
2 Ontologies and Ontology Engineering

Chapter 3: Feasibility study

Chapter 4: Methodology

Chapter 5: 

Metadata 

Model

Chapter 6: 
Metadata-

based methods

Chapter 7: Tools

Chapter 9: Conclusions and Perspectives

Chapter 1: Introduction
Chapter 2: Ontologies and 

Ontology Engineering

Chapter 8: 

Evaluation

In this chapter we introduce the fundamental princi-
ples behind ontologies, ontology engineering and the
Semantic Web. After summarizing the mainstream un-
derstanding of the former and some of the most rele-
vant methodologies, methods and tools aiming at de-
veloping and managing ontologies in Sections 2.1 and
2.2, respectively, we describe typical application set-
tings which are proved to benefit from the usage of
declarative domain knowledge conceptualizations in
form of ontologies in Section 2.3. We close the chap-
ter with a short summary (Section 2.4).

2.1 Ontologies

The term “ontology” has been introduced to computer science as a means to formalize the
kinds of things that can be talked about in a system or a context. With a long-standing tra-
dition in philosophy, where “Ontology” denotes “the study of being or existence” [30, 98],
ontologies provide knowledge engineering and artificial intelligence support for modelling
some domain of the world in terms of labeled concepts, attributes and relationships, usually
classified in specialization/generalization hierarchies.1 With applications in fields such as
knowledge management, information retrieval, natural language processing, eCommerce, in-
formation integration or the emerging Semantic Web, ontologies are part of a new approach to
building intelligent information systems [60]: they are intended to provide knowledge engi-
neers with reusable pieces of declarative knowledge, which can be—together with problem-
solving methods and reasoning services—easily assembled to high-quality and cost-effective
systems [154].

According to this idea, ontologies are understood as means to share and reuse declarative
knowledge. They enable a novel knowledge-based systems development strategy, in which
application or domain knowledge is strictly separated from software implementations and can
be thus efficiently reused across heterogeneous software platforms [86].

The emergence of the Semantic Web has marked an important stage in the evolution of
ontologies. Primarily introduced by Tim Berners Lee [12], the originator of the World Wide
Web, the idea of providing the current Web with a computer-processable knowledge infras-
tructure in addition to its actual, semi-formal and human-understandable content foresees the

1Guarino and Giaretta propose to use different notations for the philosophical and the knowledge engineering
views upon ontologies. According to this distinction the philosophical sense is denoted by the capitalized
word “Ontology”, while the second one is written without capitals [87] and may be used in plural form.

17



2 Ontologies and Ontology Engineering

usage of knowledge components which can be easily integrated into and exchanged among
arbitrary software environments in an operationalized manner. In this context the knowledge
components, i.e. the ontologies, are formalized using Web-suitable, but in the same time se-
mantically unambiguous representation languages, are pervasively accessible and can be (at
least theoretically) shared and reused across the World Wide Web.

2.1.1 Definitions

While the philosophical foundations of ontologies as systematic study of being are widely
acknowledged, the clear boundaries of this concept within and across research communities
in computer science are not fully agreed yet. As a consequence we encounter several, though
complementary perspectives on ontologies, which associate this concept with various scopes
and degrees of formality.

The most popular definition of the term originates from Gruber [84]: an ontology is an
“explicit, formal specification of a shared conceptualization”. In terms of this definition an
ontology is characterized by the subsequent features [209]:

• it is a formal and explicit: this means that the ontology is represented using a formal
language i.e. a language with a machine-understandable semantics and that it uses
types of primitives (e.g., concepts, axioms) which are explicitly defined.

• it is shared: the ontology mirrors a common understanding of the modelled domain,
being the result of a consensus achieved within a (potential) community of ontology
users.

• it specifies a conceptualization: the ontology is used to model some domain of the
world. This implies that the ontology is responsible for a specific view upon the corre-
sponding domain, reflected in certain simplifications, abstractions, omissions or other
modelling decisions.

Alternative ways to define ontologies usually highlight only a subset of the aforementioned
aspects. A logics-centered view is held by Guarino [86, 87]: an ontology is a “logical theory
which gives an explicit, partial account of a conceptualization”. This definition, though
sharing several commonalities with the one from Gruber [84], reduces ontologies to logical
structures, thus excluding conceptual models which do not commit to a logically precise
theory. On the other hand, it states the contextual nature of the represented knowledge, by
defining ontologies as partial account of reality. The shared aspect is not (explicitly) taken
into consideration.

A wide range of definitions concentrate on the content of ontologies from an engineer-
ing perspective. Emerged from the knowledge base community, these definitions consider
ontologies as means to specify a hierarchically structured vocabulary of a particular domain
and the rules for “combining the terms and relations to define extensions of the vocabulary”
[154]. Ontologies are then used as schemas for building knowledge bases in order to simplify
the integration and reuse of these systems. The consequences of this engineering-oriented
view upon ontologies are twofold: they implicitly give hints on the mandatory content of on-
tologies and on the ways to build them: ontologies consist of concepts/terms, relations, rules

18



2.1 Ontologies

etc., while concepts and relations might be organized in taxonomies. Accordingly, in order to
build an ontology the knowledge engineer has to specify its vocabulary and proceed by iden-
tifying concepts, organizing them in a hierarchy and linking them by means of relationships
and constraints. Furthermore, it is explicitly stated that ontologies are intended to be reused
and shared among software applications, a fact which was not explicitly taken into account
by the logics-centered approaches such as that by Guarino [86].

Given the multitude of application scenarios and the complementary points of view with
respect to the exact meaning of ontologies we currently assist at a “mitigation” of the orig-
inal definitions towards a more interdisciplinary, unified understanding of the term. Since
ontology-like conceptual models have a long-standing tradition in computer linguistics (the-
sauri), database design (ER diagrams), software engineering (UML diagrams, object models)
or eCommerce (product taxonomies, business rules), a recent trend in identifying whether a
certain conceptual structure is or is not an ontology is to enumerate the mandatory condi-
tions for the former [225]. In order to distinguish ontologies from other (related) conceptual
structures Uschold and Jasper introduced two criteria [225]:

• an ontology defines a vocabulary of terms.

• an ontology constrains the meaning of the domain terms by indicating how ontology
concepts are defined and are inter-related to a specific domain structure.

2.1.2 Types of ontologies

A further attempt to clarify the partially divergent views upon ontologies was to classify them
by various dimensions:

1. Formality: Uschold and Grüninger distinguish among four levels of formality [223]:

• highly informal: the domain of interested is modelled in a loose form in natural
language.

• semi-informal: the meaning of the modelled entities is less ambiguous by the
usage of a restricted language.

• semi-formal: the ontology is implemented in a formal language.
• rigorously formal: the meaning of the representation language is defined in detail,

with theorems and proofs for soundness or completeness.

Most of the currently available (Web) ontologies can be included to the second and
third category. Wand and Weber restrict to three levels of formality [229]:

• informal
• semi-formal, and
• formal ontologies

Again, most of the currently available sources usually associated to the word ontology
can be ordered to the categoriy of semi-formal models. Lastly, McGuinness defines
an “ontological continuum” specifying a total order between common types of models
[138]. This basically divides ontologies (or ontology-like structures) in informal and
formal as follows:

19



2 Ontologies and Ontology Engineering

• informal models are ordered in ascending order of their formality degree as con-
trolled vocabularies, glossaries, thesauri and informal taxonomies.

