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Doctoral Thesis

Spaces of convex n-partitions

Author:

Emerson León

Supervisor:

Prof. Günter M. Ziegler

A thesis submitted in fulfillment of the requirements

for the degree of Doctor of Philosophy

at the

Fachbereich Mathematik und Informatik

Freie Universität Berlin

Berlin, 2015





Supervisor and first reviewer:

Prof. Günter M. Ziegler

Second reviewer:

Prof. Thorsten Theobald

Date of defense:

February 19, 2015





Contents

1 Introduction 1

1.1 Overview of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Basic concepts 5

2.1 Convex sets and polyhedra . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Cones and pointed cones . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Spherical convexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Hyperplane arrangements . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5 CW complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Convex n-partitions 11

3.1 Polyhedral structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Spherical representation and partitions of Sd . . . . . . . . . . . . . . . . 12

3.3 Faces and the face poset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.4 Basic lemmas about faces . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.5 CW complex structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Spaces of n-partitions 23

4.1 Metric structure, topology and compactification . . . . . . . . . . . . . . . 23

4.2 Hyperplane description and semialgebraic structure . . . . . . . . . . . . . 26

4.3 Pointed partitions and node systems . . . . . . . . . . . . . . . . . . . . . 36

4.4 Combinatorial types and realization spaces . . . . . . . . . . . . . . . . . 43

4.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Regular n-partitions 53

5.1 Dimension of the subspace of regular partitions . . . . . . . . . . . . . . . 53

5.2 Generic and simple partitions . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.3 Universality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6 Dimension of realization spaces 65

6.1 Partitions of the plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.2 Dual and bounded complex . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.3 Partitions of R3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7 Spaces of equipartitions 79

7.1 Looking for fair partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.2 3-equipartitions of R2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

v



Contents vi

7.3 More examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

8 Further questions 89

A Summaries 93

A.1 English Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

A.2 Zusammenfassung auf Deutsch . . . . . . . . . . . . . . . . . . . . . . . . 95
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Chapter 1

Introduction

We look at the set C(Rd, n) of all partitions of Rd into n convex regions, for d and n

positive integers. Since we are able to find a metric on this set, we can talk of C(Rd, n)

as the space of all convex n-partitions of Rd, which is also a topological space. These

spaces for different n and d are our main object of study. As far as we know, there is

no reference of them in the literature, although some similar spaces and particular cases

have been studied. Here we introduce some basic concepts and definitions about them,

investigate their general properties and look at some examples and related spaces.

The spaces of n-partitions can be described as unions of semialgebraic sets. Thus,

in particular, the spaces have well-defined dimensions. We give two possible ways to

decompose spaces of n-partitions as unions of semialgebraic pieces. Since all the regions

of a partition are polyhedral, we obtain one parameterization from from the hyperplane

description of the regions. We also define a face structure on each partition and use

this to distinguish different combinatorial types. The realization spaces are spaces of

partitions that share the same combinatorial type. These realization spaces also give us

semialgebraic pieces that we glue together to obtain the whole space C(Rd, n). We will

be interested to find the dimensions of these realization spaces.

Inside the space C(Rd, n) there are other spaces that catch our attention, as for example

the subspace Creg(Rd, n) of regular partitions, which can be obtained by projecting the

facets of a convex polyhedron one dimension higher. Regular partitions appear in dif-

ferent contexts and are much better understood than general partitions, since they are

easier to generate and parameterize. We would like to know how the space of regular

partitions is embedded in the space of all convex n-partitions.

We find that there is a big difference between the case d = 2 and the case when d ≥ 3.

For d = 2 and large n, the subspace Creg(R2, n) of regular n-partitions has much smaller

1



Chapter 1. Introduction 2

dimension than C(R2, n). On the other hand, for d ≥ 3, a theorem by Whiteley [35] and

Rybnikov [31] shows that simple n-partitions are regular (see Theorem 5.11). For d = 3,

we conjecture that dim C(R3, n) = dim Creg(R3, n). However Creg(R3, n) is not a dense

subset in C(R3, n) for n > 3, and there are also non-simple combinatorial types whose

realization spaces have the same dimension as Creg(R3, n), where almost all partitions are

non-regular. We give a heuristic count for the dimensions of the realization spaces that

supports the conjecture, and on the way we derive a nice incidence theorem (Theorem

6.11) that is an example of the dependencies among the algebraic relationships that may

arise.

In general, realization spaces of partitions of a given combinatorial type are expected to

be complicated objects. We relate this to the work by Richter-Gebert [28] on realization

spaces of polytopes, where the main result is the Universality Theorem, showing that

realization spaces of d-dimensional polytopes for d ≥ 4 can be “as complicated as pos-

sible” as semialgebraic sets. A similar result is established here for realization spaces of

regular partitions (Theorem 5.17).

Another family of subspaces of C(Rd, n) that is interesting for us is obtained as follows.

Given a positive bounded measure µ in Rd we can look at the space Cequi(Rd, n, µ) of

convex equipartitions, for which all regions have the same measure.

One of the motivations of this work come from different questions about the existence

of convex partitions with special properties. For example, a question asked by Nan-

dakumar and Ramana Rao [25] about the existence of partitions of a convex region into

a prescribed number n of convex pieces with equal area and equal perimeter has led

to many interesting results about equipartitions of measures (see for example [8], [22],

and [6]). In particular, Blagojević & Ziegler [6] proved the Nandakumar & Ramana Rao

conjecture for n equals a prime power. However, all results in the area use only rather re-

stricted types of partitions, such as iterated hyperplane dissections or regular partitions,

which are reasonably well understood — e.g. in the case of regular partitions they can

be parameterized by configuration spaces of n distinct points, via Optimal Transport, as

was first noticed by Karasev [22] [6]. Here we thus try to go one step further and set out

to understand the structure of the larger space of all convex n-partitions. We also look

at the subspace Cequi(Rd, n, µ) of convex equipartitions of a positive continuous measure

µ and compare it with Cequi
reg (Rd, n, µ).
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1.1 Overview of the thesis

We begin with some basic notions and results of convex geometry that we need, as

polyhedra, cones, spherical polyhedra, hyperplane arrangements and CW-complexes.

In Chapter 3 we introduce convex n-partitions and we prove that all the regions of a

partition must be polyhedral. Then we define some related notions, such as spherical

partitions and the face structure, and prove some basic facts about them.

In Chapter 4 we look at the space C(Rd, n) of all convex n-partitions of Rd, describing

the metric structure there that fixes the topology of the space and also a natural com-

pactification C(Rd,≤n) where empty regions are allowed. Then we prove that spaces of

n-partitions are union of semialgebraic pieces in two different ways. We look at hyper-

plane arrangements carrying an n-partition, and give a description of C(Rd, n) where the

pieces depend on the hyperplanes used to obtain the partition (Theorem 4.14). For the

second description we need to introduce nodes and node systems that are a generalization

of the vertices, and define the combinatorial type of a partition. These combinatorial

types give the semialgebraic pieces that build the spaces (See Theorem 4.47). At the

end of the chapter we describe explicitly particular spaces of n-partitions of Rd and their

compactifications for n = 2 and also for d = 1.

In Chapter 5 we talk about regular partitions and mention some known results about

them. Using these results we compute the dimension of the space of regular partitions

Creg(Rd, n). Then we prove a universality theorem that says that realization spaces

of regular partitions can be stably equivalent to any primary basic semialgebraic set

(Theorem 5.17).

In Chapter 6 we investigate the dimensions of realization spaces. We first study the

case d = 2 and find that for large n the dimension of C(R2, n) is much bigger than

dim(Creg(R2, n)). Then we focus on the case d = 3, where we conjecture that the

dimension of C(R3, n) is equal to the dimension of Creg(R3, n) and try to justify this with

a heuristic counting for the dimension of each realization space. From this counting we

find an incidence theorem for 3-polytopes (Theorem 6.11) and find many examples of

partitions where this counting works.

In Chapter 7 we introduce the spaces of equipartitions Cequi(Rd, n, µ) given a positive

bounded measure µ. We explore the topological structure of some small cases of spaces of

equipartitions and using this, we describe the spaces of n-partitions for d = 2 and n = 3.

We also discuss the Nandakumar and Ramana Rao problem [25] and different equivariant

maps that show that considering regular equipartitions is as good as considering all

equipartitions with respect to the approach based on configuration spaces to find fair

partitions. We end by listing some further questions that for now remain open.
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Chapter 2

Basic concepts

We begin here by reviewing some basic definitions and results from discrete geometry,

convex polytopes, cones and polyhedra. As a basic reference for these topics we refer to

the books by Gruber [18] and Ziegler [36]. Spherical polyhedra, hyperplane arrangements

and CW-complexes are also important for us and will be briefly introduced.

2.1 Convex sets and polyhedra

Given two points x and y in Rd, the straight line segment joining them is given by the

set [x,y] = {λx + (1 − λ)y : λ ∈ R, 0 ≤ λ ≤ 1}. A subset K ⊂ Rd is convex if for any

two points x,y ∈ K, the segment [x,y] is contained in K. Clearly, line segments are

convex, as well as Rd and the empty set ∅ ⊆ Rd. Also, the intersection of convex sets

is convex. Given any set X ⊆ Rd, the convex hull of X is the smallest convex set that

contains X. It is denoted as conv(X) and it is well-defined, since it can be obtained as

the intersection of all convex sets K with X ⊆ K.

A hyperplane in Rd is given by the set of points that satisfy a linear equation of the form

a ·x = b for some vector a ∈ Rd and b ∈ R, where a 6= 0 and a ·x denotes the standard

scalar product in Rd. An open (closed) halfspace is determined by a linear inequality

of the form a · x < b (respectively a · x ≤ b). The complement of a hyperplane in Rd

decomposes into two open halfspaces.

A polyhedron in Rd is the solution set of finitely many linear inequalities, i.e. the in-

tersection of finitely many closed halfspaces. Since each halfspace is convex and closed,

we can conclude that all polyhedra are convex and closed. A polytope is a bounded

polyhedron. An important result for polytopes is that they can also be expressed as the

convex hull of a finite set of points (see [36, Theorem 1.1]).

5
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An affine subspace of Rd is a translation of a linear subspace. The affine hull of a

convex polyhedron P ⊆ Rd is the minimal affine subspace containing P . It is denoted

as aff P . The dimension dimP of a polyhedron P is given by the dimension of its affine

hull, namely dimP = dim(aff P ) ≤ d. For P = ∅, we define dimP = −1. The relative

interior of P are the points in the interior of P considered as a subset of aff P . It is

denoted by relint(P ).

A face of a polyhedron P is given by the set of points y ∈ P that satisfy a · y = b for

some a ∈ Rd and b ∈ R such that a ·x ≤ b for all x ∈ P . Since the faces of a polyhedron

P are also polyhedra, they also have a well defined dimension. We refer to faces of P of

dimension k as k-faces of P . In particular, 0-faces are also called vertices and 1-faces

are called edges. The set of all faces of a polytope P ordered by inclusion is known as

the face lattice of P , and it determines the combinatorial structure of the polytope.

2.2 Cones and pointed cones

The cone over a subset X ⊆ Rd, denoted as cone(X), consists of all non-negative

combinations of the vectors in X; more precisely

cone(X) = {x = λ1x1 + · · ·+ λmxm : xi ∈ X,λi ∈ R≥0 for all i ≤ m,m ∈ N}.

A cone C ⊆ Rd is generated by positive combinations of a finite set of vectors C =

cone(x1, . . . ,xm) if and only if it is a finite intersection of closed linear halfspaces with

defining hyperplanes through the origin. Such cones are called polyhedral cones. All

cones we consider are convex and polyhedral, and therefore they have faces, vertices,

edges, etc.

The linearity space lineal(C) of a cone C is the maximal linear subspace contained in

it. The recession cone of a set X ⊆ Rd is the set of vectors v ∈ Rd with the property

that for any point x ∈ X and any real λ ≥ 0 the point x + λv is in X. It is denoted by

rec(X). If X is bounded, then rec(X) = {0}.

A cone C is pointed if lineal(C) = {0}. Equivalently, a cone is pointed if it doesn’t

contain a straight line. Any polyhedron P can be written as the Minkowski sum of a

polytope Q and a cone C, where C is the recession cone rec(P ). Besides, any polyhedral

cone C can be written as the Minkowski sum of its linearity space lineal(C) and a pointed

cone C ′.

Lemma 2.1. Pointed polyhedral cones C can be obtained as cone(x1, . . . ,xm), where

the xi are non-zero vectors, one from each of the edges ei of C.
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Proof. If C is a pointed cone, it is possible to find a hyperplane H such that C∩H = {0}
and all other points of C lie on the same open halfspace determined by H. Let H ′ be a

translation of one such hyperplane H, such that H ′ intersects the relative interior of C.

To see that the intersection C ∩H ′ is a bounded polytope, suppose it is unbounded and

notice that the closure of C will contain points in H. Then C ∩ H ′ is a polytope and

can be expressed as the convex hull of its vertices. Since the vertices of C ∩H ′ are in

correspondence with the edges of C, and any point in C is a positive scaling of a point

in C ∩H ′, we conclude that if we take xi as the vertices of C ∩H ′ (or any positive scalar

multiple of them) then C = cone(x1, . . . , xn).

2.3 Spherical convexity

A vector v =


v0

...

vd

 ∈ Rd+1 is on the sphere Sd if
∑n

i=0 v
2
i = 1. For subsets of Sd, when

we say that they are open or closed, this refers to the induced topology of Sd as a subset

of Rd+1.

An open (respectively closed) hemisphere of Sd is the intersection of Sd with any open

(closed) halfspace whose bounding hyperplane goes through the origin in Rd+1. A closed

hemisphere is obtained by taking the closure of its respective open hemisphere.

Definition 2.2 (Convex and strictly convex subsets of Sd). A convex subset of Sd is

the intersection of Sd with a convex cone in Rd+1. It is strictly convex if in addition it

is contained in an open hemisphere of Sd.

The first notion of spherical convexity could be weaker than what one might expect. For

example, two diametrically opposite points on the sphere form a non-connected set that

is convex but not strictly convex. These definitions of convexity are similar to the ones

in Horn [20]. Open convex subsets of the sphere are always strictly convex, with the

exception of Sd itself. Any convex subset of Sd is an intersection of closed hemispheres

and any strictly convex subset can be obtained as an intersections of open hemispheres

(maybe infinitely many).

Definition 2.3 (Spherical polyhedron). An open (resp. closed) spherical polyhedron is

the intersection of finitely many open (closed) hemispheres in Sd. A pointed spherical

polyhedron is the intersection of a pointed polyhedral cone in Rd+1 with the sphere Sd.

Spherical polyhedra are convex subsets of Sd, that can be obtained as the intersection of

a polyhedral cone with the sphere Sd. A closed spherical polyhedron is strictly convex

if and only if it is pointed.
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Definition 2.4 (Faces and boundary of spherical polyhedron). The faces of a closed

spherical polyhedron Q are obtained as the intersection of the faces of cone(Q) with Sd.

The vertices of Q are its zero dimensional faces. The boundary of Q is obtained as the

union of all faces of Q strictly contained in Q. The relative interior relint(Q) is the

intersection of the relative interior of cone(Q) with Sd. Thus the boundary of Q is the

complement of relint(Q) in Q.

Definition 2.5 (Spherical convex hull). The spherical convex hull of a set of points

V ⊆ Sd is the intersection of the cone generated by V in Rd+1 with Sd.

From Lemma 2.1 we can see that any closed pointed spherical polyhedron Q is the

spherical convex hull of its vertices. (These vertices are obtained by intersecting the

edges of cone(Q) with Sd.)

If a polyhedral cone is not pointed, it can still be obtained as a combination of a finite

set of vectors, but this time there is no unique way to obtain a set of generating vectors

(see Avis et al. [2], Schrijver [32] for discussions about canonical representations of

polyhedra). Therefore, any spherical polyhedron Q is the spherical convex hull of a

finite set of points V in Sd, but there is no canonical choice for the set V .

2.4 Hyperplane arrangements

A hyperplane arrangement A in Rd is a finite set of hyperplanes of Rd. A hyperplane

arrangement is oriented in case we fix a normal vector a ∈ Rd orthogonal to each

hyperplane H ∈ A, so that H is given by the points x that satisfy an equation of the

form a · x = b. A hyperplane arrangement is called central if all hyperplanes in A go

through the origin, i.e. they are determined by an equation of the form a · x = 0.

A central hyperplane arrangement A in Rd+1 defines an affine hyperplane arrangement

Aaff in Rd, where each of the hyperplanes H ′ of Aaff is obtained as the intersection of

a hyperplane H ∈ A with the hyperplane H1 of points s ∈ Rd+1 with first coordinate

x0 = 1 (except if H is parallel H1). Hyperplanes in the affine arrangement are not

necessarily central. The hyperplane H1 ⊆ Rd+1 is often identified with Rd.

2.5 CW complexes

A regular CW complex (a.k.a. regular cell complex) is a topological space constructed

as the union of a collection of cells homeomorphic to closed balls such that the relative
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interiors of the cells are disjoint and the boundary of each k-cell is the union of finitely

many cells of dimension smaller than k. See for example Munkres [23], Cooke & Finney

[9], Björner [5]. All the CW complexes we consider are finite, thus compact.

Each regular CW complex is determined by its face poset, which has a minimal element

0̂ corresponding to the empty cell ∅. The order complex of a poset P is an abstract

simplicial complex with vertex set given by the elements of P and with a simplex for

each chain of the poset P , i.e. a subset of elements of the poset where every two elements

can be compared. The order complex of the face poset of a regular CW complex C
(without including the empty face) is homeomorphic to C. It can be realized by taking

the barycentric subdivision of C. Therefore regular CW complexes are triangulable.





Chapter 3

Convex n-partitions

We begin here with the definition of the convex partitions of the space. Throughout this

chapter we state some of its basic properties and define many of the related concepts

that are useful to understand these objects better.

Definition 3.1 (Convex partitions of Rd, regions, n-partitions). Let n and d be two

positive integers. A convex partition of Rd is an ordered list P = (P1, P2, . . . , Pn) of

non-empty open convex subsets Pi ⊆ Rd that are pairwise disjoint, so that the union⋃n
i=1 Pi equals Rd, where Pi denotes the closure of Pi. Each of the sets Pi is called a

region of P. Partitions into n convex regions are also called n-partitions.

Since all partitions we are dealing with here are convex, we will often omit this word.

The regions of an n-partitions are labeled from 1 to n, where the order is important.

Definition 3.2 (Space of convex n-partitions). The set of all convex n-partitions of Rd

is denoted by C(Rd, n).

In Chapter 4 we will analyze the structure of the space C(Rd, n) as a whole, but in this

chapter we focus only on the structure of a single n-partition.

3.1 Polyhedral structure

As a first observation, we prove that all regions of an n-partition are polyhedral. This

means that each region can be described as the set of points satisfying a finite number

of linear inequalities.

Proposition 3.3. Let P = (P1, P2, . . . , Pn) be an n-partition of Rd. Then each region

Pi is the solution set of n− 1 strict linear inequalities.

11



Chapter 3. Convex n-partitions 12

Proof. By the Hahn–Banach Separation Theorem (see Rudin [30, Theorem 3.4]), for

two disjoint non-empty open convex sets in Rd we can always find a hyperplane that

separates them. Therefore, for each region Pi and for each j 6= i, we can find an affine

hyperplane Haff
ij = {x ∈ Rd : aij · x = bij} for some aij ∈ Rd and bij ∈ R, such that if

x ∈ Pi then aij · x < bij and if x ∈ Pj then aij · x > bij .

All points in Pi satisfy the linear system of inequalities aij ·x < bij for all j 6= i. On the

other hand, let R be the set of points x satisfying these inequalities. Any x′ ∈ Pj is such

that aij · x′ ≥ bij and therefore, if x ∈ R then x /∈
⋃
j 6=i Pj . Since P is an n-partition,

then x must belong to Pi and R ⊆ Pi. Moreover, R ⊆ Pi since the set R is open and

then it is necessarily contained in the interior of Pi. We conclude that Pi = R is the set

of solutions of n− 1 strict linear inequalities.

3.2 Spherical representation and partitions of Sd

We now introduce convex partitions of the unit d-sphere Sd. Even if we are only in-

terested in partitions of Rd, partitions of the sphere appear naturally and they are in a

way more fundamental objects, as they generalize partitions of the euclidean space Rd.
Therefore, it is convenient to see the n-partitions of Rd as partitions of Sd ⊆ Rd+1, by

constructing what we call the spherical representation (see Definition 3.5). This point

of view has the following advantages:

• Most of the definitions can be generalized to convex partitions of Sd. For many

questions, the treatment is easier in the spherical case and needs only minor ad-

justments for Rd.

• The faces of partitions of Rd will be defined in the spherical representation. In

this way, the faces at infinity can be treated explicitly, and have mainly the same

properties as all other faces. Also, this yields a regular cell complex structure on

the set of faces (see Theorem 3.24).

The faces of an n-partition P ordered by inclusion will form the face poset of P. We

will see that it is the poset of a finite regular CW complex homeomorphic to a closed

ball. (As usual, poset stands for partially ordered set, see e.g. Stanley [33, Chapter 3].)

Analogous to Definition 3.1, in the spherical case we have the following.

Definition 3.4 (Convex partitions of the sphere). Let n and d be two positive integers.

A convex partition of Sd is a listQ = (Q1, Q2, . . . , Qn) of non-empty open convex subsets

Qi ⊆ Sd that are pairwise disjoint, so that the union
⋃n
i=1Qi equals Sd.
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A vector v ∈ Sd lies in the upper hemisphere Sd+ if v ∈ Sd and its first coordinate is

positive, v0 > 0. Respectively, v is in the lower hemisphere Sd− if v ∈ Sd and v0 < 0.

The equator Sd0 of Sd is formed by all v ∈ Sd with v0 = 0.

For a point x ∈ Rd we construct the point

x̂ =
1√

1 + |x|2

(
1

x

)
∈ Rd+1,

that is, the intersection of the ray r(x) = {λ
(

1
x

)
∈ Rd+1 : 0 ≤ λ ∈ R} with Sd. The map

x 7→ x̂ gives a bijection between Rd and Sd+.

Definition 3.5 (Spherical representation). The spherical representation of an n-partition

P of Rd is the spherical (n + 1)-partition P̂ = (P̂1, . . . , P̂n, P̂∞) of Sd, with regions

P̂i = {x̂ : x ∈ Pi} for i = 1, . . . , n and an extra region P̂∞ = Sd−.

When we talk about a spherical representation P̂ for P ∈ C(Rd, n), we denote by ∞ the

subindex n+ 1.

Lemma 3.6. The spherical representation P̂ of an n-partition P of Rd is a convex

partition of Sd with n+ 1 regions.

Proof. Each region P̂i is the intersection of Sd with the open convex cone

cone
(
{
(

1
x

)
∈ Rd+1 : x ∈ Pi}

)
.

All these regions are therefore open and convex in Sd. Also the sets P̂i are pairwise

disjoint, and their closures completely cover the upper hemisphere, since the Pi form an

n-partition of Rd. The face P̂∞ is also convex, disjoint from all other P̂i, and such that

the union of the closures of all regions is Sd.

Example 3.7. Figure 3.1 shows an 4-partition P of R2 together with an upper view

of its spherical representation P̂, where we only depict the upper hemisphere S2
+. The

face P̂∞ corresponds to the side of the sphere hidden to us. This partition includes two

parallel lines as the boundary of P3 that in the spherical representation meet at two

points “at infinity” (on the boundary of S2
+).

3.3 Faces and the face poset

First we define what are the euclidean faces of a partition. Since we also want to

study the behavior of n-partitions at infinity as part of the face structure, it will be
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P4P3

P1

P2

P̂4P̂3

P̂1

P̂2

Figure 3.1: A 4-partition P ∈ C(R2, 4) together with an upper view of its spherical
representation.

convenient to look at the faces of their spherical representations. We will see later that

euclidean faces of a partition are in correspondence with interior faces of the spherical

representation.

