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In this chapter we approach methods to aid on-
tology engineering participants in their attempt to
reuse existing ontological resources. We introduce
a method for evaluating these resources in regard to
their context-oriented usability and briefly address an
approach to optimize current techniques on merging
and integration (Sections 6.1 and 6.2, respectively)
These methods rely on the requirements derived dur-
ing the design of our ontology reuse methodology
and utilize the ontology metadata model described in
Chapter 5. They are prototypically implemented as
integral part of the PROMI platform.
References: This chapter is based on the publications
[141, 142, 149, 150, 168, 170, 171].

6.1 Ontology Evaluation Method

This section describes a method which aids participants in an ontology reuse process in ex-
amining ontologies with respect to their suitability in a given application setting. From a
methodological perspective it builds upon the ideas introduced in the ontology reuse process
description. There we proposed a component-oriented approach to ontology evaluation which
foresees the completion of five evaluation tasks:

1. Content evaluation: primarily intends to answer the question whether the analyzed
ontology models a domain which is relevant in a particular context.

2. Knowledge representation evaluation: addresses the quality of the conceptual model
underlying an implemented ontology from a domain-independent perspective.

3. Technical evaluation: pragmatically estimates the suitability of an implemented on-
tology given the current state of the art with respect to technology and tools.

4. Application evaluation: refers to the usability of the ontology for a particular applica-
tion system, task and purpose.

5. Availability evaluation: is strictly related to the costs and conditions for using an
existing ontology in new applications.
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6 Methods Supporting Ontology Reuse

Further on, the methodology pointed out the need for particular methods and tools which
are expected to contribute to the operationalization of the evaluation activities. A central re-
quirement was related to the availability of metadata information. This issue was addressed
in the previous chapter. Furthermore we singled out there the need for a context-sensitive
approach to ontology reuse and implicitly, to ontology evaluation. This resulted in the for-
mulation of context-specific guidelines which influence particular decision making activities
within ontology engineering—from the selection of the suitable ontologies to the choice upon
tools and methods successfully handling them.

On the basis of these considerations we designed the method for ontology evaluation which
is presented here. The method preserves the context-sensitive behavior with regard to ontol-
ogy reuse, refines the situation-specific guidelines introduced in the methodology, provides
process support, and utilizes the ontology metadata model as basis for the operationalization
of the evaluation task. The method has been prototypically implemented within the PROMI
framework, which is the subject of the next chapter. There we will go into more details about
the concrete realization of the method and give examples of its utilization in practice.

6.1.1 Method Overview

From a process-driven perspective the ontology evaluation method consists of four steps:

1. Context specification: firstly the user is asked to provide information about the context
of the ontology evaluation task. Which information is considered contextual and the
way it is further involved in the process is explained in Section 6.1.2.

2. Features selection: in this step the engineering team specifies context-independent
evaluation criteria and their importance for the application setting. The criteria cor-
respond to ontology features captured by the ontology metadata model. This model
was designed to describe the whole range of activities in an ontology reuse endeavor,
including those aspects which are relevant for the operationalization of ontology eval-
uation approaches.

3. Usability computation: the feature selection is adjusted to the actual context and trans-
lated to a semantic query on the basis of a vector model [6]. The features are associated
to user-defined and context-specific weights, which contribute to the computation of the
ranking of the results. The context-specific weights are calculated internally by the on-
tology evaluation tool. The tool disposes of process knowledge formalized in terms
of contextual dependencies which forms the basis for such calculations. The revised
query is executed on the metadata repository. The assessment of the criteria against the
available metadata is semantic in that it uses reasoning services and ontology-based
similarity measures to detect and rank the significant results.

4. Result assessment: the user decides whether to conclude the ontology evaluation and
to proceed with the third step of the ontology reuse process (i.e. customizing and
integrating the reusable ontologies). A second option is to re-run the current step in case
of unsatisfactory results. This re-iteration implies a revision of the feature selection,
followed by the usability assessment, which inherently produces a new list of potential
reuse candidates.
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6.1 Ontology Evaluation Method

Conceptually the method is built upon the following parameters:

1. Ontology features Fi which are part of the ontology metadata model and are associated
with weights wi normalized to a specific numerical range (see below).

2. Similarity measures Si associated to the ontology features Fi.

3. Contextual information describing ontology evaluation activities. Every ontology
evaluation endeavor is described in terms of its context C, referring to information
about the application environment, the analyzed ontologies and the participants carry-
ing out a particular evaluation activity.

Specify context

Select features

Compute usability

Features F(i)
Weights w(i)

{Context-specific rules }

{Similarity functions S (i)}

Asess results

Usable ontologies

Ontologies
Rankings

{Context-specific rules }

Figure 6.1: Ontology Evaluation Method

The ontology evaluation workflow is illustrated in Figure 6.1. We now turn to a detailed
description of its main steps.
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6.1.2 Context Specification

In the first step the ontology evaluator is expected to state the ontology reuse context precisely.
He indicates his role in the engineering process, details about the application scenario and
optionally the reuse level. This information is used to select the appropriate evaluation criteria
and to customize the evaluation questionnaire which is presented to the user in the next step.
Such contextual dependencies are stored within a context model, formalized independently of
the ontology evaluation method by means of an ontology. Application-driven optimizations
of the evaluation results are encoded in terms of a query rewriting heuristic at method logic
level (see below).

Context Ontology

The context model is in accordance to the one underlying our ontology reuse methodology,
though customized to the characteristics of the ontology evaluation task. The contextual
information is clustered in four categories [166]:

1. User-related information: the participants at the evaluation process: ontology engi-
neers, programmers, domain experts, users. This information is required to customize
the way the evaluation criteria are presented to the evaluator.

2. Task-related information: information about the ontology evaluation task in terms of
the prospected level of reuse and evaluation dimensions.

3. Environment-related information: this type of information primarily relates to the
application scenario in which the final ontology is going to be used. In particular we
concentrate on the purpose the final ontology will be utilized for, described in terms of
ontology tasks and roles, adopting the same items as in our ontology reuse methodol-
ogy. Knowledge about the application scenario induces particular evaluation require-
ments to be prioritized higher than others, as we will explain bellow.

4. Target-related information: the ontologies being involved in this analysis, described
by the available metadata.

According to this model, the context in which the ontology evaluation is performed is
characterized by a particular level of reuse, a particular user role, a particular application
scenario and the metadata repository describing the available ontologies. The goal of our
method is thus to determine the relevant target ontologies provided contextual information
about the remaining context dimensions: user, task and environment and ontology metadata.

The question of how to define, formally represent and use context information is acknowl-
edged as one of the most challenging research topics across various disciplines in computer
science. As highlighted in the introductory chapter of this thesis (cf. Section 1.4.3) research
on context can be divided into two mainstreams: on one hand, approaches focusing on the
nature of context and the way this type of information can be capture for machine process-
ing; on the other hand, those concerned with the usage of contextual aspects in improving
the quality of particular information services. Our research can be categorized in the second
category. Instead of striving for giving full particulars on the nature of context in relation
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with ontology reuse and on its computer-aided representation, our aim is to demonstrate how
a pre-defined set of contextual aspects can contribute to the systematic operation of ontology
reuse and to the development of support methods and tools. Issues of context representation
and reasoning are secondary for our work, therefore the context ontology commits to existing
proposals in the field.

Figure 6.2 depicts an overview of the context ontology, in terms of the main classes, the
sub-class relationships between them and their instances.1 In the following we elaborate on
the content of the context ontology in more detail:

• ApplicationScenario: comprises the application scenarios considered by our
ontology reuse methodology.

• Feature: covers usability-relevant ontology features referencing classes or instances
of the ontology metadata model. Every feature refers to application scenarios, user
roles, metadata entries etc. as illustrated in the subsequent example.

The feature representationLanguage is stated to be relevant for the applica-
tion scenario semanticSearch. In the evaluation questionnaire this feature will be
verbalized using the string value of the hasQuestionText property. The user is
provided with a multipleChoice answer to this question, while the answers refer
to the individuals of the meta.owl class RepresentationLanguage.

The feature view is targeted by contrast to both ontology engineers and domain ex-
perts. For each of the target groups the context specifies a different verbalization of the
evaluation criterion.

