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1
Introduction

Mathematical modeling has become an indispensable tool for the description and systematic
analysis of biological phenomena [1–4]. Biologists have revealed fundamental intelligence
about living systems by experimentally studying their structure and physiology in increasing
detail. But as the scope and depth of information virtually explodes, understanding the
intricate dynamical properties of (micro-)biological processes becomes more complicated.
Mathematical modeling offers a formal language to express such complex biological behavior,
to test assumptions and hypothesis about the functioning of biological systems with the preci-
sion of mathematics [5]. There exist different classes of mathematical modeling approaches to
describe the dynamics of biochemical reaction networks [4]: qualitative (e.g., by Bayesian or
Boolean networks), quantitative (based on deterministic or stochastic reaction kinetics), and
combined qualitative–quantitative approaches. Herein we deal with quantitative approaches,
being routinely used, for instance, to model and analyze metabolic pathways [6, 7], protein
interactions [8], or gene expression and regulatory networks [9].

Deterministic Approach: Traditionally, a quantitative approach is based on the macroscopic
view of chemical kinetics, where reaction processes aremodeled by deterministic rate equations.
It assumes that the quantity of a species Si (i = 1, . . . ,N) evolves as a continuous variable x i
in time t according to a set of coupled ordinary differential equations (ODEs) of the form

d
dt

x i = fi(x1, . . . , xN) (i = 1, . . . ,N).

Usually, such continuous–deterministicmodels are expressed in terms of molar concentrations
x i = X i/Ω, where X i is the number of molecules of species Si and Ω denotes the system
volume times the Avogadro constant. The functions fi are inferred from the stoichiometries
and assumed rates of the reactions in a given network [10]. The fundamental rate model in
deterministic reaction kinetics is the law of mass action, which has further led to a number
of important rate models in enzyme kinetics, such as the Michaelis–Menten equation or
the Hill equation, cf. [4, 7]. A deterministic formulation can easily be extended to account
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Introduction

for the spatial organization of biological systems and possible inhomogeneities in species
concentrations, e.g., by partitioning the system into spatial compartments or by combining
the reaction kinetics model with diffusion equations [4]. In this way, deterministic models
have been successfully used to describe and analyze reaction processes not only in chemistry,
but also in biochemistry and systems biology [4, 7, 11].

On a microscopic level, however, chemical reactions can be regarded as discrete, random
events resulting from collisions between individual molecules [4, 12, 13]. Hence, the assump-
tion of continuously changing concentrations in deterministic reaction kinetics becomes
clearly inaccurate if the number of molecules of some species are low. Moreover, variation
in the temporal order of reaction events leads to fluctuations in the number of molecules
around the average species levels. These inherent stochastic fluctuations (also called intrinsic
noise) arise from the lack of total predictability in molecular dynamics and quantum inde-
terminacy [10, 14], and are different from extrinsic noise caused by environmental changes
or interference with other processes [15, 16]. For low species levels, stochastic fluctuations
become significant and can affect the qualitative behavior of the system [17, 18]. In a small
number of molecules regime, a continuous–deterministic model thus constitutes a substantial
simplification and might not accurately describe the true system dynamics [10].

Stochastic Approach: There is considerable experimental evidence that stochastic effects play
a crucial role inmany cellular processes like gene expression and regulation [19–24], where con-
stituents are typically present in small numbers. For this reason, the last decade has witnessed
an increasing interest in stochastic descriptions of biochemical systems. Stochastic reaction ki-
netics accounts for the inherent fluctuations in the discrete number of molecules by modeling
the state of the system X = (X1(t), . . . , XN(t))T as a continuous-time, discrete-state Markov
jump process. By introducing a system compartmentalization, such discrete–stochasticmodels
can also be extended to account for spatial inhomogeneities [4]. The fundamental equation of
stochastic reaction kinetics is the chemical master equation (CME) that defines the temporal
evolution of the probability density function (PDF) of the system state. Unfortunately, only
few approaches exist to directly solve the CME for a general system [25–29]. The main problem
is that the state space grows exponentially with the number of species, which renders most
direct approaches computationally infeasible for larger reaction networks.

Indirect Methods: There exist a number of approximate solution techniques to the CME,
e.g., [30–35]. Instead of solving for the PDF directly, however, most of these methods are

2



based onMonte Carlo (MC)-simulations of theMarkov jump process underlying the CME [30–
32]. Henceforth, we call MC-based methods indirect. The main advantage of indirect methods
is that they are easy to apply. With Gillespie’s stochastic simulation algorithm (SSA) [31], for
instance, one can compute a statistically exact realization by iteratively generating two random
numbers in order to determine when and which will be the next reaction that occurs in the
system. However, indirect methods also inherit the common disadvantages of MC-based
approaches: As the PDF is approximated by a statistical ensemble of realizations, there is
always a sampling error introduced. Depending on the quantities of interest (expectations,
higher moments or the PDF itself), the number of realizations n required to meet a certain
accuracy might be very large. Convergence is rather slow with the sampling error decaying
like C ⋅ n−1/2 [36, 37]. In addition, the constant C can be exponentially large if the system
exhibits switching behavior [38].1

Apart from the problem of judging the required number of realizations to build-up a
sufficient statistics, the computational costs of an exact realization is dictated by the total
number of reaction events that have to be simulated [10, 31]. This renders exact indirect
methods like the SSA numerically infeasible when applied to systems that include many
rapidly firing reactions or species present in large numbers. For this reason, it is often
necessary to sacrifice some of the accuracy of a discrete–stochastic system description to
obtain computationally faster indirect methods.

A common approach to accelerate stochastic simulations is based on a τ-leap condition [33,
34, 39–43] that allows to approximate multiple reaction events as independent Poisson or
binomial random variables. If the τ-leap condition is satisfied and all reactions are sufficiently
fast, the discrete Markov jump process might also be approximated by a continuous Markov
process, whose evolution is described by the chemical Langevin equation (CLE) [33]. Although
such continuous–stochastic models capture the effects of stochastic fluctuations [18, 44], their
simulation is usually performed indirect and still computationally expensive. Furthermore, the
underlying approximationmight result in amisdescription of the true systemdynamics [18, 45].
Another approach is based on a kind of quasi-steady state approximation (QSSA). QSSA-
based methods [46–52] rely on the assumption that variables associated with fast reactions
approach a quasi-stationary PDF, cf. [10]. The state changes resulting from fast reactions are
then approximated via their quasi-stationary PDFs and the system is propagated by effectively
simulating only the slow, unproblematic reactions.

1The example in [38] is a Hamiltonian system, where switching times increase exponentially with decreasing
system temperature.
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Hybrid Approaches: A different strategy rests upon the idea of employing a hybrid system
representation, i.e., approximating fast reactions associated with large number of molecules
as continuous processes, either in a stochastic [50, 53–56] or deterministic [50, 53, 57–62]
context, while simulating reactions that are not suited for a continuous approximation as
discrete stochastic processes. Hybrid approaches circumvent the problems related to a purely
discrete or purely continuous system representation by leveraging the advantages of both
approaches: They capture relevant stochastic effects arising from fluctuations in small number
of molecules, while reducing the computational complexity substantially. In contrast to QSSA-
based approaches, hybrid approaches do not depend on the existence of quasi-stationary
distributions of the fast modes. Furthermore, they can easily be generalized in application.

In this thesis, we are concerned with hybrid approaches that couple the discrete–stochastic
formulation of stochastic reaction kinetics with the continuous–deterministic formulation
of classical reaction kinetics. Such hybrid stochastic–deterministic approaches are moti-
vated by the limit behavior of the stochastic process that underlies the CME. As shown by
T. G. Kurtz [63], on compact time intervals, the deterministic process of classical reaction
kinetics approximates the stochastic process in the thermodynamic limit, i.e., the number of
molecules of all species and the volume of the system approach infinity (X i →∞, Ω →∞),
while the species concentrations converge to some finite value x i = X i/Ω. It further turns
out that the reaction intensities grow linearly as the system approaches the thermodynamic
limit [14, 64]. Hence, if species are present in large numbers and reactions are fast, determin-
istic reaction kinetics is a good approximation to the CME. This well-known property is one
of the key facts exploited in hybrid stochastic–deterministic approaches [57–62].

Objective: In this thesis, we demonstrate that hybrid approaches are well-suited for the
modeling of large reaction networks that exhibit fluctuations due to some species present
in small numbers. Current hybrid methods [50, 53–62], however, almost exclusively rely on
MC-simulations of the Markov process associated with the discretely modeled subsystem.
They are hence indirect and suffer from the aforementioned disadvantages of indirect methods.