• formal models are ordered in the same manner: starting with formal taxonomies,
which precisely define the meaning of the specialization/generalization relation-
ship, more formal models are derived by incrementally adding formal instances,
properties/frames, value restrictions, general logical constraints, disjointness,
formal meronimy etc.

In the first category we usually encounter thesauri such as WordNet [147], taxonomies
such as the Open Directory2 and the ACM classification3 or various eCommerce stan-
dards [60]. Most of the available Semantic Web ontologies can be localized at the
lower end of the formal continuum (i.e. as formal taxonomies), a category which over-
laps with the semi-formal level in the previous categorizations. However, the usage
of Semantic Web representation languages does not guarantee a certain degree of for-
mality: while an increasing number of applications are currently deciding to formalize
domain or application-specific knowledge using languages such as RDFS or OWL, the
resulting ontologies do not necessarily commit to the formal semantics of these lan-
guages.4 By contrast, Cyc [186] or DOLCE [158] are definitively representative for
the so-called heavyweight ontologies category, which corresponds to the upper end of
the continuum.

2. Shareability: due to the difficulties encountered in achieving a consensual conceptu-
alization of a domain of interest, most of the ontologies available today reflect the view
of a restricted group of people or of single organizations with this regard. Standard
classifications such as the Open Directory,5 classifications of job descriptors, products,
services or industry sectors have been developed by renowned organizations in the cor-
responding fields. Due to this fact, these ontologies are being expected to be shared
across a wide range of applications. However, many Semantic Web ontologies have
been developed in isolated settings without an explicit focus on being shared across
communities or software platforms. Given this state of the art we distinguish among
four levels of (expected) shareability:

• Personal ontologies: they are the result of an individual development effort, re-
flecting the view of the ontology author(s) upon the modelled domain. Personal
Semantic Web ontologies are published online and might be accessed by inter-
ested parties, but their impact is limited, as there is no explicit support for them
being reused in other application contexts. Depending on the complexity of the
ontology, they still might achieve a broad acceptance among a large user com-
munity. The best example for this behavior is the FOAF ontology.6 The simple
ontology describing common inter-human relationships, originally designed as a
toy example, is meanwhile one of the most popular Semantic Web ontologies.

2http://www.dmoz.org last visited in May, 2006
3http://www.acm.org/class/1998/ last visited in May, 2006
4Approaches such as OntoClean [89] tackle this problem by proposing general measures to discover inconsis-

tencies in the usage of these formal semantics.
5http://www.dmoz.org last visited in May, 2006
6http://xmlns.com/foaf/0.1/ last visited in May, 2006

20



2.1 Ontologies

• Application ontologies: they are developed in the context of a specific project
for pre-defined purposes and are assumed to reflect the view of the project team
(including the community of users) upon the modelled domain. Again, though
Semantic Web technologies enable these ontologies to be made public on the
Web, they are de facto intended to be used within the original, project-related user
community. Their acceptance beyond these boundaries depends on the impact of
the authoring authority in the specific area, but also on the general reusability of
the ontologies. Many of the domain ontologies available so far can be included in
this category.

• Openly developed ontologies: they are developed by a large, open community
of users, which are free to contribute to the content of the ontology. The ontol-
ogy, as a result of continuous refinements and extensions, emerges to a commonly
agreed, widely accepted representation of the domain of interest. The evolution of
the Open Directory classification is a good example for collaborative, Web-based
ontology development: the core structure of the topic classification, originally
proposed by Yahoo!7 and used in slightly modified form by various search en-
gines, was extended by users, who also played an crucial role in the instantiation
of the ontology with Web documents. Another prominent example is the Gene
Ontology [74].

• Standard ontologies: they are developed for standardization purposes by key
organizations in the field, usually being the result of an extended agreement pro-
cess in order to satisfy a broad range of requirements arisen from various user
communities. The majority of standard ontologies currently available are situated
in the area of eCommerce: The United Nations Standard Products and Services
Codes Ontology UNSPSC,8 the RosettaNet classification9 or the North American
Industry Classification System NAICS.10

3. Scope: according to [86] ontologies can be classified into four categories:

• Upper-level/top-level ontologies: they describe general-purpose concepts and
their properties. Examples of upper-level ontologies are the Top-Elements Clas-
sification by Sowa [202], the Suggested Upper Level Merged Ontology SUMO
[177] or the Descriptive Ontology for Linguistic and Cognitive Engineering DOLCE
[158].

• Domain ontologies: they are used to model specific domains such as medicine
or academia. A typical example in this area is the Gene Ontology [74].

• Task ontologies: they describe general or domain-specific activities.
• Application ontologies: they are instantiations of domain ontologies having re-

gard to particular application-related task ontologies and application requirements.

Other authors mention an intermediary category called core ontologies, which cover
the most important concepts in a given domain. For example, the Semantic Network

7http://dir.yahoo.com/ last visited in May, 2006
8http://www.unspsc.org last visited in May, 2006
9http://www.rosettanet.org last visited in May, 2006

10http://www.census.gov/epcd/www/naics.html last visited in May, 2006

21



2 Ontologies and Ontology Engineering

in UMLS contains general medical concepts such as disease, finding, syndrome, thus
being a core medical ontology. Others differentiate between application domain and
application task ontologies [111]. The former instantiates general-purpose domain
knowledge to particular application constraints, while the latter corresponds, similar to
the application ontologies introduced by Guarino [86], to a combination of domain-
relevant declarative and procedural knowledge.

A last category of ontologies, which was not covered by the classifications mentioned
so far, are the so-called meta-ontologies or (knowledge) representation ontologies.
They describe the primitives which are used to formalize knowledge in conformity
with a specific representation paradigm. Well-known in this categories are the Frame
Ontology [83] or the representation ontologies of the W3C Semantic Web languages
RDFS and OWL.11.

4. Reusability: besides sharing, ontologies were originally intended as means to effi-
ciently reuse different types of declarative knowledge. As in other areas of computer
science, there is a trade-off between reusability and usability, since reusability usually
implies efforts to adapt a general-purpose artifact to particular settings. Klinker and
colleagues [111] further refine the ontology classification by Guarino [86], ordering
ontology scopes with respect to their reusability potential, as illustrated in Figure 2.1.

5. Representation paradigm: ontologies differ in the representation language and paradigm,
since a wide range of these sources emerged in a pre-Semantic Web era. In order to
overcome this syntactic and semantic barrier a plethora of approaches investigate the
compatibility between different formalisms [59], while the aforementioned represen-
tation ontologies are intended to capture these differences explicitly. The most popu-
lar representation paradigms regarding ontologies are Frames [83], Description Logics
[176] and UML-MOF.12 In the context of the Semantic Web ontologies are envisioned
to follow the second approach. As a novel feature, they are represented in standardized,
Web-suitable languages such as OWL [176] and RDFS [22] so that they can be shared
and put into widespread use for humans and machines in a networked environment.

