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Chapter 5  
 
RETRIEVAL OF OCEANIC CONSTITUENTS IN CASE II 

WATERS 
 
5.1 . Introduction 

Algorithms for operational retrieval of chlorophyll concentration in Case I waters from 
satellite ocean colour data are now available. These algorithms often fail in Case II waters. The 
following facts make the retrieval of oceanic constituents in Case II waters more difficult than in 
Case I waters: 

 (1). There are more constituents present in Case II waters. Ocean colour at any wavelength of 
interest can not be related directly to any one single constituent. 

(2). Some of the IOPs of the various constituents which influence ocean colour are similar. For 
example, the absorption spectra of both CDOM and non-chlorophyllous particles can be 
modelled by a similar exponential function; the absorption coefficients of phytoplankton 
and CDOM decrease both from about 440 nm to 550 nm. These phenomena may result in 
similar ocean colour for different combinations of the constituents concentrations. In these 
cases, ambiguities may result when retrieving the constituents concentrations from ocean 
colour.  

 (3). The compositions of exogenous particulate matter and exogenous CDOM in Case II 
waters vary strongly with time and region. This means that the IOPs of exogenous 
particulate matter and exogenous CDOM may greatly vary from time to time and region 
to region. 

 (4). There is strong scattering of SPM. If the concentrations of SPM is high, it dominates the 
water-leaving radiance and may overshadow the contributions of other constituents to the 
measured signal. 

In the following, a method is proposed for the retrieval of the oceanic constituent 
concentration in Case II waters, based on Artificial Neural Network (ANN) techniques. Input to 
the presented method is the spectral hemispherical reflectance just below the sea surface. A 
synthetic data set from radiative transfer simulations is used for the training of an ANN. As 
mentioned in Chapter 1, a prerequisite for this is that the Inherent Optical Properties (IOPs) of the 
water constituents required as input to the RT simulations are well representing the conditions to 
which the trained ANN is later on applied.  

As shown in Chapter 4, using a newly developed model of the back scattering probability for 
marine particles together with other bio-optical models developed from the COASTLOOC data 
set, the simulated hemispherical reflectance just below the sea surface agrees well with the 



 
 

                        

 

               52 
 
 
 
 

 

corresponding in-situ measurements. The IOPs models used herein are therefore deemed to 
satisfactorily represent the situation encountered in European coastal waters during the 
COASTLOOC campaigns. This justifies to use the synthetic data set as training data in this study. 

 
5.2. Data Sets 

There are two different kind of data used in this study: in-situ measurement and RT 
simulations. In both cases, the data sets relate hemispherical reflectance to the three oceanic 
parameters: pigment concentration, total suspended particulate matter concentration and the 
absorption coefficient of CDOM at 443 nm. Based on their individual role in this study, the three 
different data sets are referred to as: 
1. training data:  a synthetic data set obtained from RT simulations used to train the different 

ANNs, 
2. validation data: one part of the in-situ measurement data that have been used to develop the 

model of )(~ λbb . This data is used to evaluate the performance of each individual ANN and 
such to identify the most appropriate one with respect to the retrieval of specific oceanic 
constituents, 

3. test data : the other part of the in-situ measurement data. This data is used to assess in how far 
the ANN-based oceanic constituent retrieval scheme is applicable to independent data.  
These three data sets are described in more detail in the following. 
 

5.2.1. Training Data 

The synthetic data set used to train the ANNs for oceanic constituent retrieval was created 
using the computer code MOMO [Fell and Fischer, 2001]. The IOP models of the oceanic 
constituents are described in Chapter 4. Based on these models, the IOPs of sea water as required 
for the RTC can be obtained for given concentrations of oceanic constituents. 

It is well known that MLPs, the type of ANN used in this study, has good performance for 
interpolation, but should not be used for extrapolation. Therefore, it must be made sure that the 
ranges of the parameters in the training data cover the actual ranges observed in the marine 
environment of interest. In this study, the ranges of the three components are listed in Table 5.1. 

 
Table 5.1. Ranges of oceanic constituent concentrations 

Variable Concentration Unit Min Max 

CHL mg/m3 0.05 50 

SPM g/m3 0.05 100 

ay(443) m-1 0.005 1.0 
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When simulating the radiative transfer in Case II waters, it is often assumed that the 
concentration of each of the constituents is independent from the other constituents. However, as 
can be seen from Figure 5.1 displaying COASTLOOC measurements, there is a certain degree of 
covariance between SPM and CHL, CDOM and CHL, as well as CDOM and SPM also in Case II 
waters. For a given concentration of one constituent, the other two constituents vary no more than 
2 orders of magnitude. This fact may be used to greatly reduce the number of radiative transfer 
calculations used for the development of Case II algorithms. It allows to identify combinations of 
the oceanic constituents which are very unlikely to occur in the natural environment and therefore 
need not to be modelled. Again from the COASTLOOC data, upper and lower boundaries were 
defined for each constituent concentration in relation to the other constituents (sea also Figure 
5.1):      
 SPM against CHL: 

