n = 1 and 2 around
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Ekin = 1.0 and 1.4 eV, which is due to their short lifetimes. In the magnified

region the quantum beat patterns for the higher image states are shown.

These patterns are less pronounced than in the dissipation free case, and

they get progressively weaker for longer delay times. This is clearly due to

the loss of population and coherence by energy relaxation and dephasing.

The effects of dissipation on the coherent motion of the electron wave

packet is also illustrated in Fig. 3.14. The picture shows the time-dependent

electron density in front of the surface up to a distance of ≈ 500 Å for a

single calculation in the FD model (“normal” pure dephasing). For clarity of

presentation, the results for a single initial state are shown and no incoherent

averaging over initial states was done. The initial bound state used has an en-

ergy of EB = −4.713 eV which leads to a coherent excitation of image states

centered around n = 6; further, no probe pulse is applied. One observes the

creation of a fairly localized electron wave packet near the surface during the

pump pulse. Then the wave packet begins to move outwards like one would

expect. But already ≈ 0.5 ps after the maximum intensity of the pump pulse

a large part of the wave packet has returned near to the surface while another

one continues to move away from the surface. Afterwards the electron den-

sity delocalizes and spreads over a large area while at the same time more

and more density relaxes back into the bulk. This is because population

and coherence is lost in the image potential states due to the dissipation

processes. The creation of an electron wave packet outside the surface by

a pump pulse and the subsequent dissipative decay is further demonstrated

in Fig. 3.15. In this figure the total population of all image states is shown

together with a few individual state populations around n = 6. One rec-

ognizes the rapid build up of population following the pump pulse, and the

subsequent exponential decays of the different individual image states with

their characteristic, n-dependent lifetimes.

To get more precise information about the underlying dynamics 2PPE

signals for a fixed photo electron energy at different delay times will be exam-

ined and compared to experimental data in the following. This corresponds
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Figure 3.13: Theoretical two-dimensional 2PPE signal as a function of

electron kinetic energy Ekin and delay time ∆τ , within the full dissipation

(FD) model (29C basis set and “normal” pure dephasing). The energy region

showing quantum beat patterns is magnified by a factor of five along the

energy and intensity axes.
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Figure 3.14: Time-dependent electron density near the surface region. The

surface layer is located at z = 0 in this figure. Shown is the density for a

transition from one initial bulk state near the Fermi energy (EB = −4.713.

eV). In this case, a coherent superposition of image potential states around

n = 6 is created. The full dissipation (FD) model with “normal” pure de-

phasing is used. No probe pulse is applied and tpump is the time for which

the pump pulse has the maximum intensity.

to carrying out one dimensional cuts along ∆τ for a given Ekin in Figs. 3.12

or 3.13.

Fig. 3.16 (a) shows the calculated time-dependent 2PPE signals for a

photo electron energy of Ekin = 1.552 eV for all theoretical models used.

This photo electron energy corresponds to an electron wave packet with a

binding energy of Eb ≈ 15 meV in the image potential before the probe pulse.

An energy of −15 meV relative to Evac means that the wave packet consists

of a superposition of image potential states centered around n = 7. An

illustration of this coherent excitation is given in 3.16 (c). For n = 7 the level
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Figure 3.15: Total population of all image states together with a few in-

dividual state populations around n = 6 created by the pump pulse for a

transition from one initial bulk state near the Fermi energy (EB = −4.713.

eV). The theoretical model and propagation parameters are the same as in

Fig. 3.14.
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spacing is already quite small. For example, E8 − E7 ≈ 4 meV (see above),

and E7−E6 ≈ 6 meV. This corresponds to an oscillation period of T8,7 ≈ 1.1

ps and T7,6 ≈ 0.7 ps, respectively. Therefore, the calculated signal without

dissipation [QM model, Fig. 3.16 (a)] shows pronounced partial recurrences

for longer delay times. These recurrences are much weaker when energy

relaxation is included in the ER model. In this case one can clearly see the

decay caused by loss of population and coherence due to the energy relaxation

process. The full dissipation model (FD) adds more loss of coherence by

pure dephasing processes. This leads to a “smearing out” of the signal for

longer delay times. The influence of pure dephasing can be seen in Fig. 3.16

(b) where the signals for different dephasing strengths are compared. The

spectrum is less structured for strong pure dephasing (i.e., small T ∗
2 times),

which corresponds to less pronounced recurrences of the wave packet near

the surface.