Due to these differences ontologies originated from and closely related to particular com-
munities can not be optimally shared or reused in an operationalized manner in the open
environment of the Web. This state of the art requires that potential ontology users are made
aware of the (currently limited) reusability of these resources and that ontology engineering
platforms are provided with techniques to deal with their heterogeneity with respect to the
aforementioned dimensions (see Chapter 3 for a longer discussion on this topic).

We now turn to a description of recent methodologies and methods for building and man-
aging ontologies.

11http://www.w3.org/2000/01/rdf-schema, http://www.w3.org/2002/07/owl last visited
in May, 2006

12http://www.omg.org/technology/documents/modeling_spec_catalog.htm last visited
in August, 2006

22



2.2 Ontology Engineering Methodologies and Methods

General/Common Ontology

Representation Ontology

Top-Level Ontology

Generic Domain
Ontology

Task Ontology

Domain
Ontology

Domain Task
Ontology

Application Domain 
Ontology

Application Domain 
Task OntologyR

E
U
S
A
B
I
L
I
T
Y

U
S
A
B
I
L
I
T
Y

Figure 2.1: Classification of Ontologies as regards Their Reusability [111]

2.2 Ontology Engineering Methodologies and Methods

Ontologies, as a means for a shared understanding of knowledge and a way to represent real
world domains, are a core technology for efficiently developing high-qualitative knowledge-
based systems [60]. In particular they are facing a growing popularity with the emergence of
the Semantic Web; besides providing standard Web-suitable representation languages such as
RDF(S), OWL and SWRL, the Semantic Web community also encourages the development
of methods and tools to build, maintain and reuse Semantic Web ontologies [44, 63, 80,
162] or algorithms to manage them in terms of matching, merging or integration [162, 196].
Due to the challenging and resource-intensive nature of the ontology building process special
attention has also been paid to automatic methods to assist this process such as those based
on the linguistics-based acquisition of domain-specific knowledge from document corpora
[164]. The sum of these initiatives are referred to as ontology engineering [80].

The goal of this section is to present the current state of the art in ontology engineer-
ing, by giving an overview of some of the most outstanding methodologies and methods
emerged in the last decades in this area. For a consistent classification of these research con-
tributions we employ the terminology introduced by Gómez-Pérez and colleagues in [80]:
this proposal, based on the IEEE standard for software development [104], differentiates be-
tween management, development-oriented and support activities. The former include typical
control and quality assurance activities encountered across various engineering disciplines.
Development-oriented activities strictly relate to the process of ontology building, while sup-
port activities aim at aiding the engineering team in this endeavor by means of documenting
and evaluating specific stages of the development process or by extracting relevant ontologi-
cal knowledge from external (semi-structured) resources.

23



2 Ontologies and Ontology Engineering

2.2.1 Methodologies and Methods for Ontology Development

In terms of process models several engineering methodologies were elaborated in the last
decades [64, 66, 84, 85, 105, 125, 179, 201, 209, 214, 226]. Apart from minor differences
with respect to the level of detail and the underlying application environment, the majority
of them propose the following development-oriented activities for ontology building (Figure
2.2):

1. Domain/Requirements analysis: analysis of the application domain with respect to a
set of pre-defined requirements. In this phase one puts together a list of competency
questions, describing the capabilities of the target ontology in the intended application
scenario. This step also includes knowledge acquisition in terms of re-usage of exist-
ing ontological sources or performing ontology learning operations. If such techniques
are being used to aid the engineering process, the resulting ontologies—acquired from
texts or by reuse—are to be customized to the application setting in the conceptu-
alization/implementation phases. The result of the domain analysis might be speci-
fied in form of an ontology requirements specification document, as introduced by the
OTK-Methodology [214]. The methodology by Grüninger [85] takes the requirements
specification phase a step further and suggests a formal representation of the emerging
requirements—in their case (informal) competency questions—in terms of First Order
Logic in order to allow an automatic evaluation of the final ontology in later phases.

2. Conceptualization: on the basis of the competency questions the engineering team
models the application domain in terms of ontological primitives, e.g., concepts, re-
lations, axioms.13 The result of this step is a conceptual model, which, though being
language-independent, already commits to a particular (formal) knowledge representa-
tion paradigm (e.g., Frames). In order to reduce the complexity of this process phase
the engineering methodology by Fernandéz-López [62] distinguishes between concep-
tualization and formalization.

3. Implementation: the conceptual model resulted from the previous step is implemented
in a (formal) representation language with adequate expressivity. The selection of a
representation language for the implementation is also affected by the availability of
support tools and by application constraints. Reused ontologies and those generated by
ontology learning are potentially translated to the target representation language and
integrated into the new context.

4. Evaluation: the preliminary ontology is evaluated against the application require-
ments. The evaluation may be performed automatically, if the competency questions
are represented formally, or semi-automatically, using specific heuristics and human
judgement. The result of the evaluation is reflected in a set of modifications/refinements
at the requirements, conceptualization or implementation level.

5. Population: this step deals with the alignment of concrete application data to the im-
plemented ontology. The alignment of the instance data to the final ontology is typ-

13Depending on methodology and representation language these ontological primitives might have different
names, e.g., class or concept, relation or relationship, slot, axiom, constraint.

24



2.2 Ontology Engineering Methodologies and Methods

ically a non-trivial task; it might require complicated mappings between the original
data schema and the conceptual model of the ontology, or procedures for extracting
ontology-related information from unstructured data such as texts.

6. Evolution and maintenance: after the preliminary evaluation the ontology is inte-
grated into the target application setting. Further modifications or even complex re-
engineering tasks are performed in conformity with new user requirements, updates of
the reused sources or changes in the modelled domain.

Depending on the ontology life cycle underlying the engineering methodology, the afore-
mentioned steps are to be seen as a sequential workflow, as parallel activities or a combina-
tion of both. METHONTOLOGY [62], which applies prototypical engineering principles,
considers knowledge acquisition, evaluation and documentation as being support activities
complementary to the main development process. Other methodologies, usually following a
waterfall model, consider the three as part of a sequential, but iterative engineering process
(cf. Figure 2.2). In addition to the illustrated process steps, the OTK-Methodology [214]
introduces an initial feasibility study in order to assess the risks associated with an ontology
building attempt and to specify strategies to handle such critical situations.

Domain analysis
motivating scenarios, competency questions, existing solutions

Conceptualization
conceptualization of the model, integration and extension of 
existing solutions

Implementation
implementation of the formal model in a representation language

Usage/Maintenance
adaptation of the ontology according to new requirements

K
now

ledge acquisition

E
valuation

D
ocum

entation

Figure 2.2: Ontology Engineering Process

The process model described above gives a very general overview on how ontology de-
velopment is supposed to be performed in an application- and domain-independent manner.
However, in order for the engineering methodology to represent a real added value to the
ontology developers, it has to be further elaborated. Firstly, the whole range of dependencies
among single process steps should be described in detail in order to maximize the flexibil-
ity of the process model and to allow ontology engineers to choose the development work-
flow which optimally fits their needs. Secondly, phases such as knowledge acquisition or
ontology evaluation imply highly complex automatic methods and techniques, which have
to be rigourously recorded in the process model [205]. Furthermore, the general-purpose
model (as depicted in Figure 2.2) does not take into account issues such as collaboration,
distributed engineering, or scalability which are fundamental characteristics of an ontology
engineering process performed in the open, dynamic setting of the Web. Approaches such
as [58, 181, 216] aim at coping with the former two issues and give guidelines on how to
collaboratively built dynamic domain models dealing with volatile requirements. Building
and using very large ontologies, like those typical for e.g., the medical domain, arise new

25



2 Ontologies and Ontology Engineering

questions for the engineering process, since they are characterized by huge resource needs
and long-standing life cycles. Methodologies such as [125, 179, 216] address this problem
explicitly.