77.012.0)(_ CHLchllspm ×=                                                (5.1) 
77.089.5)(_ CHLchlhspm ×=                                               (5.2) 

 CDOM against CHL 
75.00079.0)(_ CHLchllccdom ×=                                         (5.3) 

  75.025.0)(_ CHLchlhccdom ×=                                            (5.4) 
 CDOM against SPM 

9.00063.0)(_ SPMspmlscdom ×=                                        (5.5) 
9.044.0)(_ SPMspmhscdom ×=                                          (5.6) 

The combinations of oceanic constituent concentrations used for radiative transfer 
simulations were selected according to the following steps. Here, a logarithmic distribution of the 
three oceanic constituent concentrations was applied, so that each order of magnitude is 
represented with a similar number of cases: 
(1). CHL is randomly selected within the range 0.05 and 50 mg /m3. 
(2). For the selected CHL, SPM is randomly selected between the lower and upper boundaries 

defined by Equations (5.1) and (5.2). 
(3). For the selected SPM, CDOM at 443 nm is selected between the lower and upper boundaries 

defined by Equations (5.3) and (5.4), as well as (5.5) and (5.6). 
 (4). Steps (1)~(3) are repeated until a sufficient number of combinations of the oceanic 

constituents has been generated. 
The objective of this approach is to potentially reduce the likelihood for ambiguous solutions 

for the retrieval of the three constituents by reducing the ranges of the constituent distributions.  
Based on the above strategy and using the IOP models defined in Chapter 4, simulations of 

the hemispherical reflectance just below the sea surface were made for: 
•  1000 combinations of three oceanic constituents, 
•  8 wavelengths: 411, 443, 490, 509, 559, 619, 665, 705 nm, 
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•  17 solar zenith angles between 0° and 87°. 
Besides, the same assumptions and simplifications were made as specified in Section 3.2. 
 

 
Figure 5.1. Scatter plots of SPM against CHL (top), CDOM absorption against CHL (middle), 
and CDOM absorption against SPM (bottom). All data set collected during the COASTLOOC 
cruises. 
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5.2.2. In-situ Measurement Data Sets  

The in-situ measurement data used in this study come from the following data sets: 
COASTLOOC (Coastal Surveillance Through Observation of Ocean Colour) [Babin, 2000], and 
PMNS (Particulate Matter North Sea) [Shimwell et al., 1995]. Detailed information on the 
COASTLOOC data set has been given in Chapter 4. 

During the PMNS programme [Shimwell et al., 1995], IOPs, AOPs and water quality 
parameters were measured in the southern North Sea during five cruises. This region is 
commonly described as the Rhine region of fresh water influence. The waters in this area are 
characterised as Case II waters. 

Table 5.2 provides more information on the in-situ measurement data sets chosen for this 
study. As shown in Table 5.2 (a) and (b), the selected in-situ measurement data sets are divided 
into two parts: validation data and test data. The validation data (which have been used to 
develop the back scattering model for marine particles in Chapter 4) consist of seven subsets of 
COASTLOOC data. The test data consist of the PMNS data and three subsets of the 
COASTLOOC data. The radiometric parameter specified in the COASTLOOC and PMNS data 
sets is the hemispherical reflectance just below the sea surface. All validation data set were 
obtained in Case II waters. The test data were partly obtained in CASE I waters, partly in Case II 
waters. Only chlorophyll concentration is available in the subset COAST_9. For the other 
subsets, the concentrations of all three oceanic constituents are available.  

 
5.2.3. Data Processing 

The in-situ data used in this study stem from different sources and differ in a number of 
details. The following processing procedures were applied in order to generate a consistent data 
set. 

 (1). Conversion of reflectance at 532 nm to 509 nm 
As shown in Table 5.2, some subsets contain data which are not available at some 

wavelengths. For subsets COAST_1, COAST_3, COAST_5, COAST_8 and COAST_9 there is 
no reflectance available at 509 nm, but at 532 nm. Subsets COAST_2, COAST_4, COAST_6 and 
COAST_7 contain reflectance measurements at both 509 nm and 532 nm. A statistical regression 
between the reflectances at these two wavelengths yields the following equation:  

 R(509)=-0.00523+0.779[R(532)]0.922                                                (5.7) 
                                  (r2=0.985, N=180) 

