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Chapter   6 
 

   RETRIEVAL OF OCEANIC CONSTITUENTS 
CONCENTRATIONS IN CASE II WATERS FROM 

MERIS  DATA 
 
6.1. Background 

As described in Chapter 1, there are two challenges for atmospheric correction which need 
to be resolved. One concerns the atmospheric correction over turbid waters, the other concerns 
the atmospheric correction for atmospheres with strong-absorbing aerosols over both clear and 
turbid waters.  

In Chapters 3 and 5, the oceanic constituents concentrations (CHL, SPM and CDOM) are 
successfully derived from ocean colour measurements at the sea level with ANN based on RT 
simulations. In this chapter, the same methodology is used to derive the oceanic constituents 
concentrations from ocean colour measurements at the top of atmosphere.  

In this study, the light field in the atmosphere-ocean system at top of atmosphere is 
simulated by the radiative transfer code MOMO. The inherent optical properties of the oceanic 
constituents are the same as used in Chapter 5. In the atmosphere, various aerosols are 
considered, including maritime, continental, soot, dust as well as H2SO4. The simulated light field 
at the top of atmosphere is taken as the training data set for the ANN used for the retrieval of 
oceanic constituents. Input to the ANN is the remote sensing reflectance and other auxiliary 
parameters. 

 
6.2. Simulated Data Sets 

In the frame of this thesis, simulated data sets are used to derive the algorithms for the 
retrieval of oceanic constituent concentrations from reflectances at top of atmosphere. The inputs 
of radiative transfer simulations: IOPs and vertical distributions of the constituents in ocean and 
atmosphere, are described in the following subsections.   

 
6.2.1. Atmosphere 

The following atmospheric constituents are considered: air (molecular scattering) and 
aerosols (scattering and absorption). Other atmospheric constituents (clouds, absorbing gases, 
rain) are neglected.  
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6.2.1.1. Rayleigh  Scattering 

The vertical profile of molecular scattering is taken from Elterman (1968). The total optical 
thickness at a specific pressure p is computed from the approximation given by Hansen and 
Travis (1974): 
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6.2.1.2. Aerosols  

The basic constituents of aerosols are the following:  
(a). oceanic particles (sea salt solution in water), 
(b). water soluble particles, 
(c). dust-like particles, 
(d). Asian dust particles, 
(e). soot particles, 
(f). sulphuric acid solution in water. 
Five aerosol models have been defined (listed in Table 6.1). The corresponding size 

distributions are listed in Table 6.2 [Shettle and Fenn, 1979; WCRP, 1986; Fukushima and 
Toratami, 1997]. 
 

Table 6.1 Aerosol models used in this study 

Aerosol model Constituent Proportion 
(%) 

Reference 

Maritime Rural aerosol mixtures (70% water 
soluble, and 30% dust-like particles) 
Oceanic 

99 
 
1 

Shettle and Fenn, 
1979 

Continental  Water soluble 
Dust-like 
Soot  

93.876 
2.27*10-4 
6.123 

WCRP, 1986 

Dust Asian dust 100 Fukushima  and 
Toratani, 1997 

Soot Soot 100 WCRP, 1986 

H2SO4 75% solution of sulphuric acid in water 100 WCRP, 1986 
 

The log-normal distribution is expressed as: 
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The modified Gamma function is expressed as: 
γα rbera

dr
rdN   )( −=                                                     (6.3) 

Here N(r) is the number of particles having radii smaller than r, rb represents the mode 
radius, and δ represents the standard deviation. 

Based on the above parameters, phase function (Figure 6.1), extinction coefficient (Figure 
6.2), and single scattering albedo (Figure 6.3) are computed from Mie theory. 

The vertical distribution of the aerosol is assumed as follows: 
(1). Boundary layer (0 ~ 2 km): maritime, soot, 
(2). Tropospheric layer (2 ~ 12 km): dust, continental 
(3). Stratospheric layer (12 ~ 50 km): H2SO4. 
 

