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1 Introduction

Phenotypic diversity results from a complex interplay of genetic and environmental factors.
The goal of genetic research is to identify the heritable factors that underlie the phenotypic
diversity. Ultimately, molecular genetics aims to link these factors to molecular mechanisms
that explain the diversity of phenotypic traits. Since many common human diseases have a
genetic component [5, 6, 7] this knowledge is highly valuable for molecular medicine since insight
into the molecular basis of disease processes is the prerequisite for the development of therapies.
Moreover genetic studies facilitate animal and plant breeding and allow insights to be gained
into the principles of evolution.

Modern genetic research began with the studies of Mendel [8]. Based on his work on heritable
traits of peas he postulated two laws: 1) the law of segregation and 2) the law of independent
assortment, which were later shown to be the consequence of meiosis [9].  In his laws he
postulated the existence of heritable factors — nowadays called “genes” or more general “loci”.
Different individuals have different variants of a gene which are called alleles. These variants
constitute the basis of the genetic diversity among individuals. Physically, genes are encoded on
DNA molecules that are called chromosomes in higher organisms.

Animals and plants are diploid organisms. This means, each chromosome is present in two
homologous copies, each of which has been inherited from one individual of the previous gen-
eration. Sexual reproduction of animals and plants involves three major steps on the cellular
level which are important for the transmission of genetic information. A special form of cell
replication called meiosis takes place in the germline of the parents. It consists of two successive
cell division, but only one DNA replication (Figure 1.1). In the first step (meiosis I) each of the
homologous copies is replicated to form sister chromatids leading to bundles of four chromatids.
Homologous recombination takes place between the non-sister chromatids which can lead to a
crossover of the homologous copies. During this process different alleles of the genes can be ex-
changed between the homologous copies of the chromosomes. Subsequently the four chromatids
are separated into haploid gametes where the second cell division (meiosis II) does not involve
replication. The choice of which (recombined) parental chromosome is passed to which daugh-
ter cell is random, leading to the independent assortment observed by Mendel. Two gametes
(sperm and egg) form a zygote (fertilised egg) that develops into a new diploid organism. The
two mechanisms of recombination and independent assortment lead to a very large number of
new combinations of genetic information.

The mechanism of independent assortment explains why genes located on different chromo-
somes are inherited independently of each other. Genes on the same chromosome can lead to
exceptions to the law of independent assortment. Whether they are inherited together or not
is a matter of how many recombinations take place between them. We speak of genetic link-
age if two genes are preferentially inherited together indicating that these genes are in close
proximity on the chromosome and therefore less recombinations take place. Genetic mapping
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Figure 1.1: Sexual reproduction of diploid organisms.

takes advantage of these exceptions and uses the recombination rate observed in a population as
distance to arrange the genes linearly on the chromosome. Since the recombination rate alone
does not lead to an additive distance measure the average number of recombinations per meiosis
measured in centi Morgan (cM) were proposed [10] as additive distance. However it does not
generally correspond to the physical distance between genes measured in mega base pairs (Mb).
Empirical data shows that genetic and physical distance tend to be linearly related with the
exception of certain recombination hotspots [11] (see also section 3.3.1).

In the early days of genetics Mendel’s laws were much debated [12], since they could only
explain categorical phenotypes like flower colour or seed shape but did not seem to provide an
explanation for quantitative phenotypes like body height. Study of continuous traits gave rise to
its own field termed biometrics. The objective of this research was to establish whether certain
continuous traits were heritable or not by means of segregation analysis [12]. Even if quantitative
phenotypes are found to be heritable, often their distribution in the population resemble the
Gaussian normal distribution instead of a bimodal distribution, which would be expected when
assuming Mendelian inheritance of a single genetic factor.  So, how can quantitative traits
be explained by Mendel’s laws? In 1918 Fisher [13] described how the observed distribution of
quantitative phenotypes can arise from a mixture model of multiple genetic factors (polygenic)
with small effects (see section 1.2). This reconciliation of Mendel’s laws with the polygenic model
of quantitative traits together with the chromosome theory of Thomas Morgan constitutes the
theory of classical genetics.

Nowadays, molecular genetics provides the tools to apply this theory in an unprecedented
scale. Molecular marker maps enabled the genetic mapping of quantitative trait loci (QTL) in
biological model systems for human disease (section 1.2). Facilitated through recent technolog-
ical advances in sequencing and genotyping millions of molecular markers in large population
samples a number of systematic efforts are now underway to map human variation [14] and the
genetic basis for many common diseases in genome-wide association studies (GWAS) [6, 15] (see



section 1.3).

A particular advantage of animal model systems for the study of human disease is that en-
vironmental factors can be controlled and thus the phenotypic diversity observed is to a large
degree due to genetic variation between individuals. Now, with the feasibility of GWAS, some
argue that the human is the new model system [16]. It is true that candidate gene identification
can also take advantage of human GWAS, however functional studies on the organismal level
are only possible in model systems. Therefore a translational approach that combines genetics
in humans and animal models constitutes an actively pursued strategy [17] to identify loci and
the associated disease causing biological mechanism.

GWAS and QTL studies typically result in a region or a set of markers associated with the trait
of interest. These molecular markers are mostly non-functional variations that are in linkage
disequilibrium (LD) with the unknown functional variants. Occasionally, variations reside in
protein-coding regions where they can directly affect the function of the encoded protein. A
classical example describes the molecular basis of sickle cell disease as a mutation of an amino
acid in the (-globin chain, which causes polymerisation of haemoglobin, reduced elasticity of
red blood cells, but also protection against malaria [18]. Unsurprisingly, most variations have
been observed in non-coding regions since they make up most of the genome. Although the
understanding of non-coding sequences is far from complete it is known that they harbour a
variety of gene regulatory elements [19]. Therefore variations in non-coding sequences might
alter these regulatory elements and the regulatory network. The functional consequences of
regulatory variations are, however, more difficult to predict and validate, because the regulatory
code is much more complex and flexible than the genetic code. For example, the dysregulation
of a-globin is known to cause « thalassemia; a reduction in functional haemoglobin, and also
increased protection against malaria [20].

The regulatory effects of sequence variations can be measured systematically at the level of
gene expression using the transcript level of each individual gene as a quantitative trait (see
section 3.1) giving rise to expression QTLs (eQTLs). If disease associated variations also show
an effect on gene expression it is likely that they tag a regulatory variant. Therefore the analysis
of the genetics of gene expression provides excellent means for the identification of regulatory
variants. This thesis presents a set of tools and novel approaches for the analysis of the genetics of
gene expression. In section 3.4 strategies will be presented for the identification of disease genes
using the regulatory variation hypothesis. If refined data about additional sequence variants is
available the question of which molecular mechanism is in action at the regulatory variation can
be addressed (section 4.2).

Since most biological processes require the coordinated action of sets of functionally related
genes the analysis of gene expression networks in segregating populations can provide new in-
sights into disease processes [21, 22, 23] (see chapter 4). The naturally occurring genetic variation
can be used to identify gene networks and the loci underlying their regulation (see section 4.3).
So far, the proportion of the phenotypic variance explained by disease associated variations is
rather small [24] which is evidence for a more complex mode of inheritance. In this context
gene expression networks identified in biological model systems can provide a useful functional
context for the interpretation of GWAS results (see section 4.3). In most gene expression net-
work analysis [25, 26, 27, 22, 28, 21] the focus has been to identify networks of co-regulated
genes, where the expression is determined by the sequence variant that has been found to be
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associated with the disease phenotype. What has been neglected so far, is that the observed
phenotype could also be a consequence of genotype dependent perturbations of co-expression.
In section 4.4 we will introduce an approach to identify genotype dependent perturbations of
the co-expression network and show how this knowledge can be used to identify more complex
modes of inheritance such as epistatic interactions.

1.1 Objective and structure of the thesis

Objective The goal of this thesis is to design and apply statistical tools that allow for a
functional interpretation of the results of genetic mapping experiments. These tools will be
applied to analyse two eQTL data sets generated in experimental crosses of laboratory rat
strains to gain insights into the mechanisms of gene regulation that underly phenotypic traits.
Ultimately, the goal is to translate findings from animal models of human disease to interpret
results of genetic studies in human case control cohorts.

Structure In chapter 1 we provide an introduction to the biological mechanisms underlying the
heredity of phenotypic traits. Basic principles and the study design of experimental crosses for
the analysis of quantitative traits will be introduced. Chapter 2 describes the statistical tools
used in the studies presented here.

Chapter 3 introduces the concept of expression quantitative trait locus (eQTL) mapping.
The basic problem that led to this paradigm is that genetic studies typically result in large
chromosomal regions that are statistically associated with a phenotypic trait but do not provide
a molecular explanation of this association. Ultimately the goal of any genetic study is the
identification of genes underlying the phenotype and a mechanistic model of how causal sequence
variations lead to the development of this phenotype. Here we explain how the eQTL paradigm
may be used to identify candidate genes by postulating that sequence variation affects gene
regulation rather than protein function since protein coding sequence constitutes only a small
part of the genome. In section 3.3 the principles of eQTL mapping are illustrated using data
from a set of recombinant inbred lines. The integration of eQTL data and physiological data
is illustrated in two case studies. The first (section 3.4.1) resulted in the identification of a
candidate gene for heart failure [2], the second (section 3.4.2) led to the identification of a
candidate gene for systolic blood pressure [29].

Chapter 4 explains four approaches for the functional interpretation of eQTL data and con-
stitutes the main contribution of this thesis. Section 4.1 shows how functional annotation can
be used to identify genetic markers that influence functionally related gene expression networks.
C'is and trans-acting gene regulatory mechanisms that lead to genotype dependent expression
patterns (eQTLs) are investigated in the two following sections. Both are concerned with the
role of transcription factors (TFs). Section 4.2 shows how information about sequence variations
and a biophysical model of TF — DNA interaction can be used to identify both the most likely
cis-regulatory elements in the promoters of eQTL transcripts and the TF that is most likely
the upstream regulator of the transcript. Section 4.3 deals with the role of TFs as mediators of
trans-acting eQTLs. Finally section 4.4 describes an approach to analyse genotype dependent
perturbations of gene expression networks solely on the level of expression data.



1.2 Genetic mapping of quantitative trait loci (QTL)

Each section presenting analyses of experimental data is self contained with methods, results
and discussion. Chapter 5 summarises the analyses presented at a more general level and puts
them into broader context.

1.2 Genetic mapping of quantitative trait loci (QTL)

Most quantitative traits are the result of an interplay of (multiple) genetic and environmental
factors. The genetic mapping of quantitative traits is concerned with the identification of under-
lying genes or loci called quantitative trait loci (QTL) by the use of molecular genetic markers.
From a statistical point of view the analysis of quantitative traits in experimental crosses derived
from inbred strains of model organisms and human genome wide association studies (GWAS) of
unrelated individuals can be approached with the same set of standard statistical tools. First
we will discuss the general setup derived from experimental crosses and show how it applies to
human GWAS. However, some subtle differences remain and will be discussed in the subsections
of this chapter. Details of the statistical methods are given in the next chapter. Finally the
experimental crosses used in this thesis will be described.

Here we study only diploid organisms that have two homologous copies of each chromosome,
but the theory can be extended to polyploid organisms. In sexual reproduction one copy of each
chromosome is transmitted by the father, one by the mother (Figure 1.1). Inbred strains are
populations of model organisms that are homozygous throughout the genome — i.e. the genetic
information (alleles) from both parents is identical for every gene. In rodents this is achieved
by recurrent brother-sister mating. Suppose that the father has alleles a;a; and the mother has
alleles asas. Every individual in the first generation (F1) will have both alleles ajas. After the
first meiosis the distribution of genotypes aja1, ajaz, agas in the F2 generation is 1/4,1/2,1/4.
After n generations of brother sister mating the fraction of heterozygous is (1/2)" which is
negligible after eight to ten generations.

female male
SHR BN

fully
inbred |:| H HxB I I
| _ chromosome pair

0

hetero- T T T T 1

L B enl I an

HxB RI Recombined 20 generations

H v
. chromosomes brother  sister
Strain set are needed for i
Inbred mapping matings

Isogenic
siblings HxB1 HxB2 + ...+ HxB30

Figure 1.2: Breeding schema of the BXH/HXB recombinant inbred strains.
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All experimental mating schemes involve the cross of two divergent inbred strains to produce
a heterozygous F1 generation. For the F2 intercross, individuals from the F1 generation are
mated to generate recombinations in both maternal and paternal gametes. This gives rise to
the above mentioned distribution of genotypes which we will call (A = aja1, H = ajas, B =
asaz). Recombinant inbred (RI) strains are created by first performing a F2 intercross followed
by several generations of brother sister mating to derive new inbred strains with homozygous
genotypes (A = ajai, B = agay) at almost all loci (Figure 1.2). This way one can establish a
renewable biological resource of recombined offsprings of two inbred strains.

Statistically a QTL can be described as an unobserved categorical variable that affects the
value of the quantitative trait. For an additive trait with one QTL, this can be formalised
by a three component mixture model where each component represents the probability density
function (PDF) of the trait y for one genotype:

component genotype proportion PDF
1 A pyp=0.25 N(y, pa,c?)
2 H py =050 N(y,pg = 0.5(us + pg),0?)
3 B pp=025 N(y, up,0?)

Here the PDF is the normal distribution

1 (y — p)*
2y —
N(y,p,0%) = s exp 5,2 (1.1)

with mean p and variance 2. In case of RI strains, the proportions are ps = 0.5, pg = 0, pp =
0.5.

Genetic mapping of molecular markers allows to determine the genotypes of mostly non-
functional genetic variations. Since inbred strains show a high degree of linkage disequilibrium,
we can expect that there is a low recombination rate r between neighbouring loci. This also
applies to known (non-functional) genetic markers and unknown functional QTL. Suppose the
two parental strains have genotypes mjai//mia; and moas//meas where the // separates the
chromosome pair and m denotes the marker allele and a the QTL allele respectively. In the F2
generation the recombined alleles mias or moa; occur with probability r. Thus, if the marker is
close to the QTL (r is small) then the genotype groups at the marker will clearly have different
means. The basic idea of genetic mapping is to reverse the statement: if the genotype groups
at the marker show clearly different means, we have evidence for a QTL close to the marker.

Whether the different genotypes of a marker indeed induce different means can be tested with
analysis of variance (ANOVA) or standard regression tools [30, 31] which will be discussed in
detail in section 2.1. As an example consider the model y = p + 3; +¢€;,i € {A, H,B}. The
linear modelling framework can easily account for additional markers or other co-variates. If
genotype data for some individuals is missing, the mixture model framework above and data
from flanking markers can be used to infer the most likely genotypes [32, 33| via the expectation
maximisation algorithm (EM). This technique estimates the joint probability of genotypes and
phenotypes which is particularly useful when the genetic map is sparse. Then positions between
markers without genotype information but with a given map distance can be imputed, which is
also known as interval mapping.
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Conversely, the alternative approach suggested by [34] assumes that the genotype probabilities
at the marker are known and need not be estimated jointly. Conditional on the genotype
probabilities the expected trait value is p = papa + papg + pppp. This leads to the linear
model

HA
y= pa,p,pp) | pu | +e (1.2)
KB

with the error term e ~ A(0,0%). Assuming known genotype probabilities, the maximum
likelihood estimators of the model can easily be found using the least squares method (see
section 2.1.1) and is therefore called marker regression mapping. The main advantage over
interval mapping is computation time. The EM algorithm generally needs several iteration
steps for convergence whereas the regression is solved in a single step. When a dense map of
markers with few missing genotypes is available this method performs equally well as interval
mapping [35].

Most approaches use a likelihood based statistic to measure the strength of association. The
log odds score (LOD) and the likelihood ratio statistic LRS are two closely related and frequently
used statistics. They are defined [35] as

Ly

reauce
L

LRS = ZIOgS% (1.4)
reauce

where L,y is the maximum likelihood under the QTL model and Lycguceqd is the maximum
likelihood under the null model of no QTL. Therefore their relation is obtained by simply
changing the base of the logarithm

LRS = 2log,(10) - LOD ~ 4.6 - LOD . (1.5)

Now with the tools to check single markers for the presence of a QTL at hand the strategy of
genome wide QTL detection can be formulated as a model selection problem. Each marker or
sets of markers constitute different competing QTL models that have to be evaluated according
to certain criteria in order to select the best QTL model for a trait. The simplest strategy
is the single marker analysis where the QTL likelihood profile is computed across the whole
genetic map using marker regression or interval mapping and likelihood peaks that exceed a
genome wide threshold of significance are selected. No analytical solutions for the genome wide
distribution of test statistics are known, therefore simple permutation [36] or bootstrapping [37]
strategies have been proposed. In both strategies data following the null hypothesis of no QTL
is generated by randomisation of the trait data. This randomised trait data is then analysed
using the genetic map many times (e.g. n = 10°%) and the genome wide maximum of the test
statistic of each run is used to create an empirical cumulative distribution function.

Several methods like composite interval mapping [38, 39] or multiple QTL mapping [37] have
been proposed to identify QTL models that include multiple markers. They adapt one of the
general strategies of model selection described in the following paragraph to make them suitable
for genetic mapping. In particular the correlation between genetic markers due to LD has to
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be handled carefully. In the theory of linear models, there are three standard model selection
strategies: forward selection, backward elimination or stepwise selection. As a selection criterion
one can use the F-test to compare nested models (see section 2.1.2), the Akaike information
criterion (AIC) [40], the Bayesian information criterion (BIC) [41] or the Cp criterion [42]. In
the forward selection, one starts with an empty model and adds the variable that improves the
model most significantly according to the criterion. Conversely, in backward elimination one
starts with the full model and removes variables that contribute least to the model according
to the criterion. The stepwise procedure is a mixed strategy where addition and removal of
variables is performed in alternation [43].

Other model selection procedures avoid the problems of collinearity of markers by directly
penalising model complexity by parameter shrinkage, like ridge regression [44] or lasso regression
[45] (see also section 2.1.4). Several authors have proposed to use these methods for the inference
of QTL models [46, 47, 48, 49].

1.3 Genome wide association studies

Before the sequencing of the human genome, only a limited number of genes could be identified
by positional cloning and family based linkage analysis [50, 15]. Alternatively, population based
association studies of candidate genes with a case — control design were used to identify genetic
variants that alter the risk of disease. Power calculations of linkage and association analysis
showed that the required sample size for association studies to identify common genetic variants
with a allele frequency > 5% and modest effects in a genome wide screen [51] was small enough
(n > 2000) to be feasible. The so called “common disease, common variant” hypothesis [51,
52, 50] has led to the paradigm of genome wide association studies (GWAS) and the initiation
of the Hapmap project [53, 11]. Usually the experimental design of GWAS is a case — control
study. The statistical association of genetic markers and the binary outcome is most frequently
assessed using logistic regression [54] . However, also quantitative traits can be analysed in a
genome wide association study [55]. In this case the methodology to assess the presence of a
QTL close to a marker is the same as for experimental crosses (section 1.2). The genome wide
strategy [51] to identify associated loci or QTL is to apply single marker tests to all markers that
have been genotyped and correct for multiple testing using false discovery rate (FDR) methods
[56].

1.4 The BXH/HXB recombinant inbred strains

In this work we study the BXH/HXB recombinant inbred strains which are derived from a cross
of the spontaneously hypertensive rat SHR.Ola abbreviated as SHR and the brown norway rat
BN.Lx/Cub abbreviated as BN [57, 58]. SHR is a widely studied model system for human hy-
pertension and shows features of the metabolic syndrome [59, 60, 61, 62, 63] while BN represents
a normotensive control strain. The BN.Lx/Cub is a congenic strain carrying the polydactyly-
luxate syndrome which leads to malformations of the hindlimb [64]. As mentioned in section
1.2 the RI strains are generated by mating the two parental inbred strains in order to obtain
recombined F2 animals. Each of the F2 animals carries a unique combination of maternal and
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paternal genes because of the independent segregation and recombination of the homologous
chromosomes during gametogenesis in the F1 generation. Pairs of F2 animals are selected ran-
domly for inbreeding by brother sister mating for at least 20 generations. In the BXH/HXB RI
strains gender reciprocal crossing was performed which provides two sets of strains with different
sources of mitochondrial DNA and Y chromosomes. Strains designated by HXB are offsprings
of female SHR and male BN rats and vice versa for BXH.

RI strains have several advantages over single generation intercross or backcross progeny:
(1) they are homozygous across the whole genome (2) individuals of one strain are genetically
identical which allows for biological replication, (3) makes phenotyping and genotyping cumula-
tive and (4) allows to investigate different developmental stages. The phenotype data that has
been accumulated and genetically mapped spans a wide range from blood pressure parameters
[65, 66, 67], heart weight [65], lipid levels [68, 69], renal phenotypes [70] and metabolic param-
eters [62, 58]. The QTLs identified in these studies however span large chromosomal regions of
sizes up to several Mb, leaving the underlying genes and mechanisms unknown. Sections 3.1
and 3.4 will present strategies for the identification of these genes by the use of gene expression
data in genetic systems.

1.5 The F2 intercross between SHHF and SHRSP

In a study of heart failure we analysed the spontaneously hypertensive heart failure rat (SHHF) -
an inbred, genetically homogenous rat model, which mirrors the human situation of hypertension-
associated heart failure [71]. Human heart failure is an epidemiologically important disease with
> 30% mortality at one year after diagnosis [72, 73, 74]. It is a complex phenotype resulting from
an interplay of genetic and environmental risk factors. Most heart failure patients have impaired
systolic function with a reduced ejection fraction [74]. SHHF rats not only develop heart failure
late in life after high blood pressure and left ventricular hypertrophy have developed [75], but
also exhibit many of the associated transcriptional and metabolic features of the human disease
[76, 77, 78]. The model’s genetic propensity is underscored by the fact that a closely related
strain, the stroke-prone spontaneously hypertensive rat (SHRSP) does not develop heart failure
despite similarly elevated blood pressures. We conducted a co-segregation analysis in F2 hybrids
bred from SHHF and SHRSP, thus removing blood pressure and left ventricular hypertrophy
(LVH) as confounding variables which have been hindering genetic analysis in humans. In sec-
tion 3.4 we will show how an integrated analysis of physiological and gene expression data from
this F2 intercross led to the identification of a candidate gene for heart failure. Section 4.2.3
describes the identification of the cis-regulatory element and the upstream regulator of Ephx2.
In section 4.1.1 we show how a priori knowledge of functional gene sets can be used to interpret
the genetics of expression data and relate the candidate gene to the biochemical pathway it is
involved in.
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2 Statistical tools

This chapter briefly introduces common statistical concepts and methods that will be used
throughout the remainder of this thesis.

2.1 Linear models

The general linear model describes the statistical relationship between the (dependent) random
variable Y on the (independent) non-random variables x = (x1,22,...,2,)". Often Y € R and
x € RP. The linear model decomposes Y into a deterministic part and a random part

Y =080+ pix1+ -+ Bpxp + € (2.1)

with the unknown parameters 3 = (81, B2, . . ., p)’ from the parameter space g and the random
error ¢ which has mean zero. In the general form, no assumption about the distribution of € is
made.

In order to estimate the parameters of this population model we need to obtain observations
of populations represented by the model. If we observe a sample {(y;,x;),i = 1...n} of size n
we can write down the sample model as a set of n equations in matrix notation

Y = XpB+¢€E(e) =0,cov(e) = X. (2.2)

which defines the general linear sample model [79].
Here we consider a subset of linear models where we assume that the error terms ¢; are
independent and identically distributed (iid)

e ~N(pn=0,10?),0% unknown (2.3)

with mean zero and the same unknown variance o2. I denotes the identity matrix.

2.1.1 Estimation of parameters

The unknown parameters 3, o are estimated by the method of maximum likelihood. Since Y is
distributed NV (X3, Io?) the likelihood function is

Ly - XBY(y - XB)). (2.4)

o2

1 n
L(B,0%y,X) = (W) /% exp(

We log transform equation 2.4 and obtain the partial derivates

o Ly

55 osL(B,0°ly. X) = S(X'y+X'B) (2.5)
0 1 ,

502 108L(B.°ly. X) = —%5 4 oy~ XB)(y - XB). (2.6)

11
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The maximum likelihood estimates ,@ and 62 of B and o2 are found by setting the partial
derivatives to zero

B = (X'X)'X'y (2.7)
52 = %y’(I—X(X’X)’lX’)y. (2.8)

2.1.2 Hypothesis testing

Using the estimated parameters and the assumptions about the distribution of the error terms
one can derive hypothesis tests about the parameters 3. Here we are interested in the hypothesis
Hj that 3 is constrained to a subspace w of the parameter space €2

Q = {(8,0°)B €R”, 0% >0} (2.9)
w = {(B,0%)|BER,0*>0,18=1}. (2.10)

where a certain linear combination of 3 is constant. We note that this is a special case of the
more general hypothesis of H3 = h. The two parameter spaces define nested models where
the model with parameter space w is a special case of the model with parameter space 2. The
general form of hypothesis testing in nested models is to test the reduced model I'3 = Iy versus
the full model using the generalised likelihood ratio test [79]. Assuming that the error terms
e ~ N (0,0) are independent and have the same variance o the test statistic

_ (VB —1p)*
" S ) =
with
B=(X'X)"'X"y, (2.12)
6= ipy'([ - X(X'X)"1X")y (2.13)

follows an F distribution with 1 and (n — p) degrees of freedom. Therefore the hypothesis H
that '3 = Iy is rejected at significance level « if F' is larger than the 1 — o quantile of the F
distribution with 1 and (n — p) degrees of freedom.

2.1.3 The multiple linear regression model

As stated above, the general linear model assumes that the independent variables x are fixed
non-random variables. In most real world problems, this assumption does not hold true and the
independent variables are also random. The multiple linear regression model extends the general
linear model to account for random effects in the independent variables [79]. The fixed variables
x of length p are replaced by the random variables x. The multiple linear regression model
assumes a joint distribution of the p + 1 random vector (};) Then the conditional expectation
of Y is modelled as a linear function of x:

E(Y[x) = pny (x) = xB- (2.14)
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The multiple linear regression model is specified by
Y = py (x) + 6, E(e) = 0,var(Y) = o°. (2.15)

If the joint distribution of (Y) is assumed to be a (p + 1)-variate normal distribution or the
conditional distribution of (Y|x) is assumed to be normal, the estimation of parameters and
testing of hypothesis described for the general linear model can also be applied to the multiple
linear regression model [79].

2.1.4 Model selection via lasso

In genome-wide studies the number of variables p measured for each individual is very large,
often exceeding the sample size n. Therefore methods to select the relevant variables x; to model
the dependent variable Y are needed. For linear models there are a range of model selection
methods like forward, backward and stepwise selection or coefficient shrinkage methods like ridge
regression [44] or the lasso [45]. Both ridge regression as well as the lasso method are based on
penalising the regression coefficients and therefore lead to models with fewer 3; # 0 which is
desirable for QTL models and has been used for genetic mapping [46, 47, 48, 49]. We are using
lasso regression, since its solutions tend to be more sparse than ridge regression [80]. The lasso
estimate for a centred matrix X is defined as
~lasso .

arggnn y— X3 (2.16)

subject to 81 < \.

This penalises the Li-norm of 3 whereas the ridge regression would penalise the Lo-norm. If A

is larger than the Li-norm of the least squares solution EILS, the lasso solution is identical to
the least squares solution. The solution of the constrained minimisation problem can be found
by introducing Lagrange multipliers and solving the Lagrangian.

What remains open is the choice of a good shrinkage parameter A. Toward that end cross
validation [80] can be used to estimate the prediction errors for a range of possible A values and
select the one with the lowest error estimate. Hastie et al. propose to use the most parsimonious
model within one standard cross validation error of the minimum [80].