Definition 3.8 (Euclidean faces of an n-partition). Let P = (P1, . . . , Pn) be an n-

partition of Rd. A euclidean face of P is a set of the form

Ex =
⋂

i:x∈P i

Pi ⊆ Rd

for a point x in Rd.

Now we introduce the faces of spherical partitions.

Definition 3.9 (Index sets and faces of spherical partitions). Let Q = (Q1, . . . , Qn) be

a partition of Sd. Let Qi be the closure of Qi in Sd and Ci = cone(Qi) for 1 ≤ i ≤ n. For

any point x in Rd+1, we define the index set I(x) to be the set of values i ∈ {1, 2, . . . , n}
such that x ∈ Ci. We define I(Q) to be the set of all index sets I(x) for x ∈ Rd+1.

The faces of a spherical partition Q are all sets FI ⊆ Sd that can be obtained as an

intersection of the form FI =
⋂
i∈I Qi for some I ∈ I(Q). That is, for each x ∈ Rd+1 we

obtain the spherical face

FI(x) =
⋂

i∈I(x))

Qi ⊆ Sd.

Lemma 3.10. If I(x) ( I(x′) then FI(x′) ( FI(x).

Proof. The inclusion FI(x′) ⊆ FI(x) is clear since the intersection FI(x′) =
⋂
i∈I(x′)Qi

includes all terms involved in computing FI(x′). Also if I(x) 6= I(x′) then x /∈ FI(x′),

since there is at least one i ∈ I(x′)− I(x) such that x /∈ Qi. Since x ∈ FI(x) we get the

strict inclusion FI(x′) ( FI(x).
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Definition 3.11 (Faces of partitions of Rd, faces at infinity, interior faces, bounded

faces). The faces of an n-partition P of Rd are all the faces of the spherical representation

P̂, with the exception of F{∞} = Sd−. Faces FI(x) of P with∞ ∈ I(x) are called faces at

infinity of P. All other faces are called interior faces. A face is bounded if it does not

contain any face at infinity.

With this definition, faces of an n-partition P of Rd are not subsets of Rd, but they are

contained in the closure of Sd+. Faces at infinity are precisely the faces of P contained in

the boundary of Sd+, which is the equator Sd0 , while interior faces are in bijection with

the euclidean faces Ex introduced before (which are subsets of Rd), where FI(x̂) is the

closure of Êx for x ∈ Rd.

For a convex n-partition P we set I(P) = I(P̂) \
{
{∞}

}
to be the set of indices of faces

of P.

Each n-partition has only finitely many faces, since all I(x) are contained in the set

I(0) = {1, . . . , n,∞}, where 0 represents the origin in Rd+1. The union of all faces of

P will be precisely Sd+, since any point x ∈ Sd+ is contained in FI(x).

Definition 3.12 (Face poset). The face poset of an n-partition P is the set of all faces

of P, partially ordered by inclusion. It is denoted as F(P).

The face poset of a partition P is isomorphic as a poset to I(P), ordered by reversed

inclusion (see Lemma 3.10). For that reason we say that two partitions P and P ′ have

the same face poset if I(P) = I(P ′). This have the advantage that a canonical label is

given to each face.

Example 3.13. In Figure 3.2 we show the face poset of the partition P on Example

3.7. Here we denote by F123 the face F{1,2,3}, and similarly for other sets of indices.

Notice that FI(0) = F1234∞ = ∅. To obtain the face poset of P̂ we have to add the face

F∞ as another maximal face above all faces at infinity (appearing with dotted lines in

the figure).

∅

F123 F12∞ F134∞ F234∞

F12 F13 F23 F34 F1∞ F2∞ F4∞

F1 F2 F3 F4 F∞

Figure 3.2: Face poset of the partition P on Example 3.7.
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Let us provide a little overview of the most relevant notation we have introduced so far

related with an n-partition P:

• P = (P1, P2, . . . , Pn) denotes an n-partition of Rd, P ∈ C(Rd, n).

• P̂ = (P̂1, . . . , P̂n, P̂∞) is the spherical representation of P, a partition of Sd into

n+ 1 regions.

• I(P) = I(P̂) \
{
{∞}

}
is the set of indices of faces of P.

• FI ⊂ Sd are the faces of P, for I = I(x) ∈ I(P) and x ∈ Rd+1.

• CI = cone(FI) are the corresponding cones in Rd+1.

• Ex ⊆ Rd denote the euclidean faces of P, for x ∈ Rd. Also we might denote them

as EI where I = I(x) ∈ I(P).

Sometimes we denote a face FI as FI(P) to specify the partition it belongs to, for

I ∈ I(P).

Faces of P of dimension k are also known as k-faces. The 0-faces of P are called

the vertices and the 1-faces are called edges, but only in case they are contractible. See

Example 3.26 for an example of a partition with a 0-face that is not vertex. We introduce

now a subset of partitions where those strange things never happen.

Definition 3.14 (Essential partitions). An n-partition P is essential if FI(0)(P) = ∅.

Since all I ∈ I(P) are contained in I(0) = {1, . . . , n, ∞}, the face FI(0) is the minimal

face of the partition. From here it is easy to conclude the following:

Lemma 3.15. An n-partition P is essential if and only if it has a bounded face. Also,

it is essential if and only if it has an interior vertex.

Proof. If a partition is not essential, all faces must contain FI(0), which is a non-empty

face at infinity. Therefore there are no bounded faces. On the other hand, if there is a

bounded face F , this implies that the partition is essential, since FI(0) is the intersection

of the closures of all regions P̂i of P̂ and it will be contained in the intersection of F

and the closure of P̂∞, that is empty for a bounded face F . For the second part, notice

that an interior vertex is a bounded face. Also any bounded face will have at least one

vertex, since it is a pointed spherical polyhedron (see also Lemma 2.1).

Definition 3.16 (Subfaces). The subfaces of a face FI of an n-partition P are the faces

of FI considered as convex spherical polyhedra, i. e. the faces of the cones CI intersected

with Sd for I ∈ I(P). Subfaces of a face of P are also called subfaces of P.
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Subfaces of dimension k are denoted as k-subfaces. We will see that each subface is a

union of faces (Lemma 3.23). We might also talk about the subfaces of an euclidean

face E of P, that are equivalently defined to be the faces of E as a convex polyhedron.

Example 3.17. For the partition in Figure 3.1, we see that the region P̂3 is bounded

by two subfaces of dimension one. One of these subfaces is the face F34 of the partition,

while the other one is the union of the faces F13 and F23.

3.4 Basic lemmas about faces

Here we will prove some basic facts about faces that will be useful later, in particular to

prove Theorem 3.24. First we need some definitions that make precise when two regions

of an n-partition are adjacent.

Definition 3.18 (Adjacent regions of an n-partition). Let P be an n-partition of Rd

and P̂ its spherical representation. Two regions P̂i and P̂j of P̂ are adjacent if the

intersection Fij = Fi ∩ Fj is a (d− 1)-face of P.

In this case, there is a unique hyperplane Hij that separates the regions P̂i and P̂j .

The equation for the points x ∈ Rd+1 in Hij can be written as cij · x = 0, where

cij = (−bij , aij1 , . . . , aijd) ∈ Rd+1, with aij and bij as defined in the proof of Proposition

3.3.

Definition 3.19 (Adjacency graph of an n-partition). The adjacency graph A(P) of

an n-partition P of Rd is a simple graph with vertex set {1, . . . , n,∞} and edges {i, j}
for each pair of adjacent regions P̂i and P̂j . In this way the set of (d − 1)-faces of P
is in bijection with the edges of A(P), which also includes the pairs of the form {i,∞}
corresponding to (d− 1)-faces at infinity.

Lemma 3.20. For any face FI , the cone CI = cone(FI) is described by the intersection

of the hyperplanes Hij = {x ∈ Rd+1 : cij · x = 0} for i, j ∈ I corresponding to adjacent

regions and the halfspaces of points x satisfying cik · x ≤ 0 for each pair {i, k} ∈ A(P)

where i ∈ I and k /∈ I. That is,

CI =
( ⋂

i, j∈I
{i,j}∈A(P)

Hij

)
∩
( ⋂

i∈I, k/∈I
{i,k}∈A(P)

{x ∈ Rd+1 : cik · x ≤ 0}
)
.

Also, the affine span of CI is given by aff CI =
⋂
{i,j}Hij, where the intersection is taken

over all pairs {i, j} ∈ A(P) such that i, j ∈ I.
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Proof. Each cone Ci can be described by the inequalities cij ·x ≤ 0, for i, j adjacent. If

i, j ∈ I, then the corresponding inequalities imply that FI ⊆ Hij . All other inequalities

involve a k /∈ I. If x ∈ FI then the point x will satisfy all inequalities of the form

cik · x < 0 strictly, for {i, k} ∈ A(P) with i ∈ I and k /∈ I. Therefore the only linear

equations satisfied by all points in CI are of the form cij · x = 0 for i, j ∈ I adjacent,

and they determine the affine span of CI .

Lemma 3.21. The relative interiors of the faces of P are pairwise disjoint.

Proof. Let FI be a face of P and x ∈ relintFI . Then x ∈ relintCI and it also has to

satisfy all inequalities cik · x < 0 involving an index k /∈ I(x) strictly, otherwise it will

belong to the boundary of FI . We can see then that I(x′) = I since x belongs to all Fi

for i ∈ I and it won’t be in any Fk for k /∈ I(x). Therefore every point x ∈ Sd+ can be

in at most one relative interior of a face and we conclude that the relative interiors are

pairwise disjoint.

From here we see that for all x ∈ Sd we have relint(FI(x)) = {x′ : I(x) = I(x′)}.

Lemma 3.22. The face FI(0) is the only face FI such that its corresponding cone CI is

a linear subspace of Rd+1.

Proof. First, CI(0) is a linear subspace of Rd+1, since by Lemma 3.20 the cone CI(0) is

given by

CI(0) =
⋂

i, j∈I(0)
{i,j}∈A(P)

Hij = aff FI(0),

and no inequality is involved. No other face of P can be a linear subspace. Otherwise

its cone will contain CI(0) in its relative interior. But we can extend the result of

Lemma 3.21 to see that also all cones CI have disjoint relative interiors, and it is not

possible for another cone CI to contain CI(0) if it is a linear subspace, since the relative

interior of a linear subspace is the whole linear subspace itself. If FI(0) is empty, then

its corresponding cone is only the origin (the vector 0 ∈ Rd+1), and it is contained in all

other cones.

Lemma 3.23. Let P be an n-partition of Rd and FI a face of P.

(i) The boundary of FI is equal to the union of all faces FJ of P with I ( J ⊆ I(0).

(ii) All subfaces of FI are unions of some faces of P.

(iii) The vertices of a face FI (as 0-dimensional subfaces) are also vertices of P.
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Proof. If FI is the minimal face FI(0), then it has no boundary, no subfaces and there

is nothing to prove, so we assume that FI is different from FI(0).

(i) If I ( I(0), then clearly FI(0) ( FI . Moreover, if I ( J ⊆ I(0), then the relative

interior of FJ must be on the boundary of FI since the relative interiors of different

faces are disjoint. (J must include at least one index k /∈ I that makes FJ be on

the boundary.) Since all points x′ in the boundary of FI have I ( I(x′), the result

follows.

(ii) We know that the boundary of FI is the union of faces of P contained in FI . Each

of the (k − 1)-faces of that union are contained in a (k − 1)-subface of FI , since

the affine span of such (k − 1)-face is a k-dimensional linear subspace defining a

facet of CI . The union of all (k− 1)-faces contained in a (k− 1)-subface G will be

precisely G.

Now if G is any other subface of FI of dimension k′ < k−1, we proceed inductively

as follows. Assume that all subfaces of FI of dimension greater than k′ are unions

of faces of P. Then G is a subface of a subface G′ of FI of dimension k′ + 1 and

G′ can be written as a union of faces of P. Each of those faces will have a subface

contained in G, and the union of those subfaces will cover G. It is enough to take

those faces such that the subface in G has dimension k′. We repeat the argument

as before to see that subfaces of dimension k′ of a face of dimension k′ + 1 can be

expressed as unions of faces of P to conclude that any subface is a union of faces.

(iii) Since subfaces of a face FI are unions of faces of P, in the case of a single vertex,

the only possibility to obtain it as a union of faces is that the point itself is a vertex

of P.

3.5 CW complex structure

Theorem 3.24. If P is an essential n-partition of Rd, then the faces of P form a regular

CW complex homeomorphic to Sd+.

Proof. From Lemma 3.21 we know that the relative interior of all faces are disjoint.

Also the union
⋃
I∈I(P) FI is the closure of the upper hemisphere Sd+, since x ∈ FI(x)

for any point x ∈ Sd+. Also from Lemma 3.23 we know that the boundary of each face

is homeomorphic to the union of some other faces of smaller dimension. Therefore the

only thing that we need to check is that the faces are k-cells (homeomorphic to closed
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k-balls). The problem is that from our definition of convexity we cannot conclude that

the faces are balls. Here is where we need to use that the partition is essential.

If a closed convex cone C in Rd+1 is not a linear subspace, then there must be a vector

x ∈ C such that −x is not in C (otherwise we will always have all linear combinations

in the convex hull). We can use this vector to contract the cone C to the ray cone(x),

by constructing a family of norm preserving maps taking any point y ∈ C to cone(x).

In this way, the intersection of C with the sphere Sd will be contracted to a point.

We know from Lemma 3.22 that the only face FI such that its corresponding cone CI is a

linear subspace is FI(0). If CI(0) is a k-dimensional linear subspace, then its intersection

FI(0) is a (k − 1)-sphere in Sd, for k = 1, . . . , d + 1, and then it is not contractible.

The only possibility is that CI(0) = 0 is of dimension k = 0, and then FI(0) = ∅ and

the partition is essential. In that case all k-faces are contractible and homeomorphic to

k-balls for k = 0, . . . , d and form a CW complex homeomorphic to a closed d-ball.

If the partition is not essential, we have two options to see it as a CW complex. One

possibility is to see it as a partition in a lower dimension, and the other is to refine the

partition.

Proposition 3.25. The order complex of the face poset of an n-partition P is homeo-

morphic to a ball of dimension d− k, where k = dimFI(0).

Proof. The face FI(0) is the intersection of a linear subspace L of Rd+1 with Sd. (This

holds even if the face is empty.) We can intersect all faces of the partition with the

orthogonal subspace L⊥ to get a new partition Pess. If dimL = k, then Pess is equivalent

to an n-partition of Rd−k.

The new partition Pess has the same face poset as P, because the cones of all faces of

P contain L and will be intersected by L⊥. This preserves all containment relationships

and each cone of a face in P can be reconstructed by taking the corresponding cone

in Pess and the Minkowski sum with L. For the face FI(0) = L the intersection with

L⊥ will only be the origin 0 and FI(0)(Pess) will be empty, and therefore Pess will be

essential. From Theorem 3.24 we conclude that the face poset of P is the poset of a cell

complex homeomorphic to a (d− k)-ball.

Example 3.26. In Figure 3.3 we show the spherical representation of a non-essential

partition P of the plane in four regions separated by three parallel lines. Again, the

side of the sphere hidden to us corresponds to P̂∞. In this case FI(0) is non-empty and

consists of two antipodal points at the boundary of S2
+. The cone L = CI(0) is a straight

line (a linear subspace of R3).
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P̂1 P̂2 P̂3 P̂4

P̂1

P̂2 P̂3

P̂4

P̂∞

Figure 3.3: Non-essential 4-partition of the plane and its essentialization on S1.

The orthogonal space L⊥ is a plane that intersects the sphere in a great circle, generating

in this way the essentialization Pess. This intersection is the spherical representation of

a 4-partition of R1 (depicted at the right of Figure 3.3).

Instead of reducing the dimension, we can also make a refinement of any non-essential

n-partition to get at the end a CW complex homeomorphic to a d-ball. One way to

construct such refinement will be presented in Definition 4.31, where node systems are

introduced.





Chapter 4

Spaces of n-partitions

Understanding the space C(Rd, n) of all convex n-partitions of Rd is the main goal of

this work, and in this chapter we investigate its basic structure. First we define a

metric on C(Rd, n), which gives rise to a topological structure, and introduce a natural

compactification, the space C(Rd,≤ n). Both spaces can be obtained by gluing pieces

that can be described as semialgebraic subsets in some real vector space. We offer two

approaches to obtain this result. The first one is based on the hyperplane description

of the partitions, where the pieces are in bijection with the adjacency graph of the

partition A(P). The second one is based on the node description of partitions (where

nodes generalize the notion of vertices) and there we define the combinatorial types of

n-partitions and its corresponding realization spaces.

4.1 Metric structure, topology and compactification

To understand the space C(Rd, n) we want to define a metric on it. For non-empty

compact convex sets there are two standard ways to measure the distance between

them. The Hausdorff distance between two compact convex sets A, B ⊂ Rd is defined

as

δ(A,B) = max
(

max
a∈A

min
b∈B
|a− b|,max

b∈B
min
a∈A
|a− b|

)
(4.1)

and the symmetric difference distance

θ(A,B) = vold(A4B), (4.2)

where A4 B denotes the symmetric difference of sets A and B. Both of these metrics

induce the same topology (see [19]). Unfortunately we get some troubles when we try

to apply this to unbounded regions, since in that case the distances would be typically

23
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infinite. To remedy this, instead of the usual volume vold over Rd we need to take a

continuous measure µ that is bounded, i.e. µ(Rd) < ∞. A measure is positive if it is

supported on the whole space Rd. Throughout our discussion the measures we consider

are positive, continuous and bounded.

One possible choice for the measure is the standard d-volume µ(P ) = vold(P̂ ) of the

projection to the sphere for any measurable set P ⊆ Rd; this volume is bounded by

vold(S
d
+) = 1

2 vold(S
d). With this measure µ, we can fix a metric on C(Rd, n) as follows.

Definition 4.1. Given two n-partitions P = (P1, . . . , Pn) and P ′ = (P ′1, . . . , P
′
n) of

Rd, the distance dµ(P,P ′) between them is the sum of the measures of the symmetric

differences of the corresponding regions, that is,

dµ(P,P ′) =

n∑
i=1

µ(Pi 4 P ′i ).

This distance dµ is a metric and endows C(Rd, n) with a topological structure that is

relevant for our study.

There is a natural compactification for the space C(Rd, n) that is obtained by considering

partitions where now it is allowed to have empty regions.

Definition 4.2 (Non-proper and proper n-partitions). Let n and d be two positive

integers. A non-proper n-partition of Rd is a list P = (P1, P2, . . . , Pn) of n open convex

subsets Pi ⊆ Rd that are pairwise disjoint, so that the union
⋃n
i=1 Pi equals Rd, where

now the Pi are allowed to be empty and at least one of the Pi is empty. The convex

n-partitions as introduced in Definition 3.1 are called proper in this context. We denote

by C(Rd,≤n) the set of all proper or non-proper n-partitions.

In other words, the elements of C(Rd,≤ n) are n-partitions where empty regions are

allowed, so that C(Rd, n) is the subset of proper partitions in C(Rd,≤ n) and the non-

proper n-partitions are all other elements of C(Rd,≤n) that contain at least one empty

region. Non-proper partitions can also be seen as a k-partition with k < n, whose regions

have distinct labels in the range from 1 to n, while labels that are not used correspond

to empty regions.

Most of the results and definitions we have introduced up to now can be extended to

non-proper partitions. The distance dµ can be extended to C(Rd,≤n), so that it is also

a metric and topological space. Non-proper partitions also have polyhedral regions as

claimed by Theorem 3.3 (now possibly empty). We can also talk about non-proper parti-

tions of a d-sphere, spherical representation of non-proper partitions and face structure,

where now the labels of the faces I(x) are contained in I(0) = {i : Ci 6= ∅}, the set of
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labels of all non-empty regions. For a region Pi = ∅, we define Ci to be empty as well,

so that we don’t get new faces by adding extra empty regions. As before, a non-proper

n-partition is essential if FI(0) = ∅.

Theorem 4.3. The space C(Rd,≤n) is compact.

Proof. To prove this, we will introduce couple of spaces that will also be important in the

next section when we talk about the semialgebraic structure of the spaces of partitions.

First consider the space (Sd)(
n
2), which is a compact subset of R(d+1)×(n2). Each of the

points c ∈ (Sd)(
n
2) is represented by

(
n
2

)
unit vectors cij ∈ Sd for 1 ≤ i < j ≤ n. Each

point c can be identified with a central hyperplane arrangement Ac in Rd+1 that is

oriented, with
(
n
2

)
hyperplanes Hij , one for each pair i, j with 1 ≤ i < j ≤ n. Each

hyperplane Hij ∈ Ac is given by the linear equation cij · x = 0 and comes with an

orientation given by the vector cij ∈ Rd+1. To keep the symmetry of the notation,

Hji denote the same hyperplane Hij with the opposite orientation, with corresponding

normal vector cji = −cij . The following space will contain the space C(Rd,≤ n).

Definition 4.4 (Space of n disjoint open polyhedra). Let D(Rd,≤ n) be the set of n

labeled, disjoint, possibly-empty, open polyhedral subsets (Q1, . . . , Qn) of Rd.

We fix the topological structure of D(Rd,≤ n) in the same way as we did for C(Rd,≤ n)

using the metric structure from Definition 4.1. For this, we take a metric in D(Rd,≤ n)

where the distance of two lists (Q1, . . . , Qn) and (Q′1, . . . , Q
′
n) in D(Rd,≤ n) is given by

n∑
i=1

vold(Q̂i 4 Q̂′i),

that is, the sum of the measure of the symmetric differences of the projections to Sd of

the pairs of corresponding polyhedra in both lists. In this way C(Rd,≤ n) is a subspace

of D(Rd,≤ n), with the corresponding subspace topology.

Equivalently, D(Rd,≤ n) can be considered the space of n labeled, disjoint, possibly-

empty, open spherical polyhedral subsets of Sd+ (the upper hemisphere), since we can

map each polyhedron Qi ⊆ Rd to the spherical polyhedron Q̂i. The space of partitions

C(Rd,≤ n) can be considered as the subspace of lists (Q1, . . . , Qn) ∈ D(Rd,≤ n) where

the union of the closure of the Qi is the whole Rd.

We can define a map π : (Sd)(
n
2) → D(Rd,≤ n) obtained by taking for each c ∈ (Sd)(

n
2)

the polyhedra

Qi = {x ∈ Rd : cij ·
(

1

x

)
< 0 for 1 ≤ j ≤ n, j 6= i},
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for 1 ≤ i ≤ n where
(

1
x

)
∈ Rd+1 is the vector obtained by adding to x a first coordinate

equal to 1. In other words, each Qi is determined by intersecting the halfspaces cij ·
(

1
x

)
<

0 determined by the affine hyperplanes Hij ∈ A in Rd, where the orientation of the cij

indicates the side of Hij that must be taken. We recall the convention that cji = −cij ,
which implies that all Qi are disjoint. The polyhedral sets Qi might be empty.

Lemma 4.5. The map π : (Sd)(
n
2) → D(Rd,≤ n) is continuous.

Proof. This is because if we move the hyperplanes a small amount, the polyhedra pro-

jected to the sphere also change slightly and the sum of the d-volume of the symmetric

differences must be small.

Now we can complete the proof of Theorem 4.3. Since the space (Sd)(
n
2) is compact,

the image of the continuous map π is also a compact space (see e.g. [24, Theorem

26.5]). On this image we have a continuous function f to R, given by f(Q1, . . . , Qn) =∑n
i=1 vold(Q̂i).

This is a continuous function, so the preimage of the maximal value, namely the d-

volume of Sd+, is a closed subset of a compact space, so it is compact as well. This

preimage is denoted by H(Rd,≤ n) (as explained later in Definition 4.12). We conclude

that C(Rd,≤ n) is compact, as it is the image under π of H(Rd,≤ n) that is compact

(again by [24, Theorem 26.5]).