Table 6.2   Size distributions of various aerosols used in this study 

Type Component Size distribution 

Log-normal  

r0 σ 

Rural_RH70 0.02846 2.238721 Maritime_1 

Oceanic_RH70 0.2041 2.511886 

Rural_RH80 0.03274 2.238721 Maritime_2 

Oceanic_RH80 0.3180 2.511886 

Rural_RH95 0.03884 2.238721 Maritime_3 

Oceanic_RH95 0.3803 2.511886 

Rural_RH99 0.05215 2.238721 Maritime_4 

Oceanic_RH99 0.7505 2.511886 

Water soluble 0.005 2.99 

Dust-like 0.5 2.99 

Continental 

Soot 0.0118 2.0 

Dust Asian dust 0.40 3.00 

Soot Soot 0.0118 2.00 

Gamma modified  

a α γ b 

H2SO4 75% H2SO4 324 1 1 18 
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6.2.2. Water 
The considered water constituents and their IOPs models are the same as those described in 

Chapter 4. The following assumptions for the radiative transfer simulations in ocean are made: 
 •   no vertical stratification of the ocean,  
 •  the ocean is of infinite depth, 
 • no inelastic scattering inside the water body (i.e. no Raman scattering, no chlorophyll-a 

fluorescence, no CDOM fluorescence). 

 
Figure 6.1. Phase functions of the aerosol models used in this study 

 

Figure 6.2. Normalised attenuation coefficients of the aerosol models used in this study 
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6.2.3. Sea Surface State 

The rough sea surface is considered. The effects of the air-sea interface on the light field are 
introduced in the radiative transfer simulations by applying the statistic model of the wave 
surface distribution by Cox & Munk (1954), assuming a gaussian distribution of waves and a 
variable wind speed. The wind direction is not considered. 

 
6.2.4. Ranges of  the Related Parameters 

Ranges of the oceanic constituent concentrations, optical thickness of various aerosols 
models at 550 nm, and other parameters used for the radiative transfer calculations are shown in 
Tables 6.3, 6.4 and 6.5, respectively.  

 
Figure 6.3. Single scattering albedo of the aerosol models used in this study 

The wavelengths used in this study (Table 6.6) are the same as MERIS’s wavelengths, but 
the following wavelengths are not included: 681.25 nm (chlorophyll fluorescence peak), 753.75 
nm (cloud), 760.6 nm (O2 absorption), 865 nm (water vapour reference), and 900 nm (water 
vapour absorption).  

 

Table 6.3 Ranges of  the oceanic constituents 

Variable Concentration unit Min Max 

Pigment mg/m3 0.05 50 

SPM g/m3 0.05 150 
ay(443) m-1 0.005 1.5 
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Table 6.4 Ranges of the atmospheric components 

Aerosol model Variable Min Max 

Maritime τa(550) 0.01 0.5 

Dust τa(550) 0.01 0.5 

Soot τa(550) 0.001 0.1 

Continental τa(550) 0.01 0.5 

H2SO4 τa(550) 0.005 0.005 

Total aerosol τa(550) 0.065 1.0 

 

Table 6.5. Ranges of geometric and other parameters 

Variable Unit Min Max 

Solar zenith angle (θs) degree 0.08 75.7 

Obv. zenith angle (θv)  degree 0 41 

Obv. azim. angle (φv)  degree 0 180 

Surface air pressure  (p) hPa 1000 1040 

Wind speed  (w) m/s 1 10 
 

Table 6.6  Spectral channels and their bandwidths used in this study 

MERIS  
Chan. No. 

