LIST OF SYMBOLS

Symbol	Unit	Description	
Inherent Optical Properties			
$a(\lambda)$	m ⁻¹	Absorption coefficient	
$a_w(\lambda)$	m^{-1}	Absorption coefficient of pure seawater	
$a_y(\lambda)$	m^{-1}	Absorption coefficient of yellow substance	
$a_{nap}(\lambda)$	m^{-1}	Absorption coefficient of non-chlorophyllous particles	
$a_{ph}(\lambda)$	m^{-1}	Absorption coefficient of phytoplankton	
$a_p(\lambda)$	m^{-1}	Absorption coefficient of particles	
$b(\lambda)$	m^{-1}	Scattering coefficient	
$b_w(\lambda)$	m^{-1}	Scattering coefficient of pure seawater	
$b_p(\lambda)$	m^{-1}	Scattering coefficient of particles	
$b_b(\lambda)$	m^{-1}	Back scattering coefficient	
$\widetilde{b}_b^{}\left(\lambda ight)$	%	Back scattering probability, defined here as ratio of back scattering coefficient to total scattering coefficient	
$c(\lambda)$	m^{-1}	Beam attenuation coefficient	
$\omega_0(\lambda)$	1	Single scattering albedo	
$\beta(\theta,\lambda)$	m ⁻¹ sr ⁻¹	Volume scattering function	
$\widetilde{\beta}$ (θ, λ)	sr ⁻¹	Scattering phase function	
Radiometric Quantities			
$L(\lambda, \theta_s, \theta_v, \phi_v)$	$\mathrm{W} \mathrm{m}^{-2} \mathrm{sr}^{-1}$	radiance	
Apparent Optical Properties			
$E(\lambda, \theta_{s})$	$W m^{-2}$	Irradiance	
$E_d(\lambda)$	$W m^{-2}$	Downward irradiance	
$E_u(\lambda)$	$W m^{-2}$	Upward Irradiance	
$R_{RS}(\lambda, \theta_s, \theta_v, \phi_v)$	sr ⁻¹	Remote sensing reflectance	
$R(\lambda, \theta_{s})$	1	Irradiance reflectance	
$Q(\lambda, \theta_s, \theta_v, \phi_v)$	sr	Factor describing the bidirectional character of the light field	
Atmosphere and aerosol properties			
$ au_r(\lambda)$	1	Optical thickness due to Rayleigh scattering	

$ au_a(\lambda)$	1	Optical properties due to aerosol scattering and absorption	
RH	percents	Relative humidity	
Geophysical properties			
Chl	mg m ⁻³	Pigment concentration, defined here as sum of chlorophyll and phaeopigment concentration	
SPM	$g m^{-3}$	Suspended matter concentration	
CDOM	m ⁻¹	Absorption coefficient of Coloured dissolved organic matter	
Geometry			
θ_s	degrees	Sun zenith angle	
θ_{v}	degrees	Observation zenith angle	
$\phi_{\scriptscriptstyle V}$	degrees	Observation azimuth angle	
λ	nm	wavelength	
Others			
p	hPa	Pressure at sea level	
w	$m s^{-1}$	Wind speed	
f	1	Proportionality factor	
r	1	Pearson's correlation coefficient	
S_{C}	1	Sigmoidal function	
c_t	1	Temperature constant in sigmoidal function	