Appendix

Scatchard analysis

For the reaction: \quad Cell $+\mathrm{Ab} \Leftrightarrow \mathrm{Ab}$-Cell
$\mathrm{K}_{\mathrm{a}}=[\mathrm{Ab}-\mathrm{Cell}] /([\mathrm{Ab}][\mathrm{Cell}])$

Or
$[\mathrm{Ab}-\mathrm{Cell}] /[\mathrm{Ab}]=\mathrm{K}_{\mathrm{a}}[\mathrm{Cell}]$
in addition:
$[\mathrm{Cell}]_{\text {total }}=[\mathrm{Cell}]+[\mathrm{Ab}-\mathrm{Cell}]$
So
$[\mathrm{Ab}-\mathrm{Cell}] /[\mathrm{Ab}]=\mathrm{K}_{\mathrm{a}}[\mathrm{Cell}]_{\text {total }}-\mathrm{K}_{\mathrm{a}}[\mathrm{Ab}-\mathrm{Cell}]$
If this is differentiated as a function of [Ab-Cell]:
$[\mathrm{Ab}-\mathrm{Celll}] /[\mathrm{Ab}]^{\prime}([\mathrm{Ab}-\mathrm{Cell}])=-\mathrm{K}_{\mathrm{a}}$
Because the volume and the amount of cells are constant
Furthermore, the extrapolation of the curve to $[\mathrm{Ab}-\mathrm{Cell}] /[\mathrm{Ab}]=0$ gives a value for the amount of bindingsites.

Dissociation

Reaction: $\quad \mathrm{Ab}_{\text {bound }} \rightarrow \mathrm{Ab}_{\text {Free }} \quad$ (first order kinitics)
$\mathrm{d}\left[\mathrm{Ab}_{\text {bound }}\right] / \mathrm{dt}=-\mathrm{k}\left[\mathrm{Ab}_{\text {bound }}\right]$
$\mathrm{d}\left[\mathrm{Ab}_{\text {bound }}\right] /[\mathrm{A}]=-\mathrm{k}$ dt
Integration gives:
$\ln \left(\left[\mathrm{Ab}_{\text {bound }}\right]_{0} /\left[\mathrm{Ab}_{\text {bound }}\right]=\mathrm{kt}\right.$
Half-life is calculated from
$\ln (1 /\{1 / 2\})=\mathrm{kt}_{1 / 2}$
$\mathrm{t}_{1 / 2}=\ln (2) / \mathrm{k}=0.693 / \mathrm{k}$

Lindmo

Reaction: \quad Cell $+\mathrm{Ab} \Leftrightarrow \mathrm{Ab}$-Cell
$\mathrm{K}_{\mathrm{a}}=[\mathrm{Ab}-\mathrm{Cell}] /([\mathrm{Ab}][\mathrm{Cell}])$
$\left[\mathrm{Ab}_{\text {Total }}\right]=[\mathrm{Ab}]+[\mathrm{Ab}-\mathrm{Cell}]$
so...
$\mathrm{Ka}=[\mathrm{Ab}-\mathrm{Cell}] /\left\{\left(\left[\mathrm{Ab}_{\text {Total }}\right]-[\mathrm{Ab}-\mathrm{Cell}]\right)[\mathrm{Cell}]\right\}$
With $\mathrm{r}:=$ Active fraction
$\mathrm{Ka}=[\mathrm{Ab}-\mathrm{Cell}] /\left\{\left(\mathrm{r}\left[\mathrm{Ab}_{\text {Total }}\right]-[\mathrm{Ab}-\mathrm{Cell}]\right)[\mathrm{Cell}]\right\}$
Or
$\mathrm{Ka}[\mathrm{Cell}]\left(\mathrm{r}\left[\mathrm{Ab}_{\text {Total }}\right]-[\mathrm{Ab}-\mathrm{Cell}]\right)=[\mathrm{Ab}-\mathrm{Cell}]$
Or
$\mathrm{Ka}[\mathrm{Cell}] \mathrm{r}\left[\mathrm{Ab}_{\text {Total }}\right] /[\mathrm{Ab}-\mathrm{Cell}]-\mathrm{ka}[\mathrm{Cell}]=1$
Or
$\left[\mathrm{Ab}_{\text {Total }}\right] /[\mathrm{Ab}-\mathrm{Cell}]=1 / \mathrm{r}+1 /(\mathrm{ka}[\mathrm{Cell}] \mathrm{r})$

Thus plotting the left side of the equation against the inverse cell concentration should yield a straight trendline, and the interception with the ordinate equals $1 / \mathrm{r}$, whereby the immunoreactive fraction can be found.