<Modelling rdf:ID="representationLanguage">
<rdfs:comment xml:lang="en">representation language</rdfs:comment>
<hasApplicationScenario rdf:resource="#semanticSearch"/>
<hasValueType rdf:resource="#individual"/>
<hasSelectionType rdf:resource="#multipleChoice"/>
<hasOptions rdf:resource="...meta.owl#RepresentationLanguage"/>
<hasApplicationScenario rdf:resource="#semanticAnnotation"/>
<hasApplicationScenario rdf:resource="#integration"/>
<hasText>

<Text rdf:ID="representationLanguage_OE">
<hasTargetGroup rdf:resource="#ontologyengineer"/>
<hasQuestionText rdf:datatype="xsd#string">

In which representation language should the ontology
be implemented?

</hasQuestionText>
</Text>

</hasText>
</Modelling>

<Content rdf:ID="view">
<rdfs:comment xml:lang="en">

1The documentation has been generated using the Protégé ontology engineering environment, just as in the case
of the metadata ontology.
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view of the developer team upon the domain modelled by the ontology
</rdfs:comment>
<hasText>

<Text rdf:ID="view_OE">
<hasTargetGroup rdf:resource="#ontologyengineer"/>
<hasQuestionText rdf:datatype="xsd#string">

Which view upon the specified domain should the ontology
model?

</hasQuestionText>
</Text>

</hasText>
<hasOptions rdf:resource="dmoz#Topic"/>
<hasApplicationScenario rdf:resource="#integration"/>
<hasSelectionType rdf:resource="#multipleChoice"/>
<hasApplicationScenario rdf:resource="#neutralAuthoring"/>
<hasText>

<Text rdf:ID="view_DE">
<hasTargetGroup rdf:resource="#domainexpert"/>
<hasQuestionText rdf:datatype="xsd#string">

A domain of interest can be regarded from different
perspectives. Depending on the view of the ontology
developer on the domain, one can imagine various
ontologies. For example an ontology about cars
will look differently when developed by car manufacturers
or insurance companies. What is the view upon the specified
domain you are interested in?

</hasQuestionText>
</Text>

</hasText>
<hasValueType rdf:resource="#individual"/>
<hasApplicationScenario rdf:resource="#semanticSearch"/>
<hasApplicationScenario rdf:resource="#semanticAnnotation"/>

</Content>

• Interval: is an additional class introduced in order to cluster ontologies by their
size. We differentiate between four categories of ontologies as regards this parameter:

– ontologies with less than 100 primitives (small ontologies)
– ontologies with less than 1000 primitives (medium-sized ontologies)
– ontologies with less than 5000 primitives (large ontologies), and
– those with more than 5000 primitives (very large ontologies)

This classification, which was derived by studying the statistical overviews provided
by current ontology repositories and search engines (cf. Section 2.2.2), will play a role
in the definition of numerical similarity measures in the next section.

• OntologyTask/OntologyRole: are imported from the metadata ontology.

• TargetGroup: comprises the main participants in the ontology evaluation tasks.
These are modeled as instances of the class: ontologyengineer, domainexpert,
programmer and user.
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• Type: is an artificial class modeling specific answer types for the questions verbalizing
the evaluation criteria. Examples of instances of this class are multiplechoice,
singlechoice, singleinput, multipleinput.

• Value: describes various types of values allowed as answers for the evaluation ques-
tionnaire. Instances of this class are for example individual or ontClass. In
case of the latter the answer range of a particular question comprises all sub-classes of
a specific class. In the former, this is defined as the set of individuals of the class.

• Weight: comprises a set of ratings for the importance of ontology features. These can
be modeled as individuals. The prototypical implementation of the method is based on
five ratings, from unImportant to veryImportant.

The usage of an ontology as a means to model contextual information has the benefit of
separating the contextual dependencies related to the structure and the form of the evaluation
tool from the usability assessment heuristics. In this way one can easily adapt the method and
its implementation (including the user interface) to new user roles, application settings, user
preferences etc.

Impact of Context on the Usability Assessment

The analysis of the case studies revealed a series of contextual dependencies at application
scenario level. Their fundamentals are an integral part of the ontology reuse methodology,
which points out context-specific issues for each of the proposed process stages and their
activities (cf. 4). At method level we further elaborated these dependencies in order to enable
their automatic processing:

Integration: in this scenario the ontology is expected to automatically mediate among het-
erogeneous data repositories and applications using this data. According to this goal
we derived the following evaluation criteria:

• The conceptualization of the ontology should be consistent in order to enable
the execution of correct inferences which might be required to define mappings
between heterogeneous sources or to support interprocess communication.

• The definitions of the ontological primitives should be non-ambiguous. Ambi-
guity might have consequences on the generation of linguistics-based matchings
between the input schemas.

• The implementation of the ontology should be syntactically correct. Otherwise it
can not be used programmatically.

• The ontology should be formal, as its semantics is expected to be processed by
machines.

• The ontology should cover as many features of the source and target systems as
possible in order to minimize information losses. This can be primarily reduced to
a compatibility of the formalisms used to structure the data in the corresponding
environments.
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Figure 6.2: Excerpt of the Context Ontology (Classes, Sub-Classes and Instances)

• [225] recommends the usage of ontologies of manageable size and simple struc-
ture. These two factors have a direct impact on the complexity of the reasoning
services and affect thus the performance of the integration task.

Semantic search/retrieval: ontologies can be used in various ways in an information re-
trieval system. Firstly, they can function as a controlled query and indexing vocabulary.
Secondly, provided a rich axiomatization of the application domain, these machine-
understandable facts can be used to improve the precision and recall of traditional
search heuristics. This includes the situation in which the ontology is utilized as a
matching platform for defining similarities between the items in the repository. In this
context ontologies are also a means to declaratively define search preferences and user
profiles, which induce a customized behavior of the search component. Lastly, once a
list of presumably relevant documents has been computed, the ontologically modeled
knowledge can be used to provide domain- or user-specific presentation and navigation
services. The presentation of the results can be adjusted to the user preference ontol-
ogy. The results can be clustered by their annotations. Navigation paths can be defined
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along relationships between ontological concepts which are referenced in particular
documents. Taking into account these usage patterns we identified the subsequent re-
quirements for the ontologies to be reused:

• The level of formality of the ontology should be at least semi-formal. An infor-
mal ontology which is implemented in a language without machine-processable
semantics can not be used effectively to enhance the quality of the search heuris-
tics.

• Since this quality improvement is guaranteed only if the ontology can be pro-
cessed automatically by various tools (e.g., reasoning services) it is vital that it is
syntactically and semantically valid.

• The utilization of the ontology for vocabulary purposes by humans is inconceiv-
able without the availability of natural language labels verbalized in an appropri-
ate natural language. This means that the natural language of the ontology should
be the same as the one used by the retrieval system to formulate the queries.

• Enhanced navigation and visualization functionality can be provided only on the
basis of ontologies which contain domain-specific relationships.

• If the ontology is expected to form the basis for the definition of similarity mea-
sures, which are a valuable means to improve conventional retrieval mechanisms
in closed domains, then it is essential that the ontology contains a a homoge-
neous taxonomical structure (with respect to the number of classes pro inheri-
tance level), a sufficiently large number of inheritance levels and a well-balanced
distribution of the ontology instances.

Semantic indexing/annotation: in the simplest case the ontology provides a vocabulary
which forms the basis for indexing (manually or automatically) information items such
as images or textual documents in a repository. Further on, a more structured and
formal representation of the application domain could form the basis for automatic
linguistics-based annotation techniques. The following criteria have been identified as
relevant for this scenario:

• Ontological primitives should be labeled using natural language terms in order to
allow humans to use the ontology for classification tasks and to support NLP.

• The labels should adhere to naming conventions in order to ease the automatic
annotation process.

• The natural language used to label the ontology should correspond to the one
used in the documents to be annotated if this task is to be performed automati-
cally. Otherwise, it should be the same as the one used to query the annotated
documents in order to avoid supplementary translations. If the information items
annotated with the help of the ontology are formulated in a different natural lan-
guage, or are not of textual nature (e.g. multimedia) the annotations can not be
generated automatically or semi-automatically. In this case the ontology users
manually insert references to ontological primitives to the information items in
the repository.

