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Chapter 1  
 

  INTRODUCTION 
 
1.1. Background 

Chlorophyll, suspended particulate matter and coloured dissolved organic matter are 
optically significant constituents in ocean which can be detected from ocean colour measurement. 
Chlorophyll as the most important photosynthetic pigment is an index of phytoplankton biomass 
which acts as the first link in the marine food chain. As a result, it plays a key role in the ecology 
of the marine ecosystem, and changes in their patterns of distribution and abundance can have 
significant impact on the entire ecosystem. In addition, Phytoplankton have a major role in the 
global carbon cycle [Falkowski, 1994]. During photosynthesis, phytoplankton remove carbon 
dioxide from sea water, and release oxygen as a by-product. Transport of suspended particulate 
matter (SPM) determines the evolution of the coastline, the deposition and erosion of the beaches 
and is thus a process of primary importance in coastal engineering. Besides, SPM is an important 
factor determining water quality. Its presence affects water quality by reducing the light available 
to aquatic vegetation and by providing a substrate for the transport of phosphate, ammonium, 
heavy metals, and some pathogenic bacteria [Luoma, 1989]. Coloured dissolved organic matter 
(CDOM) represents the optically active fraction of the bulk dissolved organic matter (DOM). 
CDOM in marine environment, especially in estuaries and the coastal area, where the 
concentration of CDOM is high, plays an important role in a number of biological and chemical 
processes [Mopper et al., 1991; Siegel et al., 1996, 2002; Moran et al., 1997], including global 
carbon cycling, functioning of microbial food webs, and penetration of sunlight into seawater.  

In marine water studies, satellite remote sensing represents the most suitable technique for 
large-scale, long-term and continuous monitoring of bio-geochemical or physical parameters. 
Ocean colour remote sensing is an important technique to obtain the optical properties and 
oceanic constituents in the upper ocean layer. In the past twenty years, especially in the recent 
years, a number of ocean colour sensors have been launched [IOCCG, 2003]. The CZCS (1978-
1986) is the earliest of all ocean-colour satellite sensors. Next, a series of increasingly-
sophisticated instruments, such as MOS (DLR, Germany), OCTS (NASDA, Japan), POLDER 
(CNES, France), SeaWiFS (NASA, USA), MODIS (NASA, USA), MISR (NASA, USA), OCM 
(ISPO, India), GLI (NASDA, Japan), OSMI (KARI, Korea), COCTS (CNSA, China), MERIS 
(ESA, Europe), and POLDER-2 (CNES, France), have been launched between 1996 and 2002. 
More ocean colour instruments are scheduled to be launched in the future, such as S-GLI 
(NASDA, Japan) and VIIRS (USA).  
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In general, ocean colour remote sensing is one of the passive remote techniques. The sensor, 
mounted on a satellite, an aircraft or other remote platform, detects the radiometric flux at several 
selected wavelengths in the visible and near-infrared domains. The signal received by the sensor 
is determined by different processes in the water, as well as in the atmosphere (as shown in 
Figure 1.1). 1. scattering of sunlight by the atmosphere, 2. reflection of direct sunlight at the sea 
surface, 3. reflection of sunlight at sea surface, and 4. light reflected within the water body. Only 
the portion of the signal originating from the water body contains information on the water 
constituents; the remaining portion of the signal, which takes up more than 80 % of the total 
signal, has to be assessed precisely to extract the contribution from the water body [Morel, 1980].  

There are two strategies to derive oceanic constituents from the signal of ocean colour sensor 
at top of atmosphere (TOA), a one-step method and a two-step method. For the traditionally used 
two-step method, the water leaving radiance (or reflectance) is firstly derived from the signal at 
TOA (this procedure is called ‘atmospheric correction’), and then oceanic constituents are 
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Figure 1. Sketch of different origins of light received  by space-borne sensor 
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retrieved from water leaving radiance (or reflectance). For the one-step method, oceanic 
constituents are directly derived from the signal at TOA. Since the one-step method has good 
performance for dealing with strongly absorbing aerosols, it has been paid more attentions 
recently [Gordon et al., 1997; Chomko and Gordon, 1998; Li et al., 2002]. The one-step method 
assumes that radiative transfer in the ocean and atmosphere is coupled. The oceanic constituents 
and aerosol properties are simultaneously derived from satellite measurements at TOA by using 
the entire spectrum available to ocean colour instruments. In this thesis, the focus is on two 
issues: a) to retrieve oceanic constituents from ocean colour measurements at sea level, b) to 
retrieve oceanic constituents from ocean colour measurements at top of atmosphere with the one-
step method. 