Hence, R(509) and R(532) are highly correlated. Therefore, Equation (5.7) was applied to 
derive the reflectances at 509 nm in subsets COAST_1, COAST_3, COAST_5, COAST_8, and 
COAST_9. 
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Table 5.2 (a) The characteristics of in-situ data sets 

Available concentration 
 

Data set N R Locations 
 

Water 
type CHL SPM ay(443)

COAST_1 35 R(0-) Adriatic Sea 2 yes yes yes 

COAST_2 57 R(0-) Baltic Sea 2 yes yes yes 

COAST_3 17 R(0-) English channel  2 yes yes yes 

COAST_4 51 R(0-) English channel 2 yes yes yes 

COAST_5 10 R(0-) North sea 2 yes yes yes 

COAST_6 64 R(0-) North sea  2 yes yes yes 

Valida-
tion data 

COAST_7 9 R(0-) North Sea 2 yes yes yes 

COAST_8 48 R(0-) Mediterranean Sea 2 yes yes yes 

COAST_9 34 R(0-) Mediterranean Sea 1 yes no no 

COAST_10 28 R(0-) Atlantic Ocean 1 yes yes yes 

Test 
data 

PMNS 131 R(0-) North Sea 2 yes yes yes 
 
 

Table 5.2 (b) The characteristics of in-situ data sets 

 Data set Wavelength of reflectance 

COAST_1 411 443 490 --- 532 559 619 665 705 

COAST_2 411 443 490 509 532 559 619 665 705 

COAST_3 411 443 490 --- 532 559 619 665 705 

COAST_4 411 443 490 509 532 559 619 665 705 

COAST_5 411 443 490 --- 532 559 619 665 705 

COAST_6 411 443 490 509 532 559 619 665 705 

Valida-
tion data 

COAST_7 411 443 490 509 532 556 --- 665 705 

COAST_8 411 443 490 --- 532 559 619 665 705 

COAST_9 411 443 490 --- 532 559 619 665 705 

COAST_10 411 443 490 509 532 556 --- 665 705 

Test data 

PMNS 412 443 490 513 --- 559 622 665 701 
 

 (2). Conversion of reflectance at 665 nm to 619 nm 
For subsets COAST_7 and COAST_10, the reflectance at 619 nm is not available.  A 

statistical regression between the reflectances at 619 nm and 665 nm in subsets of COAST_1, 
COAST_2, COAST_3 , COAST_4, COAST_5, COAST_6, COAST_8 and COAST_9 has been 
obtained,  expressed as: 
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 log[R(619)]=0.1106+0.957log[R(665)]                                    (5.8) 
                                               (r2= 0.991, N=315)  

R(619) and R(665) are also highly correlated. Thus, Eq. (5.8) was applied to derive the 
reflectance at 619 nm in subsets COAST_7, COAST_10. Since the correlation between R(619) 
and R(665) (r2= 0.963, N=315) is weaker than that between log[R(619)] and log[R(665)], the log 
scale was here used instead of the linear scale. 

(3). Conversion of the absorption coefficient of CDOM at 380 nm to 443 nm 
The PMNS data set indicates the absorption coefficient of CDOM at 380 nm instead of 443 

nm. The following equation was used to convert the absorption coefficient of CDOM from 
wavelength 380 nm to 443 nm [Bricaud et al., 1981]: 

)380( 1)380()443( −−
=

λyS
yy eaa ,                                            (5.9) 

where Sy=0.0176, and λ1=443 nm. 

 (4). Conversion of the chlorophyll-a concentration to pigment concentration 
The PMNS data set comprises the concentration of chlorophyll-a instead of the pigment 

concentration. The following relationship was used to convert from chlorophyll-a concentration 
to pigment concentration [O’Reilly et al., 1998]: 

0.983a] [34.1][ chlpigment ×=                                           (5.10) 

5.3. Retrieval of the Oceanic Constituents with ANN 
5.3.1. Artificial Neural Network 

In this study, the Multi-Layer-Perceptron (MLP) is used to approximate the relationship 
between ocean colour and the concentrations of the oceanic constituents in Case II waters. The 
theory of MLP is described in detail in Section 2.4. It consists of three layers: input layer, one 
hidden layer and output layer. A bias parameter is added both to the input layer and to the hidden 
layer.  

In this study, three different MLPs are used to retrieve pigment, SPM and CDOM separately, 
rather than using one single MLP to retrieve the three constituents at one time. Thus, in the output 
layer, there is one neuron which corresponds to one of the three constituents concentrations. 
Although more effort is required for the training process, it is of advantage to have one trained 
MLP for each constituent since it allows to individually optimise constituent retrieval (see 
Section 5.3.3).  