Ontology development is solely the first step an ontology life cycle. Once the ontology
has been developed, it becomes subject of continuous refinements and evaluation procedures,
which aim at updating it to new user-/domain-specific criteria and at applying it to new appli-
cation scenarios, respectively. The evolution of an ontology during its usage in the designed
application setting is explored in approaches such as [110, 208], which propose methods to
deal with versioning and user-driven ontology maintenance. Methodologies and methods for
using and reusing ontologies in new application contexts are discussed in the next section.

2.2.2 Methodologies and Methods for Ontology Use and Reuse

As mentioned at the beginning of this section the ontology engineering process consists of
management, development and support activities. The latter include a series of activities
performed in parallel to the core ontology development, which was introduced above. In this
section we focus on activities intended to manage existing ontologies for reuse purposes, in
form of evaluating, matching, merging, aligning, mapping or integrating them.

Ontology Reuse Methodologies

An extended account of the reuse process has been made by Pinto and Martins [180]. Dif-
ferentiating between merging and integration, the authors give a general description of the
phases and activities of the second one, where integration is defined as ‘‘the process of build-
ing an ontology on one subject reusing one or more ontologies in different subjects”. Reusing
ontologies of the same domain is termed to “merging”, which is studied from a methodolog-
ical point of view in [73]. In the following we will describe the process models underlying
these two approaches.

The integration process [180] is composed of several phases and activities, which might
take place sequentially or along the complete life cycle of ontology building:

1. Identify integration possibility: feasibility study with respect to the possibility of
reusing ontological sources within the development framework.

2. Identify modules: decomposition of the domain into thematic clusters.

3. Identify assumptions and ontological commitments: specification of the ontological
commitments of the building blocks identified in the previous step, ensuring compati-
bility.

4. Identify knowledge to be represented in each module: identification of a preliminary
list of ontological primitives to be included in each module.

5. Identify candidate ontologies: this step is further divided into two sequential activ-
ities: finding the ontological sources, followed by the choice upon the relevant ones.
The relevance assessment is performed using a checklist of strict and desirable re-
quirements with the goal of eliminating the candidate ontologies who are definitely

26



2.2 Ontology Engineering Methodologies and Methods

not useful in the new setting. The remaining ontologies are subject of a more deeper
evaluation along the process.

6. Get candidate ontologies: in order to preserve the generality with respect to repre-
sentation languages, the approach proposes an integration of ontologies at knowledge
level, while further material such as implementations and documentation may be used
to complement the general-purpose, knowledge level representation. While most of
the ontologies are available in some representation language, the conceptualization is
obtained as a result of a re-engineering process. At this level, the process model also
foresees the possibility of translating between representation languages, if differences
between source and target implementation languages occur.

7. Analyze candidate ontologies: the analysis of the candidate ontologies, which are
potentially relevant for the target domain, is the first step towards the final choice on
which ontological sources will participate to the integration process. The analysis in-
volves a technical evaluation by domain experts and an user assessment by ontology
engineers. The former focuses on the content of the candidate ontologies and identifies
necessary modifications, while in the latter the ontology engineers study the quality of
the modeling decisions underlying the ontologies (e.g., well-balanced structure, homo-
geneous granularity and level of detail, coherent design rationales). The results of the
analysis are used as decision support for the choice to be made in the next step.

8. Choose source ontologies: at this stage a decision has to be made among the candidate
ontologies that passed the strict requirements and among those that were best ranked
during the analysis performed by domain experts and engineers. Due to the complex-
ity of this multi-criteria choice, this step is further sub-divided into a selection of the
most appropriate remaining candidates and the verification of their compatibility and
completeness. The first sub-stage is a continuation and a summarization of the analy-
sis described above. By means of a set of general, development and content-oriented
features, the engineering team chooses the source ontologies to be used. However, this
decision is conditioned by the compatibility check, in conformity with which appropri-
ate candidates are not integrated into the target ontology if they produce syntactic or
semantics incompatibilities.

9. Apply integration operations: [180] defines a set of 39 basic integration operations
and additional 12 composed ones in order to specify the aggregation of the knowledge
content of the ontologies to be reused. The result of the integration may be subject to
further modifications according to pre-defined design criteria such as modularization,
minimization of the semantic distance within the same level of an hierarchy or naming
conventions.

10. Analysis of the resulting ontology: the target ontology is finally evaluated against
general-purpose design [84] or evaluation criteria [79].

A comprehensive study on reusing ontologies sharing the same domain is provided in the
ONIONS (Ontologic Integration of Naı̈ve Sources) project [73]. The result of the project
is a detailed methodology on merging existing ontologies for reuse, which was applied in

27



2 Ontologies and Ontology Engineering

the medical domain. The methodology, founded on philosophical aspects of the theory of
meaning, is divided into six phases:

1. Corpus creation: in this step the focus is on finding relevant domain sources (e.g.,
classifications, ontologies, thesauri) in order to collect a valid terminological corpus
for the target ontology.

2. Taxonomic analysis: local specialization/generalization relationships between con-
cepts from the terminological corpus are evaluated and refined.

3. Local source analysis: the taxonomical structures are further analyzed in order to iden-
tify potential modelling failures such as inconsistent classification criteria or heteroge-
neous levels of detail between different fragments of the ontological sources. Since
most of the sources available are not represented at a sufficient level of formality, the
meaning of their concepts is mostly expressed implicitly in names or free text defi-
nitions, and has to be manually encoded in a formal, explicit way in order to create
formal ontologies. The result of this step is a list of taxonomies, with explicit sub-
sumption definitions.

4. Multi-local source analysis: local free-text descriptions are merged towards multi-
local conceptual definitions or linked to general pieces of knowledge.

5. Ontology library building: the results of the local and global source analysis are
integrated into an ontology library containing these conceptual definitions.

6. Ontology library implementation and integration: re-classification and validation
of the library.

Further reuse methodologies often emerged in relation to specific application settings, thus
being less general and comprehensive that the aforementioned proposals. Besides, evidence
of reusing existing ontologies is attested in a number of case studies, in which the underlying
methodology is usually left in the background of the work (see Chapter 3 for a discussion of
the case studies).

For the remaining of this section we will take a deeper look at methods aiming at supporting
particular aspects of ontology management. These aspects are a constitutive part of ontology
reuse.