 
1.2. Retrieval of Oceanic Constituents from Ocean Colour 

Measurements at Sea Level 
 

There are three major issues in the retrieval of oceanic constituents from ocean colour: 
∙ How to quantify the relationship between optically significant oceanic constituents  and 

inherent optical properties (IOPs) ? 
∙    How do IOPs  determine ocean colour ? 
∙ How to obtain oceanic constituents from ocean colour measurements ? 
The first two issues are the so called ‘forward problem’, and the last issue is the so called 

‘inverse problem’.  
 

1.2.1. The Forward Problem 

The forward problem is solved by radiative transfer theory. Radiative transfer theory 
describes the relationship between the IOPs of the oceanic constituents and the ocean colour. 
Based on radiative transfer theory, two different approaches relating the ocean colour to IOPs 
have been developed: one analytical and one numerical. The mostly used analytical expression 
relates the hemispherical reflectance R just below the sea surface to the absorption coefficient a 
and back scattering coefficient bb and was introduced by Gordon and Brown (1973): 

b

b
ba

bfR
+

=                                                                  (1.1)  

The proportionality factor f varies between approx 0.3 to 0.5, depending on the ambient light 
field and the optical properties of water [Morel and Gentili, 1993].  

Another analytical expression relating the remote sensing reflectance to the IOPs of oceanic 
constituents was derived by Lee et al. (1994): 
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where t is the transmittance of the air-sea interface, Q is the upwelling irradiance-to-radiance 
ratio, which is a function of the solar zenith angle and optical properties of water [Morel and 
Gentili, 1993], and n is the real part of the refractive index of seawater. 

The numerical approach is based on simulations of radiative transfer. It allows to include all 
factors determining the ocean colour, i.e. IOPs, rough sea surface, observation geometry, inelastic 
scattering processes, etc. and has a potential for the development of more advanced retrieval 
methods. Another advantage is to avoid errors due to eventually poor approximation of the factor 
Q and the parameter f. 

A prerequisite for the numerical approach is the availability of bio-optical models relating 
IOPs and the actual constituents concentrations. These models are statistical expressions which 
are built up from concomitant in-situ measurements of IOPs and the corresponding constituents. 
Although the development of IOP models has made progress in recent years, there are still some 
of them whose accuracy is not sufficient for the development of oceanic constituents retrieval 
methods. The state-of-art in bio-optical modelling is as follows :  
(a) some bio-optical models have been obtained from large global data sets, e.g., the absorption 

coefficients of phytoplankton [Bricaud et al., 1995; Bricaud et al., 1998] and CDOM 
[Bricaud et al., 1981] in the open ocean, as well as the scattering coefficient of 
phytoplankton and associated particles [Gordon and Morel, 1983; Loisel and Morel, 1998] 
also in the open ocean. 

(b). Some bio-optical models have been developed for specific seas, e.g., the absorption 
coefficients of particles and CDOM, as well as the particles scattering coefficient in 
European coastal waters [Babin, 2000].   

 (c). Models for the phase function or the back scattering probability of marine particle in Case I 
waters are available [Zhang et al., 2003]. For Case II waters, such generic models are not 
available. It is one aim of this thesis to contribute to the development of a phase function 
model for Case II waters.  
 The uncertainties of bio-optical models are one of the major causes for errors of the retrieval 

of oceanic constituents.    
 

1.2.2. The Inverse Problem 

The determination of the oceanic constituents from ocean colour is a parameter estimation 
problem, where a set of parameters C = {ci, i = 1, ..., I} are estimated from a set of measurements 
R = {rj, j = 1, ..., J}. The functional relationship between measurements and parameters can be 
expressed as: 
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 R = g(C) .                                                           (1.3) 
Inverting Equation (1.3), one obtains the set of parameters C from the set of measurements 

R: 
 C = g –1(R) .                                                            (1.4) 

In the frame of this thesis, C represents three different oceanic constituents: pigment, 
suspended particulate matter and coloured dissolved organic matter, while R is either the remote 
sensing reflectance, defined as the ratio of water leaving radiance to downwelling irradiance or 
the hemispherical reflectance, defined as the ratio of upwelling to downwelling irradiance, at sea 
level in J spectral channels.  