The main objective of this thesis is to exploit the concept of hybrid approaches in order
to derive a direct solution of the CME. The idea of our direct hybrid approach is to apply
only a partial limit to such species that are present in large quantities. Since a partial volume
limit is hard to justify for obvious reasons, we pursue a multi-scale expansion approach with
respect to a scaling parameter ε≪ 1. We link this ‘artificial’ parameter ε to large species
levels and fast reactions, such that it plays a similar role as Ω−1 in the thermodynamic limit.
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Based on a WKB-ansatz and Laplace’s method [65], we are then able to derive a system of
coupled evolution equations for the PDF of species present in small numbers and the related
expectations of species present in large numbers. As this effectively reduces the CME to
the small copy number subspace, its direct numerical solution (without MC-simulations)
becomes feasible whenever there are few species in low quantities present in the system. In
contrast to indirect hybrid methods, the impact of changes of the discrete distribution on the
dynamics of the continuous variables then has to be taken into account explicitly.

A first approach to directly solve the CME based on a partitioning of the state space was
proposed by Henzinger et al. [66]. In their approach a coupling is realized in two separate
steps: (i) propagation of the discrete distribution and the continuous variables for a small
time step; (ii) distribution of the continuous variables according to the changes in the discrete
distribution. In contrast, we present a closed hybrid approach that implicitly integrates
these propagation and distribution steps continuously. A similar approach has recently been
proposed by T. Jahnke [67]. Based on an error analysis of twomodel reduction approaches that
employ a product ansatz, identifying the direct product approximation of the CME solution as
the main source of error, a model reduction by conditional expectations (MRCE) is proposed.
The derivation of the MRCE-model is based on certain assumptions on the continuous
variables, such as zero covariance. These assumptions become in our multi-scale formalism
theoretically justifiable. Our approach thus also contributes to a deeper understanding of the
MRCE-model. Interestingly, we further find that the direct contribution of slow reactions on
the dynamics of the continuous variables is negligible compared to their indirect contribution
that results from changes in the discrete distribution.

Even though a hybrid formulation reduces the computational complexity, it does not
reduce the model complexity per se. Parameters of detailed biological models are often not
available and have thus to be estimated by fitting the corresponding mathematical model to
experimental data. But parameter estimation can only provide reliable results if the model
complexity is in balance with the amount and quality of data [68]. If this is not the case, the
model has to be simplified by exploiting reduction concepts like time-scale separation [69–71],
sensitivity analysis [72, 73] or balanced truncation [74–76]. Often, a reduced model also
provides further insight into features of the dynamic behavior of a reaction network [4].

We further study model reduction in the context of a detailed model of gene expression.
As classical reaction kinetics does generally not allow to model gene expression on the level
of single molecules (in particular a single gene), the underlying subprocesses of transcription
and translation are usually not explicitly incorporated in a deterministic model, but implicitly
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aggregated into effective protein synthesis rates [4, 77–79]. We propose a QSSA-like reduction
approach that allows to directly link such effective rates to the transcriptional and translational
processes given in a discrete–stochastic formulation of gene expression. As it turns out, the
derived functional relations are of particular value when analyzing the sensitivity of a reduced
deterministic model with respect to effective synthesis rates.

Outline: We begin by setting the framework and providing the background on stochastic
and deterministic reaction kinetics in Chapter 2. The general concepts and relevant properties
of both approaches are all reviewed, and, additionally, indirect methods for the simulation
of discrete–stochastic models are recalled and discussed. We further study the relationship
between deterministic and stochastic reaction kinetics in detail, including the important result
by T. G. Kurtz for the thermodynamic limit. We also introduce an asymptotic approximation
technique for the CME, providing an alternative approach to derive the ODE-model of
deterministic reaction kinetics as the large-size system limit of stochastic reaction kinetics.

In Chapter 3, we outline and discuss indirect approaches for the hybrid simulation of
biochemical reaction networks. We present a detailed derivation of a hybrid simulation
algorithm, where reactions are dynamically partitioned into stochastic and deterministic
processes. We apply this hybrid method to a mathematical model of the replication dynamics
of the human immunodeficiency virus (HIV). Based on the hybrid simulation results, we are
able to design and validate in silico a novel treatment strategy for HIV-infected patients that
can lead to significant improvements compared to conventional treatment strategies.

In Chapter 4, we use the asymptotic techniques introduced in Chapter 2 to derive a
novel hybrid stochastic–deterministic approach to solve the CME directly. Our direct hybrid
approach is capable of reducing the number of degrees of freedom of the CME-description
substantially. It does not suffer from the disadvantages of indirect methods studied in the
previous chapters and is more efficient if the reaction system includes only a few species
associated with low number of molecules. We illustrate the performance of our direct hybrid
approach by applying it to model systems of biological interest.

In Chapter 5, we use a detailed stochastic model of gene expression to derive effective
protein synthesis rates as typically incorporated in deterministic models of biochemical
systems. The model reduction approach we use effectively eliminates the transcriptional and
translational subprocesses and discloses their functional relationship to the effective synthesis
rates. We demonstrate and validate our approach on a protein interactions model of the
flagellar gene regulation cascade in Escherichia coli (E. coli). We further perform a sensitivity
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analysis with respect to the parameters in the resulting deterministic formulation of this
system. Based on the derived functional relationships, we find that sensitivity with respect to
effective rates does not directly carry over to the aggregated detailed parameters, but breaks
down into more diverse relations.

In Chapter 6, we conclude by summarizing the presented results and outlining possible
directions for future work.
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2
Modeling of Biochemical Reaction Networks

In this chapter, we provide the necessary background for the reader unfamiliar with the
stochastic and deterministic modeling approaches. We first review the general description of
biochemical reaction networks as chemical systems, see Section 2.1. In Sections 2.2 and 2.3,
we study both formulations of reaction kinetics, the stochastic and the deterministic, their
underlying assumptions and properties. In case of the stochastic formulation, we additionally
review basic numerical simulation methods. We conclude the chapter by discussing the
relationship between stochastic and deterministic reaction kinetics in detail in Section 2.4.

2.1 The Chemical System

Consider a chemical system of constant volume V that is homogeneous, especially well-
stirred, and in thermal equilibrium at a constant absolute temperature T . The system includes
molecules of N chemical species Si , i = 1, . . . ,N , which interact through M elementary
reactions Rµ, µ = 1, . . . ,M.1 Given its stoichiometry, we can write an elementary reaction
generally as

Rµ ∶ srµ1 S1 + ⋯ + srµN SN → spµ1 S1 + ⋯ + spµN SN (µ = 1, . . . ,M),

where srµi and spµi ∈ N0 denote the stoichiometric coefficients, specifying how many molecules
of Si react and how many molecules of Si get produced with a single firing of Rµ , respectively.
Hence, we associate a vector ξµ ∶= (ξµ1, . . . , ξµN)T ∈ ZN to each reaction Rµ with

ξµi ∶= (spµi − s
r
µi) (i = 1, . . . ,N),

that gives the net changes in the number of molecules of the species caused by a single firing
of Rµ. We denote the possible number of molecules of a species Si by Xi ∈ N0, i = 1, . . . ,N ,
such that X = (X1, . . . , XN)T ∈ NN

0 gives a possible state of the system. Now, if Rµ is of the

1An elementary reaction is assumed to occur in a single reaction step with no reaction intermediates and to
pass through a single transition state [80, 81].
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form 2 S1 GGGA S2, for instance, then ξµ = (−2,+1, 0, . . . , 0)T and a firing of Rµ would change

the state of the system from X = (X1, X2, X3, . . . , XN)T to X = (X1 − 2, X2 + 1, X3, . . . , XN)T.
Typically, the net changes ξµ of a chemical system are sparse vectors, as only a few species
participate in a particular reaction Rµ.

In the following, we describe the system’s dynamics as a continuous-time process2
X(t) ∶= (X1(t), . . . , XN(t))T taking values in NN

0 , where

X i(t) ∶= number of molecules of species Si at time t (i = 1, . . . ,N).

Assume the system is in state X0 at time t = 0, i.e., X(0) = X0, and denote by Kµ(t) the
number of firings of a reaction Rµ up to time t ≥ 0, with Kµ(0) = 0 for every µ = 1, . . . ,M.
According to the net changes ξµ, the state of the system at time t ≥ 0 is then given as

X(t) = X(0) +
M
∑
µ=1

ξµKµ(t),

with X(0) = X0. In principle, we are thus left with predicting the reaction counts Kµ(t) for
every µ = 1, . . . ,M and t > 0.