We cannot claim that C(Rd, n) is also compact, since the limit of a sequence of proper

partitions might have empty regions. On the other hand, any non-proper partition can

be obtained as a limit of proper partitions. To check this, take a non-proper partition

and subdivide one of its regions into one big and some small convex pieces, to get a

proper n-partition out of it. If the measure of the small pieces goes to zero, in the limit

we end up at the non-proper partition we started with.

Therefore we can think of C(Rd,≤n) as a compactification of C(Rd, n). Other compact-

ifications are possible for C(Rd, n), but C(Rd,≤ n) is a natural choice with a concrete

interpretation, so we usually think of C(Rd, n) as a subset of C(Rd,≤n).

4.2 Hyperplane description and semialgebraic structure

A subset of Rm is semialgebraic if it can be described as a finite union of solution

sets of systems given by finitely many polynomial equations and strict inequalities on

the coordinates of Rm. In this section we prove that each of the spaces C(Rd, n) and
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C(Rd,≤n) is a union of finitely many pieces that can be parameterized by semialgebraic

sets.

We refer to Bochnak, Coste & Roy [7] and Basu, Pollack & Roy [3] as general references

on semialgebraic sets. For the following we will use some basic results about semialge-

braic sets, such as the fact that finite unions and intersections of semialgebraic sets are

semialgebraic, and the fact that the complements of semialgebraic sets are again semi-

algebraic. Most notably, we will use the Tarski–Seidenberg Theorem (see [7, Theorem

2.2.1]), which claims that semialgebraic sets are closed under projections.

Theorem 4.6 (Tarski–Seidenberg). If X ⊂ Rn ×Rm is a semialgebraic set, and if p is

the projection onto the first n coordinates, then p(X) ⊆ Rn is also semialgebraic.

We will use here some of the notation introduced in the proof of Theorem 4.3, such

as the map π : (Sd)(
n
2) → D(Rd,≤ n). Note that the space (Sd)(

n
2) ⊂ R(d+1)(n2) is

semialgebraic.

Definition 4.7 (Hyperplane arrangement carrying a partition). Let P be an n-partition

of Rd. An oriented hyperplane arrangement Ac for c ∈ (Sd)(
n
2) carries the partition P

if π(c) = P.

In other words, an oriented hyperplane arrangement Ac for c ∈ (Sd)(
n
2) carries the

partition P = (P1, . . . , Pn) if the regions P̂i and P̂j are separated by the hyperplane Hij ,

so that cij · x < 0 for x ∈ P̂i and cij · x > 0 for x ∈ P̂j .

As explained in the proof of Proposition 3.3, for each n-partition P ∈ C(Rd, n) it is

always possible to find a hyperplane arrangement A such that it carries the partition

P. Such hyperplane arrangement is usually not unique. For a non-proper partition

P ∈ C(Rd,≤ n) it is also possible to find a hyperplane arrangement carrying P. If a

region Pi is empty, any hyperplane that doesn’t intersect Pj is good enough to separate

this two regions. If Pi = Rd, we can still take cij = (1, 0, . . . , 0).

Example 4.8. In Figure 4.1, to the left we show a partition of R2 into four regions, but

to make the example more interesting (so that it is in fact two examples at once) we

will consider it as a non-proper partition in C(R2,≤5), by taking an extra empty region

P5 = ∅.

To the right we show an affine picture of a hyperplane arrangement carrying P. For

adjacent regions Pi and Pj , with {i, j} ∈ A(P), there is only one possible hyperplane

Haff
ij that separates them, namely the affine span of the points on the intersection of the

boundaries. The extension of these hyperplanes appears on the figure as dashed lines.

For all other hyperplanes there is some freedom to choose them. In the figure, there is
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P1

P2

P3

P4

P5 = ∅

H15

H25

H35

H45

P1

P2

P3

P4

P5 = ∅

H13

Figure 4.1: Non-proper partition P in C(R2,≤ 5) together with a possible hyperplane
arrangement carrying it.

a label that appears next to each of them. For the hyperplanes involving the region P5,

it is only necessary that the other region lies entirely on one side of the hyperplane.

The unit vector cij is uniquely determined by the hyperplane Hij and the requirement

that Pi and Pj lie on the correct sides of Hij , unless Pi = Pj = ∅. We remind the reader

that an affine hyperplane Haff given by the points x ∈ Rd that satisfy an equation of

the form a ·x = b for a ∈ Rd and b ∈ R is represented projectively by its corresponding

vector c = (−b, a1, . . . , ad) ∈ Rd+1 or by the vector (b,−a1, . . . ,−ad) in case that the

opposite orientation is required. This vector can be normalized later.

Definition 4.9 (Regions of a hyperplane arrangement). Let Ac for c ∈ (Sd)(
n
2) be a

hyperplane arrangement with hyperplanes Hij = {x ∈ Rd+1 : cij · x = 0}. A region of

the affine hyperplane arrangement Aaff
c is a subset of the form

Rs = {x ∈ Rd : sijcij ·
(

1

x

)
< 0 for all i < j},

where s ∈ {+1,−1}(
n
2) is a sign vector with coordinates sij for i < j and

(
1
x

)
∈ Rd+1 is

the vector obtained by adding a first coordinate equals one to x.

That means that Rs is determined by intersecting the halfspaces sijcij ·
(

1
x

)
< 0 with

the affine hyperplanes of Aaff
c in Rd, where each coordinate sij indicates the side of Hij

that contains Rs, for 1 ≤ i < j ≤ n. Regions Rs of a hyperplane arrangement may be

empty.

We symmetrize the notation by setting sji = −sij for i > j. To avoid confusion with

the regions of partitions, we always talk about regions Rs when we refer to a region of

hyperplane arrangements. Also, regions Rs of Ac simply denote regions of Aaff
c .

The complete graph Kn is the graph with vertex set {1, . . . , n} and with an edge between

each pair of vertices. (It has
(
n
2

)
edges.) An orientation of Kn is obtained by taking the
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graph Kn and fixing a direction to each edge e of Kn, by choosing which of the vertices

of e is the tail and which is the head. (You can consider this directed edge e as an arrow

that goes from the tail to the head.) A graph with all its edges oriented is also known

as a directed graph. Each sign vector s ∈ {+1,−1}(
n
2) generates an orientation Gs of the

complete graph Kn, where the edge ij is directed from i to j if sij = +1, and from j to

i otherwise, for 1 ≤ i < j ≤ n. A source of Gs is a vertex v of Kn that is not the head

of any of the edges involving v in Gs. Since the graph Kn is complete, there can be at

most one source in the directed graph Gs.

Lemma 4.10. A hyperplane arrangement Ac for c ∈ (Sd)(
n
2) carries a (possibly non-

proper) n-partition P if and only if for all non-empty regions Rs of Ac the oriented

complete graph Gs has a source. The partition is proper if for each i ∈ {1, . . . , n}, there

is at least one non-empty region whose source is the vertex i.

Proof. If P is an n-partition carried by Ac, all non-empty regions Rs of Ac must be

contained in some fixed region Pi of P. If Rs ⊆ Pi, then we have that sij = +1 for all

j 6= i, so i is a source in Gs.

On the other hand, if the directed graphs of all non-empty regions Rs have a source,

then we obtain an n-partition by taking

Pi =
⋂
j 6=i
{x ∈ Rd : cij ·

(
1

x

)
≤ 0}.

The regions Pi are clearly disjoint, and their union cover all regions Rs of the hyperplane

arrangement, since each Rs ⊆ Pi whenever i is the unique source of Gs. Therefore the

union of the closure of the regions must be the whole H1
∼= Rd. The regions Pi as

defined might still be empty, but if there is a non-empty region Rs in Ac with Gs having

as source the vertex i for each i, then Rs ∩ H ⊆ Pi is non-empty and the partition is

proper.

Lemma 4.11. For any s ∈ {+1,−1}(
n
2), the set of hyperplane arrangements Ac for

c ∈ (Sd)(
n
2) such that the region Rs is empty is semialgebraic. Also the set of hyperplane

arrangements Ac such that the region Rs is non-empty is semialgebraic.

Proof. A region Rs is non-empty if exists x ∈ Rd+1 such that sijcij ·x < 0 for each pair

i < j. We can add the coordinates of x as slack variables and construct a semialgebraic

set X on the coordinates of cij for 1 ≤ i < j ≤ n and of x, so that all inequalities

sijcij ·x < 0 are satisfied. The parameterization of the set of all hyperplane arrangements

Ac with Rs 6= ∅ can be obtained as a projection of X to the coordinates c ∈ (Sd)(
n
2) and

by Theorem 4.6, we conclude that the set of arrangements with Rs 6= ∅ is semialgebraic.
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Since the complement of a semialgebraic set is semialgebraic, the set of arrangements

such that Rs = ∅ is semialgebraic. Alternatively, we can use a suitable version of the

Farkas Lemma (see [36, Section 1.4]) to get another semialgebraic description of this

set.

Definition 4.12 (The spaces H(Rd,≤n) and H(Rd, n)). We denote by H(Rd,≤n) the

space of all c ∈ (Sd)(
n
2) such that the hyperplane arrangement Ac carries a possibly

non-proper n-partition of Rd. The subspace of H(Rd,≤n) corresponding to hyperplane

arrangements carrying a proper n-partition is denoted as H(Rd, n).

We have the following chain of inclusions.

H(Rd, n) ⊆ H(Rd,≤n) ⊆ (Sd)(
n
2) ⊆ R(d+1)×(n2).

Theorem 4.13. The spaces H(Rd,≤n) and H(Rd, n) are semialgebraic sets.

Proof. By Lemma 4.10, a hyperplane arrangement Ac for c ∈ (Sd)(
n
2) carries an n-

partition P if and only if for all regions Rs in Ac the oriented graph Gs have a source.

Therefore, we need to characterize all hyperplane arrangements Ac such that all regions

Rs of Ac are empty for all sign vector s in S = {s ∈ {+1,−1}(
d
2) : Gs has no source}.

By Lemma 4.11 and the (obvious) fact that finite intersections of semialgebraic sets are

semialgebraic, we find that H(Rd,≤n) is a semialgebraic set over the coordinates of cij

as variables.

Also the set H(Rd, n) of hyperplane arrangements carrying a proper n-partition, where

at least one region Rs has source i for each i ≤ n, is semialgebraic, again by Lemma

4.11 and the fact that finite unions and intersections of semialgebraic sets are again

semialgebraic.

From Theorem 4.13 we can see that H(Rd,≤ n) is the union of all sets of arrangements

with an adjacency graph that satisfies the source conditions specified on Lemma 4.10.

Theorem 4.14. The space C(Rd,≤n) is the union of finitely many subspaces indexed

by adjacency graphs A(P), which can be parameterized as semialgebraic sets. The same

statement is true for the space C(Rd, n).

Proof. The map π : H(Rd,≤ n) → C(Rd,≤ n) is a surjective continuous map taking

each oriented hyperplane arrangement A in H(Rd,≤ n) to its corresponding partition.

The pieces of C(Rd,≤n) are given by the partitions in C(Rd,≤n) that share the same

adjacency graph A(P), for any given n-partition P. Each of these pieces is denoted as
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CA(P)(Rd, n) for each partition P, and the inverse image π−1(CA(P)(Rd, n)) is denoted

as HA(P)(Rd, n).

To see that HA(P)(Rd, n) is a semialgebraic set, we take the description of H(Rd, n) and

add extra restrictions to express the fact that certain hyperplanes do not determine any

(d− 1)-face of the partition. These extra restrictions are described in what follows.

A pair {i, j} is in A(P) for P = π(A) if and only if there are s, s′ ∈ {+1,−1}(
n
2) with

exactly the same entries, except only by the entry sij = −s′ij , with oriented graphs Gs,

Gs′ having sources i and j respectively, so that the regions Rs, Rs′ are non-empty.

Using Lemma 4.11 we find that the subset of arrangements A′ ∈ H(Rd, n) with {i, j} ∈
A(π(A)) for a given A ∈ H(Rd, n) is semialgebraic, since it is the union over all pairs s,

s′ that differ only in the ij-coordinate and with respective graphs sources i and j of the

subsets of H(Rd, n) where Rs and Rs′ are non-empty. The complement of those subsets,

that represent hyperplane arrangements with {i, j} /∈ A(π(A)) are also semialgebraic.

FinallyHA(P)(Rd, n) is the intersection of subsets ofH(Rd, n) where {i, j} ∈ A(π(A)) for

{i, j} ∈ A(P) and {k, `} /∈ A(π(A)) for {k, `} /∈ A(P) and thus it is also a semialgebraic

set. Since the map π : H(Rd,≤n)→ C(Rd,≤n) is a projection obtained by deleting the

coordinates cij of the hyperplanes Hij for {i, j} /∈ A(P), by Theorem 4.6 we conclude

that CA(P)(Rd, n) is a semialgebraic set on the coordinates of the vectors cij for {i, j} ∈
A(P) and C(Rd,≤n) is a union of semialgebraic pieces.

If there are two ore more non-empty regions in P, the vertices of A(P) contained in

at least one edge correspond to the non-empty regions of P. Therefore, we can obtain

C(Rd, n) as the union of the semialgebraic pieces of the form CA(P)(Rd, n) where A(P)

is a connected graph on the vertices from 1 to n.

The pieces CA(P)(Rd, n) are not necessarily closed. Their closure in C(Rd,≤ n) might

include partitions with graphs that are subsets of A(P). Only knowing these semialge-

braic pieces it is not enough to reconstruct the spaces C(Rd, n) and C(Rd,≤n). We also

need the topological structure induced by the metric given in Section 4.1 to know how

to glue the different semialgebraic pieces of the form CA(P)(Rd, n) in order to obtain the

spaces of n-partitions C(Rd, n) and C(Rd,≤n).

On each semialgebraic piece CA(P)(Rd, n) we have a topological structure by seeing it

as a subset of R(d+1)×E given by the parameterization through the cij , where E is the

number of edges in A(P). We claim that this topological structure is equivalent as the

one obtained as a subset of C(Rd,≤n). To see this, notice that a sequence of partitions

(Pk)k∈N in CA(P)(Rd, n) converges to a partition P in the δµ-topology if and only if each
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sequence of coordinates ckij of the parameterizations of Pk for {i, j} ∈ A(P) converge to

the coordinates of cij .

Lemma 4.15. The set Qij ⊆ Sd of all vectors cij ∈ Sd corresponding to separating

hyperplanes Hij for two disjoint open convex spherical polyhedra P̂i and P̂j in Sd is an

strictly convex spherical polyhedron.

Proof. The set Qij ⊆ Sd of possible values cij is the solution set of a system of inequal-

ities of the form cij · x < 0 for all points x ∈ P̂i and cij · x > 0 for all points x ∈ P̂j .
This is an intersection of open hemispheres and therefore strictly convex.

If the sets P̂i and P̂j are polyhedral, it is possible to find finite sets of points Ni and Nj

in Sd such that P̂i is the interior of the spherical convex hull of the points in Ni and

similarly for P̂j . In that case, the possible values for cij are the solution set of a finite

system of inequalities of the form cij · x ≤ 0 for all points x ∈ Ni and cij · x ≥ 0 for all

points v ∈ Nj . We conclude that Qij is also polyhedral.

For the proof of the last lemma we need to use the fact that any spherical polyhedron

can be described as the spherical convex hull of a finite set of points. In case that the

sets P̂i and P̂j come from an n-partition, this is a consequence of Lemma 4.30, that will

be explained in the next section when we talk about node systems. If P̂i and P̂j are

pointed spherical polyhedra, it is enough to take their vertex set.

Proposition 4.16. The fibers of the projection π : H(Rd, n)→ C(Rd, n) are contractible.

Proof. For a given partition P ∈ C(Rd, n), all hyperplane arrangements A in the preim-

age π−1(P) have the same coordinates for the vectors cij corresponding to pairs {i, j} ∈
A(P). If a pair {i, j} /∈ A(P), due to Lemma 4.15 we find that the sets Qij of all points

cij corresponding to separating hyperplanes are strictly convex spherical polyhedra, and

therefore contractible. We know that they are non-empty by the Hahn–Banach Sep-

aration Theorem. Since the choices of the different cij are independent of each other

to obtain a point in the preimage, we conclude that the fiber π−1(P) is the product of

contractible sets Qij for {i, j} /∈ A(P), and therefore it is contractible.

If there are two empty regions Pi = Pj = ∅, then the set Qij ∼= Sd is not contractible.

Therefore the result in Proposition 4.16 does not hold for the space C(Rd,≤n).

We would like to construct a map τ that chooses a preimage of π in such a way that

τ(C(Rd, n)) is a semialgebraic subset of H(Rd, n) homeomorphic to C(Rd, n). Due to

Lemma 4.15 one option would be to choose one point in the interior of a spherically

convex polyhedron Qij for each {i, j} /∈ A(P). One first attempt to do this is looking
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at the barycenters. Unfortunately this idea doesn’t work properly since the polyhedra

Qij don’t need to be full dimensional, and the barycenter is not continuous when we

jump to polyhedra in smaller dimensions. Instead of barycenters, another option is to

look at the center of the smallest sphere that contains Qij . This points are well defined

and move continuously in terms of the vertices, even when we go to smaller dimensions.

We will discuss a bit about them in the intermezzo, but unfortunately they are also not

sufficient for the construction we wanted to do. Moreover, we found out that no such

map τ could possibly exist.

Proposition 4.17. There is no continuous map τ : C(Rd, n) → H(Rd, n) such that

π ◦ τ = idC(Rd,n), for n ≥ 3 and d ≥ 2.

Proof. First we will show this result for n = 3 and d = 2. Consider a non-essential

3-partition P with three regions separated by two parallel lines `12 and `23 (as depicted

on the left of Figure 4.2). The possible preimages under π of the partition P consist of

three vectors representing the oriented hyperplanes `12, `23 and a extra hyperplane `13

that has to be parallel the two former ones and between them. For each of such possible

hyperplane `13 we want to construct a sequence of essential 3-partitions P i whose limit

is P and such that the hyperplane `13 is the only hyperplane that separates regions P i1

and P i3 for all partitions in the sequence. Therefore if such continuous function τ exists,

the value of τ(P) must be given by the hyperplane `13, as the limit of the images of the

sequence under τ . Since it is not possible that τ(P) take all those different values, we

conclude that no such function τ might exist.

P1

P2

P3

`12

`13

`23

A

B

Ci

A

B

Ci

`13

P i1

P i2

P i3

Figure 4.2: A 3-partition P ∈ C(R2, 3) as the limit of partitions Pi that use `13.

To construct the sequence of partitions for a given line `13, we fix two points A and

B in `12 and `23 respectively, and for any point Ci in `13 we construct a partition P i

by taking three rays centered at Ci, one in direction of the line `13 and the other two

passing through the points A and B respectively, as it is shown on the right of Figure

4.2. Now take a sequence of points Ci that goes far away, every time moving in the same

direction over the line `13. The corresponding sequence of partitions P i in the limit will

go to P. All partitions in the sequence have `13 as a defining hyperplane, as desired.
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We conclude that no such function τ might exist for n = 3 and d = 2. For bigger

values of n and d we can construct similar sequences that prove that the function τ

cannot be well defined, by taking parallel hyperplanes in higher dimensions and adding

extra regions if needed. Therefore no such τ function might exist on those other cases

either.

Intermezzo: Smallest bounding spheres of spherical polyhedra

Here we will look at the center of the smallest sphere that contains a set of points, in

the spherical case. In the euclidean case, this center is uniquely defined, lies always

in the convex hull of the set (but not necessarily on its interior), and besides it is

continuous with respect to Hausdorff distance. (See [12] and [15] for known results and

generalizations).

For subsets of the sphere we will prove some of those properties and see that many

structural properties of minimal bounding spheres are geometrically clearer in this setup.

The following definition captures the essence of being the center of the smallest bounding

sphere.

Definition 4.18 (Bounding sphere center). Let Q be a closed subset of Sd contained

in an open hemisphere. The bounding sphere center of Q is the vector q(Q) in Sd that

maximize the value of min
x∈Q

q · x among all points q ∈ Sd.

Proposition 4.19. The bounding sphere center is uniquely defined. If Q is a closed

strictly convex polyhedral subset of Sd then q(Q) belongs to Q. Moreover, it is con-

tained in the spherical convex hull of the set W of vertices v of Q such that v · q(Q) =

minx∈Q q(Q) · x.

Proof. For any point q ∈ Sd the value min
x∈Q

q · x always exists and it must be maximal

at some closed subset of Sd, since Sd is compact. This maximal d must be positive since

Q is contained in a hemisphere.

If there are two different points q1 and q2 such that they attain the maximal value d,

then q1 · x ≥ d and q2 · x ≥ d for any x ∈ Q. If q = (q1 + q2)/|q1 + q2| then

x · q =
1

|q1 + q2|
(x · q1 + x · q2) ≥ 2d

|q1 + q2|
> d

for any x ∈ Q, since |q1 + q2| < 2 for q1 6= q2. Therefore d is not maximal, creating a

contradiction. This implies that q(Q) is uniquely defined.

Now let Q be strictly convex and q = q(Q), so that q maximizes d = min
x∈Q

q · x, and

suppose that q is not in the spherical convex hull of the set W of vertices of Q such that
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v · q = d. Then by the Hahn–Banach Separation Theorem we can find a vector p ∈ Sd

such that p · v > 0 for all v ∈ W and p · q < 0. Then we can find a small ε > 0 such

that |q + εp| < |q| = 1, and then for q′ =
q + εp

|q + εp|
and any v ∈W it holds that

v · q′ = v · q + v · εp
|q + εp|

≥ d

|q + εp|
> d.

If ε is small enough we can also ensure that q′ · v > d for all other vertices v /∈ W

since q · v > d. Therefore d is not maximal and we conclude that if Q is a strictly

convex polyhedron, then q(Q) is in the spherical convex hull of W . This also implies

that q(Q) ∈ Q.

Proposition 4.20. A point q is the bounding sphere center q(Q) of a strictly convex

polyhedron Q if and only if there is a subset of vertices W of Q such that q · v = d for

v ∈W and some d > 0, q ·v > d for all other vertices v /∈W , and q lies on the spherical

convex hull of W .

Proof. If q = q(Q), we can take W as in Proposition 4.19, and from there we know that

q is in the convex hull of W . Also, for d = min
x∈Q

q · x it holds that q · v = d for v ∈ W

and q · v > d for all other vertices v /∈W , as desired.

By the other hand, suppose that q is such that there is a subset of vertices W of Q such

that q · v = d for v ∈W and some d > 0, q(Q) · v > d for all other vertices v /∈W and

such that q is in the spherical convex hull of W .

Let Q′ be the polyhedron in Rd+1 that is the affine convex hull of the vertices of Q.

Then W must be the set of vertices of a face F of Q′. If F is a facet of Q′, call n(F ) to

the unit outer normal vector of Q′ at F . Then, the only option is that q = −n(F ). If

F is not a facet, it is the intersection of some facets of Q′. Let σ(F ), the outer normal

cone of F , to be the cone spaned by the vectors n(G) corresponding to the facets G

of Q′ containing F . With this notation, q must belong to −σ(F ), so that q · x = d is

minimal in F , for x ∈ Q′.

Besides, for all faces F of Q′ it holds that dimF + dimσ(F ) = d+ 1, and moreover the

affine span of σ(F ) intersects the affine span of V (F ) in a unique point p(F ), since σ(F )

is spanned by a set of normal unit vectors to F that generate an orthogonal space. If

F is the face corresponding to W , the only option for q is to be the unit vector in the

direction of p(F ) corresponding to this face F . Since it is also required that q belong

to the spherical convex hull of W , then it is needed that p(F ) ∈ F ∩ −σ(F ).