• It is of benefit to use comprehensive ontologies, which maximize the domain cov-
erage in order to be able to classify a wide range of information items adequately.
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• In terms of the structure of the ontology, this should be “thesaurus-like”. This
means a relatively simple structure covering specialization/generalization rela-
tionships complemented by a small set of domain-specific ones.

• The ontology engineers should prefer ontologies which themselves have been
extracted from document corpora. These are likely to fulfill many of the afore-
mentioned requirements provided a representative collection of input sources in
an appropriate natural language.

Software engineering: building upon research in the area of knowledge-based configura-
tion and design (cf. for example [15, 17, 91, 211]), model-driven software engineering
foresees the usage of ontologies for design purposes. In this context ontologies act as
a means to model domain knowledge independently of the underlying system imple-
mentation (refer to [157] for a recent overview). Beyond this use case ontologies are
increasingly utilized in configuration tasks: they model valid configuration parameters
and their interaction within the software system [157]. Expressing such constraints in
a language with a machine-understandable semantics has the essential advantage that
incorrect configurations can be reliably identified automatically using reasoning ser-
vices. Given this twofold utilization an ontology to be reused in software engineering
scenarios should fulfill the following requirements:

• The ontology should be correct from a syntactic and semantic perspective. This
requirement holds true for both use cases, as ontologies are used by machines be
that for the generation of software architectures, or the identification of invalid
system configurations.

• For configuration purposes the ontology should be highly axiomatized. This im-
plies that the meaning of the concepts organized in the sub-class hierarchy should
be formalized explicitly in the ontology using constraints. Every more specific
concept inherits properties and attributes from the concepts positioned higher in
the specialization / generalization hierarchy. The difference between this concept
and its generalizations can be expressed by restricting the inherited properties or
by defining new ones. Otherwise the system will not be able to identify missing
parameters or invalid parameter combinations. For design purposes the ontology
should provide a high-quality description of the application domain. This does
not impose any constraints with respect to the structure of the ontology, but as-
sumes a satisfactory domain coverage and a correct modeling of domain facts and
the compliance with common modeling practices.

• The size of the ontology can cause performance problems in the usage of Se-
mantic Web frameworks or the execution of particular inference tasks. This also
applies for particular language constructs, which are not commonly supported by
reasoners or other ontology management environments.2 If such facts are cap-
tured by the ontology metadata (i.e. that concrete domains can not be reasoned

2See for example the performance tests and the comparison between well-known reasoners such as Pel-
let, RacerPro and Fact++ described in [199] and at http://www.mindswap.org/2003/pellet/
performance.shtml, last visited in August, 2006.
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over in any of the existing tools) this dependency can be taken into account in the
usability computation.

Knowledge representation: ontologies are acting as means to represent the most relevant
facts about a particular domain of interest in terms of concepts, relationships, instances,
axioms or rules. Every ontology potentially reusable in a knowledge representation
endeavor should satisfy the following requirements:

• The ontology should be easily understandable by its potential users. This im-
plies first of all the availability of documents, comments, definitions and human-
readable labels. Secondly, the size and the complexity of the graph structure
underlying the analyzed ontologies is a factor which surely affects its ease-of-
use. However, there is a trade-off between size and domain coverage, as well as
between structure and ambiguity.

• There is no constrain regarding the level of formality of the ontology, though
semi-formal ones are acknowledged to perform better in many everyday situations
[225].

• The ontology should minimize its ontological commitments [84]. This is one
of the key design principles for building reusable ontologies, which, however, is
acknowledged to be unpracticable in pre-defined application scenarios.

These dependencies are in relationship to particular metadata entries, as illustrated in Table
6.1.

Additionally to the ontology features one can consider a context-sensitive revision of the
relevant evaluation dimensions depending on the application scenario and the reuse level.
Such dependencies have been addressed from a process-oriented perspective, autonomously
of any means to operationalize ontology evaluation, in the reuse methodology (cf. Section
4.3) At method level however, this additional refinement does not affect the set of ontology
features to be analyzed: most of them occur in at least one of the evaluation dimensions whose
significance does not depend on any contextual aspects. As per the proposed methodology,
three evaluation dimensions are recommended to be taken into consideration independently
of the ontology reuse context—though their operation might be optimized depending on par-
ticular contextual aspects: the content, the application and the availability evaluation. The
technical and knowledge representation evaluation are of value for particular applications
and levels of reuse. The way these activities are performed is, however, context-independent
(cf. Chapter 4).

Formalizing Context Dependencies

The ontology reuse guidelines introduced in the previous section can be exploited to comple-
ment the process support offered by the ontology reuse methodology with more automatized
techniques. A pre-requisite for this new level of operation is the encoding of this body of
expertise in a machine-processable form.

A first possibility is to implement contextual dependencies formally as if-then rules which
refer to concepts of the metadata ontology. The subsequent usability assessment could be
exercised using a reasoning service on the knowledge base consisting of rules, the metadata
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APPLICATION SCENARIO ONTOLOGY FEATURE

Integration Validity and consistency for machine-processability
Non-ambiguous labels for matching
Manageable size for comprehension and performance
Formal representation for reasoning
Simple structure for mappings

Semantic search/ Semi-formal or formal representation for reasoning
retrieval Validity and consistency for reasoning

Taxonomical structure for reasoning
Domain relationships for navigation and presentation
Natural language labels for query formulation
Well-balanced structure for ontology-based matching
Manual engineering for domain representation

Semantic indexing/ Natural language labels for manual indexing
annotation Natural language of the documents

Naming conventions for automatic indexing
Thesaurus-like structure
Ontology learning generation
Large-sized ontology for domain coverage

Software engineering Formal representation for reasoning
High axiomatization for configuration checking
Validity and consistency for machine processability

Knowledge representation Documentation, definitions, comments,
labels for comprehensibility

Table 6.1: Alignment of Ontology Features to Application Scenarios

ontology and its instances describing particular ontologies. An alternative to the rule-based
approach is to make use of this background knowledge to adjust the user-defined query. In this
case the input criteria specification is revised so that that lacking important criteria are added
to the query and existing ones are re-weighed. Our method follows the second approach for
various reasons, the most important ones being directly related to the lack of reasoning tools
currently able to provide the necessary functionality and to the advantages of vector models
in fuzzy information retrieval [6].

Algorithms and feasible implementations being able to infer over heterogeneous knowl-
edge bases combining DL-oriented ontologies and their rule extensions are still in their in-
fancy in the Semantic Web field. In the same time, the usage of weights and of the vector
model allows a flexible behavior of the system in comparison to the rule-based approach and
guarantees a well-proved quality of the retrieval algorithms. This flexibility is essential for
processes of evaluation, which—beyond every type of operational support—are still targeted
at humans and thus retain a certain degree of subjectivity. A rule-based approach assumes
that these pre-defined rules are equally important and hold true per default; they are triggered
in a reasoner-specific order to answer the queries. User-defined preferences can not interfere
with this task, being reduced to an input for the ranking of the final results. By contrast, the
weights mechanism enables us to achieve a balance between the importance of the system-
internal expertise and the wishes of the users. This flexible behavior is intensified by the
usage of similarity measures. They are a reasonable alternative to reasoning as they preserve
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the ultimate human-targeted nature of evaluation [27, 75] while additionally taking into ac-
count expert knowledge on ontologies which is hardly representable in structured rules.3 A
third alternative, which is not considered in this thesis in more detail, is to apply probabilistic
query models to retrieve the appropriate information. The core advantage of this approach
against the classical vector model resides in theory in the provision for mutual independency
between vector features. In practice however the effect of such correlations on the overall
performance (e.g., between a level of formality and a particular type of ontology) is in the
opinion of many information retrieval specialists questionable [6].

6.1.3 Features Selection

First the evaluation method pre-selects which ontology features optimally fit to the actual
context, which was specified by the ontology evaluator in the previous step. This decision is
supported by the context ontology, which captures information about the way the metadata
on ontologies is relevant to pre-defined contextual dimensions.