In the stochastic framework this is realized by modeling every Kµ as a Poisson process
that increases in discrete steps with intensity aµ, called reaction propensity, see Section 2.2.
Hence, X(t) is modeled as a continuous-time, discrete-state Markov jump process. In the
deterministic setting, the reaction count Kµ gets approximated by an average count that
continuously increases with rate vµ, see Section 2.3. Consequently, in the deterministic
framework the system dynamics is approximated by a continuous (in time and state) process
x(t) that takes values in RN

≥0. However, as one would probably expect, both rate functions,
the reaction propensity aµ and the reaction rate vµ are found to have a similar form, which is
determined by the specific type of a reaction Rµ, described below.

Elementary reactions Rµ can be classified regarding theirmolecularity

∣srµ ∣ ∶=
N
∑
i=1

srµi ,

that gives the number ofmolecules that react in a single firing ofRµ , see [80, 81]. In general, one
distinguishes between: (1) unimolecular reactions with ∣srµ ∣ = 1, (2) bimolecular reactions with
∣srµ ∣ = 2 and (3) termolecular reactions with ∣srµ ∣ = 3. Termolecular reactions (and reactions

2Henceforth, we denote every process or time-dependent variable by a bold symbol, while elements of the
state space are set in normal font.
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2.2 Stochastic Reaction Kinetics

of higher molecularity), however, are usually not considered, as they rely on the physically
improbable event of a simultaneous collision of three (or more) molecules [15, 82].3 If the
system is open, we additionally consider a type of reaction that models the possible influx of
new molecules from an external source, i.e., ∅ GGGA ⋯.4 We call such elementary reactions

with ∣srµ ∣ = 0 source-like reactions.

2.2 Stochastic Reaction Kinetics

In the stochastic formulation of reaction kinetics, the initial assumptions on the system are
interpreted in a probabilistic manner [82]:

(a) Well-stirred: The position of a molecule is a uniformly distributed random variable,
such that the probability of finding the center of a randomly selected molecule inside a
subregion of volume δV is equal to δV/V .

(b) Thermal equilibrium: The velocity of a molecule is a random variable that follows the
Maxwell-Boltzmann distribution, such that the probability of finding the velocity of a
randomly selected molecule in the infinitesimal region d3v⃗ about velocity v⃗ is equal to
fMB(v⃗)d3v⃗, where

fMB(v⃗) = (
m

2πkBT
)
3/2

exp{− mv2

2kBT
} (2.1)

is the Maxwell-Boltzmann distribution for the velocity v⃗ = (vx , vy , vz)T of a parti-
cle with mass m. Here, kB ≈ 1.38 × 10−23 J/K denotes the Boltzmann constant, and
d3v⃗ = dvxdvydvz and v2 = vx2 + vy2 + vz2.

2.2.1 Reaction Propensity

Under the above premises, the fundamental hypothesis of stochastic reaction kinetics states
that [82]: Given the system is in state X at time t, then (i) the probability of a single firing of
reaction Rµ inside V in an infinitesimal time interval [t; t + δt) is given by aµ(X)δt + o(δt);

3Ter- and higher-molecular reactions are typically stepwise reactions that involve at least two consecutive
elementary reactions with at least one reaction intermediate, see [15, 80, 81]. Therefore, they are not considered
separately in the following.

4Here and in the following, the symbol ‘∅’ denotes the empty set.
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Modeling of Biochemical Reaction Networks

and (ii) the probability of more than one reaction event inside V in [t; t + δt) is equal to
o(δt), where o(δt) denotes terms f (δt) satisfying f (δt)/δt → 0 as δt → 0.5 The function
aµ associated with each reaction Rµ, with

aµ(X)δt ∶= probability, to first order in δt, that reaction Rµ will occur once

inside V in the next infinitesimal time interval [t; t + δt)

given that the system is in state X at time t,

is called reaction propensity in the chemical literature [30, 82]. It follows that the unit of a
reaction propensity aµ is always equal to the inverse unit of time.

As shown by D. T. Gillespie in 1976 [30], the propensity aµ of an elementary reaction Rµ is
of the general form

aµ(X) = cµhµ(X), (2.2)

where cµ denotes the specific probability rate constant of Rµ, and hµ(X) gives the number of
distinct combinations of Rµ reactant molecules available in state X.

Distinct Reactant Combinations

The number of distinct combinations of Rµ reactant molecules in a state X is given by the
product of binomial coefficients as

hµ(X) ∶=
N
∏
i=1
(Xi

srµi
) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

N
∏
i=1

Xi!
srµi!(Xi − srµi)!

if Xi ≥ srµi for all i = 1, . . . ,N ,

0 otherwise,
(2.3)

where n! ∶=∏n
k=1 k denotes the factorial of a non-negative integer n.6 Hence, the propensity

aµ of an elementary reaction Rµ is a simple multivariate polynomial function of the number
of molecules Xi , i = 1, . . . ,N .

Example 2.2.1. The bimolecular reaction R2a ∶ Si + S j GGGA ⋯ (with i ≠ j) has a propensity

of the form a2a(X) = c2aXiX j, whereas the bimolecular reaction R2b ∶ 2 Si GGGA ⋯ has a

propensity of the form a2b(X) = c2bXi(Xi − 1)/2.

5Henceforth, we use the following Bachmann–Landau notations: Suppose f and g are two functions defined
on some subset of the real numbers. We write f (x) = o(g(x)) as x → x0 if and only if limx→x0 f (x)/g(x) = 0,
i.e., f grows much slower than g as x → x0. Similarly, we use the notation f (x) = O(g(x)) as x → x0 if and
only if there exists a constant C such that limx→x0 ∣ f (x)∣/∣g(x)∣ ≤ C, indicating that the rate of growth (i.e., the
order) of f is not faster than that of g, cf. [65].

6Following the convention for empty products, we have 0! = 1.
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2.2 Stochastic Reaction Kinetics

Specific Probability Rate Constant

The specific probability rate constant cµ of a reaction Rµ is defined such that

cµδt ∶= probability that a particular combination

of Rµ reactant molecules at time t will react accordingly

inside V in the next infinitesimal time interval [t; t + δt),

see [82]. Thus, the unit of cµ is always equal to the inverse unit of time.

Example 2.2.2 (see [82]). For bimolecular reactions, the probability cµδt is given by the
product of (i) the probability that a randomly chosen combination of Rµ reactant molecules at
time t will collide during [t; t + δt), and (ii) the conditioned probability that a given collision
is effective and the molecules will react according to Rµ . An expression for the first probability
derives from premises (a) and (b) by considering the relative velocity of a selected combination
of Rµ reactant molecules (see eq. (2.1)) and the sub-volume that is critical for their collision.
This probability thus depends on the absolute temperature T and the volume V of the system.
The second probability usually relates to an energy barrier Ea, called activation energy, that
has to be overcome in order for Rµ to occur. The fraction of molecules with a kinetic energy
greater than Ea depends on the absolute temperature T , and turns out to be equal to the
familiar Arrhenius exponential form exp{−Ea/(kBT)}, with Ea given in molecular units.

For instance, if we assume the idealized case where the molecules of a species Si can
be regarded as hard spheres with mass mi and radius ri . Then, the rate constant c2a of the
bimolecular reaction R2a ∶ Si + S j GGGA ⋯ is of the form

c2a =
√

8kBT
πmr

π(ri + r j)2

V
exp{− Ea

kBT
},

where mr ∶= mim j/(mi +m j) denotes the reduced mass of Si and S j (i ≠ j).

2.2.2 Representation with Poisson Processes

Below, we briefly review some basic properties of Poisson processes. It follows that the
fundamental hypothesis of stochastic reaction kinetics essentially states that the number of
firings Kµ of a reaction Rµ can be represented by a Poisson process whose intensity is given
by the reaction propensity aµ.
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Review of Poisson Processes

Remark 2.2.1 (cf. [83–85]). APoisson processP with intensity λ is a continuous-time counting
process7 that satisfies:

(i) P(0) = 0 almost surely, i.e., P[P(0) = 0]= 1.

(ii) Its increments are independent and stationary.8

(iii) P[P(t + δt) −P(t) = 1] = λδt + o(δt) as δt → 0.

(iv) P[P(t + δt) −P(t) > 1] = o(δt) as δt → 0.