Now we want to see that there is only one possible choice of q. For this, we construct

a partition of Rd+1 where there is a region PF for each face F of Q′ obtained by taking
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the interior the Minkowski sum of F and the outer normal cone σ(F ). Then, p(F ) ∈
F ∩−σ(F ) if and only if the origin belongs to the closure of the region PF = F + σ(F ).

But the origin can only belong to the interior of one of the regions PF ′ , corresponding

to a face F ′. In case the origin is on the boundary of more than one of those regions,

take F ′ to be the face that have maximal dimension. (In that case, all those faces F

are contained in F ′, and the corresponding vector p(F ) is always the same.) Since Q is

strictly convex, then the origin does not belong to PQ′ = Q′ and p(F ′) 6= 0.

Then the only option is that W is the set of vertices of F ′ and q is the unit normal

vector in the direction of p(F ′). Since the bounding sphere center q(Q) also satisfies all

those properties, then necessarily q = q(Q).

We observe that the coordinates of the bounding sphere center can be described by a

system of equations and inequalities on the coordinates of the vertices of the polyhedron

Q using an extra slack variable d.

4.3 Pointed partitions and node systems

Pointed partitions are an important class of partitions, where every face is completely

determined by its set of vertices (see Definition 4.21, Proposition 4.22). For general

partitions the same doesn’t hold. To get similar properties for any n-partition, we need

to define node systems (Definition 4.27).

Definition 4.21 (Pointed partitions). An n-partition P = (P1, . . . , Pn) of Rd is pointed

if for each region Pi the cone Ci is pointed.

We remind that we exceptionally defined Ci = ∅ in case a region Pi = ∅ (see comments

after Definition 4.2). Therefore pointed partitions must be proper. We establish now

some simple lemmas about pointed partitions.

Proposition 4.22. If P is a pointed n-partition, every face FI of P can be obtained as

the spherical convex hull of all vertices in FI .

Proof. If P is a pointed n-partition, every d-face Fi is the intersection of the pointed

cone Ci with Sd. Also any intersection of such pointed cones is pointed, and so we can

conclude that all faces FI of P can be obtained as the intersection of a pointed cone CI

with Sd. By Lemma 2.1, a pointed cone CI is the cone of the set of points obtained by

intersecting each edge of C with Sd. These are the vertices of FI (see Lemma 3.23) and

therefore each FI is the spherical convex hull of its vertices.
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Lemma 4.23. Pointed n-partitions are essential.

Proof. Let P be a pointed partition in C(Rd, n). For any region Pi of a pointed n-

partition P, the face Fi is a strictly convex spherical polyhedron, and by Lemma 2.1 it

is the spherical convex hull of its vertices. Not all of these vertices can be at infinity,

otherwise its spherical convex hull won’t have dimension d. Therefore there is at least

one interior vertex and by Lemma 3.15 this implies that the partition is essential.

The converse of Lemma 4.23 is not true. Example 3.7 shows a counterexample.

Lemma 4.24. A partition P is pointed if and only if the recession cones rec(Pi) of all

regions of P are pointed.

Proof. The recession cone of a face Pi can be identified with the cone over the points at

infinity of the face Fi. This can be obtained as a face of Ci that lies over the hyperplane

H bounding the upper hemisphere Sd+. If the partition P is pointed, all cones Ci are

pointed and therefore also all recession cones rec(Pi) are pointed as well.

On the other hand, if P is not pointed, some of the cones Ci contain a straight line.

Since the interior of Ci is contained in the upper hemisphere, this line must be contained

in the boundary face of Ci over the hyperplane H, and therefore it will create a line on

the recession cone rec(Pi), and not all recession cones can be pointed.

Now we define the node systems of an n-partition, in order to get that every face is the

spherical convex hull of its corresponding nodes and so that for a pointed partition P
the nodes coincide with the vertices of P. First we need to introduce the half-linear

faces of a partition.

Definition 4.25 (Half-linear faces). A face F of a partition P is half-linear if it is the

intersection of Sd with a linear subspace of Rd+1 and a unique closed halfspace given by

a linear inequality. The set of half-linear faces of a partition is denoted as FH(P).

If a face F is half-linear, then it has a unique linear subface F ′ in its relative boundary.

The subface F ′ is the union of some faces of P, and is the intersection of a linear

subspace with Sd. Then F ′ cannot have any boundary since it is topologically a sphere

(of dimension dimF ′ = dimF − 1) and is the union of some faces at infinity of P. Since

P̂∞ is not a face of P, then in particular it is not a half-linear face of P (but it is a

half-linear face of the spherical partition P̂).

By Lemma 3.22, the only face FI of P such that its corresponding cone CI is a linear

subspace is the minimal face FI(0). This face has no boundary and no subfaces. All faces
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covering FI(0) in the face poset are half-linear. If a partition is essential, all vertices are

half-linear faces.

Example 4.26. Let us describe the half-linear faces of the partitions P and P ′ presented

in Example 3.7 and Example 3.26 respectively. For the first partition, every vertex of

P is half-linear (there are four of them). Besides, there are two more half-linear faces in

the figure, namely the faces F34 and F4∞. For these two 1-faces, there is a unique linear

subface that covers the relative boundary and is the union of two vertices of P.

The second partition P ′ is non-essential, where its minimal face FI(0)(P ′) consists of two

antipodal points. Then all 1-faces are half-linear, since they cover FI(0)(P ′). There are

no other half-linear faces on this partition.

Definition 4.27 (Node systems, nodes). Let P be a partition in C(Rd,≤n). In case that

P is essential, a node system N of P is a set of points vF , one in the relative interior of

each half-linear face F of P. If the partition P is non-essential, with dimFI(0) = k ≥ 0,

then a node system again contains one point vF in the relative interior of each half-linear

face F of P, and additionally an ordered sequence of k+ 2 extra points v1, . . . , vk+2 on

the face FI(0) such that they positively span the linear subspace CI(0).

The points in a node system are referred as nodes. We denote as N(P) the set of all

node systems of P. Note that all vertices of P are also nodes in any node system of P.

We sometimes add the node system to the notation of the node by setting vF (N) =

vF ∈ N , in case that it is not clear the node system we are using. If P is non-essential,

the same applies to the nodes vi in the minimal face.

Example 4.28. Now we construct node systems for both partitions of Example 4.26.

In the first case, every vertex of P must be a node. We need to include two more nodes

vF34 and vF4∞ in the relative interior of the faces F34 and F4∞ respectively. We have

one degree of freedom to choose each of these two nodes. On the left of Figure 4.3 we

depict one possible choice for a node system N of P.

For the second partition (on the right of Figure 4.3), we need to have two nodes v1

and v2 on the linear face FI(0)(P ′), so that they positively span CI(0). There are two

possibilities to choose v1, and v2 must be the antipodal point −v1. Besides these two

nodes, we need five more nodes, one on the relative interior of each half-linear face, in

order to get a node system N ′ of P ′.

Proposition 4.29. If P is an essential n-partition, then the space N(P) of all node sys-

tems can be seen as a semialgebraic set obtained as a product N(P) =
∏

relintF∈FH(P) F .

In that case dimN(P) =
∑

F∈FH dim(F ).
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vF234∞
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vF1∞ vF4∞
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Figure 4.3: Node systems for two different 4-partitions. There is a node in the relative
interior of each half-linear face.

If P is non-essential and k = dim(FI(0)), the space N(P) can be obtained as the product

N(P) = (GL(Rk+1)/R+)×
∏

F∈FH(P)

F.

The dimension of the space of node systems is dimN(P) = k(k + 2) +
∑

F∈FH dim(F )

for non-essential partitions, since there are k degrees of freedom for each node in the

minimal face.

Proof. For essential partitions, a node system is obtained by taking one node in each

half-linear face, and the result is clear. A precise description of N(P) in the non-

essential case can be obtained as follows. The choice of nodes on the minimal face

can be parameterized by the general linear group GL(Rk+1) modulo R+. To see this,

notice that if X ∈ GL(Rk+1) is a matrix, we can obtain nodes v1, . . . ,vk+1 given by

the direction of the columns X1, . . . , Xk+1 of X after fixing a basis for the (k + 1)-

dimensional subspace CI0 . The direction of vk+2 can be fixed by the direction of the

vector −
∑k+1

i=1 Xi (all nodes have to be normalized).

In this way, every possible choice of nodes in FI(0) is represented by a unique ma-

trix in GL(Rk+1), up to multiplication by a scalar, since the direction of the vectors

X1, . . . , Xk+1 is fixed by the nodes v1, . . . ,vk+1, and there is a unique way to scale them

in such a way that −
∑k+1

i=1 Xi = vk+2. If we scale the whole matrix X obtained this

way by a positive scalar, we get all the matrices X ′ ∈ GL(Rk+1) that produce the nodes

v1, . . . ,vk+2. Then the space N(P) can be described as the product

N(P) = (GL(Rk+1)/R+)×
∏

F∈FH(P)

F,

and since dimGL(Rk+1) = (k+1)2, we obtain that dimN(P) = k(k+2)+
∑

F∈FH dim(F ).
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Lemma 4.30. If N is a node system of a partition P, then any face F of P can be

obtained as the spherical convex hull of the set of nodes in N contained in F .

Proof. By induction on the dimension of F , first take F = FI(0) to be the minimal face

of P, with dim(FI(0)) = k. Then we have k + 2 nodes in FI(0) that positively span the

(k+1)-dimensional linear subspace CI(0), and therefore its spherical convex hull is equal

to FI(0). If the partition is essential, FI(0) = ∅ doesn’t contain any node, and its convex

hull is also empty.

Now suppose that dim(F ) = m and every face F ′ of P with dimF ′ < m is equal to the

convex hull of the nodes contained F ′. If F is half-linear, we have an extra node vF in

the interior of F , and any other point x in F is in an interval between vF and a point

x′ in the boundary of F . Since vF cannot be antipodal to x′, then x can be written

as a positive combination of vF and x′. By the induction hypothesis, v is a positive

combination of the nodes in the face where it belongs (we use here Lemma 3.23) that

are also contained in F , and therefore p is in the spherical convex hull of the nodes in

F .

If F is not half-linear, we can find a point v in the boundary such that its antipodal point

is not in F . Now we can repeat the argument given before, and the result follows.

Definition 4.31 (Cell complex from a node system). Given a node system N of a

partition P, we construct a CW complex PN in such a way that the vertices of this

complex are precisely the nodes in N , and such that each face of P is union of faces

of PN . The complex PN is constructed recursively as follows:

• Include a face FS in PN for every subset S of nodes contained in FI(0), with

|S| ≤ k + 1, where FS is the spherical convex hull of S and k = dimFI(0). For

essential partitions, only the empty set is included in this step.

• For every half-linear face F of P such that the boundary is already covered by

faces of PN , the spherical convex hull of every face G of PN contained on the

boundary of F together with the node vF is also a face of PN . (These faces of PN
are pyramids over the faces on the boundary of F .)

• All other faces of P that are not linear or half-linear are also faces of PN .

Example 4.32. For the two partitions given in Figure 4.3, the cell complex obtained

from this construction coincides precisely with what is shown in the picture, where every

half-linear 1-face is subdivided in two segments and every non-pointed region forms a

2-cell with four nodes and four 1-faces on the boundary. For a more interesting example,

consider the 1-partition of R2 into one region. This “partition” is non-essential, with
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minimal face FI(0) = F1∞ of dimension one, equals to the boundary of S
d
+ (this face is

homeomorphic to S1 and cannot be a cell). There is also one half-linear face F1, that

coincides with S
d
+. Therefore a node system here would have four nodes, three on the

boundary face FI(0) that positively span the plane containing that face, and one more

node n in the interior of S
d
+. The cell complex in this case is obtained by first taking

the spherical convex hull of every subset of nodes in the boundary with two or less

elements, that form a subdivision of FI(0) in three edges and three vertices, and then

taking the pyramid over all those faces, with apex on the interior node n, to obtain a

cell decomposition as shown in Figure 4.4.

P̂1

Figure 4.4: Node system and cell complex PN corresponding to the partition of R2 with
only one region

Lemma 4.33. The complex PN is a regular CW complex homeomorphic to a d-ball.

Proof. If k = dimFI(0), the k + 2 nodes placed on FI(0) together with all faces of PN
that are the spherical convex hull of some of these nodes will cover FI(0), since the k+ 2

nodes in FI(0) where chosen to be positively spanning. Each face F of PN contained in

FI(0) is homeomorphic to a ball and its boundary will be covered by the faces generated

by subsets of the nodes in F .

Also the pyramidal faces of PN contained in any half-linear face F will be strictly convex

spherical polyhedra, homeomorphic to balls and with its boundary covered by the faces

of PN contained in the basis of the pyramid, and the pyramid over the faces on the

boundary of the basis. The union of all these faces cover F .

Since faces of P are homeomorphic to balls, with the unique exception of FI(0) (as

discussed in the proof of Theorem 3.24), all faces of PN that come from faces of P are

also balls, with boundary covered by faces of P. Since all faces of P are covered by

faces of PN , we conclude that the union of faces in PN is S
d
+ and PN is a CW complex

homeomorphic to a d-ball, which is regular since all cells are strictly convex spherical

polyhedra and there are no identifications on the boundaries of the faces.

Proposition 4.34. For a pointed partition P, the complex PN coincides with the cell

complex P described in Theorem 3.24. The vertices of PN are precisely the vertices of P.
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Proof. For essential partitions all vertices are half-linear faces, and the corresponding

node must be precisely at the vertex. If the partition P is pointed, there are no other

half-linear faces, since the cone of a half-linear face F of dimension dimF ≥ 1 contains

antipodal points on its boundary and therefore is not pointed. Then no other nodes are

included, and all faces of PN are precisely the faces of P, so that we end up with the

same complex.

Lemma 4.35. Let P be a fixed n-partition. Then combinatorial structure of the complex

PN doesn’t depend on the choice of the nodes in N , i. e. the face poset of two complexes

PN and PN ′ is always isomorphic, for any pair of node systems N,N ′ ∈ N(P).

Proof. The face poset of PN can be obtained from the face poset of P, once we know

which are the linear and half-linear faces, independently of the choice of the node system

N . Following the construction in Definition 4.31, we can see how to obtain recursively

the face poset of PN from the face poset of P.

First instead of the minimal element of the face poset of P we include a Boolean poset

on k+ 2 vertices without a top element (where k = dimFI(0)), that is represented by all

subsets of the set {v1, . . . ,vk+2} with size smaller than k+1. Then replace in order each

half-linear face F by a copy of the elements below F in the current poset, starting from

the faces of smaller dimensions. Each copied element covers its original element in the

poset. This represents the new faces that are pyramids over faces G ⊂ F of the current

poset (and therefore faces of PN ). At the end we get the face poset of the complex PN ,

regardless of the choice of the nodes in N .

Definition 4.36 (Node frame, node basis and flats). Let P be an n-partition, together

with a node system N . A node frame of N is a list (v0, . . . , vd) of d+ 1 different nodes

in N such that the nodes v0, . . . ,vk are contained on a k-face Gk of PN and the faces

G0 ⊂ · · · ⊂ Gd form a flag. A node basis is a node frame whose vectors are linearly

independent and a flat is a node frame whose vectors are linearly dependent.

Since the vertices of PN are precisely the nodes in N and the face poset of PN is always

the same for any node system N , then for any node frame (v0, . . . , vd) and any other

node system N ′ of P, the corresponding list of nodes (v0(N ′), . . . , vd(N
′)) is a node

frame of N ′. Also two partitions P and P ′ with the same face poset and the same

corresponding half-linear faces will have a bijection between node frames, for any pair

of node systems on them. This is clear since node frames can be read completely from

the combinatorial structure of PN .

Lemma 4.37. Let G0 ⊂ · · · ⊂ Gd be a complete flag of faces in the complex PN . Then

for any list x0, . . . ,xk of linearly independent vectors in Sd such that xi ∈ Gi for all
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0 ≤ i ≤ d, the sign of the determinant det(x0, . . . , xd) depends uniquely on the flag

G0 ⊂ · · · ⊂ Gd.

Proof. Let b0, . . . , bd be the basis of Rd+1 where b0 ∈ G0 and every bi for 0 < i ≤ d is the

vector in the linear space spanned by the face Gi orthogonal to the subspace spanned by

Gi−1, such that any point x ∈ Gi satisfy the inequality bi ·x ≥ 0. This basis is uniquely

defined by the flag G0 ⊂ · · · ⊂ Gd.

Then the vectors (b0, . . . , bi) span the same linear subspace as the face Gi. In terms of

this basis, the list of vectors (x0, . . . , xd) is represented by an upper triangular matrix
1 a01 · · · a0d

0 a11 · · · a1d

...
...

. . .
...

0 0 · · · add


where all diagonal entries aii are greater than zero. Then we conclude that

det(x0, . . . , xd) = (
d∏
i=1

aii) det(b0, . . . , bd).

will always have the same sign, independently of the choice of the points xi. (This

determinant cannot be zero since we require that the vectors x0, . . . , xd are linearly

independent.)

4.4 Combinatorial types and realization spaces

Now we will explain a second approach to prove that C(Rd, n) is a union of semialgebraic

pieces. With the different tools we have now, we can now define when two partitions

are combinatorially equivalent, and use this to construct the realization space of any

partition P (made by all partitions that are combinatorially equivalent to P). This will

be useful in the discussion about the dimension of the spaces of convex n-partitions.

Given an n-partition P, we want to describe all n-partitions that are combinatorially

equivalent to P. Two partitions P and P ′ have the same face poset if I(P) = I(P ′).
They have the same corresponding half-linear faces if the indices I ∈ I(P) such that

FI(P) is half-linear are the same indices for which FI(P ′) is half-linear.

Definition 4.38 (Orientation of a partition). The orientation of a partition P of Rd

is given by the signs of the determinants det(v0, . . . , vd) of all node frames of a node

system N of P.
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Orientations of partitions are closely related with orientations of cell complexes. If we

consider the barycentric subdivision sdPN obtained by taking a point yG in the relative

interior of each face G of PN , and with maximal simplices that are the spherical convex

hull of sets yG0
, . . . ,yGd

for each complete flag G0 ⊂ · · · ⊂ Gd in PN , then by Lemma

4.37, we can read an orientation of the simplicial complex sdP from the orientation of

P.

Since orientations of oriented simplicial complexes are determined after fixing the orien-

tation of one simplex, then it is enough to know the sign of one node basis to determine

the sign of all other node bases of PN . In particular, if P is an essential partition, then

any node system on P will give rise to the same orientation. If P is non-essential, there

are two possible orientations, depending on the choice of the nodes on the minimal face

FI(0).

Orientations also keep track of which node frames are node basis and which are flats.

Two partitions P and P ′ with the same face poset and corresponding half-linear faces

have the same orientation if there are node systems N and N ′ on each of them, so that

the sign of the determinants of corresponding node basis are always the same, and they

have the same corresponding flats.

Definition 4.39 (Combinatorial type of a partition). The combinatorial type of an n-

partition P consists in the following information: the set I(P) of labels of the face poset,

the set of half-linear faces of P and the orientation given by a node system of P.

The orientation allows us to differentiate the combinatorial type of an essential partition

and of its reflection on a hyperplane. If a partition has some reflection symmetry,

it implies that it is non-essential. Orientations also make sure that combinatorially

equivalent partitions have the same π-angles, as defined next.

Definition 4.40 (π-angles). Two (d−1)-faces Fij and Fik make a π-angle if they belong

to the same (d−1)-subface of a d-face Fi of P and their intersection is (d−2)-dimensional.

It means that the dihedral angle between these two (d− 1)-faces is equal to π.

Two partitions have the same shape if they are combinatorially equivalent up to a

permutation of the indices from 1 to n. If a partition contains empty regions, it will

have the same shape than other partitions with smaller number of regions.

For our next result (Theorem 4.42) we need a characterization for cone partitions from

Firla and Ziegler [14, Theorem 4]. A cone partition (or simply a partition on that paper)

of a cone C is a collection of cones C1, · · · , Cr contained in C such that every point of C

is contained in one of the subcones Ci, where also the intersection of any two subcones

Ci ∩ Ck is a face of both cones.
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Theorem 4.41 (Firla–Ziegler, [14]). A set of cones C1, · · · , Cr contained in a bigger

cone C ⊂ Rd+1 form a cone partition of C if and only if there is a generic point g

contained in exactly one of the cones Ck, and for any d-face F of a (d+ 1)-cone Ci that

is not contained in the boundary of C there is a second cone Cj with Ci ∩ Cj = F such

that F is a face of Cj.

Theorem 4.42. Let P be a partition of Rd together with a node system N . Consider

a list of vectors xv ∈ Rd+1 for every node v ∈ N that satisfy the following algebraic

relationships and inequalities:

(i) |xv| = 1 for every v vertex of P.

(ii) det(xv0 , . . . ,xvd
) > 0, for every node basis (v0, . . . ,vd) with det(v0, . . . ,vd) > 0.

(iii) det(xv0 , . . . ,xvd
) = 0, for every node flat (v0, . . . ,vd).

(iv) e0 · xv = 0, for any node v ∈ N at infinity (i.e. in the boundary of Sd+).

(v) e0 · xv > 0, for any other node v ∈ N , not at infinity.

Assume also that there is a point g ∈ Rd+1 that is generic (i. e. not contained in a

hyperplane spanned by d vectors xvi) that belongs to the interior of exactly one of the

cones spanned by all vectors xv corresponding to the nodes v that belong to a d-face

of PN .

Then there is a partition P ′ that is combinatorially equivalent to P with a node system

given by the points xv for v ∈ N .

Proof. We want to see first that we can construct a regular CW complex PX by taking

a face G′ for each face G in PN , where G′ is the spherical convex hull of the points xv

for all nodes v ∈ G. Then we will obtain the partition P ′ out of the complex PX .

Consider the barycentric subdivision sdPN of the complex PN obtained by taking points

yG in the relative interior of each face G of PN . The maximal simplices of sdPN
correspond to complete flags G0 ⊂ · · · ⊂ Gd in PN and have yG0

, . . . ,yGd
as vertices.

Then take a point y′G in the relative interior of each spherical polyhedral set G′ in

PX . We want to see that if we construct the family SX of simplicial cones over the

sets y′G0
, . . . ,y′Gd

for each complete flag G0 ⊂ · · · ⊂ Gd in PN , then we obtain a cone

partition of the upper halfspace of Rd+1 (with first coordinate x0 ≥ 0), by making use

of Theorem 4.41.

By assumption, there is a generic vector g contained in exactly one of the cones spanned

by the vectors xv for all nodes v that belong to a d-face G of the complex PN . This is

precisely the cone over the spherical polyhedron G′.
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Lemma 4.43. Let G be a d-face of PN . Then the algebraic relationships and inequalities

for node frames (of type (ii) and (iii)) imply that G′ is combinatorially equivalent to G

as a polyhedral cone.

Proof. The relationships of type (iii) coming from flats tell us that the points xv cor-

responding to nodes v on the same d-subface of G are all on the same hyperplane and

the inequalities of type (ii) for node bases tell us that this hyperplane defines a facet of

G′. Moreover, for each node v, the set of facets on G where it belongs must be similar

to the set of facets of G′ where the point xv is contained.

We can tell which nodes are vertices of G from the set of facets where each node belong.

Vertices are in the maximal sets under inclusion, because if a node v is not a vertex, the

set Av of facets of G containing v is determined by the subface of G that contains it,

and this is a subset of the set Av′ of facets of G containing a vertex v′ of that subface.

Therefore G and G′ have the same vertex-facet incidences, and this imply that they

are combinatorially equivalent (this is a direct consequence of the analogous result for

convex polytopes, see [36, Chapter 2]).