2.2 Functional enrichment analysis

Many biological high throughput experiments such as differential gene expression analysis using
DNA microarrays (section 3.2) but also expression QTL studies result in ranked lists of genes.
Interpretation of these list is facilitated by functional annotation of genes. The most comprehen-
sive such annotation is the gene ontology (GO) [81]. Other sources of functional annotation are
more specific such as the Kyoto Encyclopedia of genes and genomes (Kegg) [82] which focuses
mainly on metabolic pathways. Since many biological processes involve not only single genes
but whole pathways (e.g. signalling cascades) the remainder of this section discusses how results
of high throughput experiments can be analysed in terms of sets of functionally related genes.
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2.2.1 Exact test on a contingency table

The most commonly used functional enrichment analysis [83] is based on the comparison of two
sets [84]. One set is derived from the experiment, e.g. significantly differentially expressed genes
from a microarray experiment represented by the binary random variable D which is one if the
gene is differentially expressed. The other is given by the functional annotation represented by
the random variable S. The two sets are cross tabulated in a contingency table:

differential (D = 1) non-differential (D = 0) | total

in gene set (S =1) ni1 12 niy

not in gene set (S = 0) n91 n99 Noy
total n4q N2 n

In order to establish a functional enrichment we need to assess whether the set of differen-
tially expressed genes contains more genes from the given functional gene set than expected
by chance. Intuitively, one would ask whether the proportion of differentially expressed genes
in the set ni1/n14+ is significantly different from the background ratio ng;/nei? To formalise
this question assume that the genes are sampled form a bivariate population with the joint
distribution P(D, S). The question is rephrased to whether D and S are independent

1 1
Hy:P(D=i,8=j)=> P(D=i,5=5)]> PD=dS=j),¥,je{0,1} (2.17)
s=0 d=0

For large sample sizes this hypothesis can be assessed using Pearson’s x? test on contingency
tables [85]. The test statistic is defined as

2 _ (nij = nigny;/n)*
Poyy o1
i

NitNj4/n

and follows a x2-distribution with two degrees of freedom in our example. In the more general
case with r and ¢ categories in each variable the degrees of freedom are defined by (r—1)(c—1).

For small sample sizes Fisher’s exact test which conditions on the marginal counts is used
[85]. In the special case of a 2 x 2 table it is equivalent to the hypergeometric test:

o) Ca)
ni1 na1

(o)

Hy is rejected with significance level o if P(x > nqp) =)
version is the most commonly used enrichment test.

P(n11) = (2.19)

e>ny; P(x) < . This small sample size
2.2.2 Gene set enrichment analysis

The major drawback of the contingency table approach is that the result of the biological
experiment has to be discretised into two sets. In the analysis of differential gene expression this
is mostly achieved by setting a threshold on the significance of differential expression. Usually
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the threshold is set very stringently to account for the multiple testing of thousands of genes.
Biologically however, it is of interest to detect small but consistent changes in functionally related
gene sets. More specifically one is interested to find a gene set S that contains genes that are
more often differentially expressed than the rest of the genome or to reject the hypothesis

Hj : genes € S are as often differentially expressed as genes ¢ S. (2.20)

In order to detect such events a method called Gene set enrichment analysis (GSEA) has
been proposed [86]. The input to GSEA is a ranked list L of genes obtained by evaluating
the experiment on a single gene level. This information is aggregated on the level of a priori
defined gene sets by defining an enrichment score (ES). The ES of set S is the maximum of
a weighted running sum along L which is increased whenever a gene from S is encountered
and decreased otherwise. The weighting depends on the degree of differential expression. The
ES is a weighted version of a Kolmogorov-Smirnov-like statistic. The significance of the ES
is determined by a permutation procedure that randomises the outcome variable which was
initially used to determine differential expression.

2.2.3 Extensions to gene set enrichment analysis

Various extensions to the original GSEA method have been proposed [87, 88, 89] and reviewed
[90, 91]. These methods can be classified according to the null hypotheses they are testing, the
statistics they are using, whether they are global tests e.g. [89] or they aggregate the single gene
statistics and the way that significance is assessed.

Alternative null-hypotheses
The different possible null-hypotheses are discussed at length in [90, 91]. A brief summary is
given here.

Q1 : genes € S are as often differentially expressed as genes ¢ S. (2.21)

Q1 is called the “competitive null hypothesis” and corresponds to the null hypothesis of the
original GSEA method. It compares the differential expression of genes in the set S against all
other genes. Note that the sampling unit for J; are the genes and single gene statistics are
fixed. On these grounds, the GSEA approach has been criticised [90] because it tests @)1 but
the sampling in the permutations is done on the individuals.

@2 : no gene € S is differentially expressed. (2.22)

In contrast, the so called “self-contained null hypothesis” ()2 only considers genes within the set.
It assesses the differential expression of the genes in .S compared to random outcome vectors.
So the sampling unit here are the individuals and gene set membership is fixed.

Qs : FDR estimates for genes € S are the same as estimates for all genes. (2.23)

Q3 is called the “nested null hypothesis” because it compares differential expression of genes in
S to the differential expression of all genes both inside and outside of S [92, 91] .
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Alternative test statistics

Of the many alternative test statistics we only discuss [87] and [93] that have been used in this
work. Tian et al. have proposed a method to assess null hypothesis Q2 [87] . In a scenario where
the outcome variable is a binary classification the single gene statistic is defined as the t-score.
In order to aggregate single gene statistics on the level of the set S the average is used. Since the
sampling unit are the individuals, significance is based on permutations of the outcome variable.
An alternative to the GSEA statistic for the test of ()1 has been suggested by [93]. In order to
test the difference of the distributions of single gene statistics within the set S and outside of
the set they propose to use the Wilcoxon rank sum test. Since we have applied this statistic in
section 4.3.8 we will define it here.

Suppose that a sample of IV observations is ranked according to a measure of association with
an experimental condition. Let (ri,79,...,7y) denote the ranks of the observations. Suppose
we have two groups, say the funcionally related gene set S consisting of n; genes and the rest
of the genome S consisting of ny = N — ny genes. Two equivalent test statistics, the Wilcoxon
rank sum and the Mann-Whitney statistic are computed as follows

W= > (2.24)
€S
U = W—ni(n+1)/2. (2.25)

For large sample sizes the distribution of U can be approximated by a normal distribution with

wy = and oy = %;nﬁl) Note that W has the same variance and a shifted mean

pw = pu +ni(n +1)/2.

ninz
2

Accomodating confounding factors

In some situations other properties of a gene may coincide with its assignment to a functional
set. If this property is also correlated with the experimental properties measured it might lead
to false positive functional enrichment. As an example we consider an application in genetic
studies where the sets of genes will be expanded to sets of SNPs which occur in (or around) the
genes of a gene set. In these studies the association of a SNP to a disease is the experimental
evidence used for the functional enrichment test. Minor allele frequency (MAF) could be a
confounding property as common SNPs with higher MAF tend to be more often associated in
GWAS. Therefore, if the set contains more SNPs with a higher MAF than the background set
it might be that the observed functional enrichment is due to this selection bias.

Inverse probability weighting using propensity scores is a way to account for this selection
bias [94, 95]. Propensity scores represent the conditional probability of a gene being selected in
the set given other covariates, in this case MAF. Let Z = 1 if a gene is element of the set S
and Z = 0 otherwise and let « denote the covariates potentially biasing the selection. Then the
propensity score is defined as

e(z) =P(Z = 1|z). (2.26)

For discrete x the propensity scores can be found easily by counting. Continuous x either have to
be modelled e.g. using logistic regression or discretised. In our application we chose to discretise
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the MAF into bins of width 0.05. These propensity scores are then applied to the ranks used in
the Wilcoxon test. In order to apply weights to each item Eq.2.24 is expressed equivalently as

W=> ") 16 <j). (2.27)

€8 jel

Finally the weights are incorporated to obtain

W=>" e(a) tela;) i < j). (2.28)

€S jeS

The distribution of W is still asymptotically normal with mean and variance given in [96].

A second source of confounding can be introduced when using different experimental platforms
to measure the association of each gene. For instance several different cohorts that are usually
genotyped on different SNP arrays are combined to obtain SNP genotypes for a meta analysis.
This situation amounts to the combination of independent experiments into a single Wilcoxon
statistic described in [97, 98]. The combined statistic W* of K independent experiments with
groups of sizes ng; and ngo(k = 1...K) is a linear combination of the statistics of the K
experiments

K
W =" Wi (2.29)
k=1

It has been shown [97] that the weights ¢z = (ng1 + g2 + 1)! yields the highest efficiency
of the test. For large sample sizes the distribution of W* can be approximated by a normal

distribution with
K

1 1
P = ; . and 0‘2,[,* = 1o kU1 k2 (2.30)
Let C} be the set of SNPs typed on platform k&, then Eq.2.28 is plugged into Eq.2.29 in order
to obtain the final adjusted test statistic

K
W= Yo D elw) te(a;) 6 < ), (2.31)

k=1 i€SNCyk jeSNC),

with ¢, = (]S N Ck| + [CL\S| + 1)L

2.2.4 The iterated hypergeometric test

Functional enrichment analysis as presented above is based on the comparison of a fixed set
of functionally related genes either to (1) another fixed set derived from an experiment or (2)
a quantitative ranking of genes derived from an experiment. Sometimes also the notion of
functional relatedness can be made quantitative, for instance by computing transcription factor
(TF) binding affinities to promoters of genes [99] to define potentially co-regulated genes. In
this case two ranked lists of genes are compared. Let E denote the ranking of genes according to
the experiment and F' denote the ranking accoring to a functional definition. In order to show
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enrichment of targets of a certain TF among the genes responding to a certain experiment the
null hypothesis
Q4 : E and F are independent (2.32)

has to be rejected.

The iterated hypergeometric test [99] is a procedure to assess Q4. As the name suggests it is
based on the exact test discussed in section 2.2.1. In contrast to the exact test the thresholds
tp and tp are not fixed to define sets from the ranked lists £ and F. Instead a (restricted)
exhaustive search for the optimal thresholds ¢7, and t% is conduted. The objective function
of this optimisation is the significance of the exact test based on the two sets defined by tg
and tp. The restriction to the exhaustive search with maximum ranks is necessary because
otherwise results tend to become unspecific [100]. Significance of the optimised result is obtained
empirically by running the optimisation on 10% randomly permuted ranked lists. In addition
to the statement about ()4 the iterated hypergeometric test also yields the optimal thresholds
which can be used to actually define two sets and more importantly their intersection - the
experimentally and functionally related genes.
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3.1 Gene expression as quantitative trait

A common feature of LD based genetic mapping — whether QTLs in animal models or human
GWAS — is that it merely identifies tagging genetic variants and generally not the functional
variants that are sought. Functional DNA variation can have two major types of consequences.
Fither a variation is coding or regulatory. Best understood are coding variations as they affect
the sequence of protein coding genes leading to amino acid exchanges, premature stop codons
or splice defects resulting in non-functional proteins. Less well studied variations could affect
non-coding genes e.g. for microRNAs. Regulatory variations comprise variations in the proximal
promoters and enhancer elements. Additionally, DNA variations that affect epigenetic factors
such as histone positioning or histone modifications fall into this category. Sometimes variations
could also be of both types; i.e. coding variations in a protein that lead to a feedback regulation
of that gene or adaptive regulation of other genes.

Since protein coding genes only represent a small fraction of the genome (e.g. 1.2% in humans
[101]) most variations are expected in the non-coding part where regulatory elements reside [19].
Although the exact molecular mechanism of regulatory variations might not be solved immedi-
ately, the consequences are visible as changes of gene expression levels. With the availability of
DNA microarrays (see section 3.2) it became possible to characterise subjects of a genetic study
not only for their genetic variation on the DNA level but also for their variation of genome wide
gene expression levels. Thus combining genetic mapping with global gene expression profiling
provides a strategy to identify genes whose transcript levels are affected by regulatory variations
[35]. In this combination gene expression levels are treated as intermediate phenotypes and
subjected to standard QTL mapping methodology described in section 1.2. Loci that affect the
expression levels of a transcript are called expression quantitative trait loci (eQTL). Pioneering
studies undertaken in yeast [102], maize, mouse and human [103] as well as rat [104] identified
thousands of genes whose expression was associated to eQTLs. Though the eQTL approach is
relatively new, it is worth of note that the landmark work of Jacob and Monod [105] on the
lac-operon can be considered the first study of the genetics of gene expression — of course not
on a genome-wide scale.

In the following the underlying data generating technology of DNA microarrays will be de-
scribed, together with the implications for normalisation and data analysis. Then we will de-
scribe in detail the data for and steps of the eQTL analysis that we have performed in the
BXH/HXB RI strains. The chapter concludes with a presentation of a strategy to identify posi-
tional candidate disease genes by integrated analysis of physiological and eQTL data which was
applied in two case studies.
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3.2 Measuring gene expression with microarrays

3.2.1 Gene expression microarrays

DNA microarrays are a technology that enables to quantify the expression levels of thousands
of genes simultaneously. These arrays consist of small solid surfaces that carries DNA fragments
called probes that are specifically hybridising to the complementary target mRNA sequences
of known genes. Meanwhile there exist a variety of different technologies to manufacture these
arrays [106, 107, 108, 109]. The gene expression data presented in this thesis have been generated
using the Affymetrix Genechip technology [110] and the Illumina BeadChip technology [111].

Affymetrix synthesises short (25bp) oligonucleotide probe sequences directly on a silicone
surface using a photolithographic technique [112]. Because of their short length, these oligonu-
cleotide probes exhibit a certain degree of cross-hybridisation with unspecific target sequences.
Therefore genes are represented by 11 probes summarised in a probe set. Additionally the arrays
contain for each probe a mismatch probe, where the central base is exchanged. These can be
used to estimate the level of cross hybridisation.

The Illumina BeadChip has longer (50bp) probe sequences that are attached to beads. Each
probe sequence is attached to 15 beads on average. These beads also contain address tag
sequences. They are distributed randomly on a microwell plate where they self-assemble. Hy-
bridisation to the address tags is used to map the positions of the probes.

In both technologies, biotin labeled cRNA from one sample is then hybridised to one array.
After washing off the excess only stably hybridised RNA is left on the array and can be stained
with a fluorescent labeled biotin antibody. Finally the arrays are scanned with a confocal laser
microscope which records the signal intensities for each position. In an image analysis step,
the intensities are summarised for each probe location. This data is then stored in the “.cel”
file format. Together with the array design information gene level expression summaries can be
computed.

3.2.2 Normalisation

Direct comparison of raw intensity values can be misleading because of non-biological variation
which affects all genes systematically. Reasons for non-biological variation include difference in
the amount of total RNA hybridised in each sample, difference in labelling efficiency or general
settings of the laser scanner. For a more exhaustive discussion see [113]. Therefore the data has
to be normalised before the analysis.

A plethora of normalisation methods has been proposed for microarray analysis. A systematic
overview and comparison showed that quantile normalisation yielded the best results [114]. This
led to the development of the RMA-algorithm [115] which consists of (1) background correction,
(2) quantile normalisation and (3) aggregation of probe signals of a probe set. This method was
used in our analyses and will be presented briefly.

For the background correction, the perfect match signal for probe set n, array i and probe
J is modeled as PM;j, = bg;jn + S;ijn, a mixture of background bg;;, and real signal s;;,. It is
assumed that signals are following an exponential distribution while the background distribution
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is normal, for each array. The background corrected intensities are defined as

Background corrected intensity values are then used for quantile normalisation. The under-
lying assumption and also objective of the quantile normalisation method is that the overall
distributions of gene expression levels should be the same for all arrays. Quantile normalisation
is motivated by the Q — @ plot. If two distributions are equal, then their quantiles are equal,
therefore all points in the @@ — @ plot are lying on the diagonal. This idea can be extended
to compare more than two distributions. When n distributions are equal, the points lie on the
diagonal line given by the unit vector d = (ﬁ, ﬁ, cel ﬁ) For arrays with p probes, let
ax = (qk1,---,qkn) for k = 1...p be the kth quantiles of array n. The following projection of
the quantiles qx onto the diagonal d

_ 1 1 &
proj(ak) = (- > ris- - - > ki) (32)
i=1 i=1

implies a simple algorithm that computes quantiles for each array, averages them and substitutes
the original values by these averages. Given a (p X n)-matrix X of expression values of p probes
and n arrays:

1. sort columns of X
2. substitute the values in the rows by the row average
3. arrange the columns of X back to their original order

In order to obtain summaries on the level of probe sets, the background corrected, normalised
and logy transformed PM intensities Y are described by a linear model

Yijn = Win + Qjn + €ijn (3.3)

with «aj, being a probe specific affinity, pu;, the log scale expression level on array ¢ and €;;,
an i.i.d. error with mean 0. The median polish method [116] is used for a robust fitting of
the model. The so called robust multi array average (RMA) defined as p;y, is used as the final
expression value of the probe set. Figure 3.1 shows the effect of RMA normalisation on the
distribution of expression values for the left ventricle data set of the BXH/HXB RI strains.

In the study of rat expression QTLs we encountered an additional caveat. The data was
produced in batches tissue by tissue. The first four batches were analysed using the array
rae230 a, which is one part of the array set 230. With advances in microarray technology, it was
possible to place all the probes of the two original arrays on a single array rat230 2.0. So later
batches were analysed using this array. For the combined analysis of all tissues we had to extract
the subset of probes, that were on the rae230 a from the data generated using the rat230 2.0.
This allowed for the joint normalisation of all tissues. We have verified that normalising only
subsets of probes gives similar results compared to the complete set of probes as demonstrated
in Figure 3.2.
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1 5 9 14 19 24 29 34 39 44 49 54 53 64 69 74 79 84 89 94 99 105 112 119 126

1 56 9 14 19 24 29 34 39 44 49 54 59 64 69 74 79 84 89 94 99 105 112 119 126

Figure 3.1: Effect of RMA normalisation on the distribution of microarray data. The

boxplots in the top panel show the 25, 50 and 75 percentiles of the logy transformed
raw intensity values for each of the 128 microarrays measured in the left ventricle

across RI strains. The whiskers indicate the 10 and 90 percentile, outliers are plotted
as circles. The bottom panel shows the distributions after RMA normalisation. Note

that if only quantile normalisation is performed the boxplots of all arrays should be
identical. The deviation of the boxplots from identity is due to the aggregation step

from probe to probe set level.
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RMA subset

RMA complete

Figure 3.2: Effect of subset extraction of microarray data. This scatterplot shows the
correlation of RMA normalised expression values using all probe sets of the array
compared to using only probe sets that are available on the rae230 a array.
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3 Expression quantitative trait loci (eQTL)

3.3 Mapping of eQTLs in the BXH/HXB RI strains

The BXH/HXB recombinant inbred strains are an excellent model system to study the genetics
of cardiovascular phenotypes as explained in section 1.4. Mapping genetic determinants of
gene expression can lead to the identification of functional mechanisms that underlie phenotypic
diversity as discussed in section 3.1. A complete eQTL analysis of seven tissues in the BXH/HXB
is described in the remainder of this section. The link between genotype, gene expression and
phenotype is described in the following section 3.4 where eQTL strategies for heart failure and
hypertension are presented.

3.3.1 Construction of a high density SNP map

The genetic map constitutes the basis of all genetic studies including the study of expression
QTL. In order to construct a high density genetic map from single nucleotide polymorphisms
(SNP) markers we have used data generated in the context of a large scale effort by the STAR
consortium [1]. Accurate and complete genotypes for a subset of 20,238 SNPs across 167 distinct
inbred rat strains, two rat recombinant inbred (RI) panels, and an F2-intercross were obtained
in this project.

For the construction of the genetic map we have used the two independent panels of re-
combinant inbred (RI) strains derived from SHR and BN-Lx rats (BXH/HXB, see section 1.4)
(n = 31), and from F344/Stm and LE/Stm rats (FXLE-LEXF) (n = 33), and 89 progeny of a
F2 cross between BN /Par and GK/Ox rats (GKxBN) where 9,691 SNPs were typed in.

Genetic mapping in this cross and both panels of RI strains was performed using the R and
R/QTL software packages [117, 118] integrating SNP genotype and physical map data resulting
in 16,543 SNPs mapped. Data were initially filtered to remove markers containing genotyping
errors (e.g. absence of segregation in the cohort despite apparent allele variation in the parental
strains or over 10% of heterozygous genotypes in the RI strains) and blocks of adjacent SNPs
with identical segregation patterns were collapsed into strain distribution patterns (SDPs). We
have systematically removed markers that generated suspiciously large map distances, using
criteria derived from the approximately linear relationship of genetic and physical distances.
The criterion to call an interval suspicious was obtained from a linear model. It is defined by a
user-specified intercept that is the minimal genetic distance at which distances are considered
for removal and a slope that is computed chromosome-wise from the data. We set this threshold
to 3cM. In order to determine the slope, an initial genetic map is estimated for all markers using
the order defined by the physical map. Then all map distances greater than the 95% quantile
are removed and the model is fitted. For each chromosome we performed the following steps: (1)
compute the initial map based on the physical order of markers (2) estimate the linear model (3)
while the size of the genetic map is reduced, evaluate the size of the genetic map when removing
candidate markers and select the marker leading to the minimal map size.

Details of the typed markers and mapped positions are given in supplementary Table 4 of
[1] and http://www.snp-star.eu. Strong evidence of discrepancies between the genetic map
and the draft genome assembly were found (Figure 3.3). In particular, genetic mapping in all
three panels identified a pll-centromeric segment of chromosome 1, which has been wrongly
assembled in the pl4-telomeric region of chromosome 17. Genetic mapping data suggest further
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3.3 Mapping of eQTLs in the BXH/HXB RI strains

additional intra- and inter-chromosomal relocations in regions of chromosomes 2, 4, 11, 12,
14, 17. Known conflicts between rat genome assemblies, provided by BCM and Celera http:
//rgd.mcw.edu/gbreport/gbrowser_error_conflicts.shtml, indicate the relocation in the
pl4 region of chromosome 17 supporting the Celera assembly, and one conflict on chromosome
9 is resolved favouring the BCM assembly (not shown). The other conflicting mapping results
require further independent verifications.

When we set out to construct a genetic map for the X chromosome based on the physical
order of markers we detected several unlinked markers which rendered the mapping impossible.
In-depth investigation of these linkage breaks revealed that they occur on contig boundaries
(supplementary Table 5 of [1]). We rearranged the fragments of the chromosome resulting from
splitting the contigs that were not linked (LOD < 2) in the order that generates the smallest
average recombination fraction in the three populations. Using the resulting marker positions
we constructed three genetic maps summarised in supplementary Table 4 of [1].

The genetic maps that were generated from RI panels and an F2 cross show that the draft
genome sequence is largely correct, but did also reveal several regions that need further investi-
gation. And for the purpose of this study, we provided a high-resolution map of the contribution
of ancestral genomic segments for every individual strain in the BXH/HXB recombinant inbred
panel.

3.3.2 Gene expression data

Expression data for eQTL analysis has been generated for seven tissues: adrenal gland, aorta,
fat, kidney, left ventricle, liver and skeletal muscle using Affymetrix RAE230A and RAE230_-2.0
arrays. Data from fat, kidney and heart have been described in [104, 119]. Data of the remaining
tissues has been published in [3]. For each of the SHR and BN parental strains and the 30 RI
strains 4-5 biological replicates were profiled. Altogether 907 expression arrays were analysed.
Data was normalised using the RMA algorithm [120] (see section 3.2.2) with background correc-
tion, quantile normalisation and logs transformation together for each set of microarrays profiled
in each tissue. For each transcript and within the replicates of one strain, we removed outliers
from the expression data using the Nalimov outlier test, as previously described [104, 119]. All
expression data are accessible via ArrayExpress.

3.3.3 Expression QTL mapping

We have used the genetic map of the BXH/HXB RI strains [104] generated in a large scale effort
by the STAR consortium [1] described in section 3.3.1. This map was derived from around
13,000 polymorphic SNP markers leading to ~ 1,400 unique strain distribution patterns (SDP)
for the genetic analysis. The expression values of each probeset were averaged over the biological
replicates of each strain and subjected to genetic mapping using the QTL reaper software [121].

This software implements the marker regression method proposed by [34] which is explained in
section 1.2. Multiple testing of a single transcript against all genetic markers is accounted for by
a permutation strategy to calculate genome-wide corrected P-values (Pgyw ) for each transcript.
During the permutations the empirical significance of the genome-wide maximum of the LRS
score of each transcript is established. The same empirical null distribution is used to assign
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Figure 3.3: Identified discrepancies between rat genome assembly and genetic maps.
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Rearrangement of the physical map according to genetic mapping information. Data
from each cohort are colour coded (red: FXLE-LEXF, green: HXB-BXH, blue:
GKxBN). Black lines: all crosses support this rearrangement; lime green: HXB-
BXH and F2 cross support this rearrangement. Orange lines indicate unresolved
genomic conflicts. The outer circle marks positions of informative SNPs for each
cohort. Arrows indicate the relocation of SNP markers that had extreme genetic
distances compared to their physical distance from adjacent markers. Markers were
relocated according to minimal recombination fraction. Conflicts in the genetic map

are marked by bars in the inner circle.



3.3 Mapping of eQTLs in the BXH/HXB RI strains

P-values to pairs of markers and transcripts that were not at the genome-wide maximum. Here
we used 1 million permutations to assess genome-wide significance of the eQTLs.

The above procedure corrects for the number of markers tested for each transcript, however
we have tested all 30.000 transcripts on the microarray. Therefore we have to apply a second
multiple testing correction. Since the empirical P-values are based on the maximum of the
genome-wide LR.S score, we have used the corresponding P-values of all transcripts in order to
estimate the false discovery rate using Storey’s g-values [56] as described in [104].

Genetic mapping of gene expression phenotypes also allows for a broad classification of the
mode of regulation. If the genetic marker that affects gene expression of a transcript is in close
vicinity of that transcript, it is very likely that the marker is a proxy for a variation in a cis-
regulatory element. Conversely, we have evidence for trans-regulation if the marker is located
distal from the transcript or even on a different chromosome. Following [104] we define regions
of 10 Mb around the transcripts as cis-regulatory, while other regions are trans-regulatory.

cis/trans ratio
3
|

T T T T T T
1le-06 le-05 le-04 0.001 0.01 0.05

P-value threshold

Figure 3.4: Ratio of the number of cis / trans-eQTLs as a function of genome wide
significance.

Table 3.1 summarises the numbers of significant cis and trans eQTLs found in each of the
seven tissues. Fat, kidney and adrenal gland have been profiled on the smaller rae230 a chip
which contains only half the number of probe sets compared to rat230 2. This difference is
also apparent in the total number of transcripts under genetic control that were detected. Fat
and adrenal gland have less genetically regulated transcripts than kidney, whereas kidney has
approximately half as many eQTL transcripts as the other four tissues profiled on the rat230 2
microarray.
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Table 3.1: Number of significant eqtls in the HXB RI panel for varying P-value thresholds.

tissue P-value g¢-value cis trans unknown total transcripts markers
adr 0.05 0.42 483 827 377 1687 1559 714
adr 0.01 0.18 344 239 158 741 724 424
adr 0.001 0.03 219 64 79 362 360 228
adr le-04 6.2¢-03 133 36 42 211 210 144
adr le-05 1.2e-03 76 19 19 114 114 79
adr 1le-06 3.7e-04 22 7 7 36 36 26
aorta 0.05 0.32 1002 1692 1367 4061 3737 980
aorta 0.01 0.14 732 488 718 1938 1888 719
aorta 0.001 0.029 496 169 407 1072 1066 496
aorta le-04 5.3e-03 327 93 288 708 707 365
aorta le-05 9.8e-04 184 64 173 421 421 256
aorta le-06 1.9e-04 97 34 99 230 230 161
fat 0.05 0.41 464 858 336 1658 1543 667
fat 0.01 0.18 341 236 136 713 696 390
fat 0.001 0.037 218 60 71 349 348 226
fat le-04 6.4e-03 125 30 46 201 201 140
fat le-05 1.6e-03 50 15 19 84 84 57
fat 1le-06 3.8e-04 17 7 9 33 33 28
kdn 0.05 0.20 695 1070 492 2257 2077 755
kdn 0.01 0.086 497 298 220 1015 973 532
kdn 0.001 0.016 330 86 100 516 512 333
kdn le-04 2.9e-03 193 39 58 290 290 198
kdn le-05 5.1e-04 110 20 34 164 164 118
kdn 1le-06 1.3e-04 40 8 13 61 61 50
liver 0.05 0.31 1346 1902 1524 4772 4296 1052
liver 0.01 0.13 1012 565 738 2315 2227 812
liver 0.001 0.026 688 193 429 1310 1295 578
liver le-04 4.6e-03 444 107 263 814 812 428
liver le-05 9.8e-04 263 60 155 478 478 284
liver 1le-06 1.9e-04 125 31 80 236 236 169
lv 0.05 0.26 1059 1811 1297 4167 3863 1030

v 0.01 0.11 767 540 618 1925 1860 736

lv 0.001 0.021 494 151 321 966 957 475

v le-04 3.5e-03 313 71 190 574 574 327

lv le-05 6.8e-04 165 35 94 294 294 185

v 1le-06  2.2e-04 53 12 27 92 92 71
skm 0.05 0.20 1308 2612 1718 5638 4922 1065
skm 0.01 0.073 992 905 869 2766 2632 820
skm 0.001 0.013 681 312 515 1508 1497 604
skm le-04 2.1e-03 438 134 332 904 902 434
skm le-05 3.4e-04 276 70 190 536 536 298
skm 1le-06 9.7e-05 100 24 70 194 194 140
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3.3 Mapping of eQTLs in the BXH/HXB RI strains

In keeping with previous studies [122, 103, 123, 124] we have observed genetic markers that
are associated with a large number of transcripts. We term these markers together with the
set of transcripts trans-clusters. As previously noted the strength of association of trans-linked
transcripts is much lower than that of cis-linked transcripts [103, 104, 125]. This relation
is visualised in Figure 3.4. For the analysis of trans-clusters the thresholds on genome wide
corrected P-values are usually not stringently corrected because not individual eQTLs but the
clustering pattern in the genome is highly significant [103]. Figure 3.5 shows the size distribution
of trans-clusters across the seven tissues. Large trans clusters with more than 50 transcripts
(with Pgw < 0.05) can be observed in all seven tissues. Adrenal gland, fat and kidney only have
one such trans cluster each, whereas they are more abundant in other tissues (Table 3.2). The
maximum size of trans clusters also varies across tissues (Table 3.2) with a very large cluster of
645 transcripts in skeletal muscle.
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Table 3.2: Overview of large trans clusters in the BXH/HXB RI strains.
adr aorta fat kdn lv liver skm
nr of trans clusters > 50 1 10 1 1 10 8 23
maximum size 85 291 81 95 215 102 645
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Figure 3.5: Size distribution of trans clusters in the BXH/HXB RI strains. We have
counted the number of markers that are associated with at least 5 transcripts at
two different thresholds of significance Pow < 0.05 (left) and Pgw < 0.01 (right).
Tissues are encoded by different shades of Gray (adr: adrenal gland, aorta:aorta,
fat: peritoneal fat, kdn: kidney, liver: liver, lv: left ventricle, skm: skeletal muscle).
The difference in the number of probe sets profiled for each tissue is also affecting
the number of trans clusters identified.