If g would be a linear function, one could derive the inverse function g–1, and such obtain the 
oceanic constituents from the measured spectral reflectance. However, the functional relationship 
between the oceanic constituents and the resulting reflectance is complex and non-linear. It is 
therefore mostly impossible to achieve an analytic inversion of g. The traditional way to 
overcome this problem is to make assumptions on the functional form of g–1 and then to solve 
Equation (1.4) by regression techniques or other statistical methods. However, it is often difficult 
to find the most appropriate functional form for g–1, which has direct implications on the accuracy 
of the retrieved constituent concentrations. In order to derive the oceanic constituents, a number 
of  methods have been developed. 

Based on statistical regression techniques, several representations of g–1 have been developed 
for Case I waters [see compilation in O'Reilly et al., 1998]. These empirical algorithms relate the 
water leaving reflectance at two or more wavelengths to the pigment concentration. They are still 
taken for the most successful operational methods to derive the oceanic constituents in Case I 
waters [O'Reilly et al., ibid]. But they are not valid for Case II waters.  

A number of algorithms have been derived from Equation (1.1) and (1.2), using different 
inverse techniques. Carder et al. [1999] used an algebraic method to derive chlorophyll 
concentration.  Bukata et al. [1981], Roesler and Perry [1995], Garver and Siegel [1997] and Lee 
et al., [1999] applied a non-linear optimisation method as the inversion technique for oceanic 
constituents retrieval.  

In recent years, Artificial Neural Networks (ANN) have been increasingly applied to remote 
sensing data from ocean observing instruments, among those scatterometers and ocean colour 
sensors [see, e.g. Thiria et al., 1993; Keiner and Brown, 1999; Schiller and Doerffer, 1999; Gross 
et al., 2000]. ANN techniques are well suited for solving non-linear problems [Thiria et al., ibid]. 
No assumptions on the functions g or g -1 defined in Equations (1.3) or (1.4) are required. A 
number of studies have shown that ANN techniques have a good potential to derive the water 
constituents both in Case I and Case II waters [Buckton et al., 1999; Schiller and Doerffer, ibid; 
Gross et al., ibid]. Compared to the empirical and semi-analytical methods actually employed, 
they are less sensitive to noise. Furthermore, although the training of the ANN requires 
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considerable computational effort, its application is very fast. Therefore, ANN techniques are a 
promising method to derive oceanic constituents from ocean colour data. 

Data of different origin may be used for the training of ANNs: "real" data which are obtained 
from in-situ measurements, and synthetic data which are obtained from numerical simulations. 
Obviously, it would be desirable to train ANNs entirely with real measurements. However, the 
number of data sets combining constituent concentrations and concomitant measurements of the 
oceanic light field is still rather limited. One of the most complete databases for Case I waters, 
SeaBAM (SeaWiFS Bio-optical Algorithm Mini-Workshop), contains just 900 data sets located 
in Case I waters. This is on one hand caused by rather strict measurements protocols that shall be 
applied to obtain high quality in-situ data [Mobley, 1999, Fargion et al., 2000], it is on the other 
hand a consequence of the difficult measurement conditions encountered in the marine 
environment. Besides, the pigment concentration in the SeaBAM data is inhomogeneously 
distributed: in more than 65.0 % of the cases, the pigment concentration is contained between 
0.07 and 0.7 mg m-3, while only 5.7% of the measurements have been taken at pigment 
concentrations above 5.0 mg m-3. Such inhomogeneously distributed data sets are not well suited 
for the training of ANNs since they may lead to undesirable “overfitting” effects, meaning that a 
trained ANN gives good results where training data have been dense and bad results where 
training data have been sparse. There are more different constituents in Case II waters than in 
Case I waters, and the dynamic ranges of constituent concentrations are wider [IOCCG, 2000]. 
This makes it much more difficult to build up a data set of in-situ measurements that fulfils the 
requirements for ANN training. Radiative transfer (RT) simulations offer the opportunity to 
provide training data with a denser and more homogeneous distribution of the relevant 
parameters. A prerequisite for this is that the IOPs of the water constituents required as input to 
the RT simulations are well representing the conditions to which the derived ANN is later on 
applied.  