In Fig. 3.17 the theoretical data for the FD model is compared with the

experiment, again for a binding energy of Eb ≈ 15 meV (b) and additionally

for a binding energy of Eb ≈ 40 meV (a). At Eb = 40 meV a coherent

superposition of image potential states mainly with n =4, 5, and 6 is created.

The corresponding kinetic energy of the photo electrons is 1.527 eV. The level

spacing is larger here and so the oscillation periods much shorter (T5,4 ≈ 250

fs , T6,5 ≈ 440 fs). It is clearly seen that for both energies the agreement

between theory and experiment is very good. Again the intensities are not

so well reproduced, but for nearly every peak in the experimental spectra

a corresponding peak or at least a shoulder at almost or exactly the same

position can be found in the theoretical spectra. So one can say that with

the FD model the system dynamics can be simulated with a very high level

of accuracy.

If one looks again at Fig. 3.16 and the rather small difference between

the FD and ER model, the question arises how important the pure dephasing

processes really are with respect to the system dynamics. In Ref. [18] strong

experimental evidence is given for these dephasing processes but it is rather
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Figure 3.16: Calculated 2PPE signal for a binding energy of Eb =15 meV

(Ekin = 1.552 eV), for all theoretical models used (1C basis set). (a) shows

the spectra for the QM, ER and FD (“normal” pure dephasing) models.

(b) gives a comparison between the different pure dephasing strengths used

within the FD model. (c) shows a sketch of the coherent excitation of image

states due to the finite width ∆E of the pump pulse.
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Figure 3.17: Calculated 2PPE signals for binding energies of Eb = 40 meV

(Ekin = 1.527 eV) (a), and Eb =15 meV (Ekin = 1.552 eV) (b), for the FD

model with “normal” pure dephasing (1C basis set), shown as dotted lines.

The corresponding experimental data is given by solid lines.
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difficult to extract the pure dephasing rates from the spectra and the obtained

values have a large uncertainty. Here a closer look at the TR-2PPE spectrum

for Eb = 40 meV is taken to investigate the role of pure dephasing. In Fig.

3.18 on the left this spectrum is shown as a solid line for (a) the experiment,

(b) the ER model and (c) the FD model. From all these spectra the signal for

positive delay times is taken and an exponential decay function (∼ e−∆τ/τ ,

with τ = 0.91 ps−1) is subtracted, to roughly account for the signal decay

by population transfer to the bulk. The exponential is shown as a thick

dashed line and the remaining signals as thin dotted lines. The “energy

relaxation corrected” signals are then Fourier transformed to the frequency

domain. The obtained data points of the Fourier transforms are given as

circles on the right hand side of Fig. 3.18. One can see in all spectra three

main frequency components in the range from 2 to 7 THz, namely those

for the superposition of n = 5, 6, n = 4, 5, and n = 4, 6, respectively. The

overall agreement of the theoretical data with the experiment with respect

to frequencies and intensities [17] is again very good. If one has a closer look

at the Fourier transforms for the FD (c) and ER (b) models, one can notice

only one real difference. The large peak around 4 THz has a little shoulder on

the right side for the FD model, whereas in the ER model at this a position

a small separate peak can be seen. In the experiment, also only a shoulder

is found at this frequency [17]. This is certainly not a proof but perhaps

an indication that the FD model gives a more accurate description of the

dynamics than the ER model, since one knows from the experiment that

pure dephasing processes are present. However, even if the pure dephasing

seems to be of minor importance here, it is known experimentally [18] that

for example in the case of a CO covered Cu surface pure dephasing processes

become more pronounced and cannot be neglected.
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Figure 3.18: The TR-2PPE signals at a binding energy around Eb = 40meV

(solid lines in the left graph) for (a) experimental data, (b) ER model and

(c) FD model (“normal” pure dephasing). The Fourier transforms (circles

in the right graph) are obtained from the signal for positive delay times

after subtracting the same exponential function (thick dashed line) from all

spectra. The solid lines on the right are cubic spline interpolations between

the raw data. The thin dotted lines above the original signal are the curves

used for the Fourier transformation. Indicated by vertical dotted lines on the

right are beating frequencies νm,n between some image potential states.
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3.4.3 Comparison between different basis sets