This together with Lemma 4.43 implies that the cone over G′ is subdivided by all cones

of the form cone(y′G0
, . . . ,y′Gd

) where G0 ⊂ · · · ⊂ Gd is a complete flag on Pn with

G = Gd, and we conclude that if the vector g is generic enough, it will belong to the

interior of exactly one of the subcones cone(y′G0
, . . . ,y′Gd

) corresponding to a complete

flag with G = Gd. By a similar argument, if Gd 6= G, it is not possible that g belong to

any other cone corresponding to a flag ending in Gd and g is in the interior of a unique

cone from SX . This implies that the cone over G′ is subdivided by all cones of the form

cone(y′G0
, . . . ,y′Gd

) where G0 ⊂ · · · ⊂ Gd is a complete flag on Pn with G = Gd, and we

conclude that if the vector g is generic enough, it will belong to the interior of exactly

one of the subcones cone(y′G0
, . . . ,y′Gd

) corresponding to a complete flag with G = Gd.

By a similar argument, if Gd 6= G, it is not possible that g belong to any other cone

corresponding to a flag ending in Gd and g is in the interior of a unique cone from SX .

Now we want to see that for any d-face F of a (d + 1)-cone Ci in SX that is not

contained in the boundary of the upper halfplane in Rd+1 there is a second cone Cj with

Ci ∩Cj = F such that F is a face of Cj . Notice that the cones spanned by yG0
, . . . ,yGd

form a simplicial cone partition SN of the upper halfspace of Rd+1, since they arise from

a barycentric subdivision of PN .

Lemma 4.44. The determinant det(y′G0
, . . . ,y′Gd

) have the same sign as the determi-

nant det(yG0
, . . . ,yGd

) for any node flag G0 ⊂ . . . ⊂ Gd.
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Proof. By Lemma 4.37 we know that the sign of the determinant det(yG0
, . . . ,yGd

) is

the same than the sign of det(v0, . . . , vd) for any node basis (v0, . . . , vd) in N with

vi ∈ Gi.

By the algebraic conditions on the xv, this sign is also the same as the determinant

det(xv0 , . . . ,xvd) for any node basis (v0, . . . , vd) in N with vi ∈ Gi. We want to see

that this is also the same sign of the determinant det(y′G0
, . . . ,y′Gd

).

The fact that y′G ∈ relintG′ can be expressed by a linear combination

y′G =
∑

v∈N∩G
αvxv,

where all αv > 0. Since determinants are multilinear, we can expand it as follows.

det(y′G0
, . . . ,y′Gd

) =
∑(

(
d∏
i=0

αvi) det(xv0 , . . . ,xvd)
)

where the sum goes over all lists (v0, . . . , vd) such that vi ∈ Gi, namely the node systems

on the flag G0 ⊂ · · · ⊂ Gd. We can see that all summands on the right have the same

sign as det(yG0
, . . . ,yGd

) or are zero.

Lemma 4.44 imply that two adjacent cones in SX don’t overlap on their interiors, since

the corresponding cones in SN don’t overlap. All d-faces of SX corresponding to faces on

the boundary of SN are also in the boundary of the upper halfspace (due to relationships

of type (iv)) while a d-face of a cone Ci ∈ SX corresponding to an interior d-face of SN

are always interior (due to the inequalities of type (v)), and by the lemma we can find

that there is a second cone in SX such that its intersection with Ci is the corresponding

d-face, by looking at the cone with analogous property in SN .

Now we are in conditions to use Theorem 4.41 to conclude that the cones in SX don’t

overlap and make a cone partition of the upper hemisphere.

Each of the faces G′ of PX can be obtained as the intersection with Sd of the union

of the cones over sets y′G0
, . . . ,y′Gk

where G0 ⊂ . . . ⊂ Gk = G are partial flags on

PN , and then the faces of PX are obtained by gluing some of the simplices from the

spherical simplicial complex SX ∩ Sd (the interior of each face of the simplicial complex

SX ∩ Sd belongs only to the relative interior of the maximal face Gk from the labels of

the generators y′Gk
of the cone). Then PX is a CW complex since the relative interiors

of its faces are pairwise disjoint and that the boundary of each face G′ is covered by the

faces of P ′X contained in G′.
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By construction, we have inclusion between faces G′1 ⊂ G′2 if and only if the correspond-

ing faces in PN satisfy that G1 ⊂ G2. Therefore the resulting complex PX will have the

same face poset as PN . Half-linear faces F of P can be obtained as union of faces of

PN , and the union F ′ of the corresponding faces of PN have to be in a linear subspace

of the right dimension, due to equations of type (iii) that tell that points xv for v ∈ F
have to be coplanar for all facets of all regions of P containing F , and besides, F ′ have

in the boundary the same faces at infinity as F (due to equations of type (iv)), so they

will be the half-linear faces for a new partition P ′ that have as faces in its spherical

representation the same faces as PX , but gluing together those faces corresponding to

the same half-linear face.

The fact that P ′ is a partition of Rd is a consequence that SX is a cone partition

of the upper halfspace. By Lemma 4.44 we can find that the P and P ′ have the same

orientations, and we conclude that they are combinatorially equivalent as we wanted.

The condition of the existence of a point g in the interior of only one of the d-faces G is

important and cannot be omitted. To see this, consider a 5-partition of R2 as in the left

of Figure 4.5, and the choice of points xvi depicted on the right. For simplicity we called

the vertices vi and all nodes are vertices since the partition is pointed. In that example,

all conditions from Theorem 4.42 are satisfied, except the existence of the point g. In

this case we get that the expected spherical regions form a double covering of the upper

hemisphere.

v1

v2

v3v4

v5

v0

xv1

xv2

xv3 xv4

xv5

xv0

Figure 4.5: Nodes of a 5-partition together with points xv that satisfy all algebraic rela-
tionships and inequalities in Theorem 4.42 but don’t make a new 5-partition.

Proposition 4.45. Let P be an n-partition of Rd. The space of pairs (P ′, N ′) of parti-

tions P ′ combinatorially equivalent to together with a node system N ′ on P ′ is a semi-

algebraic set.

Proof. On Theorem 4.42 it is given the algebraic description by equations and inequali-

ties of a set that parameterize all these pairs, under the condition of the existence of the
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point g. Notice that if a partition P ′ is combinatorially equivalent to P, then any node

system give rise to an equivalent system of equations and inequalities, and therefore it

satisfies the system given by P. The condition about the point g can be also given as

a system of algebraic conditions after introducing new slack variables for g. We recall

that unions and intersections of semialgebraic sets are semialgebraic. Then by Theorem

4.6 we find that the set we are interested in is semialgebraic.

Definition 4.46 (Realization spaces). The realization space of an n-partition P is the

subspace of C(Rd, n) of all partitions P ′ with the same combinatorial type as P. It is

denoted as CP(Rd, n).

Theorem 4.47. Let P be an n-partition of Rd. Then the realization space CP(Rd, n) is

a semialgebraic set.

Proof. Proposition 4.45 shows that for pointed partitions P the space CP(Rd, n) is semi-

algebraic, since all vertices are nodes, and there is a unique node system on each partition

in the realization space. In general, the realization space of P can be obtained as the

image of the space of pairs (P ′, N ′) described in Proposition 4.45 to the space Rh(d+1)

describing by the equations of the h hyperplanes that define (d − 1)-faces of the parti-

tion, where each partition corresponds a unique point. We make use of an equivalent

formulation of Theorem 4.6 that claims that the image under a polynomial mapping

f : Rm → Rm′
of a semi-algebraic set is semi-algebraic.

This result gives us an alternative proof of the fact that spaces of n-partitions C(Rd, n)

are union of semialgebraic pieces since the union of all realization spaces of n-partitions

of Rd is equal to C(Rd, n).

4.5 Examples

We will analyze here the easiest examples of spaces of n-partitions, namely what happens

for small values of n and d. The easiest case is when n = 1. In that case our space of

partitions C(Rd, 1) will simply consists of one point. A more interesting example is what

happens for n = 2.

Proposition 4.48. The space C(Rd,≤2) is homeomorphic to the sphere Sd. The space

of partitions C(Rd, 2) is homotopy equivalent to Sd−1 and is obtained from C(Rd,≤2) by

removing two points.

Proof. To parameterize our space of 2-partitions for fixed d we only need to choose

the coordinates c1,2, that describe the normal to the hyperplane Hij by a point in Sn.
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Two special cases have to be taken into account that characterize the cases when the

combinatorial type of the 2-partition is not the generic one. These are precisely when

cij = ±(1, 0, . . . , 0). In those cases, there is no hyperplane in Rd, representing the

partitions with only one (labeled) non-empty region. These extreme partitions can be

obtained as a limit of proper 2-partitions, and Sd will handle the topological structure

of C(Rd,≤2) in the right way.

For n ≥ 3, things begin to be more complicated, even in the case of d = 1.

Proposition 4.49. The space C(R1,≤ n) is homeomorphic to a CW complex with n

vertices and k!
(
n
k

)
simplicial (k − 1)-cells for 0 ≤ k ≤ n. It is made out of n! sim-

plices of dimension (n− 1) glued appropriately on the boundaries. The space C(R1, n) is

homeomorphic to n! open (n− 1)-balls.

Proof. For a combinatorial type with k non-empty regions, its realization space is con-

tractible and can be realized as a (k − 1)-simplex. To do this, take an order preserving

homeomorphism from R to the open interval (0, 1). Then the coordinates of the k − 1

interior vertices (hyperplanes!) vi,j = Fi,j ∈ R need to be in a prescribed order, and

via the homeomorphism we can map any partition to a point inside a (k − 1) -simplex

contained in the unit cube (0, 1)k−1.

For example, if the n-partition have the region i at the left of region i+ 1 for all i < n

(and no empty region) then we only need to specify the coordinates of the vertices vi,i+1

such that v1,2 ≤ . . . ≤ vn−1,n. Mapping these n − 1 values to the unit cube (0, 1)n−1

via the homeomorphism, we identify the realization space of this particular n-partition

with the interior of an (n− 1)-simplex.

The boundary of each of those simplices will represent the case when some of the points

coincide, and can be naturally identified with the realization spaces of other combinato-

rial types with some extra empty regions. In this way we give to C(R1,≤n) the structure

of a regular cell complex (start with n vertices corresponding to the realization spaces

of partitions with only one non-empty region, and then for higher dimensions, identify

the boundary with a subspace of the union of the cells of smaller dimension).

There will be n! combinatorial types without empty regions. The space C(R1, n) is

the union of the interior of all those simplices. All other combinatorial types can be

obtained in the limit (in the boundary) of those proper combinatorial types and therefore

C(R1,≤ n) will have n! top-dimensional simplicial (n − 1)-cells, and

(
n

k

)
k! cells of

dimension k − 1.
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Example 4.50. The space C(R1,≤ 3) is homeomorphic to a two dimensional space

made out topologically by gluing six simplices along the boundaries in a special way,

since there are two different edges joining each pair of vertices. The vertices represent

the partitions with one non-empty region, and the edges represent the partitions with

two non-empty regions.
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321

Figure 4.6: Simplices to build a cell complex homeomorphic to C(R1, 3).

On Figure 4.6 we can see the six simplices of this CW complex with the corresponding

labels on the different cells. These simplices have to be glued along the edges corre-

sponding to the same partitions, in such way that the corresponding vertices coincide.

Each edge appears in three of the simplices

The next examples of spaces of n-partitions we completely describe are C(R2, 3) and

C(R2,≤3); they will be discussed in detail in Section 7.3.
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Regular n-partitions

Regular partitions are very important and much better understood than general parti-

tions. They are related with many other interesting objects and constructions in discrete

geometry, as for example weighted Voronoi partitions, k-stresses and reciprocals (see [22],

[31]). These different descriptions help to parameterize the subspace of regular parti-

tions, making easy to generate many partitions that can be controlled nicely in order to

obtain partitions with special properties.

Definition 5.1 (Regular partitions). A partition P ∈ C(Rd,≤ n) is regular if it can be

obtained as the projection of a (d + 1)-dimensional convex polyhedron Q to Rd, where

the regions of P are the image of the interior of the facets of Q under the projection.

Such a polyhedron Q is called a convex lifting of P.

Definition 5.2. We denote by Creg(Rd, n) the subspace of all regular partitions in

C(Rd, n). Similarly Creg(Rd,≤n) is the subspace of all regular partitions in C(Rd,≤n).

A main question we would like to understand is if there are any differences between the

spaces Creg(Rd,≤ n) and C(Rd,≤ n) at the level of homology or homotopy, for fixed n

and d.

5.1 Dimension of the subspace of regular partitions

We can introduce coordinates to Creg(Rd, n) by parameterizing the hyperplanes that

describe a polyhedral lifting of a partition. Suppose that P is a regular partition on

Creg(Rd, n) that can be obtained by projecting the lower convex hull of a convex poly-

hedron Q ∈ Rd. We can parameterize the equation for each facet Qi of Q (that projects

to the region Pi) as a linear inequality of the form x0 ≥ di · x + ci, where di ∈ Rd,

53
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ci ∈ R and x0 ∈ R denote the extra height coordinate of a point x = (x1, . . . , xd) ∈ Rd,
so that (x0, . . . , xd) ∈ Rd+1 and the projection of Q to Rd is made by deleting the first

coordinate. Suppose also that the facet of Q bounded by the hyperplane x0 = di ·x+ ci

is projected down to the region Pi.

Definition 5.3 (Simple partitions). An essential n-partition P of Rd is simple if each

k-face FI satisfies that |I| = d − k + 1, for all k ≥ 0. In particular, each vertex belong

to d+ 1 maximal faces of P̂.

This definition of simple n-partitions also takes into account all faces at infinity. For

example, the partition in the Example 3.7 is not simple, since there are vertices at

infinity contained in too many regions.

Proposition 5.4. For d ≥ 2 and n ≥ 2, the space Creg(Rd, n) of regular partitions is a

semialgebraic set of dimension

dim Creg(Rd, n) = (d+ 1)(n− 1)− 1.

Proof. For each of these d-faces of P we have d + 1 parameters to choose the equation

of an affine hyperplane for the facet Qi (namely di and ci) of the lifted polyhedron.

However, if we add the same linear function to each equation, we will get at the end

the same partition. We can therefore assume that the first region is generated by a

fixed hyperplane. Also we can scale all equations by the same value, and get at the

end the same partition after the projection. In that way we get the dimension count of

dim Creg(Rd, n) ≤ (d + 1)(n − 1) − 1. In case that the partition is simple and all facets

of Q appear in the lower convex hull, no other degrees of freedom leave the partition

invariant. This is true, because there is a unique possible lifting of a partition once we

fix the equation of a one facet of Q and a dihedral angle with a facet corresponding to

a neighboring region (see Rybnikov [31, Theorem 8.3]).

The cases when n = 1 or d = 1 don’t satisfy this formula. If n = 1, then dim Creg(Rd, 1) =

0. If d = 1, all partitions are regular, and by Proposition 4.49 we get that dim Creg(R1, n) =

n− 1. In this case the liftings are not unique after fixing one face and a dihedral angle.

Another way to compute the dimension of Creg(Rd, n) is via weighted Voronoi partitions.

Given n different points x1, . . . , xn ∈ Rd and real weights w1, . . . , wn ∈ R, the weighted

Voronoi partition P(x1, . . . ,xn;w1, . . . , wn) is given by the regions

Pi = {x ∈ Rd : ‖x− xi‖2 − wi ≤ ‖x− xj‖2 − wj for 1 ≤ j ≤ n}.

This P(x1, . . . ,xn;w1, . . . , wn) is a regular partition, since the minimum of the linear

equations ‖x − xi‖2 − ‖x‖2 − wi can be seen as the boundary of a convex polyhedron
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in one dimension higher, whose facets project to the regions of the generalized Voronoi

partition.

Theorem 5.5 (Kantorovich [21]). Let µ a continuous bounded measure on Rd. For

any x1, . . . , xn ∈ Rd with xi 6= xj for i 6= j and any m1, . . . , mn ∈ R+ such that∑n
i=1mi = µ(Rd) there are unique weights w1, . . . , wn ∈ R such that the regions of the

partition

P(x1, . . . ,xn;w1, . . . , wn)

have measures µ(Pi) = mi.

The proof of Theorem 5.5 can be found in [34], [13], but two more proofs are now

available: a geometric argument by Geiß et al. [16] and a topological proof by Moritz

Firsching (personal communication). Since any regular partition can be obtained as

a weighted Voronoi diagram, then we can also parameterize the space of regular n-

partitions using point configurations and weights x1, . . . ,xn;w1, . . . , wn. This give us a

(d+1)n family of parameters, but since we can obtain the same partition after translating

and scaling the point configuration (and fixing the weights accordingly) and after adding

a constant to all weights, we find once again that dim Creg(Rd, n) = (d + 1)(n − 1) − 1,

as shown in Proposition 5.4.

Already in dimension two, not all partitions are regular. One example of such partition

is shown on Figure 5.1. If we imagine that this partition can be obtained as the lower

projection of a three dimensional polyhedron, the three unbounded regions would be

the projections of facets contained in three planes in R3 that intersect. These planes

intersect pairwise in lines that project to the unbounded edges and these lines intersect

where the three planes meet. But then also their projections should intersect. In the

example we draw the prolongation of these edges and they don’t intersect, an then this

cannot be a regular partition.

Figure 5.1: Non-regular partition on the plane.

For d = 2, we will see in Proposition 6.3 that dim C(R2, n) = 4n− 7 for n > 3. It means

that the dimension of the space of all n-partitions of the plane in that case is much

higher than the dimension of the regular ones, since dim Creg(R2, n) = 3n− 4.



Chapter 5. Regular n-partitions 56

To recognize if a partition of R2 is regular, there is a projectively invariant criterion

in terms of suitable intersections of some lines (generalizing the intersection needed in

Figure 5.1) known as the callote condition (Crapo [11]), that can be expressed as an

algebraic equation. The following proposition gives a similar criterion, using parallel

lines.

Proposition 5.6. If P is a simple regular partition of R2 with a bounded euclidean

2-face E with vertices v1, · · · , vm, going around E in that order. Let ei be the edge at

the vertex vi that is not a face of E, and `i the straight line in R2 containing the edge

ei. If we start from a point x1 on the line `1 and draw a line through x1 parallel to v1v2

that intersects the line `2 in a point x2, and continue drawing parallels xixi+1 to the

sides vivi+1 of E with xi ∈ `i, then at the end xnx1 will also be parallel to vnv1.

E

x1

Figure 5.2: Parallel lines around a bounded face in a simple regular partition of R2.

Proof. Since P is regular, consider a convex lifting Q, that is a 3-dimensional polyhedron.

One of its facets F projects to the region E. If we translate the plane H containing the

facet F to a parallel plane H ′ going through the lifting of the point x1, we see inductively

that the intersection of H ′ with the lines `′i containing the edges of Q (that project to

the edges ei) project to the points xi, because the intersection of the parallel planes H

and H ′ with the facets adjacent to F project to parallel lines in R2. At the end, we also

get that xnx1 is parallel to vnv1 for the same reason.

For three dimensions and more, the situation is very different than for d = 2. We will

see that for these values of d, simple partitions are regular and they form a dense subset

of Creg(Rd, n) (see Theorem 5.11 and Corollary 5.14).
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5.2 Generic and simple partitions

We will start by fixing the meaning of generic partitions and discuss some properties of

them. One of the main uses of them is Theorem 5.11, that claims that generic simple

partitions of Rd are regular, for d ≥ 3.

Definition 5.7 (Generic Partitions). A partition P is generic if it is essential and it

doesn’t have any π-angle (as introduced in Definition 4.40).

A partition P can be essential, and hence generic, only if n > d. In case n ≤ d we might

require the existence of one (d− n+ 1)-cell to obtain an analogous definition of generic

partitions. This is anyway a bit different and not so interesting, since it implies that the

partition is the product of a simple n-partition of Rn−1 with a linear (d− n+ 1)-space.

Therefore we restrict to the case of essential partitions.

Lemma 5.8. Every generic partition P is pointed.

Proof. By Lemma 4.24 it is enough to prove that the recession cone of each region of P
is pointed. First observe that if P is generic, a region of P is pointed if and only if it

has a vertex on its boundary. If the region contains a vertex, it will be pointed, since

the recession cone will be a subset of the cone spanned locally at that vertex. Since

no π-angles are allowed, then this local cone must be pointed. On the other hand, if

the recession cone is pointed, its apex optimize a linear functional over the cone. There

must also be a vertex optimizing that functional over the region.

Assume that there is an unbounded region Pi without any vertex on the boundary. If P is

generic, it is essential and it has at least one vertex v (Lemma 3.15). Choose a path from

the interior of a region R1 with v at the boundary to the interior of Pi, that is generic

in the sense that only cross (d−1)-faces on the interior, and call R1, . . . , Rk = Pi to the

regions crossed by that path. Then R1 is pointed, as well as the (d−1)-face R1∩R2, and

therefore there should be a vertex on that intersection face. Then R2 is also pointed, and

we can repeat the argument to find that also R3, . . . , Rk = Pi are pointed regions.

Together with Lemma 4.23 we get the following chain of implications on partitions:

Generic =⇒ Pointed =⇒ Essential.

From the proof of Lemma 5.8 it is easy to conclude the following corollary.

Corollary 5.9. If P is a generic partition, then the graph induced by interior vertices

is connected.
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Proof. For each pointed region, the graph of vertices on the boundary together with the

bounded edges is connected, since we can move optimizing that linear functional, and

end up over a bounded face with maximal value, that has connected graph.

If we repeat the argument from the proof of Lemma 5.8, then walking from one region

to the next we can always find a path on the surface of the first region to a vertex of

the next and repeating this we can connect any pair of points.

We will prove something stronger in Proposition 6.9, after defining the bounded complex

of a partition.

Lemma 5.10. Let P be a regular partition that is essential. Then P is generic.

Proof. We need to see that a regular partition doesn’t have π-angles. Suppose that P
have a π-angle between two (d − 1)-faces Fij and Fik that belong to the same (d − 1)-

subface of a d-face Fi of P, that meet at a (d− 2) face F , and let Q be a convex lifting

of P, i. e. a convex polyhedron in Rd+1 whose facets project to the regions of P. If

we compare the dihedral angles in Q at the lifting of the faces Fij and Fik (between

the lifting of Fi and the lifting of regions Fj and Fk respectively), we see that if one is

bigger than the other then Q cannot be convex, and both must be equal. Therefore the

liftings of the d-faces Fj and Fk belong to the same hyperplane in Rd+1. Moreover, the

only way to get convexity in the lifting is placing all other facets of Q that meet in F

different than the lifting of Fi on the same hyperplane where the liftings of Fj and Fk

belong. But this cannot be, since it implies that all these regions will be contained in

the same facet of Q and this is not a proper lifting. In case that P is also essential, we

can conclude that it is generic.

The following theorem appeared in Whiteley [35] and was generalized later by Rybnikov

[31].

Theorem 5.11 (Whiteley [35]). Let P be a generic partition of Rd that is simple, for

d ≥ 3. Then P is a regular partition.

In Rybnikov [31] something stronger is proven. He uses a more general setup of d-

manifolds PL-realized in Rd, possibly with boundary, and the statement of theorem still

holds for 3-simple partitions.

Definition 5.12 (k-simple partitions). Let 0 ≤ k ≤ d be a fixed integer. An n-partition

of Rd is k-simple if each (d− k)-face FI satisfies that |I| = d− k + 1.
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A partition P of Rd is simple if and only if it is d-simple. Therefore, to check that P is

simple it is enough to see that each interior vertex is contained in d + 1 maximal faces

and each vertex at infinity is in d maximal faces and in F∞. Also k-simple partitions

are always k′-simple for any k′ < k.

Theorem 5.13 (Rybnikov [31]). Let P be a generic partition of Rd that is 3-simple

(i.e. each (d− 3)-cell is contained in 4 of the d-cells). Then P is a regular partition. If

P is 2-simple, there is a convex lifting if and only if the star of each interior (d− 3)-cell

is liftable.

In [31] they use a slightly different notion of genericity than here. There it is required

that no pair of adjacent (d− 1)-cells (containing a common (d− 2)-cell) lie on the same

hyperplane. This condition is stronger than having no π-angle, but in case the partition

is 2-simple, both conditions are equivalent. This includes the most interesting cases for

us, where Theorem 5.13 applies.