Ontology Discovery Methods

Finding ontologies on the Web has been marginally addressed by current approaches to ontol-
ogy engineering. However, while there is no method describing how to spot online available
ontological resources, ontology engineers might use one of the few ontology repositories
available online as starting point for the completion of this task:

Protégé Library: collection of OWL ontologies hosted at the Protégé development group
at the Stanford University. The library contains several dozens of ontologies freely
submitted by Protégé users. The resources are accompanied by a short textual descrip-
tion.14

14http://protege.stanford.edu/plugins/owl/owl-library/ last visited in May, 2006

28



2.2 Ontology Engineering Methodologies and Methods

Ontolingua Server: library of Ontolingua and KIF ontologies created in the early nineties at
the KSL Group at the Stanford University. While the repository seems to have attracted
considerable attention a decade ago—being mentioned as a reliable and useful content
source in several case studies on reusing ontologies—its contents could not be accessed
as for February 2006.15

SchemaWeb: recent library of several hundreds of Semantic Web ontologies, currently still
under development. The ontologies are classified by name, description, namespace,
location, Web site and contact person.16

Cyc Library: the most comprehensive common-sense knowledge base currently available,
organized as a collection of so-called “microtheories”. An OWL version is under
development.17

DAML Ontology Library: the most popular ontology repository, originated in the context
of the DAML working group. Ontological resources (282, in total, primarily repre-
sented in languages like DAML+OIL, RDFS and OWL) are classified by URI (loca-
tion), submission date, keywords, Open Directory category, class and property labels,
used namespaces, funding source and submitting organization. For each ontology the
user is provided with a synopsis of its most important metrics: the number of classes,
properties, axioms and instances.18

OntoSelect: ontology repository for continuously discovering and managing Semantic Web
ontologies. The over 800 resources (as for February 2006) are classified by name,
format, natural language, as well as labels of ontological primitives. Additionally the
service computes statistical metrics on the registered ontologies: the number of classes,
properties, labels and included ontologies.19

Onthology: a novel repository of Semantic Web ontologies, which are classified according
to the emerging ontology metadata standard OMV (cf. Chapter 5). The repository,
which is currently under development, includes services for semantically searching
and browsing the submitted ontologies and for the user-driven rating of their quality.20

Swoogle: a Semantic Web search engine, ranging, as stated by its authors, over more than
10.000 Semantic Web ontologies. These are not further classified.21

This list points out two important aspects about ontologies in general and ontology reuse
in particular: firstly, the ontology engineering community has recognized the importance of
providing repositories of (potentially reusable) knowledge components in early stages of its
existence; secondly, this interest is shared by the newly emerging Semantic Web community
which started developing dedicated ontology repositories in the last three to five years. A
discussion of the quality and maturity of these approaches is given in Chapter 3.
15http://www.ksl.stanford.edu/software/ontolingua/ last visited in February, 2006
16http://www.schemaweb.info last visited in May, 2006
17http://www.opencyc.org/ last visited in May, 2006
18http://daml.org/ontologies last visited in May, 2006
19http://views.dfki.de/ontologies/ last visited in February, 2006
20http://www.onthology.org/ last visited in May, 2006
21http://swoogle.umbc.edu/ last visited in May, 2006

29



2 Ontologies and Ontology Engineering

Ontology Evaluation Methods

Ontology evaluation is not a fully developed area of ontology engineering yet (cf. [114]
for an up-to-date overview of the methods). Though several approaches propose partial an-
swers to the evaluation question, there is no commonly agreed, complete or of practical rele-
vance methodology which describes the evaluation process both from a general-purpose and
a usage-related perspective. The majority of the evaluation approaches proposed in the lit-
erature introduce methods to evaluate ontology content, i.e. to estimate the quality of the
conceptual model independently of the fitness of use of the ontology under given circum-
stances:

OntoClean: the methodology is based on philosophical notions for a formal evaluation of
taxonomical structures [89]. Core to the methodology are four fundamental ontologi-
cal notions: rigidity, unity, identity and dependence, which are used to automatically
verify the correctness of a taxonomy. The approach does not take into account usability
aspects of ontologies, thus founding limited applicability in real-world scenarios.

ODEval: operates on taxonomical structures, allowing the detection of potential inconsis-
tencies and redundancies for RDF(S), DAML+OIL and OWL ontologies [79]. The
authors propose a list of general-purpose quality criteria for the content of an ontology,
which will be discussed in detail in Chapter 5.

OntoManager: focuses on the usage of an existing ontology in a concrete application sce-
nario and pragmatically extrapolates statistic data obtained from monitoring ontology
users in order to detect potential errors or limitations of the ontology.22 Though it is
easy to apply by the end users, the accuracy of the results depends on amount of the
monitored data and its accuracy.

Orthogonal to general-purpose quality of ontological content, a core requirement for sys-
tematically reusing existing ontologies in concrete application contexts is the availability of
methods to quantitatively assign their relevance in respect to a set of application require-
ments. Most of the ontology evaluation approaches proposed so far do not address this issue,
thus allowing ontology engineers and users to get an idea about the general-purpose quality
of a given ontology, which might not necessarily correspond to its perceived quality or to its
fitness of use. Assessing the usability of an ontology in a target application context is ad-
dressed briefly in [180]. The authors identify a number of issues relevant on this matter, such
as compatible domain, representation language etc. Another exponent in this second cate-
gory is OntoMetric [128], a framework for selecting ontologies. Provided a set of candidate
ontologies, OntoMetric computes a quantitative measure of every element of this list using a
framework of 160 features grouped in several dimensions, which describe the ontologies to
be evaluated. After specifying the objectives of the application the ontology engineers build a
decision tree containing ontology characteristics required in the application setting. The suit-
ability value of each candidate ontology is computed by comparing its features with the nodes
of the decision tree, taking into consideration the relativity relationships between its criteria.
In addition to these approaches, we find approaches aiming at evaluating the a-posteriori
usage of an ontology for a specific task such as semantic annotation of texts [19, 146, 203].
22http://ontoware.org/projects/ontomanager last visited in May, 2006

30



2.3 Application Scenarios for Ontologies

Ontology Matching, Merging and Alignment Methods

Due to the divergent opinions concerning the exact meaning of the term “ontology” and to
the lack of an established quality framework for ontology engineering, most of the ontolo-
gies available today can not be easily reused in new application contexts (see Chapter 3 for
a detailed discussion of the subject). Under these circumstances existing ontologies require
considerable customization in form of matching, merging, mapping or alignment (cf. Chap-
ter 1 for a terminological clarification). Furthermore, the data integration problem, which
is relevant for many years at the enterprize level, has become even more stringent with the
evolution of the current Web and the upcoming Semantic Web. Ontologies explicitly describ-
ing data repositories across the network should be compared and integrated into a common
structure in order to cope with the heterogeneity, abundance and distributed nature of the
data in a feasible manner. The importance of these issues is reflected by the high number
of algorithms, which have been proposed and applied in certain application settings in the
last decades [51, 54, 76, 130, 139, 143, 156, 183, 210]. Comprehensive studies, surveys and
classifications on this topic are given for example in [50, 76, 184].

Each of these methods share the common goal of finding commonalities among a set of
ontologies and the affiliated instance data. Once similarities have been found, merging algo-
rithms generate a unified target ontology, obtained by aggregating concepts from the source
ontologies which have been assigned a feasible similarity ranking. By contrast, mapping
algorithms restrict to explicitly defining the relationships between these concepts. Depend-
ing on the outcomes of the matching procedure the mappings between concepts presumed
to refer to the same real-world object may have various cardinalities, from direct to n-to-m.
These particularities influence to a considerable extent the merging methodology, which has
to provide decision support for resolving potential ambiguities.