As already outlined in section 3.2 different basis sets were used in the prop-

agations presented here, namely the 29C and 1C basis set. These were com-

pared to the benchmark “full basis set”, which contains all discretized con-

tinuum functions in the relevant energy region. The full basis set contains

about 140 continuum functions, the 29C basis set 29 and the 1C basis set one,

respectively. To estimate the error introduced by the reduction of basis set

size, an energy resolved 2PPE spectrum for zero delay time was calculated

for the full basis set and the 29C basis set in the QM model. Further, time

resolved spectra for Eb = 40 meV were calculated with the 29C and 1C basis

set with the QM and ER model, respectively. The results are shown in Fig.

3.19. Fig. 3.19 (a) gives a comparison between the full basis and the 29C

basis set and (b) a comparison between the 29C basis and the 1C basis set.

One can see that the error is reasonably small (< 1%). The reduction of the

basis set size is very important for numerical feasibility, keeping in mind that

the computational effort scales as the square of the number of basis function

for the QM model and as the cube for the ER and FD model.
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Figure 3.19: Comparison of results for different basis sets. (a) shows the

energy resolved 2PPE spectra at zero delay time ∆τ (lower graph) in the

QM model for the full basis set (solid line) and the 29C basis set (circles).

Shown above is the absolute difference between both spectra. (b) shows time

resolved 2PPE spectra at Eb = 40 meV (lower graph) for [i] QM model 29C

basis (solid line), [ii] QM model 1C basis (circles), [iii] ER model 29C basis

(dashed line) and [iv] ER model 1C basis (squares). Above is shown the

absolute error for the QM model calculations (solid line) and the ER model

calculations (dashed line).
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3.5 Summary and conclusions

The energies and electronic eigenfunctions of image potential states on a

Cu(100) surface up to n = 15 were calculated using a one electron poten-

tial from Chulkov et.al. [89]. High accuracy was achieved by adopting the

mapped Fourier grid Hamiltonian method [110] for a 601 layer Cu slab. For

the same system the upper conduction band states, and a discretized set of

continuum states were determined. In an eigenstate basis derived from these

states dynamical simulations were performed to simulate recent energy and

time resolved femtosecond two-photon-photoemission experiments. The sys-

tem dynamics were calculated by means of the time-dependent Schrödinger

equation (no dissipation effects) and the open quantum system Liouville-von

Neumann equation (phenomenological system bath coupling to model the in-

teractions between image potential states and conduction band states). The

relaxation and dephasing rates entering the density matrix calculations were

determined using a simple but in this case rather successful model which uses

the bulk penetration of an image potential state.

The density matrix calculations agreed with experimental data almost

quantitatively in energies, lifetimes, signal positions and widths (for energy

resolved 2PPE), and quantum beat locations (TR-2PPE spectra). Minor

differences between theory and experiment where found for peak intensities.

That indicates that the system dynamics can be modeled in a highly accurate

fashion within the theoretical model presented in this thesis. Also some

theoretical indication for the importance of pure dephasing processes could

be given.

Very clearly the importance of non rigidity of the surface could be demon-

strated. With the “rigid surface model” (i.e., the QM model) it was not pos-

sible to reproduce the experimental data, while with the “non rigid surface

models” (i.e., the ER and FD models) very good agreement in particular for

the TR-2PPE spectra with the experiment was achieved. These simulations

confirmed earlier, rather approximate theoretical calculations, in which hy-

drogen like wave functions, a smaller basis set size, and ad hoc assumptions
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concerning the dipole transition matrix elements were made [17]. The cre-

ated superpositions of image charge states have an analog in the Rydberg

wave packets or atomic physics [127]. Therefore the calculation of optimal

pulses, which would lead to a “quasi classical” motion of the electron, might

be a very interesting challenge for further investigations

For future work a more microscopically motivated model for the electron-

electron interaction would be desirable. Also simulations for angle resolved

2PPE spectra would be most welcome. In this case one would have to include

states with k‖ �= 0. Another interesting path to follow, is to simulate chemical

reaction or desorption processes (see for example Ref. [12]) induced by hot

electrons at surfaces. These processes are very similar to the image state

dynamics studied, i.e., (i) laser excitation of bulk electrons, (ii) transfer of

electrons to the surface region, (iii) subsequent dynamics (coupled to nuclear

motion).
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