The ontology metadata defines a comprehensive set of reuse-relevant ontology features in
terms of ontology classes, attributes, properties and instances. At implementation level they
are typically modeled as ranges of the pre-defined properties of the class Ontology, thus
providing a viable basis for the realization of a generic customization strategy for the eval-
uation task. The context model associates to each ontology feature application scenarios,
reuse levels, user roles, weights as well as natural language verbalizations in form of evalu-
ation questions (cf. Section 6.1.2). The evaluation tool analyzes this data and selects for the
specified context the relevant features and their layout.4

The ontology evaluator then indicates the importance of the presented features according
to his experience and to the recommendations of the methodology.5

Note that some of the ontology features presented to the user for selection do not depend
upon any contextual information. In this category we particularly mention the content, avail-
ability and application evaluation dimensions and the ontology characteristics such activities
are supposed to involve. A small set of features are, however, relevant solely to application-
scenario-specific activities such as the knowledge representation and the technical evaluation.
The sum of all ontology features is presented in Table 6.2.

6.1.4 Usability Computation

Once the context of the ontology evaluation is defined the method applicant makes his choice
upon the context-independent relevant ontology features, specifies their value range and their
importance. These inputs are translated to a semantic query which is rewritten on the basis of
the internal knowledge on the contextual dependencies between particular application settings

3We will follow the rule-based approach for the more technically centered ontology merging and integration
method.

4The context-sensitive generation of the layout is addressed primarily in the next chapter, which is dedicated to
implementation issues. The way this issue is handled in the context ontology is explained in the example in
Section 6.1.2.

5Note that many of these recommendations are already taken into account automatically using formal contextual
dependencies.
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TASK ONTOLOGY FEATURE

Content evaluation Ontology domain
View upon the domain
Type of ontology
Keywords
Documentation

Knowledge representation evaluation KR-language
KR-paradigm
Validity and consistency
Specific metrics

Technical evaluation KR-language and syntax
Tools used to build the ontology
Level of formality

Application evaluation Level of formality
KR-language and syntax
Natural language
Specific metrics
Systems using the ontology
Ontology task and role
Generation methods and methodologies

Availability evaluation Provenance
Versioning
Development status
Costs

Table 6.2: Ontology Features Relevant for the Ontology Evaluation Step

and effectively usable ontologies. During the rewriting phase the query is subject to two types
of transformations:

• Expansions: the query is expanded with ontology features—acknowledged to be es-
sential to viably assess the usability of existing sources— that are missing from the
user specification (i.e. they are rated as unimportant). For example, if their is no infor-
mation on the structure of the desired ontology employed in a classification task, the
query should be expanded with the requirement for a taxonomical model. The changes
induce an improvement of the precision parameter, without any loss with respect to
recall. Firstly, the newly added evaluation criteria are clearly relevant for the corre-
sponding setting (cf. Chapter 3). Secondly, the results of the original query are still
included to the final hit list, but with a different ranking.

• Modifications: the prioritization of the ontology features might be subject to adjust-
ments in that some weights are revised on the basis of the tool-internal knowledge. In
a semantic annotation scenario it is essential that the language of the documents is the
same as the language of the ontology labels. If this constraint has not been rated high
by the user the value of the corresponding weight is adjusted internally. Note that these
changes do not imply a decrease of the recall value, but merely a different ranking of
the final results.
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The semantic query can be modeled as a vector of feature-weight pairs [188]:

−→q = (F1, w1) . . . (Fi, wi) (6.1)

where Fi are evaluation criteria associated to the elements of the metadata model and wi indi-
cate priority ratings in the interval [0, 1]. As repeatedly mentioned in this chapter, the context
ontology captures information about the importance of the properties of the potentially rel-
evant ontologies in a given ontology reuse context. This information is stored by means of
the property hasPresetValue, which associates default weights to evaluation criteria and
application scenarios. This default value is inserted in the query vector if the corresponding
criterion has been ignored by the engineering team. Otherwise, the user-specified value is
compared to the default and modified if lower than it to a concrete degree. The exact percent-
age should be set up empirically. In our experiments (cf. Chapter 8) we used an increment of
30% with promising results. For instance, if the range of the weights is defined as a discrete
set of 3 numerical values, this correction would imply a scale-up of the initial weight with one
position. In case of a continuous interval ranges, the scale-up is performed straight forward.

The revised query is sequentially evaluated against the metadata describing available on-
tologies using ontology-driven similarity functions. The individual similarity results are as-
sembled to a final ontology ranking value taking into account the weights associated with
each feature.

Similarity Measures

The similarity measures have the aim of providing a means to compare among values of pre-
defined metadata elements and quantify the results of these comparisons. Every similarity
measure can be defined as a function

sim(x, y) : D → [0, 1] (6.2)

where D is the set of values of a certain ontology feature, sim(x, y) = 1 for x = y, and
sim(x, y) = sim(y, x) for each x, y in D.

Recalling the metadata model and its ontology-evaluation-relevant contents described in
Section 6.1.2 we can differentiate between six types of similarity functions:

• similarity functions for numerical data types such as integer or float. The simplest
similarity indicator for numerical values is the Euclidean distance. For our scope and
purpose it is useful however to utilize an interval-based similarity function instead of
the conventional measure, as this kind of precision is not required for the ontology
engineering field. This holds true for metadata entries such as those capturing the
number of specific ontological primitives or the size of the overall ontology.

• similarity functions for URIs: we use a two-valued similarity function which takes the
value 1 in case of equality.

• similarity functions for time-related entries: date information is approximated at annual
level, so that time entries located in the same year are considered equal. If this is not
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true, one can define again interval-based similarity functions which diminish the strict
effects of a numerical distance measure in accordance to application-specific expertise.

• similarity functions for strings: for this purpose one can apply one of the plethora of
string-based distance measures implemented in various libraries (cf. Chapter 7).

• similarity functions for ontological primitives: these can be manually pre-defined by
consulting the opinion of ontology engineering experts or automatically computed us-
ing ontology-specific similarity measures relying on linguistic and/or taxonomical cri-
teria. The decision upon how to generate the requested similarities primarily depended
on the organization of the ontological instances within the metadata model. In case we
are dealing with a set of ontological instances referencing the same concept (i.e. all
instances of a specific class), the similarity measure can be computed only on the basis
of their labels in conjunction with human judgement. Structure-based measures can
be meaningfully applied only when the set of ontological primitives is organized in a
tree-like manner and the underlying structure is well-balanced (as regards the distribu-
tion of the number of child nodes for each node). Which ontology-specific similarity
measures for which primitives are applied, how these measures are configured, or how
experts define them manually varies from scenario to scenario. The suitability of exist-
ing similarities depends on the structure of the metadata ontology. The human-driven
estimations clearly depend on her level of expertise. Consequently, the values applied
in the usability computation step proposed in this work can not be considered univer-
sally valid. This work can solely claim to provide general guidelines about how such
measures could be defined and justify the decision taken for the current implementation
of the method.

In the following we introduce the similarity functions for each of the relevant metadata
elements.

Similarities for numerical values This category includes the following metadata elements:
numberOfClasses, numberOfProperties, numberOfAxioms,
numberOfInstances, numberOfInheritanceLevels, ratioOfUsedSyntax,
ratioOfPropertiesPerClass, ratioOfCommentsPerClass and
ratioOfDefinitionsPerClass.

For two ontologies the number of inheritance levels as well as the relative measures should
be compared using the Euclidean distance. For the remaining absolute metrics we can define
intervals as those contained in the context ontology for the size dimension. There we differen-
tiate among four categories for small, medium, large and very large ontologies, respectively.
The associated similarity function is in this case:

simsize(O1, O2) =
4 − |size(O1) − size(O2)|

4
, where

size(O) = 1 for every small ontology O

= 2 for every medium sized ontology O

= 3 for every large ontology O
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= 4 for every very large ontologyO

(6.3)

In the same manner one can define similarity measures for the remaining quantified syntac-
tic metadata. These are, however, not explicitly considered in our ontology evaluation method
so far. Indirectly, we do account for the presence of taxonomical relationships or axioms in
relation with ontology types (see below).

