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Chapter 1

Introduction

In this thesis we consider intersection graphs of Jordan curves in the Eu-

clidean plane, for short string graphs. String graphs were introduced in 1966

by Sinden [63] in connection with electrical networks. Independently, in 1976,

Ehrlich et al. [20] investigated string graphs from a theoretical point of view.

They observed that the graph resulting from subdividing each edge of the

complete graph on five vertices is not a string graph. Furthermore, they

proved that intersection graphs of straight line segments, known as segment

graphs, form a proper subset of string graphs, and they investigated the com-

plexity of the k-colorability problem of segment graphs. Since then, string

graphs and segment graphs have been widely studied, both, for practical and

theoretical reasons.

The starting point of our investigations on string and segment graphs was

the following conjecture stated by Scheinerman in 1984:

Conjecture 1.1. ([61]) Every planar graph is a segment graph.

This conjecture was strengthened by a conjecture of West from 1991 stated

next:

Conjecture 1.2. ([68]) Every planar graph has a segment representation

where the segments are of at most four directions.

Conjecture 1.1 was confirmed in 2009 by Chalopin and Gonçalves [8]. Before,

many interesting results for subclasses of planar graphs [13, 14, 15, 39] had

been found and, in this context, intersection graphs of pseudosegments, for

short pseudosegment graphs, had gained further interest [9]. The notion of

a set of pseudosegments is similar to the notion of an arrangement of pseu-

dolines; the latter was introduced in 1926 by Levi [48] as a generalization of
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2 Introduction

arrangements of straight lines. In 1956, Ringel showed that there are sim-

ple arrangements of pseudolines that are not isomorphic to arrangements of

straight lines [56]. This at hand, Kratochvil and Matoušek [47] showed that

there are pseudosegment graphs which are not segment graphs.

Motivated by Conjecture 1.1 and 1.2, and by the natural connection of

pseudosegment graphs with pseudoline arrangements, we investigated graph-

theoretic properties of pseudosegment graphs. All graphs considered are

finite.

First, we give a short outline of the contents of this thesis. This is followed

by two introductory chapters which conclude in a detailed overview of our

results. Then we present our investigations on pseudosegment graphs.

1.1 Outline

In Chapter 2 we give the basic definitions and concepts needed to intro-

duce the field of intersection graph theory in Chapter 3. In this context, we

present string graphs and implicit subclasses of string graphs, in particular

pseudosegment and segment graphs. Then we consider further subclasses of

string graph as planar, chordal and cocomparability graphs. These graphs

are then analyzed in view of pseudosegment, and sometimes even segment

representations. Take into account that every pseudosegment graph has a

pseudosegment representation that consists of polygonal arcs as every such

representation constitutes a plane graph.

In Chapter 4 we consider planar graphs and segment graphs. Section 4.1

contains our contribution to Conjecture 1.2. Together with Bodirsky and

Kára we show that every series-parallel graph- a graph that does not contain

a subdivision of K4- has a segment representation with segments of at most

three directions [4].

In Subsection 4.3 we use the dual graph of a pseudoline arrangement to

construct a pseudosegment graph that is a segment graph if and only if the

chosen pseudoline arrangement is isomorphic to a straight line arrangement.

In Chapter 5 we consider chordal graphs in view of pseudosegment represen-

tations, and show in Section 5.1 that every path graph is a pseudosegment

graph.
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In Section 5.2 and 5.4 we present two families of chordal graphs that are not

pseudosegment graphs. At this we use a planarity argument in the first case,

and in the second case we apply a Ramsey argument. These graphs show, in

addition, that chordal graphs that are pseudosegment graphs are not induced

by many “treelike” subtrees.

The proof of the first case makes use of a partition of a pseudosegment

representation into an arrangement of pseudosegments and a certain set of

disjoint Jordan arcs. The crucial argument then results from an upper bound

on the size of the latter set depending on the size of the arrangement.

This leads to further investigations on Jordan arcs, namely on k-segments,

contained in arrangements of pseudosegments and pseudolines. These include

an upper bound on the number of k-segments and on the number of edges in

the (≤ k)-zone of a pseudoline in a pseudoline arrangement.

The results of Chapter 5 are joint work with Felsner and Trotter, and can

also be found in [11] and [12].

Finally, in Chapter 6, we determine cocomparability graphs that are pseu-

dosegment graphs. Among these are interval graphs, point-interval graphs

and two further subclasses of trapezoid graphs.
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Chapter 2

Preliminaries

Combinatorial geometry is a mixture of principles from fields like topology,

graph theory, number theory, and other disciplines. Intersection graph theory

is an interesting field that is part of this area. The following sections will

introduce the basic terms and definitions that are used throughout this thesis.

More specific definitions are given where they belong to, in order to keep this

chapter succinct and the different chapters coherent.

2.1 Curves in the plane

In the following we present objects like planar curves and segments classically

considered in topology and analytic geometry. Our work and investigations

on these objects differs considerably from the classical point of view on them

as we are mainly interested in the intersection relation within a finite set of

certain curves. Thus, we will focus on the notions needed in our context.

They are taken mainly from [24, 35, 50].

If not stated differently we consider the Euclidean plane R2, equipped with a

coordinate system and the standard metric; the coordinate axes are denoted

by X1 and X2.

A homeomorphism of the plane is a continuous bijection ϕ such that the

inverse function ϕ−1 is continuous again.

A planar curve γ is the image of a continuous function ϕ from an interval

I ⊆ R to R2. If ϕ is injective, then we say that γ is a Jordan curve, a simple

curve or a string.

5



6 Preliminaries

2.1.1 Straight lines (segments) and pseudolines (pseudosegments)

If ϕ is a linear function from R to R2, the image γ of ϕ is called a (straight)

line. Recall that two lines are either parallel, that is they are either disjoint

or they are the same, or they cross.

If we omit the linearity of ϕ, we obtain a natural generalization of straight

lines. So let J be a family of Jordan curves which tend to infinity in either

direction. If, additionally, every pair of Jordan curves of J has at most

one point of intersection where the two curves cross, then we call J a partial

arrangement of pseudolines. If every pair of curves of a partial arrangement J

has a unique crossing point, we call J an arrangement of pseudolines and

denote it by L. Note that in general, Jordan curves may intersect differently

to straight lines as sketched in Figure 2.1.

Figure 2.1: On the left-hand side two straight lines cross, and on the right-hand side

two Jordan curves cross, touch and overlap.

If I = [A, B] ⊂ R and ϕ is an injective function from R to R2, we say

that γ is a Jordan arc or a simple arc. If ϕ(A) = ϕ(B), we say that γ is

closed, otherwise it is open. A fundamental result in topology is the following

theorem, known as the Jordan Curve Theorem.

Theorem 2.1. ([65]) Every closed Jordan arc partitions the plane into two

connected components, one bounded, the other unbounded.

A (straight line) segment is a connected subset of a line that is bounded by

two different points of the line. If the points P, Q ∈ R2 bound segment s,

then P and Q are called endpoints of s and we write s = [P, Q].

If l is a line with s ⊂ l, then l is called the supporting line of s. We call two

segments parallel if their supporting lines are parallel. If two parallel seg-

ments share more than an endpoint, they overlap. If two segments intersect

in an endpoint of one of them and are disjoint otherwise, they touch. If two

non-parallel segments intersect in an interior point of either segment, they

cross.
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We are interested in a generalization of segments similar to the one of straight

lines by pseudolines. So let J be a family of Jordan arcs such that every

pair of Jordan arcs of J has at most one point of intersection where they

cross or touch. Then we call J a set of pseudosegments. If in addition no

intersection point of elements of J is an endpoint of a Jordan arc of J , then

we call J a partial arrangement of pseudosegments. If every pair of Jordan

arcs of a partial arrangement J has a unique crossing point, we call J an

arrangement of pseudosegments and denote it by S. Note that every set of

pseudosegments can be changed into a partial arrangement without changing

the intersection relations by slightly perturbing intersection points.

A polygonal arc is a Jordan arc composed of finitely many line segments

such that each segment starts at the endpoint of the previous one and no

point appears in more than one segment except for common endpoints of

consecutive segments. If the endpoints of a polygonal arc are the same, we

call the curve a polygon. In this case we call the segments the sides, and the

common points the corners of the polygon.

A subset C ⊂ R2 is convex if for every two points X, Y ∈ C, the whole

segment s = [X, Y ] is contained in C. The convex hull of a subset C ⊂ R2,

denoted conv(C), is the intersection of all convex sets in R2 containing C.

2.1.2 Arrangements in the Euclidean plane

An arrangement of pseudolines (pseudosegments) is called simple if no three

pseudolines (pseudosegments) have a point in common.

An arrangement of pseudolines (pseudosegments) partitions the plane into

cells of dimension 0, 1 and 2. The intersection points of the pseudolines

(pseudosegments) are the 0-dimensional cells, they are called vertices of the

arrangement. The maximal connected components of the pseudolines (pseu-

dosegments) obtained from removing the vertices from the plane are the 1-

dimensional cells and are called the edges of the arrangement. The maximal

connected components of the plane obtained from removing the arrangement

from the plane are the 2-dimensional cells, called the faces of the arrange-

ment. This cell decomposition is called the induced cell complex. Note that

the edges and faces of a pseudoline arrangement are either bounded or un-

bounded.
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Given an arrangement, we say that a vertex (edge) is adjacent to an edge

respectively a face (to a face) if the vertex lies on the boundary of the edge,

respectively the face (of the face). Then f̄ denotes the union of f and all

vertices and edges adjacent to f , in other words, the closure of f . We say that

an edge of an arrangement is adjacent to a pseudoline (pseudosegment) of the

arrangement if it is adjacent to a vertex of the pseudoline (pseudosegment).

A k-segment of an arrangement L of pseudolines ( pseudosegments) is a

Jordan arc that crosses exactly k different edges of L such that no two of these

edges belong to the same pseudoline (pseudosegment) of L and no edge of L

is intersected more than once. Two k-segments p and p′ are (combinatorially)

equivalent if p and p′ intersect the same set of edges of the arrangement in

the same order or in reversed orders. A set of different k-segments of an

arrangement is contained in the arrangement.

Figure 2.2: An arrangement of pseudosegments that is not isomorphic to an ar-

rangement of straight lines.

Two arrangements of pseudolines (pseudosegments) are isomorphic if and

only if there is an incidence and dimension preserving isomorphism between

the induced cell complexes. If an arrangement of pseudolines (pseudoseg-

ments) is isomorphic to an arrangement of straight lines (straight line seg-

ments), then we call this arrangement stretchable. Figure 2.2 gives an exam-

ple of a nonstretchable arrangement of nine pseudolines [37].

For n ∈ N let Ln (Sn) be an arrangement of n pseudolines (pseudosegments).

Let f be an unbounded face of Ln and denote the unbounded face of Ln that

is separated from f by all pseudolines of Ln as the antipodal face f̄ of f .

The pair (Ln, f) is then called a marked arrangement. A sweep of (Ln, f)

is a sequence of arcs c0, c1, ..., cr such that each arc has the same endpoints

X ∈ f and X̄ ∈ f̄ and the following holds:
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• None of the arcs contains a vertex of Ln.

• Each arc has exactly one point of intersection with each line p ∈ Ln.

• Any two arcs ci, cj are interiorly disjoint.

• For any two consecutive arcs ci, ci+1 of the sequence there is exactly

one vertex of Ln between them, that is in the interior of the closed arc

ci ∪ ci+1.

• Every vertex of the arrangement lies between a unique pair of consecu-

tive arcs, hence, the interior of the closed arc c0∪cr contains all vertices

of Ln.

In [34] it is shown, that every pseudoline arrangement is isomorphic to a

wiring diagram, that is an arrangement of piecewise linear curves, of so called

wires. To see this, take a sweep of Ln and label the pseudolines of Ln from

1, ..., n according to the order in which c0 intersects them between f and f̄ .

Then, at x1 = 0, we start drawing n parallel horizontal lines labeled 1, ..., n

from above to below. For i ∈ {1, ..., r}, we twist lines j, k at x1 = i if

the vertex defined by the intersection of pseudolines j and k lies within the

interior of ci−1 ∪ ci. The resulting set of polygonal arcs is a representation

of Ln as wiring diagram.

Figure 2.3: A wiring diagram is a pseudoline arrangement that consists of polygonal

arcs called “wires” [35].

Let L be an arrangement of pseudolines and p ∈ L be a pseudoline of L.

The zone Z(p) of p in L is the set of vertices, edges and faces of L that are

not separated from p by any pseudoline q ∈ L. In other words, an edge of L

belongs to the zone Z(p) of p in L if there is a 2-segment of L that intersects

this edge and an edge of p. Then a vertex (face) of L belongs to Z(p) if the

vertex (face) is adjacent to an edge of Z(p).

The complexity of the zone Z(p) is the number of vertices, edges and faces

of Z(p). A famous result of combinatorial geometry is a linear upper bound
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on the complexity of the zone of an arbitrary line in a straight line arrange-

ment.

Theorem 2.2. ([1]) The complexity of the zone of a straight line in an

arrangement of n straight lines in the plane is bounded by 6(n − 1) ∈ O(n).

2.2 Partially ordered sets

The following definitions are taken mainly from [23]. The set X considered

in the sequel is a finite set.

A (strict) partial ordering < on a (finite) set X is a binary relation such that

• x 6< x, that is < is irreflexive, and

• if x < y and y < z, then x < z, that is < is transitive.

Then, we call P = (X, <) a partially ordered set or poset, and X the ground

set of P . Furthermore, we say that x, y ∈ X are comparable in P if x < y

or y < x; otherwise x and y are incomparable in P . A set of pairwise

comparable elements of X is called a chain of P .

A poset P = (X, <) is a linear order if for every two elements x, y ∈ X it

holds that either x < y or y < x in P . Then there exists a function ϕ that

assigns each element of X to a point on the real line such that x < y in P if

and only if ϕ(x) < ϕ(y) in R.

A poset P = (X, <) is an interval order if there is a function ϕ assigning

each point x ∈ X to a closed interval Ix = [lx, rx] of the real line so that

x < y in P if and only if rx < ly in R.

Now let P = (X, <P ) and Q = (X, <Q) be partial orders on the same ground

set X. We call Q an extension of P if for all x, y ∈ X with x <P y, we have

x <Q y as well. If Q is a linear order, then Q is called a linear extension

of P . If Q is an interval order, then Q is called an interval extension of P .

We say that a family of linear extensions (interval extensions) {Q1, ..Qt} of P

is a realizer (an interval realizer) of P if <P =<Q1
∩..∩ <Qt

. The dimension

dim(P ) (the interval dimension idim(P )) of (X, <P ) is defined as the least

positive integer t for which there exists a family of t linear extensions (of t

interval extensions) of P that is a realizer (an interval realizer) of P .
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2.3 Graphs

The present section is supposed to provide the basic graph theoretic defi-

nitions and concepts used in the following chapters. From the many books

about graph theory we have chosen [2, 16, 53, 69] as references. Note that

we only consider finite sets

A graph G = (V (G), E(G)) consists of a non-empty vertex set V (G), an edge

set E(G) and a relation that associates with each edge two vertices called

endpoints of the edge. A graph is finite if its vertex and edge set are finite.

A loop is an edge whose endpoints are equal. Multiple edges are edges having

the same pair of endpoints. A graph without loops or multiple edges is called

simple. In this case E(G) can be considered as a set of unordered pairs

of V (G), that is E(G) ⊆
(

V (G)
2

)

.

If not stated differently, the graphs considered from now on are simple and fi-

nite. Note that we sometimes write G = (V, E) instead of G = (V (G), E(G)).

An edge e ∈ E(G) with endpoints u, v ∈ V (G) is denoted e = uv or e = {u, v}

and u and v are called incident to edge uv. In addition, we say that u and v

are adjacent and call them neighbors. For every vertex u ∈ V (G) we denote

the set of neighbors of u in G by NG(u). With this we define the degree of u

in G as dG(u) := |NG(u)|.

The complement Ḡ of G is the simple graph with vertex set V (Ḡ) = V (G)

and edge set E(Ḡ) =
(

V (G)
2

)

\E(G).

Let G and H be two graphs. An isomorphism from G to H is a bijection ϕ

from V (G) to V (H) such that uv ∈ E(G) if and only if ϕ(u)ϕ(v) ∈ E(H).

Then we say that G is isomorphic to H , denoted as G ∼= H .

2.3.1 Basic concepts

Let G and H be two graphs. Then H is a subgraph of G if V (H) ⊆ V (G) and

E(H) ⊆ E(G)∩
(

V (H)
2

)

. A subgraph H of G is called an induced subgraph

of G if E(H) = E(G)∩
(

V (H)
2

)

. A subgraph H of G is called a spanning

subgraph of G if V (H) = V (G).

The subgraph obtained from G by deleting edge e (vertex v) or a set of

edges M (vertices S) of G is denoted as G − e (G − v) and G − M (G − S)

respectively.
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If H is a subgraph of G or is isomorphic to a subgraph of G, then we say

that H is contained in G. Graph G is called H-free if it does not contain a

subgraph isomorphic to H .

An independent in a graph G is a set of pairwise nonadjacent vertices of G,

a clique a set of pairwise adjacent vertices. If all vertices of G are pairwise

adjacent, G is called a complete graph. A complete graph on n vertices is

denoted by Kn.

We say that a graph G is bipartite if V (G) is the union of two disjoint (possibly

empty) sets that induce independent sets of G; they are called the partite sets

of G. A bipartite graph is a complete bipartite graph, if every vertex of one

partite set is adjacent to every vertex of the other partite set. If the partite

sets consist of n and m vertices, we denote the respective complete bipartite

graph by Kn,m.

A k-coloring of a graph G is a labeling ϕ : V (G) → S, where |S| = k. The

labels are the colors, the vertices of one color form a color class. A k-coloring

is proper if adjacent vertices have different colors. A graph is k-colorable if

it has a proper k-coloring. The chromatic number χ(G) is the least k such

that G is k-colorable. A natural lower bound of the chromatic number of a

graph G is the maximal size of a clique contained in G, that is the clique

number ω(G).

A path is a graph whose vertices can be ordered such that two vertices are ad-

jacent if they are consecutive in the ordering. If P is a path and (v1, v2, .., vn)

the ordered set of vertices of P , we say that P is a v1vn-path that connects v1

and vn, denoted by P (v1, vn). Two paths P (v1, vn) and P (u1, um) are called

independent or internally disjoint if P (v1, vn) does not contain a vertex of

{u2, ..., um−1} and P (u1, um) does not contain a vertex of {v2, ..., vn−1}.

If we add edge vnv1 to P (v1, vn) we obtain a cycle C. More precisely, a cycle

is a graph whose vertices can be placed around a circle so that two vertices

are adjacent if they appear consecutively along the circle. Similar to paths,

we often denote a cycle by the cyclic sequence of its vertices, for example

(v1, ..., vn, v1). In this case, C is also called an n-cycle, denoted Cn. A graph

that does not contain a cycle is called acyclic. A graph that does not contain

a 3-cycle is sometimes called triangle-free.

A graph G is connected if it contains an u, v-path for every pair u, v of vertices

of G. The connectivity of G, written κ(G), is the minimum size of a vertex
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set S such that G− S is disconnected or has only one vertex. We say that a

graph is k-connected if its connectivity is at least k.

Theorem 2.3. A graph G is k-connected if and only if for every two vertices

u, v of G there are k different, pairwise internally disjoint u, v-paths in G.

A maximal connected subgraph of G, for short a component of G, is a subgraph

of G that is not contained in any other connected subgraph of G.

A separating set or vertex cut of a graph G is a set S ⊂ V (G) such that G−S

has at least one component more than G. A cut-vertex is a separating set

that consists of exactly one vertex. A maximal connected subgraph H of G

that has no cut-vertex of H is a block. If G itself is connected and has no

cut-vertex, then G is a block.

A tree is a connected acyclic graph, a forest a graph whose maximal connected

components are trees. A vertex of a tree T that has degree one is called a

leaf of T .

A caterpillar is a tree in which a single path, called the spine, is incident to

every edge. Then, the vertices of the caterpillar that are not on the spine are

exactly the leaves of the caterpillar.

The distance dG(u, v) of two vertices u, v of a graph G = (V (G), E(G)) is the

least length of a path of G connecting u and v. The diameter diam(G) of G

is defined as max{dG(u, v) | u, v ∈ V (G)}.

2.3.2 Planar graphs

A drawing of a graph G is a function ϕ defined on V (G)∪E(G) that assigns

each vertex v ∈ V (G) to a point ϕ(v) in the plane such that the images ϕ(u)

and ϕ(v) of different vertices u, v ∈ V (G) are distinct, and each edge e =

uv ∈ E(G) to a Jordan arc with endpoints ϕ(u) and ϕ(v). A drawing is a

straight line drawing if every Jordan arc representing an edge is a straight

line segment.

A common point of ϕ(e) and ϕ(e′) of different edges e and e′, that is no

endpoint, is called a crossing. A graph is planar if it has a drawing without

crossings. A drawing ϕ without crossings is called a planar embedding of the

respective graph.
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Lemma 2.4. If G is a planar graph, then G has a planar embedding such

that all edges are polygonal arcs.

A plane graph H = (G, ϕ) is a particular planar embedding ϕ of a planar

graph G. The vertices of H are the images of the vertices of G, that is

points in the plane. The edges of H are the images of the edges of G. As a

consequence of Lemma 2.4, we can always choose these as polygonal arcs.

The maximal connected components of the plane obtained from removing

the embedding H from the plane are called faces F (H) of H .

In addition to the vertex-edge-incidence in a graph, we say that a vertex (an

edge) of a plane graph H is incident to face of H if the vertex (edge) lies on

the boundary of the face. Then we say that two plane graphs H and H ′ are

(combinatorially) isomorphic if there are isomorphisms ϕV : V (H) → V (H ′),

ϕE : E(H) → E(H ′) and ϕF : F (H) → F (H ′) preserving the vertex-edge-,

vertex-face- and edge-face-incidences.

Every plane graph is related to a particular, not necessarily simple, plane

graph, its dual graph. If G is an arbitrary plane graph, the dual graph G∗

of G is the plane graph whose vertices correspond to the faces of G. The edges

of G∗ correspond to the edges of G as follows: if e is an edge of G incident to

faces f and f ′ of G, then the endpoints of the dual edge e∗ ∈ E(G∗) are the

elements f, f ′ ∈ V (G∗). Note that (G∗)∗ = G if and only if G is connected.

The definition of the dual graph involves a natural (planar) embedding of G∗

into G. Here each vertex f ∈ V (G∗) is assigned to a point of the interior of

the face it represents and each edge e∗ = ff ′ ∈ E(G∗) to a polygonal arc

with endpoints f and f ′. Each such arc can be chosen such that it intersects

the edge of G it is dual to at most once and is disjoint from any other vertex

or edge of G.

Figure 2.4: Two planar embeddings of a planar graph with nonisomorphic dual

graphs.

In general, a planar graph can have planar drawings with combinatorially

nonisomorphic dual graphs. The following result of Whitney shows that this

is not the case if G is 3-connected.
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Theorem 2.5. A planar graph G has a unique dual graph if and only if G

is 3-connected. Moreover the dual graph is a simple graph in this case.

A subdivision of an edge uv of a graph G is the operation of replacing uv in G

by the path (u, w, v) with a new vertex w. We say that G is a subdivision

of H if G can be obtained from H by successive subdivisions of edges. We

say that G is the complete subdivision of H if G is obtained from H by

subdividing each edge of H exactly once.

Theorem 2.6. A graph is planar if and only if it does not contain a subdi-

vision of K5 or K3,3.

The relation between the numbers of vertices, edges and faces of a planar

graph are is given by Euler’s Formula, stated next.

Theorem 2.7. If a plane graph has exactly n vertices, e edges and f faces,

then n − e + f = 2.

If a plane graph has exactly n vertices, e edges, f faces and consists of k

components, then Euler’s Formula can be generalized to n − e + f = k + 1.

A maximal planar graph is a simple planar graph that is not a spanning

subgraph of another planar graph. A triangulation is a simple plane graph

where every face boundary is a 3-cycle. A triangulation is 4-connected if it

does not contain a separating 3-cycle.

As we are dealing with finite graphs, every plane graph has one unbounded

face, called the outer face. With respect to this we sometimes refer to the

vertices and edges that lie on the boundary of the outer face as outer vertices

and outer edges. Accordingly the vertices and edges that do not lie on the

boundary of the outer face are called inner vertices and inner edges. Then

a graph is outerplanar if it has an embedding where every vertex is an outer

vertex. An outerplane graph is an embedding of an outerplanar graph where

all vertices lie on the outer face.

2.3.3 Chordal graphs

A chord of a path or a cycle is an edge between non-consecutive vertices of

the path or the cycle respectively. A graph is chordal if it does not contain

any induced subgraph that is an n-cycle with n ≥ 4.
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Chordal graphs can be characterized differently by perfect elimination or-

derings. To define this term let G = (V (G), E(G)) be a graph and let

σ = [v1, ..., vn] be an ordering of the vertices V (G). We call a vertex vi of G

simplicial if the subgraph induced by NG(vi) is a clique. We denote the sub-

graph of G that is induced by the vertices {vi, ..., vn} by Gi. Then σ is called

a perfect elimination ordering of G if vi is a simplicial vertex in Gi for all

i ∈ {1, ..., n}.

Theorem 2.8 ([26]). A graph is chordal if and only if it has a perfect elim-

ination ordering.

2.3.4 Comparability graphs

A directed graph or digraph D is a triple consisting of a vertex set V (D),

an edge set E(D) and a function assigning each edge to an ordered pair of

vertices. Note that in the case of digraphs we allow multiple edges. Often,

an edge (u, v) of a digraph is called an arc from u to v.

An orientation of a graph G is a digraph D obtained from G by choosing

an orientation (x, y) or (y, x) for each edge xy ∈ E(G). An oriented graph

is an orientation of a simple graph. A transitive orientation of a graph G is

an orientation D such that whenever (x, y) and (y, z) are arcs of D, there is

also an edge xz in G such that (x, z) is an arc of D.

Any poset P = (X, <) naturally induces a comparability graph G. Here, G

has X as vertex set and an edge for every pair of elements of X that are

comparable in P . The complement of G is called the cocomparability graph

of P .