To determine which and how many spectral bands or band ratios are best suited for the 
retrieval of CHL, SPM and CDOM, 13 combinations of input data (listed in Tables 5.3, 5.4 and 
5.5, respectively, for the retrieval of CHL, SPM and CDOM) were tested. Of the 13 listed cases, 
the first four are combinations of absolute reflectance values at different wavelengths. The other 
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nine cases are combinations of reflectance ratios. The dimensionality of the input data determines 
the number of neurons in the input layer. 

The optimal number of neurons in the hidden layer depends on various factors. The 
determination of the number of neurons in the hidden layer is described below. 

 
5.3.2. ANN Training 

The performance of each of the algorithms based on the inputs listed in Tables 5.3, 5.4 and 
5.5 depends mainly on the following two parameters: neurons in hidden layer and noise level 
added to the training data set. The same procedures as described in Chapter 3 were used to 
determine the optimal number of hidden neurons and appropriate noise level. To find the optimal 
number of  hidden neurons, the performance of ANNs with 6, 12, 20, and 30 hidden neurons 
were tested. To determine the appropriate noise level, 10 %, 20 %, 30 %  and 40 % noise was 
added to the synthetic training data used as input.  

A synthetic data set for ANN training has been generated from the RT simulations outlined 
in Section 5.2. The synthetic data set is composed of 1000 hemispherical reflectance spectra, 
corresponding to 1000 combinations of three constituent concentration values.  

For each of the 13 input combinations listed in Tables 5.3, 5.4 and 5.5, there are five training 
data sets which correspond to five different noise levels of 0%, 10%, 20%, 30%, 40%, 
respectively, and four ANNs with 6, 12, 20, or 30 neurons in the hidden layer. These five training 
data sets were used to train the four different ANNs,  thus a total of 5×4 = 20 trained ANNs were 
obtained, which are the candidates of the corresponding algorithm.  

 
5.3.3. Determining ANN Architecture and Noise Adding for Optimal Oceanic 

Constituent Retrieval 
 

In order to find the ANN best suited for a specific oceanic constituent retrieval from all the 
candidate ANNs constructed as described in section 5.3.2, the ANN forecasts were compared to 
the ‘validation data’ by two error measures: root mean square error (RMSE) (defined in Section 
3.3) and the square of the Pearson’s correlation coefficient r2. The optimum number of hidden 
neurons and the appropriate noise level with regard to the above two error measures are also 
given in Tables 5.3, 5.4 and 5.5 for each of the retrieval algorithms of three oceanic constituents. 
From the results shown in Tables 5.3, 5.4 and 5.5, the following conclusions can be drawn:  
(1). Regarding the retrieval of pigment concentrations, the best results (lowest RMSE and highest 

r2) were obtained using the seven reflectance ratios as input (case No. 6 in Table 5.3). In this 
case, the r2 value is 0.729, and the RMSE value is 0.274. It is better than that of case No. 1 
(RMSE=0.285, and r2=0.707) which has highest performance of the cases using absolute 
reflectance value as input.  



 
 

                        

 

               59 
 
 
 
 

 

Table 5.3. Performance with regard to pigment retrieval of spectral band combinations used input to 
ANNs 

Training data 
(N=1000) 

Validation data 
(N=205) 

Case 
No. 

Input Neurons 
in 

Hidden 
layer 

Noise 
level 
(%) RMSE r2 RMSE r2 

1 R411, R443, R490, 
R510, R559, R619, 
R665, R705 

12 30 0.240 0.926 0.285 0.707 

2 R411, R443, R490, 
R510, R559, R619, 
R665, R705, θS 

6 40 0.268 0.905 0.288 0.702 

3 R411, R443, R490, 
R510, R559, R665 

6 30 0.280 0.898 0.292 0.705 

4 R412, R443, R490, 
R510, R559, R665, θS 

6 30 0.276 0.901 0.321 0.705 

5 R443/R411, R490/R411, 
R510/R411, R559/R411, 
R619/R411, R665/R411, 
R705/R411 

6 40 0.302 0.879 0.290 0.715 

6 R411/R443, R490/R443, 
R510/R443, R559/R443, 
R619/R443, R665/R443, 
R705/R443 

12 40 0.290 0.889 0.274 0.729 

7 R411/R490, R443/R490, 
R510/R490, R559/R490, 
R619/R490, R665/R490, 
R705/R490 

6 40 0.272 0.904 0.292 0.703 

8 R411/R559, R443/R559, 
R490/R559, R510/R559, 
R619/R559, R665/R559, 
R705/R559 

12 40 0.286 0.891 0.306 0.675 

9 R411/R665, R443/R665, 
R490/R665, R510/R665, 
R559/R665, R619/R665, 
R705/R665 

6 40 0.285 0.898 0.297 0.712 

10 R411/R443, R490/R443, 
R510/R443, R559/R443, 
R665/R443  

30 40 0.325 0.860 0.280 0.703 

11 R411/R559, R443/R559, 
R490/R559, R510/R559, 
R665/R559 

30 40 0.327 0.858 0.300 0.671 

12 R411/R665, R443/R665, 
R490/R665, R510/R665, 
R559/R665 

6 40 0.319 0.865 0.312 0.678 

13 R443/R559, R490/559, 
R510/R559 

6 40 0.396 0.793 0.321 0.605 
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Table 5.4. Performance with regard to SPM retrieval of spectral band combinations used input to 
ANNs 

Training data 
(N=1000) 

Validation data 
(N=218) 

Case 
No. 