3.4 Integrated analysis of eQTLs and physiological data

There are two principal genetic strategies to identify genes for phenotypic traits. The classical
forward genetic strategy is based on genetic mapping in a segregating population (see section
1.2). Ideally fine mapping with ever more markers and increasing sample sizes leads to small
linkage intervals containing only one gene. This strategy works well for mendelian traits [126,
127] but is rather time consuming and has not led to many results for complex traits [128]. The
reverse genetic strategy investigates the relation of genes and traits by targeted perturbation of
candidate genes in an experimental system. This allows to study the direct effect of the gene on
the trait but requires the identification of a candidate gene first.

Combining the forward and reverse genetic strategy can speed up the identification of disease
genes significantly. In particular when gene expression and physiological traits are integrated in
the forward genetic strategy [128, 129, 2, 119, 130].

The knowledge about the expression of a gene represents the first step into a functional
investigation (functional genomics was a term coined for microarray analysis). Gene expression
studies have shown that correlation between physiological phenotypes and gene expression can
be used to identify disease genes [131, 132]. Especially cis-regulated eQTLs represent strong
evidence for a regulatory variation in close proximity to the gene. Therefore transcripts with
cis-eQTLs that co-localise with QTLs for physiological traits and show correlation between gene
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3 Expression quantitative trait loci (eQTL)

expression and disease phenotype represent excellent candidate genes for the trait, assuming that
a regulatory variation is underlying the trait.

A common problem in microarray studies of diseases is that it is difficult to disentangle which
gene expression changes are causative for the disease and which are mere adaptations to the
disease state. In contrast, integrated genetic studies of gene expression and disease allow to
derive three simple causal scenarios when gene expression and quantitative phenotype are both
affected by the same genetic variant [129]. Either the DNA variant affects (1) gene expression
which leads to disease (causal model), (2) the disease phenotype which leads to adaptive changes
in gene expression (reactive model) or (3) both are affected independently. A method called
likelihood based causality model selection [129] has been proposed to infer the most likely of
these scenarios.

In the following, two case studies using the integrated analysis of phenotypic and gene expres-
sion data for candidate identification are presented for heart failure and blood pressure.

3.4.1 ldentification of a risk factor for heart failure

We aimed to identify gene variants associated with heart failure by using a rat model of the
human disease [2] (see also section 1.5). Using progeny from a F2 intercross of SHHF and
SHRSP we performed physiological QTL (pQTL) analysis for left ventricular ejection fraction,
the major clinical parameter used to characterise the failing heart. A locus on rat chromosome
15 centred at marker D15Rat10 showed statistically highly significant linkage (LOD = 4.3) . At
the same locus, we further demonstrated statistically significant linkage for cardiac contractility.
The SHHF allele was invariably associated with cardiac dysfunction. Grouping F2 animals
according to zygosity at D15Rat10 did not show any genotype association with blood pressure
or LVH, as determined by analysis of variance. This finding indicates that linkage to this locus
was independent of blood pressure. Our data indicate that this QTL affects heart failure in an
additive mode accounting for 15.1% of the phenotypic variance observed for the ejection fraction.

We searched for cis-regulated eQTLs, assuming that a regulatory variant changing gene ex-
pression in the left ventricle is responsible for the heart failure. Only 2 transcripts that were
differentially expressed at a false discovery rate (FDR < 5%) between the parental SHRSP and
SHHF and showed a cis-regulated eQTL (FDR < 5%) in the F2(SHHFxSHRSP) within the
region of linkage to heart failure on chromosome 15. Of the two cis-regulated transcripts, Ephz?2
showed the strongest genetic evidence for significant allele-specific regulation in the F2( SHHFx-
SHRSP ) population. The linkage peak (genome-wide corrected P < 1076, FDR < 10~%) for
the Ephz2 eQTL was at D15Rat10, the same marker that also defined the peak of the heart
failure QTL on chromosome 15 in this cross. D15Rat10 is the nearest marker to the Ephz2 gene
and is localised within 2.7 Mb distance, based on the rat genome reference sequence v3.4. This
finding suggests that the Ephz2 transcript levels are regulated in cis at the Ephz2 gene itself
and coincide with the peak of linkage to the heart failure QTL. The second cis-acting eQTL
gene in this region was Mmpl14. Even though it is located within the 95% confidence interval
encompassing the heart failure QTL, Mmp1/ is located at a distance of more than 10Mb from
the heart failure QTL peak marker D15Rat10. Strongest eQTL linkage of Mmp14 was observed
with marker D15Rat83 (genome-wide corrected P < 1073; FDR < 5%). Based on statisti-
cal significance and proximity to the heart failure peak marker we thus prioritised Ephz2 as
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candidate for further investigations.

We set out to identify potential regulatory polymorphisms and sequenced 5,000 bp upstream
of the first exon. We found three SNPs and a two-nucleotide deletion in the putative Ephz?2
promoter in SHHF as compared to SHRSP. To test whether or not the allelic promoter variants
influence Ephz2 gene expression, we performed luciferase reporter assays and compared the
variant promoters between SHHF, SHRSP, and WKY animals. We found a strong increase in
promoter activity in the SHHF compared to the SHRSP allele [2]. The findings are consistent
with the observed cis-regulated eQTL in the F2( SHHFxSHRSP ) in which the SHHF allele is
the allele that shows higher expression.

In addition we confirmed the effect of allele specific regulatory variation using allele-specific
real time PCR of cDNA from heart tissue of 10 F1( SHHFxSHRSP ) rats [2]. This experiment in
F1 animals confirmed that the expression of Ephz2 is regulated in cis and that the Ephz2STHEF
allele-specific transcript levels are significantly elevated compared to the Ephaz25HESP allele
(P=8x10712).

Using computational predictions (see also section 4.2), we identified a consensus AP-1 (acti-
vator protein 1) transcription factor binding site in the Ephz2 promoter that exactly covers the
two-nucleotide deletion in the SHHF strain. To investigate whether or not the mutated AP-1
binding site affects AP-1 binding in vitro, we performed electrophoretic mobility-shift assays
and found specific AP-1 binding to the SHHF promoter, while AP-1 binding in SHRSP was
abolished.

In the forward genetics approach we demonstrated that cis-variation at Ephz2 co-segregated
with heart failure and increased transcript expression which is a consequence of a mutation in
a transcription factor binding site. In addition the study showed co-segregation with increased
protein expression, and enzyme activity, leading to a more rapid hydrolysis of cardioprotective
epoxyeicosatrienoic acids [2]. In the backward genetic approach we confirmed our results by
testing the role of Ephz2 in heart failure using a knockout mouse model. These experiments
showed that Ephz2 gene ablation protects from pressure overload-induced heart failure and
cardiac arrhythmias [2]. In addition to the study of model systems, the findings were also trans-
lated to humans by showing differential regulation of Ephxz2 in human heart failure, suggesting
a cross-species role for Ephz2 in this complex disease [2].

3.4.2 Identification of a candidate gene for systolic blood pressure

In the second case study, we aimed to identify candidate genes for systolic blood pressure in the
rat. Previous studies have identified a QTL region for this trait on chromosome 1 which was
confirmed by different congenic strains [133, 134, 135]. Although representing less than 1% of
the genome, the region defined by genetic markers D1Rat200 and D1Rat57 is still quite large
( 50 Mb) and contains hundreds of genes that all could potentially influence the phenotype. So
we decided to follow the strategy outlined above and to focus on regulatory variation.

Since the BXH/HXB RI strains are also a model system for hypertension we used the new SNP
based genetic map (see section 3.3.1) to identify QTL for previously measured blood pressure
phenotypes [65]. Using the QTL reaper software (see section 3.3.3) we identified a novel QTL
for systolic blood pressure on chromosome 1, overlapping with the locus described above.

Our candidate identification strategy combines gene expression data from the congenic strains
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with eQTL data and physiological data from the BXH/HXB RI strains. Again, assuming a
regulatory variation, genes need to be consistently differentially expressed in the congenic strain
and form cis-eQTL in the RI stains. Additionally, their transcript levels need to be correlated
with systolic blood pressure. Genes meeting these requirements constitute priority positional
candidates.

For the expression analysis of the congenic strain microarray profiling was conducted in kidney
tissue from 5 animals of the parental strains WKY-1 and SHRSP, and the congenic line WKY-
1.SHRSP-Mtlpa/D1Rat200 using the RGU ABC chip. Amongst the differentially expressed
genes identified by ANOVA at FDR < 5%, only those that mapped to the congenic region were
considered. Further selection of candidate genes was based on a post hoc significance value of
P < 0.05 as a cutoff for changed expression in SHRSP and congenics versus WKY-1. Allele
dependent differential expression is expected to result in concordant direction of expression
change in congenics and SHRSP versus WKY-1 since SHRSP and congenics carry the same
alleles of genes in the region of interest. Therefore, concordant direction of expression change in
congenics and SHRSP versus WKY-1 was used as an additional selection criterion.

Of the 455 probe sets representing the genes located in the region of interest, only eight showed
significant differential expression of their corresponding transcripts with concordant direction of
expression change in SHRSP and congenic animals versus WKY-1 and therefore represented
potential candidate genes. When ranked according to the significance of expression changes
in congenics versus WKY-1, the greatest fold change (FC) in expression was observed for the
transcript detected by the microarray probe set rc_AI070448_at (log FFC' = —2.9, P = 0.0021).
The transcript detected by this probe set was the 297 bp ¢cDNA clone UI-R-C2-mqg-d-11-0-UI.
Aligning the clone sequence against the entire rat genome showed that it matched with the
first three exons of the gene MrpL48 and contains further sequence that aligned with intronic
sequence of MrpL48. This suggested that rc_AI070448_at detects an additional short transcript
isoform of MrpL48 (MrpL48°'°) generated by alternative splicing. It also suggests that the
variant is actually not regulatory but rather a coding variant in the gene.

Kidney gene expression data for the BXH/HXB RI strains was generated using the Rae230a
chip (see section 3.3.2). However, no probe set corresponding to the target sequence of probe set
rc_AI070448_at representing the MrpL48°"° transcript was included on this chip. Thus, qRT-
PCR with a Tagman probe complementary to the target sequence of probe set rc_AI070448_at
was conducted in kidney tissue of all 29 RI strains and MrpL48°"°" expression was genetically
mapped as well as the expression of all other genes encoded in the region defined by the genetic
markers D1Rat200 and D1Rat57.

The eQTL analysis identified 13 genes encoded in the region of interest to be significantly
cis-regulated (Pgw < 0.05) in the RI panel. The only candidate from the congenic analysis
that was among these was the MrpL48"° transcript. None of the other seven candidate genes
constituted cis-eQTLs in the RI panel (P > 0.05). The MrpL48%"" transcript was therefore
the only one from the congenic analysis that could be verified to be cis-regulated in the RI
strain panel. The peak of linkage for the MrpL48 cis-eQTL was at marker BO1P1027, which
is the closest marker to MrpL48 with a distance of 1.6 Mb. The observed cis-regulation for
MrpL48°Mrt suggested that genetic sequence variation(s) in the gene itself influence its own
expression. The expression of MrpL48*"°"™ transcript at the cis-eQTL (marker BO1P1027)
showed a bimodal distribution. Therefore we grouped the samples according to the presence
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or absence of the expression of MrpL48%"°" transcript, where the presence of this transcript
is represented by Tagman Act < 5 and absence of the transcript is represented by Tagman
Act > 5, respectively.

After determining significant cis regulation for expression of the MrpL48%"°™ transcript,
correlation of transcript levels and blood pressure parameters was carried out for each of the
candidates identified in the congenic expression analysis and for the additional genes identified
to form cis-eQTLs in the RI panel in the region of interest. The MrpL/8°h°™t transcript ex-
pression showed significant correlation (P = 0.008) with systolic blood pressure (SBP), but not
with diastolic blood pressure (DBP). No significant correlation with blood pressure parameters
was found for any of the other seven transcripts from the congenic strain expression analysis.
Two transcripts out of the 12 additionally identified cis-regulated genes in the RI panel were
significantly correlated with SBP (Dgat2: r = 0.43, P = 0.021; Ascl3: r = —0.48, P = 0.009).
However, of all cis-eQTLs in the region of interest, MrpL485"°" transcript showed the strongest
correlation (r=0.52, P=0.008).

Taken together, in two distinct models, MrpL48 scored twice as the top priority candidate
gene. Among the candidates identified by expression analysis in congenic strains, MrpL48 was
the most significantly and strongest differentially expressed gene and was the only one that
could be verified in the RI panel as cis-regulated candidate and was the strongest correlated
cis-eQTL to SBP in the RI panel. Therefore, it was prioritised for further functional analyses
[29]. Currently, the reverse genetic experiments with knockout mice for Mrpl48 are underway
in order to confirm the role of Mrpl48 in blood pressure regulation.
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4 eQTL genes in gene expression networks

Most biological processes require the coordinated action of sets of functionally related genes.
Enzymatic reactions in metabolic pathways are the most obvious example [82]. Coordinated
activity also requires coordinated expression. Following this assumption, genome wide gene
expression data can be used to reverse engineer sets of functionally related genes [136]. Con-
versely, a priori knowledge of functional gene sets can also be used to facilitate the analysis
and interpretation of gene expression data (see section 2.2). Transcription factors (TFs) are
the predominant regulators of gene expression [137]. Therefore combined analysis of gene ex-
pression data and transcription factor target predictions provides a way to connect regulatory
mechanisms to functional gene expression networks.

This chapter introduces four novel approaches to interpret eQTL data in terms of gene expres-
sion networks. First we will make use of a priori knowledge of functional gene sets to interpret
clusters of trans-eQTLs. Then we will shed light on the role of TFs for cis-regulated eQTLs
and clusters of trans-eQTLs. Finally, we show how eQTL genes can be placed into a functional
context by considering genotype induced changes of co-expression.

4.1 Extension of gene set enrichment analysis for genetic mapping

In our eQTL analysis of the BXH/HXB RI strains we have observed the existence of large trans-
clusters (section 3.3). If a common genetic regulation of gene expression implies a common
function it should be possible to detect functional enrichment of trans-clusters which would
facilitate their interpretation. Previously we used eQTLs and defined sets of genes linked to
the same locus by using a threshold on the eQTL Pgy-value. Subsequently we compared these
sets to functional categories like GO or KEGG using the exact test described in section 2.2.1.
However, for some tissues many trans-clusters do not contain enough annotated genes for this
approach. This may be due to the fact that a threshold for genome wide significance is too
stringent. It has been noted by others [103] that for most trans-clusters, the single transcripts
hardly reach genome wide significance but the pattern of clustering in the genome is non-random.

In order to circumvent this problem we used a threshold free way of computing the enrichment
of gene sets. GSEA (section 2.2.2) is a tool exactly for this purpose [86, 87, 88]. The basic idea
is to use a ranked list describing the association between gene expression and genotypes and to
assess whether the genes of a functional gene set are coherently found in the top (or bottom) of
this list. This has been shown to work well in gene expression versus phenotype settings [86].
Small, but ubiquitous changes in expression (20%) of all members of the set could be detected.
We aim to apply this method to all genetic markers in order to identify associations between
functional gene sets and genetic markers.

In order to assess the association of the gene-expression on the level of a pathway we propose a
novel method inspired by the idea of gene set enrichment analysis [86] and its extensions [87, 88].
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We test the null hypothesis Q2 that no gene of the pathway is associated to a given marker (see
section 2.2.3). Instead of using a classification of the samples according to a phenotype, as it is
usually the case in expression experiments we use a classification based on the genotype at each
of the markers. Following the notation of [88] we define a pathway-association score between
markers and pathways based on single gene statistics and a set summary statistic. Let genes,
samples, pathways and markers be indexed by ¢t = 1,...,B, 7 =1,...,n, k =1,...,K and

l=1,...,L. The incidence matrix A encodes the absence or presence of a gene in a pathway:
ail aio .. ai1p
A= z (4.1)
aK1 aK2 ... OGKB
where
1 if g; € Ch
e 4.2

and Ck is the set of genes of the k-th pathway. The association of gene expression patterns and
the genotypes at the L marker locations are summarised in the matrix

21 212 ... Z1L
Z=1": : (4.3)

apy ap2 ... apr,

where z; is the single gene statistic of association between gene expression of gene ¢ and the
genotypes at marker [. Here we use the —log;,(P) of the ANOVA test with genotypes as
grouping factor. We do not use the F-statistics directly because the degrees of freedom may
vary between markers depending on the number of genotyped individuals. The final matrix of
pathway association scores X for all pairs of markers and pathways is then simply

X = AZ/rs(A) (4.4)

where rs(A) are the row sums of A.

We chose a permutation strategy in order to assess the statistical significance of the pathway
scores while keeping the correlation structure between genetic markers intact. To compute
empirical P-values for the pathway score statistic we randomise the data by permuting the
labels of the samples thus breaking the genotype to phenotype relationship in the same way for
all markers. The test is then applied to all pairs of markers and pathways from a data base of
pathways. Finally the resulting P-values have to be corrected for multiple testing using an FDR
approach [56].

4.1.1 Linking the arachidonic acid pathway to heart failure

We have applied our approach to the eQTL data generated for an F2 intercross of SHHFx-
SHRSP (section 1.5). The integrated analysis of phenotype and expression data resulted in the
identification of the Ephz2 gene as a candidate for heart failure (section 3.4.1). Therefore the
transcriptional regulation of pathways related to the function of Ephz2 was of major interest.
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4.1 Extension of gene set enrichment analysis for genetic mapping

We focused on transcripts of the arachidonic acid metabolism that include several important
enzymatic reactions in the generation of epoxides (e.g. 14,15-EETSs) from arachidonic acid and
the enzymes that regulate arachidonic acid synthesis or beta-oxidation, according to the Ky-
oto Encyclopaedia of Genes and Genomes (KEGG). We ranked the genes from the arachidonic
acid metabolic pathway according to their association to the heart failure locus on chromosome
15. None of these genes had a genome-wide significant eQTL at this locus when correcting for
all transcripts tested. Nevertheless, we observe a concerted differential expression — in trans
to Ephx2 — of the top ranking genes with individual P < 0.1. Applying this relaxed filtering
resulted in a set of genes containing six members of the CYP superfamily and three members
of the PLA2 family that will be referred to as the Ephz2 pathway (Figure 4.1). To quantify
the small but consistent effect, we computed the gene set enrichment score for the association
of gene expression on the level of the whole pathway with a genetic marker and applied it in a
genome-scan over all genetic markers used in F2(SHHFxSHRSP). We show that the maximum
association of the Ephz2-pathway transcripts occurred at the Ephxz2 locus and the pathway
association score has genome-wide significance (P = 2.4 x 10~°). This analysis highlighted that
increased Ephz2 expression leading to a depletion of cardioprotective EETSs results in a feedback
regulation increasing the expression of the upstream pathway to compensate the EET depletion.
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Figure 4.1: Identification of regulatory trans eQTLs mapping to chromosome 15. A
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simplified overview of the Ephz2-pathway is depicted. All genes analysed with the
corresponding enzymatic function are listed in the boxes below. Each box is headed
by an enzyme classification number describing the reaction that is catalysed. For each
gene a colour code indicates the genotype specific average expression values according
to zygosity (HF/HF, HF/SP and SP/SP; from left to right) at the Ephz2 locus.
The expression matrix has been centred and scaled to ¢ = 1 prior to visualisation.
Red indicates over-expression, white baseline, and green under-expression. The CYP
genes are subdivided into two columns where the left producing predominantly EETs
and the right producing predominantly HETEs. The Ephz2 pathway has its genome-
wide pathway linkage peak at the Ephz2 locus with P = 2.4 x 1075,
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4.2 Sequence variation in transcription factor binding sites

As outlined in the introduction, most disease associated sequence variations are found in regions
that are not encoding proteins. Likely, the associated variation is not functional but tagging
an unknown functional variant near by. Since the variation is not coding it might affect gene
regulation. Section 3.1 introduced a systematic approach to detect consequences of potential
regulatory variations on the level of target gene expression. However, the mechanism that causes
the differences in gene regulation remains unknown. We shall come back to the example of the
dysregulation of a-globin which is known to cause « thalassemia. Only recently experiments
have provided first insights into possible molecular mechanisms, namely the creation of a novel
Gata-1 binding site and other hallmarks of regulatory activity in the upstream region of a-globin
[20] as visualised in Figure 4.3. Another example of a disease causing regulatory variation is
Ephz2 (section 3.4.1). It has been identified by screening for genes which show cis-acting
regulatory variations in an eQTL approach. Further sequence analysis of the putative promoter
region showed variation between the parental strains. In section 4.2.3 we will describe how
computational analysis can be used to predict that the creation of an Ap! binding site led
to the increase of expression. Promoter assays and electro mobility shift assays confirmed the
functionality of this binding site [2].

As the above example shows, computational studies can be used to prioritise SNPs and to
generate hypotheses about the regulatory mechanisms. Recent work has attempted to utilise
sequence conservation to assess the functionality of non-coding sequence variations [138]. These
authors also noted that binding signals from transcription factors do not increase the power of
regulatory SNP prediction.

Here we do not aim to predict functional or causative SNPs, but we assume that a potentially
functional SNP has already been identified by other means, such as described in the Ephz2
example. Instead we aim at a systematic approach to predict which transcription factor is
most likely to be affected by a given sequence variation. To this end we developed a combined
biophysical and statistical approach (STRAP), which can predict SNP-induced changes in the
binding affinity of a transcription factor. Importantly and owing to our statistical framework, we
are able to compare these changes for a comprehensive set of transcription factors. We validated
our approach against a set of known SNP-TF associations and find that sSTRAP correctly predicts
a large fraction of known SNP-TF associations at a small rate of false predictions. Finally we
applied our approach to identify the variants of the cis-regulatory element and the upstream
regulator of Epha2.

4.2.1 Modelling transcription factor binding site affinities
Binding Models

An increasing number of genome-wide in vivo and in wvitro studies of protein-DNA interactions
[140, 141] aim to provide a comprehensive compendium of binding models for transcription
factors under different conditions and in various species. For the purpose of this work we used a
preliminary compendium of binding models, as available from the TRANSFAC database [142].
We used information on 202 vertebrate transcription factors which is encoded by 554 position
specific weight matrices. In earlier work it has been shown how this information can be used to
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Figure 4.2: Overview of the STRAP method. Using sequence data and a comprehensive set
of transcription factor binding models as input, we predict the binding affinities of
all transcription factors (TF) to the reference sequence and its variation. Thus we
obtain, for every TF, two affinity values, which are normalised with the help of the
affinity distribution from [139]. The log-ratio of the two p-values is used to rank all
TFs according to their change in binding affinity.
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predict the site-specific binding affinities of a transcription factor using a biophysical framework
[143]. For the local binding affinities at sequence position [ we use

W0 ) = TRy e m

(4.5)
where Ro(W) = 0.6W — 6 and A = 0.7 are two parameters which were fitted in [143], and W
denotes the width of the motif. The local affinity predictions can be utilised in two different
ways.

First we consider, for each SNP and every motif matrix, the W pairs of local affinities which
are changed when comparing the reference sequence with its variation. Such a local comparison
may suggest large effects on the predicted binding affinity, even if the flanking sequence contains
additional binding sites which may buffer the effect of a sequence variation. Therefore we also
employed a second strategy in which we calculate the regional affinity, A, of a transcription factor
to a longer sequence region (i.e SNP + flanking region). This can be obtained by summing the
local binding affinities, a;, over all accessible sites. This procedure has the added benefit that,
for each SNP and every matrix, we only need to compare two numbers.

Distribution of Binding Affinities

To compare binding affinities from different transcription factors we follow the statistical frame-
work developed in [139]. There it was shown that a simple parameterisation effectively describes
the distribution of affinities for most transcription factors:

log A o< P(z|a,b,c) = exp (—[1 + axbc]l/“>. (4.6)

The three parameters of this distribution also depend on the length of the sequence region and
their value was determined in [139] for all 554 binding models from TRANSFAC [144]. While
the distribution of Eq.4.6 is based on a sequence model of known human promoters, in some
situations it might be preferable to use a different background model which captures the specific
sequence properties in the vicinity of the SNP more accurately. In those instances we calculate
the affinities of all transcription factors in a sufficiently large window around the SNP, and
estimate the empirical P-value without parameters, but based on the rank statistics obtained
from all windows in the neighbourhood of the SNP.

4.2.2 sTRAP: A framework to rank affinity changes

We use the quantitative framework for the computational prediction of transcription factor
binding sites and TF binding affinities [143] described in section 4.2.1 and the distributions of
binding affinities [139] described in section 4.2.1. Similar approaches have been studied by a
number of other groups [145, 146, 147, 148].

Here we extend this approach to annotate pairs of sequences with respect to changes in their
affinity. Just as we had previously ranked transcription factors with respect to their affinity for
a single sequence, we now rank transcription factors with respect to affinity changes induced
by sequence changes. For the purpose of this work we think of these sequence pairs as being
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derived from a reference sequence and a possible mutation. This is illustrated in Figure 4.3. In
particular we are interested in scoring the abolishment or creation of a binding site in one or
the other sequence.

Let Ax(S1) and Ax(S52) denote the binding affinities of transcription factor X to two different
sequences, S1 and S2. In the case under investigation, S1 might represent the reference sequence
while S2 will denote the variation. For simplicity we assume that both sequences have the same
length. According to Eq. 4.6 one can associate a normalised affinity (a P-value) with each
affinity and define the log-ratio

rx = logyy (Px(S1)/Px(52)) . (4.7)

Large positive values denote cases where the factor X increases its binding affinity, while for
large negative values the binding affinity is decreased with respect to the reference sequence S1.
Importantly, the ratios for different transcription factors, X, are directly comparable, because
they are based on P-values, rather than absolute affinities. In logical terms, this corresponds
to an exclusive disjunction (XOR), only that the score of Eq. 4.7 provides a more quantitative
ranking.

Since minor changes in the binding affinity may also result in a considerable difference of the
expression, one might also want to assign a high score if S1 or 52 or both show strong binding
to a transcription factor, in which case one could replace Eq. 4.7 by the minimum of px(S1)
and px(S2). However, for the purpose of this paper, we focus on the score defined in Eq. 4.7.