1 2 3 4 5 6 7 9 12 14 

Center λ 412.5 442.5 490 510 560 620 665 709 779 885 

Bandwidth 10 10 10 10 10 10 10 10 15 10 
 

6.2.5. RT Simulations 

The concentrations of the oceanic constituents for the RT simulations were selected 
according to the procedures described in Chapter 5. The optical thickness of the aerosols, the 
pressure at sea level, as well as the wind speed were selected randomly within the ranges defined 
in Tables 6.4 and 6.5. The relative humidity of the maritime aerosol was randomly distributed 
among the four values 70%, 80%, 95% and 99%. 

Simulations of the remote sensing reflectance at the top of atmosphere were made for: 
•  14 solar zenith angles between 0.08° and 75.6°, 
•  9 observation zenith angles between 0° and 41.4°, 
•  25 observation azimuth angles between 0° and 180°, 
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•  10 wavelengths: 412.5, 442.5, 490, 510, 560, 620, 665, 709, 779 and 885 nm, 
• 2000 combinations of concentrations of three oceanic constituents, optical thickness of 

four aerosol models, pressures,  as well as wind speed. 
 

6.2.6. Creation of ANN Training Data Set  

Following the simulation strategy described in section 6.2.5, for each of 2000 combinations, 
there are 14×9×25=3150 spectra which correspond to different observation geometries. 
Therefore, we have 2000×3150=6300000 spectra which can be used for ANN training. In 
practice,  this number is too large to train ANNs due to limitations in memory and computing 
power. In this study, 20 of the 3150 spectra for each of the 2000 combinations were randomly 
taken as the training data. 

Through adding noise to synthetic training data, the robustness of the trained ANN with 
respect to noisy input data is increased. In the present study, measurement errors exist more or 
less in all input parameters, e.g., radiometric calibration errors. Thus, it is necessary to add the 
appropriate noise to the data set used for the training of the ANNs to resist these measurement 
errors. The noise levels for different input parameters used in this study are listed in Table 6.7. 

 
Table 6.7 The noise level added to training data inputs. The following acronyms are used: R1 to 
R10 represent the remote sensing reflectances at 10 wavelengths at TOA, ‘W’ represents the 
wind speed, ‘a’ represents the angles defined in Table 6.5, ‘P’ represents the pressure at sea level. 

Parameter R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 W a, P 

Noise (%) 0.1 0.2 0.3 0.3 0.5 0.6 0.7 0.8 1.1 1.6 10 0.5 

 
In order to reduce the complexity, a Rayleigh scattering correction was applied to the 

reflectance at the top of atmosphere. Here, no interaction between aerosol scattering and Rayleigh 
scattering was assumed. The algorithm for the Rayleigh scattering correction uses an ANN 
trained with radiative transfer calculations. The algorithm was developed according to the 
following procedures: 
 (1). Assuming black ocean and a rough sea surface for a pure Rayleigh atmosphere, 200 

simulations corresponding to 200 different air pressures within the range 900 hPa to 1040 hPa 
were made. 

 (2). 150 of the 200 simulations were used to train a MLP ANN, the other 50 simulations were 
taken as validation data. The ANN consists of three layers: input layer, one hidden layer and 
output layer. The input layer consists of 6 neurons which correspond to the following 
parameters: pressure at the sea level, wind speed, as well as four geometric parameters: µ, x, 
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y, z (see below). The hidden layer consists of 30 neurons. The output layer consists of 10 
neurons which correspond to remote sensing reflectances at TOA for 10 wavelengths. 

(3). The ANN forecasts of remote sensing reflectances due to the contribution of Rayleigh 
scattering at top of atmosphere were compared to the corresponding reflectances resulting 
directly from RT simulations. The comparison results were shown in Figure 6.4 for training 
data set and validation data set. As shown in Figure 6.4, the remote sensing reflectances from 
the contributions of the Rayleigh scattering at TOA can be successful derived by the trained 
ANN. 
 

6.3. Artificial Neural Networks 
6.3.1. Structure of the ANN for Retrieval of the Constituents 

In the present study, Multi-Layer Perceptrons (MLPs) ANN are used for the retrieval of the 
oceanic constituents from TOA data. The architecture of MLPs has been described in Section 2.4.  