2.4 Complexity

This section provides an introduction to algorithms and complexity in order

to supply the terms and concepts used here. To this end we will follow

the informal outlines given in [40] and [62]. For a more comprehensive and

complete treatment of the topic we recommend [27].
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2.4.1 Order of growth

Let T (n) be a positive function depending on n ∈ N. Let ϕ(n) be a further

nonnegative function on n.

A function T (n) is order ϕ(n), or T (n) is O(ϕ(n)), if there exist constants

c > 0 and n0 ≥ 0 such that for all n ≥ n0 it holds that T (n) ≤ c · ϕ(n). In

this case we say that T (n) is asymptotically upper bounded by ϕ(n).

We say that T (n) is Ω(ϕ(n)) if there exist constants c > 0 and n0 ≥ 0 such

that for all n ≥ n0 it holds that T (n) ≥ c · ϕ(n). Then we say that T (n) is

asymptotically lower bounded by ϕ(n).

If ϕ(n) is the “right” bound for T (n), that is T (n) is O(ϕ(n)) and T (n)

is Ω(ϕ(n)), then we say that T (n) is θ(ϕ(n)).

We say that T (n) is o(ϕ(n)) if for all c > 0 there exists a constant n0 ≥ 0

such that for all n ≥ n0 it holds that T (n) ≤ c · ϕ(n).

2.4.2 Algorithms and computational problems

A computational problem can be viewed as an (infinite) collection of instances

together with a set of solutions for every instance. Classical examples are

decision problems and optimization problems. Here a decision problem is a

question in some formal system with a yes-or-no answer that depends on the

values of some input parameters. An optimization problem asks for the “best

possible” solution among the set of all feasible solutions. It can be easily

transformed to a decision problem.

An algorithm can be seen as a finite set of instructions that perform oper-

ations on certain data. These include elementary arithmetic operations like

addition, multiplication, and comparison, and others derived from these. An

algorithm is designed to solve a certain computational problem. The input

of the algorithm are the instances of the problem and give the initial data.

When the algorithm stops, the output will be found in prescribed locations

of the data set.

The data may consist of numbers, letters and other symbols and is usually

stored as a finite string of 0’s and 1’s. The size of the data is the total

length of the respective strings. While the set of instructions constituting
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the algorithm is finite and fixed, the size of the data set may vary and will

depend on the size of the input.

Algorithms are analyzed and evaluated by the amount of time and space they

use depending on the input size n. To do so one assumes that an elementary

operation takes constant time. Then the running time of an algorithm is

the maximal number of elementary operations that are performed to solve a

certain computational problem using the algorithm for any instance.

2.4.3 P and NP

A polynomial-time algorithm is an algorithm whose running time is bounded

by a polynomial in the input size n; in other words there is a k ∈ N and a

polynomial nk such that the algorithm solves every instance of the problem

in O(nk) time. We say that a problem is polynomial-time solvable or is solv-

able in polynomial time, if it can be solved by a polynomial-time algorithm.

For many computational problems there is no polynomial-time algorithm

known, but also no proof that such an algorithm does not exist. This mo-

tivates the definition of so called complexity classes, consisting of problems

that are “comparably difficult“.

The collection of all decision problems that are polynomial-time solvable is

denoted by P. The collection of all decision problems for which each input

with positive answer can be confirmed by a polynomial-time algorithm is

denoted by NP. Trivially P ⊂ NP.

Two more complexity classes are NP-hard and NP-complete defined using the

following polynomial reduction. Given two problems A and B, we say that A

is polynomially reducible to B if there exists a polynomial-time algorithm

which transforms any instance a ∈ A into an instance b ∈ B, such that the

answer to b is yes if and only if the answer to a is yes. Then we say that a

decision problem is NP-hard if every problem of NP is polynomially reducible

to it. A decision problem is called NP-complete if it is NP-hard and in NP.



Chapter 3

Intersection Graphs

The study of intersection graphs was motivated both by theoretical and prac-

tical reason. Besides being a necessary and important tool to model real world

problems, they provide an interesting graph-theoretic structure enriched by

their own specific concepts. Since 1980, when Golumbic wrote his classic

book on intersection graphs [31], many researchers have worked in this field,

and lately several books have appeared covering more recent research in this

area.

In this chapter we will introduce the field of intersection graph theory, give

examples like chordal graphs and cocomparability graphs and present inter-

section graphs of strings. We will name relevant results and address the issue

of some computational problems. Finally, being equipped with the necessary

terms, we will give a detailed overview of our results.

3.1 Basic definitions and examples

The following definitions are taken mainly from [51]. This book is a good

reference for further reading on intersection graph theory and cites many

interesting references, also on recent topics. Further definitions and results

come from [7, 32] if not stated differently.

Let F = {S1, ..., Sn} be a family of sets or graphs. The intersection graph

of F , denoted Ω(F), is the graph having F as vertex set with Si adjacent

to Sj if and only if i 6= j and Si ∩ Sj 6= ∅. The family F will be referred to

as intersection representation of Ω(F). Note that F is a multiset.

Theorem 3.1. ([49]) Every graph is an intersection graph.

To illustrate this result, let G = (V, E) be a graph. For every v ∈ V set

19
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Sv := {vw | vw ∈ E}. Then G is isomorphic to the intersection graph Ω(F)

with F = {Sv | v ∈ V }.

3.1.1 Intersection classes

The topic becomes interesting when we pose restrictions on the graph G and

the family F . So let G be a set of graphs and
∑

be a set of sets.

If every graph G ∈ G is isomorphic to the intersection graph Ω(F) of some

family F ⊂
∑

and, vice versa each intersection graph Ω(F) of a family

F ⊂
∑

is isomorphic to some graph G ∈ G, then we say that G is isomorphic

to Ω(
∑

).

If there is a set of sets
∑

for a set of graphs G such that G is isomorphic

to Ω(
∑

) we say that G is an intersection class.

A set G of graphs is closed under induced subgraphs if G′ ∈ G whenever G′ is an

induced subgraph of some G ∈ G. To see that every intersection class is closed

under induced subgraphs let G be an intersection class that is isomorphic

to Ω(
∑

) and let G = (V, E) be an element of G. Furthermore let F ∈
∑

be a family of sets representing G with v ∈ V represented by Sv ∈ F . Then

every subgraph G′ ⊂ G induced by V ′ ⊆ V can be represented by the family

F ′ = {Sw | w ∈ V ′} ⊆ F , that is G′ ∼= Ω(F ′).

3.1.2 Intersection graphs of subgraphs of a graph

The family of sets used to illustrate Theorem 3.1 preludes a special type

of intersection graphs, namely vertex intersection graphs of subgraphs of a

graph.

A well known example are vertex intersection graphs of subtrees of a tree,

for short tree graphs. More precisely, a graph G = (V (G), E(G)) is a tree

graph if there exists a tree T = (V (T ), E(T )), a set T of subtrees of T and

a mapping ϕ from V (G) to T with ϕ(v) = Tv ∈ T such that vw ∈ E(G)

whenever Tv ∩ Tw 6= ∅. The pair (T, T ) is a tree representation of G.

In [28, 66] it is shown that the class of tree graphs is the class of chordal

graphs. Another characterization of chordal graphs [26, 64] yields a polyno-

mial-time recognition algorithm for chordal graphs. To state the respective
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T

T1

T2

T3

T

Figure 3.1: A tree T and three subtrees of T such that the tree graph G with tree

representation (T, {T1, T2, T3}) is a path.

result, we need to introduce a further notion. Let G be a graph. Initially all

vertices are unnumbered and have counters set to zero. Choose an unnum-

bered vertex with largest counter , give it the next number, and add 1 to all

the counters of its neighbors. Continue doing this until all the vertices have

been numbered, say (v1, ..., vn). Then this ordering is called a maximum car-

dinality search ordering, for short an MCS ordering. Recalling the definition

of a perfect elimination ordering from Chapter 2 we come to formulating the

mentioned characterization.

Theorem 3.2 ([26],[64]). The following conditions are equivalent:

(i) G is a chordal graph.

(ii) G has a perfect elimination ordering.

(iii) The reversal of any MCS ordering of G is a perfect elimination ordering

of G.

In the literature, chordal graphs are also called triangulated graphs [3] and

rigid-circuit graphs [57]. They have been intensively studied since the late

1960’s, have applications to biology, computing and matrix theory and further

characterizations.

A well studied subclass of chordal graphs are path graphs. More precisely,

a graph G = (V (G), E(G)) is a path graph if there exists a tree T =

(V (T ), E(T )), a set P of paths in T and a mapping ϕ from V (G) to P

with ϕ(v) = Pv ∈ P such that vw ∈ E(G) if and only if Pv ∩ Pw 6= ∅. Such

a pair (T,P) is said to be a path representation of G .

Path graphs have been introduced in [29] where also a characterization and

a recognition algorithm are given. Since then path graphs have been studied

continuously. In [54] some applications and many references can be found.
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A further and rather famous subclass of chordal graphs are interval graphs.

They were maybe the first graphs considered in the context of intersection

graphs. In accordance with the characterization of chordal graphs as tree

graphs, interval graphs are vertex intersection graphs of subpaths of a path.

Interval graphs were first mentioned in 1957 [38] and were already charac-

terized in 1962 [5]. They have been intensively studied [30, 26, 5] and can

be recognized in linear time [6]. As indicated in the term “interval” they

correspond to a further type of intersection graph, namely to “geometric in-

tersection graphs“.

3.1.3 Intersection graphs of convex subsets of the plane

An interval graph can be defined equivalently as an intersection graph of a

family of finite closed intervals of the real line. The family of intervals is then

called an interval representation of the respective interval graph.

The fact that intervals are the convex subsets of R led to considering inter-

section graphs of convex subsets of R2. In [17] it is shown that every chordal

graph is the intersection graph of convex subsets of R2. A further example

of intersection graphs in R2 are planar graphs. Using Koebe’s circle packing

theorem we can represent each planar graph as the intersection graph of a set

of circles whose interiors are disjoint, in other words by touching disks [42].

For d ≥ 2, intersection graphs of geometric objects like hyperplanes, d-

dimensional boxes and balls of Rd are studied. Among others, it is shown

that every graph is the intersection graph of convex subsets of R3 [67].

l1 l2

Figure 3.2: An intersection representation of a permutation graph on the left-hand

side, and of a circle graph on the right-hand side.

Another interesting type of intersection graphs in the plane are intersection

graphs of segments spanned between two parallel lines; an example is given
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in the left part of Figure 3.2. They are known as permutation graphs which

is motivated by the following observation.

Let G = (V, E) be a permutation graph with n vertices and S a set of

segments spanned between two parallel lines l1 and l2 such that G ∼= Ω(S).

Then, the endpoints of the segments of S on line l1 induce a linear ordering L1

and the endpoints on l2 a linear ordering L2 of the vertices of G. Assume

that the points on l1 are ordered (1, ..., n), then there is a permutation π that

gives the ordering L2 so that the edges of G are the pairs {i, j} with i < j

and π(j) < π(i).

A circle graph is a generalization of a permutation graph and can be de-

fined as an intersection graph of chords of a circle. An example of a circle

representation of a circle graph is given on the right-hand side of Figure 3.2.

3.1.4 Cocomparability graphs

Recall the latter observation about permutation graphs. Recall that the

intersection of linear orderings on [n] gives a partial ordering on the set [n].

Thus, every permutation graph is the cocomparability graph of a poset of

dimension at most two. If we reverse the order of the elements in one of

the orderings, we see that every permutation graph is also a comparability

graph.

Theorem 3.3 ([21, 19]). The following conditions are equivalent for a graph

G = (V, E):

(i) G is a permutation graph.

(ii) G is both a comparability graph and a cocomparability graph of a poset

P = (V, <P ).

(iii) dim(V, <P ) = 2.

Cocomparability graphs have been characterized in [33] as intersection graphs

of function diagrams.

Theorem 3.4 ([33]). A graph is a cocomparability graph if and only if it is

the intersection graph of a set of curves in R2 where each curve is the image

of a continuous function from [0, 1] to R.
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l5l3 l4l2l1

Figure 3.3: A realizer of a poset induces a representation of the corresponding

cocomparability graph as an intersection graph of polygonal arcs.

To illustrate Theorem 3.4 let G = (V (G), E(G)) be a cocomparability graph.

Then Ḡ, its complement, is the comparability graph of some poset P with

ground set V (G). Let R = {L1, ..., Lk} be a realizer of P . As in the case of

permutation graphs embed the linear orders of R onto k different parallel lines

l1, ..., lk in the plane. Then connect every pair of points on two consecutive

lines that correspond to the same element of V (G) by a straight line segment.

The concatenation of the respective segments yields a polygonal arc for each

element of V (G). Now it is easy to see that the set of polygonal arcs is

a representation of the cocomparability graph G of poset P as intersection

graph of Jordan arcs fulfilling the conditions of Theorem 3.4.

If we embed an interval realizer of a given poset in the way just mentioned

and connect every pair of left, respectively right endpoints of intervals on two

consecutive lines by segments, we obtain an intersection graph of so called

ribbons.

In the case of cocomparability graphs of interval dimension two, the result-

ing ribbons are trapezoids, thus the respective intersection graphs are called

trapezoid graphs. In the case of cocomparability graphs of interval dimension

one, we are left with an intersection graph of intervals, that is an interval

graph.

3.2 String graphs

We are mainly interested in intersection graphs of Jordan curves in the plane,

which are known as string graphs. String graphs were introduced indepen-
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dently in 1966 in [63] and in 1976 in [20]. Since then they have been widely

studied.

In the following sections we will review graphs that are not string graphs,

present subclasses of the class of string graphs and name the most famous

complexity results.

c1

c2

c3

Figure 3.4: The graph Ω({c1, c2, c3}) is a path on three vertices.

3.2.1 Graphs that are not string graphs

Already in [20], graphs are determined that are not string graphs. Here they

observed that the complete subdivision of K5, and thus of any nonplanar

graph, is not a string graph.

To see this, let G = (V, E) be an arbitrary nonplanar graph and assume

that there is a string representation G of the complete subdivision Ĝ of G.

The strings of G can be partitioned into the set SV representing the elements

of V (G) and SE representing the elements of V (Ĝ)\V (G), that is the elements

of E(G). Now we can contract each string pv of SV to a point without creating

any new intersections except for the ones of strings representing the elements

of NĜ(v); these will meet in a point now. The resulting configuration then

contains a planar embedding of G which is a contradiction to the assumption

that G is nonplanar. Thus, the complete subdivision of any nonplanar graph

is not a string graph.

3.2.2 Implicit subclasses of string graphs

Natural and rather interesting subclasses of the class of string graphs arise

by posing restrictions on the properties and the intersection behavior of the
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Figure 3.5: A pseudosegment representation of any subgraph of the complete sub-

division of K5 induces a planar embedding of the respective subgraph.

Jordan curves. In the following we will mostly be interested in string rep-

resentations where no three strings have a point in common. Such a string

representation is called a simple string representation and can be achieved

from an arbitrary string representation by adequately perturbing the multiple

intersection points.

As shown in [55, 59], every string graph has a string representation where

the number of intersection points is finite. Thus, when dealing with a string

graph we can always assume that we are given a string representation with

Jordan curves of finite-length, hence Jordan arcs. In [46], the authors consider

string representations where the number of intersections of any pair of strings

is bounded and touching points are excluded. These additional properties

yield the following subclasses of string graphs.

Let G = (V, E) be a string graph. If G has a simple string representation S

such that every common point of a pair of strings of S is a crossing of these

strings, then we say that S is a cross representation of G and G is a cross

graph.

If G has a cross representation S and the number of intersection points

of any two strings of S is bounded by k, then we say that S is a k-cross

representation of G and G is a k-cross graph.

3.2.3 Further subclasses of string graphs

Theorem 3.4 of [33] implies that cocomparability graphs are string graphs.

An example of a string representation of a cocomparability graph resulting

from a realizer is given in Figure 3.3.

Maybe the most famous subclass of string graphs are planar graphs; this was



3.2 String graphs 27

already shown in [20]. To see this let G = (V (G), E(G)) be a planar graph

and {Cv | v ∈ V (G)} the set of disks resulting from Koebe’s touching disks

representation. Let Sv be the boundary of Cv for every v ∈ V (G). As Sv is

a simple curve, the set S = {Sv | v ∈ V (G)} is a string representation of G.

If we want the intersection points to be crossings, we set sv as the circle

that results from augmenting the radius of Sv by some ǫ > 0 so that G is

the intersection graph of the set S ′ = {sv | v ∈ V (G)}. If we want the

strings to be open curves, we simply delete a point of each Sv that is not

contained in any other curve of S or of sv of S ′ respectively, and obtain a

string representation of G with open curves. This operation is sketched on

the left-hand side of Figure 3.6.

Figure 3.6: String representations of a planar and a chordal graph obtained from a

representation by touching disks and a tree representation respectively.

A further interesting subclass of the class of string graphs is the class of

chordal graphs. Recall that every chordal graph is a vertex intersection graph

of subtrees of a tree. If we embed a tree representation of a chordal graph into

the plane, we can locally replace every subtree by an open curve, obtained

from a walk around the respective subtree. These curves can be modified in

such a way that two curves intersect if and only if the corresponding subtrees

intersect. See the right-hand side of Figure 3.6 for an illustration.

3.2.4 Complexity results for string graphs

Interesting research has been conducted regarding the membership complex-

ity of the class of string graphs and certain subclasses. The problem for string

graphs was stated in 1976 [36]. It was not known to be decidable for almost

thirty years. In two independent papers [55, 59] it is shown that every string
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graph has a string representation where the number of intersection points is

bounded by an exponential in the number of strings. In [58] it is shown that

the recognition problem for string graphs is in NP. In [44] it is shown that

recognizing string graphs is NP-hard.

Note that for certain subclasses of string graphs like interval, chordal and

permutation graphs the recognition problem is polynomially solvable.

In [43] it is shown that the independent set and clique problem are NP-

complete for string graphs in general. In the case of interval, chordal and

permutation graphs, the independent set and clique problems are polynomi-

ally solvable, see for example [21, 32, 43].

3.3 Pseudosegment graphs

In Figures 3.3 and 3.6 we sketched string representations of planar, chordal

and cocomparability graphs. In any case we can achieve that the resulting

string representation is a simple cross-representation. In the case of planar

graphs we even know that they are 2-cross-graphs as there are string repre-

sentations where the number of intersections of any two strings is bounded

by two. So it is an obvious question to ask whether planar graphs are 1-

cross-graphs.

In the literature, 1-cross-graphs have received different names each refer-

ring to a certain point of view. The one we will use here is pseudosegment

graphs; it accounts for the fact that every pair of Jordan arcs of a 1-cross-

representation intersects like a pair of straight line segments. In other words,

a graph G is a pseudosegment graph if there is a set S of pseudosegments in

the plane such that G is isomorphic to the intersection graph Ω(S) of the

pseudosegments of S; the set S is then a pseudosegment representation of G.

The class of intersection graphs of pseudosegments is denoted PSI.

Remark: Each pseudosegment representation can easily be changed into

a simple pseudosegment representation by perturbing the pseudosegments

participating in a multiple intersection locally. This can be done without

changing the intersection relations or augmenting the number of pairwise

intersections. Thus, we do not have to care for multiple intersection points.
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3.3.1 Pseudosegment graphs and intersection graphs of polygonal arcs

Let G be an arbitrary pseudosegment graph and let J be a set of pseu-

dosegments such that G ∼= Ω(J ). Let X(J ) be the set of crossing points

and endpoints of the elements of J . Then J induces a plane graph G(J )

on X(J ). More precisely, G(J ) has an edge for every two elements of X(J )

that appear consecutive on a pseudosegment of J . By Lemma 2.4 we know

that every plane graph can be represented in such a way that the edges are

polygonal arcs. This implies that G has a pseudosegment representation

where the pseudosegments are polygonal arcs.

3.3.2 Graphs that are not pseudosegment graphs

Obviously not every graph is the intersection graph of some set of pseudoseg-

ments. An example of a graph that is not a pseudosegment graph is the

complete subdivision of K5 as seen in Section 3.2.1. This result leads to a

further example of a graph that does not belong to PSI.

Definition 3.5. Let V be the set consisting of the union [5]∪
(

[5]
3

)

. Then

let G[5, 3] be the graph with vertex set V such that [5] and
(

[5]
3

)

induce

independent sets and xy is an edge of G[5, 3] if and only if x ∈ [5], y ∈
(

[5]
3

)

and x ∈ y.

Proposition 3.6. The graph G[5, 3] is not a pseudosegment graph.

Proof. Assume that G[5, 3] is a pseudosegment graph and let G be an arbi-

trary pseudosegment representation of G[5, 3]. Then G can be partitioned

into two sets, P1 = {p1, ..., p5} representing the elements of [5] and P2 =

{pijk | {i, j, k} ∈
(

[5]
3

)

} representing the elements of
(

[5]
3

)

. As G is a pseudoseg-

ment representation of G[5, 3], the sets P1 and P2 consists of disjoint Jordan

arcs and pl ∈ P1 intersects pijk ∈ P2 if and only if l ∈ {i, j, k}. Note that the

intersection points on pijk ∈ P2 induce a linear ordering on the elements i, j

and k of [5].

Assume there is a pseudosegment pijk ∈ P2 for every pair of elements pi,pj

of P1 such that the subset of pijk that connects pi and pj does not contain the

intersection point with pk. Denote this part of pijk by cij. Then the union
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pi
pj

pk

ph

pl

pijk

Cij

pijl

pijh

Figure 3.7: Curve Cij prevents that a Jordan arc represents pklh.

P1 ∪ {cij |{i, j} ∈
(

[5]
2

)

} is a pseudosegment representation of the complete

subdivision of K5. This is not possible as observed in [20].

Thus, there is a pair pi and pj of pseudosegments in P1 such that the subset

of pijk contains the intersection with pk for all k ∈ [5]\{ij}. In this case,

there is a pseudosegment pl ∈ P1\{pi, pj} that lies within the closed curve Cij

that is contained in the union of pi, pj, pijk and pijh for {i, j, k, l, h} = [5];

see Figure 3.7 for an illustration. This implies that the pseudosegment of P2

representing the triple {h, l, k} has to intersect either Cij or pijl. This con-

tradicts the assumption that G is a pseudosegment representation of G[5, 3].

As G was chosen arbitrarily, G[5, 3] is not a pseudosegment graph.

3.3.3 Implicit subclasses of pseudosegment graphs

The most natural subclass of pseudosegment graphs is the class SEG of in-

tersection graphs of segments. Intersection graphs of segments, for short

segment graphs, were already considered in 1976 [20] and received further

interest as a result of Conjecture 1.1 from 1984:

Conjecture 1.1([61]) Every planar graph is a segment graph.

This conjecture was supported by the first results for subclasses of planar

graphs, but stayed an open question until 2009, when it could be confirmed

in [8]. The following further leading conjecture from 1991 is still open.

Conjecture 1.2([68]) Every planar graph has a segment representation

where the segments are of at most four directions.

There are some graphs where pseudosegment representations, and sometimes

even segment representations, are trivial or very easy to find. Examples of
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graphs which trivially belong not only to PSI but even to SEG are permu-

tation graphs and circle graphs; both types of graphs are intersection graphs

of segments by definition.

3.3.4 Complexity results for pseudosegment and segment graphs

The recognition problem of pseudosegment graphs is shown to be NP-com-

plete in [45]. The recognition problem of segment graphs is NP-hard ac-

cording to [46]. Interestingly, it is open whether the recognition problem of

segment graphs is NP-complete. It is known, however, that a representation

via segments with integer endpoints may require endpoints of size 22
√

n

[47].

In [43, 52] the complexities of optimization problems for segment graphs are

analyzed. It is known that the independent set problem for segment graphs

is NP-complete but the complexity of the clique problem is still not known.

Nevertheless it is known that computing the chromatic number of segment

graphs is NP-hard [20]

3.4 Preview

With this as background we come to give a comprehensive overview of our

work on pseudosegment graphs. Keep in mind that we can always choose a

pseudosegment representation consisting of polygonal arcs.

In Section 3.2.3 we considered string representations of planar, chordal and

cocomparability graphs:

• a string representation of an arbitrary planar graph can be read off a

touching disks representation;

• a string representation of a chordal graph can be constructed using a

tree representation;

• a realizer of a poset yields a string representation of the corresponding

cocomparability graph.

In each of these cases there are graphs where the so obtained string repre-

sentation is not a 1-string representation, in other words it is not a pseu-

dosegment representation. This naturally leads to the question whether all
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planar, chordal and cocomparability graphs are pseudosegment graphs. With

respect to planar graphs the existence of segment representations was already

conjectured in 1984, and was proven lately in 2009 [8]. At this, the actual

question is whether there exist segment representations using segments of at

most four different directions, as stated in Conjecture 1.2.

Chapter 4 deals with Conjecture 1.2 and the relation of pseudosegment and

segment graphs.

In Section 4.1 we consider subclasses of planar graphs and show that every

series-parallel graph is a segment graph. Our proof yields a segment repre-

sentation of an arbitrary series-parallel graph where the segments are of at

most three directions. Thus, Conjecture 1.2 is true for series-parallel graphs.

In addition, no two parallel segments share a point, so our result, furthermore,

induces a proper 3-coloring of the represented series-parallel graph. The

analog holds for bipartite planar and triangle-free planar graphs where proper

2- and 3-colorings result from the respective segment representations obtained

in [13, 15, 39]. Note that in the proof of [8], showing that every planar graph

is a segment graph, no upper bound on the number of directions used in

the resulting segment representations is given. The latter proof, confirming

Conjecture 1.1, will be sketched in Section 4.2.

In Section 4.3 we turn our attention to arrangements of pseudolines and

straight lines to analyze the consequences of restricting pseudosegments to

straight line segments. Pseudolines were introduced by Levi [48] as a gener-

alization of straight lines. An example of a nonstretchable arrangement of

pseudolines was already given in [56].

In Section 4.3.1 we construct a pseudosegment graph that captures the com-

binatorial structure of an arbitrary but fixed pseudoline arrangement. Then

we show that this pseudosegment graph is a segment graph if and only if the

chosen pseudoline arrangement is stretchable.

In Chapter 5 we consider chordal graphs with respect to pseudosegment

representations.

First, in Section 5.1, we show that path graphs are pseudosegment graphs.