Since∑∞k=0 P[P(t + δt) = k] ≡ 1, it immediately follows from properties (iii) and (iv) that fur-
ther P[P(t + δt) −P(t) = 0] = 1 − λδt + o(δt) as δt → 0. The expected number of events
in an infinitesimal time interval [t; t + δt) is given by

E[P(t + δt) −P(t)] ∶=
∞
∑
n=0

nP[P(t + δt) −P(t) = n] = λδt + o(δt), (2.4)

as δt → 0. This shows that the intensity λ of a Poisson processP can be understood as the
expected number of events per unit time, i.e., we can intuitively think of λ as a rate.

If λ ≡ 1, then P is called a unit Poisson process. If P is a unit Poisson process, then
P λ(t) ∶= P(λt) is a Poisson process with intensity λ. So far, we considered λ to be constant
in time, in which caseP λ is called a homogeneous Poisson process. If the intensity of a Poisson
process is not constant, e.g.,

P λ(t) ∶= P(
ż t

0
λ(s) ds), (2.5)

thenP λ is a non-homogeneous Poisson process with intensity λ(t).9 The cumulative intensity
Λ(t) ∶=

şt
0 λ(s) ds in eq. (2.5) is a dimensionless quantity that can be considered as the internal

time ofP , as it links the absolute time t to the amount of time that has passed forP , see [86].
Thus, problems concerning non-homogeneous Poisson processes can be reduced to the
homogeneous case by utilizing time changes like eq. (2.5), cf. [87].

7A counting process is an integer-valued stochastic process {N(t), t ≥ 0}, satisfying: (a) N(t) ≥ 0 for all
t ≥ 0; (b) N(t) is non-decreasing with t, i.e., if t ≥ s then N(t) ≥ N(s); and (c) N(t) is right-continuous, such
that N(t) − N(s) represents the number of events in (s; t], where t > s ≥ 0.

8A counting process N has independent increments if the number of events that occur in disjoint time
intervals are independent, i.e., if t0 < t1 < t2 < ⋯ then N(tk) − N(tk−1), k = 1, 2, . . ., are independent random
variables. N has stationary increments if N(t + s) − N(t) does not depend on t but only on s > 0.

9The increments of a non-homogeneous Poisson process are in general not stationary.
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2.2 Stochastic Reaction Kinetics

By property (ii), the incrementP(t + s) −P(t) for any s > 0 after time t is independent of
the pastP(u), with 0 ≤ u ≤ t. Thus, the futureP(t + s) depends upon the past only through
the present valueP(t), which shows that a Poisson processes is Markov jump processes.

Definition 2.2.1. A continuous-time stochastic process X(t) is a Markov process if for all
0 < s < t the probability distribution of X(t) given X(u), with 0 ≤ u ≤ s, depends only upon
X(s), i.e., for all 0 ≤ t0 < t1 < ⋯ < tn < s with arbitrary n ∈ N and every Borel measurable
event X,

P[X(t) = X ∣ X(t0), X(t1), . . . , X(tn), X(s)] = P[X(t) = X ∣ X(s)].

A Markov process is called homogeneous, if P[X(t) = X ∣ X(s)] depends upon s and t only
through the difference t − s > 0. If the state space of theMarkov process is discrete (countable),
it is also called aMarkov jump process.

The following results on Poisson processes can be found in most elementary books on
probability and stochastic processes, e.g. [83–85]. For convenience, we consider only the
homogenous case.

Theorem 2.2.1. LetP be a Poisson process with intensity λ, thenP(t) ∼ Pois(λt), i.e.,

P[P(t) = n] = e−λt (λt)
n

n!
,

for all t ≥ 0 and n ∈ N0.10

Theorem 2.2.2. Let P be a Poisson process with intensity λ > 0 and denote the successive
occurrence times of events by t0 = 0 < t1 < t2 < ⋯. Then, the inter-arrival times T i ∶= ti − ti−1,
i=1, 2, . . ., are independent and identically distributed (iid) random variables with T i ∼ Exp(λ),
i.e.,

P[T i > τ] = e−λτ ,

for every τ ≥ 0.

Note. From Theorem 2.2.1 it follows that the expectation and the variance in the number
of events during (t; t + τ] are both equal to λτ, i.e., E[P(τ)] = λτ and Var(P(τ)) = λτ,
respectively. By Theorem 2.2.2, the inter-arrival time T i of a Poisson process with intensity λ
has expectation E[T i] = 1/λ and variance Var(T i) = 1/λ2.

10Henceforth, we define 00 ∶= 1.
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Representation of Reaction Counts

In terms of changes in the reaction counts Kµ during an infinitesimal time interval [t; t + δt),
the fundamental hypothesis of stochastic reaction kinetics states that for every µ = 1, . . . ,M

P[Kµ(t + δt) − Kµ(t) = 1] = aµ(X(t))δt + o(δt),

and further

P[Kµ(t + δt) − Kµ(t) > 1] = o(δt),

P[Kµ(t + δt) − Kµ(t) > 0,K j(t + δt) − K j(t) > 0] = o(δt), for j ≠ µ,

as δt → 0. Now, letP µ, µ = 1, . . . ,M, be independent, unit Poisson processes. Since every
propensity aµ(X(t)) is constant until the next reaction takes place and X(t) changes, we
thus have that for given X(s), s ≤ t, and sufficiently small δt

P[P µ(
ż t+δt

0
aµ(X(s)) ds) −P µ(

ż t

0
aµ(X(s)) ds) = 1] = aµ(X(t))δt + o(δt),

and

P[P µ(
ż t+δt

0
aµ(X(s)) ds) −P µ(

ż t

0
aµ(X(s)) ds) > 1] = o(δt),

P[P µ(
ż t+δt

0
aµ(X(s)) ds) −P µ(

ż t

0
aµ(X(s)) ds) > 0,

P j(
ż t+δt

0
a j(X(s)) ds) −P j(

ż t

0
a j(X(s)) ds) > 0] = o(δt), for j ≠ µ,

where the first and second equalities directly follow from property (iii) and (iv) of the Poisson
processesP µ , respectively, and the last equality follows from their independence. In fact, this
suggests that we can represent the reaction counts Kµ as non-homogeneous Poisson processes
with intensities aµ, i.e.,

Kµ(t) = P µ(
ż t

0
aµ(X(s)) ds) (µ = 1, . . . ,M),

see [86, 88] for further details. The above equation is an example of a random time change
representation of stochastic processes, cf. [87].

From the above considerations, we thus find that the state of the system at time t can be
represented in stochastic reaction kinetics as

X(t) = X(0) +
M
∑
µ=1

ξµP µ(
ż t

0
aµ(X(s)) ds), (2.6)
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whereP µ , µ = 1, . . . ,M, are independent, unit Poisson processes and X(0) denotes the initial
state of the system. Given the net changes ξµ and propensities aµ of each reaction Rµ, as
well as an initial state X(0), the stochastic equation (2.6) uniquely determines X(t).11 There
are other ways of relating the reaction propensities aµ to the stochastic process X(t), cf.
Subsection 2.2.5. However, eq. (2.6) has the advantage of being intuitive and easily generalized
to incorporate additional effects, such as external noise or time delays [88]. As we will see in
the following, eq. (2.6) also suggests methods to simulate the stochastic process X(t).

2.2.3 The Stochastic Simulation Algorithm

In the sequel, we introduce the most prominent procedure for generating an exact numerical
realization of the stochastic process X(t). This method, called stochastic simulation algorithm
(SSA) or Gillespie’s Direct Method, was presented by D. T. Gillespie in [30, 31] and is based
on the probability function p(τ, j ∣X; t), defined such that

p(τ, j ∣X; t)δt ∶= probability that the next reaction will occur in the infinitesimal

time interval [t + τ; t + τ + δt) and that this reaction will be R j,

given that X(t) = X .

Knowledge of p(τ, j ∣X; t) allows to sample when and what will be the next reaction that
fires and hence to propagate the system forward in time. By running many of such stochastic
simulations, one can compute an ensemble of realizations to approximate the statistics of X(t),
such as its mean, percentiles, correlations or its full PDF. The SSA and its derivation are given
below, mainly following [10, 31]. We also briefly discuss other exact simulation methods.