The retrieval of the oceanic constituents is based on the information contained in 15 
parameters: Rayleigh-corrected remote sensing reflectances in 10 spectral channels at TOA: Rrs 
(412), Rrs(443), Rrsp(490), Rrs(510), Rrs(560), Rrs(620), Rrs(665), Rrs(709), Rrs(779), 
Rrs(885), wind speed, as well as the geometric parameters µ, x, y, and z, defined by Schröder 
(2003, personal communication): 

µ=cos(θs) 
x=sin(θv)cos(ϕ) 
y= sin(θv)sin(ϕ) 
z=cos(θv) 
A principal component analysis (PCA) was used to decorrelate all input parameters. As a 

result, the dimensionality of inputs to the ANN is reduced. 
The output layer consists of 4 neurons which correspond to three oceanic constituents 

concentrations (CHL, SPM and CDOM) and total aerosol optical thickness at 550 nm. The 
hidden layer consists of 50 neurons. 

 
6.3.2. Performance of the ANN-based Algorithm with Simulated Data 

6.3.2.1. Performance with respect to the training data 

40000 samples which have been generated according to the procedure described in Section 
6.2.7 were used to train the ANN. The ANN-derived parameters were compared to the 
corresponding parameters used as input for the radiative transfer simulations (Figures 6.5, 6.6, 6.7 
and 6.8 top of left panel for CHL, SPM, CDOM and τa(550), respectively). The calculated RMSE 
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and Pearson’s correlation coefficient are listed in Table 6.8. As shown in these figures and Table 
6.8, the inversion for the four parameters is successful with regard to the simulated training data. 

 

 
Figure 6.4. Scatter plot showing the performance of the ANN-based algorithm for the Rayleigh 
scattering correction. (A), (C) and (E) for the training data set at three wavelengths: 412 nm, 560 
nm and 885 nm, respectively. (B), (D) and (F) for test data set at the same wavelengths. 
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Table 6.8. Performance of the ANN-based algorithm for the retrieval of the oceanic constituents 

as well as the optical thickness of aerosols 

CHL SPM CDOM Aerosol Data set 

r2 RMSE 
(%) 

r2 RMSE 
(%) 

r2 RMSE 
(%) 

r2 RMSE 
(%) 

Train 0.926 73.1 0.956 48.6 0.895 65.4 0.961 13.1 

Test1 0.929 87.5 0.955 48.2 0.897 64.9 0.962 12.8 

Test2 0.936 61.2 0.963 41.7 0.916 84.7 0.933 16.8 

Test3 0.931 77.2 0.963 42.7 0.915 72.0 0.961 13.4 

Test4 0.928 73.9 0.965 44.1 0.907 64.9 0.940 16.5 

Test5 0.929 63.9 0.967 40.2 0.906 70.8 0.883 25.0 

Test6 0.924 73.5 0.966 42.1 0.910 73.2 0.961 15.0 

Test7 0.935 54.8 0.965 39.6 0.909 56.6 0.855 48.4 
 

6.3.2.2 Performance with respect to the test data 

In order to examine the performance of ANN-based algorithms for various atmospheric 
studies which may occur in the real environment, seven test data sets which correspond to 
different aerosol mixtures in the atmosphere were simulated (listed in Table 6.9). The inherent 
optical properties of the oceanic constituents used for simulations of test data sets are the same as 
used for the simulations of the training data set. Each test data set consists of 500 combinations of 
concentrations of three oceanic constituents, optical thickness of aerosols, air pressures, as well as 
wind speeds. The trained ANN was applied to these seven test data sets. The results are also, 
respectively, shown in Figures 6.5, 6.6, 6.7 and 6.8 for CHL, SPM, CDOM and τa(550), as well 
as listed in Table 6.8. Based on these results, the following conclusions can be drawn: 
 (1). With the trained ANN, the three oceanic constituents concentrations can be successfully 

derived from simulated reflectances at TOA for atmospheres ranging from weakly to strongly 
absorbing aerosols.  