This is not as trivial as it may seem at first glance when considering a path

representation of such a graph embedded in the plane.
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Subsequently we present chordal graphs that do not belong to the class of

pseudosegment graphs. In Section 5.2 we introduce the family (K3
n)n∈N of

chordal graphs. Every graph K3
n has the vertex set V = VC ∪ VI such that

VC = [n] induces a clique on n and VI =
(

[n]
3

)

is an independent set on
(

n

3

)

ele-

ments. Additionally, every vertex {i, j, k} of VI is adjacent to the vertices i, j

and k of VC . Assuming that there is a pseudosegment representation of K3
n

for every n ∈ N, we focus on the subset of pseudosegments that represent the

clique of K3
n; this set corresponds to an arrangement of n pseudosegments.

The remaining pseudosegments are disjoint 3-segments contained in the ar-

rangement. We then show that every arrangement of n pseudosegments can

contain at most 6n2 disjoint 3-segments which prevents the existence of a

pseudosegment representation of K3
n if

(

n

3

)

> 6n2.

Disregarding our original objective, this partitioning leads to further ques-

tions on 3-segments contained in an arrangement of pseudosegments. If we

require that the set of 3-segments contained in the arrangement is a set of

pseudosegments itself, we are not able to bound the size of such a set. One

problem about answering this question is that the 3-segments can bypass the

pseudosegments of the arrangement at their ends.

To evade this problem we exchange the arrangement of pseudosegments by an

arrangement of pseudolines. In Section 5.3 we bound not only the number of

3-segments but even of k-segments contained in a pseudoline arrangement.

To this end, we introduce the (≤ k)-zone of a pseudoline in a pseudoline

arrangement which generalizes the classical zone. Then we determine a linear

upper bound on the number of edges in the (≤ k)-zone which enables us to

show that the maximal size of a set of k-segments of an arbitrary arrangement

of n pseudolines is O(n2). The bound on the number of edges in the (≤ k)-

zone is of independent interest and has already found application in the work

of Scharf and Scherfenberg [60].

Next, in Section 5.4, we consider the family (S3
n)n∈N of chordal graphs defined

as follows. For every n ∈ N, the graph S3
n has as vertex set V = V ′

I ∪ V ′
C

such that V ′
I = [n] is an independent set of n and V ′

C =
(

[n]
3

)

a clique of
(

n

3

)

vertices; again membership accords with adjacency between elements of V ′
I

and V ′
C . This time we use an argument from Ramsey Theory to show that for

large n, every string representation of S3
n contains two strings representing a

pair of elements of V ′
C that intersect more than once. This contradicts the

existence of a pseudosegment representation of S3
n for large n.
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Every K3
n has a representation as vertex intersection graphs of caterpillars

of a caterpillar with maximal degree three. Every S3
n has a representation as

vertex intersection graph of substars of a star where the substars have maxi-

mal degree three. Hence these subtrees are “close” to being paths. Recalling

that every path graph is a pseudosegment graph we conclude that graphs

that are chordal graphs and pseudosegment graphs cannot be induced by

many treelike subtrees of a tree.

Finally, in Chapter 6 we consider cocomparability graphs of interval di-

mension two, better known as trapezoid graphs, and determine subclasses of

trapezoid graphs that consist of pseudosegment graphs.

Interval graphs are the cocomparability graphs of posets of interval dimen-

sion one. As every interval graph is also a path graph, we know from Sec-

tion 5.1 that every interval graph is a pseudosegment graph. In Section 6.1

we construct pseudosegment representations of interval graphs using inter-

val representations of the respective graphs, that is interval realizers of the

corresponding posets.

Permutation graphs are the cocomparability graphs of posets of dimension

two. Using two dimensional realizers of the posets, we easily obtain not

only pseudosegment but even segment representations of permutation graphs.

These pseudosegment representations and the ones of interval graphs ob-

tained in Section 6.1 will be of use when we consider further subclasses of

trapezoid graphs in view of pseudosegment representations.

In Section 6.2 and 6.4 we construct pseudosegment representations of point-

interval graphs, a generalization of permutation and interval graphs, and two

more subclasses of trapezoid graphs using two dimensional interval realizers

of the respective posets. It remains an open question whether every trapezoid

graph is a pseudosegment graph.



Chapter 4

Segment Graphs

Segment graphs, that is intersection graphs of segments, were already con-

sidered in 1976 by Ehrlich et al. in [20], one of the first papers on string

graphs. In 1984, Scheinerman conjectured that every planar graph was a

segment graph.

Conjecture 1.1([61]) Every planar graph is a segment graph.

This called wide attention to segment graphs and initiated many investiga-

tions. The conjecture was supported by the first results on subclasses of

planar graphs. In 1991 it was shown by de Fraysseix et al. [15] and inde-

pendently by Hartman et al. [39] that every bipartite planar graph is a seg-

ment graph. In 2002, de Castro et al. [13] extended this result and showed

that every triangle-free planar graph is a segment graph. The latter results

strengthened Conjecture 1.2, stated by West in 1991:

Conjecture 1.2([68]) Every planar graph has a segment representation

where the segments are of at most four directions.

In all three cases, the resulting segment representations consist of segments

of two respectively three directions.

Further work in view of Conjecture 1.1 was conducted and, in 2005, de Frays-

seix and de Mendez [14] showed that every 4-connected 3-colorable planar

graph and every 4-colored planar graph without an induced C4 using four col-

ors is a segment graph. Finally, in 2009, Chalopin and Gonçalves confirmed

Conjecture 1.1 [8]. Conjecture 1.2 remains open in general.

The first two sections of this chapter are devoted to this topic. In Section 4.1

we will present our own contribution to Conjecture 1.2; it dates back to

2005 and shows that every series-parallel graph, that is every graph that

does not contain a subdivision of K4, has a segment representation; the

35
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segment representations we obtain consist of segments that are of at most

three directions.

We proceed in Section 4.2 with a sketch of the interesting though rather

technical proof of the result from [8] that every planar graph is a segment

graph.

During the work on Conjecture 1.1 it sometimes turned out to be useful

to first construct a pseudosegment representation of the considered planar

graph. To clarify the difference of pseudosegment and segment representa-

tions we consider arrangements of pseudolines and straight lines. In Sec-

tion 4.3 we use a pseudoline arrangement to construct a pseudosegment

graph. Our construction implies that the resulting pseudosegment graph is a

segment graph if and only if the chosen pseudoline arrangement is stretchable.

4.1 Series-parallel graphs

Motivated by the fruitful work on subclasses of planar graphs as segment

graphs, we investigated the class of series-parallel graphs. In this section, we

show that every series-parallel graph is a segment graph; this is joint work

with Bodirsky and Kára and can also be found in [4]. The resulting segment

representations have the additional property that the segments used in the

representations are of at most three directions. This confirms Conjecture 1.2

for series-parallel graphs. As, in addition, parallel segments are disjoint, every

segment representation of a series-parallel graph induces a proper coloring of

the respective graph with three colors, the directions.

4.1.1 Definitions

A series-parallel network is a graph with two distinguished vertices s and t,

called the source and the sink, that is inductively defined as follows: let G1

and G2 be two series-parallel networks where s1 is the source of G1 and s2

the source of G2. Analogously let t1 denote the sink of G1 and t2 the sink

of G2. Then G is a series-parallel network if G is either an edge between the

source and the sink, or G is obtained by one of the two operations:

• G is obtained from G1 and G2 by identifying t1 and s2. The source

of G is s1 and its sink t2. This operation is called a serial composition.
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• G is obtained from G1 and G2 by identifying s1 and s2 and t1 and t2.

The source of G is s1 = s2 and its sink t1 = t2. This operation is called

a parallel composition.

These operations may give rise to multiple edges. But as the definition of

intersection graphs does not account for multiple edges we only consider the

underlying simple graphs.

A graph is a series-parallel graph if each of its 2-connected components is a

series-parallel network.

Theorem 4.1. Every series-parallel graph has a segment representation.

To prove Theorem 4.1 we will first construct a segment representation S

of an arbitrary series-parallel network N that has the following additional

properties:

(P1) The segments of S are of at most three different directions.

(P2) No two parallel segments of S intersect.

(P3) The intersection point of two segments is an endpoint of at least one

of them.

Note that a segment representation that fulfills properties (P1),(P2) and

(P3) is also called a PURE-3-SEG-CONTACT-representation [47].

Secondly we will show that any series-parallel graph G is a subgraph of some

series-parallel network N . The fact that N has a segment representation S ′

fulfilling property (P3) implies that G has a segment representation S ⊂ S ′

resulting from shortening and deleting certain segments of S ′. This implies

that every series-parallel graph is a segment graph.

Remark: Let us point out that properties (P1) and (P2) involve that the

directions used induce a proper 3-coloring of the represented series-parallel

graph.

4.1.2 A special segment representation of a series-parallel network

Before we come to the construction of a segment representation of a series-

parallel network, we need to define some geometric terms.
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Let l1, l2 be two different halflines that end in a common point. We call the

area between l1, l2 with angle less than or equal to π/2 the cone of l1 and l2.

We say that a cone is bounded by segments p1 and p2 if they both contain the

endpoint l1 ∩ l2, p1 is contained in l1 and p2 and l2 overlap. See Figure 4.1

for an illustration.

Now let C be a cone bounded by segments p1 and p2. If there is a segment

p3 ⊂ C such that

• p1, p2 and p3 are pairwise not parallel,

• p3 touches p1 and p2 in its endpoints which are not endpoints of p1

and p2,

then we call C an admissible cone and say that p3 assures the admissibility

of C.

Lemma 4.2. Let G be an arbitrary series-parallel network with source s and

sink t. Let C be an arbitrary admissible cone bounded by two segments p

and p′, and let p̄ be an arbitrary segment assuring the admissibility of C.

Then there exists a segment representation S of G with properties (P1),(P2)

and (P3) such that S is inside the triangle defined by p, p′ and p̄. Further-

more, s and t are represented by p and p′, that is p = ps, p′ = pt.

Proof. The proof is by induction on the number of vertices of G. For the

induction basis assume that G is just an edge, hence, the vertices of G are

just s and t. Then the bounding segments p and p′ of C form a segment

representation of G fulfilling properties (P1),(P2) and (P3).

Now let G be a series-parallel network with n vertices and assume that

Lemma 4.2 has been proven for graphs with at most n − 1 vertices. Let C

be an arbitrary admissible cone bounded by two segments p and p′, and let p̄

be an arbitrary segment assuring the admissibility of C. By definition, G

is either a serial or a parallel composition of two series-parallel networks G1

and G2, each having less than n vertices. Let s1 and s2 be the source and t1
and t2 be the sink of G1 and G2 respectively.

(a) Assume that G is a serial composition of the series-parallel networks G1

and G2 with source s = s1 and sink t = t2. Let C1 be a cone bounded

by segments p and p̄ and admissible by a segment p1 contained within C
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that is parallel to p′. By the induction hypothesis G1 has a segment

representation S1 fulfilling properties (P1),(P2) and (P3) within C1

such that p = ps1
and p̄ = pt1 .

Now choose an open disk centered at the intersection of p̄ and p′ that

has empty intersection with any segment of S1 different from p̄. Then

choose a segment p2 in C parallel to p that lies within this disk. Let C2

be the cone bounded by segments p′ and p̄ and admissible by seg-

ment p2. By the induction hypothesis, G2 has a segment representa-

tion S2 fulfilling properties (P1),(P2) and (P3) within C2 such that

p′ = pt2 and p̄ = ps2
.

By the choice of p2, S2 is disjoint from S1 except for p̄, thus, the union

S1 ∪S2 is a segment representation of G fulfilling properties (P1),(P2)

and (P3) within C such that p = ps and p′ = pt. See the right-hand

side of Figure 4.1 for an illustration.

p̃

S1

S2

p′

p̄

p

p

p′

S1 S2

p̄

Figure 4.1: Segment representations of G after (a) a serial and (b) a parallel com-

position.

(b) Now assume that G is a parallel composition of the series-parallel net-

works G1 and G2 with source s = s1 = s2 and sink t = t1 = t2. By the

induction hypothesis, G1 has a segment representation fulfilling prop-

erties (P1),(P2) and (P3) within C such that p = ps1
and p′ = pt1 . As

before C is admissible via p̄. We denote this segment representation

by S1.

Now choose an open disk centered at the intersection of p and p′ that

has empty intersection with any segment of S1 different from p and p′.

Then choose a segment p̃ in C parallel to p̄ that lies within this disk.

By the induction hypothesis there is a segment representation S2 of G2

fulfilling properties (P1),(P2) and (P3) within C such that p = ps2
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and p′ = pt2 and p̃ assures the admissibility of C. The union S1 ∪S2 is

a segment representation of G fulfilling properties (P1),(P2) and (P3)

within C such that p = ps and p′ = pt. For an illustration of case (b)

see the left-hand side of Figure 4.1.

Lemma 4.3. Let G = (V, E) be a graph and let S be a segment representa-

tion of G that fulfills property (P3). Let G′ = (V ′, E ′) be a subgraph of G.

Then there is a segment representation S ′ of G′ fulfilling property (P3) that

can be obtained from S by shortening and deleting some of the segments

of S.

Proof. Let S be a segment representation of G fulfilling property (P3) and

let pv be the segment representing v ∈ V in S. In order to obtain S ′ from S

we first delete all segments from S that correspond to vertices of G and not

of G′. The resulting set S̄ of segments is a segment representation of the

subgraph Ḡ of G that is induced by the vertices V ′ of G′.

Now let F be the set of edges in Ḡ and not in G′. If F = ∅, then Ḡ = G′

and S̄ is a segment representation of G′. Otherwise let e = uw be an edge

of F . By definition, segments pu and pw meet in a common point and one

of them, say pu, ends there. Then we can shorten pu so that it does not

intersect pw anymore while preserving all intersection points of pu with other

segments of S̄. If we repeat this procedure for each edge of F , we obtain a

segment representation S ′ of G′ that fulfills property (P3).

In the next subsection we will show how this construction can be used to

represent an arbitrary series-parallel graph.

4.1.3 Series-parallel graphs and series-parallel networks

It is a well known fact that the class of series-parallel graphs is the class of

graphs that do not contain a subdivision of K4 [18]. This will be used to

show that every series-parallel graph is the subgraph of some series-parallel

network.

Lemma 4.4. Let G be a graph that does not contain a subdivision of K4.

Then there is a graph H such that
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• G is a subgraph of H ,

• H is 2-connected,

• H does not contain a subdivision of K4.

Proof. Let G = (V, E) be an arbitrary graph that does not contain a subdi-

vision of K4. If G has several components, then we can add edges such that

the resulting graph is connected and does not contain a subdivision of K4. So

let us assume that G is connected. We then prove Lemma 4.4 by induction

on the number of blocks of G.

For the induction basis we assume that G contains only one block. If G is

2-connected, Lemma 4.4 holds for H = G. Otherwise G is an edge. In this

case we obtain H by adding a vertex and connecting it to the vertices of G,

and, again, Lemma 4.4 holds.

Now assume that G consists of k blocks and Lemma 4.4 has been proven for

graphs with at most k − 1 blocks. Let B1 and B2 be two different blocks

of G that share vertex v ∈ V . Let u1 and u2 be neighbors of v in B1 and B2

respectively. Let G′ = (V, E ∪{u1u2}). Clearly the number of blocks of G′ is

one less than the number of blocks in G. If G′ does not contain a subdivision

of K4, then we are done by induction.

So suppose that G′ contains a subdivision S of K4. Let W = {w1, .., w4}

be the vertices of degree three in S. Then there are three internally disjoint

paths between wi and wj for every two different vertices wi, wj ∈ W . As

there are at most two internally disjoint paths between a vertex of B1 and

a vertex of B2 different from v in G, the vertices of W must be contained

within one block of G.

Without loss of generality let W be contained in B1. As G does not contain a

subdivision of K4, S must contain a path P that enters B2 via v and returns

to B1 via u1u2. Note that we can replace the subpath of P between v and u2

in B2 by the edge vu1. By this we obtain a subdivision of K4 that is a

subgraph of B1, and thus of G as well. This contradicts the fact that G does

not contain a subdivision of K4. Thus, induction gives that there is a 2-

connected graph H that does not contain a subdivision of K4 but contains G

as a subgraph.

The previous lemma enables us to show Theorem 4.5 which is a stronger

version of Theorem 4.1.
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Theorem 4.5. Let G = (V, E) be a series-parallel graph. Then G has a

segment representation that fulfills properties (P1), (P2) and (P3).

Proof. Given a series-parallel graph G, Lemma 4.4 implies that there exists

a 2-connected graph H that contains G as a subgraph and does not contain

a subdivision of K4. Hence, H is a 2-connected series-parallel graph, and

thus, H is a series-parallel network. Applying Lemma 4.2 we obtain a segment

representation S ′ of H that fulfills properties (P1), (P2) and (P3) and lies

within a cone bounded by two segments p and p′ and admissible by p̄. Using

Lemma 4.3 we can shorten and delete segments of S ′ such that we obtain

a segment representation S of G fulfilling properties (P1), (P2) and (P3).

This proves Theorem 4.5

4.2 Planar graphs

In [8] it is shown that every planar graph is a segment graph which confirms

Conjecture 1.1 from 1984.

Theorem 4.6. ([8]) Planar graphs are segment graphs.

In the following we will sketch the proof of this result. In order to give an

introductory overview of the result, we will leave out most of the technical

details and concentrate on the basic ideas. Note that many details and

technical lemmas can be found only in the extended version of [8].

4.2.1 Overview

It suffices to prove Theorem 4.6 for triangulations as every plane graph is an

induced subgraph of a triangulation. After introducing some definitions, we

will present the constructive models and operations used in [8] to present an

arbitrary triangulation as a segment graph. Subsequently we will sketch the

proof of Theorem 4.6 from [8]; it is by induction on the number of separating

3-cycles of a triangulation.



4.2 Planar graphs 43

4.2.2 Graph theoretic definitions

The following operation enables us to restrict our attention to triangulations

when heading for segment representations of planar graphs.

Let G be a plane graph. Then the graph h(G) is obtained from G by embed-

ding a new vertex vf into face f of G and connecting it to every vertex of G

on the boundary of f by a new edge. This is done for every face of G. Then

it follows that the graph h(G) is a connected plane graph containing G as an

induced subgraph, h(h(G)) is 2-connected and h(h(h(G))) is a triangulation.

A plane graph is called a near-triangulation if all inner faces are triangles. An

edge uv ∈ E is an inner chord of a near-triangulation T if u and v are outer

vertices of T and uv is an inner edge. A W-triangulation is a 2-connected

near-triangulation containing no separating 3-cycle.

A W-triangulation T is 3-bounded if the boundary of the outer face of T is

the union of three paths (a1, .., ap),(b1, .., bq) and (c1, .., cr) that satisfy the

following conditions

• a1 = cr, b1 = ap and c1 = bq,

• the paths are not trivial, that is p ≥ 2, q ≥ 2 and r ≥ 2,

• there exists no inner chord aiaj, bkbl, cmcn with 1 < i + 1 < j ≤ p,

1 < k + 1 < l ≤ q and 1 < m + 1 < n ≤ r.

The boundary of T will be denoted by (a1, .., ap)− (b1, .., bq)− (c1, .., cr), see

Figure 4.2 for an example.

cr = a1

ap = b1

bq = c1

a2

b2

c2

Figure 4.2: A 3-bounded W-triangulation T with boundary (a1, .., ap)− (b1, .., bq)−

(c1, .., cr).

By definition, any 4-connected triangulation is a W-triangulation. Notice

that a W-triangulation has no cut-vertex and outer edges induce a cycle.
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The following Lemma gives a sufficient condition for a subgraph of a W-

triangulation T to be a W-triangulation.

Lemma 4.7. Let T be a W-triangulation and C a cycle of T . The subgraph

of T defined by C and the edges inside C according to the embedding of T

is a W-triangulation.

In the following construction, the order on the three boundary paths and

their directions will be important, that is (a1, .., ap)− (b1, .., bq)− (c1, .., cr) is

different from (b1, .., bq) − (c1, .., cr) − (a1, .., ap) and (ap, .., a1) − (cr, .., c1) −

(bq, .., b1).

4.2.3 Constructive definitions

If S is a set of segments where no two segments overlap, then S is called

unambiguous. If, in addition, every endpoint of a segment of S belongs to

exactly one segment and the intersection of any three segments is empty,

then we call S a model of every graph G with G ∼= Ω(S).

Let T be a triangulation and S a model of T . A face-segment ābc of face abc

of T is a segment that intersects the segments pa, pb and pc of S such that ābc

connects the crossing point of pa and pb to an inner point of pc. The end-

points of ābc are then called crossing end P and flat end Q respectively; see

Figure 4.3 for an example.

pa

pb

pc

ābc

P

Q

Figure 4.3: The placement of a face-segment ābc

A full model of a triangulation T is a couple M = (S,F) of segments S

representing the vertices, and F representing the faces of T such that

• S is a model of T ;
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• the face-segments are non-crossing and there is a face-segment for every

inner face of T ;

• S ∪ F is unambiguous.

To show that any triangulation T has a segment representation, the authors

of [8] construct a full model for T . It turns out to be practical to work with

multiple intersection points representing subgraphs of T during the construc-

tion. Therefore the authors use so called premodels. To define this term, we

need some more notations.

Let R be a set of segments. The set of representative points RepR of R

consists of the endpoints and crossing points of elements of R. The rela-

tions between the elements of R and the representative points of R can be

expressed by the constraint graph ConstR defined as a bipartite digraph on

vertex set R ∪ RepR. In ConstR two elements P, r ∈ R ∪ RepR are adjacent

if P ∈ RepR and r ∈ R such that P ∈ r. Then (P, r) is an arc of ConstR
if P is an endpoint of r, and otherwise (r, P ) is an arc of ConstR.

In a premodel of T , representative points will stand for certain subgraphs

of T ; these are useful in view of the induction. The representative points are

classified by the type of subgraph they represent, for example

• a segment end corresponds to the single vertex represented by the seg-

ment;

• a flat face-segment f corresponds to the single vertex represented by

the segment at the end of f ;

• a crossing corresponds to the edge between the vertices represented by

the crossing segments.

There are five more types of subgraphs, that is a path, a fan and combinations

of a path and a fan, namely fan-path-v1-point, path-fan-v1-point and double-

fan-v1-point; we omit the precise definition and refer to Figure 4.4 where

examples of the latter three types are sketched.

Let S be a set of segments, F a set of non-crossing face-segments and ϕ a

function that assigns a type to each representative point of S ∪F . Then the

triple M = (S,F , ϕ) is a premodel of a near-triangulation T if the following

holds
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v1 v1 v1

Figure 4.4: A fan-path-v1-point, a path-fan-v1-point and a double-fan-v1-point

• The set S ∪ F is unambiguous and the digraph ConstS∪F is acyclic;

• there is a bijection between the vertices of T and the segments of S;

• there is an edge ab ∈ E(T ) if and only if pa and pb of S intersect

in a point P such that the graph corresponding to ϕ(P ) contains the

edge ab;

• there is a face abc ∈ F (T ) if and only if one of the following holds:

– there exists a face-segment corresponding to abc in F ,

– pa, pb and pc intersect in a point P such that the graph corres-

ponding to ϕ(P ) has an inner face abc.

It remains to state how a full model is obtained from a premodel. To this end,

the authors use three operations, that is prolonging, gliding and traversing.

Changing one premodel to another one by such an operation is called a partial

realization. Note that the number of representative points of a full model is

finite and bounds the number of representative points in any premodel. Then

the following corollary gives that a premodel can be transformed into a full

model in a finite number of steps.

Corollary 4.8. Any premodel M = (S,F , ϕ) of a near-triangulation T ad-

mits a sequence of partial realizations that yields a full model M′ = (S ′,F ′)

of T .

Induction on the number of separating 3-cycles of T

To show that any triangulation T admits a segment representation or, more

precisely, has a full model, the authors do induction on the number k of

separating 3-cycles of T . For the induction basis let T be a triangulation

with outer vertices a, b, c and without separating 3-cycle. Then T is a 4-

connected W-triangulation 3-bounded by (a, b)−(b, c)−(c, a). Then it follows
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from Lemma 4.9, stated at the end of this section, that there is a premodel

M = (S,F , ϕ) of T . By Corollary 4.8, any premodel can be transformed into

a segment representation of the respective graph, thus the induction basis is

established.

Now let k > 0 and assume Theorem 4.6 has been proven for triangulations

with (k−1) separating 3-cycles. So let T be a triangulation with k separating

3-cycles and choose (a, b, c) to be a separating 3-cycle of T such that there

is no separating 3-cycle in the subgraph that lies inside (a, b, c) including a, b

and c in T . Let T2 be the subgraph of T induced by all vertices of T that

lie properly inside (a, b, c). Let T1 be the triangulation obtained from T by

removing all vertices of T2. Since the cycle (a, b, c) bounds a face of T1, (a, b, c)

is not a separating 3-cycle in T1. Thus, T1 has one separating 3-cycle less

than T so that induction implies that there exists a full model M = (S,F)

of T1. Moreover, there is a face segment ācb in F as (a, b, c) bounds an inner

face of T1.

Now consider T2 and a vertex v of T2. Assume v is the only vertex of T2

adjacent to a in T . Then v is also the only vertex of T2 adjacent to b and c

in T as the subgraph of T inside (a, b, c) has no separating 3-cycle. Otherwise,

each of the vertices a, b and c is adjacent to at least two vertices of T2.

In the first case, it is easy to add a segment representing v see the left-

hand side of Figure 4.5. Furthermore it is possible to add face-segments

representing the triangles abv, acv and bcv to the full model of T1 in order to

obtain a full model of T . This is done by choosing a real number ǫ > 0 such

that the ǫ-ellipse around the face-segment ābc is intersected only by pa, pb

and pc. Within this ǫ-ellipse, pv and the face-segments representing abv, acv

and bcv can be placed.

pa pb
A

B

pa pb pa pb

D

A
B

pc pc pcC C

Figure 4.5: An ǫ-ellipse around the face segment ābc contains different premodels

of T2.

In the second case T2 forms a 3-bounded W-triangulation. Let (a1, ..., ap)
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be the path in T2 that consists exactly of the vertices of T2 adjacent to a.