Derivation of the Stochastic Simulation Algorithm

We notice that the joint probability p(τ, j ∣X; t)δt is given as the product of the probability
(a) that no reaction fires in [t; t + τ), given X(t) = X; and the conditional probability (b) that
reaction R j fires once in [t + τ; t + τ + δt), given X(t + τ) = X. Clearly, the latter event has
probability a j(X)δt + o(δt) as δt → 0, such that

p(τ, j ∣X; t)δt = p0(τ ∣X; t)(a j(X)δt + o(δt)), (2.7)

11It should be noted that without any additional assumptions, however, the solution of eq. (2.6) might only
exists up to some finite time, i.e., X(t) blows up and reaches infinity in finite time. For instance, consider
X(t) = X(0) +P 1(

şt
0 c1X(s)(X(s) − 1)/2 ds) for X(0) > 1 and compare with Example 2.3.1.
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where p0(τ ∣X; t) denotes the probability (a). Since reactions are modeled as independent
Poisson processes whose intensities are constant if no event occurs in [t; t + τ), it follows
from their independence and Theorem 2.2.2 that

p0(τ ∣X; t) = exp{−a0(X)τ}, (2.8)

where a0(X) ∶= ∑M
µ=1 aµ(X). Substituting eq. (2.8) into eq. (2.7), dividing both sides by δt

and taking the limit δt → 0 results in

p(τ, j ∣X; t) = exp{−a0(X)τ}a j(X). (2.9)

Next, we demonstrate how the system can be stochastically simulated based on p(τ, j ∣X; t).
Consider X(t) = X, let p(τ ∣X; t) denote the probability that the next reaction fires at time
t + τ, and let p( j ∣ τ, X; t) denote the conditional probability that this reaction will be R j.
From eq. (2.9) it follows that

p(τ ∣X; t) =
M
∑
j=1

p(τ, j ∣X; t) = exp{−a0(X)τ}a0(X), (2.10)

which shows that the time until the next reaction fires is an exponential random variable
with parameter a0(X). Since p(τ, j ∣X; t) = p( j ∣ τ, X; t)p(τ ∣X; t), we find from eqs. (2.9)
and (2.10) that

p( j ∣ τ, X; t) = p(τ, j ∣X; t)
p(τ ∣X; t)

=
a j(X)
a0(X)

, (2.11)

provided that p(τ ∣X; t) > 0.12 The index of the next reaction that fires is thus an integer
random variable with point probabilities a j(X)/a0(X), j = 1, . . . ,M. There exist several
Monte Carlo (MC)-methods for generating samples τ and j according to the distributions
implied by eqs. (2.10) and (2.11), respectively. One of the most simplest is the direct method,
which follows from the standard inversion generatingmethod ofMC-theory [10, 89]: Generate
two random numbers r1 and r2 from the standard uniform distribution U(0, 1) and take

τ = 1
a0(X)

ln( 1
r1
), (2.12a)

j = the smallest integer such that
j

∑
µ=1

aµ(X) ≥ r2a0(X). (2.12b)

Given an initial state X(t0) = X0 at some time t0, the SSA utilizes this generating method to
compute a stochastic realization of X(t). The main steps of the SSA are given in Table 2.1.

12If p(τ ∣ X; t) = 0 or, equivalently, a0(X) = 0, no further reaction can occur in the system (e.g., due to
extinction of all reactant species) and the realization will stay in the absorbing state X, i.e., X(s) = X for all s ≥ t.
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Table 2.1: The stochastic simulation algorithm, cf. [30, 31].

1: Initialize: Set X ← X0 and t ← t0.
2: Evaluate: Compute all aµ(X) and a0(X) = ∑M

µ=1 aµ(X); stop if a0(X) = 0.
3: MC-Step: Draw values for τ and jaccording to eqs. (2.12a) and (2.12b), respectively.
4: Update: Set X ← X + v j and t ← t + τ.
5: Iterate: Go to step 2 or stop simulation.

Other Exact Simulation Algorithms

We note that two random numbers are used in each iteration of Gillespie’s Direct Method.
In [30], D. T. Gillespie proposed a second algorithm, the First Reaction Method, where the
putative times to the next Rµ firings, µ = 1, . . . ,M, are calculated in every iteration step
and only the earliest of those is accepted. This method also generates values for τ and j in
exact agreement with p(τ, j ∣X; t) as given in eq. (2.9), but requires M random numbers per
iteration and is thus less efficient than the Direct Method.

Another exact stochastic simulation algorithm, the Next Reaction Method, was introduced
by Gibson & Bruck in [32, 90]. The Next Reaction Method is a modified version of the
First Reaction Method. However, it has the potential of being more efficient than the SSA
if the system includes many species and reactions, large N and M, respectively. It requires
per iteration only one random number and a computational time that is proportional to
O(lnM). The reduction in numerical costs is realized by storing the putative next firing
times of all reactions in an indexed priority cue. This priority cue includes a binary tree
structure, dynamically constructed such that each parent node has an earlier next firing time
than either of its children nodes. The costs of updating this tree structure areO(lnM). As
further proven in [32], re-use of the next firing times of all reactions that do not fire becomes
statistically correct under some special transformation. By employing this transformation, the
Next Reaction Method consumes only one random number per iteration. For further details
we refer to [32, 90]; further exact simulation methods have been reviewed in [10, 91, 92].

2.2.4 Approximate Stochastic Simulation Approaches

It is important to notice that the lower limit of computational costs of an exact stochastic simu-
lation is dictated by the number of single reaction events that have to be realized. This renders
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exact indirect methods like the SSA numerically impractical when applied to larger systems
that include many rapidly firing reactions or species present in large numbers. Therefore, ex-
actness in the simulation of the stochastic process X(t) is usually sacrificed in order to reduce
the computational costs [10], as done, for instance, in tau-leaping methods, e.g., [33, 34, 39–43],
or approaches that exploit a kind of quasi-steady state approximation (QSSA), e.g., [46–52, 93].
Below, we outline the assumptions underlying these approaches and briefly discuss resulting
simulation strategies, mainly following [10, 33].

The Tau-Leaping Approach

In tau-leaping methods it is assumed that given X(t) = X then there exists a time increment
τ > 0 that satisfies the following Leap Condition [33]: No reaction propensity appreciable
changes its value during [t; t + τ), i.e., for every µ = 1, . . . ,M it holds

aµ(X(s)) ≈ aµ(X) ∀s ∈ [t; t + τ). (2.13)

Of course, condition (2.13) will be exactly satisfied if τ is chosen so small that no reaction fires
in [t; t + τ), as done in an exact stochastic simulation. But then one would also obtain no
computational benefit. The idea of tau-leaping methods is to choose larger values for τ and
to simulate all events that are likely to occur in [t; t + τ) simultaneously. The error resulting
from such ‘leap’ will then depend on the quality of the approximation made in eq. (2.13).

To outline the tau-leaping approach, we assume for the moment that condition (2.13) holds.
Then, a possible state of the system at time t + τ can be approximated by

X(t + τ) eq. (2.6)= X(t) +
M
∑
µ=1

ξµP µ(
ż t+τ

t
aµ(X(s)) ds) ≈ X(t) +

M
∑
µ=1

ξµP µ(aµ(X(t))τ).

(2.14)
This equation is the basic tau-leaping formula [33]. As pointed out in [88], it is equivalent to
defining an (explicit) Euler-type approximation to eq. (2.6), suggesting an obvious strategy
for approximately doing a stochastic simulation [10]: (i) given X(t) = X, choose a value
for τ satisfying condition (2.13), (ii) generate samples Kµ, µ = 1, . . . ,M, of Poisson random
variables with mean aµ(X)τ, (iii) update the state X ← X +∑M

µ=1 ξµKµ and time t ← t + τ,
and (iv) continue with (i) or stop simulation. For sufficiently large values of the samples Kµ

generated in each iteration, such approximate simulation will then in principle be faster than
a corresponding exact stochastic simulation. However, since both, the approximation quality
and the gain in computational speed, will depend on τ, the practical question arrises how to
efficiently determine appropriate values for the leap-size τ?
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As the propensity of a source-like reaction is a constant function, condition (2.13) is always
satisfied in this case. But in general the propensity function will depend on the number of
molecules X. However, X changes only by ξµ with any Rµ firing, which is typically in the
range of one or two molecules. The Leap Condition (2.13) can thus always be satisfied if
species are present in sufficiently large numbers [15, 33], and the approximation error can be
kept small by choosing τ in such way that the relative change in the level of all reactants in
[t; t + τ) is negligible. Hence, given X(t) = X it has to hold

∣∆τX i(t)∣≪ Xi ∀i ∈ Ir ,

where ∣∆τX i(t)∣ ∶= ∣X i(t + τ) − Xi ∣ ≈ ∣∑M
µ=1 ξµiP µ(aµ(X)τ)∣ is the absolute change in X i

during [t; t + τ), and Ir is the index set of all reactants, i.e., i ∈ Ir if and only if srµi > 0 for some
µ = 1, . . . ,M. By enforcing bounds on the mean and variance of ∣∆τX i(t)∣ with respect to
X i(t), an efficient and currently widely used strategy for an appropriate τ-selection has been
proposed in [94]. There also exist approaches to avoid the possibility of driving some number
of molecules negative, which can occur in a leap-step if the random samples Kµ associated
with reactions that decrease a common species are too large. These approaches are usually
based on strategies where such critical reactions are monitored and simulation is switched to
the exact SSA if necessary [95], or where the unbounded Poisson random numbers Kµ are
approximated by bounded binomial [39, 40, 96] or multinomial [97] random numbers.