SNP data

In order to be able to assess the performance of our method we need a data set of known regula-
tory SNPs. While there is massive data on sequence variation from large-scale mapping efforts
[14, 149], the regulatory potential of SNPs is badly documented and only occasionally reported.
Here we study 20 known associations of regulatory SNPs with transcription factors, which were
collected by [138]. These comprise SNPs which are naturally occurring or were generated by
targeted mutagenesis. Moreover, for those SNPs the binding of selected transcription factors
was shown to be affected. For each of these SNPs we retrieve a flanking regions of 60bp, 100bp,
500bp, and 1000bp.

sTRAP predicts many known SNP-TF associations

As a first test of our method we applied sSTRAP to a list of known regulatory sequence variations
and their associated transcription factors collected by Andersen et al. [138]. For each SNP, our
method predicts a ranked list of transcription factors which is compared to the list of TFs
known to be affected by the variation. As an input list we took 554 vertebrate transcription
factor motifs from the TRANSFAC database [144]. A good method would predict known TFs
at the top of the list. Indeed, in Figure 4.4 it is shown that a large fraction of known TFs appear
top when ranked according to Eq. 4.7. We also compared this to random expectations where
all TF motifs are assigned a random rank. The deviation from random expectations is clearly
significant. Notice that the slight deviation of the random set from uniformity is due to the fact
that some TFs have multiple motifs and we always take the best rank.
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Figure 4.3: The left figure illustrates how a SNP may cause changes to the local binding affinity.
Notice that the two curves at the bottom denote the raw affinity which is plotted on
a logarithmic scale. This example is for a regulatory SNP in the SP1 promoter region
and transcription factor NFY, whose sequence logo is shown at the top. This right
figure shows a global version of the same approach where a larger window (L=60bp)
was shifted across a +3kb region around the SNP. The affinity of NFY is indeed
strongly affected as evident by the large shift of the affinity at the position of the
SNP. The surrounding sequence may serve to assess this change in the light of the
fluctuations in affinity, but for the paper we utilised a parameterisation of affinity
distribution from ref. [139].
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Figure 4.4: The sTRAP approach successfully predicts many known SNPs. For each known
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regulatory SNP and its associated transcription factor we record the rank of the
corresponding matrix according to our scoring scheme. This figure shows that many
known associations get a significantly high rank according to our scoring scheme
(Eq.4.7). In blue we show the same histogram for a set of reshuffled matrices. The
slight increase towards higher ranks is due to multiple matrices assigned to some
factors.



4.2 Sequence variation in transcription factor binding sites

sTRAP predictions are specific

While it is encouraging to see that many known associations of regulatory SNPs with their
respective transcription factors can be detected, we now investigate more carefully the rate
of false positives. Since only individual transcription factors have been tested for any given
SNPs there is a generic lack of knowledge regarding the binding affinity for other factors. For
our purposes we make the conservative assumption that all other transcription factors are not
affected by the SNP and therefore count predicted associations of untested factors as false
positives. This prescription is likely to inflate the estimated rate of false positives. In Figure
4.5 we plot the rate of true positives against the rate of false positives, when the threshold 6
is changed to call a transcription factor as affected, |rx| > 6. The area under the curve is
significantly larger than 0.5 as expected from random assignments. At a false positive rate of
15% we recover more than half of the known TF-SNP associations.

To assess the robustness of our method, we have compared the classification performance
of different parameter settings and classifiers, using the area under the ROC-plot (AUC). As
classifiers we have used different thresholds on the absolute log ratio or the minimum of the
two p-values, corresponding to the two scenarios where SNPs affect the binding strongest or
fall in strong binding sites without drastic changes of affinity. We evaluated different lengths
of the sequence regions used to compute the binding affinities and different background models
to determine the distribution of affinities. For the length of the sequence region, L, we used
L € {60,100, 500, 1000} bp to account for the effect of multiple binding sites, or L = W, where
W is the motif width. The latter corresponds to the local approach described in Section 4.2.1.
Furthermore, we also evaluated the classification performance for two classes of background
models: (i) the GEV parameterisation and (ii) empirical p-values derived from the neighbouring
sequence around the SNP of interest. In the latter case we defined different lengths of background
sequences, B € {1000, 5000, 10000} bp. Our results are summarised in Table 4.1 which shows
that the method is robust with respect to the choice of classifiers and the length of the sequence
region.
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Figure 4.5: Here we show that the sSTRAP approach is specific. The ROC curve is obtained by
varying the threshold rx in Eq. 4.7. At a rate of 10% false positive we recover 50%
of all true positive. The area under the curve is 0.776.
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Table 4.1: Robust performance. Here we summarize the area under the ROC curve (AUC)
as a performance measure of our method. As decscribed in the main text we utilized
different length of the flanking region. For the em local method, the length was set
to the variable width, W, of the different transcription factors. The specific choice of
L=61bp was motivated by our analysis of the data from [138]. The last column gives
the AUC for an alternative approach, were the minimum of the two p-values is taken
to be the score.

length | ratio | min
W | 0.743 | 0.833
61 | 0.702 | 0.852
100 | 0.713 | 0.817
500 | 0.736 | 0.769
1000 | 0.749 | 0.767
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Figure 4.6: De novo creation of an AP-1 binding site by a 2 bp deletion in SHHF.
The binding motif of AP-1 is aligned to the SHHF sequence which features a 2 bp
deletion compared to the SHRSP sequence.

4.2.3 Identification of the regulator of Ephx2

In section 3.4.1 we described how a cis-regulated transcript was identified as candidate gene
for heart failure. Having found the target gene of the regulatory variant we set out identifying
the regulatory variant itself. Sequencing of the 5,000 bp putative promoter revealed three SNPs
and a two-nucleotide deletion [2]. A difference in promoter activity could be established using
a Luciferase reporter assay [2]. What remained to be elucidated was which of the four variants
affected a cis-regulatory element and which TF bound to this element. Toward that end we have
applied the STRAP framework to rank pairs of SNPs and TFs. Table 4.2 shows the 10 Transfac
matrices with largest change of affinity. AP-1 was the TF with the largest change of affinity
caused by the 2 bp deletion in SHHF which created a de novo AP-1 binding site as shown in
Figure 4.6. An electromobility shift assay (EMSA) showed an allele specific AP-1 binding [2],
confirming that AP-1 is indeed the TF affected by the sequence variant.
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Table 4.2: sSTRAP analysis of promoter polymorphism of the Ephxz2 gene.

Affinity Affinity  P-value P-value
Matrix SHHF SHRSP SHHF SHRSP Ratio Log Ratio

V$AP1.Q6.01 0.232 0.009 0.001 0.100 0.006 -2.194
V$AP1.Q4.01 0.170 0.010 0.002 0.071  0.021 -1.671
V$FOXP3_Q4 0.055 0.003 0.013 0.259 0.052 -1.286
V$TCF11IMAFG_01 1.020e-04 2.605e-07 0.075 0.731  0.103 -0.988
V$AP1 C 0.184 0.016 0.006 0.053 0.109 -0.962
V$AP1.Q2.01 0.041 0.002 0.048 0.382 0.125 -0.902
V$AP1_Q6 0.091 0.006 0.019 0.136  0.136 -0.867
V$STATHA 04 0.353 0.353 2.885e-04 0.002 0.152 -0.818
V$APIFJ Q2 0.051 0.006 0.032 0.203 0.158 -0.801
V$SMAD4_Q6 0.040 0.146 0.023 0.004 6.138 0.788

o1



4 eQTL genes in gene expression networks

4.2.4 Conclusions

Current GWAS result in many SNPs associated with common diseases, only a small fraction
of which might be causative. Moreover, there is a lack of follow-up mechanistic studies to
rationalise those predictions in molecular terms. In this work we undertook a first such step
to predict which transcription factor is likely to be affected by a sequence variation. Our new
approach (STRAP) is based on an earlier biophysical framework (TRAP) and predicts sequence-
induced changes in binding affinities. The quantitative approach relies on a proper normalisation
of binding affinities and permits a robust ranking of the most affected transcription factors.

We have shown that the performance of the different classifiers is robust against the choices of
parameters and the statistics used to transform affinities to P-values. Different classifiers were
chosen based on different biological premises, but they have comparable performance (Table
4.1). We have implemented our method in an R-package called tRap and provide a public web
interface, that allows the user to submit pairs of sequences corresponding to the two SNP alleles
for analysis.

We believe that our method represents a valuable tool for the exploratory data analysis elu-
cidating the mechanisms and possible consequences of regulatory SNPs. Besides its importance
for understanding genetic diseases, our approach also provides clear suggestions for transcrip-
tion factors that affect gene expression as we demostrated by the identification of the regulatory
element and the upstream regulator of Ephz2. Another possible application is the study of
species-specific sequence variation.

As with all sequence-based methods, our approach assumes that the binding dynamics of
transcription factors to the sequence is rapid and that the equilibrium binding strength is the
key parameter to control gene expression. Currently we employed a large but limited set of
transcription factor motifs from the TRANSFAC database. Recent experimental advances and
high-throughput data, such a protein-binding arrays [150], are likely to alleviate this limitation
in the near future and permit an even more comprehensive assessment of the effect of sequence
variations.

While sSTRAP predictions are generically powerful as evidenced by the ROC curve of Figure
4.5, it will be a challenging task to validate individual predictions and integrate them into a
molecular understanding of signalling and gene expression. The overarching goal of this project
is to render computational binding predictions more quantitative. Clearly much work remains to
be done. However, there is hope that the theoretical developments will increasingly be driven by
technological advances and quantitative data [151], against which the models can be optimised.

4.3 The role of transcription factors in clusters of trans-eQTLs

While genome-wide association studies (GWAS) have uncovered a large number of common
genetic variants associated with human diseases, the molecular mechanisms by which DNA
variation affects disease risk remain poorly characterised [7]. To translate genetic association
into biological function DNA variation has been correlated with gene expression to identify
the genetic control points of gene networks that may be important determinants of disease
aetiology [21, 22, 23]. Gene networks consist of transcripts of related biological function that
are coordinately regulated by key transcription factors (TFs) although in yeast TFs are not
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commonly encoded at genetic loci associated with gene networks [102, 122]. Previously, we have
accumulated genetic mapping and genomic expression data in a panel of recombinant inbred
(RI) rat strains derived from the spontaneously hypertensive rat (SHR) and the Brown Norway
(BN) progenitor strains [104] (see section 1.4). Here we used this RI panel as a source of
naturally occurring genetic variation to study TF-driven gene networks and their regulatory loci
and integrated these data with human gene expression and GWAS data to identify genes, loci
and pathways for human disease.

4.3.1 ldentification of genetically regulated TF-networks

We combined expression quantitative trait loci (eQTLs) from three tissues (fat, kidney and
heart) [104, 119] with new eQTL data in an additional four tissues (aorta, skeletal muscle,
adrenal and liver) to create genome-wide eQTL datasets across seven rat tissues (see section
3.3.3). We used a two-step procedure to integrate eQTL data of TFs and TF-target genes to
identify TF-driven gene networks. In the first step, we identified 147 TFs with known TFBS with
a model in TRANSFAC [142] whose expression mapped to 587 eQTLs (genome-wide corrected
Pgw < 0.1) across seven tissues, which were mostly (> 90%), under trans-regulatory genetic
control, in keeping with previous studies in yeast [122]. TFs act through transcription factor
binding sites (TFBSs) in promoters and enhancers of TF-target genes. In the second step of the
combined analysis, we tested for enrichment of predicted TFBSs (of TFs identified in the first
step) in the putative promoter sequences of genes that mapped as trans-eQTLs.

For each TF, we retrieved a list of 1,000 top-ranked transcripts according to their Likelihood
Ratio Statistics (LRS) score at the TF eQTL peak marker and subjected this ranked list to
a TFBS enrichment analysis using PASTAA [99]. PASTAA compares this LRS-determined
ranking to a ranking based on predicted TF binding affinities to the 200 bp proximal promoter
determined by a biophysical model [143]. Promoter sequences were extracted from ENSEMBL
and T'SS annotation provided by P. Carnici (unpublished). The comparison is performed using
an iterated hypergeometric test for the overlap of the 'top ranked’ genes when varying the
thresholds on both lists (see section 2.2.4). This procedure circumvents the recurring problem of
setting more or less arbitrary thresholds on eQTL P-values or TFBS predictions. In addition to
quantifying the overall enrichment this procedure also determines the thresholds used to define
eQTLs and TF targets and moreover the set of genes satisfying both criteria which is used to
define the differentially expressed targets of the TF. The statistical significance of this procedure
is assessed using a null distribution generated from 1 x 10% permuted gene lists.

Out of the 13 TF-driven gene networks identified through the integrated analyses (Table 4.3)
we observed the strongest TFBS enrichment (P < 1 x 107°%) for interferon regulatory tran-
scription factor Irf7. Irf7 TFBSs were predicted in the promoters of 23 genes, including Irf7
itself, that all mapped to a single trans eQTL on rat chromosome 15q25 in adrenal, kidney,
heart and liver (Table 4.3). We confirmed experimentally a subset of the predicted Irf7 tar-
gets by chromatin immunoprecipitation (ChIP) and quantitative PCR that established direct
interaction of Irf7 with the promoters of these genes (Figure 4.8, [3]). Hence, Irf7 and a group
of Irf7-regulated transcripts are under trans-regulated genetic control at a single locus on rat
chromosome 15 across four tissues. This provides evidence for a TF-driven regulatory cascade in
which genetic variation on chromosome 15q25 directly or indirectly modulates the expression of
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Irf7 (encoded on chromosome 1) with consequent effects on Irf7 target genes expression (Figure
4.7, Figure 4.8).
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The Irf7-driven inflammatory gene network (iDIN). a, Trans-regulated
expression of Irf7 and b, genes containing Irf7 transcription factor bind-
ing sites by rat chromosome 15q25 at SNP J666808. Left panels, gene expres-
sion in the left ventricle is shown in the recombinant inbred (RI) rat strains grouped
by SHR or BN genotype at SNP J666808 (SHR. allele, RI:SHR; BN allele, RI:BN).
Right panels, transcription factor binding site predictions are represented for the five
(out of 23 predicted) Irf7 target genes. The chromosome (Chrom) encoding the Irf7
target is shown to the left of the predicted Irf7 binding sites. These data provide ev-
idence for a regulatory cascade in which a locus on chromosome 15q25 regulates the
expression of Irf7 on chromosome 1 in an allele-dependent manner with consequent

effects on Irf7 target genes mediated through Irf7 transcription factor binding sites.
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Figure 4.8:
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Quantitative chromatin immuno-precipitation of predicted Irf7 target
genes. Direct binding of Irf7 to the promoters of the predicted targets Ifi27l, Irf7,
Lgals3bp, Oasl, and Sp110 was confirmed in liver and heart tissues. Fold enrich-
ments are shown relative to non-immune IgG control. Our analysis predicts an auto-
regulatory loop of Irf7 acting on its own promoter, a finding that has previously
been reported [152].
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4.3.2 Extension of TF-networks by co-expression analysis

Irf7 is a master regulator of the type 1 interferon response [153] and genes directly regulated by
this TF may comprise the core components of a larger gene network. To capture the broader
regulatory effects of the chromosome 15 locus, we constructed a co-expression network around the
Irf7 target genes from gene expression profiles across 7 tissues and 30 strains. For this analysis
we adjusted expression values of each gene for tissue effects because we were only interested
in the genetic variability across strains. Assuming independence of expression values between
tissues within the same strain we have used all 203 samples for pairs of transcripts where both
transcripts were measured in all tissues. For pairs of transcripts where at least one transcript
was present only on the Affymetrix array RAE230 2.0 microarrays we used the available 116
samples to compute pair-wise Pearson correlation coefficients. The network is formally defined
as the tuple (V, E) with V being the set of nodes or vertices and E the set of edges. Here V
corresponds to the set of all transcripts profiled on the Affymetrix RAE230a gene array. Since we
are interested in the network neighbourhood of the predicted Irf7 targets we define the set I C V
of predicted targets. The set of Edges E is defined as all tuples (v1,v2) of transcripts where one
is a predicted target (v; € I) and the other is from the rest of nodes (vy € V\I) with significant
Pearson correlation coefficients. We used a false discovery rate (FDR) approach to determine
significance of Pearson correlation coefficients [154]. This approach estimates the FDR using a
mixture model on the correlation coefficients with an empirical parametric null-distribution and
a non-parametric alternative distribution. For the estimation of the null distribution we have
used 99% of the data. We considered the correlation significant with FDR < 0.001. Finally,
we have removed unconnected nodes leading to the final set of nodes V' of the expanded Irf7
network. For the visualisation we then re-estimated the FDR using the same approach described
above using the complete correlation matrix for the set V.

The analysis of transcripts profiled in all seven tissues revealed a large gene network of 247
genes across seven tissues, which was further expanded to 305 genes in four of the seven tissues
where additional gene expression data were available (False Discovery Rate, FDR < 0.1%) (Sup-
plementary Table 2 of [3]). Groups of co-expressed genes can describe biological pathways and
gene ontology (GO) analysis of the network showed enrichment for specific biological processes,
including immune response (P = 3.6 x 107!), response to virus (P = 2.5 x 10~7) and acute
inflammatory response (P = 2.6 x 107°) (Supplementary Table 3). Based on these findings we
designated the larger network the Irf7-driven inflammatory gene network (iDIN) comprising 305
genes (Figure 4.9).

4.3.3 Cross species cell type enrichment analysis

We examined the cell types in which the human and mouse orthologous of iDIN genes were most
highly expressed (compared to their average expression levels) using an atlas of gene expression
from 65 distinct mouse and 71 human tissues and cell types.

Gene expression profiles for both mouse and human were downloaded from Novartis BioGPS
(http://biogps.gnf.org/downloads) listed under Gene Expression Omnibus (GEO) code
GSE113316 and GSE1024617; disease cell types were removed from both datasets prior to anal-
ysis.
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Figure 4.9: The expanded Irf7-driven inflammatory gene network (iDIN). Nodes rep-
resent genes, the node representing Irf7 is coloured red and its predicted targets
are coloured blue. Edges connect genes that are either predicted Irf7 targets
(black) or show significant Pearson correlation to one of the predicted targets (grey)
(FDR < 0.1%).

There were 135 genes in the rat iDIN for which there were both mouse and human orthologous
and 71 human and 65 mouse cell types, respectively. We tested each gene for extreme expression
in a given cell type, compared to its average expression across all cell types and tissues, using
the Z-test separately in both species. Combined P-values were calculated across genes using
Fisher’s combined probability test where the logged P-values calculated across cell types were
summed and multiplied by negative two, following equation [155, 156]:

k
X?=-2) Inp; (4.8)
=1

The test statistic follows a x? distribution with 2n degrees of freedom, with n being the number
of tests performed. A Bonferroni correction was then applied to the combined P-values to correct
for multiple testing.

iDIN transcripts were most enriched for expression in mouse bone marrow macrophages (P =
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4 eQTL genes in gene expression networks

1.6 x 1071%?) and human monocytes (P = 6.0 x 10~177) with high levels of expression in other
immune cells, including B lymphocytes (Supplementary Figure 1 of [3]).

4.3.4 Genetic mapping of the expanded TF-network

Whilst a core of 23 Irf7 target genes mapped as trans-eQTLs to a single locus on rat chromosome
15 the overall genetic control of the iDIN remained to be determined. To investigate to what
extent the iDIN was regulated by common genetic loci ("hot-spots’)[124] we used sparse Bayesian
regression models [157] to determine the association between expression levels of the network
genes across seven tissues and genome-wide SNPs. For each tissue, we identified the major
regulatory ’hot-spots’ for control of the iDIN (FDR < 1%). The same single locus on rat
chromosome 15q25, which controlled Irf7 and its targets in trans, was also associated with
iDIN expression in all tissues and showed the strongest evidence for common regulation in five
out of seven tissues with increased expression associated with the allele of the hypertensive
strain (Figure 4.10). Since the iDIN may represent a molecular signature of macrophages that
are associated with risk of common inflammatory diseases [158] and other diseases, such the
autoimmune disease, type 1 diabetes [159], we characterised expression of Cd68, an established
marker of macrophages [160], in SHR and BN hearts and the RI strains. In parental strains,
Cd68 mRNA levels were elevated in the SHR as compared to BN heart (P = 0.01), which
reflected increased numbers of macrophages (P = 2 x 10722); in the RI strains, Cd68 and
macrophage expressed genes were under trans-acting genetic control at the chromosome 15q25
locus that regulates the iDIN (Supplementary Figure 2 of [3]).

4.3.5 Identification of a candidate regulatory factor

We then analyzed genetic variation in the RI panel using SNPs [1] from the 15q25 region and
determined the expression of iDIN genes in an additional seven inbred rat strains of known
genotype that refined the locus to a 700kb region (Supplementary Figure 3 of [3]). This region
contained seven annotated protein-coding genes and genetic variation in these genes between
parental strains was characterised using the recently generated SHR genome sequence [161]. Of
the genes in the region Dock9, Ebi2 and Tm9sf2 exhibited DNA variation, which was synony-
mous for Dock9, non-synonymous but not predicted to be functional for Tm9sf2 and a 5’UTR
SNP for Ebi2 (Supplementary Table 4 of [3]). We evaluated gene expression of all transcripts
in the region using RNA-Sequencing and quantitative PCR. Ebi2 was the only differentially ex-
pressed gene between parental strains within the region (P = 0.016), was cis-regulated in the RI
panel in heart and kidney and was enriched for expression in myeloid cell types (Supplementary
Figure 3 and 4 of [3]). We assessed the effect of the Ebi2 5’"UTR SNP by luciferase assay, the
SHR allele resulted in reduced luciferase activity as compared to the BN allele (Supplementary
Figure 4 of [3]).

Ebi2 (or Gpri83) encodes an orphan G protein-coupled receptor (GPCR) that controls B
cell migration [162, 163] and, hence, we hypothesised that genotype-dependent Ebi2 expression
affects activity and migration of macrophages and underlies the iDIN regulatory effect of the
chromosome 15q25 region. In the rat we localised Ebi2 expression to Cd681V¢ macrophages
within the heart (Supplementary Figure 5 of [3]), an observation that we confirmed and extended
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Genetic mapping of regulatory ’hot-spots’ for the iDIN. a-g For each
rat autosomal chromosome (x-axes), the strength of evidence for a SNP being a
regulatory "hot-spot’ for controlling the network is measured by the average Bayes
Factor (y-axes). Controlling the FDR at 1% level for each eQTL, the average Bayes
Factor indicates the evidence in favour of common genetic regulation versus no
genetic control, and is reported as a ratio between the strengths of these models (see
Supplementary Information). For the 10 largest regulatory hot-spots the average
Bayes Factors (circles) and their 90% range (5th-95th percentiles) are reported; a
single SNP (J666808) that is consistently and most strongly associated with the
network in 5 out of 7 tissues is highlighted in red. Inserts, average Bayes Factors
and 90% range for the SNPs on rat chromosome 15q25 (87,479,238 - 108,949,015
bp). SNP positions in the region are indicated by tick marks.

across tissues (pancreas, liver, kidney and heart) in the Ebi2FF/+ mouse [162] (Supplementary
Figure 6 of [3]). To assess whether Ebi2 directly regulates iDIN gene expression we performed
siRNA knockdown of Ebi2 in primary cultures of rat macrophages (Supplementary Figure 7a of
[3]). We show that silencing Ebi2 increases expression of Irf7, the central hub of the iDIN, and
of iDIN genes (Figure 4.11).
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Figure 4.11: Effect of siRNA-mediated knockdown of Ebi2 on expression of Irf7 and
iDIN genes in rat bone marrow-derived macrophages. As compared to con-
trol siRNA, siRNA against Ebi2 (siEbi2) significantly down-regulated (97% inhibi-
tion) Fbi2 mRNA expression. While siEbi2 had no effect on control gene expression
(Hprt) there was a significantly increase in expression of Irf7 and of iDIN genes
Oasl, Lgals3bp, Statl, Ifi27, Ly6e and Ly6c. Data, normalised to S-actin levels (see
[3]), are shown as means relative to control + SEMs. * P < 0.05; ** P < 0.01;
K P < 0.005.

4.3.6 Comparative co-expression analysis with humans

To translate our findings to humans, we first tested whether the iDIN was recapitulated in human
immune cells using genome-wide expression data from monocytes isolated from 1,490 individ-
uals from the Gutenberg Heart Study (GHS) [164]. We performed TFBS enrichment analysis,
analogous to that performed in the rat, and expanded the IRF7 network by co-expression anal-
ysis (Supplementary Table 5 and see Supplementary Information). Here, we were interested
in the TF - target relationships without a special focus on the genetic regulation. Therefore
we ranked all potential TF targets of IRF7 according to their co-expression with the TF, as
measured by the absolute Pearson correlation coefficient. Analogously to the rat TFBS enrich-
ment analysis (section 4.3.1) we obtained sequences 200 bp upstream of the transcription start
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site (TSS) as annotated in the ENSEMBL database and ranked them according to predicted
TF affinities. Subsequently we quantified the enrichment of predicted TFBS in the top 1,000
co-expressed genes using PASTAA [143]. Subsequent network expansion was performed using
the same procedure as in the rat (section 4.3.2) .

In order to replicate results obtained from the GHS data, we analysed gene expression data
from a distinct cohort of 758 subjects from the Cardiogenics Study [165]. We performed the
same TFBS enrichment analysis as in the GHS data set. Since the cardiogenics study involves
multiple centres, we have adjusted gene expression data for the center prior to the analysis. We
correlated expression profiles of all genes that were analyzed for the Gutenberg Heart Study
(GHS) versus the predicted IRF7 targets. In keeping with the analysis in the GHS study,
we applied a threshold of FDR < 0.001 to identify the significant set of adjacent genes (i.e.,
co-regulated genes). This threshold corresponded to an absolute correlation of at least 0.53.

The analysis of the GHS data suggests that IRF7 regulates nine of its direct target genes
(Supplementary Table 5 of [3]). Expansion of the network results in a set of 531 co-expressed
genes and is most strongly enriched for Gene Ontology (GO) terms “response to virus” (P =
1.88 x 10713) and “immune response” (P = 1.28 x 107?).

In the Cardiogenics data we found the same set of co-regulated IRF'7 target genes and one
additional target. We have identified a set of 791 genes that are co-expressed with the core
set of predicted IRF7 targets. The overlap with the GHS expression network comprises 186
genes (P = 8.32 x 10723) and Gene Ontology (GO) enrichment analysis showed the strongest
enrichment for “immune response” (P = 1.31x107!) and “response to virus” (P = 4.68x1071!)
categories, respectively.

In order to compare the genes in the rat and human iDIN we used ENSEMBL to derive
orthologous genes between rat and human. Of all genes represented on the rat and human
expression arrays we were able to identify a common set of 9,909 human genes that had a rat
orthologous and were represented on both expression arrays. We defined this as the “orthologous
expression set”. The human iDIN in the GHS contained 508 Ensembl genes (Supplementary
Table 5 of [3]) of the orthologous expression set. Out of the 305 Ensembl rat iDIN genes
(Supplementary Table 2 of [3]), 248 Ensembl genes were contained in the orthologous expression
set. The overlap between the two sets was 51 Ensembl genes (P = 9.1 x 1072°), which is reported
in the supplementary information of [3].

The human IRF7-driven network exhibited strong cross-species overlap with orthologous of
the rat iDIN (P = 9.1 x 102Y), and was annotated by the same gene ontology terms (immune
response, inflammatory response, response to virus) (Supplementary Table 6 of [3]).

4.3.7 Analysis of the human regulatory locus
Association of human iDIN with the chromosome 13 locus

We determined whether the human chromosome 13932 locus (spanning 1 Mb, Supplementary
Table 7), which is orthologous to the critical rat chromosome 15q25 region, was associated with
expression of the IRF7 network genes in humans. For each SNP at the chromosome 13932 locus,
multivariate analysis of variance (MANOVA) [166] was performed to test the hypothesis that the
mean monocyte expression levels of IRF7 and all predicted IRF7-target genes are the same in
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all genotype categories in the GHS and Cardiogenics cohorts. Among the different statistics that
can be used to evaluate the MANOVA hypothesis, we employed the Pillai’ trace, which is more
robust to violations of normality and homogeneity of dispersion [167]. Significant associations
between network genes and SNPs at the locus were assessed using Storey’s FDR at the 5% level
[56].

We also verified the validity of the two most important assumptions of MANOVA analysis,
namely, multivariate normality and, conditionally to each SNP, the homogeneity of variance-
covariances matrices. We performed multivariate Box-Cox transformation to protect against
deviations from the normality assumption, while the homogeneity of variance-covariance matri-
ces among groups was assessed using Box’s M statistics [168]. To ensure that the MANOVA
results presented here are not affected by these factors, we repeated all analyses using the rank-
based Wilks’ lambda MANOVA [169], which is robust to violations of both conditions. The
results of the rank-based MANOVA analysis supported the original MANOVA findings in the
Cardiogenics cohort for six out of seven SNPs in the region (see supplementary information of
3)-

Multivariate analysis of variance of the Cardiogenics monocyte expression and genotype data
revealed that six SNPs in the 1332 region (including 19557217, P = 5.0 x 10~?; and rs9585056,
P = 1.1 x1073) were associated with trans-regulated expression of IRF7 and IRF7 target genes
(fourth panel of Figure 4.12). We did not, however, detect a signal for trans-regulation of
IRF7 or IRF7 target genes at the 13q23 locus in the GHS cohort (bottom panel of Figure
4.12). This could be due to differences in the two datasets (different monocyte preparation
protocols between the two cohorts, see supplementary information of [3]), as we demonstrate in
the following analysis of FBI2 expression.