Analogously there is a path (b1, ..., bq) and a path (c1, ..., cr) consisting exactly

of the vertices of T2 adjacent to b and c respectively such that ap = b1, bq = c1

and cr = a1. As p > 1, q > 1 and r > 1, cycle (a1, ..., ap, b2, ..., bq, c2, ..., cr)

bounds T2 so that T2 is a W-triangulation. Furthermore, there does not exist

an inner chord aiaj, bkbl or cmcn with 1 < i + 1 < j ≤ p, 1 < k + 1 < l ≤ q

and 1 < m + 1 < n ≤ r as this would imply a separating 3-cycle within T ′.

Thus T2 is a 3-bounded W-triangulation.

As for the induction basis, the authors use Lemma 4.9 to proceed.

Lemma 4.9. Consider a W-triangulation T , 3-bounded by (a1, ..., ap) −

(c1, ..., bq) − (c1, ..., cr).

1. If p = 2 for any triangle BCD there exists a premodel M = (S,F , ϕ)

of T contained in BCD such that

• B is a path-(b1, ..., bq)-point,

• C is a path-(c1, ..., cr)-point,

• D is a fan-a2-(d1, ..., ds, a1)-point with d1, ..., ds being inner ver-

tices of T and a face-segment incident if and only if s = 0.

2. If p > 2, for any triangle ABC there exists a point D inside ABC

and a premodel M = (S,F , ϕ) of T contained in the polygon ABCD

such that

• A is a path-(a2, ..., ap)-point,

• B is a path-(b1, ..., bq)-point,

• C is a path-(c1, ..., cr)-point,

• D is a crossing point of pa1
and pa2

.

As a consequence of Lemma 4.9 there is a premodel for T2 that lies inside

a triangle BCD if p = 2 and inside a polygon ABCD otherwise. This

premodel of T2 is glued into an ǫ-ellipse containing the face-segment ābc in

the full model of T1; the result is a premodel of T , sketched in the middle

and on the right-hand side of Figure 4.5. By Corollary 4.8 this premodel can

be changed into a full model of T which is a segment representation of T .

This finishes the proof of Theorem 4.6.
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4.3 Pseudosegment graphs and arrangements

Already in [20], one of the first papers on string graphs, the relation between

pseudosegment and segment graphs is investigated. In this context, an ex-

ample of a pseudosegment graph that is not a segment graph is given. In [47],

a general construction of pseudosegment graphs that are not segment graphs

is given in the proof of the following theorem.

Theorem 4.10. ([47]) Let Pn be a simple partial arrangement of n pseudo-

lines that constitutes a pseudosegment representation of a graph G. Then

there exists a pseudosegment graph G′ on O(n2) vertices (and is constructible

in polynomial time), containing G as an induced subgraph, with the following

property:

G′ is a segment graph if and only if Pn is stretchable.

With Theorem 4.11 we prove a weaker version of this result using a graph G̃

different from G′ which naturally carries the combinatorial structure of the

given pseudoline arrangement.

Theorem 4.11. Let Ln be a simple arrangement of n pseudolines; this

arrangement constitutes a pseudosegment representation of the complete

graph Kn. Then there exists a pseudosegment graph G̃ on O(n2) vertices,

containing Kn as a subgraph, with the following property:

G̃ is a segment graph if and only if Ln is stretchable.

The proof of Theorem 4.11 consists of three parts. The first part is the

definition of the graph G̃. This is given in Section 4.3.1. Then, in Section 4.3.2

we will show that Ln is stretchable, if G̃ is a segment graph. Finally, in

Section 4.3.3 we will assume that Ln is stretchable and construct a segment

representation of G̃, thus showing that G̃ is a segment graph.

4.3.1 From an arrangement of pseudolines to a pseudosegment graph

Before we come to the precise definition of a graph G̃, let us recall that

the term pseudoline was introduced by Levi in [48] as a generalization of a
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F

Figure 4.6: The false Pappus arrangement and its dual graph naturally embedded

into it.

straight line. The false Pappus arrangement, sketched in Figure 4.6, is an

example of a nonstretchable pseudoline arrangement.

The combinatorial structure of a pseudoline arrangement can be captured by

its dual graph. Here, the dual graph of the pseudoline arrangement L has the

faces of L as vertices such that two vertices f, f ′ of the dual graph of L are

adjacent if and only if f and f ′ share an edge of L on their boundary. If f

and f ′ share edge e of L on their boundary, then e∗ = ff ′ is an edge of the

dual graph of L and is called the dual edge of e.

The definition of the dual graph D̄ of L induces a natural (planar) embedding

of D̄ within L similar to the embedding of the dual graph of a plane graph; as

an example of such an embedding consider the dual graph of the false Pappus

arrangement naturally embedded into it on the right-hand side of Figure 4.6.

Note that a marked pseudoline arrangement is uniquely determined by its

corresponding marked dual graph [25].

Definition of a pseudosegment graph G̃

Now we come to the construction of a pseudosegment graph G̃ associated

with a given pseudoline arrangement Ln. We will construct a graph G̃ that

contains the complete subdivision of the dual graph of Ln as an induced

subgraph. This will allow us to transfer the question whether G̃ is a segment

graph or not to the question whether Ln is stretchable or not.

Let Ln be an arbitrary simple arrangement of pseudolines and D̄ a natural

embedding of the dual graph of Ln within Ln. Choose a circle CD̄ that

completely contains D̄ and, hence, also all intersection points of elements
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of Ln in its interior. If we delete all pieces of pseudolines of Ln that are outside

of CD̄, we obtain an arrangement Sn of pseudosegments and an embedding

of D̄ into Sn. We call Sn the arrangement of pseudosegments that is induced

by Ln. Note that Sn is stretchable if and only if Ln is stretchable. Now let

pi ∈ Sn be the pseudosegment that is supported by p̄i ∈ Ln. We will add

a vertex to D̄ for every endpoint of every element of Sn. To do so set CD

as the circle that results from augmenting the radius of circle CD̄ by some

ǫ > 0. Then Sn ∪ D̄ is completely contained in the interior of CD. Now

we add vertices vi1 and vi2 at the intersection points of pseudoline p̄i ∈ Ln

with the circumscribing circle CD. We denote the endpoint of pi that is next

to vij on p̄i, by eij , j ∈ {1, 2} and call vij an endpoint vertex. This is done

for every pseudoline of Ln. The pieces of CD between two endpoint vertices

that are consecutive on CD are now taken as edges between the respective

vertices such that we obtain a cycle on 2n vertices that encloses Sn ∪ D̄. For

an illustration see Figure 4.7. This cycle is called the frame.

vi2

vi1

CD

Figure 4.7: The graph D, embedded into the false Pappus arrangement, consists

of D̄ and the attached frame.

Finally we connect each vertex vij to the two vertices that correspond to the

unbounded faces of Ln that have eij on their boundary. This can be done so

that the resulting drawing is a plane graph and completes the construction

of the graph D. In Figure 4.7, the plane graph D resulting from the false
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Pappus arrangement, is naturally embedded into the arrangement.

We will refer to the union of Sn and the planar embedding of D within Sn

that fulfills the latter condition as natural embedding of D within Sn and

denote it by SD
n . Now we are ready to define G̃.

Definition 4.12. On the vertex set V (G̃) = V (D) ∪ E(D) ∪ {p | p ∈ Sn}

we define the graph G̃ with edges uv ∈ E(G̃) if and only if in the natural

embedding SD
n

• u ∈ V (D), v ∈ E(D) and v is incident to u in D or

• u, v ∈ Sn and u 6= v or

• u ∈ E(D) is the dual edge of an edge of pseudoline v̄ of Ln corres-

ponding to v of Sn.

By definition we have that |V (D)| = (
(

n

2

)

+n+1)+2n and |E(D)| = n2 +6n.

With Sn we then obtain that

|V (G̃)| =
1

2
(3n2 + 19n + 2) ∈ O(n2).

Lemma 4.13. The graph G̃ of Definition 4.12 is a pseudosegment graph.

Proof. To obtain a pseudosegment representation of G̃, consider the embed-

ding of D in SD
n . Here, every element of Sn and E(D) is a Jordan arc such

that p ∈ Sn and e ∈ E(D) intersect if and only if they are adjacent in G̃.

In SD
n graph D is naturally embedded into Sn, so that p and e intersect at

most once, and if they intersect, they cross.

a

b

c

d
v

Figure 4.8: The Jordan arcs that represent the neighbors of v in G̃ are cyclically

arranged around v in SD
n .

Two Jordan arcs representing edges of D intersect in their endpoints if and

only if they are incident to the same vertex. These points will be extracted
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to Jordan arcs such that the Jordan arcs of elements of E(D) do no longer

intersect. This is done as follows: remove the endpoints of every Jordan

arc of SD
n representing an element of E(D) and denote the union of the thus

shortened Jordan arcs by P2. Let P1 be Sn. Then P1∪P2 is a pseudosegment

representation of the subgraph of G̃ induced by Sn ∪ E(D).

Next consider an arbitrary element v of V (D). In SD
n vertex v is a point

contained within a face or a pseudoline of Ln. Let E(v) ⊂ E(D) be the

set of elements adjacent to v in G̃. The Jordan arcs of P2 corresponding to

the elements of E(v) are cyclically arranged around v in SD
n . Hence we can

replace every point v ∈ V (D) by a Jordan arc pv disjoint from Sn such that

• pv intersects a Jordan arc of P2 if and only if this Jordan arc corresponds

to an element of E(v),

• P3 := {pv | v ∈ V (D)} is a set of disjoint pseudosegments, and

• P2 ∪ P3 is a set of pseudosegments.

a

b

c

d a

b

c

d

Figure 4.9: Two Jordan arcs that represent vertex v ∈ V (D) in a pseudosegment

representation of G̃ resulting from SD
n .

Examples of Jordan arcs representing the elements of V (D) are given in

Figure 4.9. All this is possible without changing the intersection relations

within SD
n . Then the union G̃ = P1 ∪P2 ∪P3 is a pseudosegment representa-

tion of G̃. An example of such a pseudosegment representation of G̃ is given

in Figure 4.10.

4.3.2 If G̃ is a segment graph, then Ln is stretchable.

Let Ln be an arbitrary simple pseudoline arrangement, Sn the arrangement

of pseudosegments induced by Ln and D̄ the dual graph of Ln. Then we

construct D as in Section 4.3.1 and obtain G̃ from Definition 4.12. One
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Figure 4.10: A pseudosegment representation of G̃, when G̃ is defined using the

false Pappus arrangement.

implication of Theorem 4.11 is that Ln is stretchable, if G̃ is a segment graph.

To prove this implication we show the contrary, stated next as Lemma 4.14.

Lemma 4.14. If Ln is nonstretchable, then G̃ is not a segment graph.

To prove Lemma 4.14 we will first show that D is a 3-connected planar

graph; this implies that D has a combinatorially unique dual graph. Then

we will use the definition of the pseudosegment graph G̃ to deduce certain

conditions on the intersection behavior within an arbitrary pseudosegment

representation of G̃. These are recorded in Lemma 4.17. They imply that

the subgraph of G̃ induced by Sn represents a set of paths of the dual graph

of D. The key argument to prove Lemma 4.14 is then given as Corollary 4.18.

Lemma 4.15. The graph D is a 3-connected planar graph.

In the proof of Lemma 4.15 we will use a “separating” subgraph of D defined

as follows: let Ei be the set of edges of D intersected by pi in SD
n . Then

we call the subgraph of D induced by the endpoint vertices ei1, ei2 and the

vertices of Ei the ladder Li of pi, see Figure 4.11 for an illustration.
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Proof. By construction, the embedding of D within SD
n is planar. Thus,

it remains to show that for all u, v ∈ V (D) there are three different, pair-

wise internally disjoint u, v-paths in D. So consider an arbitrary pair of

vertices fi, fj of D ⊂ SD
n . They either correspond to faces of Ln or to end-

points of pseudosegments of Sn. As we concentrate on simple pseudoline

arrangements, every bounded face of Ln has at least three edges of Ln on

its boundary and every unbounded face at least two. If fi corresponds to

a face of Ln, choose pi to be a pseudosegment that contributes an edge to

the boundary of fi. If fi represents an endpoint of pseudosegment q of Sn,

set pi = q. Then choose pj in the same way with the additional condition

that pj is different from pi.

pi

pj

ei1

ej1

Li

Lj

fi

fj

Figure 4.11: Every pair of vertices of D is connected by at least two disjoint paths.

Recall that every pair of pseudosegments of Sn intersects. Hence, there are

fifj-paths in D within Li ∪ Lj , as sketched in Figure 4.11. Let P 1(fi, fj) be

a shortest fifj-path within Li ∪ Lj .

By the definition of a ladder, there is a further fifj-path within Li ∪Lj that

is internally disjoint from P 1(fi, fj) and does not have an endpoint vertex

as interior vertex. Let P 2(fi, fj) be such an fifj-path with the minimum

number of edges. The existence of P 1(fi, fj) and P 2(fi, fj) implies that D

is 2-connected.

Now consider the frame of D, that is the cycle of D that consists of endpoint

vertices. If fi is the endpoint vertex of pseudosegment pi, assume fi to be ei1.

Otherwise choose ei1 to be the endpoint of pi such that pj does not cross pi

between fi and ei1. In the same way determine ej1 for fj. Recall that the

degree of every vertex of D is at least three. Then fi can be connected to ei1

by a path P (fi, ei1), which is internally disjoint from P 1(fi, fj) and P 2(fi, fj).

An analog path, denoted by P (fj, ej1), exists for fj . The vertices ei1 and ej1

lie on the frame which does not contain any vertex of D̄. Hence, they can

be connected by at least one path P (ei1, ej1), consisting only of endpoint
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vertices. The union of P (f1, ei1), P (ei1, ej1) and P (ej1, fj) is an fi, fj-path

that is internally disjoint from P 1(fi, fj) and P 2(fi, fj). As fi and fj were

chosen arbitrarily, every pair of vertices of D can be connected by at least

three different internally disjoint paths, hence D is 3-connected.

Lemma 4.15 together with Theorem 2.5 implies that D has a combinatorially

unique dual graph.

Now let G be an arbitrary but fixed pseudosegment representation of G̃. As

in the proof of Lemma 4.13, let P1, P2 and P3 be the pseudosegments of G

representing Sn, E(D) and V (D) respectively. For every pi ∈ Sn let gi ∈ P1

be the pseudosegment representing pi. Furthermore set Ei ⊂ P2 as the set of

pseudosegments representing the elements of Ei, that is the elements of E(D)

adjacent to pi. Note that we can order each set Ei according to the order

in which gi intersects the elements of Ei in G, say Ēi := (qi1, ..., qin). This

order induces a linear order on the respective set Ei, called the intersection

order of Ei with respect to G. We say that elements qi1 and qin contribute

to the outer and elements qi2, ..., qi(n−1) to the inner intersections of gi. Let

us denote the vertex of the endpoint of pi ∈ Sn that is next to qi1 by ei1, and

the one next to qin by ei2.

Analogously, pseudosegment qij ∈ Ei induces an intersection order on the

elements it intersects so that each qij has exactly two outer and one inner

intersection.

Observation 4.16. Let G be an arbitrary pseudosegment representation

of G̃. Every element of P2 ⊂ G has exactly two intersections with two dif-

ferent elements of P3 ⊂ G and no intersection with any other element of P2

nor with any element of P1 ⊂ G. For every element q ∈ P2, let us denote

the part of q that connects the two intersection points with elements of P3

as edge segment b of q.

As no element of P3 intersects any element of P1, we can contract the pseu-

dosegments of P3 to points. This contraction can be carried out without

changing any intersection relation between an element of P1 and an element

of P2 ∪ P3. Thus, we obtain a planar embedding DG of D from P2 ∪ P3

naturally embedded within P1; note that there possibly remain pending ends

of elements of P2.



4.3 Pseudosegment graphs and arrangements 57

Lemma 4.17. Let G be an arbitrary pseudosegment representation of G̃.

Let gi ∈ P1 ⊂ G and qij ∈ Ēi, Ēi ⊂ P2 ⊂ G. If qij contributes to an inner

intersection of gi, then gi contributes to an inner intersection of qij .

Proof. Let G be an arbitrary pseudosegment representation of G̃ consisting

of P1, P2 and P3. Consider a pseudosegment gi ∈ P1. Then gi contributes

to an inner intersection of pseudosegment qij if and only if the intersection

of gi and pseudosegment qij takes place within the edge segment bij .

We will prove Lemma 4.17 by contradiction, so assume that gi intersects a

pending end r of qij for a j ∈ {2, ..., n − 1}. Consider the embedding DG

of D within P1, obtained as described in Observation 4.16. For every i ∈ [n]

there is a k ∈ [n]\{i} such that bij is an edge of ladder Lk in DG. Then

there is a path PLk
(ek1, ek2) ⊂ Lk that contains bij and does not contain any

edge of DG that is an edge of Ek. Now set Pfr(ek1, ek2) as the subpath of the

frame of DG that contains ei1. The latter path Pfr(ek1, ek2) together with

PLk
(ek1, ek2) is a closed curve Cr embedded within P1. An example of such a

curve is depicted in Figure 4.12.

Cr

r

PLk
(ek1, ek2)

Pfr(ek1, ek2)

Lk

bij

ek1

ek2
ei1

ei2

Figure 4.12: The pending end r of qij lies either inside or outside of Cr, and, thus, gi

lies either inside or outside of Cr.

Note that the pending end r of qij lies either inside or outside the cycle Cr.

Moreover, qi,1, .., qi,j−1 lie outside and qi,j+1, ..., qi,n inside Cr. Recall that gi

intersects qi,1, ..., qi,n as it represents pi; thus gi has to intersect Cr. The only

part of Cr that can be intersected by gi is bij . As gi intersects r, it cannot

intersect bij as we are given a pseudosegment representation. Hence gi has

to lie within one of the regions defined by Cr. But then it either does not

intersect qi,1, .., qi,j−1 or qi,j+1, ..., qi,n. In either case gi does not represent pi

so that G is not a pseudosegment representation. Thus, gi has to intersect

the edge segments of qi2, ..., qi(n−1) in order to represent pi. Hence, if qij is a
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pseudosegment contributing to an inner intersection of gi, then gi contributes

to an inner intersections of qij .

Lemma 4.15 together with Lemma 4.17 gives the key argument to prove

Lemma 4.14.

Corollary 4.18. Let G be an arbitrary pseudosegment representation of G̃

with P1 ⊂ G representing the elements of Sn. Then P1 is isomorphic to Sn.

Proof. Recall the pseudosegment representation G̃ of G̃ resulting from SD
n

in the proof of Lemma 4.13. For pi ∈ Sn let Ēi = (ei1, ..., ein) denote the

elements of Ei ordered according to the intersection order induced by pi with

respect to G̃. Let e∗ij be the dual edge of eij . As D is the dual graph of Ln

and D∗ is the dual graph of D, it holds that the edges e∗i1, ..., e
∗
in of D∗ induce

the chordless path P ∗
i = (e∗i1, ..., e

∗
in) ⊂ D∗. Thus, pseudosegment pi ⊂ G̃ can

be seen as a natural embedding of P ∗
i into D ⊂ G̃.

Now consider an arbitrary pseudosegment representation G of G̃. Let gi ∈ P1

be the pseudosegment of G representing pi and let Ēi be the pseudosegments

of G representing the elements of Ei given in the intersection order with

respect to G. Let DG be the planar embedding of D contained within G

as obtained in Observation 4.16. With Lemma 4.15 we know that D∗ is

combinatorially unique, so that edges e∗i1, ..., e
∗
in ∈ E(D∗

G) induce the chordless

path P ∗
i = (e∗i1, ..., e

∗
in). Hence, Ēi = (qi1, ..., qin) such that qij represents

either eij or ei(n−j+1). As a consequence of Lemma 4.17, gi contains a natural

embedding of the path P (e∗i2, e
∗
i,(n−1)) ⊂ P ∗

i within DG. Thus, the uniqueness

of D∗ induces an incidence and dimension preserving isomorphism between P1

and Sn.

Proof of Lemma 4.14. Let Ln be a nonstretchable pseudoline arrangement

and Sn the induced arrangement of pseudosegments. If there is a segment

representation GS of G̃, then Corollary 4.18 implies that the subset P1 of GS

representing the elements of Sn is isomorphic to Sn. But as Sn is not stretch-

able, P1 ⊂ GS yields that GS is not a segment representation of G̃.

4.3.3 If Ln is stretchable, then G̃ is a segment graph.

Let us reformulate the remaining implication of Theorem 4.11 as Lemma 4.19.
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Lemma 4.19. If Ln is stretchable, then G̃ is a segment graph.

Proof. If Ln is stretchable, then there is a straight line arrangement isomor-

phic to Ln. So let Ln be an arbitrary simple straight line arrangement, let Sn

be the arrangement of segments induced by Ln and let D̄ be the dual graph

of Ln. We construct D as in Section 4.3.1 and obtain G̃ from Definition 4.12.

To obtain a segment representation of G̃, we will proceed similar to the proof

of Lemma 4.13 where we showed that G̃ is a pseudosegment graph.

First replace each Jordan arc of SD
n that is an edge e of D by a straight line

segment |e with the same endpoints. This gives a straight line embedding D

of D within Sn. Denote the union of Sn and D embedded into Sn by SD
n ;

a part of a natural straight line embedding of D within Sn is illustrated in

Figure 4.13.

|e

|e∗

Figure 4.13: Nonadjacent edges of D are disjoint.

Claim. The embedding D ⊂ SD
n of D is a natural embedding of D within Sn.

Proof. Recall that the vertices, edges and faces of Ln partition the plane.

This in addition with the following fact suffices to show that D is a natural

embedding of D within Sn, that is D is planar and any edge of D intersects

an edge of Sn if and only if it is dual to this edge of Sn.

Fact 1. Every face of a straight line arrangement is convex, and so is the

closure of every face.

An edge of D is either dual to an edge of Ln or incident to an endpoint

vertex. If edge e of D is incident to an endpoint vertex, we have e = fvij



60 Segment Graphs

or e = vijvkl such that endpoint vertices vij, vkl lie on the boundary of the

unbounded face f . In this case, Fact 1 and the constructive definition of D

imply that |e ⊂ f̄ , and |e is disjoint from any vertex or edge of Sn.

If e∗ ∈ E(D) is dual to edge e of Ln, there are faces f, f ′ of Ln such that

e∗ = ff ′ and e is the common boundary of f and f ′. Let p̄ be the pseudoline

of Ln supporting e. Then Fe := f ∪ e ∪ f ′ is a face of Ln\{p̄}, and is, by

Fact 1, convex. Since |e∗ connects a point of f to a point of f ′, it holds that

|e∗ ⊂ Fe. This furthermore implies that |e∗ intersects e in a single crossing

point as required in a natural embedding of D within Sn, and is disjoint from

any other vertex or edge of Sn or face of Ln.

To see that D is planar let us remind you of the partitioning of the plane

given by Ln. Then the latter analysis implies that it suffices to consider a

pair of edges e∗ = ff ′ and e = vijvkl such that vij and vkl lie on the boundary

of face f ; two such edges are drawn with thick lines in Figure 4.13. In this

case, the definition of SD
n implies that |e and |e∗ lie in different halfplanes

with respect to the straight line lij,kl that contains eij and ekl. Thus, the

segments of any pair of edges are either disjoint or intersect in a common

endpoint. As common endpoints accord with edges of D adjacent in D, it

follows that D is planar and is a natural embedding of D within Sn.

This at hand we come to construct a segment representation of G̃. Con-

sider SD
n and choose Sn ⊂ SD

n as segment representation of the subgraph

of G̃ induced by Sn such that each pi ∈ Sn represents itself. To obtain a

segment representation of G̃, we will first extend the points of D represent-

ing the elements of V (D) to segments and obtain a segment representation

of the subgraph of G̃ induced by Sn ∪ V (D). In the second step we will

continuously deform the segments representing the elements of E(D) in D

to segments representing the elements of E(D) in a segment representation

of G̃.

To extend the points of D representing the elements of V (D) to segments,

we will first choose a straight line for every such element; these will contain

the later chosen segments. To do so note that the planar embedding D

of D induces a cyclic ordering on the set NG̃(v) of neighbors of v for every

v ∈ V (D). Let us call this ordering the D-order of NG̃(v) and set df = dG̃(vf ).

First let vij be the vertex of D that represents endpoint eij of segment pi ∈ Sn.

Then vij is a point on CD and we set lij as the tangent line of CD at vij. This
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is done for every endpoint vertex of D. Recall that each endpoint vertex

is adjacent to two other endpoint vertices vkl and vgh. Furthermore vij is

adjacent to two vertices f, f ′ representing unbounded faces. Without loss of

generality we assume that vkl is adjacent to f and vgh to f ′. If S(ij)(kl) is the

intersection point of lij and lkl, then S(ij)(kl) lies within f by the choice of

the lines lij and lkl. Analogously, the intersection point S(ij)(gh) of lij and lgh

lies within f ′. Let us remove S(ij)(kl) and S(ij)(kl) from lij and set sij as

the resulting subset of lij that contains vij. Then we assign each vij to the

respective sij . Note that no two lines lij and lkl are the same and no two

segments sij ,skl of different endpoints intersect.

Now let (eij,1, ..., eij,4) be a linear suborder of the cyclic D-order of NG̃(vij)

such that eij,1 and eij,4 connect vij to endpoint vertices. Then choose four

points on sij ⊂ lij indexed by (ij, 1), ..., (ij, 4) such that they are ordered on

line lij as

(S(ij)(kl), Pij,1, Pij,2, eij, Pij,3, Pij,4, S(ij)(gh)).

vij

f ′

vkl

vij
f

vgh

f ′

Figure 4.14: The points on a segment representing v ∈ V (D) are assigned to the

neighbors of v as indicated by the arrows.

Now let vf be the vertex of D that represents face f of Ln. Let lf be a

straight line containing vf that is not parallel to a supporting line of any

segment of D representing an element of E(D) incident to vf in D.

Next let (ef1, ..., efdf
) be a linear suborder of the cyclic D-order of NG̃(vf )

such that ef1, ..., eftf−1 lie in one halfplane with respect to lf and eftf , ..., efdf

in the other; thus tf ∈ {2, ..., df − 1}. Then let sf ⊂ lf be a segment with vf

as an inner point that is completely contained within f . If f is an unbounded

face, we furthermore require that sf ⊂ conv(Sn). Let sfi be the segment of D

representing edge efi for i ∈ {1, ..., df}. Then we denote the endpoint of sf

that lies within conv(sf1, sfdf
) by e1

f , and the one within conv(sftf−1, sftf )
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by e2
f . Now choose df points on sf and index them by (f1), ..., (fdf) such

that they are ordered linearly on sf as

(e1
f , Pf1, ..., Pftf−1, vf , Pfdf

, Pfdf−1, ..., Pftf e
2
f ).