Input Neurons 
in 

Hidden 
layer 

Noise 
level 
(%) 

RMSE r2 RMSE r2 
1 R411, R443, R490, 

R510, R559, R619, 
R665, R705 

6 0 0.0576 0.994 0.201 0.772 

2 R411, R443, R490, 
R510, R559, R619, 
R665, R705, θS 

6 0 0.0299 0.998 0.212 0.750 

3 R411, R443, R490, 
R510, R559, R665 

12 10 0.0726 0.991 0.215 0.756 

4 R411, R443, R490, 
R510, R559, R665, θS 

6 0 0.0268 0.999 0.223 0.739 

5 R443/R411, R490/R411, 
R510/R411, R559/R411, 
R619/R411, R665/R411, 
R705/R411 

6 20 0.239 0.903 0.242 0.654 

6 R411/R559, R443/R559, 
R490/R559, R510/R559, 
R619/R559, R665/R559, 
R705/R559 

12 20 0.221 0.916 0.244 0.660 

7 R411/R665, R443/R665, 
R490/R665, R510/R665, 
R559/R665, R619/R665, 
R705/R665 

6 20 0.222 0.916 0.225 0.693 

8 R443/R411, R490/R411, 
R510/R411, R559/R411, 
R665/R411, 

12 20 0.247 0.895 0.232 0.657 

9 R411/R559, R443/R559, 
R490/R559, R510/R510 
R665/R559, 

6 20 0.233 0.906 0.221 0.693 

10 R411/R665, R443/R665, 
R490/R665, R510/R665, 
R559/R665 

6 20 0.228 0.911 0.228 0.672 

11 R510/R665, R559/R665, 
R619/R665, R705/R665 

12 20 0.228 0.911 0.242 0.675 

12 R559/R510, R619/R510, 
R665/R510, R705/R510 

12 20 0.230 0.909 0.233 0.666 

13 R490/R619, R510/619, 
R559/R619 

12 20 0.245 0.897 0.244 0.630 
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Table 5.5. Performance with regard to CDOM retrieval of spectral band combinations used input 
to ANNs 

Training data 
(N=1000) 

Validation data 
(N=214) 

Case 
No. 

Input Neurons 
in 

Hidden 
layer 

Noise 
level 
(%) 