Usually one distinguishes between individual matching algorithms (e.g., FCA-MERGE
[210] or S-Match [76])—applying only a single method of matching items e.g., linguistic
or taxonomical matchers—and combinations of the former ones, which intend to overcome
their limitations by proposing hybrid solutions. A hybrid approach (e.g., Cupid [130]) fol-
lows a black box paradigm, in which various individual matchers are melt together to a
new algorithm, while the so-called composite matchers allow an increased user interaction
(e.g., GLUE [54],COMA [51], CMC [219]). Given the open nature of the Web environ-
ment, in which the emergence of a unique ontology for a given application domain is con-
sidered both unrealistic and unnatural, application interoperability depends directly on con-
sistent mappings between ontologies adopted by inter-communicating services. Approaches
coping with this problem propose a (formal) specification of the semantic overlap between
ontologies and integrate matching techniques to automatically discover mapping candidates
[53, 56, 107, 131, 160].

2.3 Application Scenarios for Ontologies

Ontologies are confronted with an ever-growing popularity in numerous areas of computer
science. The need for an enabling technology to formalize domain or application background
information explicitly is emphasized by the huge amount of knowledge from various domains
already available in terms of semi-formal (network-accessible or at least electronically avail-

31



2 Ontologies and Ontology Engineering

able) ontologies [8, 10, 16, 49, 60, 64, 74, 78, 125, 133, 147, 175, 179, 185, 186, 201, 221,
227].

Typical usage scenarios for knowledge processing on the basis of ontologies can be found
in numerous projects in the areas of information retrieval, knowledge management, eCom-
merce and recently the Semantic Web [60, 80, 113, 159, 163, 205]. In order to handle the
explosively growing amount of information and the variety of forms in which this information
might be available, ontologies improve existing systems in the aforementioned areas as they
extend their functionality by replicating to a certain extent the human-specific “understand-
ing” of the domain they are dealing with. Besides acting as a means to represent knowledge
(i.e. as explicit specifications of conceptualization, as stated in the definition by Gruber [84])
ontologies can be viewed as mediators between applications (i.e. as shared conceptualiza-
tion, in the previously cited definition). In this way they enable the interoperability of the
applications integrating them—these systems communicate to each other using a commonly
agreed vocabulary with an unambiguous meaning.

In this section we give a brief overview of four of the most important application fields
of ontologies: information retrieval, knowledge management, eCommerce and the Semantic
Web, describing the role of ontologies in each of them.

2.3.1 Information Retrieval

In an information retrieval (IR) application, ontologies are used to enable the usage of so-
called “semantic search” methods so that the system may return more relevant or more
precise results. Compared to common retrieval techniques, such as those based on statisti-
cal measures (word frequency analysis) or popularity rankings, an ontology-driven semantic
search aims at improving the precision and recall of a retrieval system by retaining a machine-
understandable representation of the concepts being searched for. On a technical level, the
usage of the ontology is twofold: on one hand, it provides a classification structure to index
the information items of a repository, be that the Web, or the corporate memory of an orga-
nization. On the other hand, it is used at run time in conjunction with reasoning services for
query rewriting and ranking purposes.

Among the most representative applications in the area of ontology-based information re-
trieval we can enumerate:

OBSERVER: uses ontologies to integrate existing data repositories into a global information
system for the Basque culture [144].

SHOE: applies ontologies to provide background knowledge that might help in disambiguat-
ing and interpreting the content of traditional Web sites [97].

OntoSeek: adopts a language of limited expressiveness for the description of structured in-
formation sources such as Yellow Pages or product catalogues and uses the Sensus
ontology [216] to improve the precision and recall of content-based retrieval [88].

XSEarch: uses XML-formalized ontologies to refine queries expressed in common XML
languages with a more richer representation of the application domain [40].

32



2.3 Application Scenarios for Ontologies

CORESE: is a Semantic Web search engine built upon conceptual graphs (CG) and RDF
[43]. It enables the processing of RDF Schema and RDF statements within the CG for-
malism and has been applied in a variety of application settings ranging from knowl-
edge management to eLearning and eHealth.23

2.3.2 Knowledge Management

Knowledge management solutions require ontologies in order to improve the accessibility
of information items constituting the corporate memory of an organization, be that by a
semantics-aware retrieval system or by integrating heterogeneous information systems [60,
159]. Further on, ontologies might be used as means to represent organizational knowledge
[159, 204]. The structure of an enterprize, its business sector, as well as the network of suppli-
ers, customers and partners, represented in ontological form, can be automatically integrated
to adapt general-purpose systems to the particularity of the organization (cf. for instance
the FRODO project [228]). Automatically generated knowledge portals are the most promi-
nent example in this respect (as illustrated for example in the DECOR project [1]). Further
prominent European initiatives with major industry involvement in this field are

On-To-Knowledge : aimed at developing methodologies, methods and tools which enable
the development and deployment of ontologies within and across enterprizes. In this
context ontologies are understood as a major pre-requisite for the alleviation of com-
monly known problems related to organizing and managing large heterogeneous infor-
mation repositories [46, 214].

CoMMA : uses agents and ontologies to implement a corporate memory [72]. Similar to
the previous projects ontologies are regarded not only as a technological means to
realize KM applications but also methodologically as a system-internal representation
of the corporate knowledge, which is collaboratively created and maintained by the
employees.

2.3.3 eCommerce

Ontologies and ontology-based applications are a promising alternative to existing B2C and
B2B solutions. While the role of ontologies in the B2C scenario is mainly related to meaning-
fully retrieving product information to interested customers, the B2B context needs ontology-
based technologies primarily for mediation purposes. They promote a common information
structure in form of pre-defined classifications of products, organizations, regions, services,
etc. and an agreed vocabulary for all market participants—a terminology for representing
products to be traded, and legal and financial constraints. Furthermore, as in other applica-
tion areas, ontologies might be an instrument to build more sophisticated services such as
product comparison, personalization etc. Among emerging eCommerce solutions realized on
the basis of ontology we mention:

ALICE: a personal Web shopping assistant that integrates a variety of knowledge sources to
customize the shopping experience to individual preferences [55].

23http://www-sop.inria.fr/acacia/soft/corese/index.html last visited in May, 2006

33



2 Ontologies and Ontology Engineering

CHEMDEX: a Web-based market maker for the life science research industry, which uses
an eCommerce ontology to create a uniform interface to product entries from various
catalogues and to enable advanced product search and comparison.24

MULECO: The Multilingual Upper-Level Electronic Commerce Ontology designed by the
CEN/ISSS Electronic Commerce Workshop describes high-level terms, which can be
used as inter-connection platform for more specific business ontologies.25

We now turn to an overview of the most recent and significant application scenario of
ontologies, the Semantic Web.

2.3.4 Semantic Web

The World Wide Web has caused a fundamental shift in the way we access information and
services. However, the current Web is aimed mostly at people—information can be found
in pages written in natural language and the functionality of many existing Web services
is described in human-readable form. The drawbacks of this situation become evident when
searching for precise information in a Web page—a case in which even the most sophisticated
information extraction and page indexing techniques provided by current search engines still
require exhaustive manual post-processing—or when complementary Web services have to
be combined for joint usage—in this case standard technologies, including recent approaches
in the areas of Web services discovery and composition, quickly reach their boundaries as
well.