This is done for every element of V (D) representing a face of Ln such that no

two lines lf and lf ′ of different faces f, f ′ of Ln are the same. In Figure 4.14

an example of a choice of segments for elements of V (D) and an assignment

of the points for the elements of E(D) is given.

Denote the union of the segments representing the elements of V (D) as SV .

By construction, every two segments of SV are disjoint and SV is disjoint

from Sn. This corresponds to the fact that elements of V (D) are pairwise

nonadjacent and no element of V (D) is adjacent to any element of Sn in G̃.

Furthermore, all segments that represent faces of Ln are contained within

conv(Sn).

sf̌

sf ′

sij

sf

sgh

skl

Figure 4.15: Using the points on the segments representing the elements of V (D)

we can exchange the segments representing the elements of E(D) in D in order to

obtain a segment representation of G̃.

Now we come to the second step. By the definition of SD
n , every e ∈ E(D)

is represented by a segment |e that intersects exactly those elements of Sn

and V (D), the respective element of E(D) is adjacent to in G̃. As e = vv′

with v, v′ ∈ V (D), e appears indexed in the two linear orders N̄G̃(v) and

N̄G̃(v′). Let us assume that e = evj in N̄G̃(v) and e = ev′j′ ∈ N̄G̃(v′) with

j ∈ {1, ..., dv} and j′ ∈ {1, ..., dv′}. Then set se := [Pvj , Pv′j′] and denote the

set of all such segments representing elements of E(D) bys SE .
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By the choice of the segments of SV and the points on these segments, it

is possible to continuously deform segment |e to se without creating new

intersections, see Figure 4.15 for an example of the resulting segments. Then

every two segments se and se′ are disjoint. Furthermore, se intersects a

segment of SV ∪ Sn if and only if |e intersects this segment. This accords

with the fact that the respective elements are adjacent in G̃.

Recalling the constructive definition of G̃, this implies that G = Sn∪SV ∪SE

is a segment representation of G̃. Hence Lemma 4.19 holds.

Lemma 4.14 together with Lemma 4.19 prove Theorem 4.11. An example of

a segment representation resulting from this proof is given in Figure 4.16

Figure 4.16: A segment representation of G̃ if the given arrangement Ln is stretch-

able.
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4.4 Summary

One of the main open questions with respect to segment graphs has been

answered by Chalopin and Gonçalves in [8] assuring that every planar graph

has a segment representation. Let us point out that their result induces a

proper coloring of the respective graph where the different directions of the

segments are the colors. Recall that this is also the case for bipartite planar,

triangle-free planar and series-parallel graphs. In each of the latter three

cases the number of directions used in the respective segment representations

is bounded by the chromatic number of the corresponding class. In [8] there

is no bound given on the number of directions the segments lie in. Thus we

are left with Conjecture 1.2.

Conjecture 1.2([68]) Every planar graph has a segment representation

where the segments are of at most four directions.



Chapter 5

Chordal Graphs

A chordal graph is a graph that does not contain a chordless cycle. Already

in 1972 Walter [66] showed that the class of chordal graphs is the class of

tree graphs. This can be used to show that every chordal graph is a string

graph. A famous subclass of chordal graphs are vertex intersection graphs of

subpaths of a path, better known as interval graphs. Using the left-endpoint

ordering of an interval representation one can easily construct a set of pseu-

dosegments representing the respective interval graph. An example of such a

representation is given in Figure 5.1. This raises the question whether path

graphs, or even chordal graphs are intersection graphs of pseudosegments as

well. Let us mention that the results of this chapter can be found in [11]

and [12].

X1

Figure 5.1: Every interval is lifted by the index it obtains from the given left-

endpoint ordering; appending vertical segments of length of the respective heights

gives the desired set of pseudosegment.

In the first section, we show that every path graph admits a pseudoseg-

ment representation. The proof is by induction and uses a path represen-

tation (T,P) of the respective path graph where the set P consists only of

leaf-paths.

Next, we introduce a family of chordal graphs to show that not every chordal

graph is a pseudosegment graph. For every n ∈ N, we define K3
n as the graph

with vertex set V = VC∪VI such that VC = [n] induces a clique and VI =
(

[n]
3

)

is an independent set. The edges between VC and VI represent membership,

that is {i, j, k} ∈ VI is adjacent to the vertices i, j and k from VC . In every

65
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pseudosegment representation of K3
n, the clique induced by VC corresponds to

an arrangement Sn of n pseudosegments. Here, the elements of VI correspond

to disjoint 3-segments of Sn. By a planarity argument we then show that

the size of a set of disjoint 3-segments in any pseudosegment representation

of K3
n is at most 6n2. As

(

n

3

)

> 6n2 for most n ∈ N, it follows that K3
n is not

a pseudosegment graph.

The upper bound on the number of disjoint 3-segments contained in Sn leads

to considering arbitrary 3-segments of Sn. One problem on bounding the

number of arbitrary 3-segments contained in Sn is that the 3-segments can

bypass the pseudosegments of the arrangement at their ends.

This is not a problem if we consider 3-segments of an arrangement Ln of

pseudolines. Heading for an upper bound on the number of 3-segments con-

tained in Ln, we achieve an upper bound of O(n2) not only on the number

of 3-segments but even on the number of k-segments of Ln. This is done

using the (≤ k)-zone of a pseudoline in Ln and a linear upper bound on the

complexity of the (≤ k)-zone, determined at this.

Turning back to our original interest in the relation of chordal graphs and

pseudosegment graphs, let us summarize what we know so far. Section 5.1

gives that every vertex intersection graph of subpaths of a tree is a pseu-

dosegment graph. In Section 5.2 we showed that the chordal graph K3
n is not

a pseudosegment graph for large enough n.

In order to describe the chordal graphs that are pseudosegment graphs, we

then turn to a further family of chordal graphs. For every n ∈ N, let S3
n be the

graph with vertex set V ′ = V ′
I ∪ V ′

C such that V ′
I = [n] is an independent set

of n vertices and V ′
C =

(

[n]
3

)

a clique of
(

n

3

)

vertices; as before, membership

accords with adjacency for elements of V ′
I and V ′

C . This time, we use an

argument from Ramsey Theory to show that S3
n is not a pseudosegment graph

for large enough n. Every graph S3
n is a vertex intersection graph of substars

of a star where the substars have maximal degree three. This implies that

chordal graphs that are pseudosegment graphs cannot be induced by many

treelike subtrees of a tree.
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5.1 Path graphs

In this section we will show that the class of path graphs, that is of vertex

intersection graphs of subpaths of a tree, is a common subclass of pseudoseg-

ment and chordal graphs.

Theorem 5.1. Every path graph has a pseudosegment representation.

This result is not as trivial as it may seem at first glance. Let G = (V, E)

be a graph and (T,P) a path representation of G. An intuitive attempt for

converting a path representation into a pseudosegment representation would

be to use a planar embedding of the tree T . The embedding of T then

suggests an embedding of each of the paths corresponding to the vertices

of G. These paths could be slightly perturbed into pseudosegments trying to

assure that paths with common vertices intersect exactly once and are disjoint

otherwise. However, Figure 5.2 gives an example of a set of three paths which

cannot be perturbed locally as to give a pseudosegment representation of the

corresponding subgraph.

a b c

a′ b′ c′

Figure 5.2: Paths P (a, a′), P (b, b′) and P (c, c′) cannot be perturbed locally into a

pseudosegment representation.

5.1.1 Preliminaries

Let G = (V, E) be an arbitrary path graph with path representation (T,P).

Without loss of generality we assume that no two paths in P have a common

endpoint. Let P be a path in a tree T with endpoints a and b, that is

P = P (a, b). If both endpoints of P are leaves of T we call P a leaf-path.
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Lemma 5.2. Every path graph has a path representation (T,P) such that

all paths in P are leaf-paths and no two vertices are represented by the same

leaf-path.

Proof. Let (T,P) be an arbitrary path representation of G and let path

Pv = P (av, bv) represent vertex v ∈ V . Now let T be the tree obtained

from T by attaching a new vertex x to every vertex x of T . Representing the

vertex v by the path Pv = P (av, bv) in T yields a path representation of G

using only leaf-paths.

The definition of a path graph as an intersection graph immediately im-

plies that every induced subgraph of a path graph is a path graph as well.

Lemma 5.2 together with this observation shows that Theorem 5.1 is implied

by Theorem 5.3:

Theorem 5.3. Let T be a tree and let L = {l1, .., lm} be the set of leaves

of T . Let G be the path graph whose vertices are in bijection with the set

of all leaf-paths of T . Then graph G has a pseudosegment representation G

with pseudosegment si,j ∈ G corresponding to path Pi,j = P (li, lj) in T . In

addition, there is a collection of pairwise disjoint disks, one disk Ri associated

with each leaf li of T , such that:

(a) si,j∩Rk 6= ∅ if and only if k = i or k = j. Furthermore, the intersections

si,j ∩ Ri and si,j ∩ Rj are Jordan arcs.

(b) Any two pseudosegments intersecting Ri cross in the interior of Ri.

We will prove Theorem 5.3 by induction on the number of inner vertices

of tree T . The construction will have multiple intersections, that is there

are points where more than two pseudosegments intersect. By perturbing

the pseudosegments participating in a multiple intersection locally the rep-

resentation can easily be transformed into a representation without multiple

intersections.

5.1.2 Proof of Theorem 5.3 for trees with one inner vertex

Let T be a tree with one inner vertex v and let L = {l1, .., lm} be the set

of leaves of T . Let P = {P (li, lj) | li, lj ∈ L, li 6= lj} be and let H be the
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subgraph of G induced by P. Then H is a complete graph on
(

m

2

)

vertices

as every path in P contains v.

Take a circle and choose m points Q1, .., Qm on this circle such that the set

of straight lines spanned by pairs of different points from Q1, .., Qm contains

no parallel lines. For each i choose a small disk Ri centered at Qi such that

these disks are pairwise disjoint and put them in one-to-one correspondence

with the leaves of T . Let si,j be the line containing Qi and Qj . If the disks

Rk are small enough, then the arrangement has the following properties:

(a) The line si,j intersects disks Ri and Rj but no further disk Rk for

k ∈ {1, ..., n}\{i, j}.

(b) Two lines sI and sJ with I ∩J = {i} contain point Qi, hence sI and sJ

cross in the disk Ri.

Ri

Figure 5.3: Construction of a pseudosegment representation of the vertex intersec-

tion graph of all leaf-paths of a star with five leaves.

Prune the lines such that the remaining part of each si,j still contains its

intersections with all the other lines and all segments have there endpoints

on a circumscribing circle C. Every pair of segments keeps its intersection,

hence, we have a pseudosegment representation of H .

Add a diameter si,i to every disk Ri, this segment serves as representation

of the leaf-path Pi,i. Slightly perturbing multiple intersection points yields a

pseudosegment representation of G with the required properties (a) and (b)

of Theorem 5.3; see Figure 5.3 for an illustration.
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5.1.3 Proof of Theorem 5.3 for trees with more than one inner vertex

Now let T be a tree with inner vertices N = {v1, .., vn} and assume The-

orem 5.3 has been proven for trees with at most n − 1 inner vertices. Let

L = {l1, .., lm} be the set of leaves of T . With Li ⊂ L we denote the set of

leaves attached to vi. We have to construct a pseudosegment representation

of the intersection graph G of P = {Pi,j | li, lj ∈ L}, that is, of the set of all

leaf-paths of T . Assume that vn is a leaf of the subtree of T induced by N .

Then we define two induced subtrees of T :

• Tn is the star with inner vertex vn and leaves Ln = {lk, lk+1, ..., lm}.

• The tree T0 contains all vertices of T except the leaves in Ln. The

set of inner vertices of T0 is N0 = N\{vn} and the set of leaves is

L0 = L\Ln ∪ {vn}. For consistency we rename l0 := vn in T0, hence

L0 = {l0, l1, ..., lk−1}.

vn
Tn

l0

T

vn

T0

Figure 5.4: A tree T with inner vertex vn and the two induced subtrees T0 and Tn.

Let Gn and G0 be the path graphs induced by all leaf-paths in Tn and T0

respectively. Both these trees have fewer inner vertices than T . By the

induction hypothesis we can assume that we have pseudosegment represen-

tations Gn of Gn and G0 of G0. We will construct a pseudosegment represen-

tation G of G using Gn and G0. The idea is as follows:

1. Replace every pseudosegment of G0 representing a leaf-path ending in l0
by a bundle of |Ln| pseudosegments. This bundle stays within a narrow

tube around the original pseudosegment of G0.

2. Remove all pieces of pseudosegments from the interior of the disk R0

and patch an appropriately transformed copy of Gn into R0.
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3. Connect the pseudosegments from the bundles through the interior

of R0 such that the induction invariants for the transformed disks of Rr

with k ≤ r ≤ m are satisfied.

The set P of leaf-paths of T can be partitioned into three parts. Let P ′ be

the set of leaf-paths of T that are also leaf-paths of T0 and let Pn be the

set of leaf-paths of Tn. Then set P∗ as the remaining subset of P; thus the

paths in P∗ connect leaves li and lr with 1 ≤ i < k ≤ r ≤ m, in other

words they connect a leaf li from T0 through vn with a leaf lr in Tn. We

further subdivide P∗ into classes P∗
1 , ..,P

∗
k−1 such that P∗

i consists of those

paths in P∗ which start in li. Each P∗
i consists of |Ln| paths. In T0, we

have the pseudosegment si,0 which leads from li to l0. Replace each such

pseudosegment si,0 by a bundle Bi,0 of |Ln| parallel pseudosegments routed

in a narrow tube around the original pseudosegment si,0. Thus, every element

of Bi,0 intersects the same elements of P ′ as si,0

We come to the second step of the construction. Recall that the representa-

tion Gn of Gn of Section 5.1.2 has the property that all long pseudosegments

have their endpoints on a circle C. Choose two arcs Ab and At on C such

that every segment spanned by a point in Ab and a point in At intersects

each long pseudosegment si,j of Gn with i 6= j; this is possible by the choice

of C. We obtain a partitioning of the circle into four arcs which will be

called Ab, Al, At, Ar in clockwise order. The choice of Ab and At implies that

each pseudosegment touching C has one endpoint in Al and the other in Ar.
At

Ab

Al ArRk Rm

Figure 5.5: A box containing a deformed copy of the representation from Figure 5.3.

Map the interior of C with an homeomorphism into a wide rectangular box B

such that At and Ab are mapped to the top and bottom sides of the box, Al

is the left side and Ar the right side. In this way the images of all long

pseudosegments traverse the box from left to right. We may also require

that the homeomorphism maps the disks Rr to disks and arranges them in



72 Chordal Graphs

a nice left to right order in the box; Figure 5.5 shows an example. The

figure was generated by sweeping the representation from Figure 5.3 and

converting the sweep into a wiring diagram. Then we remove every short

pseudosegment sr,r and re-attach it horizontally such that no intersecting

pairs are changed. In the box we have a left to right order of the disks Rr,

lr ∈ Ln. By possibly relabeling the leaves of Ln we can assume that the disks

are ordered from left to right as Rk, .., Rm. We still refer to the resulting

pseudosegment representation of Gn as Gn.

To continue the construction of a pseudosegment representation of G, we

remove all pieces of pseudosegments from the interior of R0. Then place

box B appropriately resized into the disk R0 such that each of the pseu-

dosegments si,0 from the representation of G0 would have traversed the box

from bottom to top and the sides Al and Ar are mapped to the bound-

ary of R0. The boundary of R0 is thus partitioned into four arcs which are

called Al, A′
t, Ar, A′

b in clockwise order. We assume that the remaining pieces

of pseudosegments si,0 touch the arc A′
b in G0 in counterclockwise order as

s1,0, .., sk−1,0, this can be achieved by renaming the leaves of T0 appropriately.

A′
t

A′
b

At

Ab

Al Ar

Bin
1

sin
1,k sin

1,m

sout
1,k

sout
1,m

Bout
1

Bin
k−1

Bout
k−1

Rk Rm

Figure 5.6: Box B within disk R0 and the touching bundles.
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By removing everything from the interior of R0 we have disconnected all

the pseudosegments which have been inserted in bundles replacing the orig-

inal pseudosegments si,0. Let Bin
i be the half of the bundle of si,0 which

touches A′
b and let Bout

i be the half which touches A′
t. By the above as-

sumption the bundles Bin
1 , .., Bin

k−1 touch A′
b in counterclockwise order, con-

sequently, Bout
1 , .., Bout

k−1 touch A′
t in counterclockwise order; see Figure 5.8

for an illustration. Within a bundle Bin
i we label the pseudosegments as

sin
i,k, .., s

in
i,m, again counterclockwise. The pseudosegment in Bout

i which was

connected to sin
i,r is labeled sout

i,r . The pieces sin
i,r and sout

i,r will be part of the

pseudosegment representing the path Pi,r.

Before we connect sin
i,r and sout

i,r in order to obtain a pseudosegment repre-

senting Pi,r recall that all paths in P∗
i contain leaf li. Thus, the respective

pseudosegments have to intersect within disk Ri as required by property (b)

of Theorem 5.3. To achieve this, we twist whichever of the bundles Bin
i or

Bout
i traverses Ri within disk Ri thus creating a multiple intersection point;

this is illustrated in Figure 5.7. Note that all elements of the respective

bundle cross si,i as did si,0 so that property (a) of Theorem 5.3 holds as well.

Ri

sin
i,k

sin
i,k

sin
i,m

sin
i,m

Figure 5.7: If Bin
i crosses Ri, we twist sin

i,k,. . . , sin
i,m, the copies of si,0, within Ri.

Now we come to the third step of the construction. Due to (b) the pseu-

dosegments representing the paths P1,r, ..., Pk−1,r have to intersect within the

disk Rr that lies inside the disk R0 for every r ∈ {k, .., m}. To prepare for

this we take a narrow bundle of k−1 parallel vertical segments reaching from

top to bottom of the box in R0, intersecting the disk Rr and no other disk

within R0. This bundle is twisted in the interior of Rr. Let ǎr
1, .., ǎ

r
k−1 be the

bottom endpoints of this bundle from left to right and let âr
1, .., â

r
k−1 be the

top endpoints from right to left. Due to the twist, the endpoints ǎr
j and âr

j

belong to the same pseudosegment.
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Now we are ready to name the pseudosegment si,r that will represent the

path Pi,r in T for 1 ≤ i < k ≤ r ≤ m. The first part of si,r is sin
i,r, this

pseudosegment is part of the bundle Bin
i and has an endpoint on A′

b. Connect

this endpoint with a straight line segment to ǎr
i , from this point there is

the connection up to âr
i . This point is again connected by a straight line

segment to the endpoint of sout
i,r on the arc A′

t. The last part of si,r is the

pseudosegment sout
i,r in the bundle Bout

i . The construction is illustrated in

Figure 5.8. Obviously each si,r is a Jordan arc. Let the union of all these

“new” Jordan arcs be G∗.

A′
t

A′
b

At

Ab

Al Ar

Bin
1

Bout
1

Bin
k−1

Bout
k−1

Rk Rm

Figure 5.8: An example of the routing of pseudosegments in the disk R0.

Observation 5.4. Let si,r and si′,r′ be two pseudosegments of G∗ represent-

ing paths Pi,r and Pi′,r′ with i ≤ i′. Then it follows from the construction

that

(1) si,r and si′,r′ intersect between A′
b and Ab if and only if i 6= i′ and r > r′.

(2) si,r and si′,r′ intersect within box B if and only if i 6= i′ and r′ = r.
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(3) si,r and si′,r′ intersect between At and A′
t if and only if i 6= i′ and r < r′.

(4) si,r and si′,r′ intersect in Ri if and only if i = i′.

Thus, G∗ is a pseudosegment representation of the subgraph of G induced

by P∗ fullfiling properties (a) and (b) of Theorem 5.3 by the choice of the

pieces of si,r. Thus the construction implies that G∗ ∪ Gn forms a pseu-

dosegment representation of the subgraph of G induced by P∗ ∪ Pn fulfiling

properties (a) and (b) of Theorem 5.3.

Recall that every element of a bundle Bi,0 intersects the same elements of P ′

as si,0. By the choice of G0, none of these intersections takes place within R0.

Thus, the elements of G∗ ∪ Gn ∪ G0\{s1,o, ..., sk−1,0} forms a pseudosegment

representation of G fulfiling properties (a) and (b) of Theorem 5.3.

As Theorem 5.3 implies Theorem 5.1, path graphs are pseudosegment graphs.

5.2 Nonpseudosegment graphs- a planarity argument

To show that not all chordal graphs have a pseudosegment representation,

let us consider the following chordal graph.

Definition 5.5. For n ∈ N let K3
n be the graph whose vertices can be

partitioned into two sets, VC = [n] and VI =
(

[n]
3

)

. The vertices of VC

induce a clique and VI forms an independent set. Additionally each vertex

{i, j, k} ∈ VI is adjacent only to vertex l ∈ VC if and only if l ∈ {i, j, k}.

To see that these graphs are chordal, let S be a star with
(

n

3

)

leaves indexed by

all different triples of [n]. We assign {i, j, k} to the leaf indexed {i, j, k} and i

to the substar of S connecting all leaves indexed {i, y, z} with y, z ∈ [n]\{i}.

Figure 5.9 sketches the graph K3
5 ; it is a vertex intersection graph of substars

of degree
(

4
2

)

of a star with
(

5
3

)

leaves.

Theorem 5.6. For large enough n ∈ N there is no pseudosegment represen-

tation of K3
n.

Proof. Assuming that there is a pseudosegment representation G of K3
n, the

set G of pseudosegments can be divided into Sn and SI , that is the pseu-

dosegments representing the vertices from VC and VI respectively. The pseu-

dosegments of Sn form a set of n pairwise crossing pseudosegments, that
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{1, 2, 3}

{1, 2, 4}

{1, 2, 5}

{1, 3, 4}

{1, 3, 5}

{1, 4, 5}

4

25
1

3

S
K3

5

Figure 5.9: A sketch of K3
5 and a star, hosting a tree representation of K3

5 , with a

substar representing vertex 1 of K3
5 .

is an arrangement of pseudosegments. The pseudosegments of SI have the

following properties:

(i) any two different pseudosegments of SI are disjoint, and

(ii) every pseudosegment of SI has nonempty intersection with exactly

three different pseudosegments from the arrangement Sn and no two

different pseudosegments of SI intersect the same three pseudosegments

of Sn.

The idea of the proof is to show that a set G = Sn ∪ SI of pseudosegments

with properties (i) and (ii) can have at most O(n2) elements. Theorem 5.6

then follows as SI has
(

n

3

)

elements.

5.2.1 Geometric restrictions

Every pseudosegment p ∈ Sn is cut into n pieces, its edges, by the n−1 other

pseudosegments of Sn. Let W be the set of all edges of pseudosegments of Sn;

note that |W | = n2. A pseudosegment t ∈ SI intersects with exactly three

edges of three different pseudosegments of Sn such that each intersection is

a crossing; thus every t ∈ SI is a 3-segment. Being a connected simple arc,

every 3-segment has a unique middle and two outer intersections. Let S(w)

be the set of 3-segments with middle intersection on the edge w ∈ W . With

this we partition the set SI as SI = ˙⋃
w∈WS(w).
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Define Gp = (W, Ep) as the simple graph where two elements w, w′ ∈ W are

adjacent if and only if there exists a 3-segment t ∈ SI such that t has its

middle intersection on w and an outer intersection on w′.

Figure 5.10: A partial arrangement with 3-segments and the corresponding graph Gp

induced by them.

Lemma 5.7. The graph Gp = (W, Ep) is planar.

Proof. A planar embedding of Gp is induced by Sn and SI . Contract all edges

of pseudosegments of Sn; the contracted pieces represent the vertices of Gp.

The 3-segments of SI are pairwise non-crossing, this property is maintained

during the contraction of edges of Sn, see Figure 5.10. If t ∈ SI has its middle

intersection on w and its outer intersections on w′ and w′′, then t contributes

the two edges ww′ and ww′′. Hence, the multigraph obtained through these

contractions is planar and its underlying simple graph is indeed Gp.

Let NGp
(w) be the set of neighbors of vertex w ∈ W in Gp so that dGp

(w) =

|NGp
(w)|.

Lemma 5.8. The size of a set S(w) of 3-segments is bounded by dGp
(w)− 1

for every w ∈ W .

Proof. For every w ∈ W define G[NGp
(w)] = (NGp

(w), Ew) as the graph

where two vertices u, u′ ∈ NGp
(w) are adjacent if and only if there is a 3-

segment t ∈ S(w) that has its outer intersections with u and u′. The number

of edges of G[NGp
(w)] equals the number of 3-segments in S(w). The idea is to

contract just the pieces corresponding to elements of NGp
(w) to points. The

3-segments in S(w) together with the vertices obtained from the contraction

of the elements of NGp
(w) form a planar graph, see Figure 5.11. Note that the

resulting graph is not a multigraph, since a multiple edge would correspond

to a pair of 3-segments of S(w) intersecting the same three edges of Sn with
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w

Figure 5.11: The planar graph G[NGp
(w)] is induced by the 3-segments with middle

intersection on w.

middle intersection on w. We will show that G[NGp
(w)] is acyclic, hence a

forest. This implies the statement of Lemma 5.8.

Assume there was a cycle C = (w1, .., wk, w1) in G[NGp
(w)] with edges wkw1

and wiwi+1 with 1 ≤ i < k. Let ti be the 3-segment defining edge wiwi+1.

Recall that ti intersects wi, w and wi+1. A cycle in G[NGp
(w)] corresponds to

a simple closed curve in the pseudosegment representation G of G as follows:

Denote the part of wi connecting its crossings with ti and ti−1 by ai. As

wi ∈ W is an edge of Sn and tj ∈ S(w) ⊆ SI , the set of edges of Sn and

3-segments of S(w) contributing to C as vertices or edges of C does not

induce more crossings than the pairs (wi, tj) with j ∈ {i − 1, i}. Ignoring

the pending ends of ti, the union of the ai and ti, i ∈ {1, .., k} corresponds

to a simple closed curve C within the pseudosegment representation G. The

curve C is the concatenation of ai and ti in the order a1, t1, a2, .., tk−1, ak, tk,

see Figure 5.12.

w

ti−1

ai−1

ti

ai+1

ai

C

Figure 5.12: A chain of segments corresponding to a cycle C in G[NGp
(w)].