RMSE r2 RMSE r2 
1 R411, R443, R490, 

R510, R559, R619, 
R665, R705 

20 40 0.153 0.941 0.198 0.814 

2 R411, R443, R490, 
R510, R559, R619, 
R665, R705, 
θS 

30 40 0.154 0.940 0.200 0.818 

3 R411, R443, R490, 
R510, R559, R665 

30 40 0.160 0.936 0.183 0.830 

4 R412, R443, R490, 
R510, R559, R665, θS 

30 40 0.163 0.933 0.189 0.835 

5 R443/R411, R490/R411, 
R510/R411, R559/R411, 
R619/R411, R665/R411, 
R705/R411 

20 40 0.227 0.870 0.166 0.787 

6 R411/R490, R443/R490, 
R510/R490, R559/R490, 
R619/R490, R665/R490, 
R705/R490 

30 40 0.220 0.878 0.189 0.778 

7 R411/R559, R443/R559, 
R490/R559, R510/R559, 
R619/R559, R665/R559, 
R705/R559 

12 40 0.206 0.893 0.188 0.746 

8 R411/R665, R443/R665, 
R490/R665, R510/R665, 
R559/R665, R619/R665, 
R705/R665 

12 40 0.218 0.880 0.197 0.784 

9 R443/R411, R490/R411, 
R510/R411, R559/R411, 
R665/R411, 

12 40 0.206 0.892 0.167 0.807 

10 R411/R559, R443/R559, 
R490/R559, R510/R559, 
R665/R559 

6 40 0.217 0.881 0.169 0.786 

11 R411/R665, R443/R665, 
R490/R665, R510/R665, 
R559/R665 

20 40 0.222 0.875 0.201 0.774 

12 R443/R411, R490/R411, 
R510/R411, R559/R411, 
R619/R411 

30 40 0.208 0.891 0.165 0.809 

13 R443/R411, R490/R411, 
R510/R411, R559/R411 

6 40 0.225 0.872 0.161 0.790 
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 (2).  Regarding the retrieval of SPM concentrations, the performance of the ANNs using absolute 
reflectance values as input is significantly higher than that of ANNs using the reflectance 
ratios. The best results (lowest RMSE and highest r2) were obtained using the eight 
reflectances as input (case No. 1 in Table 5.4). In this case, the r2 value is 0.772, and the 
RMSE value is 0.201.  
Besides, the performance of case No. 1 and case No. 2 using eight reflectances as input is 
slightly better than that of case No. 3 and case No. 4 using six reflectances as input. This 
means that providing additional information at wavelengths of 619 nm and 709 nm can 
improve the accuracy of the SPM concentration retrieval.  

(3).  Regarding the retrieval of CDOM absorption, there is no significant difference of the ANNs 
performance between using absolute reflectance values and the reflectance ratios as input. 
The lowest RMSE was obtained in case No. 13 (in Table 5.5) using the four reflectance 
ratios as input (RMSE=0.161, and r2=0.790), while the highest r2 was obtained in case No. 4 
using six reflectances plus solar zenith angle as input (RMSE=0.189, and r2=0.835). By a 
comprehensive consideration, case No. 4 was taken as the best case for the retrieval of 
CDOM absorption.  
Besides, the performance of case No. 3 and case No. 4 using six reflectances as input is 
slightly better than that of case No. 1 and case No. 2 using eight reflectances as input. This 
means that providing additional information at wavelengths of 620 nm and 709 nm does not 
improve the accuracy of the CDOM absorption retrieval, but in contrast reduces it. The 
reason for this is that the reflectances at 620 nm and 709 nm are highly correlated with the 
reflectance at 665 nm, and the information of the reflectance at 665 nm  is sufficient for the 
retrieval of CDOM. Using noisy information at these wavelengths (620 nm and 709 nm) 
will therefore increase the error of the retrieval CDOM absorption coefficient. 

(4).  It has been shown in Chapter 3 that the performance of pigment retrieval algorithms based 
on ratio input are much better than that of algorithms based on absolute reflectance input in 
Case I waters. The reason is that spectrally correlated noise is partly cancelled out through 
division of the reflectances at two wavelengths. From the results of this chapter, however, 
the algorithm best suited for the retrieval of pigment concentration uses the reflectance 
ratios as input, while the algorithms best suited for the retrieval of SPM and CDOM use the 
absolute reflectance values as input. The observed behaviour may be explained in the 
following way. The absorption spectra of CDOM as well as SPM are characterised as an 
exponential function. Thus, the contribution of CDOM absorption or SPM absorption to the 
reflectance for different channels acts as a similar way. Therefore, through the division of 
the reflectances at two wavelengths, on the one hand, the spectrally correlated noise can be 
partly cancelled out, on the other hand, some useful information for the retrieval of CDOM 
or SPM may also be partly removed. However, the absorption spectra of the pigment are 



 
 

                        

 

               63 
 
 
 
 

 

characterised by significant difference over the whole spectral domain. Therefore, the 
contribution of the pigment absorption to the reflectance may not be significantly reduced 
through division of the reflectances at two wavelengths, while only the spectrally correlated 
noise can be partly removed. 

(5).  For each of the retrieval of the three constituents, the noise levels added to training data set 
are significantly different for optimal retrieval of three oceanic constituents. To sum up, the 
optimal retrieval of SPM requires little noise added to training data set. However, the 
optimal retrieval of CHL and CDOM requires more noise added to the training data set. The 
reason behind the observed behaviour may be as follows. The concentration of SPM is 
much more sensitive to the variation of reflectance spectra than that of the other two 
constituents, because of its strong scattering. Therefore, the number of the training cases 
required for retrieval of SPM is relative small. While pigment concentration and absorption 
coefficient of CDOM are less sensitive to the variation of reflectance spectra, because of 
influence of the strong scattering of SPM, as well as their influence from each other. 
Therefore, the number of the training cases required for the retrieval of pigment and CDOM 
is relative large. In principle, a sufficiently large set of training cases is necessary to get a 
good generalisation. If there are no enough number of training cases, a good generalisation 
can also be obtained by adding an appropriate noise level to the training data set. This 
technique has been commonly used to reduce the effort of the creation of training data and 
ANN training process. Generally speaking, the less training cases are available, the more 
noise is needed. In this study, 1000 training cases for retrievals of all three constituents were 
used. Therefore, the noise level adding to training data set for the optimal retrieval of 
pigment and CDOM should be larger than that for the optimal retrieval of SPM. 

