Anhang A: CERES Point Spread Function

Eine vollständige Diskussion des analytischen Modells der PSF und ihrer Entwicklung ist vom Smith (1994) gegeben. Hier wird speziell für das FM-1 Instrument die benutzte Bessel-Funktion beschrieben. In Abbildung A.1 ist ein halbes Sichtfeld dargestellt. Das Sichtfeld ist ein rhombusähnliches Hexagon.

δ' ist der *along-scan* Winkel und β der *cross-scan* Winkel. Mit den Definitionen aus der Abbildung ist die CERES PSF wie folgt geschrieben.

$$P(\delta', \beta) = \begin{cases} 0 & |\beta| > 2a \\ 0 & \delta' < \delta'_f(\beta) \\ F[\delta' - \delta'_f(\beta)] & \delta'_f(\beta) \le \delta' < \delta'_b(\beta) \\ F[\delta' - \delta'_f(\beta)] - F([\delta' - \delta'_b(\beta)]) & \text{sonst} \end{cases}$$

mit

$$F = 1 - (1 + a_1 + a_2)e^{-\eta t} + e^{\mu_1 t} [a_1 \cos(\omega_1 t) + b_1 \sin(\omega_1 t)] + e^{\mu_2 t} [a_2 \cos(\omega_2 t) + b_2 \sin(\omega_2 t)]$$

die Dektor Zeitkonstante für FM-1 τ =0.00825

Scan rate $\dot{\alpha} = 63.0 \text{deg/s}$

Die komplexe Wurzel der Bessel-Funktion ist gegeben mit:

der Rest der Bessel-Funktion ist:

 $\begin{array}{ll} u_1 \ = \ 1, \ 66339 - 8, \ 39628 i \\ u_2 \ = \ -1, \ 66339 + 2, \ 24408 i \end{array}$

mit $t = \frac{2\pi f_c}{\dot{\alpha}} (\delta' - \delta'_{f,b}(\beta))$, $\eta = \frac{1}{2\pi f_c \tau}$

Die Komplexen-Variablen sind $p_{1,2}$; $v_{1,2}$; $u_{1,2}$ und definieren $a_{1,2}$ und $b_{1,2}$:

$$p = \frac{u}{\eta + v}, \quad a = 2\eta Re\left(\frac{p}{v}\right), \quad b = -2\eta\eta Imag\left(\frac{p}{v}\right).$$

Anhang B: Bodenwetterkarte

Abb. B.1: Bodenwetterkarte vom 29. Mai 2001 (aus Berliner Wetterkarte)

Abb. B.2: Bodenwetterkarte vom 8. September 2001 (aus Berliner Wetterkarte)

Abbildungsverzeichnis

Abb. 1.1:	Strahlungsbilanz: Abbildung nach Lozan (1998) 3
Abb. 1.2:	Änderung des Strahlungsantriebs der Wolken am Oberrand der Atmosphäre (CRF, Cloud Radiativ Forcing) verbunden mit einer CO2-Verdopplung. aus dem IPCC (2001)
Abb. 2.1:	Solare Einstrahlung am Oberrand der Atmosphäre und der aufwärtsgerichte- ter Strahlungsfluss am Oberrand der Atmosphäre aus Strahlungstransportsi- mulationen, in der nur Gasabsorption berücksichtigt wurde
Abb. 2.2:	Inhärente optische Eigenschaften. Links: Spektrale Extinktionskoeffizienten normiert auf 550 nm. Rechts: Spektrale Einfachstreualbedo
Abb. 2.3:	Streufunktion bei 550nm. gestrichelte Linie: kontinentales Aerosol; Strich- punkt Linie: Eiswolke; durchgezogene Linie: Wasserwolke
Abb. 2.4:	Solare Einstrahlung am Oberrand der Atmosphäre und die Globalstrahlung an der Erdoberfläche für eine bewölkte und wolkenfreie Atmosphäre 17
Abb. 2.5:	Spektrale Reflektivität von Oberflächen aus ASTER-Datenbank (1999) . 18
Abb. 2.6:	Spektrale Positionen der in dieser Arbeit verwendeten MODIS-Kanäle (graue Bänder)
Abb. 3.1:	Beobachtungsgeometrie des Sonne-Erde-Satellit Systems 22
Abb. 3.2:	Berechneter rückgestreuter Strahlungsfluss [W/m ²] bei einem Sonnenzenit- winkel von 35°. obere Reihe: für Wasserwolken; untere Reihe: für Eiswolken; linke Spalte abhängig von der Bodenreflexion und der optischen Dicke; rechte Spalte: abhängig vom Effektivradius oder Durchmesser der Eiskristal- le und der optischen Dicke
Abb. 3.3:	Ablaufdiagramm des Simulations- und Inversionsverfahrens 25
Abb. 3.4:	Einteilung des Sonnenspektrums in 200 schmale Bänder (graue Linien). rote Kurve: Verteilungskurve der absorbierten und gestreuten Strahlung . 26
Abb. 3.5:	Schema der benutzten variablen Größen für die Strahlungstransportsimulati- on
Abb. 3.6:	Struktur des verwendeten künstlichen Neuronalen Netzes zur Ableitung des Strahlungsflusses (F)
Abb. 3.7:	Relativer Fehler der Gesamtvarianz zur Stichprobenvarianz