 (2). With the trained ANN, the total optical thickness can be successfully derived for most cases 
except for TEST5 and TEST7. For both TEST5 and TEST7, the derived τa(550) is 
underestimated. TEST5 represents the most strongly absorbing aerosols, and TEST7 (Urban 
aerosol) is not included in the simulations of training data set. Although the retrieval of the 
total optical thickness for these two cases has a large error, it does not significantly impact the 
retrieval of  oceanic constituents concentrations. 
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Figure 6.5. Scatter plot showing the performance of the ANN-based algorithm for pigment 
retrieval: training data set (top left panel, TRAIN), test data sets for seven different atmospheres 
(TEST1~TEST7). The target pigment concentration designates the pigment concentration used as 
input to the RT simulations. The dashed lines indicate the factor 3 error margin. 
. 
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Figure 6.6. Scatter plot showing the performance of the ANN-based algorithm for SPM retrieval: 
training data set (top left panel, TRAIN), test data sets for seven different atmospheres 
(TEST1~TEST7). The target SPM concentration designates the SPM concentration used as input 
to the RT simulations. The dashed lines indicate the factor 3 error margin. 
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Figure 6.7. Scatter plot showing the performance of the ANN-based algorithm for CDOM 
retrieval: training data set (top left panel, TRAIN), test data sets for seven different atmospheres 
(TEST1~TEST7). The target CDOM absorption coefficient designates the CDOM absorption 
coefficients used as input to the RT simulations. The dashed lines indicate the factor 3 error 
margin. 
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Figure 6.8. Scatter plot showing the performance of the ANN-based algorithm for aerosol optical 
thickness retrieval: training data set (top left panel, TRAIN), test data sets for seven different 
atmospheres (TEST1~TEST7). The target aerosol optical thickness designates the aerosol optical 
thickness used as input to the RT simulations. The dashed lines indicate the factor 2 error margin. 
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Table 6.9. Aerosol mixtures for testing the performance of the trained ANN 

Test Data Aerosol Vertical Profile Test Data Aerosol Vertical Profile 

Test1 Maritime 
Soot 
Continental 
Asian dust 
H2SO4 

0~2 km 
0~2 km 
2~12 km 
2~12km 
12~50 km 

Test5 Maritime 
Soot 
H2SO4 

0~2 km 
0~2 km 
12~50 km 

Test2 Maritime 
H2SO4 

0~2 km 
12~50 km 

Test6 Maritime 
Asian dust 
H2SO4 

0~2 km 
2~12km 
12~50 km 

Test3 Maritime 
Continental 
H2SO4 

0~2 km 
2~12 km 
12~50 km 

Test7 Urban 
H2SO4 

0~2 km 
12~50 km 

Test4 Maritime 
Soot 
Asian dust 
H2SO4 

0~2 km 
0~2 km 
2~12km 
12~50 km 

   

 

6.4. Application to the MERIS Imagery  

MERIS (Medium Resolution Imaging Spectrometer) has been launched on board the earth 
observation satellite ENVISAT on March 1, 2002. It has the following main specifications: 
spatial resolution of 300 m in full resolution mode, revisit period of 2-3 days, 15 programmable 
spectral bands with high radiometric sensitivity. These specifications are very suitable for 
monitoring water properties in coastal waters.  