The Web of the next generation, introduced by Tim Berners Lee under the name “Semantic
Web” [12], aims at dealing with such situations by augmenting its current information space
with formalized knowledge and structured data which can be processed by computers. Ac-
cording to the Merriam Webster Online Dictionary26 the word “semantic” is interpreted as
“of or relating to meaning in language”. In case of the Semantic Web the term indicates that
the meaning of the data on the Web can be made explicit or discovered not only by people,
but also by computers. The semantics of the Web information content and the terms and re-
quirements of Web service operation are represented formally and explicitly, are ubiquitously
available and can be exchanged and extended both by humans and machines across the Web.
In this way the Semantic Web enables computers to provide more help to people, being ben-
eficial for companies and for private persons in the same time; for the former, since they can
inter-operate with each other and supply integrated services, thus finding more customers,
and for the latter, since they are provided a more personalized and powerful framework to get
access to information and services.

In order for the Semantic Web to be realized, supporting standards and technologies are re-
quired for enabling machines to unambiguously “understand” the meaning of Web resources:

• Languages which are suitable to the open nature of the Web and allow a powerful and
efficient knowledge representation,

24http://www.chemdex.org/ last visited in May, 2006
25http://www.cenorm.be/isss/Workshop/ec/MULECO/Documents/Muleco_Documents.

htm last visited in May, 2006
26http://www.m-w.com/ last visited in May, 2006

34



2.3 Application Scenarios for Ontologies

• Ontologies to conceptualize shared views upon knowledge domains as well as means
to manage them, and finally

• Services bringing the benefits of the Semantic Web to its users.

These aspects are illustrated in the Semantic Web architecture, which is depicted in Figure
2.3.

Figure 2.3: High-Level Architecture of the Semantic Web [11]

The first steps towards the realization of the Semantic Web have been made in the last
decade through the standardization of a series of formal languages for the representation
of Web knowledge: RDF(S) [95], OWL [176] and SWRL [100], and through the increasing
dissemination of ontologies that provide a common basis for semantic annotation and support
automatic inferencing for knowledge generation. Recent efforts in the area of Web Services
propose methods and tools to represent Web Services in a Semantic Web-compatible manner
in order to improve tasks like automatic service discovery or composition [61, 120, 152, 165,
200].

The Semantic Web is built on XML-based syntaxes which use URIs to uniquely identify
Web resources. Resources can denote not only common Web documents, but any entity
represented within a computer system (e.g., persons, physical objects, RDF statements—see
the subsequent example) and are described by machine-processable metadata. Metadata is
a collection of RDF statements of the type 〈subject,predicate,object〉, where the three fields
can be individually referenced by means of URIs. This enables RDF to represent simple
statements about resources as a graph of nodes and edges representing the resources, and
their properties and values, respectively. We will illustrate the core RDF concepts and their
meaning with a simple example.

We can annotate the present thesis (if available as a Web document) with information
concerning its author, content etc. Examples of such statements could be:

1. Elena Paslaru Bontas is the author of this thesis
The same statement in RDF:
〈myschema:PhDThesis http://purl.org/dc/elements/1.1/author http://mywebpage/Elena〉

35



2 Ontologies and Ontology Engineering

The subject of this statement is this thesis, identified through the imaginary URI
myschema:PhDThesis. The predicate http://purl.org/dc/elements/1.1/author is part of
the Dublin Core metadata schema,27 a vocabulary for authoring information, and de-
notes a standardized property, while the object http://mywebpage/Elena, the value of
the property, represents the author Elena Paslaru Bontas.28

2. This thesis describes the context ontology
In RDF we could relate these two Semantic Web resources, the thesis and the ontology
it describes by means of the following statement:
〈myschema:PhDThesis http://purl.org/dc/elements/1.1/description
http://nbi.inf.fu-berlin.de/research/swpatho/context/context.owl〉

Again the predicate of the statement is part of the Dublin Core vocabulary, while the
value of the object is the URL locating the context ontology.

3. The email address of Elena Paslaru Bontas is “paslaru@inf.fu-berlin.de”
In RDF:
〈http://mywebpage/Elena myschema:mailto “paslaru@inf.fu-berlin.de”〉 The object in
an RDF statement can be another RDF resource—represented by an URI or a literal, a
simple XML-based datatype like in the present example—or a blank node (see below).

4. The contact address of the author is “Takustr. 9, 14195 Berlin, Germany”
Structured information like addresses can be represented in RDF in aggregated form,
by using so-called blank nodes, which denote anonymous resources, identified by au-
tomatically generated URIs:
〈http://mywebpage/Elena myschema:contact myschema:addressid1〉
〈myschema:addressid1 myschema:street “Takustr.”〉
〈myschema:addressid1 myschema:number “9”〉
〈myschema:addressid1 myschema:zip “14195”〉
〈myschema:addressid1 myschema:city “Berlin”〉
Here the URI myschema:addressid1 identifies an anonymous resource which aggre-
gates the address-related data.

5. The author of the statement “This thesis describes the ontology context ontology”
is Elena Paslaru Bontas
RDF applications sometimes need to say something about other RDF statements using
RDF, for instance, to record information about when statements were made, who made
them etc. In such cases RDF provides the reification mechanism, a means to obtain a
reference to an RDF statement and annotate it with additional information:
〈myschema:statement1 rdf:type rdf:Statement〉
〈myschema:statement1 rdf:subject myschema:PhDThesis〉
〈myschema:statement1 rdf:predicate http://purl.org/dc/elements/1.1/description〉
〈myschema:statement1 rdf:object http://nbi.inf.fu-berlin.de/research
/swpatho/context/context.owl〉

27http://dublincore.org/ last visited in May, 2006
28We consider that the person in her role as a thesis author is identified by her web page.

36



2.3 Application Scenarios for Ontologies

〈myschema:statement1 http://purl.org/dc/elements/1.1/author
http://mywebpage/Elena〉
Here we explicitly define an RDF statement as a resource in terms of its subject, pred-
icate and object. Being a Web resource, the RDF statement is assigned an URI, which
can be used to express further properties such as authorship.

To summarize the examples above, this RDF information can be represented in a graphical
form as depicted in Figure 2.4.

myscheme:PhDThesis

http://purl.org/dc/elements/1.1/author

http://mywebpage/Elena

http://purl.org/dc/elements/1.1/description

http://nbi.inf.fu-berlin.de/research/swpatho/context/context.owl

paslaru@inf.fu-berlin.de

myscheme:contact

myscheme:addressid1234myscheme:mailto

Takustr.

9

14195

Berlin

myscheme:street

myscheme:number

myscheme:zip

myscheme:city

myscheme:statement1234

rdf:Statement

rdf:type

rdf:subject

rdf:predicate

rdf:object

http://purl.org/dc/elements/1.1/author

myscheme:PhDThesis

http://purl.org/dc/elements/1.1/author

http://mywebpage/Elena

http://purl.org/dc/elements/1.1/description

http://nbi.inf.fu-berlin.de/research/swpatho/context/context.owl

paslaru@inf.fu-berlin.de

myscheme:contact

myscheme:addressid1234myscheme:mailto

Takustr.