 
1.3. Retrieval of Oceanic Constituents from Ocean Colour 

Measurements Taken at Top of Atmosphere 
 

Traditionally, the retrieval of oceanic constituents is performed by a two-step process: 
atmospheric correction followed by a bio-optical algorithm to obtain the desired parameters.  

The atmospheric correction algorithms which are commonly used are based on ‘the black 
pixel assumption’ [Gordon and Clark, 1981; Gordon, 1997; Siegel et al., 2000]. These 
algorithms were primarily designed for clear deep ocean areas. The information about 
atmospheric aerosols is derived from channels in the red and near-infrared (above 670 nm), 
where the water leaving radiance is close to zero. The derived aerosol information is extrapolated 
towards the visible channels and the atmospheric contribution is calculated and removed for full 
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spectrum. For the turbid coastal environment, the ocean can no longer assumed to be black in the 
red and near-infrared because of strong back scattering by suspended materials. Under these 
conditions, ‘the black pixel assumption’ is no longer valid for deriving information on 
atmospheric aerosols. As a result, the algorithms developed for applications to clear ocean waters 
cannot be easily modified to retrieve water leaving radiance from remote sensing data acquired 
over the coastal environments.  

Besides, even in the open ocean, the commonly used algorithms for atmospheric correction 
fail in the presence of strongly-absorbing aerosols [Gordon et al., 1997; Chomko and Gordon, 
1998; Li et al., 2002]. If the aerosol is strongly absorbing, due to soot or dust component, the 
visible reflectance can not be derived from the NIR reflectance [Gordon et al., 1997]. The size 
distribution of strongly absorbing aerosols can be similar to that of the weakly absorbing aerosols 
typically present over ocean. Since the spectral variation of aerosol scattering depends mostly on 
the aerosol size distribution and only weakly on the refractive index, the spectral variation of 
scattering in the NIR is not sufficient to distinguish between weakly and strongly absorbing 
aerosols. Furthermore, the strongly absorbing aerosols (soot or dust) are coloured, i.e., their 
absorption is a function of wavelength [Nakajima et al., 1989]. Even if it was possible to estimate 
the absorption characteristics of these strongly absorbing aerosols in the NIR, the absorption in 
the visible could not be obtained by extent. Gordon et al. [1997] proposed a one-step algorithm to 
simultaneously determine aerosol properties and pigment concentration in Case I waters, which 
uses all the spectral bands of the sensor and can be applied to deal with weakly or strongly 
absorbing aerosols. Chomko and Gordon [2001] and Chomko et al. [2003] further extended this 
method. The look-up table or optimisation procedure was employed to retrieve the desired 
parameters in these studies. The limit of these processing methods is slowly computing, and not 
well suited to be used as an operation algorithm. 

 
1.4. Objectives and Outline 
 

As outlined in the previous sections, there is a need for a scheme to retrieve the oceanic 
constituents from reflectance at sea level or TOA. 

The objective of this thesis is to contribute to the development of fast, accurate and robust 
algorithms for retrieval of oceanic constituents in Case I and Case II waters. To approach this 
objective, the following work has been done: 
 (1). Development of an ANN based on Radiative Transfer Calculations (RTC) for retrieval of  

the pigment concentration from remote sensing reflectance just above the sea surface in Case 
I waters; 

(2). Modelling of the back scattering probability for marine particles in Case II water using the 
COASTLOOC in-situ measurements; 
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(3). Development of an ANN based on RTC for retrieval of the oceanic constituent concentration 
(CHL, SPM and CDOM) from hemispherical reflectance just below the sea surface in Case 
II waters; 

(4). Development of an ANN based on RTC for retrieval of the oceanic constituent concentration 
(CHL, SPM and CDOM) from MERIS top of atmosphere measurements. 

 
This thesis is structured as follows: after the introduction, the theoretical background is 

introduced in Chapter 2. Chapter 3 describes how the retrieval algorithms for pigment 
concentration in Case I waters were developed. Chapter 4 describes how the back scattering 
probability for marine particles in Case II waters was modelled. In Chapter 5, an ANN-based 
scheme for retrieval of oceanic constituents in Case II is derived using the hemispherical 
reflectance just below the sea surface as input. In Chapter 6, a scheme is proposed  to retrieve the 
oceanic constituents in Case II waters from  MERIS measurements data at top of atmosphere. In 
the last chapter, the summary of this investigation is given. 