Note that k ≥ 3, as G[NGp
(w)] is not a multigraph. Choose three 3-segments

tj, ti, tl from C such that they intersect w in this order and no other 3-

segment of C crosses w between them. We will identify a simple closed
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curve C′ separating wi and wi+1. Even more, the complete pseudosegments

p and p′ containing wi respectively wi+1 will be separated by C′. This is a

contradiction to the fact that they both belong to the arrangement Sn.

Such a curve C′ can be described as follows: By possibly shifting the indices

of wi along C, we can assume i < j < l. Denote the part of w between

its intersections with tj and tl by wj,l. Let Pj+1,l be the subpath of C\wi

connecting wj+1 and wl, denote the corresponding part of C by Cj+1,l. Con-

nect wj,l to Cj+1,l at tj and tl. This gives a simple closed curve C′. The

curve C′ consists of an arc of C, the arc wj,l of w and parts of tj and tl.

It follows that C′ can not be crossed by a pseudosegment from Sn. Recall

that by the definition of a pseudosegment representation, an intersection of

pseudosegments implies that they cross. Applied to the intersection of ti and

wj,l ⊂ w this has the consequence that wi and wi+1 lie in different regions

with respect to C′, see Figure 5.13. As shown before this implies that the

complete pseudosegments p containing wi and p′ containing wi+1 have to lie

in different regions with respect to C′. Thus, they cannot intersect, a contra-

diction to the choice of Sn. Thus G[NGp
(w)] is acyclic and |Ew| is bounded

by dGp
(w) − 1.

tj

wj

wj+1

wi

ti
wi+1

tl

wl

C′

Figure 5.13: Pieces wi and wi+1 are separated by the simple closed curve C′.

As Gp is planar we have that
∑

w∈W dGp
(w) = 2|Ep| < 6|W |. With this and

|W | = n2, Lemma 5.8 implies

|S| =
∑

w∈W

|S(w)| ≤
∑

w∈W

(dGp
(w) − 1) < 6|W | = 6n2.

Since
(

n

3

)

> 6n2 for all n ≥ 39, we conclude that K3
n does not belong to PSI

for n ≥ 39. This completes the proof of Theorem 5.6.
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5.3 Pseudoline arrangements and k-segments

In the previous section we considered the chordal graph K3
n in view of pseu-

dosegment representations. For this purpose we partitioned the graph K3
n

into its maximal independent set and its maximal clique. In any pseudoseg-

ment representation G of K3
n, the clique corresponds to a set Sn ⊂ G of n

pairwise intersecting pseudosegments, that is an arrangement of pseudoseg-

ments. By showing that a set of disjoint 3-segments contained in Sn can

consist of at most 6n2 elements, we were able to show that K3
n has no pseu-

dosegment representation for n ≥ 39.

This analysis naturally leads to ask for the size of a set of arbitrary 3-segments

contained in Sn. If we do not pose any restrictions on the intersection be-

havior of the 3-segments of Sn, there are arrangements of pseudosegments

that can contain
(

n

3

)

3-segments such that no two of them intersect the same

three elements of the arrangement. An example of such an arrangement with

a set of
(

n

3

)

3-segments is given in Figure 5.14.

t

t′

Figure 5.14: An arrangement S5 of five segments with a set of
(

5
3

)

different 3-

segments; here t and t′ intersect twice.

Working on pseudosegments, it seems appropriate to require that the 3-

segments of Sn form a set of pseudosegments themselves.

Question 5.9. Let Sn be an arrangement of n pseudosegments. What is the

maximal size of a set J of different 3-segments of Sn such that the union of

Sn ∪ J is a set of pseudosegments?

Although we conjecture that the size of J is o(n2+ǫ) for all ǫ > 0 we have not
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even been able to show that the size of J is o(n3). One problem on answering

this question is that the Jordan arcs of J can bypass the pseudosegments

of Sn at their ends. This problem does not exist if we consider the analog

question for an arrangement of pseudolines.

Question 5.10. Let Ln be an arrangement of n pseudolines. What is the

maximal size of a set J of different 3-segments of Ln?

The main result of this section is Theorem 5.11 which gives an upper bound

on the maximal size of a set K of k-segments contained in an arrangement

of n pseudolines with k fixed.

Theorem 5.11. For k fixed, the number of different k-segments contained

in an arrangement of n pseudolines is O(n2), where the constant of propor-

tionality depends on k; more precisely, it is bounded by 5
2
· k · 32k−3n(n− 1).

Observation 5.12. For k = 1 Theorem 5.11 obviously holds as there is one

1-segment of Ln for each of the n2 edges of Ln.

To prove Theorem 5.11 for k = 2 we will relate the number of k-segments

contained in the pseudoline arrangement Ln to the number of edges of the

zone of a pseudoline of Ln. This motivates the definition of the (≤ k)-zone

of a pseudoline in Ln generalizing the zone as defined in Section 2.1.2. In

the proof of Theorem 5.11 for k ≥ 2 we then use an upper bound on the

number of edges of the (≤ k)-zone. The proof of this upper bound will follow

in Section 5.3.4.

5.3.1 The zone and 2-segments of a pseudoline arrangement

Assume we are given an arbitrary arrangement Ln of pseudolines. Let p be

an arbitrary pseudoline of Ln and let S2 be a maximal set of 2-segments

contained in Ln. Every 2-segment of S2 connects the two edges of Ln it

intersects. Let us denote the set of 2-segments of S2 that have an intersection

with p by S2(p). With this we obtain S2 =
⋃

p∈Ln
S2(p) such that every

2-segment of S2 belongs to exactly two sets of the set cover. Now every 2-

segment of S2(p) connects an edge of Z(p) to p, see Figure 5.15. The number

of these edges contributes to the complexity of Z(p), hence it is bounded by
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the upper bound of following theorem. This theorem is implied in the proof

of Theorem 2.2 from [1].

Theorem 5.13. The complexity of the zone of a pseudoline in an arrange-

ment of n pseudolines in the plane is 6(n − 1) ∈ O(n).

Obviously every pair of edges can be connected by at most one 2-segment

of S2. Thus, it remains to determine the number of different 2-segments that

connect an arbitrary edge of Z(p) to different edges of p. An upper bound

on this number is given by the following claim.

Claim. Every edge of the zone Z(p) can be connected to at most two different

edges of p by 2-segments.

Proof. Every pseudoline of Ln contributes at most one edge to each face and

every edge lies on the boundary of two different faces. A 2-segment of S2(p)

connects an edge of Z(p) to p, and these two edges lie on the same face

of Z(p). Hence, every edge of Z(p) can be connected to at most two different

edges of p by 2-segments of Ln.

p
Z(p)

Figure 5.15: No edge of Z(p) can be connected to an edge of p by more than two

different 2-segments of Ln.

With Theorem 5.13 and the previous Lemma, we obtain an upper bound

of 2 ·6(n−1) ∈ O(n) on the number of 2-segments in S2(p). As Ln contains n

pseudolines, S2 =
⋃

p∈Ln
S2(p) and every 2-segments belongs to exactly two

sets of
⋃

p∈Ln
S2(p), we have

|S2| ≤
1

2
· n · 2 · 6(n − 1) ∈ O(n2).
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5.3.2 The (≤ k)-zone and k-segments of a pseudoline arrangement

The relation between the number of 2-segments in S2(p) and the number of

edges of Z(p) motivates the following definition of the (≤ k)-zone which will

be our main tool to prove Theorem 5.11 for k ≥ 2. To define the (≤ k)-zone

of a pseudoline in a pseudoline arrangement in analogy to the classical zone,

note that every k-segment has two outer and k − 2 inner intersections. We

say that a k-segment connects the edges, and also the pseudolines, it has

its outer intersections with. Then a k-segment connects a vertex v of Ln to

pseudoline p ∈ Ln if there is a k-segment connecting an edge that is adjacent

to v to p. We say that a k-segment connects a face f to p if it intersects two

edges of the boundary of f and connects one of them to p.

Definition 5.14. Let L be an arrangement of pseudolines, let p be an arbi-

trary pseudoline of L and k ≥ 2 fixed. The (≤ k)-zone Z(≤k)(p) of p in L

is the set of vertices, edges and faces of L that can be connected to p by

l-segments of L for some l ≤ k.

With respect to this definition, the classical zone Z(p) corresponds to the

(≤ 2)-zone Z(≤2)(p). In view of Question 5.10 we are interested in the number

of edges of the (≤ k)-zone. A bound on this number is given in the following

theorem.

Theorem 5.15. Let k ≥ 2 fixed. Then the number of edges of the (≤ k)-zone

is O(n) with the constant of proportionality depending on k; more precisely

it is bounded by 5 · 3k−1(n − 1).

We postpone the proof of Theorem 5.15 to Section 5.3.4 and proceed with

the proof of Theorem 5.11.

5.3.3 Proof of Theorem 5.11 for k ≥ 2

Let Ln be a pseudoline arrangement and let Sk be a maximal set of k-segments

contained in Ln with k ≥ 2 fixed. For every pseudoline p of Ln let Sk(p)

denote the set of k-segments of Sk that have an outer intersection on p. As

before we have Sk =
⋃

p∈Ln
Sk(p) so that every k-segment of Sk belongs to

two sets of
⋃

p∈Ln
Sk(p). For an example see Figure 5.16.
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p

q

Ln

e

e′

t

Figure 5.16: Different 3-segments of S3(p), among them t connecting edges e ⊂ p

and e′ ⊂ q.

By Theorem 5.15, the number of edges of the (≤ k)-zone is bounded by

5 · 3k−1(n − 1). Thus it remains to determine the number of k-segments

of Sk(p) that connect an arbitrary but fixed edge of the (≤ k)-zone to p.

Claim. For every pair of edges e, e′ of Ln there are at most 3k−2 different

k-segments of Ln that connect e and e′.

Proof. Let e and e′ be edges of pseudolines q and p of Ln respectively. Assume

that there is a k-segment t of Ln connecting e and e′. Let L(e, e′) be the

set of pseudolines of Ln different from p and q that are intersected by t.

Assume there is a k-segment t′, different from t, that connects e and e′. In

this case, t, t′ and the edges e and e′ induce a closed curve. As e and e′

are edges of Ln, every pseudoline of Ln that intersects t has to intersect t′

as well, and vice versa. As L(e, e′) ⊂ Ln, L(e, e′) forms an arrangement

of k − 2 pseudolines. With respect to this arrangement, t, and any other

k-segment of Sk connecting e and e′ can be seen as a possibility of adding

a pseudoline t̄ to L(e, e′), entering at an unbounded face of L(e, e′) and

leaving at its antipodal face. The resulting set L(e, e′) ∪ {t̄} is a pseudoline

arrangement with k−1 pseudolines. Such a possibility is known as a cutpath

of the arrangement. It has been investigated in [41] where, among other

results, an upper bound on the number of cutpaths is given.

Lemma 5.16 ([41]). The number of cutpaths in an arrangement of m pseu-

dolines is bounded by 3m.
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e′

q

t′

t

e

p

Figure 5.17: The thickly drawn pseudolines of Ln form an arrangement L(e, e′) of

pseudolines such that t and t′ are cutpaths of L(e, e′).

As L(e, e′) is an arrangement of k−2 pseudolines, we obtain an upper bound

of 3k−2 on the number of k-segments that connect e and e′. As e and e′

were chosen arbitrarily, there are at most 3k−2 many different k-segments

connecting a fixed pair of edges of Ln.

Claim. Every edge of the (≤ k)-zone Z(≤k)(p) in Ln can be connected to at

most k different edges of p by k-segments of Ln.

Proof. Let e be an arbitrary but fixed edge of Z(≤k)(p) and let q be the

pseudoline of Ln that contains e. We have to determine the number of

different edges of p that can be connected to e by a k-segment. Let us index

the edges of p with 1, ..., n such that e1 and en are the unbounded edges of p

and every pair (ei, ei+1) of consecutive edges of p has a common vertex on its

boundary. Then let ei and ej , i ≤ j, be the edges of p with lowest and highest

index that are connected to e by k-segments and let ti and tj be k-segments

connecting ei and ej respectively to e.

As before, the elements e, ti, tj and p induce a closed curve such that each

of the k − 2 pseudolines of Ln\{p, q} intersecting ti intersects either tj , or p

between the edges ei and ej . Correspondingly each of the k − 2 pseudolines

of Ln\{p, q} intersecting tj intersects either ti, or p between the edges ei

and ej . As q may intersect p between ei and ej , there are at most 2(k−2)+1

pseudolines intersecting p between ei and ej , and so j − i + 1 ≤ 2k − 2.
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es+1es

t′t

e

p

q

qs

Figure 5.18: As q 6= qs and t is a 6-segment, t′ is not a 6-segment.

Now consider a pair of edges es, es+1 of p with i ≤ s < j. Let qs be the

pseudoline of Ln intersecting p between es and es+1. Let t be a k-segment

connecting es and e. Assume that q 6= qs. Set L(e, es) as the set of pseudolines

intersected by t different from p and q. If qs 6∈ L(e, es), then e and es+1 lie

in different halfplanes with respect to qs, see Figure 5.18. In this case, every

l-segment t′ of Ln that connects es+1 and e has to intersect qs. As t, t′, e, qs

and p induce a closed curve, t′ has to intersect every pseudoline of L(e, es).

But then t′ has k + 1 intersections with elements of Ln, hence t′ is not a

k-segment. If qs ∈ L(e, es), the analog argument implies that t′ has k − 1

intersections with elements of Ln so that t′ is not a k-segment.

Thus, except for the pair of edges of p adjacent to an edge of q no two adjacent

edges of p can be connected to e by k-segments. So it follows that at most k

of the at most 2k − 2 different edges of p can be connected to the same edge

of Z(≤k)(p).

We conclude that any edge of the (≤ k)-zone Z(≤k)(p) can be connected to p

by at most k · 3k−2 different k-segments of Sk(p). From Theorem 5.13 we

know that the number of edges of Z(≤k)(p) is bounded by 5 · 3k−1(n − 1) for

every p ∈ Ln. In Sk =
⋃

p∈Ln
Sk(p) every k-segment of Sk appears twice.

As there are n pseudolines in Ln, we finish the proof of Theorem 5.11 with

Observation 5.12 and the following formula for k ≥ 2:

|Sk| ≤
1
2
n · k · 3k−2 · 5 · 3k−1(n − 1) = 5

2
· k · 32k−3 · n(n − 1) ∈ O(n2).
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5.3.4 The (≤ k)-zone of a pseudoline arrangement

Theorem 5.15. Let k ≥ 2 fixed. Then the number of edges of the (≤ k)-zone

is O(n) with the constant of proportionality depending on k; more precisely

it is bounded by 5 · 3k−1(n − 1).

In the following we will prove Theorem 5.15 generalizing the proof of The-

orem 2.2 from [50]. So let p be a pseudoline of Ln and assume that p is

a horizontal straight line dividing the plane into an upper and a lower half-

plane, H+
p and H−

p respectively. Let E+
k (p) denote the set of edges of Z(≤k)(p)

that lie in H+
p and E−

k (p) the ones that lie in H−
p . It suffices to determine an

upper bound for the number of edges in E+
k (p) as reflecting the arrangement

at p gives the same upper bound for the number of edges in E−
k (p). Then

Theorem 5.15 follows from Theorem 5.17.

Theorem 5.17. Let k ≥ 2 be fixed. Then the number of edges of E+
k (p) is

in O(n) with the constant of proportionality depending on k; more precisely

it is bounded by 5
2
· 3k−1(n − 1).

Proof. Let Ln be an arrangement of pseudolines and let p be a pseudoline

of Ln. For k ≥ 3 set D+
k (p) as the set of edges of Z(≤k)(p) that lie in H+

p and

can be connected to p by k-segments but not by l-segments with l < k. That

is D+
k (p) = E+

k (p)\E+
k−1(p), hence

|E+
k (p)| = |E+

k−1(p)| + |D+
k (p)|.

To determine an upper bound on D+
k (p), let us introduce some more nota-

tion that we illustrate in Figure 5.19. Set vqq′ as the vertex defined by the

intersection of pseudolines q and q′ of Ln. For q ∈ Ln\{p} let q+ be the part

of q contained in H+
p . Then orient each halfline q+ away from vqp.

Now let e be an edge of q+ that is not adjacent to p. Let vqg and vqs be

the vertices adjacent to e and assume that vqg lies between vqp and vqs on q.

As every edge inherits an orientation from its supporting halfline, we call vqg

the tail and vqs the head of e. With respect to the orientation of the halfline

containing the tail of e, that is g+, e can be classified as either left outgoing

or right outgoing.

Every edge adjacent to p belongs to E2(p), hence every edge of D+
k (p) is

either left or right outgoing. So let R+
k (p) be the set of edges of D+

k (p) that

are right outgoing and L+
k (p) the set of edges of D+

k (p) that are left outgoing.
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pvqp

vqg

vqs

q+

H+
p

g+

s+

e

Figure 5.19: Edge e in H+
p is a left outgoing edge at g+ and is bounded by vertices vqs

and vqg.

Lemma 5.18. For every p of Ln it holds that |R+
k (p)| < (5

2
·3k−2− 1

2
)(n−1).

Proof. Let q be a pseudoline of Ln\{p} and let eq be a right outgoing edge

at q+. Then we denote the supporting line of eq by pq. Next we index the

edges that are right outgoing at q+ increasingly by e1
q, e

2
q , ... such that the

intersection points of the corresponding supporting halflines pi
q and q appear

along q as (vqp, vqp1
q
, vqp2

q
, ...).

As we are heading for an upper bound of R+
k (p) we can assume that the

(k − 1)st right outgoing edge at halfline q+ of H+
p belongs to R+

k (p). Now

assume that there is an h ≥ k such that the h-th right outgoing edge eh
q

at halfline q+ belongs to R+
k (p); an example is given in Figure 5.20. As eh

q

belongs to R+
k (p), there is a k-segment t of Ln connecting eh

q to an edge

of p. Since h ≥ k, the k − 1 pseudolines p1
q , ..., p

k−1
q altogether prevent that t

connects eh
q to an edge of p that lies to the right of q. Thus t connects eh

q to

some edge ep of p that lies to the left of q. But then t has an inner intersection

with some edge e of q+.

Let r+ be the halfline containing eh
q . Then let ê be the edge of q+ that is

adjacent to vqr and lies between e and vqr on q. Let us construct another

k-segment of Ln that connects ep and eh
q : First we take a copy of the part

of t that connects ep to e. This copy is placed next to t such that it lies

completely to the left of q+ and, still, has its last intersection on ep. Then we

take a copy of the part of q+ that connects the intersection point of e and t

to some point of ê. Let us join these two copies at their endpoints that are
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p vqp

vqr

q+
r+

ê

t̂

t

e

eh
q

Figure 5.20: Edge eh
q ⊂ r+, with h ≥ k is right outgoing at q+ and has a witness

ê ⊂ q+; here ê lies between vqr and vqp.

next to e and place this union so that it lies completely to the left of q+ and

is disjoint from r+. Finally we connect the endpoint of this arc that lies next

to ê by a Jordan arc to a point on eh
q that intersects ê and eh

q and no other

vertex or edge of Ln. All this can be done in such a way that we obtain a

Jordan arc t̂ that is a k-segment of Ln having its first intersection with ep,

its last intersection with eh
q and its second to last intersection with ê. Then

we call ê the witness of eh
q ∈ R+

k (p) ⊂ D+
k (p).

As eh
q ∈ D+

k (p) = E+
k (p)\E+

k−1(p), it holds that ê ∈ D+
k−1(p). This implies

that the edges adjacent to ê that lie to the left of q belong to E+
k−1(p). As

every edge of Ln is adjacent to four edges of Ln, edge ê can be the witness

of at most two edges of R+
k (p).

Claim. If edge ê, defined as before, is the witness of two edges of R+
k (p),

then ê belongs to L+
k−1(p).

Proof. Let eh
q ⊂ r+ and ê ⊂ q+ be defined as before and let vqr and vqg

be the vertices of Ln that bound ê; see Figure 5.21 for an illustration. By

definition, ê is the witness of eh
q . Assume that ê belongs to R+

k−1(p). Then

the intersection vgp lies to the right of q. Let eg denote the edge of g+ that is

adjacent to vqg and lies to the right of q. If ê is the witness of eg, then there is

a k-segment t′ having its first intersection with p, its last intersection with eg

and its second to last intersection with ê. This implies that t′ intersects p to

the left of q. But then t′ has to intersect g+ to the left of q which implies that t′

has more than one intersection with g. This contradicts the assumption
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that t′ is a k-segment of Ln, hence ê cannot be the witness of eg, and thus, ê

cannot be the witness of two edges of R+
k (p).

p

eg

ê

q+

g+

r+

vqp vgp

Figure 5.21: If ê is in R+
k−1(p), then ê cannot be the witness of edge eg.

Recalling that we account for every (k − 1)-st right outgoing edge at every

halfline in H+
p , we obtain

|R+
k (p)| ≤ (n − 1) + |D+

k−1(p)| + |L+
k−1(p)|.

Then we obtain an upper bound ak ≥ |R+
k (p)| by solving the recurrence

ak = (n − 1) + 3ak−1. The initial condition a2 = 2(n − 1) as k ≥ 2 can

be read off the proof of Theorem 2.2 from [1]. This gives the upper bound

stated before, that is

|R+
k (p)| ≤ ak = (

5

2
· 3k−2 −

1

2
)(n − 1).

Interchanging right with left outgoing edges yields the analog result for the

number of left outgoing edges, thus we have (5·3k−2−1)(n−1) as upper bound

for the number of edges of D+
k (p). Recall that |E+

k (p)| = |E+
k−1(p)|+ |D+

k (p)|,

hence we obtain an upper bound bk ≥ |E+
k (p)| on the number of edges of

Z(≤k)(p) in H+
p by solving the recurrence bk = bk−1 + (5 · 3k−2 − 1)(n − 1).

Again, the initial condition b2 = 3(n − 1) for k = 2 results from the proof of

Theorem 2.2. This leads to an upper bound bk = (5
2
· 3k−1 − k − 5

2
)(n − 1).

Then it holds that |E+
k (p)| ≤ 5

2
· 3k−1(n − 1) as stated in Theorem 5.17.

Reflecting the arrangement at p gives the same upper bound for E−
k (p), so

we obtain 5 · 3k−1(n − 1) ∈ O(n) as upper bound on the number of edges in

Z(≤k)(p).

Remark: Towards the end of our work on the number of k-segments in

pseudoline arrangements, we encountered the following definition in [50].
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Definition 5.19. The (≤ k)-zone of an hyperplane g in an hyperplane ar-

rangement H in Rd is defined as the set of all faces of H for which a point X

of their relative interior can be connected to some point Y of g by the segment

s = [X, Y ] so that s intersects at most k hyperplanes of H.

The author suggests an upper bound of O(nd−1k) for the number of vertices

of the (≤ k)-zone in Rd using Clarkson’s Theorem on levels as stated in [50].

This result implies that the number of edges of the (≤ k)-zone defined in

Section 5.3.2 is O(nk). This together with the lately improved upper bound

of 2m(5
2
)(

m

2 ) on the number of cutpaths in an arrangement of m pseudo-

lines [22] gives an upper bound of c · (nk)2 · 2k−2(5
2
)(

k−2

2 ) on the number of

k-segments in an arrangement of n pseudolines with a constant c > 0.

5.4 Nonpseudosegment graphs- a Ramsey argument

Recall our original interest in the relation of chordal graphs an pseudosegment

graphs. In Section 5.1 we have shown that vertex intersection graphs of

subpaths of a tree are pseudosegment graphs. In the subsequent section we

have shown that the chordal graph K3
n has no pseudosegment representation

if n ≥ 39. We would like to formulate restrictions on the tree representations

of chordal graphs that are pseudosegment graphs as well. It is easy to see

that there is a tree representation of K3
n where the host tree is a caterpillar

with maximal degree three though with disproportionately high diameter.

To account for this, consider the following chordal graph.

Definition 5.20. For n ∈ N let S3
n be the graph whose vertices can be

partitioned into two sets, V ′
I = [n] and V ′

C =
(

[n]
3

)

. The vertices of V ′
I form

an independent set and V ′
C induces a clique of S3

n. Additionally each vertex

{i, j, k} ∈ V ′
C is adjacent to vertex l ∈ V ′

I if and only if l ∈ {i, j, k}.

Every S3
n is a vertex intersection graph of substars of a star, where the sub-

stars have maximal degree three. Figure 5.22 sketches S3
5 as a vertex inter-

section graph of substars of degree three of a star with 5 leaves.

Theorem 5.21. For large enough n ∈ N there is no pseudosegment repre-

sentation of S3
n.
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2

1

5

S

4 3

S1455

1

2

34

{1, 4, 5}

S3
5

Figure 5.22: A sketch of S3
5 and a star hosting a tree representation of S3

5 with a

substar representing vertex {1, 4, 5}.

Proof. Assuming that there is a pseudosegment representation G of S3
n, the

set G of pseudosegments can be divided into Sm and SI , that is the pseu-

dosegments representing the vertices from V ′
C and V ′

I respectively. Any two

different pseudosegments of SI are disjoint. The pseudosegments of Sm have

the following properties:

(i) Sm is an arrangement of m =
(

n

3

)

pseudosegments, and

(ii) every pseudosegment of Sm has nonempty intersection with exactly

three different pseudosegments SI and no two different pseudosegments

of Sm intersect the same three pseudosegments of SI .

To show that not every S3
n is a pseudosegment graph we first restrict our

attention to the intersection behavior of elements of Sm with respect to el-

ements of SI . At this we will align the elements of SI along the X1-axis.

This will be used to classify subsets of SI by the intersection behavior of the

elements of Sm with respect to SI , and at the same time to classify elements

of Sm. Then, the application of Theorem 5.22, a Ramsey argument, will

leave us with a set Y ⊂ SI of arbitrary size such that all elements of Sm

intersecting triples of Y behave alike. Within these elements of Sm, we will

find a pair of elements with more than one intersection if Y exceeds a certain

size. Since this is not allowed in a pseudosegment representation, it follows

that most of the graphs of (S3
n)n∈N are not pseudosegment graphs.