Similarities for formality levels As introduced in Chapter 5 the degree of formality of an
ontology is modeled as an object property with the range of type Instance of
FormalityLevel. This class has three fixed instances: formal, semi-formal and
informal, which have been associated to the numerical values 1, 0.7 and 0. This unbal-
anced scoring is justified by the way ontology engineering research seems to interpret the
meaning of the semi-formal term in relation to ontologies: a semi-formal ontology is
implemented in a language with a formal semantics or in a language whose semantics can be
automatically translated to more formalized ones.6 By contrast informal conceptual models
can be “ontologized” primarily by humans. The similarity function is defined as follows:

simformality(O1, O2) = 1 − |formality(O1) − formality(O2)|, where

formality(O) = 0 for every informal ontology O

= 0.7 for every semi − formal ontology O

= 1 for every formal ontology O

(6.4)

Similarities for ontology types The ontology metadata model distinguishes between types
by structure and types by the level of generality of the domain. In our case we rely on the
ontological continuum by [138] for the former, while the latter is primarily due to Guarino
[86]. Based on these classifications and the way the authors define the corresponding ontol-
ogy types,7 an ontology engineering expert has manually assessed the similarity measures
as illustrated in Table 6.3 and 6.4, respectively. The assigned values can be interpreted as
a mapping of the enumerated classifications—de facto totally ordered sets—to the interval
[0, 1].

Building upon the classification in [138] the ontology engineering expert clustered the
structure-driven ontology types in conformity with the complexity of the ontological primi-
tives supported; The resemblance among plain structures such as catalogues, glossaries and
vocabularies is accordingly higher than between them and taxonomical or even more com-
plex sources. Taxonomies and classifications are more similar to each other than compared
to thesauri, which contain different types of relationships. Formal ontologies are similar to
thesauri, though to a lower extent because of the significantly richer representation of the
domain of interest they provide.

6Note, that this numerical distribution does not claim to hold true in any application scenario. It is a hypothesis
which has to be demonstrated to hold true in the empirical experiments using the evaluation tool.

7The opinion of the authors on these issues is widely accepted by the ontology engineering community.
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Catalogue 1 0.8 0.8 0.2 0.2 0.4 0.2
Glossary 0.8 1 0.8 0.2 0.2 0.6 0.2
Vocabulary 0.8 0.8 1 0.2 0.2 0.4 0.2
Classification 0.2 0.2 0.2 1 0.8 0.6 0.4
Taxonomy 0.2 0.2 0.2 0.8 1 0.6 0.4
Thesaurus 0.4 0.6 0.4 0.6 0.6 1 0.6
Axiomatized ontologies 0.2 0.2 0.2 0.4 0.4 0.6 1

Table 6.3: Similarities between Types by Structure
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Upper-level 1 0.6 0.4 0.4 0.2
Core 0.6 1 0.8 0.6 0.2
Domain 0.4 0.8 1 0.4 0.6
Task 0.4 0.6 0.4 1 0.4
Application 0.2 0.2 0.6 0.4 1

Table 6.4: Similarities between Types by Generality

The similarity distribution for the generality types of Web ontologies was achieved in a
similar manner with the help of the ontology engineering expert possessing knowledge about
the classification by [86] and related ones. Core ontologies cover the most important concepts
of a domain of interest. Therefore they are closely related to upper-level, but also to domain
ontologies. Domain ontologies are, on the other hand, very similar to application ontologies,
as a clear separation of the two is not provided in practice. Task ontologies share the same
generality level as core ontologies, though covering a different focus in the domain of interest.

Similarities between representation languages We further defined similarities for knowl-
edge representation languages commonly used in the ontology engineering field. They are
represented in our ontology metadata in terms of instances of the class
OntologyRepresentationLanguage:

• The Semantic Web ontology languages OWL Lite, DL and Full are defined to be similar
to each other to a degree of 90% (i.e. a similarity of 0.9).

• The three OWL flavors are defined to be similar to RDF, RDFS and DAML+OIL to a
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degree of 70% (i.e. the similarity value is set to 0.7)

• DAML+OIL is equally similar to RDF and RDFS to a degree of 70% (the value of the
function equals 0.7)

• the aforementioned languages are similar to a degree of 60% to F-logic and to 40% to
XML/XML-Schema, which corresponds to a value of the similarity measure of 0.6.

Alternative similarity functions could make use of the knowledge representation paradigm
underlying each representation language (i.e. consider DL languages similar as opposed to
logic programming language dialects). The similarity distribution chosen for the ontology
evaluation method corresponds to a more technological view upon the current directions of
research and development in the knowledge representation field: we cluster languages which
have originated in the same context closer than the ones which are logically equivalent based
on the assumption that for the former ontology engineers are likely to dispose of a wider
range of tools and methods to deal with the language heterogeneity than for languages arisen
in timely and locally dispersed communities.

As syntax information is directly related to representation languages, we consider syntax
variants of the same language to be similar to 90%. Otherwise the similarity value is per
default set to 0. The high score of 0.9 is justified by the fact that most of the tools provide
support for multiple syntactic variants of the same language. A clear differentiation between
different syntaxes is seldom relevant for the ontology engineering area.

The syntax information is utilized as a modifier for the similarity between representation
languages:

simlang,syntax(O1, O2) = simlang(O1, O2) ∗ (1 − modsytax(O1, O2)) (6.5)

Similarities between keywords Keywords describing the content of an ontology are cap-
tured in the metadata model in form of strings. Similarities between keywords are calculated
hence using string-based measures, which are not further specified at this point (refer for ex-
ample to [42] for an study on string matching).8 For example, the PROMI framework, which
incorporates a prototypical implementation of the method presented in this section, uses both
syntactic and semantic similarity measures for strings (cf. Chapter 7).

Similarities between ontology tasks and roles The tasks ontologies are developed for
in a specific setting—or the ones they are subsequently involved in beyond their originating
context—play a central role in our ontology reuse research. The proposed ontology meta-
data explicitly deals with the purposes ontologies are characteristically utilized in terms of
two classes, OntologyTask and OntologyRole, respectively—in each task to be ac-
complished an ontology is assumed to act the roles of a vocabulary, a formal model,
a filter or an index. A set of representative knowledge processing tasks, which are

8We assume that keywords are captured by the ontology metadata model in a controlled way, so that each
keyword corresponds to a particular ontological primitive. This additional constraint leads to a more reliable
similarity measurement. However, its fulfillment can not be guaranteed with ontology modeling means and
should be ensured by quality checking mechanisms within ontology management tools.
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widely expected to take benefit from employing ontologies, was compiled as a result of a
comprehensive literature study. These are realized in the metadata model as instances of the
corresponding task. The link to the adequate roles is implemented in terms of OWL con-
straints (cf. Chapter 5).

In order to assess similarity values for each task pair we can choose among two options:
we can resort to ontology-based similarity measures—which are based on taxonomies, as
linguistics do not apply to discrete term sets of this size—or define a new distance function
reflecting the expert-perceived relatedness of the items. As the ontology metadata does not
organize the ontology tasks taxonomically (a fact which was not negatively pointed out within
the scope of the evaluation of the model) we choose the second possibility. The similarity
values assigned by an ontology engineering expert do correspond to a four level classification
of the tasks in correlation with a simple path-based distance. These values are displayed in
Table 6.5.
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Annotation 1 0.8 0.6 0.2 0.2 0.2 0.2 0.2 0.4 0.2 0.2
Indexing 0.8 1 0.4 0.2 0.2 0.2 0.2 0.2 0.4 0.2 0.2
Query formulation 0.6 0.4 1 0.2 0.6 0.8 0.2 0.2 0.8 0.4 0.4
Configuration 0.2 0.2 0.2 1 0.4 0.2 0.2 0.2 0.2 0.2 0.2
Filtering 0.2 0.2 0.6 0.4 1 0.6 0.6 0.2 0.2 0.2 0.2
Query rewriting 0.2 0.2 0.8 0.2 0.6 1 0.4 0.2 0.8 0.4 0.4
Personalization 0.2 0.2 0.2 0.2 0.6 0.4 1 0.2 0.4 0.2 0.2
Matching 0.2 0.2 0.2 0.2 0.2 0.2 0.2 1 0.6 0.6 0.6
Search 0.4 0.4 0.8 0.2 0.2 0.8 0.4 0.6 1 0.2 0.2
Integration 0.2 0.2 0.4 0.2 0.2 0.4 0.2 0.6 0.2 1 0.8
Mediation 0.2 0.2 0.4 0.2 0.2 0.4 0.2 0.6 0.2 0.8 1

Table 6.5: Similarities between Ontology Tasks

Annotation was estimated to be closer related to indexing, query formulation and search
as it can be considered a pre-requisite of the latter two, while showing major overlapping
with the first one. In the same time indexing enforces retrieval, therefore we defined the task
search and indexing to be similar to 40%. Query formulation is naturally related to query
rewriting and search. Further on, a resemblance cluster was defined between query rewriting,
filtering and personalization (mutual similarity of 60%), while query rewriting is a common
method to enable mediation and subsequently integration. A second task which is essential
to the latter is matching. Therefore we define it to be similar to the other two to a degree of
60%.