Association of genetic variation and EBI2 expression

We then examined whether monocyte gene expression of the human gene FBI2, was under cis-
regulatory control. Association between SNPs at the chromosome 13 locus and FBI2 mRNA
abundance was assessed by linear regression. The subset of SNPs sufficient to explain EBI2-
gene-expression variation at the locus was determined by using the lasso shrinkage and selection
method for linear regression [170] (see also section 2.1.4). The optimal shrinkage parameter A
was selected using ten-fold cross validation implemented in [171].

Lasso selection of EBI2 eQTL models in GHS resulted in a set of three SNPs (rs9585056,
rs9517723, rs7325697). When adding imputed SNPs, rs9517725 explains most of the variation
of the EBI2 expression (P = 6.8 x 10~'3) at this locus. Lasso model selection in Cardiogenics
yielded an overlapping set of three SNPs (rs9557217, rs9585056, rs9517725) highlighted in Figure
4.12. A formal hypothesis test [172] of a common causal genetic variant was not rejected (P =
0.14).

In both the GHS and Cardiogenics cohorts, EBI2 showed evidence of cis-regulation at the
13g32 locus but this differed between the two cohorts (most associated SNPs: Cardiogenics,
159585056, P = 2.2 x 1078; GHS, 159517725, P = 6.8 x 10~'3) (Figure 4.12). Two of the
five SNPs, rs9557217 and rs9585056 contained in the model explaining EBI2 expression also
exhibited a significant trans-effect on iDIN expression in the Cardiogenics cohort (section 4.3.7
and Figure 4.12), suggesting common regulatory control by this locus on the IRF7 network and
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Figure 4.12: A regulatory locus for T1D risk. Results of EBI2 eQTL analysis in GHS (top
panel), Cardiogenics (second panel) and T1D association (third panel) at the human
chromosome 13 locus that is orthologous to the 700kb rat chromosome 15q25 region.
The upper panel shows the nominal -logig P-values of marker regression against
gene expression of EBI2 for all SNPs in the region. The third panel shows the -logig
P-values of T1D association with SNPs in the region. SNP rs9585056 showed the
strongest association with T1D (P = 7.0 x 1071%) amongst the genotyped markers.

EBI?2 expression.

4.3.8 Translation to human GWAS data
Association of iDIN genes with T1D

Monocyte-derived macrophages are critical determinants of inflammatory processes important
for common disease [173] and autoimmune type 1 diabetes (T1D) [174]. The iDIN, which is
expressed in macrophages, is enriched for viral response genes and contained IFIH1, a well
characterised T1D susceptibility gene [175, 176]. A link between IRF7 and IRF7-regulated
genes and T1D was supported by data in the non obese diabetic mouse, where blockade of the
interferon alpha receptor down-regulates IRF7 and iDIN genes’ expression in immune cells and
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delays and attenuates T1D development [177]. This prompted us to evaluate the association of
the human orthologous of rat iDIN genes and genes in the human monocyte network (Figure 3)
with T1D.

To examine whether genes in the network were generally associated with T1D, we divided
SNPs genotyped in T1D genome-wide association scans into two:

A: those within 1Mb of any gene in the network, and
B: those within 1Mb of any ENSEMBL gene not in network, excluding any in A

We used a Wilcoxon rank test to examine whether the distribution of association statistics varied
between sets A and B, on the basis of their one degree of freedom x? test statistics. Note that this
approach tests the null hypothesis that the pattern of association is the same in the two datasets
(@1 from Eq.2.21), rather than a null that no SNPs in A are associated with T1D [87] (Q2 from
Eq.2.22). We chose to use a nonparametric approach due to the extreme right skew displayed
by test statistics for T1D; x? values above 300 are seen for SNPs in the strongly associated HLA
region. The more commonly used gene set enrichment analysis is based around the Kolmogorov-
Smirnov test, which is underpowered for detecting differences in distributions [178]. To avoid
potential confounding by allele frequency, we applied inverse probability weighting to the ranks
used in the Wilcoxon according to a propensity score measuring the chance of a SNP appearing
in the inside network group, given minor allele frequency [94, 95]. The propensity score was
calculated by binning minor allele frequencies into bins of width 0.05 and taking the ratio of the
number of SNPs in A+B and the number in A.

Correlation between SNPs is substantial in GWA data. While the Wilcoxon test has the
helpful property that the mean under the null is unaffected by correlation, correlation does lead
to inflation of the standard deviation of the test statistic which we estimated by 200 permutations
of the case control labels. Finally, because the GWA datasets were generated on different chips
(Affymetrix and Illumina) we used a stratified Wilcoxon [97] to avoid confounding by chip.

Because we have both human- and rat-derived networks, and because HLA shows extreme
association with T1D, we performed four tests:

1. genes in either rat or human networks
2. genes in both rat and human networks, restricting set B to genes with a rat orthologous

3. genes in both rat and human networks, excluding SNPs from A or B within a wide window
around human MHC (chr6:29000000..34600000)

4. genes in both rat and human networks, restricting set B to genes in the rat orthologue
database and excluding SNPs from A or B within a wide window around human MHC
(chr6:29000000..34600000)

SNPs close to (< 1Mb) any iDIN genes were significantly more likely to associate with T1D in
large-scale GWAS than SNPs close to genes not in the network (i.e. the rest of the genome), with
the strongest signal for the larger network formed by the union of genes in the rat iDIN and the
human IRF7-driven network (P = 2.4 x 1071%). Since many immune genes have been associated
to T1D previously, we also performed the above mentioned tests against a background set of all
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4.3 The role of transcription factors in clusters of trans-eQTLs

genes annotated by the GO term “immune response”. This established an overrepresentation
of T1D associated genes in the union network (P = 8.85 x 1079), indicating that the iDIN
more specifically categorises T1D genes than the GO term “immune response”. These data
demonstrate that co-expression networks across species provide functional annotation of genes
in biological processes that can be used to detect the signal of common genetic variation of small
effect that is usually not reported by typical GWAS.

O=_2NWphOION

Figure 4.13: Schematic representation of the union of IRF7-driven gene networks
that was created using the set of human orthologous of rat iDIN genes
and human iDIN genes. A Wilcoxon rank test based gene set enrichment anal-
ysis (modified from Holden et al.) [179] showed SNPs close to iDIN genes to be
significantly more likely to associate with T1D in large-scale GWAS than SNPs
close to randomly selected genes (P = 2.5 x 107!?) and randomly selected immune
response genes (P = 8.8 x 107%). Nodes represent iDIN genes and the node colour
indicates the P-values (-logjo scale) of the association with T1D (see Methods).

Association testing of rs9585056 with T1D

Logistic regression was used to test for association in case control samples, stratifying by broad
UK region to control for population structure. Family data were analysed by transmission
disequilibrium test, splitting multiplex families into parent offspring trios and using a pseudo-
case control framework to estimate allelic effects. A score statistic was also generated, and
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a score test for association in case-controls and families combined conducted by summing the
scores and variances according to the method proposed by Mantel [180].

In a GWAS meta-analysis of T1D in 7,514 cases and 9,045 controls [181], we found evidence
for association of the chromosome 1332 region at SNP rs9585056 (P = 1.3 x 10~7) that had not
been reported before (Figure 4.12). We genotyped this SNP in two independent large cohorts
and increased the strength of the T1D association (combined P = 7.0 x 10719, odds ratio (95%
confidence interval) = 1.15 (1.09-1.21), Supplementary Table 9 of [3]). The minor C allele of
SNP rs9585056 was associated with T1D risk, lower EBI2 expression levels of iDIN genes in
the Cardiogenics cohort. Although we cannot discriminate between single and multiple causal
variants, overall, these results show an overlap of association signals in the same region on human
chromosome 13932 for iDIN genes, EBI2 cis-regulation and T1D.

4.3.9 Conclusions

The immunopathology of autoimmune T1D is characterised by infiltration of the pancreas with
B and T lymphocytes and macrophages with resultant beta-cell death, insulin deficiency and
hyperglycaemia [159]. We have demonstrated that genes in the iDIN contribute to T1D risk
and implicate the innate viral response pathway and macrophages in the aetiology of T1D.
Genetic control points that perturb biological networks are thought to represent important loci
for disease risk [22] and we propose that the T1D susceptibility locus that we identified regulates
innate immune response genes in macrophages, as we demonstrated in the rat. FBI2, an orphan
GPCR, which controls IRF7, a master regulator of the innate immune response [153], represents
a candidate for trans-regulation of the human iDIN and for T1D risk. A role for IRF7 in the
pathogenesis of T1D is supported by functional studies of other T1D candidate genes, namely
TLR7 and TLRS [182], which act through IRF7 [183]. In keeping with previous observations
in lower organisms [122], our data support GPCRs as key control points of trans-regulated gene
networks. The integrated analyses we used here highlight the power of cross-species network
approaches that can be used to reveal loci, genes and biological pathways associated with human
disease.

4.4 Co-expression as quantitative trait

Analysis of regulatory variants has proven to speed up the identification of genes underpinning
physiological QTLs (see section 3.4). However, the proportion of the phenotypic variance ex-
plained by these loci is rather small [24] and hints at a more complex mode of inheritance. In
this light it is recognised that disease genes are not acting in isolation [22], but through complex
pathways that lead to the physiological endpoint. In most previous work on the identification
of disease pathways from gene expression data in a segregating population [22, 28, 26, 27, 25, 3]
(see also section 4.3), the focus has been to identify networks of co-regulated genes, where the
expression is determined by the sequence variant that has been found to be associated to the
disease phenotype. What has been neglected so far, is that the observed phenotype could also
be a consequence of genotype dependent perturbations of co-expression.

Here we propose a differential network analysis method to detect genotype dependent co-
expression across multiple tissues as illustrated in Figure 4.14 in an unbiased genome wide
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manner inspired by [184]. We apply our method to genetic and gene expression data from a set
of recombinant inbred (RI) strains called BXH/HXB (see section 1.4). Using our method we
were able to identify eQTL genes and their neighbourhood of differentially co-expressed genes in
a co-expression network. This allowed us to put the eQTL genes into the context of genes with
which they are usually interacting, dependent on the genotype at the genetic marker: e.g. genes
were co-expressed in RI strains carrying the wildtype allele but not co-expressed in the strains
carrying the mutated allele or vice versa. Using a test for enrichment [185] of Gene Ontology
terms [81] (see also section 2.2.1) within such a neighbourhood allowed to identify the functional
context in which the eQTL gene acts. Furthermore, the topology of the resulting graph allowed
us to identify pairs of eQTL, linked by sets of common neighbours. These links are opening up
the opportunity to explore epistatic interactions influencing blood pressure between connected
eQTL loci.

4.4.1 A linear model for the mapping of co-expression as a quantitative trait

The expression data, that we were modelling came from N = 29 RI strains. For each of the
strains, t = 7 tissues have been profiled using Affymetrix chips. We assume that the gene
expression in different tissues is independent within the same strain. We organised the data
into the (p x Nt) expression matrix E with p genes and Nt samples. E; denotes the expression
vector of gene i.

In order to detect pairs of genes that are co-expressed and therefore co-regulated in a genotype
dependent way, we designed a linear model. In contrast to eQTL mapping, where the aim is
to detect pairs of transcript and marker, with the marker influencing the expression of the
transcript, here we were interested in triplets consisting of two transcripts and one marker. In
particular the situation we aimed to capture is that the marker influences the co-expression of
the two genes across multiple tissues.

In general co-expression of two genes ¢ and j can be detected using a linear model

Mreduced : Ezk = 51 + 52Ejk + €k, (49)

with k € 1,..., Nt. The presence of co-expression is equivalent to a non-zero slope J2. Assuming
that the error € is normally distributed the hypothesis of §2 = 0 can be tested [79]. Note that
a linear model assumes that the independent variables are non-random. Therefore, strictly
speaking, the model should be called a multiple regression model instead. However, with the
additional assumption that the joint probability distribution of two gene expression profiles is
bivariate normal the linear model framework is equivalent to the multiple regression model (see
section 2.1.3). Therefore we will use the term linear model synonymously.

In order to detect the influence of a genetic marker on the co-expression we include two
more parameters in the model, namely one intercept and one slope for each of the genotypes as
visualised in Figure 4.14. This specifies the full model

My 2 Eiy = b (81 + B3Ej1) + shryp (B2 + BaEji) + €k, (4.10)

where bn,,, and shr,,;. are indicator variables for the genotype of strain k at the marker m.
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Suppose the genotypes of M genetic markers for the N strains are arranged in a M x N
matrix G and encoded as a factor with 2 levels BN and SHR. For each marker g, we formulate
the full model in terms of a design matrix

El. =Y =XB+e¢

with
X =18N(1,0,E]_,0) + I°7%(0,1,0, E} )
and
B = (51, 02,33, Bs),
where

kil 0 otherwise

is a (Nt x Nt) diagonal matrix where the k-th diagonal element is indicating the genotype of
individual k. 57 % is defined analogously. (; is the BN specific intercept, 5 is the SHR specific
intercept, (3 is the BN specific slope and 34 is the SHR specific slope.

If there is no genotype dependent effect on co-expression, the reduced model and the full
model fit equally well, that is §3 = (4 in the full model and also equal to (s in the reduced
model. If the marker has influence on the co-expression, the full model will fit better. Analysis
of variance of the two nested models can then be used to assess the statistical significance of the
difference of fits.

Assuming that the error terms e, ~ N(0,0) are independent and have the same variance
o, we use the hypothesis test 13 = [y described in section 2.1.2. The case where B3 = (4 is
equivalent to 1 = (0,0,1,—1)" and Iy = 0. The test statistic is defined in Eq.2.11 and follows an
F distribution with 1 and (Nt — 4) degrees of freedom. If we can reject this hypothesis we can
assume genotype dependent co-expression of the two genes i and j.

In order to perform a genome scan across all genetic markers we assume independence of the
markers and use these P-values obtained from our model and correction for multiple testing.

In cases where genotype dependent differences in the co-regulation were detected by the
linear model, the linear relationship of the two genes was assessed using the Pearson correlation
coefficient for each group of strains as a measure for the goodness of fit. We needed this additional
test, in order to filter out cases where there is a difference in the estimated slopes, but the linear
models are not fitting the data well. This is mostly the case when the linear relationship between
the genes is not given.

We have implemented a computer program to systematically test given pairs of transcripts
against all genetic markers using this linear model. The code is written in C, using lapack [186]
for the model fitting and convenient to use through an interface for R [117]. Software is available
on our website.

4.4.2 Construction of the co-eQTL graph

Gene expression data was normalised using the RMA algorithm [120] described in section 3.2.2.
For our analysis we filtered out genes that are expressed below the 15% quantile of all gene
expression values in more than 60% of the samples. Furthermore we filtered out genes with a
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Figure 4.14: Genotype dependent co-expression. The left panel shows the expression of
probe set 1384717_at plotted against the expression of probe set 1375904_at and
the fit of the linear model across seven tissues and all RI strains with the SHR
genotype at marker BO7TP0680. The right panel shows the same plot but for RI
strains with the BN genotype at the marker BO7P0680. Comparing the two slopes
using a test on a linear model with an intercept and a slope for each of the groups
versus a linear model with only one intercept and one slope clearly rejects the
hypothesis of equal slopes (F = 1184.35,p = 9.8 - 107199). In this case we speak of
genotype dependent co-expression or a co-eQTL.

coefficient of variation below the 75% quantile of the distribution of coefficients of variation of
all genes. This resulted in a set of p = 3579 most varying genes across seven tissues for the
mapping of co-expression QTLs. These genes make up the set of nodes of the transcriptional
network under investigation. The number of potential edges in this network is (p - (p — 1))/2,
which have to be tested against 1400 genetic markers of the genetic map from the STAR project
[1] described in section 3.3.1. Obviously this would result in a massive multiple testing problem.
Therefore the number of edges for genetic mapping has been reduced by a filter. Only if the
variance of the co-expression of two genes across the 29 strains is large we expected a genetic
effect on the co-expression of two genes. Therefore, we have computed correlation coefficients
for each pair of genes corresponding to potential edges in the network across the seven tissues
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within each of the strains. We have retained 185702 edges where the difference between the
minimum and maximum correlation coefficient was at least 0.5 and the variance was larger
than the 90th percentile of variances for all edges. We have applied our linear model to these
edges and reported the marker with the highest influence on the co-expression for each edge.
All edges with P < 1072 and the maximum absolute value of the two correlation coefficients
> 0.7(P < 107'2) have been used to construct the genome-wide graph of genotype dependent
co-expression shown in Figure 4.15. The P-value cutoffs corresponds to a Bonferroni adjusted
P-value of P < 1075 and were selected to guarantee stringent fits of the models to the data as
can be visually verified in plots like Figure 4.14.

4.4.3 Topological analysis of the co-eQTL graph

In total there are 1546 edges representing genotype dependent co-expression between 890 genes,
controlled by 24 genetic markers. Colouring edges according to the associated marker revealed
subnetworks that are arranged in star topologies around central hub nodes (Figure 4.15). Hub
genes are listed in Table 4.4. For further analysis we refer to these star topologies as subnetworks
and call the group of genes that are differentially co-expressed with the hub co-eQTL genes.

Another feature of the co-eQTL graph is that hubs are connected to each other by several
paths of length two through a set of intermediate genes. These genes are co-expressed with
both hub genes dependent on two different genetic markers. For each pair of hubs we define the
interface of the hubs as the intersection of the direct neighbours of the two hubs. Interestingly,
there are interface genes that are connected to up to 15 hub genes.
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Figure 4.15: Genome wide view of genotype dependent co-expression. The graph shows
all pairwise genotype dependent co-expression relations. The topology of the graph
contains highly connected hub nodes, however the hubs are not directly connected
to each other. The colours of the edges correspond to the genetic marker which
induced the genotype dependent co-expression. This colouring of the graph reveals
that edges linked to one genetic marker form a star topology. The hubs of these
stars correspond to transcripts that have a marker dependent expression pattern
(eQTL). Interestingly many hubs are connected by paths of length two.
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Table 4.4: Hub transcripts

Symbol Gene ID Probe ID Description

Asapl ENSRNOGO00000005739 1384717 at Arf-GAP with SH3 domain,
ANK repeat and PH domain-
containing protein 1 (130

kDa phosphatidylinositol
4,5-biphosphate-dependent
ARF1 GTPase-activating

protein) (PIP2-dependent ARF1
GAP)(ADP-ribosylation factor-
directed GTPase-activating pro-
tein 1)(ARF GTPase-activating
protein  1)(Development and
differentiation-enhancing
factor 1)(Differentiation-
enhancing factor 1)(DEF-1)
[Source:UniProtKB/Swiss-
Prot;Acc:Q1AAUG)

Bzw?2 ENSRNOGO00000005096  1377329_at Basic  leucine zipper and
W2  domain-containing  pro-
tein 2 (Brain development-
related molecule 2)
[Source:UniProtKB/Swiss-
Prot;Acc:QIWTTT]

ENSRNOGO00000032604  1373232_at

Echdc2 ENSRNOGO00000029333 1374527 _at enoyl Coenzyme A hy-
dratase domain contain-
ing 2 [Source:RefSeq pep-
tide; Acc:NP_001100145]

IPI00777098.1 ENSRNOG00000038701  1389990_at

Snfllk ENSRNOGO00000001189 1368597 _at Serine/threonine-protein kinase
SIKI  (EC  2.7.11.1)(Salt-
inducible protein kinase
1)(SIK-1)(Serine/threonine-
protein kinase SNF1-like
kinase 1)(Serine/threonine-
protein kinase
SNF1LK)(Protein kinase KID2)
[Source:UniProtKB/Swiss-
Prot;Acc:QIR1US]

Krt10 ENSRNOGO00000030170 1373254 _at Keratin, type 1 cytoskele-
tal 10 (Cytokeratin-
10)(CK-10)(Keratin-
10)(K10)(Type I keratin Kal0)
[Source:UniProtKB/Swiss-
Prot;Acc:Q6IFW6]

RGD1311103 ENSRNOGO00000025957  1389690_at

IP100204640.1 ENSRNOGO00000004540 1377452 _at

74



Pik3rl

IPI00777605.1

NP_001099727.1

NP_001099727.1

Fam103al

Cctba
Ddx42

Ifit1

RGD1562844

Tnfaip6

Znf655
RATVL30B

Ythdf2

ENSRNOG00000018903

ENSRNOG00000039655
ENSRNOG00000037675
ENSRNOG00000019627

ENSRNOGO00000019627

ENSRNOG00000019426

RGD1304763

RGD1304909

RGD620599

RGD1562844

RGD621359

RGD1309158
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1370114 _a_at

1373232_at
1389990_at
1373697 _at

1376968 _at

1376780_at

1377006_at

1379896_at

1369836_at

1376958 _at

1371194 _at

1376840_at
1370988_at

1371960_at
1374583 _at
1371776_at
1379497 _at

Phosphatidylinositol 3-
kinase regulatory sub-
unit alpha (PI3-kinase p85
subunit alpha)(PtdIns-3-
kinase p85-alpha) (PI3K)
[Source:UniProtKB/Swiss-
Prot;Acc:Q63787]

myosin  binding protein C,
fast-type [Source:RefSeq pep-
tide; Acc:NP_001099727]

myosin  binding protein C,
fast-type [Source:RefSeq pep-
tide;Acc:NP_001099727)
hypothetical protein
LOC293058 [Source:RefSeq
peptide;Acc:NP_001120923]
chaperonin containing Tcpl,
subunit 6A (zeta 1)

DEAD (Asp-Glu-Ala-Asp) box
polypeptide 42
interferon-induced protein with
tetratricopeptide repeats 1 re-
sponses to dexamethasone and
other inflammatory stimuli
similar to serine (or cysteine)
proteinase inhibitor, clade B,
member 9

tumor necrosis factor alpha in-
duced protein 6 mouse homolog
is a catalyst in the formation of
the cumulus extracellular matrix
and indispensable for female fer-
tility

Rattus norvegicus transposon
VL30, complete sequence

YTH domain family, member 2
EST only

EST only

EST only
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4.4.4 Hub genes have eQTLs

Closer investigation of the hub genes revealed that their expression is controlled by the genetic
marker that also controls the differential co-expression of the edges that define the subnetwork.
Using the results of the eQTL analysis presented in section 3.3 we found that 50% of the hubs
had eQTLs in all seven tissues, six had eQTLs in at least four tissues and the remaining six were
more tissue specific with eQTLs in one or two tissues (tissue-wise eQTL Pgy < 0.05). Given
that the expression of the hub gene was correlated to the genotype the expression of the co-eQTL
genes can be either unchanged or also correlated with the genotype. In general the other co-
eQTL genes do not show a global genetic control by the subnetwork marker. No eQTLs in more
than one tissue at the very same marker could be detected for the co-eQTL genes (tissue wise
eQTL Pgw < 0.05). Ten co-eQTL transcripts do show eQTLs in single tissues (Pgw < 0.05)
at the subnetwork marker. Seven of these are linked to hubs with global eQTLs, such that
the global pattern of genotype dependent co-expression is maintained. The remaining three do
have tissue specific eQTLs in the same tissue as the hub gene and are linked to the same hub.
Interestingly, these rare cases were examples where co-expression across strains and tissues was
present in four tissues and the genetic marker induced co-expression across strains in a fifth
tissue.

Each of the identified subnetworks corresponds to an eQTL gene (the hub) and its neighbours
in a genotype dependent co-expression network. In order to determine the mode of regulation
of the hub eQTLs we have determined the physical distance of the transcript and the genetic
marker in the genome. If they are as close as 10 Mb, we assume a cis-regulatory mechanism
[104], since the transcript and the mutation are in close proximity. If the transcript and the
marker are on different chromosomes or further apart than 10Mb we assume trans-regulation.
Of the 24 subnetwork hubs, 10 have cis-acting eQTLs and 11 have trans-acting eQTLs ( 3 of
the probe sets could not be mapped uniquely to the genome).

4.4.5 Subnetworks are functionally coherent

Next we analyzed the 24 subnetworks for functional coherence. We used the standard 2 x 2
contingency table and functional categories from the Gene Ontology in order to find functionally
enriched subnetworks [185] (see also section 2.2.1). We found 17 subnetworks enriched for at
least one GO term (P < 0.01) and a total of 203 GO terms that were enriched at P < 0.01 see
Table A.1. Seven of the subnetworks were enriched for signalling GO terms, 11 for terms related
to ion transport, six for transcriptional regulation and seven for metabolic functions.

The majority (12) of hub genes does not have any functional annotation to gene ontology
terms. For these genes, the differential co-expression with genes enriched for functional terms,
can be used to place them into a functional context and infer new functional roles of these genes
(see Table A.2). Of the hub genes annotated to GO terms, four were annotated to one of the
enriched terms of their subnetwork, while six had differing annotations. Also for these genes, the
differential co-expression can be used to infer potentially new, unknown functions or previously
undescribed interactions between pathways.

Three of the markers that control the co-expression of subnetworks lie within two physiological
QTL regions. A blood pressure QTL on chromosome 8 harbours the marker SH RS Pc63b01_s1_193.
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This marker is associated with a subnetwork that is enriched in “biogenic amine metabolism”.
Biogenic amines include norepinephrine, histamine and serotonine. Norepinephrine acts as a
stress hormone and as such it increases heart rate, blood flow and blood pressure [187]. The hub
transcript linked to SH RS Pc63b01_s1_193 is annotated by Affymetrix based on EST sequences
that are similar to the mouse gene histidine triad protein member 5, but does not provide any
hints on the function of the gene. However, our findings may suggest a role in the regulation of
blood pressure.

The other two markers are located in a QTL for heart rate on chromosome 10. The subnetwork
around the gene Ddz42 is enriched in steroid biosynthesis and lipid metabolism. In particular
it contains genes for the synthesis of C-21 steroids also known as progesterones. These steroid
hormones are known to affect the vascular tone [188]. However, there is no overlapping blood
pressure QTL at this position. It is unclear, if this is due to statistical reasons or if there is
truly no genotypic effect on blood pressure.

The subnetwork around Krt10 is enriched for lipid metabolism and immune response path-
ways. Differentially co-expressed genes from the lipid metabolism are the apolipoproteins 1,2,4.5.
These proteins are involved in lipid transport, such as cholesterol, which is the basis for the
steroid synthesis described above. As far as the role of the immune response genes is concerned,
the link between inflammation and hypertension is subject to current research [189].

4.4.6 Genes linking hubs are enriched for regulatory functions

Genes from interface sets represent links between two eQQTLs which can be valuable resources for
the functional interpretation of the two eQTLs and their relationship among each other. Thus
we were interested if the interface genes share common functional roles at a global level. We
have extracted all interface genes and subjected them to GO enrichment analysis.

Globally we have identified molecular functions involved in regulation as well as metabolic
processes listed in Table A.3. Inspecting categories from the “biological process” ontology of
GO, we found among others “blood pressure regulation” (P = 2.8e — 03), “cholesterol absorp-
tion” (P = 1.6e — 03) as well as “innate immune response” P = 1.2e — 03. Since SHR is a
model for hypertension, the blood pressure regulation genes are of special interest, because the
perturbation of coordinated expression along with these genes could impact the physiological
phenotypes of hypertension. The blood pressure regulating genes in the interfaces are Adra2a, an
adrenergic receptor, Agir2, an angiotensin II receptor, Avpr2, an arginine vasopressin receptor,
Guca2b, Fgb and Fyg.

Following the assumption that genes which occur in more interfaces are more essential for the
regulation we have computed GO enrichment for all nodes occurring in at least three or five
interfaces. For genes in at least three interfaces we have found 14 GO terms with P < 0.01 of
which ten are related to signalling, two are related to DNA binding (see Table A.4). Furthermore,
we find lipid binding and chloride transport. When we investigated genes that occur in at least
five interfaces we found an enrichment for cAMP mediated signalling (P = 0.0036).

Finally, we have investigated the functional enrichment on the level of each individual interface
defined by a pair of hubs. Table A.5 summarises the results of all interfaces. We found 110 GO
terms to be enriched at P < 0.01. Of the 28 GO terms that are found in more than one interface,
24 are related to signalling. GO terms that are enriched only in single interfaces include specific
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cellular functions like lipid metabolism.