Abb. 3.8:	Genauigkeit der Inversion dargestellt durch RMSE (links) und den BIAS (rechts) für die Ableitung der Albedo [%] als eine Funktion des Beobach- tungswinkels und des Sonnenzenitwinkels
Abb. 3.9:	850 hPa Wetterkarte vom 13.09.2001 (aus Berliner Wetterkarte)
Abb. 3.10:	MODIS Szene vom 13.09.2001. Links: Farbkomposit-Bild mit den MODIS Messungen der Strahldichten aus Band 1, Band 3 und Band 4; Rechts: Abge- leiteter Strahlungsfluss am Oberrand der Atmosphäre
Abb. 3.11:	FUB-Wolkenmaske (links) und MOD35-Wolkenmaske (rechts) für den07.02.2002
Abb. 4.1:	Schematische Darstellung der cross-track und along-track Abtastung von CE- RES (ATBD)
Abb. 4.2:	Schema eines Blickfeldes von CERES mit angedeuteten MODIS Pixeln .42
Abb. 4.3:	PSF-CERES 2-dim Bessel-Funktion (Smith, 1994)42
Abb. 4.4:	Schema für die Einteilung des CERES-Sichtbereichs in ein - Gitter43
Abb. 4.5:	Überflug von MODIS am 10.02.2002. Links: abgeleiteter Strahlungsfluss am Oberrand der Atmosphäre, Rechts: mit der CERES PSF gewichteter Strah- lungsfluss am Oberrand der Atmosphäre
Abb. 4.6:	Überflug MODIS am 10.02.2002 Links: mit der CERES PSF gewichtete MOD35 Wolkenmaske, Rechts: der gewichtete Strahlungsfluss für Wolken- maske gleich eins
Abb. 4.7:	Links: Streudiagramm des CERES ES-8 Produktes und dem aus MODIS- Messungen abgeleiteten Strahlungsfluss, Anzahl der Bildelemente 23528; Rechts: Histogramm
Abb. 4.8:	Links: Streudiagramm des CERES SSF-2A Produktes und dem aus MODIS- Messungen abgeleiteten Strahlungsfluss, Anzahl der Bildelemente 11805; Rechts: Histogramm
Abb. 4.9:	Links: Streudiagramm des CERES-SSF2B und dem aus MODIS-Messungen abgeleiteten Strahlungsfluss, Anzahl der Bildelemente 14062; Rechts: Histo- gramm
Abb. 5.1:	Links: Aus den Rückwärtstrajektorien vom 29.05.2001 um 12 UTC im Gebiet 22° bis 9° westlicher Länge und 28° bis 33° nördlicher Breite abgeleiteter Trajectory Aerosol Load Parameter von Wapler (2003); Rechts: Aus MO-DIS-Messungen vom 29.05.2001
Abb. 5.2:	Flüssigwasserpfad (links) und aufwärtsgerichteter Strahlungsfluss (rechts) für den 29.05.2001 aus MODIS-Messungen