 
5.4. Evaluating the Performance of the ANN-based Oceanic 

Constituents Retrieval Algorithms 
 
5.4.1. Assessing the Performance of the Trained ANN 

The potential of the selected optimal ANNs (listed in Table 5.6) for each of three constituents 
from real measurements is assessed in three steps by applying it a) to the synthetic data (“training 
data”) used for the ANN training, b) to “validation data” used to determine the ANN architecture 
and noise level to be added to the input data, and c) to “test data” which have not been used for 
the ANN development.  

(1). Performance with respect to the training data 
The ANN forecasts of each individual oceanic constituent concentration based on the 

simulated hemispherical reflectance are compared to the corresponding oceanic constituent 
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concentrations used as input for the RT simulations. As shown in Table 5.6, as well as in Figures 
5.2 (A), 5.3 (A) and 5.4 (A), respectively, for CHL, SPM, and CDOM, the inversion is successful 
with regard to the synthetic training data set.  

 
Table  5.6. Performance of the selected optimal ANNs for the retrievals of three oceanic 

constituents 
Training data 

N=1000 
Validation data 

N=205 
Test data 
N=163 

Consti-
tuent 

Input Neurons 
in 

Hidden 
layer 

Noise 
level 
(%) RMSE r2 RMSE r2 RMSE r2 

CHL R411/R443, 
R490/R443, 
R510/R443, 
R559/R443, 
R619/R443, 
R665/R443, 
R705/R443 

12 40 0.290 0.889 0.274 0.729 0.339 0.860 

SPM R411, R443, 
R490, R510, 
R559, R619, 
R665, R705 

6 0 0.0576 0.994 0.201 0.772 0.338 0.910 

CDOM R411, R443, 
R490, R510, 
R559, R665, θS 

30 40 0.163 0.933 0.189 0.835 0.279 0.769 

 

 (2). Performance with respect to the validation data 
In a second step, the ANNs for the retrieval of the different constituent retrievals are applied 

to the ‘validation data’ consisting of in-situ measurements. The retrieval results for pigment, 
SPM and CDOM are also listed in Table 5.6. The results are depicted in Figures 5.2 (B), 5.3 (B) 
and 5.4 (B) for CHL, SPM and CDOM, respectively. The concentrations of the three constituents 
derived from the ‘validation data’ agree well with the corresponding in-situ measurements. This 
is not surprising, since the ’validation data’ have a) been used to derive the back scattering model 
for marine particles used for the RT simulations (see Chapter 4), and b) been selected to identify 
the most appropriate ANN architecture and noise level.  

 (3). Performance with respect to the test data 
In a third step, the ANNs for the retrieval of the different constituents are applied to the 

second set of in-situ measurement data set (‘test data’). The retrieval results for pigment, SPM 
and CDOM are also listed in Table 5.6. The results are depicted in Figure 5.2 (C), 5.3 (C) and 5.4 
(C) for CHL, SPM and CDOM, respectively. Satisfactory performance is observed even though 
the ‘test data’ are totally independent from the ‘validation data’ and have not been used in any 
respect for the development of the ANN.  
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Figure 5.2. Scatter plot showing the performance of the ANN-based pigment retrieval algorithms 
for the synthetic training data set (A), validation data set (B), and test data (C). The dashed lines 
indicate the factor 2 error margin. 
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Figure 5.3. Scatter plot showing the performance of the ANN-based SPM retrieval algorithms for 
the synthetic training data set (A), validation data set (B), and test data (C). The dashed lines 
indicate the factor 2 error margin. 
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Figure 5.4. Scatter plot showing the performance of the ANN-based CDOM retrieval algorithms 
for the synthetic training data set (A), validation data set (B), and test data (C). The dashed lines 
indicate the factor 2 error margin. 
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5.4.2. Comparison with Existing Retrieval Algorithms 

In order to further evaluate the performance of the trained ANNs, it was compared to the 
PMNS empirical algorithms listed in Table 5.7(a), (b) and (c). The PMNS algorithms [Shimwell 
et al., 1995] were developed for the retrieval of CHL, SPM and CDOM retrieval, and are based 
on data collected in the southern North Sea. For each of three constituents, there are two retrieval 
algorithms based on different band ratios. These algorithms were applied to the reflectance data 
from the ‘validation data’ and ‘test data’. The performance of the algorithms for the three 
oceanic constituents is also given in Table 5.7(a), (b) and (c). The ANN has the highest r2 and 
lowest RMSE of all compared algorithms for the three constituents. The relative success of the 
ANN-based retrieval is partly explained by the fact that the underlying IOP models represent the 
in-situ measurement data well. Further reason is that it uses more spectral information than do the 
empirical algorithms PMNS.  