Observing an enrichment for signalling genes on the global level and especially in the highly
connected interface nodes led us to hypothesise, that the genes from the interfaces represent
a regulatory layer with coordinated gene expression profiles. Coordinated gene expression of
eQTL transcripts is disconnected from the regulatory layer by genetic variants, that determine
the expression levels of the eQTL transcripts. But can we assume that all of the interface
nodes are upstream regulators of the eQTL? We consider a simple causal model, where the
expression of the eQTL transcript E' is dependent on at most two variables, the genotype at its
marker G' and the expression of a regulator R. Figure A.1 shows three possible scenarios where
genotype dependent co-expression can arise. (1) the simplest one is, that G and R regulate E
and one allele at G overrides the regulatory action of R. This leads to differential co-expression
between E and R. (2) the two other models include a second downstream transcript 7. If F is
regulated by R and G, as above, but additionally R is regulating T', then we expect differential
co-expression between E and R as well as between E and T. (3) if E is regulating 7" and we
observe differential co-expression between E and T' and the expression of E is dependent on G,
there must exist a regulator R upstream of T that overrides the regulatory action of E. In this
case there is differential co-expression between E and T', and between E and R. In case (1)
and (2) we find one direct upstream regulator of E. Case (2) identifies one additional target
transcript of the regulator. In case (3) we identify a regulator and a target that are not directly
upstream of E but overriding the regulatory action of E. Interface nodes are connected to at
least two hubs (eQTL transcripts) and therefore included in more than one instantiation of such
a model. Due to this fact and the functional annotation of the interface genes as regulatory
genes, it is very likely that these genes are upstream regulators of the hub genes.

4.4.7 Linked hubs reveal epistatic interactions

Interfaces not only provide insight into the functional context of the hub genes, they provide
furthermore a molecular link between two genetic markers that are not expected to be linked
genetically. Indeed, the average number of recombinations between two markers linked by an
interface is 14.5 which is also the number expected by chance. Without any prior knowledge
about potential genetic interactions, the genome-wide search for genetic interactions is under-
powered. Using hub interfaces as molecular link between genetic markers, we set out to identify
genetic interactions like epistasis of these markers on physiological phenotypes. In particular,
we were interested in the markers linked by interfaces, containing one or more of the six genes
annotated to “blood pressure regulation”. These genes are present in 12 interface sets with an
average size of 51 genes. The BXH/HXB cross has been phenotyped for blood pressure related
traits [57], namely systolic blood pressure, diastolic blood pressure, carotid pulse pressure and
mean arterial pressure.

For each pair of markers linked by such an interface and each of the blood pressure phenotypes
we computed a two-way ANOVA test with interaction term. Table 4.5 lists the most significant
genetic interactions. Strikingly we find significant interactions (FFDR < 0.2) for all four traits at
interfaces connecting markers on chromosome 3 and 17 and chromosome 1 and 17 respectively.
For systolic blood pressure and mean arterial pressure genetic interactions were detected between
loci on chromosome 1 and 3 as well as chromosome 10 and 17.

78



4.4 Co-expression as quantitative trait

An interpretation of these findings is, that the co-regulation of two transcripts by one of the
blood pressure regulating genes in the interface is perturbed. Each co-expression relationship is
perturbed by mutations at a different marker. Only if the two perturbations occur at the same
time and hence none of the two transcripts can be regulated by the blood pressure regulating
gene, a consequence for the measured blood pressure parameters can be observed.
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4 eQTL genes in gene expression networks

Table 4.5: Epistatic interactions on blood pressure phenotypes

trait markerl marker2 size F P q
Systolic_.BP gko-90c15_rp2_b1.262 J697333 53 12.94 1.38E—-03 0.06
Systolic_.BP rat109.029_j07.qlca_518 J697333 35 10.90 3.01E—-03 0.06
Mean_Arterial_Pressure gko-90c15_rp2_b1.262 J697333 53 10.02 4.05E—-03 0.06
Mean_Arterial_Pressure rat109.029_j07.qlca_518 J697333 35 7.70 1.06E—02 0.11
Carotid_Pulse_Pressure rat109.029_j07.qlca_518 J491517 75 7.49 1.15E—02 0.11
Carotid_Pulse_Pressure gko-90c15_rp2_b1_262 J697333 53 7.05 1.36E—02 0.11
Mean_Arterial_Pressure gnl—ti—896779106-19866866792872_234 rat110.010_c16.qlca_212 45 5.83 2.38E—-02 0.15
Systolic_.BP gnl—ti—896779106-19866866792872_234 rat110.010_c16.qlca_212 45 5.48 2.79E—02 0.15
Diastolic.BP rat109.029_j07.qlca_518 J697333 35 5.31 3.01E—-02 0.15
Systolic_.BP rat109.029_j07.qlca-518 J491517 75 5.15 3.25E—-02 0.15
Systolic_.BP rat109-029_j07.qlca-518 Cpn_3002671921 27 4.94 3.60E—02 0.15
Carotid-Pulse_Pressure gko-90c15_rp2_-b1.262 Cpn-3002671921 26 4.80 3.80E—02 0.15
Diastolic_.BP gko-90c15_rp2_b1.262 J697333 53 4.24 5.01E—02 0.18
Carotid-Pulse_Pressure rat109-029_j07.qlca-518 J697333 35 3.97 5.7TE—02 0.20
Mean_Arterial_Pressure rat109.029_j07.qlca_518 Cpn_3002671921 27 3.86 6.12E—02 0.20
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4.4 Co-expression as quantitative trait

4.4.8 Conclusions

In order to investigate consequences of genetic variations that abrogate connections in a co-
expression network we have developed a linear model for the mapping of co-expression as a
quantitative trait. Using this model we were able to construct a graph representing significant
genotype induced perturbations of co-expression. The topological analysis of the graph revealed
the presence of subnetworks, that are arranged in stars around central hub nodes. Furthermore
hub interfaces can be defined as sets of genes connecting two or more hubs with each other.
The hubs were eQTL transcripts where the presence of the eQTL perturbed the interaction
of the hubs with the genes it interacts with under normal conditions. Functional analysis of
the subnetworks revealed that the subnetworks are enriched in common GO categories. This
enrichment allowed us to place the eQTL hub genes into a functional context. Moreover, in cases
where annotation is missing, the functional enrichment of the subnetwork allows an educated
guess about the function of the hub gene. Hub interfaces were enriched for genes of regulatory
function. In particular we found six genes from the GO category “blood pressure regulation”
in the interfaces. Since interfaces not only connect hub genes, but also the genetic markers
that are associated with the edges, interfaces can be used as evidence for genetic interactions,
such as epistasis. Normally, a genome-wide search for epistatic interactions is underpowered
due to combinatorial issues. Using the molecular link provided by hub interfaces we were able
to test specific genetic interactions at markers that are connected via blood pressure regulating
genes. This analysis provided evidence for epistatic interactions on three major blood pressure
parameters.

These results provide interesting leads for the search of genetic interactions in human GWAS.
In these studies, usually 0.5 - 1 million SNPs are genotyped in large case-control cohorts. The
number of possible pairwise combinations of markers makes the exhaustive search for genetic
interactions impossible. However, translating the evidence for genetic interactions from animal
studies, like the one presented here, makes it feasible to test only interactions of a small number
of selected loci. These loci can be identified via sequence homology of the hub genes.

Genetic interactions can also be verified experimentally. There are two kinds of experiments
that could be performed. The purely genetic approach would be to generate a double congenic
line, which carries the disease alleles on a normotensive background, for each of the interactions.
Subsequently, phenotyping of the blood pressure parameters could confirm the genetic interac-
tion. The second approach would be a double knockout of the hub genes at these loci. Both are
not in the scope of this work.
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5 Discussion

5.1 Systematic profiling of regulatory variations speeds up
identification of disease genes

Classical forward genetic studies that associate phenotypes to molecular markers have severe
limitation for the identification of disease genes. Usually the associated regions are large chro-
mosomal regions often containing hundreds of genes. Refinement of these regions e.g. by con-
genic lines is very time consuming and relies on the occurrence of recombinations around the
associated region. The ultimate goal to identify causal genes or variations is rarely achieved.

These causal variations come mainly in two flavours: (1) coding variations that directly af-
fect the protein structure and therefore function and (2) regulatory variations that affect gene
expression. Since most of the genome is not occupied by protein coding genes it is instrumental
to assume that the causal variation is regulatory. Especially because genetic analysis of genome
wide gene expression can be used to assess the immediate consequence of regulatory variations,
namely that gene expression of a certain transcript is dependent on the genotype of a genetic
variant. Still, the genotyped variations are most likely not the functional variations but the
targets of these regulatory variations can be identified as the eQTL transcripts.

Moreover, if gene expression and physiological traits are analysed together candidate disease
genes that are targets of a regulatory variation can be identified. Section 3.4.1 and section
3.4.2 showed how this strategy was successfully applied in two rat populations. If combined
with a functional study of a knockout model, the identified candidate gene can be confirmed by
studying the effect of the knockout on the phenotype. In the case of Ephx2 this strategy was
successful and could even be translated to human patients.

However, there are certain limitations to this approach. Most importantly, the critical hy-
pothesis of a regulatory causal variation might not hold. In the worst case, this hypothesis might
even be misleading if one finds eQTLs in the disease associated regions that are not related to
the disease. Therefore, not only the analysis of correlation between physiological phenotype and
expression levels but also a careful assessment of possible causal scenarios is important [128, 129].
Other strategies when no obvious target of a regulatory variation can be identified are time con-
suming for instance the creation of congenic lines or sequencing of all candidate genes or they
require large scale efforts as the resequencing of the associated region (using capturing) or of
the complete parental genomes. However, with the current development of sequencing methods
[190] it can be expected that most of the important inbred model strains will be sequenced [191].
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5.2 Sequence analysis of cis-eQTL promoters identifies regulatory
mechanism

A second limitation of the eQTL approach to candidate gene identification is that only the
targets of regulatory variations and not the variations themselves can be identified. If a candidate
gene could be identified as a potential target of a regulatory variation it is straight forward to
sequence the putative proximal promoter region of that gene. As demonstrated in section 3.4.1
this approach can suffice to identify functional regulatory variations. However, mammalian gene
regulation can be driven by enhancer elements which are located up to several Mb from the gene
[192]. This makes it hard to apply this as a general strategy. Again, if a high resolution map of
genetic variations is available such as the output of resequencing projects [193, 194, 161] it is a
hard but feasible task to screen all potential regulatory variations around a gene.

Given that a regulatory variant has been identified, it is still unknown what regulatory mech-
anism is involved. Regulation by TFs is the best understood mechanism of transcriptional
regulation. TFs bind to TFBS in the proximal promoters or enhancers of their target genes
and activate or repress their transcription. Therefore genetic variations of TFBS sequences are
a potential mechanism that could explain the associated expression of target genes. In order to
characterise the regulatory potential of sequence variations we have developed the sTRAP tool
(section 4.2). It allows to predict which transcription factor is most likely affected by a sequence
variations. We have shown that known TF-SNP associations can be recovered and that these
predictions are specific. In the case of Ephz2 we could establish that the regulatory variation is
most likely triggered through the de novo creation of an API binding site and thus shed light
on the upstream regulator of this eQTL transcript.

An important limitation of our approach is that knowledge about the binding preferences
of many TFs is still uncharacterised. Therefore analysis are restricted to a limited set of TF's
[142, 195]. Large scale protein binding assays [150] are currently underway and likely to provide
a more complete set of binding models in the future. As mentioned before, the identification
of a functional regulatory variant still is a very demanding challenge [138] and has only been
reported scarcely. Although a complete catalog of genetic variations is an important step for the
identification of regulatory variations, more functional data like histone and DNA modification
patterns as generated by the Encode project [196] are needed to discriminate functional and
nonfunctional polymorphic regulatory sites. In addition cell type specific mechanisms [23] might
play an important role.

5.3 Knowledge based network analysis for the interpretation of
eQTL data

Most biological processes require the coordinated action of functionally related genes e.g. meta-
bolic pathways or signalling networks. Therefore the genes of a pathway have to be expressed
at the same time. This leads to the simplifying assumption that genes of a pathway are also
coregulated. In eQTL studies large sets of genes that are all regulated by a common genetic
variation can be observed as trans-clusters (section 3.3). Assuming that the coregulation is a
consequence of related function trans-clusters might represent genetically regulated pathways.
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5.4 Gene expression networks for the analysis of polygenic traits

So there are two related problems: (1) how can trans-clusters be interpreted in terms of function
and (2) in terms of regulatory mechanisms.

Functional interpretation can be facilitated by the use of enrichment analysis (section 2.2).
For large trans-clusters with many annotated genes this approach is very fruitful. However,
in some experiments only smaller trans-clusters containing a small number of annotated genes
could be detected. In those cases the main limitation of the classical approach is the arbitrary
choice of a significance threshold to define the trans-clusters. In section 4.1 we have proposed a
simple extension of gene set enrichment analysis for genetic mapping to overcome this problem.

The main limitation of functional enrichment analyses is the incompleteness of the functional
annotation for instance in GO. If unknown pathways show up in trans-clusters, the analysis in
terms of known pathways cannot aid the interpretation. To alleviate this limitation and provide
functional annotation of previously uncharacterised genes remains one of the greatest challenges
in genome research today.

Coregulated pathways also imply a common regulatory mechanism. Since regulation by TFs
is the best understood mechanism of transcriptional regulation we have set out to identify trans-
clusters that are coregulated by a common TF. In section 4.3 we have introduced a two step
procedure to identify TFs that are themselves targets of regulatory variations and transmit this
effect on to their direct target genes. This allowed to define a TF regulated network for Irf7.
Additional functional analysis related this network to immune response which was also supported
by an analysis of cell type specificity which localised the network to macrophages and immune
related cells. Moreover, the regulatory variation could be narrowed down to a SNP in the 5’
UTR of Ebi2 which was shown to regulate Irf7 expression in siRNA knockdown experiments in
cell culture.

Analyses assuming a common transcription factor suffers from several limitations. First only
a small number of TF-target relations are well studied. Therefore target predictions are used.
However, these predictions are not very specific leading to a large number of false positive predic-
tions. Here we tried to overcome this problem by the statistical approach of enrichment analysis.
The second problem discussed in the previous section is that only a restricted number of TFs
are characterised with respect to their binding preferences. Thirdly coregulation might involve
several TFs where each might only regulate a small number of direct targets, making it difficult
to be detectable by an enrichment approach. Finally the assumption that TFs themselves have
to be genetically regulated might be too stringent. It might well be that other mechanisms
than transcriptional regulation are responsible for a change of TF activity such as activation by
phosphorylation or other cofactors.

5.4 Gene expression networks for the analysis of polygenic traits

The first results of GWAS [6] were reducing the initial enthusiasm about GWAS mainly because
the effect sizes of associated loci were rather small [24]. For cardiovascular traits the first GWAS
yielded no associations [6] and only meta analysis with very large sample sizes (34,433 and 29,136
individuals respectively) led to significant associations [197, 198] for hypertension and elevated
blood pressure. These results are interpreted as a confirmation of the polygenic inheritance
of common diseases [24]. Although it could also be evidence for the hypothesis that common
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diseases are heterogeneous and different loci contribute in different families [199].

Using functional gene expression networks for the interpretation of GWAS results constitutes
one way to characterise polygenic inheritance. Analogous to the threshold free analysis of
microarray data introduced by GSEA (section 2.2.2) one can analyse the many loci of small
effects in GWAS with respect to functional categories or previously characterised gene expression
networks. If such a network is enriched for disease associated loci one would interpret this as
evidence for a functional role of the network in the disease process. In section 4.3.8 we have
applied this approach by using the Irf7 regulated immune network from the rat in order to
interpret human T1D GWAS data. We could show that our gene expression network captured
the disease associated genes more specifically than just using functional annotation from GO. In
addition we were also able to show disease association of the human regulatory locus that was
translated from the rat regulatory locus we had identified using the TF centred analysis of trans-
eQTLs in the rat. These studies show how the analysis of genetically driven gene expression
networks in rats can be used to generate hypothesis about disease processes in humans.

Gene networks can also be used to guide analyses of more complex modes of inheritance such
as epistasis. Using a network derived from genotype dependent perturbations of coexpression
of genes we have inferred connections between genetic markers which were otherwise completely
unconnected; i.e. there was no genetic linkage between these markers. The association of these
specific marker pairs through the network was used to test for epistatic interactions affecting
quantitative phenotypes. In particular we were interested in blood pressure phenotypes and
identified significant epistatic interactions for these traits.

The problem with these network based approaches is the validation of hypothesis. The back-
ward genetic strategy which works extremely well for single candidate genes is very hard to
implement when multiple genes need to be perturbed. This hinders the validation of predicted
epistatic interactions as well as the characterisation of essential parts of the gene expression
networks. In the case of epistatic interactions this problem might be solvable because only two
genes need to be perturbed simultaneously. General gene expression networks can be a useful
tool for the generation of hypothesis. To be testable however these hypothesis need to state
certain molecular mechanisms for which appropriate assay systems can be implemented.

5.5 Conclusions

Overall this thesis describes an extensive set of tools and strategies for the analysis of regulatory
genetic variations. The starting point was the identification of target genes of potential regula-
tory variations as eQTL transcripts which has been described previously. We provide ways to
address the following resulting questions about these genes. (1) What is the role of the eQTL
transcript in the context of a disease model, (2) which is the cis-regulatory element affected
by the genetic variant and which transcription factor is the upstream regulator of the eQTL
transcript, (3) what are the trans-regulatory factors and how are their effects mediated to their
target genes, and (4) what is the functional context that eQTL transcripts operate in? Moreover,
we used gene expression networks derived from the analysis of the genetics of gene expression in
rats to connect human disease association data to molecular function in an attempt to interpret
the genetics of polygenic traits.
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Figure A.1: There are three possible causal scenarios where genotype dependent co-

108

expression can arise. (1) the simplest one is, that G and R regulate E and
one allele at G overrides the regulatory action of R. This leads to differential co-
expression between E and R. (2) the two other models include a second downstream
transcript T'. If F is regulated by R and G, as above, but additionally R is regulating
T, then we expect differential co-expression between F and R as well as between E
and T. (3) if E is regulating T and we observe differential co-expression between
FE and T and the expression of F is dependent on GG, there must exist a regulator
R upstream of T that overrides the regulatory action of E. In this case there is
differential co-expression between E and T', and between E and R.
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Table A.1: GO enrichment in subnetworks

hub 1D Pvalue OddsRatio ExpCount Count Size Term

1376780-at G0O:0004888 5.54E—04 3.02 5.49 15 482 transmembrane  receptor
activity

1376780-at G0:0004871 5.71E—04 2.36 12.35 27 1205 signal transducer activity

1376780-at GO:0004872 6.91E—-04 2.70 7.30 18 659 receptor activity

1376780-at G0O:0003690 1.89E—03 8.54 0.54 4 44 double-stranded DNA
binding

1376780-at GO0:0001584 2.51E—-03 3.74 2.35 8 197 rhodopsin-like receptor ac-
tivity

1376780-at GO0:0015291 2.70E—03 4.74 1.40 6 116 porter activity

1376780_at GO0:0015290 2.82E—-03 4.70 1.41 6 117 electrochemical potential-
driven transporter activity

1376780_at GO0:0005543 3.50E—03 7.11 0.63 4 52 phospholipid binding

1376780_at G0O:0004930 5.09E—03 3.05 3.18 9 270 G-protein coupled receptor
activity

1376780_at GO0:0001614 7.23E—-03 8.43 0.40 3 33 purinergic nucleotide re-
ceptor activity

1376780_at G0O:0001608 7.23E—-03 8.43 0.40 3 33 nucleotide receptor activ-
ity, G-protein coupled

1376780-at G0:0016502 7.23E—-03 8.43 0.40 3 33 nucleotide receptor activ-
ity

1376780-at G0:0045028 7.23E—-03 8.43 0.40 3 33 purinergic nucleotide re-
ceptor activity, G-protein
coupled

1376780-at G0:0043566 8.19E—-03 5.49 0.80 4 66 structure-specific DNA
binding

1376780-at G0O:0008289 8.31E—03 3.70 1.75 6 146 lipid binding

1376780_at GO:0008406 8.42E—04 10.84 0.44 4 36 gonad development

1376780_at GO0:0045137 8.42E—04 10.84 0.44 4 36 development of primary
sexual characteristics

1376780_at GO:0007154 2.68E—03 2.04 16.06 32 1714 cell communication

1376780_at GO0:0007548 2.69E—03 7.69 0.59 4 49 sex differentiation

1376780_at G0:0019226 3.37TE—-03 3.06 3.54 10 307 transmission of nerve im-
pulse

1376780-at GO:0007186 3.59E—-03 2.87 4.14 11 362 G-protein coupled receptor
protein signaling pathway

1376780_at GO:0007267 4.21E-03 2.58 5.40 13 481 cell-cell signaling

1376780-at G0O:0009987 5.64E—03 Inf 33.93 70 5414 cellular process

1376780-at GO:0050877 7.4TE—03 2.39 5.75 13 515 neurophysiological process

1376780-at GO:0007165 8.60E—-03 1.89 14.19 27 1464 signal transduction

1376780-at GO:0007166 9.76E—03 2.13 777 16 719 cell surface receptor linked
signal transduction

1389690_at G0O:0003690 2.16E—04 6.66 1.28 7 44 double-stranded DNA
binding

1389690_at G0:0043566 5.27TE—04 4.87 1.92 8 66 structure-specific DNA
binding

1389690_at GO0:0015280 1.15E—03 20.75 0.23 3 8 amiloride-sensitive sodium
channel activity

1389690_at GO:0015276 2.59E—03 4.16 1.92 7 66 ligand-gated ion channel
activity

1389690_at G0:0008289 2.91E—-03 2.89 4.19 11 146 lipid binding

1389690_at GO:0015268 6.66E—03 2.20 7.27 15 258 alpha-type channel activ-
ity

1389690-_at G0O:0015267 6.90E—03 2.19 7.30 15 259 channel or pore class
transporter activity

1389690_at G0O:0005216 7.85E—03 2.22 6.73 14 238 ion channel activity

1389690_at GO:0046872 8.13E—-03 1.59 26.39 43 1058 metal ion binding

1389690_at GO:0043167 8.13E—03 1.59 26.39 43 1058 ion binding

1389690_at GO:0007588 2.67TE—04 7.93 0.95 6 33 excretion

1389690_at G0O:0006607 7.05E—04 26.36 0.20 3 7 NLS-bearing substrate im-

port into nucleus

1389690_at GO:0006821 2.98E—-03 7.84 0.63 4 22 chloride transport

1389690_at GO0:0016079 3.53E—-03 7.43 0.66 4 23 synaptic vesicle exocytosis

1389690_at GO:0048489 5.49E—03 4.92 1.18 5 41 synaptic vesicle transport

1389690_at GO0:0016338 6.34E—03 9.57 0.40 3 14 calcium-independent cell-
cell adhesion

1374583_at GO:0006576 4.89E—-03 9.76 0.35 3 52 biogenic amine
metabolism

1369836_at G0:0004888 5.68E—05 3.67 5.04 16 482 transmembrane  receptor
activity

1369836_at G0O:0008289 1.97E—04 5.69 1.61 8 146 lipid binding

1369836_at GO:0004872 2.26E—-04 3.02 6.71 18 659 receptor activity

1369836-at GO:0001584 3.04E—04 4.74 2.15 9 197 rhodopsin-like receptor ac-
tivity

1369836_at G0O:0004930 7.38E—04 3.82 2.92 10 270 G-protein coupled receptor
activity

1369836-at GO0:0030594 1.10E—03 7.16 0.79 5 71 neurotransmitter receptor
activity

1369836 at G0O:0003690 1.38E—03 9.35 0.49 4 44 double-stranded DNA
binding

1369836_at GO0:0042165 1.59E—03 6.56 0.86 5 7 neurotransmitter binding

1369836_at GO0:0008528 2.21E—03 6.05 0.92 5 83 peptide receptor activity,

G-protein coupled
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1369836_at GO0:0001653 2.33E—-03 5.97 0.94 5 84 peptide receptor activity

1369836 at GO:0005543 2.57TE—03 7.78 0.58 4 52 phospholipid binding

1369836 at GO0:0001614 5.71IE—03 9.22 0.37 3 33 purinergic nucleotide re-
ceptor activity

1369836_at G0O:0001608 5.71E—-03 9.22 0.37 3 33 nucleotide receptor activ-
ity, G-protein coupled

1369836_at GO0:0016502 5.71E—-03 9.22 0.37 3 33 nucleotide receptor activ-
ity

1369836_at G0O:0045028 5.71E—-03 9.22 0.37 3 33 purinergic nucleotide re-
ceptor activity, G-protein
coupled

1369836_at GO:0015276 6.09E—-03 6.01 0.74 4 66 ligand-gated ion channel
activity

1369836_at GO:0043566 6.09E—03 6.01 0.74 4 66 structure-specific DNA
binding

1369836 at GO:0042277 8.90E—03 4.27 1.27 5 115 peptide binding

1369836_at GO0O:0008227 9.12E—-03 7.68 0.44 3 39 amine receptor activity

1369836_at GO0:0004871 9.46E—03 1.96 11.33 22 1205 signal transducer activity

1369836 at GO0:0005230 9.79E—03 7.47 0.45 3 40 extracellular ligand-gated
ion channel activity

1369836_at GO:0007154 1.53E—04 2.58 14.67 33 1714 cell communication

1369836_at GO:0007186 4.76E—04 3.57 3.78 12 362 G-protein coupled receptor
protein signaling pathway

1369836_at GO:0007267 5.71E—04 3.18 4.93 14 481 cell-cell signaling

1369836_at G0:0043085 8.62E—-04 6.04 1.12 6 103 positive regulation of en-
zyme activity

1369836_at G0O:0048489 9.88E—04 10.32 0.45 4 41 synaptic vesicle transport

1369836_at G0O:0019226 1.70E—03 3.41 3.24 10 307 transmission of nerve im-
pulse

1369836-at GO0:0016079 1.91E—-03 14.12 0.25 3 23 synaptic vesicle exocytosis

1369836_at GO:0007165 1.99E—03 2.20 12.96 27 1464 signal transduction

1369836 at G0:0019933 2.65E—03 5.80 0.96 5 88 cAMP-mediated signaling

1369836_at GO0:0001505 2.93E—-03 5.66 0.98 5 90 regulation of neurotrans-
mitter levels

1369836_at GO:0050877 3.37TE—03 2.67 5.25 13 515 neurophysiological process

1369836_at GO:0007269 3.60E—03 7.05 0.64 4 58 neurotransmitter secretion

1369836 at GO:0007268 3.72E—03 3.24 3.03 9 286 synaptic transmission

1369836 at GO:0007166 3.89E—-03 2.40 7.10 16 719 cell surface receptor linked
signal transduction

1369836_at GO0:0045055 4.85E—-03 6.45 0.69 4 63 regulated secretory path-
way

1369836_at G0O:0045761 6.97TE—03 8.54 0.40 3 36 regulation of adenylate cy-
clase activity

1369836_at G0O:0048609 7.42E-03 5.67 0.78 4 71 reproductive  organismal
physiological process

1369836_at G0O:0019935 7.43E—-03 4.48 1.22 5 112 cyclic-nucleotide-mediated
signaling

1369836_at GO:0007189 7.53E—03 8.29 0.41 3 37 G-protein signaling,
adenylate cyclase activat-
ing pathway

1369836_at GO0:0031279 7.53E—-03 8.29 0.41 3 37 regulation of cyclase activ-
ity

1369836_at GO0:0051339 7.53E—03 8.29 0.41 3 37 regulation of lyase activity

1369836 at GO:0050876 7.79E—-03 5.58 0.79 4 72 reproductive physiological
process

1369836_at GO:0007188 8.98E—-03 5.34 0.82 4 75 G-protein signaling, cou-
pled to cAMP nucleotide
second messenger

1369836_at GO:0050874 9.74E—-03 1.95 11.86 23 1311 organismal  physiological
process

1376840_at GO:0003677 3.37TE—-03 5.52 1.47 6 661 DNA binding

1376840_at GO:0003676 4.86E—03 4.68 2.05 7 964 nucleic acid binding

1376840_at G0O:0006139 9.24E—-03 4.40 2.26 7 1225 nucleobase, nucleoside, nu-
cleotide and nucleic acid
metabolism

1384717_at G0O:0003682 2.28E—-04 15.61 0.31 4 39 chromatin binding

1384717_at GO0:0016563 1.83E—03 5.22 1.29 6 167 transcriptional activator
activity

1384717_at GO:0030246 9.37TE—03 5.30 0.83 4 106 carbohydrate binding

1384717_at GO:0007167 2.46E—-03 4.92 1.37 6 177 enzyme linked receptor
protein signaling pathway

1384717 at GO:0006351 4.34E—03 2.78 4.74 12 664 transcription, DNA-
dependent

1370988_at GO:0003779 1.93E—03 8.66 0.54 4 114 actin binding

1370988_at GO:0008092 2.37TE—-03 6.20 0.94 5 202 cytoskeletal protein bind-
ing

1370988_at GO:0006937 2.37TE—-04 30.29 0.12 3 29 regulation of muscle con-
traction