Abb. 5.3:	Vergleich zwischen der Wolkentropfenkonzentration (rote Linie, normiert mit dem größten auftretenden Wert), dem Flüssigwasserpfad (blaue Linie, normiert mit dem größten auftretenden Wert) und dem aufwärtsgerichteten Strahlungsfluss (schwarze Linie, normiert mit der Solarkonstante) aus MO- DIS-Daten entlang des 30. Breitengrades
Abb. 5.4:	Strahlungsfluss gegenüber der Wolkentropfenkonzentration (links), der geo- metrische Dicke (mitte) und dem Flüssigwasserpfad (rechts) aus MODIS-Da- ten vom 29.05.2001; Rote Punkte: kontinental geprägte Gebiet von 20,5° bis 19,5° nördliche Breite; Schwarze Punkte: maritim geprägte Gebiet von 18° bis 12° nördlicher Breite
Abb. 5.5:	Links: Rückwärtstrajektorien für diverse Endpunkte entlang des 38. Breiten- grades für den 08.09.2001 um 12:00 UTC in einer Höhe von 1000 m von Wapler (2003); Rechts: Aus MODIS-Daten am 08.09.2001 abgeleitete Wol- kentropfenkonzentration
Abb. 5.7:	Links: Effektivradius aus MODIS-L2 Daten; Rechts: Vergleich zwischen der Wolkentropfenkonzentration aus MODIS-Messungen (schwarze Kreuze) entlang des 38. Breitengrad und dem TALP (rote Linie) für den 08.09.2001 von Wapler (2003)
Abb. 5.6:	Links: Flüssigwasserpfad; Rechts: aufwärtsgerichteter Strahlungsfluss für den 08.09.2001 aus MODIS-Messungen
Abb. 5.9:	Strahlungsfluss gegenüber der Wolkentropfenkonzentration (links), der geo- metrischen Dicke (mitte) und dem Effektivradius (rechts, MODIS-L2 Daten) für den 08.09.2001 aus MODIS-Daten; Rote Punkte: kontinental geprägtes Gebiet von 17,5° bis 16,5° nördliche Breite; Schwarze Punkte: maritim ge- prägtes Gebiet von 18,5° bis 17,5° nördlicher Breite
Abb. 5.8:	Vergleich zwischen der Wolkentropfenkonzentration (rote Linie, normiert mit dem größten auftretenden Wert), dem Flüssigwasserpfad (blaue Linie, normiert mit dem größten auftretenden Wert), dem aufwärtsgerichteten Strah- lungsfluss (schwarze Linie, normiert mit der Solarkonstante) und dem Effek- tivradius (grüne Linie, normiert mit dem größten auftretenden Wert) aus MODIS-Daten entlang des 38. Breitengrades
Abb. 6.1:	Schema von BALTIMOS von Lorenz (2006)
Abb. 6.2:	Überflug von MODIS am 2. Mai 2002 um 10:00 UT (links) und Modellergeb- nisse (rechts): Reflektierter Strahlungsfluss am Oberrand der Atmosphäre über den Wolken
Abb. 6.3:	Differenz des Jahresmittels des reflektierten Strahlungsflusses über den Wol- ken

Abb. 6.4:	Jahresgang des kurzwelligen aufwärtsgerichteten Strahlungsflusses am Ober-
	rand der Atmosphäre über den Wolken (SWF). Kreuz: MODIS, Dreieck:
	BALTIMOS-R (ungekoppelt), Viereck: BALTIMOS (gekoppelt), a) für alle
	Wolken, b) ohne dünne Wolken
Abb. 6.5:	Tagesgang des kurzwelligen aufwärtsgerichteten Strahlungsflusses am Ober-
	rand der Atmosphäre über den Wolken (SWF). Kreuz: MODIS, Dreieck:
	BALTIMOS-R (ungekoppelt), Viereck: BALTIMOS (gekoppelt)
	Diminios in (angenoppen), viereen Diminios (genoppen) in interes
Abb. 7.1:	MODIS Szene vom 13.09.2001. Links: abwärtsgerichteter Strahlungsfluss
	am Boden; Rechts: Differenz zwischen dem abwärtsgerichteten Strahlungs-
	fluss am Boden und dem aufwärtsgerichteten Strahlungsfluss am Oberrand
	der Atmosphäre
Abb. A.1:	Das Sichtfeld (field of view, FOV) von CERES aus Chang et al.(2003) 73
Abb. B.1:	Bodenwetterkarte vom 29. Mai 2001 (aus Berliner Wetterkarte)75

Abb. B.2: Bodenwetterkarte vom 8. September 2001 (aus Berliner Wetterkarte) ...76