If the chemical system is stiff due to the presence of well-separated fast and slow reactions,
simulations based on the tau-leaping formula (2.14) or any other explicit leaping scheme [33,
39, 40] will proceed slowly. Because then the leap-size τ has to be restricted to the time scale
of the system’s fastest mode in order to keep the approximation error small [10]. Following
well-know strategies to numerically solve stiff ODEs, partially implicit tau-leaping methods
have been developed [34, 42] that are able to produce significantly faster simulations than
explicit tau-leaping methods for stiff systems. However, these methods usually suffer from a
damping effect: The variance generated from the underlying implicit tau-leaping formula is
much smaller than the exact value [10]. This damping effect can be reduced (a) by combining
implicit tau-leap steps with a sequence of much shorter explicit tau-leap or SSA steps, a
strategy called down-shifting [34], or (b) by employing higher-order approximation formulas
like the trapezoidal rule [41, 98] or implicit second-order weak Taylor schemes [43]. Other
methods to stochastically simulate stiff systems are either based on the idea of eliminating the
fast modes through a kind of QSSA, discussed below, or follow a hybrid approach where fast
reactions are approximated as continuous processes, see Chapter 3.
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The QSSA-Based Approach

One strategy to stochastically simulate stiff systems relies on the idea underlying the probably
best-known model of enzyme kinetics, the Michaelis–Menten approximation [12, 13, 99],
where the subset of enzyme-related species (free enzyme and enzyme–substrate complex)
is assumed to be asymptotically at steady state on the time scale of interest. Such type of
approximation is known as the quasi-steady state approximation (QSSA), cf. [100, 101]. By
eliminating the fast modes in stiff systems, the QSSA generally reduces the model complexity
and, consequently, also the computational complexity. The QSSA has been applied to stochas-
tic reaction kinetics in several different ways [46–52, 93]. In Chapter 5, we use a QSSA-like
approach to eliminate a stochastic model of gene expression in order to derive effective protein
synthesis rates. In the following, we outline the main steps of QSSA-based approaches to
accelerate the stochastic simulation of chemical systems.

To employ a QSSA for stochastic simulation, the first step is to identify a (provisional)
partitioning of the reactions into fast and slow subsets,R f andRs, where reactions those
propensity functions tend to have large values are assigned to R f and all other reactions
are assigned to Rs. Such partitioning can be based on some (biological) insight into the
system [46, 49], or by recording and comparing the number of firings of each reaction
channel during a few SSA runs [48]. It can be further verified by testing stochastic stiffness
conditions of the fast modes, for details see [47], or adaptively changed during simulation
based on current propensity values [51, 52]. If a partitioning into fast and slow reactions is not
obvious in a given model, then this might indicate that the system is not really stiff.

Usually, one is interested mostly in the effective dynamics on the slow time scale associated
withRs and hence wants to eliminate the fast modes associated withR f , which can be done by
applying the QSSA. Henceforth, we adopt the notation used in [47], and continue by defining
a partitioning of the species into ‘fast’ and ‘slow’ species, S f and S s, respectively, which is
induced by the reaction partitioning as follows: A species those number of molecules gets
changed by a fast reaction is assigned to S f ; all other species that exclusively get changed by
slow reactions (but not by fast ones) are assigned to S s. The process X(t) can be rearranged
correspondingly as X(t) = (X f (t), Xs(t))T, where X f (t) and Xs(t) denote the process
composed by the fast and slow species state variables, respectively. It is important to note that
the processes X f (t) and Xs(t) are generally not independent of each other. Following [47],
we thus define the virtual fast process X̂ f (t) as the process composed by the same fast species
state variables as X f (t) but evolving under only the fast reactionsR f .
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2.2 Stochastic Reaction Kinetics

With all slow reactions turned off, the QSSA can be applied to X̂ f , i.e., we assume that X̂ f

approaches a well-defined quasi-stationary PDF u(X̂ f ∣X f , Xs; t) for given X(t) = (X f , Xs)T

before the next slow reaction is likely to fire. Then, the propensity function asµ(X f , Xs) of a
reactionRs can be approximated on the slow time scale by

āsµ(X f , Xs) ∶=∑
X̂ f

asµ(X̂ f , Xs)u(X̂ f ∣X f , Xs; t), (2.15)

which is the average over the fast variables, treated as these were distributed according to the
asymptotic form to which the virtual fast process X̂ f relaxes, see further [46, 47, 52]. Given
u(X̂ f ∣X f , Xs; t), the system can be effectively propagated on the slow time scale by simulating
only the slow reactions, i.e., using a method such as the SSA but replacing the propensity
asµ(X f , Xs) of each slow reactionRs by its average āsµ(X f , Xs) as given in eq. (2.15).

Indirect methods utilizing a QSSA mainly differ in the way the averaged propensities
āsµ(X f , Xs) of the slow reactions are computed. In [46–49] this is realized by considering the
first moments of u(X̂ f ∣X f , Xs; t), where moments are computed from either exact (if avail-
able) or approximate analytic expressions of u(X̂ f ∣X f , Xs; t). Such approach benefits from
the fact that once algebraic expressions for āsµ(X f , Xs) have been derived, these can be directly
used for a simulation on the slow time scale. However, generalizing this approach to complex
reaction networks is not straightforward. In [51, 52], the averaged propensities āsµ(X f , Xs)
are approximated by a small sequence of relatively short SSA-runs of X̂ f . Of course, such
approach requires the successive approximation of āsµ(X f , Xs) after each slow reaction step
and is hence more expensive than the previous mentioned approach. Nevertheless, it offers a
more general and adaptable way of employing the QSSA that is still capable of substantial
computational savings compared to exact SSA-simulations of stiff system, see [51, 52].

2.2.5 The Chemical Master Equation

In the previous subsections, we studied methods to simulate the stochastic process X(t). Such
indirect methods suffer from the disadvantages of a MC-based approach (see Chapter 1), as
the statistics of X(t) have to be approximated by an ensemble of stochastic realizations. This
can be avoided if we directly solve for the PDF P(X; t ∣X0; t0) of X(t) for a given initial state
X0 ∈ NN

0 at time t0, defined as

P(X; t ∣X0; t0) ∶= P[X(t) = X ∣ X(t0) = X0],
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for every X ∈ NN
0 and t ≥ t0. The function P(X; t ∣X0; t0) can be physically interpreted as

follows: If an ensemble of identical chemical systems started in the same initial state X0 at
time t0, then P(X; t ∣X0; t0) gives the fraction of systems that are in state X at time t ≥ t0. The
time-evolution equation of P(X; t ∣X0; t0) is the chemical master equation (CME) that stands
at the basis of the stochastic framework. As shown by D. T. Gillespie [82], the CME can be
directly derived from the fundamental hypothesis of stochastic reaction kinetics. Below, we
outline Gillespie’s derivation of the CME, referring to [82] for further details.

Derivation of the Chemical Master Equation

Consider an infinitesimal time interval [t; t + δt) and the probability P(X; t + δt).13 We
can specify P(X; t + δt) by considering all events that can lead the system to state X during
[t; t + δt). These events are: (i) The system was in X at time t and no reaction fired in
[t; t + δt). The probability of this event is given by P(X; t) times the probability P0[X; t] that
no reaction fired in [t; t + δt) given X(t) = X. (ii) For µ = 1, . . . ,M, the system was in state
(X − ξµ) ∈ NN

0 at time t and reaction Rµ fired once in [t; t + δt). The probability of each of
these events is given by P(X − ξµ; t) times the probability Pµ[X − ξµ; t] that Rµ fired once
in [t; t + δt) given X(t) = X − ξµ. (iii) The system reached X by multiple reaction events in
[t; t + δt), which has probability o(δt) as δt → 0.