There is also a technical condition needed to conclude Theorem 5.11 from the work of

Rybnikov [31, Condition 9.1]. He claims that partitions of Rd into convex regions and

convex tilings of convex regions in Rd satisfy that condition. However it is needed that

the partition is essential to be able to conclude that. For that reason we include the

essential requirement in Definition 5.7 and we don’t need to worry about that condition

any longer.

One easy corollary of Theorem 5.11 is the following.

Corollary 5.14. For d ≥ 3, the set of generic simple n-partitions of Rd form an open

dense subset of Creg(Rd, n).

Proof. Theorem 5.11 gives the inclusion. Also, any regular partition has a small per-

turbation that makes it simple. From Proposition 5.4 we can see how to make this

perturbation, using a parameterization of regular partitions by choosing the lifted hy-

perplanes and modding out scaling and adding a linear functional. There we can perturb

the hyperplanes generically to obtain a simple polyhedron, and its projection will be a

new partition close to the original one. On the other hand, if we perturb a simple

partition an small amount, it will still have the same combinatorial type, and therefore

simple partitions form an open subset inside Creg(Rd, n).
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5.3 Universality

The realization spaces of regular partitions are closely related to realizations of polytopes.

This fact allow us to extend known results for polytopes to the realization spaces of n-

partitions, in particular, Richter-Gebert’s Universality Theorem for 4-polytopes [28]. It

states that realization spaces of 4-polytopes can be “as complicated as possible” as a

semialgebraic set.

The realization space of a polytope P is the space of all polytopes combinatorially

equivalent to P , modulo affine equivalence. The realization spaces of polytopes are

semialgebraic sets. Two semialgebraic sets are stably equivalent if they are in the same

equivalence class generated by rational homeomorphisms and stable projections (see

[28]).

Theorem 5.15 (Richter-Gebert [28], Universality for 4-polytopes). For every primary

basic semialgebraic set X defined over Z, there is a 4-polytope P whose realization space

is stably equivalent to X.

Let P be a regular n-partition of Rd. Let Q be an unbounded polyhedron that is a

convex lifting for P. We can construct a convex polytope Q′ projectively equivalent to

Q. The polytope Q′ will have the same face structure as Q, with an extra facet F∞ that

corresponds to the points at infinity on Q. In fact, the polytope Q′ will have the same

face poset as the spherical representation P̂, so we know its combinatorial structure in

advance. (We will sometimes also denote F∞ by F∞(Q′) to specify the polytope where

it belongs.) This correspondence via projective transformations will help us to relate

realization spaces of polytopes with realizations of a partition P. We will see how to

obtain such polytope Q′ in the proof of Proposition 5.16 (see Figure 5.3).

We say that Q is a positive convex lifting of P if all points of Q have last coordinate

greater than zero. A lifting pair (P, Q) consists of a regular partition P together with a

positive convex lifting. Two lifting pairs (P1, Q1) and (P2, Q2) are affinely equivalent if

there is an affine transformation in Rd+1 sending each region of P1 to the corresponding

region in P2, and sending Q1 to Q2.

Proposition 5.16. Let P be a regular n-partition. There is a correspondence between

the space of lifting pairs (P1, Q1) up to affine equivalence, where P1 is a regular parti-

tion combinatorially equivalent to P, with pairs (Q′1,x) of realizations of a polytope Q′

projectively equivalent to Q1 together with a point x on the relative interior of the facet

F∞(Q′), up to affine transformations.
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Proof. We identify the space Rd where the partition P1 lives with the affine hyperplane

V0 with last coordinate equals 0 in a vector space V ∼= Rd+1. The projection from Q1 is

made “vertically” to Rd, by changing the last coordinate to 0.

Let ϕ be a fixed projective map from V to W ∼= Rd+1 such that sends the point v∞

“high above” in V to the origin 0 in W , so that it interchanges the hyperplane V0 in V

with the hyperplane at infinity in W and vice versa.

On Figure 5.3 we sketch how to construct such map ϕ in case our partition P lives in

R1. On that figure, both spaces V and W are embedded in R3 in such a way that the

projective transformation ϕ is simply given by a projectivity from the origin 0 of R3

(i. e. by mapping each point y ∈ V to the point z ∈ W such that y, z and 0 are

collinear). In general, we can assume that V and W are embedded in Rd+2, where W

has last coordinate xd+2 = 1, V is given by xd+1 = 1, and the projectivity from V to

W is made from the origin 0 ∈ Rd+2, by sending any point x ∈ V with xd+2 6= 0 to the

point ϕ(x) = x/xd+2 ∈W . Other points in V are sent to the plane at infinity in W .

Rd

Q

Q′

W

V

0

0

v∞

Figure 5.3: Projective map ϕ taking a positive convex lifting Q over a regular partition P
of Rd to a convex polytope Q′.

For every partition P1 of Rd and lifting Q1 ⊆ V construct Q′1 = ϕ(Q1) and set x to be

the origin 0 in W. Then x ∈ F∞(Q′1) since it is the image of the point v∞ that always

belong to Q, at the hyperplane at infinity of V . We want to see that the map ϕ induces

the desired bijection. To prove this, we need to show that affinely equivalent pairs will

be mapped to affinely equivalent polytopes where the point x is also preserved, and that

for any realization of Q′ together with a point x ∈ F∞(Q′) we can obtain a unique lifting

pair (P1, Q1) up to affine equivalence.

Let (P1, Q1) and (P2, Q2) two affinely equivalent lifting pairs. Then there is an affine

map ψ such that it preserves V0 and sends the partition P1 to P2 and the polyhedron Q1

to Q2. Such affine map ψ can be seen as a projective map that preserves the hyperplane
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at infinity of V . After applying ϕ we will get affinely equivalent bounded polytopes

Q′1 and Q′2, since they are related by a projective function ϕ ◦ ψ ◦ ϕ−1 that preserves

the hyperplane at infinity in W , because ψ preserves the hyperplane V0 (the polytopes

are bounded since Q1 and Q2 are positive convex liftings). Also the point x will be

preserved, because ψ keeps invariant the point v∞, so that the lifted polyhedra Q1 and

Q2 keep being sent to the corresponding partition by projecting down.

Now consider a realization Q′1 of the polytope Q′ together with a point x ∈ F∞(Q′1).

We can place Q′1 in the space W in such a way that the point x is at the origin of W

and the facet F∞ is on the hyperplane W0 at height 0, with Q′1 at the right side of W0,

given by the image under ϕ of the points of V with positive height. (We will see that

we don’t care about possible rotations of Q′1 and actually we also don’t care of Q′1 up to

affine equivalence. We only need to care that the point x is also preserved by the affine

transformation.)

Once we place Q′1 in W , we can get Q1 = ϕ−1(Q′1) and the partition P1 is obtained by

projecting down the facets of Q1. Since the point x in the interior of F∞(Q) is mapped

“high above” to v∞, then there are directions at infinity around v∞ in such a way that

after projecting down we will completely cover V0 and obtain a partition. Also P1 will

have the right combinatorial structure, due to the combinatorial structure of Q′.

Now suppose we have an affinely equivalent pair (Q′2,x2). After positioning Q′2, we

can assume that x2 = x is also at the origin of W and the face F∞(Q′2) is properly

positioned. Then the affine transformation between Q′1 and Q′2 is such that it preserves

the origin of W and the hyperplane W0. Again, such affine transformation can be seen

as a projective transformation ψ′ that besides maps the hyperplane at infinity in W to

itself. By a similar analysis as we did before, we can conclude that the pairs (P1, Q1)

and (P2, Q2) obtained by applying ϕ−1 are affinely equivalent, since they will by related

by the map ϕ−1 ◦ψ′ ◦ϕ, that preserves V0, v∞ and the hyperplane at infinity of V .

Theorem 5.17. For any primary basic semialgebraic set X and d ≥ 3, there is an

n-partition P of Rd such that the set of regular partitions combinatorially equivalent to

P, up to affine equivalence, form a semialgebraic set stably equivalent to X.

Proof. By Theorem 5.15 there is a 4-polytope P whose realization space is stably equiva-

lent to X. Take F∞ to be any facet of P . Then the set of pairs (Q′,x) with Q′ realization

of P and x in the interior of F∞(Q′), up to affine equivalence, is also a semialgebraic set

stably equivalent to the realization space of P , since the extra information given by the

position of x is bounded by algebraic (linear) equations, and the projection (Q′,x) 7→ Q′

is an stable projection with open convex polytopes as fibers.
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Now, by Proposition 5.16, we get that the space of lifting pairs for a corresponding

partition P obtained from projecting down a polyhedron Q = ϕ−1(Q′), up to affine

equivalence, also have a semialgebraic structure stably equivalent to X. It remains to

check that the projection (P, Q) 7→ P from lifting pairs up to affine equivalence to its

corresponding partition is a stable projection. Notice that for a generic partition P, two

lifting pairs (P, Q1) and (P, Q2) are affinely equivalent only in case that Q1 and Q2 only

differ by multiplying by a scalar, since these are the only affine transformations that

preserve P Partitions of Rd coming from (d+ 1)-polytopes are always generic.

From [31, Theorem 5.1], we know that for a fixed partition P, the convex liftings of P
are given by a polyhedral cone, that they denote CLift(P). Requiring that a convex

lifting is positive only adds an extra linear inequality to the cone CLift(P). The lifting

pairs (P ′, Q′) that project to a partition P ′ affinely equivalent to P can be always be

represented by a pair (P, Q) up to affine equivalence, and a positive convex liftings Q

are given by a polyhedral set. Therefore the map (P, Q) 7→ P is a stable projection. We

conclude that the space CP,reg(Rd, n) modulo affine transformations is stably equivalent

to X.

On the other hand, realization spaces of 3-polytopes are always contractible. We expect

similar behavior for regular n-partitions of the plane (see Conjecture 8.2).





Chapter 6

Dimension of realization spaces

We know that the space C(Rd, n) is a topological space glued together from different

semialgebraic pieces corresponding to the different combinatorial types. These pieces

might have different dimensions. The dimension dim C(Rd, n) of the space of n-partitions

is the maximal dimension dim CP(Rd, n) of the realization spaces of partitions P ∈
C(Rd, n). We would like to understand what are these dimensions for different values of

n and d, and which combinatorial types attain the maximal dimension. For d = 1, we

can see from Proposition 4.49 that dim C(R1, n) = n − 1. In what follows, we find this

maximal dimension in for d = 2, characterizing the combinatorial types that attain it.

Then we try to understand the case d = 3 and offer some conjectures about its maximal

dimension.

6.1 Partitions of the plane

We consider here the spaces C(R2, n) and compute their dimensions. For the planar case,

a partition is simple if each interior vertex is contained in three regions, and vertices at

infinity are contained only in two regions.

Lemma 6.1. Generic partitions are dense in C(R2, n) for n ≥ 3.

Proof. Let P be a partition that is not generic. If P is essential, then it has some

interior vertices contained in a pair of edges that form a π-angle. Let S be the set of all

those vertices. For each v ∈ S let nv the unit normal vector orthogonal to the 1-subface

containing the edges that make a π-angle at v, exterior to region where the 1-subface

belongs (as depicted in Figure 6.1). We want to perturb every vertex v ∈ S a small

amount in direction nv, to get a new partition without π-angles.

65
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Let ε > 0 be a small enough real number. If we move every v ∈ S by εnv (using always

the same value of ε) then we will end up with a convex configuration, where the π-angles

will get smaller, unless there are many π-angles on the same subface.

To see this, notice that for ε small enough we can neglect the motions in direction

orthogonal to nv to find the convexity condition that have to be satisfied for each v. We

get at the end the following inequality

|εnv| ≥
`2|nv · εnv1 |+ `1|nv · εnv2 |

`1 + `2
(6.1)

where vi are the vertices adjacent to v on the edges of angle π (for i = 1, 2), `i = |v−vi|,
are the length of those edges, and nvi = 0 in case that vi /∈ S. (The case where some of

the `i are not finite will be discussed in more detail later.)

v
v1 v2

nv

`1 `2

Figure 6.1: Normal directions nv for vertices in S

These inequalities are always true since nv · nvi ≤ 1, and we get strict inequality unless

nv = nv1 = nv2 . Since we want to get always strict inequalities to ensure that the final

partition is generic, we modify the amount of perturbation in case that there are more

than three vertices on the interior of an edge (1-subface) of a region. Call the vertices

in that subface v0, v1, . . . , vn in the respective order on the segment, where v0 and vn

are on the boundary (see Figure 6.2).

v1 v2 v3 · · · vn−1
v0 vn

Figure 6.2: Many vertices vi on the same subface.

Now find real values λi for i = 0, . . . , n so that they satisfy

λi >
`i+1λi−1 + `iλi+1

`i + `i+1
(6.2)
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for 0 < i < n, where `i = |vi − vi−1| and λ0 = λn = 0. These values can be easily

obtained from a convex function on the interval. We need special care in case that we

have vertices at infinity. In case that `1 is infinite, the Equation (6.2) reduces to λ1 < λ2

that in principle leads to no complication, but implies that the λi will be in decreasing

order. The problem appears in case that both v0 and vn are at infinity. In that case, no

λi values can be found and we need to perturb at least one of them before applying our

procedure. If one of them is a simple vertex, we can easily move it to another vertex

at infinity that is close enough, by rotating the ray at infinity a small amount, so that

region with the π-angle is still convex. If both vertices at infinity are not simple, we can

find an interior vertex v “close” to v0 such that it is between some of the unbounded

edges at v0. Then replace all edges to v0 by edges to v and add a new edge from v to v0.

(This kind of perturbation is analogous to the one we describe in the proof of Theorem

6.2.) After doing this, we can always find values λi for the new partition.

Once we find these values of λi, we can perturb each of the vi by (ε+λiε
2)nvi for a small

ε. We do the same for all sets of vertices on a common 1-subface. For ε small enough,

these new values of perturbation should not interfere with the convexity inequalities

obtained before, and now we will get at the end a strictly convex partition, since now

all inequalities will hold strictly.

If P is non-essential, it consists of regions separated by parallel lines and we can perturb

one of those lines slightly to obtain essential partitions close to P. Here we need that

n ≥ 3. Since those partitions can be approximated by generic partitions, we conclude

that generic partitions are dense in C(R2, n).

Theorem 6.2. Simple partitions are dense in C(R2, n).

Proof. Due to Lemma 6.1 we only need to prove that any generic partition of R2 can

be slightly perturbed to a simple partition. If a partition is not simple, take a vertex

V with degree higher than three and find a generic line ` through V , so that it leaves

at least two edges at each side. It means that two small intervals in ` at different sides

of V (with V in the boundary) are initially contained in two different convex regions of

the partition, only intersecting at V .

Now add a new vertex V ′ very close to V in the direction of ` and join it with V by an

edge. Also erase the two edges at V of the region containing V ′ and change them for

edges to V ′. This will give rise to a new partition with smaller average degree at interior

vertices.
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Figure 6.3: Duplicating a vertex

Since the partition we started with is taken to be generic, then we can make these

perturbations without losing the convexity of the regions. We can repeat this procedure

until we end up with a simple partition.

If we consider the space of partitions for some given combinatorial type, we can pa-

rameterize it by giving two coordinates for each interior vertex and one coordinate to

parameterize the direction of the vertices at infinity (corresponding to unbounded edges).

It is easy to see now that we will get bigger dimensions for simple combinatorial types

(since we are duplicating vertices several times to get simple types). Based on that, we

compute the dimension of C(R2, n) by finding the combinatorial types with configuration

space of maximal dimension.

Proposition 6.3. The space of partitions of R2 into n convex pieces has dimension

dim C(R2, n) = 4n− 7, for n ≥ 3. The partitions whose combinatorial types that attain

the top dimension are simple partitions with exactly three unbounded regions.

Proof. The dimension of the space of partitions with a simple combinatorial type with

v interior vertices and m unbounded regions is 2v + m. Consider the graph of vertices

and edges of this partition, including vertices and edges at infinity as well. Call e the

number of edges of this graph. Then, by the Euler formula, we know that

(n+ 1)− e+ (v +m) = 2,

(n− 1) + (v +m) = e.

Since all vertices have three edges, 2e = 3(v + m), and therefore 2n − 2 = v + m. The

dimension 2v + m is then maximal whenever m is as small as possible, namely 3, for

n ≥ 3. In that case, v = 2n− 5 and the dimension of the space is 4n− 7.

These partitions exist for any n ≥ 3. Figure 6.4 is an example of such a partition,

for n = 6.
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Figure 6.4: Shape of a partition P with maximal dim CP(R2, 6).

6.2 Dual and bounded complex

We define here two cell complexes related with any pointed partition P. A cell complex

M is a d-manifold (with or without boundary) if its corresponding topological space

is a manifold of dimension d. It means that every interior point has a neighborhood

homeomorphic to an open d-ball. All other points are on the boundary, and have a

neighborhood homeomorphic to the halfspace of Rd with last coordinate xd ≥ 0. (See

[23], [5]). A manifold is PL if it is homeomorphic to a piecewise linear realization

where all cells are polyhedra. We denote by ∂M to the boundary of a d-manifold with

boundary.

For any PL d-manifold M with boundary there is a dual cell complex M∗ that has the

same underlying space and has one interior (d− k)-face for each k-face ofM. The faces

on the boundary ofM∗ make the complex ∂(M∗) = (∂M)∗ that has no boundary. (See

[23], [4]).

We now define a complex that has its faces in bijection with the interior faces of P.

The complex PN given in Definition 4.31 is a d-ball, and therefore a PL d-manifold

with boundary. From Proposition 4.34 we know that for pointed partitions the complex

whose cells are the faces of P coincide with the cell complex PN .

Definition 6.4 (Dual complex PD). Let P be a pointed n-partition. The dual complex

PD is a cell complex obtained from P∗N by removing all faces in the boundary ∂(P∗N )

together with all faces containing one of those boundary faces, namely

PD = P∗N − ∂(P∗N ).

Example 6.5. On Figure 6.5 we show how to obtain the dual complex PD for the

partition P from 3.7. First we construct the complex P∗N , depicted on the left, that

is a covering of the upper hemisphere using six 2-cells, one for each node of P. After
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deleting the boundary faces we obtain the complex PD, as depicted on the right. It has

four vertices, five 1-faces and two 2-faces, one for each interior face of PN .

Figure 6.5: Complexes P∗N and PD for the partition P given in Example 3.7.

The complex PD has a (d − k)-face for each interior k-face of P. Also, the boundary

faces of PD are in correspondence with the unbounded faces of P (i.e. the interior faces

of P that contain a face at infinity). The following lemma tell us about the topology of

PD.

Lemma 6.6. IfM is a PL manifold with boundary, thenM∗−∂(M∗) is a deformation

retract of M∗.

The proof of this lemma can be found on [23, Lemma 70.1] and also in [4, Lemma 3.2]

where it is shown that M∗ collapses to M∗−∂(M∗). In particular, Lemma 6.6 says that

PN and PD are homotopy equivalent.

Lemma 6.7. If P is a generic partition, then the dual complex PD is homeomorphic to

a d-ball.

Proof. Let Q be a big d-ball strictly contained on the interior of the upper hemisphere

Sd+, such that it is spherically convex and all bounded faces of PN are contained in Q.

We can construct a cell complex Q with interior (and respectively boundary) cells given

by intersecting the interior (respectively boundary) of Q with the faces of P. Since Q is

convex, the intersection of the interior of Q with any face of P will be also strictly convex,

and therefore homeomorphic to a ball. Since the partition is pointed, each unbounded

face of P only intersects the boundary of Q in a contractible cell. The boundary of each

cell C = F ∩Q of Q is covered by other cells of Q given by the intersection of faces in

the boundary of F with the interior of Q, and the intersection of unbounded faces of F

and the boundary of Q.

Each interior face of Q will correspond to a unique face in the dual complex PD, so that

PD = (Q)∗. We conclude that PD is a d-ball.
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Using the same notation as before, boundary faces of Q correspond to unbounded faces

of P, and it holds that for generic partitions ∂PD = (∂Q)∗ is homeomorphic to a (d−1)-

ball, since its union is the boundary of Q. Notice that for the complex PD in Figure 6.5,

Theorem 6.7 doesn’t apply, since its corresponding partition P is not generic.

There is one more cell complex that will be important for us, and we define it now.

Definition 6.8. Let P be a pointed n-partition. The bounded complex PB is the sub-

complex of all bounded faces of PN .

Proposition 6.9. Let P be a generic n-partition of Rd. Then the bounded complex PB
is contractible.

Proof. By Lemma 6.7 we know that PD is a d-ball, in particular a d-manifold with

boundary. The bounded complex of P can be obtained as PB = P∗D − ∂(P∗D) if we

identify the faces of PB ⊂ P∗D ⊂ (P∗N )∗ with the faces of PN , since only the cells

corresponding to interior faces in PN are left. By Lemma 6.6, we can conclude that PB
is contractible.

6.3 Partitions of R3

We would like to identify the partitions P such that CP(Rd, n) has maximal dimension

for a given n. For d = 2, Proposition 6.3 gives us the characterization of such partitions.

Now we focus on the case d = 3. We know already that if P is simple and generic, then

dim CP(Rd, n) = (d + 1)(n − 1) − 1 since it is regular. For d = 3 we conjecture that

this formula gives the maximal dimension 4n−5 although we prove that there are other

combinatorial types that also attain this dimension. To justify this conjecture we offer

an argument based on a naive counting of the dimension.

The naive way to try to compute the dimension of a semialgebraic set proceeds by count-

ing the number of variables and then subtracting the number of “independent” algebraic

equations. If the equations are not independent, this gives us a lower bound on the di-

mension of the space, and we have to add a quantity from the algebraic relationships

between the equations. Intuitively, this value correspond to “hidden incidence theorems”

between the points of the configuration. (Other instances of this naive counting appear

in [10] and [29].)

We will apply this naive count for the dimension the realization space CP(R3, n) for

a generic n-partition P of R3, based on the description given in Theorem 4.42. This

naive count will be denoted as z and it will be expressed in terms of the f -vectors of
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PN , PD and of their boundary complexes ∂PN and ∂PD. The entries of the f -vector

of a complex C are the values fi(C) that denote the number of i-cells in that complex.

We will assume here an extra genericity assumption, namely that there are no parallel

unbounded edges in P, so that there is a vertex at infinity for each of them.

The f -vector of PD counts the number of interior faces of P in reversed order, where

f3(PD) equals the number of interior vertices of P, f2(PD) counts the interior edges,

f1(PD) counts the interior 2-faces and f0(PD) = f3(PN ) = n since all the regions are

interior. Also, the faces on ∂PD are in correspondence to the unbounded faces of P in

reversed order, where f0(∂PD) equals the number of unbounded 3-faces of P, f1(∂PD)

counts the unbounded 2-faces and f2(∂PD) the unbounded edges. The complex PD is a

3-ball (by Lemma 6.7) and its boundary ∂PD is a 2-sphere.

We count initially 3f0(PN )−f0(∂PN ) corresponding to the three dimensions of freedom

for each vertex of P, where we need to subtract one for each of the equations of the form

e0 · xv = 0 corresponding to the vertices at infinity. We have to subtract from that a

value coming from equations of the form det(xv0 , . . . ,xvd
) = 0 telling that our 2-faces

have to be planar. Since most of these equations are related, so we have to find this

value more carefully.