In order to increase the precision of the task similarity function, we extend it with a role-
centered modifier. As aforementioned ontology tasks are closely associated to specific ontol-
ogy roles. As these two features are strongly correlated, it is not recommended to model them
separately within the evaluation query [6]. In our case we set up a two-valued increment for
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the impact of the ontology roles on the resemblance between tasks: if the roles related to two
tasks coincide the similarity function remains unchanged (i.e. the modifier takes the value 1).
Otherwise we diminish the total value with 50% (i.e. the modifier is 0.5). In this way if we
compare an application scenario in which an ontology is used as annotation vocabulary with
one in which it should act as a formal basis for the realization of reasoning-based information
retrieval, the final similarity value will be 0.1. This result is valid, as the characteristics of
the ontologies optimally usable in the two scenarios are very different. Finally, if an ontol-
ogy plays multiple roles within an application scenario (and the underlying application tasks)
the modifier is determined by comparing the two role sets, an overlap indicating the nominal
value.

The similarity function for tasks and roles is thus defined as follows:

simtask,role(O1, O2) = simtask(O1, O2) ∗ (1 − modrole(O1, O2)) (6.6)

where the modifier modrole(O1, O2) = 1 if roles(O1)
⋂

roles(O2) 6= ∅ and 0 otherwise.

Similarities between application systems Software systems potentially applying seman-
tic technologies are represented as sub-classes of the class OntologyApplication in the
metadata model. We adopted the classification provided by the Wikipedia encyclopedia, as
one of the most recent and representative account in the IT field. For the scope of this method
we confined us to manually assess similarity values to those software categories, which are
commonly accepted to take advantage from using ontologies, and for which this application
has already been concretized in real-world projects.

We interviewed an IT professional affiliated to industry, which was asked to define the
degree of relatedness between a sub-set of the Wikipedia software taxonomy using values
between 0 and 1 on the basis of his knowledge on the corresponding functional characteristics
of the software categories. The result is presented in Table 6.6.

The main similarity clusters are defined in a straight forward manner. Firstly, systems
concerned with management of information are grouped together. Secondly, there is a nat-
ural relationship between applications supporting sharing of data and those concerned with
the collaborative accomplishment of tasks. A third category of systems, which were consid-
ered to be relevant for ontology engineering, is aimed at natural language processing. The
most important cross-cluster similarities are between information and multimedia retrieval
(because of the common goal), between content management systems and electronic and
desktop publishing and between computer graphics applications.

Similarities between contents The similarity measure of the contents of two ontologies
makes use of the specialization-generalization relationships defined in the DMOZ directory:
as introduced in the ontology metadata model the domain of an ontology and the view upon
this domain uniquely identify the contents of an ontology. They are represented as topics in
the DMOZ classification, so that the possible views upon a domain D are those topics T for
which D isSubTopic T holds true.

For each pair of ontologies O1 and O2 we defined their content-oriented resemblance as
follows:
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APPLICATION SYSTEM SIMILAR APPLICATION SYSTEM SIMILARITY VALUE

Information retrieval

Information extraction 0.6
Content management 0.6
Knowledge acquisition 0.6
Multimedia retrieval 0.6
Multimedia generation 0.4

Multimedia generation Multimedia retrieval 0.8
Computer graphics Image Processing 0.8
Community support Data sharing 0.6

Groupware 0.8
Data sharing Electronic publishing 0.4

Groupware 0.6
Content management Electronic publishing 0.8

Desktop publishing 0.8
Language generation Machine translation 0.8

Linguistic processing 0.8
Text analysis 0.8

Machine translation Linguistic processing 0.8
Text analysis 0.8

Text analysis Linguistic processing 0.8

Table 6.6: Similarities between Application Systems

simcontents(O1, O2) = simdomain(O1, O2) ∗ simview(O1, O2) (6.7)

As both are defined as topics in the DMOZ directory, the domain- or view-driven resem-
blance between two ontologies can be calculated using the same measure. For this purpose
we can apply various established approaches which make use of the labels denominating top-
ics and the ones exploiting the graph structure of the DMOZ directory [42, 178]. An analysis
of the DMOZ wording reveals that the most relevant string similarity functions in this case
are those based on edit distances, as the classification distinguishes between various parts of
speech sharing the same stem. For example, we terms such as “Medical” and “Medicine” are
used to denominate different nodes of the DMOZ directory. Moreover graph-based functions
should consider both path distances, but also the inheritance level the compared nodes are
ordered to, as topics placed at a higher level in the hierarchy tend to refer to more generic
concepts. In Chapter 7 we will present the prototypical implementation of our ontology
evaluation method and provide more details on the similarity measures we used and their
performance.

Similarities between engineering methods Engineering methods are relevant for the ap-
plication evaluation dimension. The idea underlying this assumption is that the method an
ontology has been originally developed through inherently correlates with specific features
of the outcomes and fits better to particular purposes people usually use ontologies for. The
ontology metadata model describes engineering methods in terms of methodologies and tech-
niques, which are executed manually or automatically to construct ontologies on the basis of
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various inputs. This includes classical ontology engineering methodologies delivering pro-
cess descriptions by which engineers are guided towards their final goal, but also methods
which generate ontologies from other ontologies or from other information structures.

As the aforementioned parameters strongly correlate, we designed an aggregated similar-
ity measure for engineering methods which combines the effects of similar input types and
automatization level information:

simengineering(O1, O2) = siminput(O1, O2) ∗ simautomatization(O1, O2) (6.8)

Input types are pre-defined in the ontology metadata as direct or indirect instances of the
generic class SemanticWebResource. This subsumes not only ontologies, but also Web
documents, databases or named fragments of ontologies. Their mutual similarities have been
assigned by an ontology engineering expert based on features such as formality and structure
of their contents as depicted in Table 6.7.
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Ontology 1 1 0.4 0.8
Ontology Fragment 1 1 0.4 0.8
Web Document 0.4 0.4 1 0.4
Database 0.8 0.8 0.4 1

Table 6.7: Similarities between Semantic Web Resources as regards Engineering Methods

Ontologies and ontology fragments can be considered to be equivalent in this context, as
an engineering method accepting as input one of them does produce the same results. Further
on, the higher similarity between databases and the former is justified by their commonality
with regard to formality.

Further on, the automatization level is represented in the metadata model as a set of
instances of the class AutomatizationLevel: manual, semi-automatical and
automatical. If we map these fixed individuals to the range {0, 0.5, 1} the function
simautomatization in the equation 6.8 is reduced to

simautomatization(O1, O2) = 1 − |automatization(O1) − automatization(O2)|(6.9)

In this way manual methods are considered more close to semi-automatical ones, which
are further related to the full automatization.

Similarities between natural languages Natural languages are modeled within the meta-
data ontologies as strings and are referenced by the datatype property
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hasNaturalLanguage. In the ontology management field differences at language level
are important usability constraints for manual tasks, while scenarios using ontologies inter-
nally, as for configuration or mediation are not affected by such representation issues. In
the latter the natural language is not relevant as evaluation criterion. In the former different
languages have a similarity value of 0, because of the mentioned limitations such incompati-
bilities impose.