 
Table 5.7 (a). Performance of the ANN-based pigment retrieval algorithms as compared to the PMNS 

algorithms 

Validation data Test data Name of 
algorithm 

Algorithm form 

RMSE r2 N RMSE r2 N 

PMNS_1 3.4*[R(510)/R(560)] –3.65 0.369 0.575 205 0.505 0.753 163 

PMNS_2 22.3*[R(665)/R(705)] –2.85 0.441 0.351 205 0.713 0.630 163 

ANN ANN 0.274 0.729 205 0.339 0.860 163 
 

Table 5.7 (b). Performance of the ANN-based SPM retrieval algorithms as compared to the PMNS 
algorithms 

Validation data Test data Name of 
algorithm 

Algorithm form 

RMSE r2 N RMSE r2 N 

PMNS_1 12.4*[R(412)/R(665)] –1.0 0.741 0.588 218 0.390 0.855 138 

PMNS_2 53.1*[R(560)/R(620)] –2.58 0.517 0.681 218 0.433 0.741 138 

ANN ANN 0.201 0.772 218 0.338 0.910 138 
 

Table 5.7 (c). Performance of the ANN-based CDOM retrieval algorithms as compared to the PMNS 
algorithms 

Validation data Test data Name of 
algorithm 

Algorithm form 

RMSE r2 N RMSE r2 N 

PMNS_1 0.76*[R(490)/R(665)] –0.83 0.396 0.694 214 0.450 0.764 138 

PMNS_2 0.72*[R(520)/R(620)] –1.05 0.407 0.714 214 0.490 0.700 138 

ANN ANN 0.163 0.835 214 0.279 0.769 138 
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5.5. Conclusions 
In this study, a methodology for the retrieval of three constituents from ocean colour in 

Case II waters have been derived. The retrieval method is derived by applying ANN techniques 
to a set of hemispherical reflectance spectra typical of Case II waters, which have been obtained 
from RT simulations.  

Three ANN-based algorithms were obtained in this study for the retrievals of  CHL, SPM 
and CDOM, respectively. Each individual ANN has three layers: one input layer, one hidden 
layer and one output layer. A bias parameter is added both to the input layer and to the hidden 
layer. The output layer consists of one neuron which corresponds to one of the three constituent 
concentrations. The number of neurons in the input layer and in the hidden layer which was 
determined in terms of the optimal retrieval of constituents is different for these algorithms. For 
the optimal retrieval of pigment, the ANN has seven neurons in the input layer corresponding to 
the seven reflectance ratios, and 12 hidden neurons. For the optimal retrieval of SPM, the ANN 
has eight neurons in the input layer corresponding to the eight reflectances, and 6 hidden neurons. 
For the optimal retrieval of CDOM, the ANN has seven neurons corresponding to six reflectances 
and solar zenith angle, and 30 hidden neurons. 

Applying the three trained ANNs either to the validation data, or to the test data which have 
not been used to derive the back scattering probability model of marine particles used for the RT 
simulations, the results for the retrieval of all three constituents are satisfactory. For example, for 
retrieval of pigment concentration, applying the algorithm to the validation data gives a 
correlation between predicted and measured pigment concentrations of r2 = 0.729 and RMSE = 
0.274; applying it to the test data, results in r2 = 0.860 and RMSE = 0.339. For the retrieval of 
SPM concentration, applying the algorithm to the validation data gives a correlation between 
predicted and measured pigment concentrations of r2 = 0.772 and RMSE = 0.201; applying it to 
the test data, results in r2 = 0.910 and RMSE = 0.338. For the retrieval of CDOM, applying the 
algorithm to the validation data gives a correlation between predicted and measured pigment 
concentrations of r2 = 0.835 and RMSE = 0.189; applying it to the test data, results in r2 = 0.769 
and RMSE =  0.279.  

The performance of the ANN-based retrieval scheme is generally better than that of the 
empirical algorithms PMNS. For example,  for the retrieval of pigment concentration, applying 
the PMNS algorithm PMNS_1 to the test data set gives r2 = 0.753, and RMSE = 0.505 as 
compared to r2 = 0.860 and RMSE = 0.263 for the ANN-based algorithm. For the retrieval of 
SPM concentration, applying the PMNS algorithm PMNS_1 to the test data set gives r2 = 0.855, 
and RMSE = 0.390 as compared to r2 = 0.910 and RMSE = 0.338 for the ANN-based algorithm. 
For the retrieval of CDOM, applying the PMNS algorithm PMNS_1 to the test data set gives r2 = 
0.764, and RMSE = 0.450 as compared to r2 = 0.769 and RMSE = 0.262  for the ANN-based 
algorithm.  