5.4.1 Classification of the elements of Sm and a Ramsey theorem

The pseudosegments of SI ⊂ G are pairwise disjoint. To simplify the picture

we use an homeomorphism of the plane which aligns the pseudosegments
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of SI as vertical segments of unit length touching the X1-axis with their

lower endpoints at positions 1, 2, . . . , n. For ease of reference we will call

these vertical segments sticks and index them such that pi denotes the stick

containing the point (i, 0).

With every ordered triple (i, j, k), 1 ≤ i < j < k ≤ n, there is a pseudoseg-

ment pijk in Sm ⊂ G intersecting the sticks pi, pj and pk from SI . This

pseudosegment is disjoint from all other sticks of SI and the union of all such

pseudosegments forms an arrangement Sm of m =
(

n

3

)

pseudosegments.

For every pijk of Sm, 1 ≤ i < j < k ≤ n, let φijk denote the middle of

the three sticks intersected by pijk. We partition the ordered triples (i, j, k)

into three classes depending on the position of φijk in the list (pi, pj, pk). If

φijk = pi, that is the middle intersection of pijk is left of the other two, we

assign (i, j, k) to class [L]. The class of (i, j, k) is [M ] if φijk = pj, that is

the middle intersection of pijk is between the other two. The class of (i, j, k)

is [R] if φijk = pk, that is the middle intersection of pijk is to the right of

the other two. We use this notation rather flexible and also write pijk ∈ [X]

or say that pijk is of class [X] when the triple (i, j, k) is of class [X], for

X ∈ {L, M, R}. Examples of pseudosegments of classes [M ] and [R] are

given in Figure 5.23.

pi pj pkpx pypz

p1
ijk

p1
xyz

p2
ijk

p2
xyz

Figure 5.23: An example of a pseudosegment pijk ∈ [M ] and pxyz ∈ [R] .

Cutting pijk at the intersection points with the three sticks yields two arcs p1
ijk

and p2
ijk each connecting two sticks and up to two ends. The ends are of no

further interest. For the arcs we adopt the convention that p1
ijk connects φijk

to the stick further left and p2
ijk connects φijk to the stick further right. In

the example of Figure 5.23, φxyz = py so that p1
xyz is the arc connecting px

and py while arc p2
xyz connects py and pz.

For a contradiction we will show that if n is large enough, then there are

different pseudosegments pijk and pxyz in a pseudosegment representation

of S3
n such that p1

ijk and p1
xyz intersect and p2

ijk and p2
xyz intersect. Hence, pijk
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and pxyz intersect at least twice which is not allowed in a pseudosegment

representation.

To get to that contradiction we need some control over the behavior of the

pseudosegments of the arrangement between the sticks. The subsequent def-

initions will enable us to describe the crucial relations. Let rx be a vertical

ray downwards starting at (x, 0), that is the ray pointing down from the lower

end of stick px. Let Is
x(ijk) be the number of intersections of ray rx with ps

ijk

and let Js
x(ijk) be the parity of Is

x(ijk), i.e., Js
x(ijk) ≡ Is

x(ijk) (mod 2).

pdpcpa pb

p1
ijk

p2
ijk

Figure 5.24: The pattern of 3-segment pijk ∈ R is (1, 1, 1, 0, 0, 0, 0, 0).

Let (a, i, b, j, c, k, d) be an ordered 7-tuple of the set [n], in other words let

1 ≤ a < i < b < j < c < k < d ≤ n. Then we call pijk the induced

pseudosegment of this 7-tuple and set T s
x = Js

x(ijk). The pattern of the

7-tuple (a, i, b, j, c, k, d) is the binary 8-tuple

(T 1
a , T 1

b , T 1
c , T 1

d , T 2
a , T 2

b , T 2
c , T 2

d ).

An example of such a pattern is given in Figure 5.24. With this we define

the color of a 7-tuple (a, i, b, j, c, k, d) as the pair consisting of the class of the

induced 3-segment and the pattern. The 7-tuples of [n] are thus colored with

the 768 colors from the set [3] · 28. Ordered 7-tuples and 7-element subsets

of [n] are in bijection. Therefore we can apply the Ramsey theorem cited

next with parameters 768, 7, 13.

Theorem 5.22. For every choice of numbers r, p, k ∈ N there exists a num-

ber n ∈ N such that whenever X is an n-element set and c is a coloring of the

system of all p-element subsets of X using r colors, i.e. c :
(

X

p

)

→ {1, 2, .., r},

then there is a k-element subset Y ⊆ X such that all the p-subsets in
(

Y

p

)

have the same color.
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5.4.2 Geometric restrictions

The application of the Ramsey theorem leaves us with an uniform configu-

ration. We have kept only a subset Y of sticks of SI such that all pseudoseg-

ments of Sm connecting three of them are of the same class and all 7-tuples

on Y have the same pattern T = (T 1
1 , T 1

2 , T 1
3 , T 1

4 , T 2
1 , T 2

2 , T 2
3 , T 2

4 ). Now we

need one more argument which is a direct consequence of Theorem 2.1, the

Jordan Curve Theorem.

Given two curves γ and γ′, closed or not, we let X(γ, γ′) be the number of

crossing points of the two curves.

Fact 2. If γ and γ′ are closed curves, then X(γ, γ′) ≡ 0 (mod 2).

With an arc pij connecting sticks pi and pj we associate a closed curve γ̆ij

as follows: At the intersection of pij with either of the sticks we append long

vertical segments and connect the lower endpoints of these two segments

horizontally. The union of the three connecting segments will be called the

bow βij of the curve γ̆ij . If this construction is applied to several arcs we

assume that the vertical segments of the bows are long enough as to avoid

any intersection between the arcs of Sm and the horizontal part of the bows.

i j k ji k

γ̆ij γ̆jk

Figure 5.25: Closed curves γ̆ij from pij and γ̆jk from pjk.

This construction ensures that we can count the crossings of two curves γ̆ij

and γ̆xy in parts:

X(γ̆ij, γ̆xy) = X(pij, pxy) + X(pij , βxy) + X(βij, pxy) + X(βij, βxy)

With Fact 2 we obtain

Fact 3. X(pij, pxy) ≡ X(pij, βxy) + X(βij, pxy) + X(βij, βxy) (mod 2).

The uniformity of the colors of all 7-tuples allows us to apply Fact 3 to detect

intersections of arcs of type ps
ijk. Depending on the entries of the pattern T
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we choose sticks pi, pj, pk and px, py, pz with appropriate pseudosegments pijk

and pxyz and show that they intersect twice.

So assume that the class of all those pseudosegments is [L] or [M ], hence

there is an arc connecting the two sticks with smaller indices. Let pij = p1
ijk,

and pxy = p1
xyz.

Lemma 5.23. If T 1
1 = T 1

3 and i < x < j < y < k, then there is an

intersection between the arcs pij and pxy.

Proof. We evaluate the right side of the congruence given in Fact 3. Here,

X(pij, βxy) is the number of intersections of arc pij with the bow connecting px

and py. These intersections lie on the vertical part, hence on the rays rx

and ry. The parity of these intersections can be read from the pattern. The

position of x between i and j implies T 1
x = T 1

2 and the position of y between j

and k implies T 1
y = T 1

3 . Hence, X(pij, βxy) ≡ T 1
2 + T 1

3 (mod 2).

From the positions of i left of x and of j between x and y we conclude that

X(βij, pxy) ≡ T 1
1 +T 1

2 (mod 2). Since the pairs ij and xy interleave, the two

bows are intersecting, i.e., X(βij, βxy) = 1.

Together this yields X(pij, pxy) ≡ T 1
2 + T 1

3 + T 1
1 + T 1

2 + 1 (mod 2). With

T 1
1 = T 1

3 we see that X(pij, pxy) is odd, hence, there is at least one intersection

between the arcs.

i x j y k x i j y k

T1 T2 T2 T3
T1 T2 T2

T3

Figure 5.26: Intersections between the bows depend on the order of the sticks

pi, pj , px and py.

Lemma 5.24. If T 1
1 6= T 1

3 and x < i < j < y < k, then there is an

intersection between the arcs pij and pxy.

Proof. Since x is to the left of i and y lies between j and k, we obtain

X(pij, βxy) ≡ T 1
1 + T 1

3 (mod 2). Both i and j are between x and y, thus

X(βij, pxy) ≡ T 1
2 + T 1

2 ≡ 0 (mod 2). For the bows we observe that either
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they do not intersect or they intersect twice, in both cases X(βij, βxy) ≡ 0

(mod 2).

Put together, X(pij, pxy) ≡ T 1
1 + T 1

3 (mod 2). Since T 1
1 6= T 1

3 , we obtain

that X(pij, pxy) is odd, hence, there is at least one intersection between the

arcs.

In addition to the arcs pij and pxy we have the arcs pjk = p2
ijk, and pyz = p2

xyz.

Now we first consider the case where the class is [M ]. The following two

lemmas are counterparts to Lemmas 5.23 and 5.24; they show that depending

on the parity of T 2
1 + T 2

3 , an “alternating (alt)“ or a “non-alternating (non-

alt)“ choice of jk and yz forces an intersection of the arcs pjk and pyz. For

the proofs note that reflection at the X2-axis keeps the class [M ] invariant

but exchanges the first and the second arc; the relevant effect on the pattern

is T 1
1 ↔ T 2

4 and T 1
3 ↔ T 2

2 .

Lemma 5.25. If T 2
2 = T 2

4 and x < j < y < k < z, then there is an

intersection between the arcs pjk and pyz.

Lemma 5.26. If T 2
2 6= T 2

4 and x < j < y < z < k, then there is an

intersection between the arcs pjk and pyz.

The table below shows that it is possible to select ijk and xyz out of six

numbers such that the positions of ij and xy respectively jk and yz are

any combination of alternating and non-alternating. Hence, according to the

lemmas we have at least two intersections between 3-segments pijk and pxyz

chosen appropriately depending on the entries of pattern T . We represent

elements of ijk by a box � and elements of xyz by circles •.

� • � • � • alt / alt [T 1
1 = T 1

3 and T 2
2 = T 2

4 ]

� • � • • � alt / non-alt [T 1
1 = T 1

3 and T 2
2 6= T 2

4 ]

• � � • � • non-alt / alt [T 1
1 6= T 1

3 and T 2
2 = T 2

4 ]

• � � • • � non-alt / non-alt [T 1
1 6= T 1

3 and T 2
2 6= T 2

4 ]

Now consider the case where the class is [L]. Again we have pik = p2
ijk

and pxz = p2
xyz in addition to arcs pij and pxy. The following two lemmas

show that depending on the parity of T 2
1 + T 2

3 + T 2
3 + T 2

4 an alternating or a

non-alternating choice of ik and xz force an intersection of the arcs pik and

pxz.
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Lemma 5.27. If T 2
1 +T 2

3 +T 2
3 +T 2

4 ≡ 0 (mod 2) and i < x < {j, y} < k < z,

then there is an intersection between the arcs pik and pxz.

Proof. Since x lies between i and j and z is to the right of k, we obtain

X(pik, βxz) ≡ T 2
2 + T 2

4 (mod 2). With i being left of x and k between y

and z, we obtain X(βik, pxz) ≡ T 2
1 + T 2

3 (mod 2). So as the pairs ik and xz

interleave, the two bows are intersecting, i.e., X(βik, βxz) = 1.

We obtain, X(pij, pxy) ≡ T 2
1 + T 2

3 + T 2
3 + T 2

4 + 1 (mod 2). Hence there is at

least one intersection between arcs pik and pxz.

Lemma 5.28. If T 2
1 +T 2

3 +T 2
3 +T 2

4 ≡ 1 (mod 2) and i < x < {j, y} < z < k,

then there is an intersection between the arcs pik and pxz.

Proof. Since x is between i and j and z is between j and k, we obtain

X(γik, βxz) ≡ T 2
2 + T 2

3 (mod 2). With i being left of x and k right of z,

we obtain X(βik, pxz) ≡ T 2
1 + T 2

4 (mod 2). For the bows we observe that

either they don not intersect or they intersect twice, hence X(βik, βxz) ≡ 0

(mod 2).

Put together X(pij , pxy) ≡ T 2
1 + T 2

3 + T 2
3 + T 2

4 (mod 2). Hence there is at

least one intersection between the arcs.

As in the previous case we provide a table showing that it is possible to

select ijk and xyz out of six numbers such that the positions of ij and xy re-

spectively ik and xz are any combination of alternating and non-alternating.

We represent elements of ijk by a box � and elements of xyz by circles •.

� • � • � • alt / alt [T 1
1 = T 1

3 and T 2
1 + T 2

3 + T 2
3 + T 2

4 ≡ 0]

� • � • • � alt / non-alt [T 1
1 = T 1

3 and T 2
1 + T 2

3 + T 2
3 + T 2

4 ≡ 1]

• � � • • � non-alt / alt [T 1
1 6= T 1

3 and T 2
1 + T 2

3 + T 2
3 + T 2

4 ≡ 0]

• � � • � • non-alt / non-alt [T 1
1 6= T 1

3 and T 2
1 + T 2

3 + T 2
3 + T 2

4 ≡ 1]

To deal with the case where the class of all pseudosegments is [R] we refer to

symmetry. Reflecting the picture at the X2-axis yields a configuration where

all pseudosegments are in class [L].

Thus, no uniform configuration on six or more sticks can belong to a pseu-

dosegment representation of any graph, in particular of S3
n. Note that the
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definition of a pattern involves seven sticks, so let us choose 13 as the mini-

mal size of an uniform configuration that cannot be contained within a pseu-

dosegment representation. By Theorem 5.22 we know that there is an n̂ ∈ N
such that every pseudosegment representation of S3

n with n ≥ n̂ has to con-

tain a uniform configuration on 13 sticks, so we conclude that S3
n is not a

pseudosegment graph for large enough n. This completes the proof of Theo-

rem 5.21.

5.5 Summary

In Section 5.1 we have shown that all chordal graphs that are vertex in-

tersection graphs of subpaths of a tree have pseudosegment representations.

Subsequently we have shown examples of chordal graphs that do not be-

long to PSI. In order to delimit the common subclass of chordal graphs and

pseudosegment graphs we considered the graph S3
n. The result of Section 5.4

then involves that the common subclass of PSI and the class of chordal graphs

cannot contain graphs induced by many treelike subtrees of a tree.

Note that our smallest examples of chordal graphs that do not belong to PSI

have more than 5000 vertices. Thus they are quite big in comparison to the

classical examples of graphs that are not in PSI. As mentioned in Chapter 3,

the complete subdivision of K5, and by the same argument the complete

subdivision of K3,3, is not a pseudosegment graph. Each of these graphs has

only 15 vertices.

Another extension of path graphs different from chordal graphs are vertex

intersection graphs of subpaths of a cactus graph, the latter being defined as

a connected graph where any two cycles have at most one vertex in common.

As in the case of chordal graphs, we can use the graph K3
n to show that the

class of vertex intersection graphs of subpaths of a cactus graph does not

belong to PSI.

To see this take
(

n

3

)

4-cycles and connect them as sketched in Figure 5.27;

this gives the graph GC . Denote the vertices of GC with maximal distance

as s and t. Assign the vertices of the independent set VI of K3
n to vertices of

degree two, different from s and t, such that no two of them are assigned to

vertices of the same 4-cycle. Assign each element of the clique VC of K3
n to a

path connecting s and t and containing all vertices representing its neighbors
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in VI . This gives a representation of K3
n as vertex intersection graph of

subpaths of a cactus graph.

s t

1 2 3
(

n

3

)

Figure 5.27: A cactus graph that can host n+
(

n
3

)

paths representing K3
n.

In Section 5.3 we considered how many combinatorially different k-segments

can be contained in an arrangement of n pseudolines. Let us remind you that

our original question about the number of 3-segments that can be contained

in an arbitrary arrangement of pseudosegments is still open.

Question 5.9 Let Sn be an arrangement of n pseudosegments in the plane.

What is the maximal size of a set J of different 3-segments of Sn such that

the union of Sn ∪ J is a set of pseudosegments?



Chapter 6

Cocomparability Graphs

Every poset P with ground set X naturally induces two graphs on X, a com-

parability and a cocomparability graph. The cocomparability graph has an

edge for every pair of elements of X that is incomparable in P . Recall from

Chapter 3 that every cocomparability graph is a string graph. This result

was obtained by embedding the linear extensions of a realizer of the respec-

tive poset onto parallel lines and connecting points on consecutive lines that

corresponded to the same element of X. This operation, applied to a poset

of dimension two, yields a pseudosegment representation of the respective

cocomparability graph, a permutation graph.

A natural extension of a linear order is an interval order, yielding the notion

of the interval dimension of a poset. The cocomparability graphs of posets

of interval dimension one are the interval graphs. As every interval graph

is a path graph, it is a pseudosegment graph as shown in Chapter 5. Using

a minimal interval realizer of the poset corresponding to an interval graph,

we obtain a pseudosegment representation of the respective interval graph

different from the one obtained in Chapter 5. This leads to considering

cocomparability graphs of posets of interval dimension two. These graph are

known as trapezoid graphs.

In the following sections we will present different subclasses of trapezoid

graphs as point-interval graph and PI∗-graphs and show that they belong

to PSI. In every case we will construct a pseudosegment representation of

the respective graph by embedding a minimal realizer of the respective poset

onto the plane. Note that we will always use finite intersection models as we

are working on finite graphs.

101
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6.1 Interval graphs

An interval graph is classically known as intersection graph of a set of non-

degenerate intervals of the real line [38]. Such a set of intervals is then called

an interval representation of the respective interval graph. In the context of

cocomparability graphs, every interval graph G is the cocomparability graph

of a poset P of interval dimension one and every interval representation of G

is an interval realizer of poset P. It is easy to see that interval graphs are

pseudosegment graphs.

Proposition 6.1. Every interval graph has a pseudosegment representation.

Proof. Let G = (X, E) be an interval graph and let I be an interval repre-

sentation of G. To construct a pseudosegment representation of G, embed I

onto the plane by mapping I onto the X1-axis. This is done in such a way

that the embedded intervals have the same intersection relations as their

counterparts in the realizer and no two different intervals share an endpoint.

Every interval I ∈ I can then be denoted by I = [(l, 0), (r, 0)].

Assume that the intervals of I are ordered according to the order of their

left endpoints; that is I = {I1, .., In} with li < lj if and only if i < j. Now

replace interval Ij by the L-shaped curve pj consisting of the vertical segment

vj = [(lj , 0), (lj, j)] and the horizontal segment hj = [(lj , j)(rj, j)] for every

j ∈ {1, ..., n}. See Figure 6.1 for an illustration. Obviously each pi is a

Jordan arc as it consists of a vertical and a horizontal segment that share an

endpoint.

X1

Figure 6.1: A pseudosegment representation of an interval graph using the left-

endpoint ordering of an appropriate interval representation.

It is easy to see that G := {p1, .., pn} is a pseudosegment representation of G.

Assume that i < j. Vertices i and j of G are not adjacent if and only if

intervals Ii and Ij are disjoint. Then Jordan arcs pi and pj lie in different

halfplanes with respect to the vertical line lij := {(ri + ǫ, x) | x ∈ R} for

an adequate real number ǫ > 0. If i and j are adjacent, then Jordan arcs pi
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and pj intersect in the horizontal segment hi and the vertical segment vj . Ob-

viously there is no further point of intersection. Thus, G is a pseudosegment

representation of G.

6.1.1 Circular-arc graphs

Before we proceed with a further subclass of trapezoid graphs let us consider

circular-arc graphs. They are the intersection graphs of arcs of a circle [31]

and form a generalization of interval graphs, different from the one by co-

comparability graphs.

Proposition 6.2. Every circular-arc graph has a pseudosegment represen-

tation.

Proof. Let Gc be an arbitrary circular-arc graph. Let Gc be a set of arcs of a

circle Cc in the plane such that Gc
∼= Ω(Gc). Assume that no two endpoints

of different arcs of Gc are the same and let Q be a point on Cc that is not an

endpoint of any arc of Gc.

X1

Q

Figure 6.2: A pseudosegment representation of a circular arc graph obtained from

a pseudosegment representation of an interval graph.

Set AQ as the set of arcs containing Q and A as the remaining arcs. Re-

move Q from Cc and embed the resulting Jordan arc with all arcs of A onto

the X1-axis without changing the intersection relation or order of the arcs

of A. Every arc of AQ is cut into two pieces. First we add the pieces that

intersect the rightmost arcs of A as intervals onto the X1-axis. This is done

in such a way that the intersection relations between the elements of A and

these pieces of AQ correspond to their intersection relations in Gc. The re-

sulting embedding represents an interval graph which is a subgraph of Gc;
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let G′ be a pseudosegment representation of this graph constructed as in Sec-

tion 6.1. It remains to add the intersections between the arcs of AQ and the

leftmost arcs of A. This is done by adding disjoint arcs to the pseudoseg-

ments representing the arcs of AQ such that each of them crosses the vertical

part of the pseudosegments of A that are intersected by the corresponding

arc in Gc. This can be done as sketched in Figure 6.2. The resulting set of

Jordan arcs is obviously a pseudosegment representation of Gc. As Gc was

chosen arbitrarily, it follows that every circular-arc graph is a pseudosegment

graph.

6.2 Point-interval graphs

Point-interval graphs were introduced in [10] as an extension of permutation

and interval graphs and a restriction of trapezoid graphs. Recall that a

permutation graph is a cocomparability graph of a poset that has a realizer

consisting of two linear orders. A trapezoid graph is a cocomparability graph

of a poset that has a realizer consisting of two interval orders. Then, a

point-interval graph is a cocomparability graph of a poset that has a realizer

consisting of a linear and an interval order. If we embed the orders of such a

realizer onto two parallel lines, we obtain a representation of the respective

point-interval graph as intersection graph of triangles spanned between two

parallel lines, see Figure 6.3 for an example. Such a representation is also

used to define point-interval graphs.

That is, let H and L be a pair of parallel lines in the Euclidean plane and let T

be a set of triangles such that two corners of each triangle lie on line H and

one corner of each triangle lies on line L. Then the intersection graph Ω(T )

is a point-interval graph, for short a PI-graph, and T is called a point-interval

representation of Ω(T ).

Proposition 6.3. Every point-interval graph has a pseudosegment represen-

tation.

Proof. Consider an arbitrary point-interval graph G = (X, E) and let T be

a point-interval representation of G such that the triangles of T are spanned

between lines H0 := {(x, 0) | x ∈ R} and H1 = {(x, 1) | x ∈ R}. We

furthermore require that no two corners of different triangles have the same
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H0

H1

(mx, 0)

Tx

(lx, 1) (rx, 1)

Figure 6.3: A representation of a point-interval graph as intersection graph of tri-

angles spanned between two parallel lines H = H1 and L = H0.

X1-coordinate. For vertex x ∈ X let Tx be the triangle in T representing x.

Let (mx, 0) denote the point Tx shares with H0, and let Ix = [(lx, 1), (rx, 1)]

denote the interval Tx shares with H1. Then we refer to bx = [(lx, 1), (mx, 0)]

as the left boundary segment of Tx.

If we restrict the point-interval representation T to the left boundary seg-

ments of the triangles, then we obtain a permutation representation and,

thus, a pseudosegment representation GP of some subgraph GP of G. If we

restrict T to the union of the intervals on H1, we obtain an interval repre-

sentation of some subgraph GI of G. A pseudosegment representation GI of

this subgraph is obtained by the construction of Section 6.1.

If GP and GI do not have any common edge, we simply join every pair of

Jordan arcs of GP and GI , that represent the same element of G, at their

common endpoint (lx, 1). By this we obtain a Jordan arc px for every ele-

ment x of G. Recall the definition of a permutation graph and the analysis

of Section 6.1. Thus it holds that Jordan arcs px, py ∈ GI ∪ GP cross exactly

once if and only if x and y are adjacent in G, and are disjoint otherwise.

If GP and GI have a common edge, let EPI be the set of common edges

of GP and GI . In this case G will be represented by the pseudosegment

representation of GP and a certain pseudosegment representation G−
I of the

subgraph GI − EPI of G obtained as follows.

Observation 6.4. For every edge e = uw ∈ EPI , it holds that Tu and Tw

intersect in their left boundary segments and share a point on H1, see Fig-

ure 6.4.
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Figure 6.4: To the left, triangles corresponding to an edge e = uw ∈ EPI , and to the

right, a representation of the two elements in the pseudosegment representation G =

GP ∪ G−
I .

Assuming that lu < lw, Observation 6.4 implies that mw < mu if uw ∈ EPI .

Recall that, given a pseudosegment representation of an interval graph, the

length of a vertical segment vx of the respective Jordan arc px depends on

the position of Ix in the left endpoint ordering (I1, ..., In). So let us order

the intervals on H1 depending on the order of the “tips” {(mx, 0) | x ∈ X}

on H0. Using this ordering in the pseudosegment construction of Section 6.1

obviously yields a pseudosegment representation of GI − EPI .

Now we can join every pair of Jordan arcs of GP and G−
I , that represent

the same element of G. This gives the following Jordan arc for vertex i ∈

{1, ..., n} of G as the joined Jordan arcs have (li, 1) as common endpoint:

pi := [(li, 1 + i), (ri, 1 + i)] ∪ [(li, 1), (li, 1 + i)] ∪ [(li, 1), (mi, 0)].

Thus, the union of G = G−
I ∪GP contains a Jordan arc px for every element x

of G so that px and py cross exactly once if and only if x and y are adjacent

in G. An example of a pseudosegment representation obtained by the latter

construction is given in Figure 6.5.

6.3 PI∗-graphs

To obtain a pseudosegment representation of a point-interval graph, we con-

sidered a representation of the respective point-interval graph as intersection

graph of triangles spanned between two parallel lines H and L such that two

corners of the triangles lie on H and one corner of each triangle lies on L.

If we relax this condition in such a way that all corners of the triangles lie
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Figure 6.5: A representation of a point-interval graph as intersection graph of tri-

angles spanned between two parallel lines H = H1 and L = H0.

on H and L and not all three on the same line, we obtain a further subclass

of trapezoid graphs, the class of PI∗-graph [51], sketched in Figure 6.6. A

PI∗-representation consists of a set of triangles such that all corners of the

triangles lie on two parallel lines and not all three corners of any triangle on

the same line.

Proposition 6.5. Every PI∗- graph has a pseudosegment representation.