We observe that the events under (i)–(iii) are mutually exclusive, such that P(X; t + δt) is
given by the sum of their probabilities, i.e.,

P(X; t + δt) = P(X; t)P0[X; t] +
M
∑
µ=1

P(X − ξµ; t)Pµ[X − ξµ; t] + o(δt), (2.16)

as δt → 0.14 By the definition of a propensity, we have Pµ[X − ξµ; t] = aµ(X − ξµ)δt + o(δt),
for every µ = 1, . . . ,M, and similarly P0[X; t] = 1 −∑M

µ=1 aµ(X)δt + o(δt). Putting things
together, we thus have

P(X; t + δt) = P(X; t)(1 −
M
∑
µ=1

aµ(X)δt) +
M
∑
µ=1

P(X − ξµ; t)aµ(X − ξµ)δt + o(δt). (2.17)

13Henceforth, we omit the dependence on the initial value of X in the notation of its PDF and simply write
P(X; t).

14All terms in eq. (2.16) that correspond to some (X − ξµ) ∉ NN
0 have to be omitted, since P( ⋅ ; t) is only

defined on NN
0 . For convenience, we hence set P(X; t) for all X ∉ NN

0 , here and in the following.
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2.2 Stochastic Reaction Kinetics

Subtracting P(X; t) from both sides of eq. (2.17), dividing by δt and taking the limit δt → 0,
we obtain the CME

∂
∂t

P(X; t) =
M
∑
µ=1

aµ(X − ξµ)P(X − ξµ; t) − aµ(X)P(X; t), (2.18)

a special type of the Kolmogorov forward equation that completely characterizes the statistics
of X.

Solving the Chemical Master Equation

Even though the CME has a relative simple structure, analytical solutions exist only for the
special case where the chemical systems solely include unimolecular reactions [102, 103].
Mathematically speaking, the CME can be considered as a system of coupled ODEs, with one
equation for every possible state X, or, equivalently, as a discrete partial differential equation
(PDE), where continuous derivatives are replace by discrete differences [26]. Now, the main
problem arises from the high dimensionality of the CME, which renders most approaches
computationally infeasible that aim to solve the CME directly. For example, assume we have 5
species whose number of molecules is each limited to the range 0–99, say, than the chemical
system has in total 1005 possible states. In this example, solving the CME thus means to solve
1010 ODEs, which would be a real numerical challenge.

The discrete PDE point of view motivates the use of Galerkin-based approaches to di-
rectly solve the CME, e.g., [26–28]. Modifying these methods to tackle the many degrees
of freedom that result from the high dimensionality of the CME, in combination with a
typical low regularity and multi-modality of its solution, however, is still an ongoing field
of research [26, 28]. Another class of approaches is based on the idea to truncate the state
space to a finite domain that captures enough information of the PDF and, at the same time,
allows to numerically solve the CME, e.g., [25, 29, 104–106]. This method, first suggested by
B. Munsky and M. Khammash [25], is known as the finite state projection (FSP) method,
discussed below.

The Finite State Projection Algorithm: To illustrate the FSP method in the following, we first
notice that the infinitesimal generator A ∶= limt→0+(P(t) − I)/t for the process X, where
P(t) ∶= P( ⋅ ; t), is given by eq. (2.18) as

(AP( ⋅ ; t))(X) =
M
∑
µ=1

aµ(X − ξµ)P(X − ξµ; t) − aµ(X)P(X; t), (2.19)
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such that we can write the CME in operator form as the linear equation15

∂
∂t

P(t) = AP(t). (2.20)

The generatorA in eq. (2.20) is a matrix with a usually large, possibly infinite number of rows
and columns. As can be seen from eq. (2.19), if the state space is finite, the generator matrix
A obeys a special structure: It is a square matrix with non-negative diagonal elements and
non-positive off-diagonal elements such that every column sum is exactly zero. It follows from
the Gershgorin Circle Theorem [107] and this special structure that at least one eigenvalue of
A is equal to zero and all others have a non-positive real-part.

The FSP method utilizes the linearity of the CME. Let us denote by

X ∶= {X ∈ NN
0 ∶ X1 ≤ X1 ≤ X1, . . . , XN ≤ XN ≤ XN}

a finite subspace X ⊂ NN
0 for lower and upper truncation vectors X = (X1, . . . , XN)T ∈ NN

0

and X = (X1, . . . , XN)T ∈ NN
0 , respectively, satisfying X i ≤ X i for all i = 1, . . . ,N . Let further

AX denote the restriction ofA to the truncated state space X . Then, the solution PX (t) to
the corresponding CME, i.e., ∂

∂tPX (t) = AXPX (t), is given as

PX (t) = exp{AX t}PX (0), (2.21)

where exp{A} ∶= ∑∞n=0 (A)
n/n! denotes the matrix exponential of A, and PX (0) is the initial

PDF P(0) at time t = 0 restricted toX . Now, in [25] it is proven that, if∑X∈X PX (X; t) ≥ 1 − ε
for some ε ≥ 0 and t > 0, then

PX (X; t) ≤ P(X; t) ≤ PX (X; t) + ε,

for every X ∈ X . This result leads to the FSP algorithm, where the state space X is gradually
expanded until a sufficient approximation of P(X; t) is computed, see Table 2.2

To apply the FSP algorithm, two practical questions arise: (1) How to solve eq. (2.21)
efficiently; and (2) How to construct the truncated state space X appropriately? The first
problem has been addressed in [105], where an improved FSP algorithm is presented that uses
a Krylov-based approximation to eq. (2.21). Other suggested approaches to solve eq. (2.21)

15So far, we considered to solve the CME for deterministic initial values, i.e., X(t0) = X0 such that
P(X; t0) = δX0(X) with δX0(X) denoting Kronecker’s delta function. However, we note that solving the CME
for arbitrary initial probability distributions p0(X), with p0(X) ≥ 0 for all X ∈ NN

0 and∑X∈NN
0
p0(X) = 1, can

always be reduced to deterministic initial value problems by exploiting the linearity of the CME [103].
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2.2 Stochastic Reaction Kinetics

Table 2.2: The finite state projection algorithm, cf. [25].

1: Initialize: Choose t > 0, P(0) and ε ≥ 0, and select an initial X .
2: Evaluate: Solve PX (t) = exp{AX t}PX (0) for given X .
3: Iterate: If∑X∈X PX k(X; t) < 1 − ε, expand X and got to step 2; otherwise, stop.

include a sparse grid method [35], a dynamical low-rank approach [108] or the exploitation
of multiple time scales [104]. Problem (2) has been studied in [25, 29, 104, 109], for instance,
and is usually addressed by concepts of reachability or some special insight into the system
under consideration. In [93], a QSSA-based approach (see Subsection 2.2.4) has been used to
reduce the dimensionality of a stochastic model of gene expression and the resulting CME,
describing the evolution on the slow time scale, was numerically solved by a simple Euler
method. In Chapter 4, we present a different approach to reduce the dimensionality of the
CME. Our idea is to eliminate those species from the discrete state space that are present in
large numbers and can hence be appropriately represented by their expected levels, which is
in line with the deterministic formulation of reaction kinetics, see Section 2.3.