Similarities between developmental states The state of development of an ontology is
an important criterion for the availability evaluation. Currently it can not be a clear quality
indicator, as the Semantic Web and the published ontologies are usually results of academia
projects which imply additional consolidation in order to become usable in real world scenar-
ios. However, if updates are relevant for the target application scenario, an unstable release
(just as dynamically evolving ontologies) might lead to additional efforts to maintain the tar-
get ontology in accordance to its initial sources.

In our metadata ontology we model developmental states in a very simple way, as fixed in-
stances. We distinguish between alpha, beta and stable releases, which are considered
similar in a same way the assigned these measures to the automatization level of engineering
methods in Section 6.1.4.

Similarities between availability states As the metadata model distinguishes between
two states of this variable, naming freely available ontologies, and those which can be used
only under license constraints, the similarity is defined dichotomously:

simavailability(O1, O2) = 1 if both ontologies (6.10)

have the same availability state, and

= 0 otherwise.

Ranking Function

Every metadata-described ontology O can be interpreted as a vector of features

−→
O = O1 . . . Oi (6.11)

The rank of an ontology with respect to its reusability in the actual reuse context can be
calculated as

rank(O,−→q ) =
∑

wi ∗ sim(Oi, Fi)∑
wi

(6.12)

The function sim(Oi, Fi) is intended to compute partial feature-oriented relatedness. As
every query feature Fi can be associated to multiple expected values (connected by default
disjunctively), we differentiate in equation 6.12 between two cases:

• all values of the feature Fi are covered by a particular ontology (and the corresponding
feature Qi). Hence we define the similarity between the query and the ontology feature
to be the maximal similarity among the individual values:
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simjk(Oi, Fi) = max {sim(Oij , Fik)} (6.13)

where j and k range over the values of the corresponding features.

• otherwise we define this function as an average measure.

6.1.5 Result Selection

The results of the ranking are presented to the ontology evaluator in form of a list of ontolo-
gies, together with the obtained scores and the available metadata. The evaluator can revise
the outcomes of the method and in case they are unsatisfactory, re-iterate the process at the
feature selection step.

Note that the introduction of method-internal weights does not have any impact on the
overall recall. By this means we are potentially causing changes in the ranking of the results
without a deprecation of the total hit list.

To summarize in this section we demonstrated how ontology metadata can be used to op-
erationalize the ontology usability evaluation. We described a method which makes intensive
use of background knowledge on the inherent contextual dependencies influencing the suc-
cess of a reuse process. From a technical point of view the method is based on a vector model
which is evaluated on an existing ontology metadata repository using semantic means. De-
tails on the implementation of the method are given in the next chapter. Chapter 8 discusses
the evaluation of the method and the implications of the evaluation outcomes.

6.2 Ontology Merging and Integration Method

This section addresses the usage of contextual information about ontology reuse processes
as an optimization factor for ontology merging/integration. In this step an ontology reuse
endeavor is finalized by customizing the positively evaluated ontological sources and inte-
grating the revised versions in a broader ontology engineering setting (cf. Chapter 4). From
a methodological perspective our ontology reuse methodology recommended the following
workflow:

1. Ontology customization: execute basic customization operations as foreseen during
the previous reuse stages.

2. Tool and method selection: specify tools and integration strategy.

3. Integration preparation: specify the concrete integration workflow.

4. Integration execution: execute integration in the pre-defined way.

5. Integration evaluation: evaluate integration results.
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The feasibility study revealed that the most challenging and time-consuming task at this
stage is the discovery and selection of the tools and methods which can be adequately utilized
to perform the merging and integration of multiple sources. This task is currently completed
manually and assumes the availability of additional expert knowledge. Ontology engineers
are required to possess expertise with respect to ontology matching methods in order to select
an appropriate merging/integration strategy. Programmers should complement this work with
the capability to configure and use the implemented algorithms. If these pre-conditions are
satisfied, the engineering team should compare the functionality of various matching services
with the particularities of the ontologies to be processed and to rank the results of this compar-
ison. The selection process implicitly builds upon a series of dependencies between service
capabilities to properties of the application context in which the integration takes place.

The remaining tasks do impose further limitations:

• Ontology customization: summarizes a series of transformations of the original on-
tologies w.r.t. their content, representation language or natural language articulation.
These tasks are intended to be accomplished automatically and first tools for this pur-
pose are already available, though their quality needs further improvement.

• Integration preparation: primarily implies configuration operations performed by hu-
mans on the tools and methods to be applied. These tasks can not be further optimized
at method level.

• Integration execution: stays for the concrete operation of the tools and the collection
of the results. Again, this task is not subject to further optimizations.

• Integration evaluation: the integration evaluation can the fundamentally understood
as a technical check whether the integration execution has produced the expected re-
sults. Note that this is not the same as the evaluation of the ontology reuse outcomes,
which is a topic situated outside of the scope of this thesis. The evaluation of the target
ontology is intended to be based upon the requirements specified in the ontology re-
quirements specification document and be performed using the methods recorded there.
Approaches coping with this different type of evaluation are introduced for example in
[19, 85, 114, 203].

We argue that an explicit representation of the context-driven optimizations and the au-
tomatic execution of the emerging dependency rules can be a prolific first step towards the
operationalization of this non-trivial task within and beyond ontology reuse processes. The
remainder of this section elaborates on these preliminary considerations. We give an overview
of a metadata-based method for selecting tools and methods for ontology integration, which
was co-developed by the author as backbone for the MOMA framework [148, 149, 150].9

6.2.1 Method Overview

The method utilizes additional information about ontologies (ontology metadata) and avail-
able matching services (matcher metadata) in order to determine which of the latter are ap-
propriate in a given application context. The ontology metadata captures information about

9http://moma.ag-nbi.de/ last visited in June, 2006
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matching-relevant ontology features such as the size of the model or the language used for
labeling ontological primitives. In turn the matcher metadata describes the most important
characteristics of the matching services: input and output parameters, applied heuristics etc.
Service providers are expected to provide the required descriptive metadata for the subscribed
resources, as this guarantees a higher visibility of their products in respect to incoming in-
quiries. Ontology metadata is specified at run-time, as ontology engineers aiming at discov-
ering methods or tools appropriate for their purposes define their preferences in this form. A
rule repository comprises dependency rules linking service capabilities to contextual param-
eters. The rules are triggered automatically in order to speed-up the selection process.

From a process-driven perspective the integration method consists of four steps (cf. Figure
6.3):

1. Context specification: in this step the ontology engineer specifies those characteristics
of the application setting which are relevant to the integration task. The context is
particularly concerned with the ontologies involved in the process.

2. Feature selection: after specifying the context the user is expected to provide details
about the integration process itself, in terms of inputs, outputs, as well as quality of
service criteria.

3. Usability computation: the criteria specification is translated to a query which is exe-
cuted on the knowledge base containing matching metadata and rules.

4. Result assessment: the user selects the appropriate method or tool from the computed
hit list.

6.2.2 Context Specification

The main objective of this first step is to clarify the needs of the merging and integration
task with respect to the methods and tools to be applied. The user is expected to provide
information about the context of the actual task. At this level the context is primarily limited
to information about the input ontologies and the expected outputs, but it can be extended to
further issues such as non-functional quality of service criteria or costs.

Context Ontology

We differentiate between two types of contextual information for merging and integration
purposes. Consequently the context model is confined to (cf. [166]):

• Task-related information: includes information about the methods and tools applied
to perform the process. We designed a metadata model capturing this type of informa-
tion in a controlled and formal way.

• Target-related information: strictly relates to integration-relevant features of the pro-
cessed ontologies. For the representation of this information we resort to our ontology
metadata model.
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Figure 6.3: Ontology Merging and Integration Method

This model can be refined with additional environment-related information, with the ob-
jective of inducing an application-specific behavior to the integration strategy. These aspects
are, however, not covered by our method so far. They are further discussed within the MOMA
framework by Mochol in [148, 150].

The task-related contextual information is extracted from a matching metadata model,
which describes fundamental ontology merging and integration services. The core of the
model refers to matching algorithms, as these are a essential pre-requisite for the operation of
this reuse step. The way we classified the matching algorithms strongly relies on [184] (see
Fig. 6.4).