We will see that every PI∗-graph G has two subgraphs that are point-interval

graphs and cover G. By Proposition 6.3 we can represent these subgraphs

as pseudosegment graphs. In the following we will show how to choose these

subgraphs such that we can combine the respective pseudosegment repre-

sentations in order to obtain a pseudosegment representation of the given

PI∗-graph.

Proof. Consider an arbitrary PI∗-graph G = (X, E) and let T be a PI∗-

representation of G. Again we assume that T is embedded in the plane such

that the triangles of T are spanned between lines H0 := {(x, 0) | x ∈ R}
and H1 = {(x, 1) | x ∈ R}. Furthermore we require that no two corners of

different triangles have the same X1-coordinate.

We intend to choose two subgraphs of G, say G(U) and G(D), such that

the union of G(U) and G(D) is G and both subgraphs are point-interval

graphs. Note that the set of triangles of T that share a point with H0

induces a point-interval graph; let this set be U ′ and set U ′ as the set of
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vertices of G corresponding to U ′. The remaining triangles are denoted as D′,

the corresponding vertices of G as D′; they induce a point-interval graph as

well.

Figure 6.6: The triangles of U ′ and the left boundary segments of the triangles of D′

induce subgraph G(U) of G; the analog gives subgraph G(D).

Now consider two triangles Tu, Td with Tu ∈ U ′ and Td ∈ D′. Let Tu be

the triangle with corners (mu, 0), (lu, 1) and (ru, 1) and Td the triangle with

corners (md, 1), (ld, 0) and (rd, 0). If Tu and Td intersect, at least one of

the triangles contains a point of the left boundary segment of the other, as

sketched in Figure 6.7. To account for these intersections let U be the set of

triangles of U ′ and all left boundary segments of triangles of D′. Analogously

set D as the set of triangles of D′ and all left boundary segments of triangles

of U ′. In U we consider the boundary segments of elements of D′ as de-

generated triangles with the respective notations, in D analogously. Then U

and D are point-interval representations of certain subgraphs of G. Let G(U)

and G(D) denote the corresponding subgraphs of G.

Observation 6.6. By definition G(U), as well as G(D), contains all vertices

of G. Note that every edge of G is contained in at least one of the subgraphs.

More precisely, if xy is an edge of G we distinguish two types of intersections

between the respective triangles Tx and Ty, that is

H1

H0

a) b) c)

Figure 6.7: An intersection between two triangles of T can be an edge (a) of G(U)

and G(D), (b) of G(D) and not of G(U) or (c) of G(U) and not of G(D).

• triangles Tx and Ty intersect in their left boundary segments. In this

case, xy is an edge of G(U) and G(D) as both boundary segments are
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contained in U and also in D; an example of such an intersection is

given in part (a) of Figure 6.7.

• the left boundary segments of Tx and Ty are disjoint. Then Tu and Td

either share a point on H1 or on H0 but not on both lines, hence xy is

either an edge of G(D) but not of G(U), see part (b) of Figure 6.7, or

an edge of G(U) and not of G(D), see part (c) of Figure 6.7.

Observation 6.6 and the analysis of the proof of Proposition 6.3 motivate

the following choice of Jordan arcs for a pseudosegment representation of G.

Let GU and GD be pseudosegment representations of G(U) and G(D) ob-

tained as in the proof of Proposition 6.3. Let ux be the pseudosegment of GU

and dx the pseudosegment of GD that represent vertex x ∈ X. Then the left

boundary segment bx of triangle Tx is a part of ux and dx. The endpoint

(mx, 0) of bx is an endpoint of ux and the endpoint (mx, 1) of bx is an end-

point of dx. By construction, ux and dx are disjoint above H1 and below H0,

and bx is the only common part of ux and dx. Thus, we obtain a Jordan

arc px if we join ux and dx by identifying bx ⊂ ux with bx ⊂ dx for every

x ∈ X.

Figure 6.8: Pseudosegments representing triangles of T in GU to the left and in GD

to the right.

To see that G := {px | x ∈ X} is a pseudosegment representation of G

we first consider a pair of non-adjacent vertices x, y of G. In this case, the

corresponding pseudosegments of G(U) and G(D) are disjoint. Then the

choice of px and py implies that they are also disjoint in G.

Now let xy be an edge of G that belongs to G(U) and not to G(D). Let ix be

the index of triangle Tx ∈ U according to the tip ordering on H0, that is the

ordering of the points {(mx, 0) | x ∈ U} and assume that mx < my. Then,
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as in the proof of Proposition 6.5, ux and uy intersect in GU in the horizontal

part [(lx, 1 + ix), (rx, 1 + ix)] of ux and the vertical part [(ly, 1), (ly, 1 + iy)]

of uy. As GU is a pseudosegment representation of G(U), there is no further

intersection between ux and uy of GU . Thus px = ux ∪ dx and py = uy ∪ dy

intersect exactly once.

If xy be an edge of G that belongs to G(D) and not to G(U), we consider

the indices of the triangles of U according to the tip ordering on H1, that is

the ordering of the points {(mx, 1) | x ∈ D} and do the analog analysis.

Figure 6.9: The thickly drawn lines form the pseudosegments representing the ver-

tices of PI∗-graph G given by a PI∗-representation

Finally consider an edge xy of G that is an edge of G(U) and G(D). In

this case, the Jordan arcs ux and uy, representing x and y in GU , intersect

in bx ⊂ ux and by ⊂ uy. Recall that bx and by are the common parts

of ux and dx, and of uy and dy respectively. Hence, the Jordan arcs dx

and dy, representing x and y in GD intersect in the same point of bx ⊂ dx

and by ⊂ dy. As GU and GD are pseudosegment representations, there is

no further intersection of the corresponding arcs within each pseudosegment

representation. Thus, px = ux ∪ dx and py = uy ∪ dy intersect exactly once

in bx ∩ by and have no further intersections.

Hence the set G := {px | x ∈ X} is a pseudosegment representation of G; an

example of such a pseudosegment representation is given in Figure 6.9.
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6.4 Trapezoid graphs and II1-graphs

Finally we come to considering trapezoid graphs, that are cocomparability

graphs of posets of interval dimension two. Formally, let H and L be two

parallel lines such that {I01, ..., I0n} and {I11, ..., I1n} are families of intervals

of H and L respectively. Each i ∈ {1, ..., n} corresponds to a trapezoid Ri

with parallel sides I0i and I1i. Then the intersection graph of such a family

of trapezoids is a trapezoid graph [51].

Rx

lx0

rx1

rx0

lx1

H0

H1

Figure 6.10: The elements of X that are comparable to x in P lie strictly to the left

or to the right of Rx.

6.4.1 A failed attempt

In the previous section we combined pseudosegment representations of per-

mutation and interval graphs to represent point-interval and PI∗-graphs, gen-

eralizations of the latter two graphs, as pseudosegment graphs. As trapezoid

graphs generalize PI∗-graphs, it is tempting to look for a modification of

the pseudosegment representations of PI∗-graphs to construct pseudosegment

representations of trapezoid graphs. Such a modification could be as follows:

Let G = (X, E) be an arbitrary trapezoid graph. Then we can choose a min-

imal realizer R = {I0, I1} of the corresponding poset and embed I0 onto H0

and I1 onto H1 such that Ix0 := [(lx0, 0), (rx0, 0)] and Ix1 := [(lx1, 1), (rx1, 1)]

denote the intervals of x ∈ X on H0 and H1 respectively. This is done with-

out changing the intersection relations. Furthermore we require that no two

different endpoints of intervals on H0 and H1 are the same.

Similarly to the previous construction we choose two orders of the elements

of X. Both result from the linear order of the left endpoints of the inter-

vals on H0 and H1. That is for every element x ∈ X there is a pair of
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indices (ix0, ix1) resulting from the position of Ix0 and Ix1 in the respective

left endpoint orderings on H0 and H1 respectively; then ixj < iyj if and only

if lxj < lyj for j ∈ {0, 1}. Recall the use of the tip ordering from the previous

section. With this in mind we define a Jordan arc px for every x ∈ X as

follows

px := [(lx0,−ix1), (rx0,−ix1)] ∪ [(lx0,−ix1), (lx0, 0)]

∪ [(lx0, 0), (lx1, 1)]

∪ [(lx1, 1), (lx1, 1 + ix0)] ∪ [(lx1, 1 + ix0), (rx1, 1 + ix0)].

Figure 6.11: Jordan arcs obtained from the trapezoids on the left-hand side contain

a pair of elements with more than one crossing point.

Note that ix0 is used for the part of pseudosegment px that lies above H1

and ix1 for the part below H0. It is easy to see that every intersection of two

such Jordan arcs is a crossing as no two corners of the trapezoids are the

same; see Figure 6.11 for an example.

Unfortunately this does not yield a pseudosegment representation from an

arbitrary trapezoid representation. Figure 6.11 shows an example of a set of

trapezoids for which the latter modification generates multiple intersections

between the Jordan arcs defined as above. Nevertheless this set of trapezoids

motivates to consider the following subset of trapezoid graphs.

Definition 6.7. Let H and L be two parallel lines such that {I01, ..., I0n} and

{I11, ..., I1n} are families of intervals of H and L respectively. If it holds for

every pair of elements i, j ∈ {1, ..., n}, i 6= j that either I0i ∩ I0j = ∅ or I1i ∩

I1j = ∅, then the intersection graph G of the respective family of trapezoids

{R1, ..., Rn} is an II1-graph, and {R1, ..., Rn} is an II1-representation.
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6.4.2 II1-graphs are pseudosegment graphs

Proposition 6.8. Every II1-graph has a pseudosegment representation.

Proof. Let G = (X, E) be an arbitrary II1-graph. To prove Proposition 6.8

set G := {px | x ∈ X} where every px is obtained from an II1-representation

as defined in Section 6.4.1. To show that G is a pseudosegment representation

of G consider an arbitrary pair of vertices x, y of X and the corresponding

Jordan arcs px and py. Without loss of generality we assume that lx1 < ly1.

Ry

Rz

py

pz
Cyz

Figure 6.12: Jordan arcs representing comparable elements of X can be separated.

If x and y are not adjacent in G, then they are comparable in P . In this case,

trapezoids Rx and Ry are disjoint, so it holds that rx0 < ly0 and rx1 < ly1.

Then arcs px and py lie on different sides of the curve

Cxy =
(

(rx1+ǫ,∞), (rx1+ǫ, 1)]∪[(rx1+ǫ, 1), (rx0+ǫ, 0)]∪[(rx0+ǫ, 0), (rx0+ǫ,∞)
)

.

for some small real number ǫ > 0. Thus px and py are disjoint. Figure 6.13

illustrates the case where py is separated from pz by the dotted curve Cyz .

Now assume that x and y are adjacent in G. If ly0 < lx0, then px and py

intersect between H0 and H1 as lx1 < ly1; this is illustrated by the Jordan

arcs pz and pw on the right-hand side of Figure 6.13. In this case it holds

that iy0 < ix0 and ix1 < iy1. Thus the definition of the arcs px and py implies

that there is no further intersection between px and py as in the proof of

Proposition 6.5.

Now assume that lx0 < ly0. Since lx1 < ly1, Jordan arcs px and py do not

intersect between H0 and H1. As x and y are adjacent in G, the corresponding

trapezoids Rx and Ry of the given II1-representation intersect. Without loss
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px

pzpw

py

Figure 6.13: Intersections of Jordan arcs representing adjacent elements x and y,

and w and z of G.

of generality assume that [lx1, rx1]∩[ly1, ry1] 6= ∅ on H1, that is lx1 < ly1 < rx1.

As G is an II1-graph, it follows that [lx0, rx0] ∩ [ly0, ry0] = ∅. In this case we

easily calculate (ly1, 1 + ix0) as point of intersection of px and py. Again

the definition of the Jordan arcs px and py, and the analysis of the proof of

Proposition 6.5 imply that there is no intersection of px and py below H1 as

rx0 < ly0 on H0.

Thus the set G = {px | x ∈ X} is a pseudosegment representation of G. As G

was chosen arbitrarily, it follows that every II1-graph has a pseudosegment

representation.

6.4.3 PI∗-graphs and II1-graphs

The definition of II1-graphs may give rise to the question about the relation of

PI∗-and II1-graphs. In the following we will show that these graphs constitute

different classes, neither containing the other. A possibility of illustrating the

differences between PI∗-graphs and II1-graphs is by box embeddings of the

corresponding posets. Let P = (X, <P ) be a poset and let I = {I1, ..., It}

be an interval realizer of P with Ixj = [lxj, rxj] ∈ Ij for all j ∈ {1, ..., t}.

Assign each element x ∈ X to the box Bx = Πt
j=1[lxj , rxj]. The resulting set

of boxes is a box embedding of P [23]. Every box of such a box embedding is

uniquely determined by its lower left corner (lx1, ..., lxt) and its upper right

corner (rx1, ..., rxt) so that x <P y if and only if (rx1, ..., rxt) is smaller than

(ly1, ..., lyt) in every component.

Observation 6.9. P has a box embedding consisting of horizontal segments,

vertical segments and points if and only if the cocomparability graph of P is

a PI∗-graph.
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px

py

px

py

Figure 6.14: A box representation of a poset P of interval dimension two and a

trapezoid representation of the cocomparability graph of P .

P has a box embedding consisting of disjoint boxes if and only if the cocom-

parability graph of P is an II1-graph.

With this in mind we will construct an II1-graph that is not a PI∗-graph and

a PI∗-graph that is not an II1-graph. First we will construct a box embedding

of some poset P [k] so that the cocomparability graph H [k] of P [k] requires

a “grid-like” trapezoid representation. Then we will choose an II1-graph and

a PI∗-graph, each containing H [k] as subgraph. By this, we can describe the

placement of any trapezoid representing an element not in H [k] with respect

to the grid induced by H [k]. The resulting conditions on the trapezoids will

then imply that each of the two graphs chosen belongs to one of the classes

but not to both.

A trapezoid graph H [k] with a “grid-like” trapezoid representation

Let k ∈ N, k ≥ 3 and let X[k] = {a1, ..., ak, c1, ..., ck, b1, ..., bk, d1, ..., dk}.

Then we define P [k] = (X[k], <P ) as the poset on X[k] with the following

comparabilities, illustrated in Figure 6.15:

• a1 <P a2 <P ... <P ak <P c1 <P c2 <P ... <P ck <P dk,

• a1 <P b1 <P b2 <P ... <P bk <P d1 <P d2 <P ... <P dk,

• bi <P cj with j ∈ {i + 1, ..., k} for every i ∈ {1, ..., k − 1}, and

• ar <P ds with r ∈ {1, ..., s + 1} for every s ∈ {1, ..., k − 1}.

Let H [k] denote the cocomparability graph of P [k] and consider an arbitrary

trapezoid representation Hk of H [k]. We can assume that Hk is embed-

ded between lines H0 and H1 such that no two trapezoids share a corner.
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a1

c1

d4
d1

b1

Figure 6.15: A diagram illustrating the comparabilities in P [4].

Let Rx denote the trapezoid of x in Hk and let Ix0 = [(lx0, 0), (rx0, 0)] and

Ix1 = [(lx1, 1), (rx1, 1)] denote the intersections of Rx with H0 and H1 respec-

tively. Then, the trapezoids corresponding to a1, ..., ak, c1, ..., ck, dk are dis-

joint trapezoids that appear along H0 in the order of the chain (a1, ..., ak, c1),

(c1, ..., ck, dk). With respect to these trapezoids we can describe the place-

ment of the trapezoids representing elements b1, ..., bk and d1, ..., dk−1.

Claim. For every i ∈ {2, ..., k − 1} one of the two statements is true

• Ibi0 ⊂ [(lci−10, 0), (lci+10, 0)] and Ibi1 ⊂ [(ra11, 1), (ra21, 1)],

• Ibi0 ⊂ [(ra10, 0), (ra20, 0)] and Ibi1 ⊂ [(lci−11, 1), (lci+11, 1)].

For every j ∈ {2, ..., k− 1} set c1 := ak+1 and c2 := ak+2, then one of the two

statements is true

• Idj0 ⊂ [(lck0, 0), (ldk0, 0)] and Idj1 ⊂ [(raj+11, 1), (raj+31, 1)],

• Idj0 ⊂ [(raj+10, 0), (raj+30, 0)] and Idj1 ⊂ [(lck1, 1), (ldk1, 1)].

Proof. Consider an arbitrary trapezoid representation Hk of H [k]. Here, the

trapezoids of Hk representing the elements a1, ..., ak,c1, ..., ck, dk are disjoint

as (a1, ..., ak,c1, ..., ck, dk) is a chain of P ; they appear along H0 and H1 in

the order of the chain. We will now analyze the placement of the trapezoid

representing bi with i ∈ {2, ..., k − 1}. The analog analysis gives the stated

conditions on intervals Idj0 and Idj1 for j ∈ {2, ..., k − 1}.
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Ra1
Rd4

Rc1

Rd1

Rb1

Figure 6.16: A “grid-like” trapezoid representation of the graph H [4].

Recall that bj is incomparable to a2, ..., ak for every j ∈ {1, ..., k}. Hence, the

trapezoid representing bi has to intersect each of the trapezoids representing

the elements a2, ..., ak. Thus it holds that either lbi+10 < ra20 or lbi+11 < ra21.

In either case we can reflect the trapezoid representation Hk of H [k] at line

H0.5 = {(x, 0.5)|x ∈ R} and obtain the respective other case, so let us assume

that lbi+11 < ra21.

Since every bi <P bi+1, the trapezoid of Hk representing bi has to lie to the

left of the trapezoid representing bi+1, hence rbi1 < lbi+11 < ra21. As a1,P bj

for all j ∈ {1, ..., k}, it holds that

Ibi1 = [(lbi1, 1), (rbi1, 1)] ⊂ [(ra11, 1), (ra21, 1)].

In addition, bj is incomparable to c1, ..., cj for all j ∈ {1, ..., k}. Thus, it

follows that lcj0 < rbj0.

Since bi−1 <P bi <P bi+1, the trapezoid representing bi has to lie to the right

of the trapezoid representing bi−1 and to the left of the trapezoid represent-

ing bi+1. This implies that lci−10 < lbi0 < rbi0. Since bi <P ci+1, we have

rbi0 < lci+10, and it holds that

Ibi0 = [(lbi0, 0), (rbi0, 0)] ⊂ [(lci−10, 0), (lci+10, 0)].

A trapezoid representation of H [4] is given in Figure 6.15.

Geometric restrictions on trapezoid representations of a II1-graph

Now we come to presenting a II1-graph that is not a PI∗-graph. To do so let

P1 = (X1, <1) be the poset on ground set X1 := X[4] ∪ {B} such that the

comparabilities of P1 with respect to X[4] are the same as in P [4] and, in

addition,
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a1

c1

d4d1

b1

B

Figure 6.17: A box embedding of a poset corresponding to the II1-graph G1.

• a2 <1 B <1 d3 and b1 <1 B <1 c4.

A box embedding of P1 is given in Figure 6.17. As it consists of disjoint

boxes, the cocomparability graph G1 of P1 is an II1-graph.

Proposition 6.10. The II1-graph G1 is not a PI∗-graph.

Proof. Consider an arbitrary trapezoid representation R1 of G1. By con-

struction, H [4] ⊂ G1, so that the set of trapezoids of R1 representing H [4]

fulfills the conditions of the previous claim. As in the proof of this claim, let

us assume that lb41 < ra21.

Since a2 <1 B <1 d3, it holds that ra21 < lB1 < rB1 < ld31; as b1 <1 B <1 c4

it follows that rb10 < lB0 < rB0 < lc40.

As B is incomparable to a3 and d2, it follows that lB1 < ra31 and rB1 >

ld21. As a3 <1 d2, it holds that ra31 < ld21, hence, [(ra31, 1), (ld21, 1)] ⊂

[(lB1, 1), (rB1, 1)] = IB1.Thus, interval IB1 is nondegenerate, that is IB1 is not

a point.

As B is incomparable to b2 and c3, it follows that lB0 < rb20 and rB0 >

lc30. As b2 <1 c3, it holds that rb20 < lc30, hence, [(rb20, 0), (lc30, 0)] ⊂

[(lB0, 0), (rB0, 0)] = IB0. Thus, interval IB0 is nondegenerate.

Thus, the trapezoid representing B is not a triangle. As R1 was chosen

arbitrarily it follows that G1 is not a PI∗-graph.
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Ra1
Rd4

Ra3

Rc3

Rd2

Rb2

Figure 6.18: The trapezoids of elements of X [4] restrict the placement of a trapezoid

representing B in R1.

Geometric restrictions on trapezoid representations of a PI∗-graph

Similar to the construction of G1 we will construct a PI∗-graph that is not a

II1-graph. Let P2 = (X2, <2) be the poset on ground set X2 := X[4]∪{V, H}

such that the comparabilities of P2 with respect to X[4] are the same as

in P [4] and, in addition,

(1) a3 <2 V <2 d2 and b1 <2 V <2 c4, and

(2) a2 <2 H <2 d3 and b2 <2 H <2 c3.

A box embedding of P2 is given in Figure 6.19; here all boxes except for V

and H are points, V is a vertical and H an horizontal segment. Thus, the

cocomparability graph G2 of P2 is a PI∗-graph.

a1

c1

d4d1

b1

H

V

Figure 6.19: A box embedding of a poset corresponding to the PI∗-graph G2.

Proposition 6.11. The PI∗-graph G2 is not a II1-graph.
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Proof. Consider an arbitrary trapezoid representation R2 of G2. Again,

graph H [4] is a subgraph of G2, so that the set of trapezoids of R2 rep-

resenting H [4] fulfills the conditions of the previous claim. As in the proof

of this claim, let us assume that lb41 < ra21.

Ra1
Rd4

Ra3

Rc3

Rd2

Rb2

Figure 6.20: The thick and thick dotted lines restrict the placement of the trapezoids

representing H and V , respectively, in R2.

As before we deduce from (1) that ra31 < lV 1 < rV 1 < ld21 and rb10 < lV 0 <

rV 0 < lc40. And (2) implies that ra21 < lH1 < rH1 < ld31 and rb20 < lH0 <

rH0 < lc30.

Since V is incomparable to b2 and c3, it follows that lV 0 < rb20 and rV 0 > lc30.

As b2 <2 H <2 c3, we have that IH0 ⊂ IV 0.

Since H is incomparable to a3 and d2, it follows that lH1 < ld21 and rH1 > ra31.

As a3 <2 LV <2 d2, we have that IV 1 ⊂ IH1.

Thus, the trapezoids representing V and H intersect on H0 and also on H1.

As R2 was chosen arbitrarily it follows that G2 is not an II1-graph.

6.5 Summary

Starting with interval graphs we successively built pseudosegment represen-

tations of point-interval graphs, PI∗-graphs and II1-graphs. As sketched at

the beginning of Section 6.4, the method used at this cannot be extended

directly to represent arbitrary trapezoid graphs as pseudosegment graphs.

Thus, we are left with the following question.

Question 6.12. Does every cocomparability graph of a poset of interval

dimension two have a pseudosegment representation?
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graphs as intersection graphs of line segments in three directions, in Proc. of

the 3rd Asian Applied Comput. Conference, 2007.

[5] J. Boland and C. Lekkerkerker, Representation of finite graphs by a set

of intervals on the real line, Fund. Math. 51, no. 51 (1962), pp. 45–64.

[6] K. Booth and G. Leuker, Linear algorithms to recognize interval graphs

and test for the consecutive ones property, in Proc. of the 7th ACM Symp.

Theory of Comput., 1975, pp. 255–265.
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versichere ich, dass diese Arbeit nicht in dieser oder ähnlicher Form an einer

weiteren Universität im Rahmen eines Prüfungsverfahrens eingereicht wurde.

Cornelia Dangelmayr
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Zusammenfassung

In der vorliegenden Arbeit werden graphentheoretische Eigenschaften von Durch-

schnittsgraphen von Pseudosegmenten, auch Pseudosegmentgraphen genannt, be-

stimmt. Dabei verstehen wir unter einer Menge von Pseudosegmenten eine endliche

Menge von Jordankurven in der Euklidischen Ebene, für die gilt, dass sich je zwei

Kurven in höchstens einem Punkt treffen, der entweder ein Kreuzungspunkt oder

ein Endpunkt einer Kurve ist.

Pseudosegmentgraphen gehören zur Klasse der Kurvengraphen, die 1966 von Sin-

den eingeführt wurden [63]. Bekannte Beispiele von Kurvengraphen sind chordale

und planare Graphen, Unvergleichbarkeitsgraphen und Segmentgraphen.

Im Jahre 1984 stellte Scheinerman die Vermutung auf, dass jeder planare Graph ein

Segmentgraph ist [61]. Diese Vermutung erregte das Interesse vieler Forscher [13,

14, 15, 39], konnte aber erst im Jahr 2009 bestätigt werden [8]. Eine weiterge-

hende Vermutung von West aus dem Jahre 1991 besagt, dass jeder planare Graph

eine Segmentdarstellung besizt, in der die Segmente in höchstens vier Richtungen

liegen [68]. Dies ist weiterhin offen.

Diese Vermutungen veranlassten uns, Teilklassen von planaren Graphen, insbeson-

dere serien-parallele Graphen, zu betrachten. Unser Ergebnis zeigt, dass jeder

serien-parallele Graph eine Segmentdarstellung besitzt, in der die Segmente in

höchstens drei Richtungen liegen.

Zur Unterscheidung von Pseudosegment- und Segmentdarstellungen betrachten

wir streckbare und nichtstreckbare Arrangements von Pseudogeraden. Darauf auf-

bauend leiten wir eine Konstruktion her, die Pseudosegmentgraphen erzeugt, die

keine Segmentgraphen sind.

Im Anschluss beschäftigen wir uns mit der Beziehung von chordalen und Pseu-

dosegmentgraphen. Zum einen zeigen wir, dass Pfadgraphen Pseudosegment-

graphen sind. Und zum anderen stellen wir chordale Graphen vor, die keine Pseu-

dosegmentgraphen sind; diese lassen sich zudem zur Beschränkung der gemeinsame

Teilklasse von chordalen und Pseudosegmentgraphen verwenden.

Im letzten Teil der Arbeit werden wir Trapezgraphen, eine Teilklasse von Unver-

gleichbarkeitsgraphen, betrachten und Pseudosegmentdarstellungen von Interval-

graphen, Punkt-Interval-Graphen und zwei weiteren Typen von Trapezgraphen

konstruieren.