1370988_at G0O:0042060 4.04E—04 13.62 0.36 4 84 wound healing

1370988_at GO:0050817 1.06E—03 17.45 0.21 3 48 coagulation

1370988_at GO:0007596 1.06E—03 17.45 0.21 3 48 blood coagulation

1370988_at GO:0007599 1.27E—03 16.35 0.22 3 51 hemostasis

1370988_at GO:0050878 3.29E—-03 11.50 0.30 3 71 regulation of body fluids

1370988_at GO:0007017 4.45E—03 10.27 0.34 3 79 microtubule-based process
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1370988_at GO:0006936 9.80E—-03 7.62 0.44 3 105 muscle contraction

1370114 a_at GO:0006607 3.02E—-07 435.75 0.02 3 7 NLS-bearing substrate im-
port into nucleus

1370114_a_at GO:0006606 1.25E—-04 40.26 0.10 3 46 protein import into nu-
cleus

1370114_a_at GO:0051170 1.25E—04 40.26 0.10 3 46 nuclear import

1370114_a_at G0:0017038 1.60E—04 36.81 0.11 3 50 protein import

1370114_a_at GO:0051169 4.36E—04 25.73 0.15 3 70 nuclear transport

1370114_a_at G0O:0006913 6.22E—04 22.65 0.17 3 79 nucleocytoplasmic trans-
port

1370114_a_at G0O:0006605 2.81E—03 13.12 0.29 3 133 protein targeting

1379896_at G0O:0008202 1.62E—05 41.51 0.17 4 114 steroid metabolism

1379896_at GO:0008610 5.20E—05 30.44 0.23 4 153 lipid biosynthesis

1379896_at G0O:0006694 6.42E—05 55.44 0.08 3 55 steroid biosynthesis

1379896_at G0:0044255 6.72E—05 20.52 0.50 5 339 cellular lipid metabolism

1379896 at GO:0006629 1.60E—04 16.89 0.59 5 406 lipid metabolism

1379896_at GO0O:0044249 8.55E—03 7.17 0.83 4 588 cellular biosynthesis

1373232_at GO:0008289 6.02E—03 6.18 0.73 4 146 lipid binding

1373232_at GO:0007267 1.44E—03 4.50 2.14 8 481 cell-cell signaling

1373232_at GO:0007268 2.00E—03 5.38 1.32 6 286 synaptic transmission

1373232_at GO0:0019226 2.86E—03 4.98 1.41 6 307 transmission of nerve im-
pulse

1373232_at GO:0050877 9.26E—-03 3.47 2.28 7 515 neurophysiological process

1376958_at G0:0005319 3.04E—10 19.48 0.86 11 38 lipid transporter activity

1376958_at G0O:0004497 1.15E—-07 9.88 1.43 11 64 monooxygenase activity

1376958_at GO:0016712 1.83E—07 16.99 0.68 8 30 oxidoreductase activity,
acting on paired donors,
with incorporation or
reduction of molecular
oxygen, reduced flavin or
flavoprotein as one donor,
and incorporation of one
atom of oxygen

1376958_at GO0:0050381 1.83E—07 16.99 0.68 8 30 unspecific monooxygenase
activity

1376958_at GO:0016705 1.05E—06 7.68 1.77 11 79 oxidoreductase activity,
acting on paired donors,
with incorporation or
reduction of molecular
oxygen

1376958_at GO0:0016491 1.88E—06 3.28 9.09 26 430 oxidoreductase activity

1376958_at G0O:0008289 1.79E—05 4.67 3.23 13 146 lipid binding

1376958_at GO:0017127 4.19E—-05 135.36 0.09 3 4 cholesterol transporter ac-
tivity

1376958_at G0O:0008236 9.76E—05 5.53 1.90 9 85 serine-type peptidase ac-
tivity

1376958_at GO0:0015248 1.03E—04 67.67 0.11 3 5 sterol transporter activity

1376958_at GO:0004866 1.31E—04 7.18 1.17 7 52 endopeptidase inhibitor
activity

1376958_at G0O:0004857 1.70E—04 4.21 2.97 11 134 enzyme inhibitor activity

1376958_at GO0:0030414 1.88E—04 6.73 1.24 7 55 protease inhibitor activity

1376958_at G0O:0004867 2.71E—-04 10.38 0.61 5 27 serine-type endopeptidase
inhibitor activity

1376958_at GO:0005507 4.53E—04 9.13 0.68 5 30 copper ion binding

1376958_at GO:0016789 7.06E—04 5.29 1.52 7 68 carboxylic ester hydrolase
activity

1376958_at GO:0004252 9.17TE—04 5.04 1.59 7 71 serine-type endopeptidase
activity

1376958_at G0O:0046906 9.44E—-04 7.60 0.79 5 35 tetrapyrrole binding

1376958_at G0O:0020037 9.44E—-04 7.60 0.79 5 35 heme binding

1376958_at G0:0003824 1.19E—03 1.73 37.79 69 2316 catalytic activity

1376958_at GO:0005215 1.60E—03 1.97 15.68 30 783 transporter activity

1376958_at GO:0046872 2.20E—03 1.83 20.36 37 1058 metal ion binding

1376958_at GO:0043167 2.20E—03 1.83 20.36 37 1058 ion binding

1376958_at GO:0005543 5.60E—03 4.84 1.17 5 52 phospholipid binding

1376958 at G0O:0008395 5.7T6E—03 9.65 0.38 3 17 steroid hydroxylase activ-
ity

1376958_at G0:0030234 7.32E—-03 2.19 7.23 15 337 enzyme regulator activity

1376958_at G0O:0030300 2.58E—-08 235.54 0.13 5 6 regulation of cholesterol
absorption

1376958_at GO:0006953 7.60E—08 27.89 0.42 7 19 acute-phase response

1376958_at GO0:0044241 2.32E—-07 78.48 0.18 5 8 lipid digestion

1376958_at G0:0030299 2.32E—-07 78.48 0.18 5 8 cholesterol absorption

1376958_at GO:0006956 4.7TE—-07 19.67 0.53 7 24 complement activation

1376958_at GO:0006958 6.09E—-07 28.45 0.35 6 16 complement activation,
classical pathway

1376958_at G0:0050892 1.01E—06 47.07 0.22 5 10 intestinal absorption

1376958 at G0O:0009613 2.71E—-06 3.84 6.04 20 287 response to pest, pathogen
or parasite

1376958_at G0O:0006066 2.90E—06 4.87 3.63 15 169 alcohol metabolism

1376958_at G0O:0006629 4.53E—-06 3.28 8.38 24 406 lipid metabolism

1376958 at GO:0051707 5.08E—06 3.67 6.28 20 299 response to other organism

1376958_at GO:0006955 5.15E—06 3.25 8.43 24 409 immune response

1376958 at G0O:0008202 5.26E—06 5.78 2.47 12 114 steroid metabolism
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A.2 Supplementary tables

lipid transport

defense response

innate immune response
response to biotic stimulus
response to stress
coagulation

blood coagulation

wound healing
complement activation, al-
ternative pathway

sterol metabolism
hemostasis

regulation of body fluids
humoral defense mecha-
nism (sensu Vertebrata)
aromatic compound
metabolism

lipoprotein metabolism
cholesterol transport
sterol transport

humoral immune response
response to wounding
organismal  physiological
process

carboxylic acid
metabolism

organic acid metabolism
positive regulation of

phagocytosis

nitrogen compound
biosynthesis

amine biosynthesis
regeneration

tissue regeneration
regulation of phagocytosis
regulation of inflammatory
response

secondary metabolism
positive regulation of en-
docytosis

response to external stim-
ulus

regulation of lipid
metabolism

iron ion homeostasis
cellular lipid metabolism
amino acid and derivative
metabolism

cholesterol metabolism
amino acid biosynthesis
developmental growth
catabolism

inflammatory response
digestion

response to stimulus
steroid biosynthesis

lipid catabolism

negative regulation of
organismal physiological
process

phagocytosis

regulation of organismal
physiological process
glutamine family amino
acid metabolism
circulation

transition metal ion home-
ostasis

heterocycle metabolism
pattern specification
porter activity
electrochemical potential-
driven transporter activity
carrier activity

symporter activity

anion transporter activity
transporter activity

ion transporter activity
organic acid transporter
activity

carboxylic acid  trans-
porter activity

sodium ion binding
inorganic  anion  trans-
porter activity
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1379497 _at GO0:0015370 3.61E—04 25.79 0.14 3 30 solute:sodium symporter
activity

1379497_at GO0:0031420 4.25E—04 9.29 0.65 5 138 alkali metal ion binding

1379497_at GO0:0015294 6.23E—-04 21.08 0.17 3 36 solute:cation symporter
activity

1379497_at GO:0015171 7.32E—-04 19.87 0.18 3 38 amino acid transporter ac-
tivity

1379497 _at GO:0005275 1.73E—03 14.46 0.24 3 51 amine transporter activity

1379497_at G0O:0004252 4.46E—03 10.17 0.34 3 71 serine-type endopeptidase
activity

1379497_at G0O:0008236 7.3TE—03 8.42 0.40 3 85 serine-type peptidase ac-
tivity

1379497_at GO:0015849 9.86E—05 19.97 0.25 4 52 organic acid transport

1379497_at GO:0046942 9.86E—05 19.97 0.25 4 52 carboxylic acid transport

1379497_at GO:0006820 1.97TE—04 16.50 0.30 4 62 anion transport

1379497_at GO:0006814 2.09E—-04 16.21 0.30 4 63 sodium ion transport

1379497 _at GO:0006811 3.61E—04 5.66 1.77 8 391 ion transport

1379497 _at GO:0006865 4.92E—-04 23.08 0.16 3 33 amino acid transport

1379497_at GO:0015698 1.08E—03 17.28 0.21 3 43 inorganic anion transport

1379497_at GO:0015837 1.49E—03 15.34 0.23 3 48 amine transport

1379497_at G0:0006810 6.22E—03 2.85 5.34 13 1365 transport

1379497_at GO:0015672 9.563E—-03 5.42 0.83 4 177 monovalent inorganic
cation transport

1376968_at GO:0008324 6.63E—03 6.67 0.76 4 348 cation transporter activity

1376968_at G0O:0006936 1.98E—06 35.71 0.23 5 105 muscle contraction

1376968_at G0O:0006816 4.18E—04 26.13 0.15 3 69 calcium ion transport

1376968_at GO:0015674 1.17E—03 18.06 0.22 3 98 di-, tri-valent inorganic
cation transport

1373254 at GO:0005319 1.79E—13 77.97 0.21 9 38 lipid transporter activity

1373254 _at G0O:0008289 9.96E—06 11.47 0.78 7 146 lipid binding

1373254_at GO:0005215 2.31E—05 5.07 3.78 14 783 transporter activity

1373254 at GO0:0004252 3.43E—-05 16.21 0.38 5 71 serine-type endopeptidase
activity

1373254 at GO0:0008236 8.20E—-05 13.35 0.46 5 85 serine-type peptidase ac-
tivity

1373254 _at GO:0004175 2.98E—-03 5.80 0.98 5 186 endopeptidase activity

1373254_at GO:0004857 5.58E—03 6.29 0.71 4 134 enzyme inhibitor activity

1373254_at GO:0016789 5.71E—03 9.22 0.37 3 68 carboxylic ester hydrolase
activity

1373254 _at G0:0042803 6.19E—03 8.94 0.38 3 70 protein homodimerization
activity

1373254_at G0:0030234 8.52E—03 3.85 1.74 6 337 enzyme regulator activity

1373254 _at G0O:0006958 3.24E—-08 82.09 0.10 5 16 complement activation,
classical pathway

1373254 _at G0O:0006953 8.51E—08 64.46 0.12 5 19 acute-phase response

1373254 at G0O:0009613 9.93E—08 9.63 1.75 12 287 response to pest, pathogen
or parasite

1373254 at GO:0051707 1.56E—07 9.20 1.82 12 299 response to other organism

1373254_at GO0:0042157 2.21E-07 30.09 0.27 6 43 lipoprotein metabolism

1373254 at GO:0006956 3.04E—-07 47.46 0.15 5 24 complement activation

1373254 at GO:0050817 4.34E—-07 26.49 0.30 6 48 coagulation

1373254_at GO:0007596 4.34E—-07 26.49 0.30 6 48 blood coagulation

1373254 _at G0:0045087 4.66E—07 42.92 0.17 5 26 innate immune response

1373254_at GO:0006955 6.25E—07 7.38 2.44 13 409 immune response

1373254_at GO:0007599 6.28E—07 24.71 0.32 6 51 hemostasis

1373254 _at GO:0006952 1.20E—-06 6.93 2.57 13 433 defense response

1373254 _at GO:0009607 2.17E—06 6.54 2.70 13 456 response to biotic stimulus

1373254 _at GO:0006957 2.34E—-06 255.35 0.03 3 5 complement activation, al-
ternative pathway

1373254 at G0:0006869 3.36E—06 27.26 0.24 5 38 lipid transport

1373254 at GO:0050878 4.56E—06 17.05 0.45 6 71 regulation of body fluids

1373254 at G0O:0030300 4.65E—-06 170.21 0.04 3 6 regulation of cholesterol
absorption

1373254 at G0O:0006950 7.82E—-06 5.19 3.92 15 687 response to stress

1373254_at GO:0009611 7.89E—06 7.34 1.75 10 288 response to wounding

1373254 at G0O:0042060 1.22E—-05 14.17 0.53 6 84 wound healing

1373254_at GO:0044241 1.29E—-05 102.09 0.05 3 8 lipid digestion

1373254 at G0:0030299 1.29E—-05 102.09 0.05 3 8 cholesterol absorption

1373254_at GO0O:0016064 1.97E—05 18.31 0.34 5 54 humoral defense mecha-
nism (sensu Vertebrata)

1373254_at GO:0050892 2.74E—05 72.89 0.06 3 10 intestinal absorption

1373254_at GO:0009605 6.08E—05 5.69 2.19 10 364 response to external stim-
ulus

1373254 _at GO:0050874 1.12E—-04 3.67 6.83 19 1311 organismal  physiological
process

1373254 _at GO:0006959 1.49E—-04 11.59 0.52 5 82 humoral immune response

1373254 _at GO:0008015 5.89E—04 8.46 0.69 5 110 circulation

1373254 _at G0O:0050896 5.99E—04 3.21 6.47 17 1228 response to stimulus

1373254 _at GO:0050776 2.19E—03 8.23 0.55 4 88 regulation of immune re-
sponse

1373254 at GO0O:0051239 2.36E—03 5.04 1.35 6 220 regulation of organismal
physiological process

1373254 _at GO:0051336 2.44E—-03 12.68 0.27 3 43 regulation of hydrolase ac-
tivity
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1373254 _at
1373254_at
1373254_at
1373254_at
1373254 at

1371194_at
1371194 at

1371194 at
1373697_at

GO:0006954
G0:0006629
GO:0007586
GO:0016042
GO:0051242

G0O:0048513
GO:0050874

GO:0007275
G0O:0006936

2.51E-03
3.32E—-03
4.44E-03
4.93E—-03
8.69E—-03

2.46E—03
2.80E—03

4.10E—-03
1.45E—-06

6.00
3.74
10.13
9.74
3.14

14.87
17.29

15.55
113.27

0.95
2.42
0.34
0.35
2.81

(A 00 W w o v

Ll

152
406
53
55
476

694
1311

1421
105
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inflammatory response
lipid metabolism
digestion

lipid catabolism

positive regulation of cel-
lular physiological process
organ development
organismal physiological
process

development

muscle contraction
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Table A.2: Functional coherence of hubs and their subnetwork. Hub GO terms lists the GO terms the hub transcript is annotated with,
enrichment GO terms lists the GO terms that are enriched in the subnetwork of the hub. MF, BP and CC denote the minimal
distance of the hub GO terms to the enrichment GO terms in each of the ontologies (MF: molecular function, BP: biological process,
CC: celular compartment).

Hub Hub GO terms Enrichment GO terms MF BP CC
1376780-at NA G0:0004888, GO:0004871, NA NA NA

G0:0004872, GO:0003690,

GO0:0001584, GO:0015291,

G0:0015290, GO:0005543,

G0:0004930, GO:0001614,

G0:0001608, GO:0016502,

G0:0045028, GO:0043566,

G0:0008289, GO:0008406,

G0:0045137, GO:0007154,

G0:0007548, GO:0019226,

G0:0007186, GO:0007267,

G0:0009987, GO:0050877,

G0:0007165, GO:0007166
1389690_at NA G0:0003690, GO:0043566, NA NA NA

G0:0015280, GO:0015276,

G0O:0008289, GO:0015268,

G0:0015267, GO:0005216,

G0:0046872, GO:0043167,

G0O:0007588, GO:0006607,

G0:0006821, GO:0016079,

G0O:0048489, GO:0016338
1374583_at NA GO:0006576 NA NA NA
1369836_at GO:0005737 G0:0004888, GO:0008289, Inf Inf Inf

G0:0004872, GO:0001584,

G0:0004930, GO:0030594,

GO:0003690, GO:0042165,

G0:0008528, GO:0001653,

G0:0005543, GO:0001614,

G0:0001608, GO:0016502,

G0:0045028, GO:0015276,

G0:0043566, GO:0042277,

G0:0008227, GO:0004871,

G0:0005230, GO:0007154,

G0:0007186, GO:0007267,

G0O:0043085, GO:0048489,

G0:0019226, GO:0016079,

GO0:0007165, GO:0019933,

G0:0001505, GO:0050877,

GO0:0007269, GO:0007268,

GO0:0007166, GO:0045055,

G0:0045761, GO:0048609,

G0:0019935, GO:0007189,

G0:0031279, GO:0051339,

GO0:0050876, GO:0007188,

GO:0050874
1376840_at NA G0:0003677, GO:0003676, NA NA NA
G0:0006139
1371776_at NA NA NA NA
1384717_at G0O:0003677, GO:0003700, G0:0003682, GO:0016563, 2 1 Inf
GO:0005515, GO:0005634, G0O:0030246, GO:0007167,
GO:0006355 GO:0006351
1370988_at NA G0O:0003779, GO:0008092, NA NA NA

G0:0006937, GO:0042060,
G0:0050817, GO:0007596,
G0:0007599, GO:0050878,
G0:0007017, GO:0006936
1371960_at G0:0006959 Inf  Inf Inf
1370114_a_at  GO:0005158, GO:0005159,  GO:0006607, GO:0006606, Inf 7 Inf
G0:0005515, GO:0005942,  GO:0051170, GO:0017038,
G0:0005942, GO:0006468,  GO:0051169, GO:0006913,
G0:0008022, GO:0008286,  GO:0006605
G0:0016303, GO:0016303,
G0:0030183, GO:0035014,
G0:0035030, GO:0043066,
G0:0043560, GO:0046854,
G0:0048009
1379896_at G0:0003676, GO:0004386,  GO:0008202, GO:0008610,  Inf  Inf  Inf
G0:0005524, GO:0008026 G0:0006694, GO:0044255,
G0:0006629, GO:0044249
1373232_at NA G0:0008289, GO:0007267, NA NA NA
G0:0007268, GO:0019226,
G0:0050877
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1368597_at G0:0000122, GO:0000166, Inf Inf  Inf
G0:0000287, GO:0004674,
G0:0004674, GO:0005524,
G0:0005634, GO:0005737,
G0:0005829, GO:0006468,
G0:0006468, GO:0007049,
G0:0007243, GO:0007346,
G0:0016564, GO:0016740,
G0:0045595
1376958_at NA G0:0005319, GO:0004497, NA NA NA
G0:0016712, GO:0050381,
G0:0016705, GO:0016491,
G0:0008289, GO:0017127,
G0:0008236, GO:0015248,
G0:0004866, GO:0004857,
G0:0030414, GO:0004867,
G0:0005507, GO:0016789,
G0:0004252, GO:0046906,
G0:0020037, GO:0003824,
G0:0005215, GO:0046872,
G0:0043167, GO:0005543,
G0:0008395, GO:0030234,
G0:0030300, GO:0006953,
G0:0044241, GO:0030299,
G0:0006956, GO:0006958,
G0:0050892, GO:0009613,
G0:0006066, GO:0006629,
G0:0051707, GO:0006955,
G0:0008202, GO:0006869,
G0:0006952, GO:0045087,
G0:0009607, GO:0006950,
G0:0050817, GO:0007596,
G0:0042060, GO:0006957,
G0:0016125, GO:0007599,
G0:0050878, GO:0016064,
G0:0006725, GO:0042157,
G0:0030301, GO:0015918,
G0:0006959, GO:0009611,
G0:0050874, GO:0019752,
G0:0006082, GO:0050766,
G0:0044271, GO:0009309,
G0:0031099, GO:0042246,
G0:0050764, GO:0050727,
G0:0019748, GO:0045807,
G0:0009605, GO:0019216,
G0:0006879, GO:0044255,
G0:0006519, GO:0008203,
G0:0008652, GO:0048589,
G0:0009056, GO:0006954,
G0:0007586, GO:0050896,
G0:0006694, GO:0016042,
G0:0051241, GO:0006909,
G0:0051239, GO:0009064,
G0:0008015, GO:0046916,
G0:0046483
1374527_at NA NA NA NA
1377006_at G0:0005737, GO:0006457,  GO:0007389 Inf 8  Inf
G0:0051082
1377452_at G0:0001501, GO:0005509, Inf Inf  Inf
G0:0005529, GO:0005578,
G0:0005615
1377329_at G0:0003743, GO:0006446 Inf  Inf  Inf
1389990_at NA NA NA NA
1379497_at NA G0:0015291, GO:0015290, NA NA NA
G0:0005386, GO:0015293,
G0:0008509, GO:0005215,
G0:0015075, GO:0005342,
G0:0046943, GO:0031402,
G0:0015103, GO:0015370,
G0:0031420, GO:0015294,
G0:0015171, GO:0005275,
G0:0004252, GO:0008236,
G0:0015849, GO:0046942,
G0:0006820, GO:0006814,
G0:0006811, GO:0006865,
G0:0015698, GO:0015837,
G0:0006810, GO:0015672
1376968_at G0:0005200, GO:0005856,  GO:0008324, GO:0006936, 5 0  Inf
G0:0006936, GO:0008307  GO:0006816, GO:0015674
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1373254_at

1371194 _at

1373697 at

G0:0005198, GO:0005882,
G0O:0008544, GO:0045095

NA

G0O:0005200, GO:0005856,
G0O:0006936, GO:0008307

G0:0005319,
G0:0005215,
G0:0008236,
G0:0004857,
G0:0042803,
G0:0006958,
G0:0009613,
G0:0042157,
G0:0050817,
G0:0045087,
G0:0007599,
G0:0009607,
G0:0006869,
G0:0030300,
G0:0009611,
G0:0044241,
G0:0016064,
G0:0009605,
G0:0006959,
G0:0050896,
G0:0051239,
G0:0006954,
GO0:0007586,
G0:0051242

G0:0048513,
G0:0007275

G0:0006936

G0:0008289,
G0:0004252,
GO0:0004175,
G0:0016789,
G0:0030234,
G0:0006953,
G0:0051707,
G0:0006956,
G0:0007596,
G0:0006955,
G0:0006952,
G0:0006957,
G0:0050878,
G0:0006950,
G0:0042060,
G0:0030299,
G0:0050892,
G0:0050874,
G0:0008015,
G0:0050776,
G0:0051336,
G0:0006629,
G0:0016042,

G0:0050874,

NA

Inf

NA

Inf

NA

Inf
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Table A.3: GO enrichment in all interface genes

GO term ID p value Odds ratio Expected counts Counts Size Term

GO:0008289 6.30E-07 4.6 4.66 18 146 lipid binding

GO0:0005319 2.00E-06 9.9 1.24 9 38 lipid transporter activity

GO:0003690 4.10E-04 [ 1.43 7 44 double-stranded DNA
binding

G0O:0008236 1.40E-03 3.7 2.74 9 85 serine-type peptidase ac-
tivity

G0:0004252 1.70E-03 4 2.3 8 71 serine-type endopeptidase
activity

GO:0005215 2.30E-03 1.8 22.62 39 783 transporter activity

GO0:0001614 3.50E-03 5.6 1.07 5 33 purinergic nucleotide re-
ceptor activity

G0O:0001608 3.50E-03 5.6 1.07 5 33 nucleotide receptor activ-
ity, G-protein coupled

G0:0016502 3.50E-03 5.6 1.07 5 33 nucleotide receptor activ-
ity

G0:0045028 3.50E-03 5.6 1.07 5 33 purinergic nucleotide re-
ceptor activity, G-protein
coupled

G0:0043566 4.60E-03 3.7 2.14 7 66 structure-specific DNA
binding

GO:0004175 5.90E-03 2.4 5.9 13 186 endopeptidase activity

GO0:0008034 7.10E-03 9.3 0.42 3 13 lipoprotein binding

G0O:0004888 9.30E-03 1.8 14.58 25 482 transmembrane receptor
activity

GO:0004857 9.80E-03 2.5 4.29 10 134 enzyme inhibitor activity

G0:0030234 1.00E-02 1.9 10.43 19 337 enzyme regulator activity

GO:0007599 2.70E-05 6.8 1.67 9 51 hemostasis

GO:0050878 7.30E-05 5.2 2.31 10 71 regulation of body fluids

G0O:0006958 1.00E-04 14.1 0.53 5 16 complement activation,
classical pathway

GO:0050817 1.20E-04 6.3 1.57 8 48 coagulation

GO:0007596 1.20E-04 6.3 1.57 8 48 blood coagulation

GO:0006953 2.50E-04 11.1 0.62 5 19 acute-phase response

GO:0006957 3.10E-04 46.2 0.16 3 5 complement activation, al-
ternative pathway

G0O:0042060 3.10E-04 4.3 2.73 10 84 wound healing

GO0:0030300 6.00E-04 30.8 0.2 3 6 regulation of cholesterol
absorption

GO:0006956 8.10E-04 8.2 0.79 5 24 complement activation

GO:0006607 1.00E-03 23.1 0.23 3 7 NLS-bearing substrate im-
port into nucleus

G0O:0045087 1.20E-03 7.4 0.85 5 26 innate immune response

GO0:0044241 1.60E-03 18.5 0.26 3 8 lipid digestion

G0:0030299 1.60E-03 18.5 0.26 3 8 cholesterol absorption

GO0:0042157 2.20E-03 5 1.41 6 43 lipoprotein metabolism

GO:0008015 2.50E-03 3.1 3.56 10 110 circulation

GO0:0008217 2.80E-03 4.8 1.47 6 45 blood pressure regulation

GO:0050892 3.30E-03 13.2 0.33 3 10 intestinal absorption

GO:0050874 3.40E-03 1.6 35.08 58 1311 organismal physiological
process

GO:0006821 4.70E-03 6.9 0.72 4 22 chloride transport

G0O:0006869 6.70E-03 4.7 1.24 5 38 lipid transport
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Table A.4: GO enrichment in interface genes occuring in at least three interfaces

GO term ID P value Odds ratio Expected count Count Size Term

G0O:0003690 7.40E-04 7.9 0.74 5 44 double-stranded DNA
binding

G0:0008289 2.77TE-03 3.6 2.4 8 146 lipid binding

GO:0043566 4.55E-03 5.1 1.1 5 66 structure-specific DNA
binding

GO:0030594 6.22E-03 4.7 1.18 5 71 neurotransmitter receptor
activity

G0:0000149 6.95E-03 8.7 0.4 3 24 SNARE binding

G0:0042165 8.73E-03 4.3 1.28 5 7 neurotransmitter binding

GO:0007267 1.36E-03 2.5 7.2 17 481 cell-cell signaling

GO:0007154 1.74E-03 1.9 21.4 41 1714 cell communication

GO:0007165 4.81E-03 1.8 18.92 35 1464 signal transduction

GO:0006821 4.87E-03 10 0.36 3 22 chloride transport

GO0:0016079 5.53E-03 9.5 0.37 3 23 synaptic vesicle exocytosis

GO:0007167 6.99E-03 3.1 2.78 8 177 enzyme linked receptor
protein signaling pathway

GO0:0019226 9.25E-03 2.5 4.73 11 307 transmission of nerve im-
pulse

GO0:0030518 9.66E-03 7.6 0.45 3 28 steroid hormone receptor

signaling pathway
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Table A.5: GO enrichment in interfaces

hubl hub2 ID Pvalue OddsRatio ExpCount Count Size Term

1376780_at 1389690_at G0O:0003690 1.03E—03 10.15 0.46 4 44 double-stranded DNA
binding

1376780-at 1389690_at G0O:0005543 1.94E—-03 8.45 0.54 4 52 phospholipid binding

1376780-at 1389690_at GO:0004871 3.40E—03 2.20 10.49 22 1205 signal transducer activity

1376780-at 1389690-at G0O:0008289 3.78E—03 4.43 1.49 6 146 lipid binding

1376780_at 1389690-at GO:0001584 3.97E—03 3.84 1.99 7 197 rhodopsin-like receptor ac-
tivity