For every interior 2-face F in P, we need to fix three vertices to fix the plane where it

belongs. Each interior 2-face in P correspond to a 1-face in PD, so there are f1(PD) of

those 2-faces. For each extra vertex v in F , there is one dimension less of freedom telling

that it belongs to that plane. It corresponds to the equation det(xv0 ,xv1 ,xv2 ,xv) = 0,

where we assume that the three fixed vertices are v0,v1 and v2 where v0 and v1 are

chosen so that they belong to the same edge, in order to have (v0,v1,v2,v) to be a

node flat. Equations corresponding to other node flats of vertices contained in F will

be dependent on the equations mentioned before. If P is generic, no other algebraic

equations take place (otherwise P would have some π-angles). Therefore we have to

subtract

f12(PD) + f1(∂PD)− 3f1(PD) (6.3)

where f12(PD) counts the number of inclusions of a 1-face in an interior 2-face in PD, and

also the number of inclusions of an interior 1-face of PN in an interior 2-face of PN . The

expression f12(PD) + f1(∂PD) counts the number of inclusions of a 1-face in an interior

2-face in PN in case that every unbounded 2-face of PN has one edge at infinity. This

is always true under our extra genericity assumption of having no parallel unbounded

edges. Since every 2-face have the same number of 0-faces and 1-faces, the expression

(6.3) counts at each interior 2-face of PN the number of vertices minus three. We get

the desired naive dimension z by subtracting equation (6.3) from 3f0(PN ) − f0(∂PN ),
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namely

z = 3f0(PN )− f0(∂PN )− f12(PD) + 3f1(PD)− f1(∂PD). (6.4)

Proposition 6.10. Let P be a generic partition in C(R3, n). Then the naive count z

for the dimension of CP(R3, n) satisfies z ≤ 4n − 5. Equality is attained if and only if

P is 2-simple (as in Definition 5.12) and doesn’t have bounded regions.

Proof. First, since f3(PD) is equal to the number of interior vertices of P, then f0(PN ) =

f3(PD) + f0(∂PN ). Replacing this in equation (6.4) we get

z = 3f3(PD) + 2f0(∂PN )− f12(PD) + 3f1(PD)− f1(∂PD). (6.5)

We know that f0(∂PN ) ≤ f2(∂PD), since the number of vertices at infinity is smaller

than the number of unbounded edges in the partition (every vertex at infinity is contained

in at least one unbounded edge). Also, notice that f12(PD) ≥ 3f2(PD), with equality in

case that all 2-faces in PD are triangles. It means that in PD all 3-faces are simplicial

and therefore the link of each interior vertex in P is simple. This is equivalent to say

that P is 2-simple. Replacing these inequalities in (6.3), we get

z ≤ 3f3(PD) + 2f2(∂PD)− 3f2(PD) + 3f1(PD)− f1(∂PD). (6.6)

Using the Euler characteristics for PD and ∂PD, we know that

f3(PD)− f2(PD) + f1(PD) = f0(PD)− 1,

−f2(∂PD) + f1(∂PD) = f0(∂PD)− 2.

Together with the inequality that tells that every 2-face has at least three edges

3f2(∂PD) ≤ 2f1(∂PD) (6.7)

and the fact that f0(∂PD) ≤ f0(PD) = n we get

z ≤ 3n− 3 + 2f2(∂PD)− f1(∂PD)

= 3n− 3 + (3f2(∂PD)− 2f1(∂PD))− f2(∂PD) + f1(∂PD)

≤ 3n− 3 + f0(∂PD)− 2

≤ 4n− 5.

Inequality (6.7) is sharp in case the boundary is a simplicial complex (this is true if P
is 2-simple) and to get equality is also needed that there are no interior vertices in P so

that f0(∂PD) = f0(PD) = n.
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Unfortunately this naive count doesn’t always provide the right dimension for all re-

alization spaces of partitions in R3. For example, if P is a simple partition we know

that dim CP(R3, n) = 4n − 5 and the equality should be satisfied. Therefore there are

relationships among the planarity restrictions, in fact one for each bounded face. This

is one instance of the “hidden incidence theorems” mentioned before.

Theorem 6.11. Let Q ⊂ R3 be a 3-dimensional polytope with vertices A1, . . . , Am

(where m = f0(Q)). Let B1, . . . , Bm be other points in R3 different from the vertices

of Q, for i ≤ m. If the points Ai, Aj, Bi and Bj are coplanar for all edges AiAj of Q

except one, then for the remaining edge the corresponding four points are also coplanar.

Proof. Let Ap and Aq be the vertices on the remaining edge where the coplanarity of Ap,

Aq, Bp and Bq has to be checked. The precise location of the points Bi is not important

as long as they generate the same straight line AiBi. We want to prove that there are

points Ci on the lines AiBi different from the Ai, so that for every edge AiAj of Q, the

segment CiCj is parallel to the edge AiAj . In this way, we obtain at the end that CpCq

is parallel to ApAq, and therefore we conclude the desired coplanarity, since Bp is on the

line ApCp and Bq is on the line AqCq.

First fix C1 = B1. For each edge AiAj different from ApAq such that Ci is already fixed

on the line AiBi, we can find the point Cj by taking a parallel line to the edges AiAj

going through the point Ci and intersecting it wity the line AjBj . Since the points Ai,

Aj , Bi and Bj are coplanar, this line will always meet.

In this way we can find all the vertices Ci, but we need to check that they are well

defined, independently on the chosen path from C1 to Ci. To see this, it is enough to

check that going around the edges of a 2-face F of Q not containing the edge ApAq

we end up always in the same point. But this is clear since all points Ci′ for Ai′ in F

must be on the same plane PF parallel to F , since all the segments Ci′Cj′ are parallel

to the edges Ai′Aj′ of F . This plane is fixed once we know at least one of the points

Ci′ and then the point Ci is at the intersection of the plane PF parallel to F with the

line through Ai and Bi. Since Ai, Aj , Bi and Bj are coplanar, as well as the points Ai,

Ak, Bi and Bk, the intersection of those planes with the plane PF contain the segments

CiCj and CiCk respectively, and this segments must be parallel to the corresponding

edges AiAj and AiAk.

Let G and H be the 2-faces of Q containing the edge ApAq. The points Cp and Cq

belong to two planes PG and PH parallel to the facets G and H since we can walk from

one of them to the other through segments parallel to edges of those faces. Then CpCq

is parallel to ApAq since this edge lies on the intersection of PG and PH . We conclude

that Ap, Aq, Cp and Cq lie on the same plane, as well as Bp and Bq, as desired.
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The idea of the proof of Theorem 6.11 is based on the assumption that Q is a bounded

region of an n-partition of R3 that is simple and generic. From Theorem 5.11 we know

that such partitions must always be regular, and then a similar property to the one

mentioned in Proposition 5.6 for partitions of the plane must always hold, for d ≥ 3. It

is not necesary that the polytope is simple to have this parallel property. This is related

with the fact that if we construct a partition P(Q) of R3 by taking a 3-polytope Q and

constructing one unbounded edge from each vertex of Q and unbounded regions for each

facet, then P(Q) is always regular (as a consequence of Theorem 5.13).

We can improve our naive counting z by adding the number of bounded faces to it. They

represent the relationships among the coplanarity conditions. Then we get a new value

z′ = z + f3(PB) = z + f0(PD)− f0(∂PD). From the proof of Proposition 6.10 it is easy

to see that z′ ≤ 4n− 5 also holds for any generic partition of R3.

Conjecture 6.12. For d = 3, n ≥ 4, the dimension of the realization space of any

n-partition of R3 is at most 4n − 5, with equality if (but not only if) the partition is

simple.

It is possible that other restrictions other than the coplanarities can arise while describing

the vertices of a combinatorial type of partition. However in some interesting cases the

naive count gives the right answer, as we will see.

Let Q be a d-polytope with n facets (i. e. (d − 1)-faces) labeled from 1 to n. The face

fan of Q is an n-partition P(Q) of Rd in convex regions obtained by choosing a point

x in the interior of Q and with a region Pi that is the interior of the cone with apex x

over each of the facets Qi of Q. The combinatorial type of P(Q) is independent of the

choice of x.

Proposition 6.13. Let Q be a simple 3-polytope, with f2(Q) = n labeled facets. Then

the face fan P(Q) is an n-partition of R3 into convex pieces, such that CP(Q)(R3, n) has

dimension 4n− 5.

Proof. There are three degrees of freedom to choose the unique vertex x of the partition.

To select the directions of each of the rays from x we have always two dimensions, and

they are independent of each other, since there are no coplanarity restrictions to be

satisfied, but only inequalities saying that the regions are convex and disjoint and for

generic choices they do not affect the dimension. Then we get that the dimension is

3+2f0(Q). Since Q is simple, we know that 3f0(Q) = 2f1(Q). Using this, and the Euler

relationship f0(Q) − f1(Q) + n = 2 we find that f0 = 2f1(Q) − 2f0(Q) = 2n − 4 and

then dim CP(Q)(R3, n) = 4n− 5.
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Example 6.14. On Figure 6.6 is the sketch of a non-simple 5-partition of R3 that attain

the conjectured upper bound in the dimension of the realization space, coming from the

construction described in Proposition 6.13, in the case that Q is a triangular prism.

Figure 6.6: Non-simple 5-partition P with dim CP(R3, 5) = 4 · 5− 5 = 15.

There is a unique interior vertex x, six unbounded edges and nine interior 2-faces rep-

resented by the cone from x over each of the dashed segments lines. The dimension

of the realization space is 3 + 6 × 2 = 15, where we have three degrees of freedom to

choose x and two for each other vertex at infinity contained on each unbounded edge,

independent of each other. This is equal to the dimension of the realization space of

simple 5-partitions 4n− 5 = 15, but in this case P = P(Q) is not simple.

Not all partitions in this space CP(R3, n) are regular. The subspace of regular partitions

inside this realization space has codimension one, since an extra restriction is needed for

a partition in order to be regular, namely that the three “vertical” 2-faces (corresponding

to the blue edges) intersect in a line. This restriction can be visualized for example in

case we perturb such regular partition to get a simple partition with a small “vertical”

edge surrounded by three regions. This edge is the intersection of three planes containing

2-faces. Such perturbations can only be obtained for regular partitions, and since such

planes intersect in any small perturbation, they should also intersect for the original

regular partition as well.

If Q is not a simplex, then P(Q) is not a simple partition. Also if we allow Q to

be any 3-polytope, then we have the inequality 3f0(Q) ≤ 2f1(Q) that implies that

dim CP(Q)(R3, n) ≤ 4n− 5.

Although the face fans of polytopes are always regular partitions, most of the partition

with the combinatorial type of such face fans are non-regular. We know already that

inside the space of regular partitions, the simple ones have maximal dimension since

they are generic. On the other hand, for the non-simple combinatorial types of fans, the

regular partitions among them have dimension smaller than 4n − 5, and it means that

to reach dimension 4n− 5, as stated in Proposition 6.13, most of the partitions have to

be non-regular.
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All n-partitions obtained as a face fan of a simple 3-polytope are 2-simple and don’t

have bounded regions. We offer the following conjecture, based on the equality case of

the naive count inequality given in Proposition 6.10.

Conjecture 6.15. Let P be a generic n-partition in C(R3, n) that is 2-simple, without

parallel unbounded edges. Then the realization space of P has dimension 4n− 5.

Other examples of non-simple combinatorial types P with dim CP(R3, n) = 4n−5 can be

obtained by gluing some of the fans described before. Here is a partial result supporting

Conjecture 6.15.

Proposition 6.16. Let P be a generic n-partition of R3 that is 2-simple. If the bounded

complex PB is one-dimensional, then dim CP(R3, n) = 4n− 5.

Proof. By Proposition 6.9, PB is contractible. If PB is a point, then P = P(Q) for some

simple 3-polytope Q, and by Proposition 6.13 the result holds, since all combinatorial

2-spheres are polytopal. If not, then PB is a contractible graph, namely a tree. We

can find a vertex v of PB of degree one (a leaf in PB) that belongs to a unique edge

e ∈ PB. Locally, star(v,P) is also combinatorially equivalent to the face fan over a

simple 3-polytope. Call Pv to partition of R3 with a unique interior vertex, such that

the star at this vertex is as star(v,P), and P\v to the partition obtained from P when

v goes infinitely far away (in the direction of e) and becomes a vertex at infinity.

By induction, assume that dim CPv(R3, n) = 4n1 − 5 and dim CP\v(R3, n) = 4n2 − 5,

where n1 and n2 count the number of regions of Pv and P\v respectively. Notice that

n = n1 + n2 − 3. Since P is 2-simple, there are only three regions adjacent to the edge

containing v. These are the only regions counted in both complexes.

Now, to choose any partition in CP(R3, n), we can choose a partition in CP\v(R3, n) by

fixing 4n2−5 parameters. To fix the point v along e is needed only one parameter. Now

to choose all other edges through v, there are two degrees of freedom for each, except

for e that was already chosen, and for the three edges contained in the planes through e,

since those planes were fixed by the choice of CP\v(R3, n), and there is only one degree

of freedom left. If we compare with the degree count made in Proposition 6.13, we find

that from the 4n1 − 5 we are losing two degrees of freedom on choosing v, two in the

choice of e and three in the choice ofthe edges in the planes through e. We conclude

that dim CP(R3, n) = 4n2 − 5 + 4n1 − 5− 7 = 4(n1 + n2 − 3)− 5.





Chapter 7

Spaces of equipartitions

Let µ be a positive continuous bounded measure on Rd, as in Section 4.1. All measures

we consider are going to be that way. Here we introduce spaces of equipartitions where

all regions have the same measure. Spaces of equipartitions are of great interest for

partition problems such as the Nandakumar & Ramana Rao problem [25–27]. With a

better understanding of the spaces of equipartitions for small cases we explore further

examples of spaces of partitions, more precisely the cases d = 2 and n = 3.

Definition 7.1. Let µ be a positive continuous bounded measure on Rd. The space

of convex equipartitions Cequi(Rd, n, µ) is the subspace of C(Rd, n) of partitions P such

that all convex regions Pi in P have the same measure µ(Pi) = 1
nµ(Rd). We also denote

by Cequi
reg (Rd, n, µ) the subspace of Cequi(Rd, n, µ) of regular equipartitions.

We are interested to know whether Cequi(Rd, n, µ) is homotopy equivalent to Cequi
reg (Rd, n, µ).

7.1 Looking for fair partitions

The Nandakumar and Ramana Rao problem [25–27] ask for the existence of partitions

of a convex region into n convex pieces with equal area and equal perimeter. This has

led to many interesting results about equipartitions of measures (see for example [8],

[22], and [6]).

The approach of Karasev [22] for the Nandakumar & Ramana Rao problem relies on

the observation that if there was a counterexample to the conjecture for some n, then

this would imply the existence of equivariant maps

F(Rd, n) −→
Sn

Cequi
reg (Rd, n) −→

Sn

S(Wn),

79
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where Sn is the symmetric group of size n, F(Rd, n) denotes the space of n different

points in Rd, and S(Wn) is the set of points (y1, . . . , yn) ∈ Rn such that y1 + · · ·+yn = 0

and y2
1 + · · ·+ y2

n = 1.

The first map is a consequence of the theory of optimal transport and is obtained from

Theorem 5.5, by setting all mi = 1
nµ(Rd). The second map is given by the perimeter of

each region minus the average perimeter. If no fair partition exists, then such function

never goes through the origin, and we can normalize it to get a point in S(Wn) ∼= Sn−2.

To see if such a map can exist, different topological tools can be used. In particular,

Blagojević & Ziegler [6] proved the Nandakumar & Ramana Rao conjecture for prime

powers n. There it is described a cell complex structure for an equivariant strong

deformation retract of F(Rd, n). Since the resulting partitions of the map from F(Rd, n)

are always regular, we wanted to know if considering the whole space Cequi(Rd, n) and

not only the regular equipartitions could improve the results by this approach. The

following proposition explains why just considering regular equipartitions is as good as

considering all equipartitions for the existence of such equivariant maps.

Theorem 7.2. There are Sn-equivariant maps

F(Rd, n) −→
Sn

Cequi
reg (Rd, n) ↪−→

Sn

Cequi(Rd, n) −→
Sn

F(Rd, n).

Proof. Here the first map is the one obtained from Theorem 5.5 we just described above.

The second is inclusion. The third one is obtained by considering the centers of mass

of the convex regions with respect to a positive continuous bounded measure. Since the

regions are non-empty, these points are on the interior of each region and must be all

different. All these maps are equivariant, where the symmetric group acts by permuting

the regions or the corresponding points in the same way.

Thus the existence of a Sn-equivariant map from any of those spaces implies the exis-

tence of such map from all three spaces. Therefore the question about the existence of

a Sn-equivariant map

Cequi(Rd, n) −→
Sn

S(Wn),

is equivalent to the existence of a map on the restricted domain Cequi
reg (Rd, n). We still

don’t know if the maps given by Theorem 7.2 are homotopy equivalences. One par-

tial result in this direction is the following theorem, due to Bernardo Uribe (personal

communication).

Theorem 7.3 (B. Uribe). The composition of the three maps described in Theorem 7.2

is homotopy equivalent to the identity map on F(Rd, n).
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Proof. Let f : F(Rd, n) → F(Rd, n) be the composition of the functions described in

Theorem 7.2.We want to see that the map

ψ : F(Rd, n)× [0, 1]→ F(Rd, n)

given by ψ(x, t) = tx + (1 − t)f(x) that linearly interpolate between x and f(x) is a

homotopy between the identity in F(Rd, n) and the function f .

We only need to check that tx + (1 − t)f(x) is also a point in F(Rd, n). For x =

(x1, . . .xn) ∈ F(Rd, n) denote by y = (y1, . . . ,yn) = f(x). Then the coordinates of

tx + (1− t)f(x) are of the form txi + (1− t)yi for 1 ≤ i ≤ n and we have to check that

all those coordinates are different. For this we define vij = xi − xj for 1 ≤ i < j ≤ n.

Clearly vij · (xi − xj) = ‖vij‖2 > 0, since xi 6= xj , and then vij · xi > vij · xj .

Also vij · yi > vij · yj , since yi and yj are the barycenters of the corresponding regions

in the equipartition P obtained from the Voronoi map with the nodes given by x ∈
F(Rd, n). The regions Pi and Pj of this equipartition can be separated by a hyperplane

orthogonal to the vector vij , so that its corresponding barycenters are on different sides

of that hyperplane, and such that vij · yi > vij · yj .

Then, for any value of t ∈ [0, 1] and any pair 1 ≤ i < j ≤ n, it holds that txi+(1−t)yi 6=
txj + (1− t)yj since

vij · (txi + (1− t)yi) > vij · (txj + (1− t)yj).

Since all coordinates of tx+(1−t)f(x) are different, then tx+(1−t)f(x) ∈ F(Rd, n) and

ψ is a homotopy, showing that f is homotopy equivalent to the identity in F(Rd, n).

7.2 3-equipartitions of R2

We will present explicitly the example of the space of equipartition Cequi
reg (R2, 3, µ). This

will be useful later to analyze the spaces C(R2, 3) and C(R2,≤3) (see Propositions 7.6 and

7.7). The space Cequi(S2, 3, µ) of 3-equipartitions of the sphere S2 was already studied

by Bárány et al. in [8]. Since they looked at equipartitions of a 2-sphere by a fan, the

degeneracies in case that for example the partition is made by parallel lines are excluded.

However, there the topology of Cequi(S2, 3, µ) is not always the same and depends on

the measure µ. An example of this situation in a smaller dimension is presented next.

Proposition 7.4. The topology of the space Cequi(S1, 3, µ) depends on the choice of the

measure µ in S1,
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Proof. If the measure µ is equally distributed on S1, we get that Cequi(S1, 3, µ) is home-

omorphic to two copies S1 (one for each orientation of the labels of the regions), but if

the measure is concentrated in a small interval, the convexity requirement makes that

not any first choice of the starting point of the first region gives a convex equipartition

giving at the end two copies of the union of some intervals on the circle S1.

It is not clear yet if the topology of the space of equipartitions of Rd also depends on

the choice of the measure µ, for d ≥ 2. For d = 1 it always consists on n! points and

doesn’t depend on the measure. The next proposition shows another example where the

topology is independent of the measure.

Proposition 7.5. For any positive continuous bounded measure µ on R2, the space

Cequi(R2, 3, µ) is homeomorphic to S1 × T , where T is the 2-dimensional simplicial cell

complex obtained from two disjoint triangles by identifying corresponding vertices.

Proof. The labeled partitions of the plane into three convex regions are generically given

by three cones around a point. Therefore Cequi(R2, 3, µ) has two main components

depending the orientation. We will analyze first the space of equipartitions with a fixed

orientation (take P1, P2, P3 appearing clockwise in that order) and such that the ray

between the regions P1 and P3 has a constant direction given by a unit vector w. In

that case, we only need to fix the vertex v = F123 ∈ R2 to completely determine the

equipartition, since the other rays through v are given by the measure.

We only need to determine where can this point be, since not for every v in R2 we get

a convex equipartition. The first observation is that the point v has to be between two

parallel lines `1 and `2 in the direction of w that splits the measure in three equal parts.

Otherwise, if both of the regions P1 or P3 are convex, one of them would have measure

less than one third. On the other hand, if v is between `1 and `2, then P1 or P3 must

be convex, and in case v lie over one of the two lines, one of the regions will be a half

space, and the corresponding equipartition won’t be regular.

To see in which cases the region P2 is convex, we analyze the extreme case when it

is bounded by a straight line. Such line should split two thirds of the measure in the

direction of w. All those lines create a continuous family of lines going from `1 to `2.

On each of those lines ` there will be a unique point v such that the ray in direction

w through v makes an equipartition together with `. As the line ` moves, v goes in

a continuous path, as depicted in Figure 7.1. The main observation is that it will be

asymptotic to both `1 and `2, and the space of partitions with a fixed orientation and

direction w is homeomorphic to a triangle (without the vertices).
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3

2 1

w

2|3|1

3|1|2

3|2|1

Figure 7.1: Equipartitions of Cequi(R2, 3, µ) given a fixed direction w and an orientation,
together with the complex T .

One way to see that this is really a triangle is looking at the possible angles at v that

have to be positive, smaller than π and add up to 2π. For each selection of angles

there will be a unique equipartition (this is a consequence of Theorem 5.5 by fixing

the measures to one third of µ(R2)). The set of possible angles has two dimensions of

freedom and is a triangle (2-simplex) ∆2 bounded by three inequalities. The interior of

the boundary edges of these triangles correspond to non-regular partitions, since there

we get a π-angle.

There are three extreme equipartitions when the point v goes to infinity (i. e. to the

vertices of the triangle). The regions of these partitions are bounded precisely by the

lines `1 and `2. These partitions by parallel lines don’t have an orientation. If we

consider the opposite orientation and take −w as the basic direction instead of w, we

end up with exactly the same three equipartitions in the limit, and therefore both main

generic pieces corresponding to the two possible orientations are connected through

partitions by parallel lines. Notice that these partitions are still regular, despite the fact

that they are on the boundary of the generic types.

If we consider the two triangles corresponding to the equipartitions with opposite ori-

entation and opposite direction (w and −w), we see that the vertices correspond to the

same equipartitions by parallel lines. Gluing the corresponding vertices we obtain a

graph homotopy equivalent to the complex T , depicted at the right of Figure 7.1. Now,

as we rotate w around each possible direction in S1 we get all possible equipartitions by

this construction (both regular and non-regular as the boundary case), and we conclude

that both spaces Cequi(R2, 3, µ) and Cequi
reg (R2, 3, µ) are homotopy equivalent to S1 × T ,

independently of the choice of µ.
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7.3 More examples

The space C(R2, 3) can be parameterized in a similar way as we did with the space

Cequi(R2, 3, µ) in Proposition 7.5, after fixing a measure µ. First consider C(R2, 3) up

to rotations, by fixing the direction of the ray w between regions P3 and P1. Then

parameterize both simple combinatorial types (corresponding to the clockwise and an-

ticlockwise orientations), this time by choosing the angles at the interior vertex and the

measures of each of the regions. The set of possible angles is parameterized by a 2-

simplex, where the edges represent the angles of non-regular partitions and the vertices

represent partitions by two parallel lines. The possible measures (µ(P1), µ(P2), µ(P3))

are also parameterized by a 2-simplex, where this time the boundary is not allowed,

since it corresponds to partitions with regions of measure zero. (We have to include this

boundary to get as well non-proper partitions. This will be done later when we study

C(Rd,≤3).)