Tabellenverzeichnis

Tab.2.1:	Die in dieser Arbeit verwendeten Aerosolmodelle: 1) Koepke et al. (1997), 2) Aerosoldatenbank (OPAC, 1998), 3) Report des World Climate Project (WCP, 1986)
Tab.2.2:	Die 10 ausgewählten Kanäle des MODIS Spektrometers 20
Tab.3.1:	Wolkenarten und die zugelassene Variation der wichtigsten Parameter 28
Tab.3.2:	Reziprokes Signal-Rausch-Verhältnis in Prozent für die benutzten MODIS Kanäle (Xiong, 2006) und der berechnete Fehler
Tab.3.3:	Vergleich der Wolkenmasken für den MODIS-Überflug am 07.02.2002. 38
Tab.4.1:	Fehlerabschätzung für den augenblicklichen solaren Strahlungsfluss 45
Tab.4.2:	Ergebnisse der Validierung des entwickelten Verfahrens zur Bestimmung des aufwärtsgerichteten Strahlungsflusses mit MODIS-Messungen anhand von CERES-Messungen
Tab.5.1:	Differenz der räumlichen Mittelwerte aus dem maritim geprägten Gebiet (mar) und dem kontinental geprägten Gebiet (kon) für den aufwärtsgerichte- ten Strahlungsfluss (F) und die Wolkentropfenkonzentration (CDNC) bei konstantem Flüssigwasserpfad (LWP) und konstanter geometrischer Dicke (H)
Tab.5.2:	Differenz der räumlichen Mittelwerte aus der maritim geprägten Luftmasse (mar) und der kontinental geprägten Luftmasse (kon) für den aufwärtsgerich- teten Strahlungsfluss (F) und die Wolkentropfenkonzentration (CDNC) bei konstantem Flüssigwasserpfad (LWP) und konstanter geometrischer Dicke (H)
Tab.6.1:	Statistische Werte zwischen MODIS und BALTIMOS für die zeitliche Mitte- lung (1) und räumliche Mittelung (2). a) für alle Wolken, b) ohne dünne Wol- ken

Verzeichnis der benutzten Symbole und Abkürzungen

SYMBOL	EINHEIT	BEZEICHNUNG
S	m	Wegstrecke
F	$W m^{-2}$	Strahlenfluss
J		Strahlungsquelle
L_b	$W m^{-2} sr^{-1} \mu m$	Breitband-Srahldichte
L_n	$W m^{-2} sr^{-1} \mu m$	Schmalband-Strahldichte
Р	hPa	Druck
r	μm	Radius
W _{in}		Gewichtsmatrix des Neuronalen Netzes zwi- schen Eingabe und verborgener Schicht
W _{out}		Gewichtsmatrix des Neuronalen Netzes zwi- schen verborgener Schicht und Ausgabeschicht
$\dot{\vec{x}}$		Eingabevektor
\$ y		Ausgabevektor
θ	deg	Beobachtungszenitwinkel
θ_0	deg	Sonnenzenitwinkel
λ	nm	Wellenlänge
ρ		Dichte
τ		optische Dicke
σ		Aktivierungsfunktion
σ_e	m ⁻¹	Massenextinktionskoeffizient
σ_R	m ⁻¹	Streukoeffizient
φ	deg	Azimutwinkeldifferenz

BEDEUTUNG

ADM	Anisotropiefunktion
AQUA	polarumlaufender NASA-Satellit
BALTIMOS	Regionalmodell
BIAS	mittlere Abweichung
CERES	Cloud and the Earth's Radiant Energy System
ECMWF	European Centre for Medium-Range Weather Forecasts
ERBE	Earth Radiation Budget Experiment
FUB	Freie Universität Berlin
FOV	Field of View
HYSPLIT	Hybrid Single-Particle Lagrangian Integrated Trajec- tory
IGBP	International Geosphere Biosphere Programm
IPCC	Intergovernmental Panel on Climate Change
ISCCP	International Cloud Climatology Project
kon	kontinentale Luftmasse
LWP	Flüssigwasserpfad
mar	maritime Luftmasse
MLE	Maximum Likelihood Estimation
MLP	MultiLayer-Perzepton
MODIS	Moderate Resolution Imaging Spectroradiometer
МОМО	Matrix-Operator Modell
NASA	National Aeronautic and Space Administration (USA)
NN	Neuronales Netz
OPAC	Optical Propertites of Aerosols and Clouds
PCA	Hauptachsentransformation
POLDER	POLarization and Directionality of the Earth Reflec- tance
PSF	Point Spread Function
RAP	Rotating Azimuth Plane

ABKÜRZUNG	BEDEUTUNG
RGB	Rot Grün Blau
RE	relativer Fehler
RMSE	Root Mean Square Error
ScaRaB	Scanner for Radiation Budget
SNR	Signal-Rausch Verhältnis
SSF	Single Scanner Footprint
TALP	Trajectory Aerosol Load Parameter
TERRA	polarumlaufender NASA-Satellit
TRMM	Tropical Rainfall Measuring Mission
UTC	Universal Time Convention
WMO	World Meteorology Organization