[184] distinguishes between individual matchers which compute a mapping based on a
single matching criterion and combining matchers which use multiple individual matchers
[149]:
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Figure 6.4: Taxonomy of Schema Matching Approaches cf. [184]

• Individual matchers: can work on instance data (instance/contents-based matchers)
or consider only structure information, be that relationship types, datatypes and schema
structures (schema-only based matchers). Both algorithms can be applied on individ-
ual schema elements such as attributes or concept labels (element-level matchers). In
addition, schema-only based approaches can deal with combinations of these schema
elements such as complex schema structures, thus computing mappings by analyzing
subgraphs (structure-level matchers). A single element-level matcher uses linguistic, as
well as constraint-based techniques, while a schema-only based matcher is considered
to use only the latter.

• Combining matchers: are divided into two categories. Composite matchers combine
the different results of independently executed matchers whereupon the order of the
execution of the individual matchers can be assign manually (manual composition) or
(semi-)automatically (automatic composition). By contrast, a hybrid matcher does not
allow such manual intervention.

Beside the aforementioned classification, the matching metadata distinguishes among dif-
ferent matching results (mappings, value) and includes several matching characteristics:

• Input type: instances or schemas, numerical values.

• Cardinality: specifies whether a matcher compares one or more elements of one
schema with one or more elements of another schema; we differentiate between global
cardinality (w.r.t different mapping elements) and local cardinality (w.r.t individual
mapping elements).

• Matching level: atomic level, e.g., attributes in an XML schema and higher (non-
atomic) level e.g., XML elements,
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• Completeness: a full match considers all elements of the two schemas, in contrast to a
partially match.

Further on, properties of the ontologies to be matched such as type, formality level, domain
type, representation languages, supported natural language, supported used primitives etc. are
defined in the ontology metadata model and are referenced in the matching metadata model
to refine the description of the matching inputs.

The matcher classification supplemented by the aforementioned features was conceptual-
ized in form of an ontology and implemented in OWL. Matcher types are defined as OWL
classes within a hierarchical structure with specialization/generalization relationships be-
tween them. By means of OWL constraints we specified the characteristics of each type
of matching algorithm (for example that the input of an instance-based matcher can not be a
schema without instance data).

Matching algorithms can not be applied with the same success expectations independently
of all the dimensions of the mentioned ontology information model. In particular, we identi-
fied ontology features which are relevant for matching tasks:

• Syntactic features: such as number of specific ontological primitives influence the
matching execution performance and the quality of the structured-based matchers,
which usually perform better on simple graph structures. Further on, the implemen-
tation language might impose further constraints on the selection of tools, as most of
them are explicitly built for a set of languages.

• Semantic features: such as

– Readability (i.e. the usage of human-readable concept names)
– level of formality (e.g., highly informal, semi-informal, semi-formal, rigorously

formal [223]).
– Type of model (upper-level, domain ontology, taxonomy, thesaurus etc.)
– Ontology domain (i.e. the domain modeled by the ontology, e.g., medicine)
– Ontology representation paradigm (i.e. the class of representation languages

with respect to expressivity)
– Ontology natural language (i.e. the natural language used in denominating on-

tological primitives e.g., English)

Figures 6.5 and 6.6 show an excerpt of the matching ontology which captures information
about the most significant approaches in the contemporary literature in the field classified in
individual and combined algorithms.10

Impact of Context on the Usability Assessment

For a given pair of ontologies to be merged, the matching engine has to decide which match-
ing algorithms can be applied to obtain the desired outputs. The engine is aware of back-
ground information describing the available matching services and the properties of the input

10The screenshots show the matching ontology in the Protégé ontology engineering environment.
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Figure 6.5: Classification of Individual Matchers with Some Instances

ontologies. However, in order to automatically infer which algorithms are suitable to these in-
puts, it needs explicit knowledge about the dependencies between them and the structures they
operate on. We formalize this knowledge in terms of generic dependency rules—statements
that determine which elements (in this case which matchers) are to be used or excluded:

• Apply only instance matchers for a single ontology.
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Figure 6.6: Classification of Combined Matchers with Some Instances

• Apply only matchers which are able to deal with the representation language of the
inputs.

• Use only linguistic matchers for informal and semi-formal ontologies.

• Use structure-based matchers for ontologies with different natural languages.

• Use constraints-based matchers only for formal ontologies and only if ontologies con-
tain axioms.

• Match upper-level to domain ontologies using linguistic matchings.

• Match only ontologies in similar domains.

• Apply only schema matchers if no instance data is available.

• Do not apply linguistic matchers for ontologies with incompatible concept names.

These rules are the result of analytical studies and literature research and were applied
within the projects “KnowledgeNets” and “A Semantic Web for Pathology” [13, 151, 173],
which required ontology matching techniques to merge and integrate existing ontologies in
different Semantic Web application settings. A discussion of the empirical findings of these
two experiments is provided in [150]. Further rules, especially relating the syntactic features
of ontologies with specific performance and accuracy parameters, are addressed in detail in
the context of the MOMA framework beyond the scope of this thesis.11

11http://moma.ag-nbi.de last visited in June, 2006
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Figure 6.7: Implementation of Contextual Dependencies in Protégé
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Formalizing Context Dependencies

The matching rules were implemented in SWRL [100], a rule language for the Semantic
Web, which allows us to formalize them in terms of the concepts defined in the two metadata
models. The implementation was carried out in Protégé, using a dedicated plug in. An
overview of the rules is depicted in Figure 6.7. Appendix C provides some examples of
contextual dependency rules serialized to RDF/XML, while a complete description of the
implementation is provided in [149].

6.2.3 Usability Computation

The usage of the SWRL rules in decision making processes requires a reasoning engine which
is able to operate on OWL ontologies and SWRL rules—an issue which is still subject of
active research in the Semantic Web community. We analyzed several tools which address
this topic [141, 171] and, for proof-of-concept purposes, employed the SWRL rule engine
developed by Jing Mei at the Free University of Berlin, Networked Information Systems.12

This tool provides reasoning over RDF Schema taxonomies plus SWRL rules and is built
upon the Sesame repository [140, 142]. In a first step the ontologies (describing ontologies
and ontology management services) have been stored (as RDFS) to the Sesame repository.
Further on, we proceeded with the provision of SWRL dependency rules, aiming to restrict
the number of potentially usable matching candidates. Once the entire knowledge base was
stored to Sesame, we were able to carry out the method and tool selection task. The query
specified the features of the input ontologies, while the SWRL engine was responsible for
generating the results in accordance to the formalized restrictions.

The results of the rule-based query processing could be subject to further ranking oper-
ations aiming to capture the degree to which a particular matching service fulfills the user-
defined goal. This issue is not addressed in more detail in this thesis, whose focus is on the
reusability of ontologies more than service matchmaking.

6.2.4 Result Selection

The engineering team analyzes the results delivered by the rule engine and selects the methods
and tools which suit their goals. If the suggestions of the tool and method selection are
not considered adequate, the process can be re-iterated at step 1, so that the criteria which
should be satisfied by the integration services are adjusted. The current implementation of the
service selection method clearly concentrates on the elimination of unappropriate matching
candidates without studying in more depth means to rank the ones which could be applicable
to this task. These issues are out of the scope of this thesis and are central to the research
carried out in the MOMA framework.

In summary, the second part of this chapter sketched a high-level solution of the problem
of choosing the right merging and integration strategy within the scope of ontology reuse.
The method presented here does clearly not qualify for a complete account for the service
matchmaking question, but rather for a proof-of-concept of the hypothesis that context aspects

12http://www.ag-nbi.de/research/swrlengine/ last visited in June, 2006
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play a non-negligible role in the quality and the success of various stages of ontology reuse.
These preliminary ideas will be pursued by Mochol in the scope of the MOMA framework
[148].

6.3 Summary
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In this chapter we showed two methods which con-
tribute to the operationalization of specific ontology
reuse activities. We described a metadata-based on-
tology evaluation method that takes into account the
impact of contextual dependencies in aiding ontology
developers to decide upon application-relevant onto-
logical sources. We further addressed the question of
identifying appropriate tools and techniques for the
execution of ontology merging and integration. The
implementation and evaluation of these methods are
discussed in the next chapters.
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