Then the set of generic 3-partitions with a fixed orientation, up to rotations, can be

parameterized by the interior of the product of two triangles ∆2 × ∆2. This is a 4-

dimensional polytope and in Figure 7.2 we depict its boundary as a Schlegel diagram.

For more information about Schlegel diagrams, see [36].

× =

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

(π, π, 0)

(π, 0, π)

(0, π, π)

Figure 7.2: Schlegel diagram of the boundary of partitions in C(R2, 3) with a fixed orien-
tation, up to rotations.

The 2-simplex parameterizing the measures appears there in red color, while the black

triangle parameterizes the possible angles. Notice that some of the faces on the boundary

of this polytope correspond to other combinatorial types of 3-partitions. Those faces

correspond to the product of the interior of the red simplex with the boundary of the

black simplex. In the Schlegel diagram, these are namely the interior of the three red

triangles (corresponding to partitions by two parallel lines in the direction of w) and the

interior of the three prisms with the red triangles as bases (corresponding to non-regular

partitions with one π-angle). All other faces are not included here (but will have a

meaning later; see Figure 7.3 for more information).
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For the anticlockwise orientation we get a similar description. Again we can glue both

pieces, this time on three open triangles (shaded in red on Figure 7.2) and take the

product with S1 to finally obtain the space C(R2, 3).

The space C(R2, 3) can be obtained by gluing both cells by the subset in its boundary

corresponding to partitions by two parallel lines (that is made out of the interior of three

triangles, depicted in red in Figure 7.2).

Proposition 7.6. The spaces C(R2, 3) and Creg(R2, 3) are homotopy equivalent. Also

the spaces of equipartitions Cequi(R2, 3, µ) and Cequi
reg (R2, 3, µ) are homotopy equivalent to

the C(R2, 3) for any continuous bounded measure µ.

Proof. Fix a continuous bounded measure µ. To prove that C(R2, 3) is homotopy equiv-

alent to Cequi(R2, 3, µ), we can see that the only difference between these two spaces is

given by the measures, and C(R2, 3) is homeomorphic to the product of Cequi(R2, 3, µ)

with the interior of a 2-simplex ∆2 that parameterizes the measures of the three dif-

ferent regions. The homotopy is given by contracting this simplex to a point. Since

Cequi(R2, 3, µ) is a subset of C(R2, 3), then this contraction will be extended to a con-

traction of C(R2, 3) to its subset of equipartitions. Similarly, the space Creg(R2, 3) can

also be contracted to Cequi
reg (R2, 3, µ).

To see that the spaces Cequi(R2, 3, µ) and Cequi
reg (R2, 3, µ) are homotopy equivalent, notice

that the space T described in 7.5 can be contracted to a complex T ′ with two vertices

and three edges between them and this contraction brings also the regular part (that is

made out of all points of T except those on the interior of the edges) to T ′. Therefore

both spaces Cequi(R2, 3, µ) and Cequi
reg (R2, 3, µ) can be contracted to T ′ × S1.

Using these ideas we will now describe C(R2,≤ 3) as a cell complex. Here we need to

analyze further all other faces on the boundary of the simple cells described in Figure

7.2. When we approach the boundary at different points, we might end up on the same

partition, and therefore some faces of the product of simplices ∆2 × ∆2 have to be

contracted in order to get the right cell complex around the simple combinatorial types.

In Figure 7.3 we show this situation, still based on the Schlegel diagram from Figure

7.2.

The three black triangles represent the partitions with only one non-empty region, and

therefore have to be contracted to a point. Also the prism on the back, depicted in yellow

(with black triangular bases corresponding to the non-proper partitions with regions one

and three equals Rd respectively) need to be contracted to the edge labeled as “1|3” on

the face poset.
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In general, labels in the face poset are direct drawings of how the partition looks like.

The only convention is that vertical lines cannot be rotated (representing the choice of

w going “down”) while lines in other directions can be rotated freely, until reaching a

vertical direction or the direction of another edge. Rounded cells are those that belong

simultaneously to the boundary of both simple combinatorial types.

2

1 3
:

1 2 3

2|1 1|2 1|3 2|3 3|2

2/1 2|1|3 1|2|3 1|3|2 2/3

2
1 3 2

1 3
1 2

3

Figure 7.3: Sketch of the boundary of the clockwise cell of C(R2,≤3), based on the Schlegel
diagram on Figure 7.2. Its face poset is shown at the right. Rounded faces on the poset

have to be glued with the anticlockwise cell.

Other faces that need to be contracted are the 2-faces colored in blue. For example,

the one at the lower left will represent the edge labeled as “1|2” (where each vertical

stripe have to be contracted to a point). Similarly, the prism on the left (containing

this blue 2-face in the Schlegel diagram) have to be contracted to a 2-face bounded by

the new edge “1|2” (the blue 2-face) and the other edge joining the two black triangles,

labeled as “2|1” (this edge doesn’t have to be confused with “1|2”). The new two face in

between is labeled as “2/1”. An analogous description can be made for the other blue

face, that contracts to the edge “2|3”.

1 2 3

2|1 1|2 1|3 2|3 3|2

1/2 2/1 2|1|3 1|2|3 1|3|2 2/3 3/2

2
1 3 1

2 3 2
1 3 2

1 3 1 2
3

1 3
2

2
1 3 2

1 3

Figure 7.4: Face poset of C(R2,≤ 3) up to rotations of H13, obtained by glueing the
two cells, whose boundary is described on Figure 7.3. Rounded cells are fixed under the

rotations.

For the cell with anticlockwise orientation, we can obtain a similar poset. We can get

the labels by “reflecting” vertically those on Figure 7.3. If we glue the two cells through

the faces that represent partitions that belong to the boundary of both (rounded faces

on the face poset of Figure 7.3), we obtain the face poset of Figure 7.4. This represent
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all 3-partitions, up to rotations of the direction of the face F13 (given by the vector w

in the clockwise cell).

To get a complete cell decomposition for C(R2,≤ 3) we only need to take the rotation

of the complex described by 7.4, where the rounded cells are fixed under the rotation,

while all other cells are replaced by four new cells, as we take the product with the cell

decomposition of S1 by to 1-cells and two 0-cells to get the face poset of Figure 7.5.

Proposition 7.7. The space C(R2,≤ 3) is a homeomorphic to a 5-dimensional regular

cell complex, with face poset as in Figure 7.5.
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Figure 7.5: Face poset of C(R2,≤3).



Chapter 8

Further questions

Question 8.1. How can we give C(Rd,≤n) a nice cell complex structure? (At least for

d = 2?)

For d = 1 we already described such cell complex structure (Proposition 4.49) and

for n ≤ 2 we know that the space C(Rd,≤ 2) is a d-sphere (Proposition 4.48), but

already in this case it is not clear how to get a cell decomposition in a canonical way.

The combinatorial types give a decomposition into semialgebraic pieces, but they are

not homeomorphic to balls in general. Nevertheless, it is required for a cell complex

decomposition to respect and refine the combinatorial types.

For d = 3, the universality result given in Theorem 5.17 suggests that the combinatorial

types might be still far to provide a cell decomposition directly. It is still open if there

is also a universality result for the general realization spaces, since Theorem 5.17 only

talks about the regular partitions of a given combinatorial type, up to affine equivalence.

For d = 2, the following conjecture might help to find a nice cell complex for C(R2,≤n).

Conjecture 8.2. The realization space CP(R2, n) of a generic partition P ∈ C(R2,≤n),

up to rotations, is contractible.

See Definition 5.7 for the meaning of generic partitions. To prove Conjecture 8.2, we

suggest to use a similar argument to the one in [28, Theorem 12.2.2] that is used to prove

that realization spaces of 3-polytopes are contractible, based in a physical principle of

“rubber bands”. This is also used in one of the proofs of Steinitz Theorem (see [36,

Chapter 4] for more details). If an analogous result of that theorem also holds in a

spherical setup, then from any planar graph on the upper hemisphere S
d
+ such that it is

2-connected and the boundary vertices are fixed on the boundary of S
d
+, we can obtain
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a unique planar embedding by minimizing an energy functional on the length of the

edges. It is needed that this functional is convex and have a unique minimum on the

spherical setting (see [17] where similar considerations on spherical graphs are studied).

If this minimization can be done continuously following a gradient of the energy, we can

conclude that the possible embeddings of the graph can be contracted. This can also be

seen as an application of Morse theory. Also, embeddings where the regions are convex

are likely to preserve convexity under the process, as they do in the euclidean case. For

higher dimensions we have the universality results (Theorem 5.17) that tell us that this

is not likely to happen for n-partitions of Rd for d ≥ 3.

Question 8.3. How can we realize C(Rd, n) as a semialgebraic set?

In theorems 4.14 and 4.47 it is established that the spaces of n-partitions are unions

of pieces that can be described as semialgebraic sets. But those pieces are still living

in different spaces and to glue them it is necessary to use the topological structure on

the space. It is desired to have a global semialgebraic realization of the whole space

C(Rd, n), or even better of the space C(Rd,≤n). We wanted to obtain such realization

from the hyperplane description, but as we found Proposition 4.17, it is not possible

to get that immediately inside the space of hyperplane arrangements H(Rd, n) from

preimages under the map π.

Question 8.4. What is the dimension of C(Rd, n) for d ≥ 3 and n ≥ 3? Which

combinatorial types attain this maximal dimension?

In Conjecture 6.12 we suggest that simple partitions have the maximal dimension, while

in Conjecture 6.15 we describe the combinatorial types of partitions that possibly attain

this upper bound. Proposition 6.16 shows a big family of partitions where this upper

bound is attained, together with simple partitions. It is not hard to construct some

more examples.We would like to know if there are other combinatorial types with real-

ization space of dimension 4n− 5 or even higher. Also we would like to know for which

combinatorial types the improved naive count give the right dimension for its realization

space.

Question 8.5. Are 2-simple partitions dense in C(R3, n)?

As we already mentioned, there are other combinatorial types in C(R3, n) that attain

the maximal conjectured dimension, other than the regular case of simple and generic

partitions. It is enough that the partitions are 2-simple and generic in order to attain

this upper bound?

Question 8.6. Is the subspace Creg(Rd, n) homotopy equivalent to C(Rd, n)?
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For n ≤ 2, these spaces coincide, since in those cases all partitions are regular. For

n = 3, there are some non-regular partitions, namely those that have a π-angle. These

are at the boundary of C(Rd, 3), and can be retracted to the interior, at least in the case

of d = 2 (as discussed in Proposition 7.6).

Question 8.7. Is Cequi
reg (Rd, n, µ) homotopy equivalent to Cequi(Rd, n, µ)?

Indeed, it would be very interesting to know whether the maps

F(Rd, n) −→
Sn

Cequi
reg (Rd, n) ↪−→

Sn

Cequi(Rd, n) −→
Sn

F(Rd, n).

indicated in Theorem 7.2 are homotopy equivalences.

Since the Voronoi map is a map with contractible fibers, the first map should be a

homotopy equivalence.

Question 8.8. Is the topology of the space Cequi(Rd, n, µ) independent of µ?

As suggested by proposition 7.4, it is likely that for Rd the topology of spaces of equipar-

titions do depend on the measure. But in the smaller dimensional examples we can check

up to now, the topology is independent on the choice of µ. See for example Proposition

7.5 where the topology of the space of equipartitions doesn’t depend on µ. See also

Conjecture 8.10. Maybe there is something essentially different between equipartitions

of Sd and equipartitions of Rd.

Question 8.9. Is the subspace of equipartitions Cequi(Rd, n, µ) homotopy equivalent to

C(Rd, n) (at least for some measure µ)?

We offer the following conjecture in relation with this question.

Conjecture 8.10. The spaces Cequi(R2, 4, µ) and Cequi
reg (R2, 4, µ) are homotopy equiva-

lent, independently of the measure µ.

The space Cequi(R2, 4, µ) has two simple combinatorial types (up to permuting the la-

bels): one having a bounded cell as in Figure 5.1 and one without bounded cells. For the

case of combinatorial types with one bounded cell, the dimension is six, but the subset

of regular partitions there has codimension one. The realization space for the combina-

torial types without bounded cells has dimension 5 and there all partitions are regular.

First we will construct a homotopy equivalence between the space Cequi(R2, 4, µ) to the

closure of Cequi
reg (R2, 4, µ) in Cequi(R2, 4, µ).

Let ∆ be a triangle in R2 with µ(∆) = 1
4µ(R2). The set Cequi

∆ (R2, 4, µ) consists of all

equipartitions in Cequi(R2, 4, µ) that have ∆ as bounded cell. They make a one-parameter
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family of equipartitions, since choosing the direction of one unbounded edge fixes all the

rest. The convexity conditions give six boundary inequalities to this set, but only two of

them will be relevant, and therefore Cequi
∆ (R2, 4, µ) will be an interval, a point or empty.

In case Cequi
∆ (R2, 4, µ) is an interval, there is a unique equipartitions there that is regular,

that is precisely when the three unbounded edges intersect. It is easy to imagine how

to contract this interval to this unique regular partition, since the direction of rotation

of the unbounded edges is unique in order to make them intersect. If Cequi
∆ (R2, 4, µ) is

a point, this partition will be typically non-regular, but it can be obtained as a limit of

regular partitions (notice that the three unbounded edges intersect, see Figure 8.1). We

don’t care about the empty case.

Figure 8.1: Non-regular partitions on the boundary of Cequi
∆ (R2, 4, µ).

As ∆ varies, we can make this retraction into a homotopy equivalence between Cequi(R2, 4, µ)

and the closure of Cequi
reg (R2, 4, µ). Now it only remain to be checked that the homotopy

type of Cequi
reg (R2, 4, µ) doesn’t change by taking the closure, but only adds a boundary

that can be retracted to the interior. We don’t know if we can retract C(Rd, n) to the

subspace of partitions without π-angles, at least for d = 2.

Question 8.11. What is the topological structure of the space of “unlabeled” n-partitions

(where we don’t take into account the order of the regions)?

This is also a natural object to study. We decided to work with labeled partitions

because it is easier to compare and parameterize them, and once understood the labeled

partitions, it seems reasonable to get the unlabeled space by modding out the symmetry.

Since many of the constructions we considered here depend on the labels, as for example

the metric and topological structure, we won’t say much here about this question, but the

investigation of the unlabeled configuration space F(Rd, n)/Sn is also very interesting,

and has been studied extensively since the famous 1969 work of Arnol’d [1], who used

it to compute the cohomology of the coloured braid group. The spaces F(Rd, n) and

F(Rd, n)/Sn are of interest for cohomology computations as they have contractible

covers, and thus the cohomology of the spaces is the cohomology of their fundamental

groups.



Appendix A

Summaries

A.1 English Summary

We look at the space C(Rd, n) of all partitions of Rd into n convex regions for d and n

positive integers. Here we introduce some basic concepts and definitions about them,

investigate their general properties and look at some examples and related spaces.

We begin with some basic notions and results of convex geometry that we need, as

polyhedra, cones, spherical polyhedra, hyperplane arrangements and CW-complexes.

In Chapter 3 we introduce convex n-partitions and we prove that all the regions of a

partition must be polyhedral. Then we define some related notions, such as spherical

partitions and the face structure, and prove some basic facts about them.

In Chapter 4 we look at the space C(Rd, n) of all convex n-partitions of Rd, describing

the metric structure there that fixes the topology of the space and also a natural com-

pactification C(Rd,≤n) where empty regions are allowed. Then we prove that spaces of

n-partitions are union of semialgebraic pieces in two different ways. We look at hyper-

plane arrangements carrying an n-partition, and give a description of C(Rd, n) where the

pieces depend on the hyperplanes used to obtain the partition (Theorem 4.14). For the

second description we need to introduce nodes and node systems that are a generalization

of the vertices, and define the combinatorial type of a partition. These combinatorial

types give the semialgebraic pieces that build the spaces (See Theorem 4.47). At the

end of the chapter we describe explicitly particular spaces of n-partitions of Rd and their

compactifications for n = 2 and also for d = 1.

In Chapter 5 we talk about regular partitions and mention some known results about

them. Using these results we compute the dimension of the space of regular partitions

Creg(Rd, n). Then we prove a universality theorem that says that realization spaces

of regular partitions can be stably equivalent to any primary basic semialgebraic set

(Theorem 5.17).
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In Chapter 6 we investigate the dimensions of realization spaces. We first study the

case d = 2 and find that for large n the dimension of C(R2, n) is much bigger than

dim(Creg(R2, n)). Then we focus on the case d = 3, where we conjecture that the

dimension of C(R3, n) is equal to the dimension of Creg(R3, n) and try to justify this with

a heuristic counting for the dimension of each realization space. From this counting we

find an incidence theorem for 3-polytopes (Theorem 6.11) and find many examples of

partitions where this counting works.

In Chapter 7 we introduce the spaces of equipartitions Cequi(Rd, n, µ) given a positive

bounded measure µ. We explore the topological structure of some small cases of spaces of

equipartitions and using this, we describe the spaces of n-partitions for d = 2 and n = 3.

We also discuss the Nandakumar and Ramana Rao problem [25] and different equivariant

maps that show that considering regular equipartitions is as good as considering all

equipartitions with respect to the approach based on configuration spaces to find fair

partitions.
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A.2 Zusammenfassung auf Deutsch

Wir betrachten den Raum C(Rd, n) aller Aufteilungen von Rd in n konvexe Gebiete

für positive d und n. Dafür entwickeln wir grundlegende Konzepte und Definitionen,

untersuchen allgemeine Eigenschaften und betrachten verwandte Räume sowie Beispiele.

Zunächst entwickeln wir dafür die benötigten Konzepte der Konvexgeometrie. In Kapi-

tel 3 definieren wir konvexe n-Aufteilungen und zeigen, dass die Teile immer Polyeder

sind. Dann definieren wir sphärische Aufteilungen und Seitenhalbordnungen und leiten

grundlegende Strukturergebnisse ab.

Kapitel 4 beschäftigt sich mit dem Raum C(Rd, n) aller konvexen n-Aufteilungen des Rd.
Wir beschreiben eine Metrik und damit eine Topologie auf diesem Raum, sowie eine

natürliche Kompaktifizierung C(Rd,≤ n), für die auch leere Teile erlaubt sind. Wir

stellen den Raum der n-Aufteilungen dann auf zwei Weisen als eine Vereinigung von

semialgebraischen Teilmengen dar: Wir betrachten Hyperebenenarrangements, die Auf-

teilungen induzieren, und beschreiben C(Rd, n) so in Abhängikeit von den Hyperebenen,

die die Aufteilung erzeugen (Theorem 4.14). Für die zweite Beschreibung führen wir

Knoten und Knotensysteme ein, die Eckenmengen verallgemeinern, und definieren den

kombinatorischen Typ einer Aufteilung. Diese kombinatorischen Typen ergeben semi-

algebraische Teile, aus denen die Räume aufgebaut sind (Theorem 4.47). Am Ende des

Kapitels beschreiben wir wir explizit die Räume der n-Aufteilungen von Rd und ihre

Kompaktifizierungen für n = 2 und für d = 1.

In Kapitel 5 diskutieren wir reguläre Aufteilungen. Wir berechnen die Dimension

des Raums der regulären Aufteilungen Creg(Rd, n). Dann beweisen wir einen Univer-

salitätssatz, wonach die Realiserungsräume regulärer Partitionen zu beliebigen primären

basischen semialgebraischen Mengen stabil äquivalent sein können (Theorem 5.17).

In Kapitel 6 untersuchen wir die Dimension von Realisierungsräumen. Im Fall d = 2 ist

die Dimension von C(R2, n) für große n viel größer als dim(Creg(R2, n)). Dann konzentri-

eren wir uns auf den Fall d = 3, wo wir vermuten, dass die Dimension von C(R3, n) mit

der Dimension von Creg(R3, n) übereinstimmt, und versuchen das mit einer Heuristik

für die Zahl der Freiheitsgrade und damit der Dimensionen der Realisierungsräume zu

untermauern.

In Kapitel 7 führen wir die Räume von Äquipartitionen Cequi(Rd, n, µ) für beschränkte

positive Maße µ ein. Wir untersuchen die topologische Struktur für einige kleine Fälle

und beschreiben, darauf aufbauend, die Räume der n-Äquipartitionen für d = 2 und

n = 3. Wir diskutieren auch das Problem von Nandakumar und Ramana Rao über

“faire Aufteilungen von Polygonen” [25] und verschiedene äquivariante Abbildungen,

die zeigen, dass es für dieses Problem ausreicht, reguläre Äquipartitionen zu betrachten.
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A.3 Resumen en español

En este trabajo estudiamos el espacio C(Rd, n) de todas las particiones de Rd en n

regiones convexas para d y n enteros positivos. Aqúı presentamos algunos conceptos

básicos y definiciones sobre estos espacios, investigamos sus propiedades generales y

damos un vistazo a algunos ejemplos y espacios relacionados. Comenzamos con algunas

nociones básicas y resultados en geometŕıa convexa. Luego en el caṕıtulo 3 se introducen

las n-particiones convexas y se demuestra que todas las regiones de una partición deben

ser poliedros. Luego definimos algunos conceptos relacionados como particiones esféricas

y caras y demostramos algunos resultados básicos sobre ellos.

En el caṕıtulo 4 nos fijamos en el espacio C(Rd, n) de todas las n-particiones convexas

de Rd. Describimos una estructura métrica que fija la topoloǵıa del espacio y también

una compactificación natural C(Rd,≤n) donde es posible tener regiones vaćıas. Luego

probamos que los espacios de n-particiones son la unión de piezas semialgebraicas de

dos maneras diferentes. Nos fijamos en los arreglos de hiperplanos que cargan una

n-partición, y damos una descripción de C(Rd, n) donde las piezas dependen de los

hiperplanos utilizados (Teorema 4.14). Para la segunda descripción se introducen nodos

y sistemas de nodos, que son una generalización de los vértices y son útiles para definir

el tipo combinatorio de una partición. Estos tipos combinatorios generan los espacios de

realizaciones, que son las piezas semialgebraicas que se usan para construir los espacios

de particiones (Ver Teorema 4.47). Al final del caṕıtulo se describen como ejemplo los

espacios de n-particiones de Rd y sus compactificaciones para n = 2 y para d = 1.

En el caṕıtulo 5 se introducen las particiones regulares y algunos resultados conocidos

sobre ellas. Utilizando estos resultados se calcula la dimensión del espacio de particiones

regulares Creg(Rd, n). Luego se demuestra un teorema de universalidad que dice que los

espacios de realización de particiones regulares pueden ser establemente equivalente a

cualquier conjunto semialgebraico básico primario (Teorema 5.17).

En el caṕıtulo 6 se investigan las dimensiones de los espacios de realización. En primer

lugar, se estudia el caso d = 2 en donde para n suficientemente grande la dimensión de

C(R2, n) es mucho más grande que dim(Creg(R2, n)). Luego nos centramos en el caso

d = 3, donde conjeturamos que la dimensión de C(R3, n) es igual a la dimensión de

Creg(R3, n). Se intenta justificar esto con un conteo heuŕıstico para la dimensión de

cada espacio de realización, el cual nos genera un Teorema de incidencia en 3-politopos

(Teorema 6.11). También encontramos varios ejemplos de particiones donde el conteo

funciona.

En el caṕıtulo 7 se introducen los espacios de equiparticiones Cequi(Rd, n, µ) dada una

medida positiva y acotada µ. También exploramos la estructura topológica de algunos
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pequeños casos de espacios de equiparticiones y esto se usa para describir los espacios de

n-particiones para d = 2 y n = 3. Discutimos el problema Nandakumar y Ramana Rao

[25] y diferentes mapas equivariantes que muestran que considerar equiparticiones reg-

ulares es equivalente a considerar todas las equiparticiones para encontrar “particiones

justas” con respecto al enfoque basado en los espacios de configuración.
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