Two MERIS images were selected, which are located in the North Sea and the China Seas. 
Both the North Sea and the China Seas belong to Case II waters. The North Sea is greatly 
influenced by the Elbe, Weser, Ems, Rhine, and the Thames rivers. As a result, the concentrations 
of both SPM and CDOM are very high. Besides, the phytoplankton concentration is usually high 
due to a steady nutrient supply from the rivers and the atmosphere. The China Seas are greatly 
influenced by the discharge of Yellow River and Yangzi River. These two rivers are famous for 
their high SPM concentration: SPM values can exceed 100 mg/m3 at the estuary of the two rivers 
[Hu, 2000; Jiang et al., 2002; Wu et al., 2003]. Besides, aerosols over the China Seas are 
characterised by their high variability in type and concentrations because of the presence of Asian 
dust particles as well as soot which originates from the main land of China [Fukushima and 
Toratani, 1997; Li et al., 2002]. 
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The ANN-based algorithm described in Section 6.3 was applied to the two selected images 
(Figures 6.9 and 6.15). The pigment concentration, SPM concentration, CDOM absorption 
coefficient at 443 nm, and total optical thickness of aerosols at 550 nm have been calculated. The 
results for the North Sea are shown in Figures 6.10, 6.11, 6.12 and 6.13 for CHL, SPM, CDOM 
and  τa(550), respectively. The distribution of the derived parameters in the North Sea along a 
transect is depicted in Figure 6.14. Corresponding results for the China Seas are shown in Figures 
6.16, 6.17, 6.18 and 6.19. The distribution of the derived parameters in the China Seas along a 
transect is depicted in Figure 6.20. 

Since simultaneous in-situ measurements in these areas for the two selected images are not 
available, the derived results from the algorithm developed in this study can not directly be 
validated. Here, the following criteria to assess whether the derived results are reasonable. 
(1). A low covariance between the distributions of SPM and aerosols. 

By visual inspection, it becomes clear that the structures of the SPM distribution (Figure 6.11 
and 6.17 for the North Sea and the China Seas, respectively) are different from the structures 
of the aerosol distribution (Figure 6.13 for the North Sea, Figure 6.19 for the China Seas), 
except for the area of Subei shoal and the mouth of Yellow River in the China Seas, where the 
concentrations of SPM are very high. This phenomenon can also clearly be seen from the 
distributions of SPM and aerosol along the same transect (Figure 6.14 for the North Sea, 
Figure 6.20 for the China Seas).   

(2). The agreement of the distributions of the derived parameters with known distributions. 
In the southern North Sea, the structure of the SPM distribution  is very similar to that derived 
from CZCS imagery [Doeffer and Fischer, 1994]. A water band with high SPM concentration 
stretches from the Thames estuary at the southeast edge of Great Britain into the North Sea. 
Besides, CDOM shows the expected distribution in the mouth of the Elbe River, where a high 
CDOM band was found.  
In the China Seas, SPM distribution shows the expected pattern in the mouth of Yellow River, 
in the Subei shoal, in the centre of Yellow Sea, as well as in the Bohai Strait. In the mouth of 
Yellow River, SPM concentration is very high due to the discharge of inorganic particles. In 
the Subei shoal, SPM concentration is also very high due to the re-suspended sediments. The 
centre of Yellow Sea is very clear and SPM concentrations are frequently found to be less than 
0.5 g/m3 [Ahn et al., 2001]. In the strait of the Bohai Sea, SPM concentration is relatively low 
due to the influence of Yellow Sea, from which a band of low SPM concentration stretches 
into the Bohai Sea [Jiang et al., 2002]. CDOM distributions in the Bohai Sea and around the 
mouth of Yangzi River are also within the expected pattern. In the Bohai Sea, CDOM is 
always high due to the discharge of Yellow River and waste water from factories. Around the 
mouth of Yangzi River, input of riverine waters causes high CDOM concentrations. The CHL 
concentrations in the Bohai Sea and around the outer path of Yangzi River plume are typically  
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Figure 6.9. RGB image of MERIS above the North Sea (22 March, 2003). The black line 
indicates the transect used for further analysis. 
 