9

14195

Berlin

myscheme:street

myscheme:number

myscheme:zip

myscheme:city

myscheme:statement1234

rdf:Statement

rdf:type

rdf:subject

rdf:predicate

rdf:object

http://purl.org/dc/elements/1.1/author

Figure 2.4: Graph Notation for RDF Annotations

RDF is considered to be the standard interchange format of the Semantic Web and is in-
tended to be used as a simple, yet powerful annotation language for Web resources. The
next layers in the Semantic Web language architecture add logically more expressive ontolo-
gies (e.g., OWL) and support for rules (for example SWRL [100]). RDF(S) and OWL are
used to formalize common vocabularies for metadata—OWL allows even equivalence defini-
tions between resources—thus increasing interoperability among applications. Besides, they
re-define Web resources in terms of classes and properties with a well-formed semantics,
which can be exploited by reasoners to generate implicitly formalized knowledge automati-
cally. OWL is divided into three sub-languages, in order to maximize the trade-off between
usability (with respect to expressivity) and computational properties (since more expressivity
is achieved only at the expense of feasible computational properties). For simple knowledge
representation tasks which involve classical subsumption, equivalence and restricted cardi-
nality axioms ontology engineers are provided with the OWL Lite language. This language
is expected to cover most of the expressivity needs in current Semantic Web applications,
while offering efficient computational support. The OWL DL language extends the expres-

37



2 Ontologies and Ontology Engineering

sivity of the former one, while still providing feasible properties as regards decidability. The
OWL Full language is compatible to RDFS, thus being extremely powerful with respect to
its expressivity, but it does not guarantee decidable computational features. OWL is comple-
mented by SWRL, a rule-based knowledge representation formalism, which adds even more
expressive power to OWL, but in the same time requires advanced reasoning capabilities to
deal with the twofold (i.e. Description Logics and Rules) representation paradigm induced
by OWL/SWRL knowledge bases.

We demonstrate the usage of ontologies and ontology representation languages by extend-
ing the previous example with additional information, which align the local vocabulary to
external ones, and provide a more precise specification of the underlying domain, thus en-
abling more powerful information retrieval in a fictive publication repository.

1. A PhDThesis is a special kind of Publication
Specialization and generalization hierarchies can be built in RDFS:
〈myschema:PhDThesis rdfs:subClassOf myschema:Publication〉
In this way a query looking for publications of a given author would match not only to
the documents which are explicitly defined (through annotations) as publications, but
also to specific publication types such as PhD thesis or conference article.

2. The concept “Publication” in the local schema is equivalent to the concept “Text”
in the Dublin Core Vocabulary Equivalence relationships between entities can be ex-
pressed in every of the three dialects of the OWL language:
〈myschema:PhDThesis owl:sameClassAs dc:Text〉
Aligning the personal ontology to a standard model such as Dublin Core is the first
step towards an increased syntactic and semantic interoperability. Ensuring syntactic
compatibility enables, just as in the previous example, more flexible retrieval services,
which are then able to go beyond a simple string matching-based functionality. The
semantic interoperability allows applications handling the local ontology to better un-
derstand the meaning of the corresponding concept (in this case the PhDThesis), since
the equivalence between concepts implies also an inheritance relationship by means
of which the local concept is enriched with the properties externally defined for its
equivalent.

3. Every PhDThesis has a unique Author
By means of OWL we can refine the meaning of the entities in an ontology, this im-
proving the knowledge background of the agents handling the modelled domain. For
example, one can extend the simple example above with domain-specific knowledge
such as the uniqueness of authoring. This enables agents to for example differentiate
between PhDThesis and other types of publications, which might be multi-authored.
This statement is formalized in OWL by defining the authoring property, which was
introduced above, as being functional:
〈http://purl.org/dc/elements/1.1/author rdf:type owl:FunctionalProperty〉
Note that this formalization does not imply that every PhDThesis is supposed to have
at least one author. This information can be formalized using the OWL restriction

38



2.3 Application Scenarios for Ontologies

owl:minCardinality:
〈myschema:PhDThesis rdfs:subClassOf myschema: x〉
〈 x rdf:type owl:Restriction〉
〈 x owl:onProperty http://purl.org/dc/elements/1.1/author〉
〈 x owl:minCardinality ”1” 〉
In particular the class PhDThesis is declared to be a sub-class of an anonymous restric-
tion class, which encompasses the desired additional information (i.e. the existence of
an author).

4. A PhDThesis consists of several Chapters The domain model is further refined in
order to define typical (physical or conceptual) parts of a thesis. As in the previous
example, extending the model supplies machines with deeper background knowledge
on the application domain, thus enabling advanced, domain-tailored behavior.
From a modeling point of view we introduce a new property part of which relates en-
tities to their parts:
〈myschema:PhDThesis myschema:part of myschema:Chapter〉
Modeling general-purpose relationships such as mereonimic ones is a topic with a long
tradition in knowledge representation. For exemplification purposes we restrict our-
selves to introducing a “symbolic” part-of relationship, which might be further speci-
fied or aligned to a standard model that rigorously defines such upper-level categories.
The information that a thesis has at least one chapter can be formalized using a cardi-
nality restriction as previously showed.

5. Every chapter is related to at least one Topic
We associate topics (e.g., from a commonly-used topic category such as ACM) to the-
sis chapters in order to enable content-based search in the publication repository:
〈myschema:Chapter:hasTopic acm:Topic〉

6. If a topic is relevant to a thesis chapter, then it is relevant for the thesis
The topic relevance is inherited along the part-of relationship from chapters to the com-
plete thesis. OWL, as many other idioms used in knowledge representation, is restricted
per default to is-a property propagation and subsumption reasoning, while additional
part-of-focused inference support is expected to be available on the client side. In order
to provide standardized, Web-compatible support for modelling this kind of informa-
tion, recent research initiatives propose the rule language SWRL [100], which extends
OWL with means to express deduction and dependency rules.

Despite their importance, the remaining layers of the Semantic Web are still at a much
more immature stage. Issues of proof and trust are vital to the success of the Semantic Web,
since one needs techniques to verify the quality and trustworthiness of the created metadata.
The proof layer (Figure 2.3) is intended to embed languages and tools to prove whether
statements created by arbitrary authors are true or not. The trust layer addresses the same issue
from a different perspective—it should define mechanisms which, in correlation with digital
signatures, enable the definition of provenance and reputation information for the resource
metadata.

39



2 Ontologies and Ontology Engineering

2.4 Summary

Chapter 3: Feasibility study

Chapter 4: Methodology

Chapter 5: 

Metadata 

Model

Chapter 6: 
Metadata-

based methods

Chapter 7: Tools

Chapter 9: Conclusions and Perspectives

Chapter 1: Introduction
Chapter 2: Ontologies and 

Ontology Engineering

Chapter 8: 

Evaluation

In this chapter we introduced the theoretical founda-
tions of our research. After an incursion in the field
of ontologies, we got closer to approaches describing
how these conceptual structures can be built, man-
aged, customized and reused. The last part of the
chapter gave an overview of the four application sec-
tors, which are expected to take benefit from using on-
tologies. In this context, we sketched the basic prin-
ciples of the Semantic Web, which promotes technolo-
gies for representing and using ontologies to create a
Web of machine-understandable information, and to
mediate between services across this network.

40