1376780-at 1389690_at GO:0043566 4.64E—03 6.52 0.68 4 66 structure-specific DNA
binding

1376780_at 1389690_at G0:0030594 6.01E—03 6.03 0.73 4 71 neurotransmitter receptor
activity

1376780_at 1389690_at G0:0004930 6.25E—03 3.20 2.70 8 270 G-protein coupled receptor
activity

1376780_at 1389690_at G0O:0004872 6.35E—03 2.38 6.21 14 659 receptor activity

1376780_at 1389690_at GO:0008227 7.39E—-03 8.32 0.40 3 39 amine receptor activity

1376780_at 1389690_at G0O:0004222 7.93E—03 8.10 0.42 3 40 metalloendopeptidase ac-
tivity

1376780_at 1389690_at G0O:0042165 8.00E—03 5.53 0.79 4 7 neurotransmitter binding

1376780_at 1389690_at G0O:0008237 8.37TE—03 5.46 0.80 4 78 metallopeptidase activity

1376780-at 1389690._at G0:0004888 9.62E—-03 2.50 4.66 11 482 transmembrane  receptor
activity

1376780-at 1389690_at G0O:0008406 4.11E—-04 13.28 0.36 4 36 gonad development

1376780_at 1389690-at GO:0045137 4.11E—-04 13.28 0.36 4 36 development of primary
sexual characteristics

1376780_at 1389690_at GO:0007548 1.34E—03 9.42 0.49 4 49 sex differentiation

1376780-at 1389690_at GO:0007267 2.32E—03 2.95 4.46 12 481 cell-cell signaling

1376780_at 1389690_at G0:0007186 2.70E—-03 3.21 3.42 10 362 G-protein coupled receptor
protein signaling pathway

1376780_at 1389690_at GO:0019226 3.02E—03 3.37 2.93 9 307 transmission of nerve im-
pulse

1376780_at 1389690_at GO:0007154 4.12E—03 2.11 13.29 27 1714 cell communication

1376780_at 1374583 at G0:0019226 2.48E—-03 6.51 0.95 5 307 transmission of nerve im-
pulse

1376780_at 1374583_at GO:0050877 4.62E—03 4.80 1.55 6 515 neurophysiological process

1376780_at 1369836_at G0O:0004888 3.63E—05 4.68 3.40 13 482 transmembrane  receptor
activity

1376780_at 1369836_at GO:0004872 5.72E—05 4.06 4.52 15 659 receptor activity

1376780-at 1369836_at GO:0001584 9.41E—05 6.52 1.45 8 197 rhodopsin-like receptor ac-
tivity

1376780_at 1369836.at G0O:0004930 1.50E—04 5.39 1.97 9 270 G-protein coupled receptor
activity

1376780-at 1369836-at GO:0005543 5.91E—04 11.90 0.39 4 52 phospholipid binding

1376780-at 1369836-at G0:0004871 6.44E—04 2.88 7.64 19 1205 signal transducer activity

1376780_at 1369836_at GO0:0001614 1.88E—03 13.99 0.25 3 33 purinergic nucleotide re-
ceptor activity

1376780_at 1369836_at G0:0001608 1.88E—03 13.99 0.25 3 33 nucleotide receptor activ-
ity, G-protein coupled

1376780_at 1369836_at G0:0016502 1.88E—03 13.99 0.25 3 33 nucleotide receptor activ-
ity

1376780_at 1369836_at G0O:0045028 1.88E—03 13.99 0.25 3 33 purinergic nucleotide re-
ceptor activity, G-protein
coupled

1376780_at 1369836_at G0O:0030594 1.91E—-03 8.50 0.53 4 71 neurotransmitter receptor
activity

1376780-at 1369836_at G0O:0042165 2.58E—-03 7.79 0.58 4 77 neurotransmitter binding

1376780-at 1369836_at G0O:0008227 3.04E—-03 11.65 0.29 3 39 amine receptor activity

1376780-at 1369836.at G0O:0008528 3.38E—03 7.19 0.62 4 83 peptide receptor activity,
G-protein coupled

1376780-at 1369836 at GO0:0001653 3.53E—-03 7.10 0.63 4 84 peptide receptor activity

1376780-at 1369836-at G0O:0008289 4.59E—-03 5.11 1.08 5 146 lipid binding

1376780-at 1369836-_at GO:0007186 3.40E—05 5.49 2.47 11 362 G-protein coupled receptor
protein signaling pathway

1376780_at 1369836_at GO:0007267 4.37TE—04 4.01 3.22 11 481 cell-cell signaling

1376780 at 1369836_at GO:0007154 4.99E—04 2.93 9.60 23 1714 cell communication

1376780_at 1369836_at GO:0007166 1.14E—03 3.22 4.64 13 719 cell surface receptor linked
signal transduction

1376780_at 1369836_at G0:0019226 1.33E—03 4.32 2.12 8 307 transmission of nerve im-
pulse

1376780_at 1369836_at GO:0050877 2.93E-03 3.27 3.43 10 515 neurophysiological process

1376780_at 1369836_at G0O:0019933 3.51E—-03 7.14 0.63 4 88 cAMP-mediated signaling

1376780_at 1369836_at GO:0007165 3.52E—-03 2.48 8.48 19 1464 signal transduction

1376780-at 1369836_at GO:0007268 3.91E—-03 3.95 1.98 7 286 synaptic transmission

1376780-at 1369836_at G0:0043085 6.16E—03 6.05 0.73 4 103 positive regulation of en-
zyme activity

1376780_at 1369836.at GO:0050874 6.66E—03 2.36 7.76 17 1311 organismal physiological
process

1376780-at 1369836_at GO:0007269 8.16E—03 8.01 0.42 3 58 neurotransmitter secretion

1376780-at 1369836-at G0:0019935 8.25E—03 5.53 0.80 4 112 cyclic-nucleotide-mediated
signaling

1376780 at 1373232_at GO0:0015291 6.97TE—03 8.79 0.39 3 116 porter activity

1376780_at 1373232_at GO0:0015290 7.13E—-03 8.71 0.40 3 117 electrochemical potential-

driven transporter activity
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A.2 Supplementary tables

1389690_at 1376958_at GO:0007165 9.61E—04 4.50 4.03 12 1464 signal transduction

1389690_at 1376958_at GO0:0019933 3.15E—-03 11.88 0.30 3 88 cAMP-mediated signaling

1389690_at 1376958_at GO0:0001505 3.36E—03 11.60 0.31 3 90 regulation of neurotrans-
mitter levels

1389690_at 1376958_at GO:0007154 4.24E—-03 3.62 4.56 12 1714 cell communication

1389690_at 1376958 _at G0:0043085 4.91E—03 10.07 0.35 3 103 positive regulation of en-
zyme activity

1389690_at 1376958_at G0:0019935 6.21E—03 9.23 0.38 3 112 cyclic-nucleotide-mediated
signaling

1389690_at 1376958_at G0O:0007010 6.24E—03 6.38 0.74 4 223 cytoskeleton organization
and biogenesis

1389690_at 1376958_at G0O:0008284 9.57TE—03 7.83 0.44 3 131 positive regulation of cell
proliferation

1374583 at 1369836-at GO0O:0019226 1.40E—04 15.22 0.55 5 307 transmission of nerve im-
pulse

1374583_at 1369836._at GO:0050877 1.45E—04 12.51 0.89 6 515 neurophysiological process

1374583_at 1369836_at GO:0007267 1.14E—03 9.35 0.84 5 481 cell-cell signaling

1374583_at 1369836_at GO:0007268 1.43E—03 11.21 0.52 4 286 synaptic transmission

1369836_at 1373232_at GO:0007267 1.70E—04 18.71 0.61 5 481 cell-cell signaling

1369836_at 1373232_at GO:0007268 5.45E—03 11.74 0.37 3 286 synaptic transmission

1369836 at 1373232_at GO0:0019226 6.65E—03 10.88 0.40 3 307 transmission of nerve im-
pulse

1369836_at 1376958_at G0O:0004888 6.41E—04 7.84 1.10 6 482 transmembrane  receptor
activity

1369836_at 1376958_at G0O:0004872 3.32E—03 5.54 1.47 6 659 receptor activity

1369836_at 1376958 at G0O:0004930 3.50E—-03 7.94 0.64 4 270 G-protein coupled receptor
activity

1369836_at 1376958_at G0O:0019933 8.53E—04 20.22 0.19 3 88 cAMP-mediated signaling

1369836_at 1376958_at G0O:0001505 9.11E—04 19.75 0.20 3 90 regulation of neurotrans-
mitter levels

1369836 at 1376958_at G0O:0043085 1.35E—03 17.14 0.23 3 103 positive regulation of en-
zyme activity

1369836_at 1376958 at G0:0019935 1.72E—03 15.70 0.25 3 112 cyclic-nucleotide-mediated
signaling

1369836_at 1376958_at GO:0007165 5.79E—03 4.79 2.62 8 1464 signal transduction

1369836_at 1376958_at GO:0007186 6.69E—03 6.77 0.76 4 362 G-protein coupled receptor
protein signaling pathway

1369836_at 1376958_at GO:0050790 7.01E—-03 9.34 0.40 3 184 regulation of enzyme ac-
tivity

1369836_at 1376958_at G0O:0045045 7.12E—-03 9.28 0.40 3 185 secretory pathway

1369836_at 1376958 at G0O:0019932 8.35E—03 8.74 0.42 3 196 second-messenger-
mediated signaling

1376840 at 1384717 _at G0:0003677 4.68E—03 24.76 0.39 3 661 DNA binding

1384717 at 1377006_at G0O:0007389 2.45E—-04 34.55 0.13 3 86 pattern specification

1373232_at 1376958 at G0O:0007010 5.53E—05 Inf 0.11 3 223 cytoskeleton organization
and biogenesis

1373232_at 1376958_at G0O:0006996 4.13E—04 Inf 0.21 3 435 organelle organization and
biogenesis

1373232_at 1376958 at GO0:0007242 1.27E—03 Inf 0.29 3 632 intracellular signaling cas-
cade

1373232_at 1376958 at G0:0016043 4.85E—03 Inf 0.43 3 987 cell organization and bio-
genesis

1376958_at 1373254 _at GO:0005319 9.44E—14 85.09 0.19 9 38 lipid transporter activity

1376958_at 1373254 _at G0O:0008289 6.38E—06 12.43 0.73 7 146 lipid binding

1376958_at 1373254 _at GO:0004252 2.50E—05 17.47 0.36 5 71 serine-type endopeptidase
activity

1376958_at 1373254 _at GO:0005215 5.26E—05 4.96 3.55 13 783 transporter activity

1376958_at 1373254 _at G0:0008236 6.00E—05 14.38 0.43 5 85 serine-type peptidase ac-
tivity

1376958_at 1373254 _at GO:0004175 2.24E—03 6.25 0.92 5 186 endopeptidase activity

1376958 at 1373254 _at G0:0004857 4.44E—-03 6.76 0.67 4 134 enzyme inhibitor activity

1376958 at 1373254 _at G0O:0016789 4.78E—03 9.88 0.34 3 68 carboxylic ester hydrolase
activity

1376958_at 1373254 _at G0O:0042803 5.19E—03 9.59 0.35 3 70 protein homodimerization
activity

1376958_at 1373254 _at G0:0030234 6.22E—03 4.15 1.63 6 337 enzyme regulator activity

1376958_at 1373254 _at GO:0006958 2.42E—-08 87.59 0.10 5 16 complement activation,
classical pathway

1376958_at 1373254 _at GO:0009613 4.89E—08 10.47 1.65 12 287 response to pest, pathogen
or parasite

1376958_at 1373254 _at GO:0006953 6.36E—08 68.79 0.11 5 19 acute-phase response

1376958_at 1373254 _at GO:0051707 7.71E—08 10.01 1.72 12 299 response to other organism

1376958_at 1373254 _at GO:0042157 1.56E—07 32.18 0.26 6 43 lipoprotein metabolism

1376958_at 1373254 _at GO:0006956 2.28E—-07 50.64 0.14 5 24 complement activation

1376958_at 1373254 _at GO:0006955 2.95E—-07 8.05 2.31 13 409 immune response

1376958_at 1373254 _at GO:0050817 3.07TE—07 28.33 0.29 6 48 coagulation

1376958_at 1373254 _at GO:0007596 3.07TE—-07 28.33 0.29 6 48 blood coagulation

1376958 at 1373254 _at G0O:0045087 3.49E—-07 45.80 0.16 5 26 innate immune response

1376958_at 1373254 _at G0:0007599 4.45E—-07 26.42 0.31 6 51 hemostasis

1376958_at 1373254_at G0O:0006952 5.73E—07 7.56 2.43 13 433 defense response

1376958_at 1373254 _at G0O:0009607 1.04E—06 7.13 2.55 13 456 response to biotic stimulus

1376958 at 1373254_at GO:0006957 1.97TE—06 271.41 0.03 3 5 complement activation, al-
ternative pathway

1376958 at 1373254 _at GO:0006869 2.53E—06 29.09 0.23 5 38 lipid transport
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B Zusammenfassung

Aktuelle genomweite Assoziationsstudien (GWAS) und Analysen quantitativer Trait Loci (QTL)
resultieren typischerweise in grossen chromosomalen Regionen, die durch (Krankheits-) assozi-
ierte polymorphe Marker représentiert werden. Diese Marker sind zumeist nicht-funktionell,
aber befinden sich in Kopplungsungleichgewicht mit unbekannten funktionellen Varianten. An-
gesichts der Tatsache, dass der Grofiteil des Genoms aus nicht-kodierenden Sequenzen besteht,
ist es nicht liberraschend, dass sich die meisten Varianten in diesen Regionen befinden. Obwohl
nicht-kodierenden Sequenzen nicht vollstéandig verstanden sind ist bekannt, dass sie eine Vielzahl
regulatorischer Elemente enthalten. Daher kénnen Varianten in diesen Regionen regulatorische
FElemente und damit das regulatorische Netzwerk beeinflussen. Deshalb ist es wahrscheinlich,
dass Varianten, die auch die Expression eines Genes beeinflussen, regulatorische Elemente be-
treffen. Dies macht die Analyse der Genetik der Genexpression zu einem exzellentes Mittel um
regulatorische Varianten zu identifizieren. Regulatorische Effekte von Sequenzvarianten konnen
systematisch auf der Ebene der Genexpression gemessen werden indem Transkriptniveaus als
quantitative Traits betrachtet und als Expressions-QTLs (eQTLs) kartiert werden. eQTL Stu-
dien stellen somit einen ersten Versuch dar, eine Verbindung zwischen genetischer Variation und
molekularer Funktion herzustellen. Allerdings waren die meisten eQTL Studien bisher nicht in
der Lage Hypothesen iiber den molekularen Mechanismus, der den eQTLs zugrunde liegt, zu
generieren.

Insgesamt beschreibt diese Arbeit ein umfangreiches Gruppe von Werkzeugen und Strategien
fiir die Analyse von regulatorischer genetischer Variation. Der Ausgangspunkt ist die schon
frither beschrieben Identifikation von Zielgenen der potentiellen regulatorischen Variation als
eQTL Transkripte. Dariiber hinaus werden Ansétze beschrieben, um folgende Fragen beziiglich
dieser eQTL Transkripte zu beantworten. (1) Welche Rolle spielt das eQTL Transkript fiir ein
Krankheits-Modell, (2) welches cis-regulatorische Element ist von der Sequenzvariante betroffen
und welcher Transkriptionsfaktor ist der Regulator des eQTL Transkripts, (3) welches sind die
trans-regulatorischen Faktoren und wie werden ihrer Effekte zu ihren Zielgenen iibertragen, und
(4) welches ist der funktionale Zusammenhang in dem das eQTL Transkript agiert? Dariiber
hinaus werden Genexpressions-Netzwerke die im Rattenmodell erstellt wurden dazu verwendet,
Ergebnisse von GWAS Studien am Menschen mit molekularen Funktionen in Verbindung zu
bringen und damit die Genetik polygener Erkrankungen zu interpretieren.

Zuerst werden bestehende Ansédtze zur Identifizierung von Krankheitsgenen diskutiert und
deren Anwendung in Fallstudien demonstriert, die zur Identifizierung eines Kandidatengens fiir
Herzinsuffizienz und eines fiir systolischen Blutdruck fiihrten.

Als néchstes zeigen wir, dass funktionelle Annotation benutzt werden kann um genetische
Marker zu identifizieren, die die Expression ganzer Netzwerke von Genen dhnlicher Funktion
beeinflussen. Dafiir betrachten wir wohlbekannte funktionell annotierte Sets von Genen. Darauf
aufbauend definieren wir ein statistisches Mass fiir die Assoziation eines Gen-Sets zu einem
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Marker und evaluieren diese fiir alle Paare von Sets und genetischen Markern. Dadurch kénnen
Gen-Sets, die unter der genetischer Kontrolle eines Markers stehen, identifiziert werden. Diese
Methode wurde auf einen Datensatz aus einem F2 Intercross angewendet, wobei sich unsere
Analyse auf den Arachidonsaure Stoffwechsel (Ephz2-Pathway) aus der Kyoto Encyclopaedia of
Genes and Genomes (KEGG) konzentrierte. Wir konnten zeigen, dass die maximale Assoziation
des Ephz2-Pathway am Ephz2 locus auftritt. Dies zeigt, dass erh6hte Ephx2 Expression, die zu
einer Verringerung von kardioprotektiven Epoxiden fiihrt, eine Riickkopplungsregulation auslost,
die die Expression des Ephz2-pathway erhoht um die Epoxid Verringerung zu kompensieren.

Wir demonstrieren wie Informationen iiber Sequenzvariationen und ein biophysikalisches Mod-
ell der TF — DNA Interaktion dazu verwendet werden kann sowohl das wahrscheinlichste cis-
regulatorische Element im Promoter des eQTL Transkripts, als auch den wahrscheinlichsten
TF zu bestimmen, der als Regulator des eQTL Transkripts in Frage kommt. Dazu entwen-
den wir eine Methode (sTRAP), um mogliche Konsequenzen von Sequenzvariationen auf das
regulatorische Netzwerk zu bewerten. Fiir alle TFs mit bekanntem Bindemodell sagen wir quan-
titative Anderungen der Bindungsstirke voraus. Bekannten Assoziationen zwischen SNPs und
deren regulatorischen Auswirkungen dienten dabei der Evaluation. Unsere Vorhersagen sind ro-
bust in Bezug auf verschieden Parameter und Modelannahmen. Angesichts der guten Leistung
unserer Methode, haben wir ein Webseite vertffentlich, die als Startpunkt fiir Routineanalysen
von Krankheits-assoziierten Sequenz-Regionen dienen kann.

Dariiber hinaus analysieren wir die Rolle von TFs als Mediatoren von trans-acting eQTLs
und identifizieren dadurch Gen-Netzwerke und deren regulatorische Loci. Wir zeigen, wie diese
Gen-Netzwerke dazu verwendet werden konnen, Hypothesen iiber Funktion von Krankheits-
assoziierten Regionen zu liefern, die iiber die Ergebnisse von typischen humanen GWAS hinaus-
gehen. Eine integrierte Analyse von Expressionsdaten und TF Bindestellen wurde verwendet um
das Interferon regulatory factor 7 (Irf7) - driven inflammatory network (iDIN) zu definieren.
Dieses war statistisch mit Genen der Kategorie “Antwort auf Virus” angereichert und stellt
einen molekularen Biomarker fiir Makrophagen dar. Das iDIN wird in mehreren Geweben von
einem Locus auf Chromosom 1525 reguliert. Die Analyse von Expressionsdaten priorisierte
das Epstein-Barr Virus induzierte Gen 2 (Ebi2 oder Gpr183) als Kandidaten fiir die Regulation
des iDIN, was wir experimentell bestatigen konnten. FEbi2 liegt im Chromosom 15q25 Locus
und es ist bekannt, dass es die Migration von B-Lymphozyten kontrolliert und in Makrophagen
exprimiert ist. Der orthologe Locus in Menschen liegt auf Chromosom 13q32 und kontrol-
liert das humane Aquivalent des iDIN, das aus Expressionsdaten von Monozyten identifiziert
wurde. Mit Hilfe einer Anreicherungs-Analyse konnten wir zeigen, dass iDIN Gene mit grosserer
Wahrscheinlichkeit mit Typ 1 Diabetes (T1D) — einer Autoimmunerkrankung die mit Makropha-
gen in Verbindung steht — assoziiert sind als zufillig gewéhlte Gene der Immunantwort. Auch
der humane Locus, der die Expression des iDIN kontrolliert, ist mit Risiko fiir T1D am SNP
rs9585056 assoziiert. Dieser SNP ist auch einer der fiinf SNPs in der Region die mit EBI2 Ex-
pression assoziiert sind. Diese Daten implizieren das IRF7-Netzwerk und seinen regulatorischen
Locus in der Pathogenese von T1D.

Schlussendlich beschreiben wir einen Ansatz um Allel-abhéngige Storungen des Expressions-
Netzwerkes auf Basis von Expressionsdaten zu analysieren. Unser Ansatz zielt darauf ab,
Verbindungen im Expressions-Netzwerk zu identifizieren, die durch genetische Variation gestort
sind. Dies erlaubt uns den funktionalen Zusammenhang, in dem eQTL Transkripte agieren,
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zu identifizieren. Die Anwendung unserer Methode auf eQTL Daten aus der Ratte fithrte zur
Konstruktion eines Koexpressions-Netzwerkes. Wir verwenden topologische Eigenschaften des
Netzwerks, um eine Gruppe von Genen die wir Interface-Gene nennen zu definieren. Dies er-
laubt es zwei anderweitig vollstéandig unabhéngige eQTL Transkripte miteinander in Beziehung
zu setzen. Die Gruppe der Interface-Gene sind angereichert mit regulatorischen Genen. Eine
Analyse von Interface-Genen, die in der Blutdruckregulation tatig sind, zeigte genetische Interak-
tionen zwischen Sequenzvariationen, die den Blutdruck beeinflussen. Nur wenn zwei bestimmte
Allele an verschiedenen Stellen des Genoms zugleich vorhanden sind, kénnen Anderungen im
Blutdruck beobachtet werden. Zuvor war die Analyse solcher Interaktionen auf Grund der kom-
binatorischen Vielzahl nicht moglich. Unser Ansatz erlaubte eine gezielte Analyse spezifischer
Varianten, die mit Hilfe des Netzwerkes identifiziert wurden. Daher glauben wir, dass unsere
Methode eine natiirliche Ergénzung zu bestehenden eQTL und Netzwerk-Analyse-Methoden
darstellt und auch in anderen Spezies und experimentellen Kreuzungsexperimenten verwendet
werden kann.
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C Summary

Current genome wide association studies (GWAS) and quantitative trait locus (QTL) studies
typically result in large chromosomal regions represented by sets of polymorphic markers associ-
ated with a (disease) phenotype of interest. These molecular markers are mostly non-functional
variations that are in linkage disequilibrium (LD) with unknown functional variants. Unsurpris-
ingly, most variations have been observed in non-coding regions since they make up most of the
genome. Although the understanding of non-coding sequences is far from complete it is known
that they harbour a variety of gene regulatory elements. Therefore variations in non-coding
sequences might alter these regulatory elements and the regulatory network. Thus, if disease
associated variations also effect gene expression it is likely that they tag regulatory variants and
the analysis of the genetics of gene expression provides excellent means for the identification
of these regulatory variants. The regulatory effects of sequence variations can be measured
systematically at the level of gene expression using the transcript level of each individual gene
as a quantitative trait giving rise to expression QTLs (eQTLs). eQTL studies represent a first
attempt to link genetic variation to molecular function. However, most previous eQTL studies
were not able to suggest molecular regulatory mechanisms underlying the eQTLs.

Overall this thesis describes an extensive set of tools and strategies for the analysis of reg-
ulatory genetic variations. The starting point is the identification of target genes of potential
regulatory variations as eQTL transcripts which has been described previously. We provide
ways to address the following resulting questions about these genes. (1) What is the role of
the eQTL transcript in the context of a disease model, (2) which is the cis-regulatory element
affected by the genetic variant and which transcription factor is the upstream regulator of the
eQTL transcript, (3) what are the trans-regulatory factors and how are their effects mediated
to their target genes, and (4) what is the functional context that eQTL transcripts operate in?
Moreover, we used a translational approach where gene expression networks derived from the
analysis of the genetics of gene expression in a model organism are used to connect human dis-
ease association data to molecular function in an attempt to interpret the genetics of polygenic
traits.

First we discuss previously described strategies for the identification of disease genes and
demonstrate how their application in two case studies resulted in the identification of a candidate
gene for heart failure and a candidate gene for systolic blood pressure.

Next we show that functional annotation can be used to identify genetic markers that influence
functionally related gene expression networks. To that end we consider well annotated functional
sets of genes i.e. pathways. Subsequently, an association statistic for gene sets is defined and
evaluated for all pairs of gene sets and genomic markers. Finally, we can identify pathways that
are under genetic control of a DNA variant by assessing the significance through permutations
and correction for multiple testing. We applied our method to a data set from an F2 intercross.
We focused our analysis on transcripts of arachidonic acid metabolism (Ephz2-pathway) from
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the Kyoto Encyclopaedia of Genes and Genomes (KEGG) and we showed that the maximum
association of the Ephz2-pathway transcripts occurred at the Ephxz2 locus. This highlighted
that increased Ephx?2 expression leading to a depletion of cardioprotective EETSs results in a
feedback regulation increasing the expression of the upstream pathway to compensate the EET
depletion.

We demonstrate how information about sequence variations and a biophysical model of TF
— DNA interaction can be used to identify both the most likely cis-regulatory elements in the
promoters of eQTL transcripts and the TF that is most likely the upstream regulator of the
transcript. Towards that end we introduce a new computational framework to suggest possible
consequences of sequence variations on regulatory networks. Our method, called sSTRAP, analy-
ses variations in the DNA sequence and predicts quantitative changes to the binding strength of
any transcription factor for which there is a binding model. We have tested the method against
a set of known associations between SNPs and their regulatory consequences. Our predictions
are robust with respect to different parameters and model assumptions. Importantly we set
an objective and quantifiable benchmark against which future improvements can be compared.
Given the good performance of our method, we developed a publicly available tool which can
serve as an important starting point for routine analysis of disease-associated sequence regions.

Moreover we analyse the role of TFs as mediators of trans-acting eQTLs and identify gene
networks and the loci underlying their regulation. Importantly, we show how this gene expres-
sion network can be used to suggest a functional hypothesis beyond the results of typical human
GWAS alone. Combined expression and transcription factor binding site analysis was used to
define an interferon regulatory factor 7 (Irf7) -driven inflammatory network (iDIN) enriched for
viral response genes. It represents a molecular biomarker for macrophages and was regulated
in multiple tissues by a locus on rat chromosome 15q25. Computational analysis prioritised
Epstein-Barr virus induced gene 2 (Ebi2 or Gpri183) as the candidate regulator, which we con-
firm experimentally. It lies at the chromosome 1525 locus and has been shown to control B
lymphocyte migration and it is expressed in macrophages. The human orthologous locus on
chromosome 13g32 controlled the human equivalent of iDIN, which was identified from mono-
cyte expression data. Using an enrichment approach we show that iDIN genes are more likely
to associate with Type 1 Diabetes (T1D) — a macrophage-associated autoimmune disease — sus-
ceptibility than randomly selected immune response genes. The human locus controlling the
iDIN, was associated with the risk of T1D at SNP rs9585056, which was one of five SNPs in
this region associated with EBI2 expression. These data implicate the IRF'7 network genes and
their regulatory locus in the pathogenesis of T1D.

Finally we describe an approach to analyse genotype dependent perturbations of gene expres-
sion networks solely on the level of expression data. Our approach aims to identify connections
in gene co-expression networks that are perturbed by genetic variations. This allows to identify
the functional context in which eQTL genes usually act. Applying our method to a data set from
an experimental cross of normotensive Brown Norway rats and the Spontaneously Hypertensive
Rat, we reconstructed a co-expression network. We used topological features of the network to
define a set of genes that we call interface genes. This allows to link two otherwise completely
independent eQTL genes. The set of interface genes is enriched in regulatory genes. Analysis
of interface genes involved in blood pressure regulation revealed genetic interactions between
variations influencing blood pressure phenotypes. Only if two different variants in two distinct
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genomic locations are present at the same time, changes in blood pressure can be observed.
Analysis of interactions was previously hindered by the combinatorial explosion when compar-
ing pairs of variants. Our approach allowed to target this analysis to specific variants identified
from the network. We believe that our method is a natural complement to existing eQTL and
network analysis methods used in the analysis of the genetics of gene expression and can be
applied to other experimental crosses and other species.
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