  
Figure 6.10. Pigment distribution derived from MERIS imagery for the North Sea (22 March, 
2003) 
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Figure 6.11. SPM distribution derived from MERIS imagery for the North Sea (22 March, 2003) 

 
Figure 6.12. CDOM distribution derived from MERIS imagery for the North Sea (22 March, 
2003) 
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Figure 6.13. Aerosol distribution derived from MERIS imagery for the North Sea (22 March, 
2003) 

 

Figure 6.14. Distributions of pigment, SPM, CDOM and aerosol derived from MERIS imagery 
for the North Sea along the specfic transect (22 March, 2003) 
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Figure 6.15. RGB image of MERIS above the China Seas (16 April, 2003). The black line 
indicates the transect used for further analysis 

 

Figure 6.16. Pigment distribution derived from MERIS imagery for the China Seas (16 April, 
2003) 
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Figure 6.17. SPM distribution derived from MERIS imagery for the China Seas (16 April, 2003) 

 
Figure 6.18. CDOM distribution derived from MERIS imagery for the China Seas (16 April, 
2003) 
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Figure 6.19. Aerosol distribution derived from MERIS imagery for the China Seas (16 April, 
2003) 

 

Figure 6.20. Distributions of pigment, SPM, CDOM and aerosol derived from MERIS imagery 
for the China Seas along the specfic transect (16 April, 2003). 
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higher than that in Yellow Sea. This distribution is also found in Figure 6.16. The range of 
derived SPM concentration is within the range known for the China Seas. The range of 
derived CHL concentration is also within the known range, except for the highly turbid waters. 
In the highly turbid waters, the derived CHL concentration is unreasonably high: around the 
Subei shoal and the mouth of Yangzi River, the derived CHL concentration exceeds 30 mg m-

3. In fact, although there is a rich nutrient supply in these areas, the availability of light is 
reduced due to the high SPM concentration. As a result, photosynthesis is reduced and the 
CHL concentration should be comparably low. The observed values in these areas are between 
0.1 ~ 10 mg m-3 [Hu, 2000].  

Judging from the above two criteria, the derived results seem to be reasonable except for 
the CHL retrieval in highly turbid waters of the China Seas. A possible reason for this is that the 
IOP models and the constraint conditions for the ranges of CHL, SPM and CDOM [Eq.(5.1) ~ 
(5.6)], used for development of the algorithm, are optimised for European waters. They may not 
be valid for some areas of the China Seas.  

 
6.5. Conclusion 

In this study, a methodology for the retrieval of three constituents from ocean colour at 
TOA above Case II waters have been derived. The retrieval method is derived by applying ANN 
techniques to a set of remote sensing reflectance spectra at TOA typical of Case II waters, which 
have been obtained from RT simulations.  

The ANN employed in this study is a MLP with three layers: one input, one hidden and one 
output layer. A bias parameter is added  both to the input layer and to the hidden layer. The input 
layer consists of 15 neurons which correspond to Rayleigh-corrected remote sensing reflectances 
of 10 wavelengths at TOA and other 5 auxiliary parameters. The hidden layer consists of 50 
neurons. The output layer consists of four neurons which correspond to the concentrations of 
CHL, SPM and CDOM, as well as the total optical thickness of aerosols.  

The ANN-based algorithm developed in this study seems to be a promising technique for 
the retrieval of oceanic constituents in Case II waters from ocean colour measurements at TOA. 
The examination of the performance of the ANN-based algorithm shows that it can deal with 
various atmospheres from weakly to strongly absorbing aerosols. Applied to the MERIS imagery 
of the North Sea and the China Seas, the results appears reasonable except for the highly turbid 
areas in the China Seas. Up to now, the algorithm has been tested for only a few images, and the 
validation is preliminary. In future, a more thorough validation of this algorithm using 
simultaneous in-situ measurements in different waters should be carried out. Besides, in order to 
optimise this method for the China Seas, precise information on the optical properties of oceanic 
constituents in the China Seas are required. 