2.2.6 The Chemical Fokker–Planck Equation and the Chemical Langevin
Equation

Under a series of assumptions, the CME can be approximated by a less refinedmodel, the chem-
ical Fokker–Planck equation (CFPE), e.g., see [16, 110]. A simple but non-rigorous derivation
of the CFPE was given by H. A. Kramers [111] and J. E. Moyal [112]. It relies on the assumption
that at any time t the number of molecules of all species are very large, i.e. X i(t)≫ 1 for all
i = 1, . . . ,N , such that the discrete-state Markov process X(t) = (X1(t), . . . , XN(t))T can ef-
fectively be approximated by a continuous-stateMarkov processY(t) ∶= (Y1(t), . . . ,YN(t))T

taking values in RN
≥0, where Y i(t), i = 1, . . . ,N , gives the amount of species Si at time t,

cf. [15, 110].16 The time-evolution equation of the PDF P(Y ; t) of Y(t) is given by the CME

∂
∂t

P(Y ; t) =
M
∑
µ=1

aµ(Y − ξµ)P(Y − ξµ; t) − aµ(Y)P(Y ; t). (2.22)

16Such continuous approximation is usually motivated by introducing a scaling parameter Ω, related to the
volume of the system, as we discuss it in the context of deterministic reaction kinetics in the following sections.
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A second assumption is that the functions fµ(Y) ∶= aµ(Y)P(Y ; t) in eq. (2.22) are analytic
with respect to Y , such that fµ(Y − ξµ) can be represented by it Taylor series expansion about
Y , i.e.,

fµ(Y − ξµ) = fµ(Y) +
∞
∑
∣γ∣≥1

N
∏
i=1

(−ξµi)γ i

γi!
( ∂

∂Yi
)
γ i
fµ(Y), (2.23)

with multi-index γ = (γ1, . . . , γN) ∈ NN
0 and ∣γ∣ = γ1 + . . . + γN . Substituting eq. (2.23) into

eq. (2.22) gives the Kramers–Moyal expansion of the CME

∂
∂t

P(Y ; t) =
M
∑
µ=1

∞
∑
∣γ∣≥1

N
∏
i=1

(−ξµi)γ i

γi!
( ∂

∂Yi
)
γ i
[aµ(Y)P(Y ; t)]. (2.24)

By terminating the Taylor series in eq. (2.24) after the second term, we obtain the CFPE, a
second-order PDE of the form

∂
∂t

P(Y ; t) =
M
∑
µ=1
(−

N
∏
i=1

ξµi
∂

∂Yi
+ 1
2

N
∏
i , j=1

ξµi ξµ j
∂2

∂YiYj
)aµ(Y)P(Y ; t), (2.25)

which replaces the massive ODE-system form of the CME. However, as the CFPE is ob-
tained by an uncontrolled, perfunctory truncation of the Taylor series in the Kramers–Moyal
expansion (2.24), its validity had been questioned by several authors, see further [16, 110, 113].

In [15], D. T. Gillespie gave a more rigorous derivation of the CFPE, reviving the question
of its validity. More precisely, he derived the chemical Langevin equation (CLE), a stochastic
differential equation (SDE) of the form

d
dt

Y(t) =
M
∑
µ=1

ξµaµ(Y(t)) +
M
∑
µ=1

ξµ
√

aµ(Y(t))Γµ(t), (2.26)

with Γµ(t), µ = 1, . . . ,M, denoting temporally uncorrelated, independent Gaussian white
noises, satisfying E[Γµ(t)] = 0 and E[Γµ(t)Γ j(s)] = δµ jδ(t − s), where the first delta func-
tion is Kronecker’s and the second is Dirac’s, see [89, 114]. The CLE (2.26) is equivalent to
the CFPE (2.25), i.e., its solution generates exact sample paths of the CFPE, cf. [16].

Gillespie’s derivation of the CLE relies on the assumption that two dynamical conditions
are satisfied [15]: If the system is in state X at time t, then there must exist a time increment
τ > 0 such that (a) none of the reaction propensities changes significantly during the time
interval [t; t + τ), and (b) the expected number of firings of each reaction Rµ in [t; t + τ)
must be much larger than 1.
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We observe that condition (a) is the Leap Condition (2.13) assumed in the derivation of
the basic tau-leaping formula

X(t + τ) = X(t) +
M
∑
µ=1

ξµP µ(aµ(X(t))τ). (2.27)

As discussed in Subsection 2.2.4, condition (a) can always be satisfied if the number of
molecules are sufficiently large. Condition (b) further stipulates that the mean of each Poisson
random variable in eq. (2.27) is much larger than 1, i.e.,

E[P µ(aµ(X(t))τ)] = aµ(X(t))τ ≫ 1. (2.28)

Since a Poisson random variable with intensity λ, assuming λ ∈ N, can be thought of as the
sum of λ independent Poisson random variables each with intensity 1, see Subsection 2.2.2,
for large λ such random variable can be well approximated by a normal random variable with
the same mean and variance, as stated by the central limit theorem (CLT):

Theorem 2.2.3 (CLT [85]). Let X1, . . . , Xn be a sequence of iid random variables with common
mean µ and variance σ2. Then, the distribution of

∑n
i=1 Xi − nµ
σ
√
n

converges to the standard normal distributionN (0, 1) as n →∞.

Thus, condition (b), or more precisely inequality (2.28), allows to approximate the Poisson
random variables in eq. (2.27) by statistically independent normal random variables as follows

P µ(aµ(X(t))τ) ≈ aµ(X(t))τ +
√

aµ(X(t))N µ(0, 1)
√
τ (µ = 1, . . . ,M).

It should be noticed that by employing this approximation to eq. (2.27), i.e., replacing integer
Poisson random variables by real normal random variables, one effectively approximates
the discretely changing, integer-valued process X(t) by a continuously changing, real-valued
process Y(t) with

Y(t + τ) = Y(t) +
M
∑
µ=1

ξµaµ(Y(t))τ +
M
∑
µ=1

ξµ
√

aµ(Y(t))N µ(0, 1)
√
τ.

If we make some notational changes: Denote τ by dt, substitute dY(t) ∶= Y(t + dt) − Y(t)
and introduce temporally uncorrelated, independent Wiener processes (Brownian motion)
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W µ(t), µ = 1, . . . ,M, satisfying dW µ(t) ∶=W µ(t + dt) −W µ(t) =N µ(0, 1)
√
dt; we can

write the above equation as

dY(t) =
M
∑
µ=1

ξµaµ(Y(t))dt +
M
∑
µ=1

ξµ
√

aµ(Y(t))dW µ(t),

which is the Itô differential form of the CLE, mathematically equivalent to the white-noise
form (2.26), cf. [15, 89].

Even though, questions regarding the general validity and accuracy of the CFPE/CLE
approximation are not answered by Gillespie’s derivation and still subject of ongoing research,
see [113, 115–117], it shows that a continuous approximation of X is justified if the above
conditions (a) and (b) are satisfied. A large copy number of every species suffices to ensure that
condition (a) is satisfied. Condition (b) essentially requires that all reactions have sufficiently
large propensity values. Since a propensity function generally scales with the number of
molecules, we thus expect that a large number regime also suffices to ensure that condition (b)
is satisfied. In Section 2.4, we study this relation more closely with respect to the continuous
approximation made in deterministic reaction kinetics.

2.3 Deterministic Reaction Kinetics

In deterministic reaction kinetics, the state of the system is described by a continuous variable
x ∶= (x1, . . . , xN)T ∈ RN

≥0 that is typically related to the number of molecules by

xi ∶= Xi/Ω (i = 1, . . . ,N), (2.29)

where Ω ∈ R>0 denotes some scaling factor. According to eq. (2.29), the unit of x is equal to
the inverse unit ofΩ. Typically, this scaling factorΩ is related to the volume of the system. For
instance, Ω = NA ⋅ V , where NA ≈ 6.02 × 1023mol−1 denotes the Avogadro constant, such
that x describes the molar concentrations of the species. As outlined above, such continuous
approximation is justified if Xi ≫ 1, for all i = 1, . . . ,N . Obviously, if further Ω≫ 1, then
the scaled net changes ξµ/Ω are small compared to the intensive variable x = X/Ω, such that
fluctuations in the species levels caused by the reactions become negligible. Deterministic
reaction kinetics can hence be understood as an approximation under such large-size system
assumption, cf. Section 2.4.
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2.3.1 Reaction Rate

In deterministic reaction kinetics, the rate vµ of a reaction Rµ is customarily defined with
respect to the (measurable) change in the amount of a species caused by the firings of Rµ

in an infinitesimal time interval, cf. [12, 13, 81]. Hence, a reaction rate is regarded in the
deterministic framework as

vµ(x) = average number of Rµ firings per Ω and per unit time

given that the system is in state x , (2.30)

see [30]. The unit of vµ is thus always equal to the product of the inverse units of Ω and time.

Law of Mass Action

The general form of the rates of elementary reactions is given by the law of mass action, first
formulated by C. M. Guldberg and P. Waage in 1864 [118]:

The rate of an elementary reaction Rµ is proportional to the product of molar
concentrations of all Rµ reactants raised to the power of their stoichiometric
coefficients, where the factor of proportionality is called reaction rate constant.

Let kµ denote the rate constant of an elementary reaction Rµ, then the law of mass action
predicts the rate equation

vµ(x) = kµ
N
∏
i=1
(xi)

srµi . (2.31)

The rate vµ of an elementary reaction Rµ is thus a simple multivariate polynomial function of
the species levels xi , i = 1, . . . ,N . The degree of vµ, called reaction order, is determined by
the stoichiometric coefficients srµi of the Rµ reactant species. More precisely, the order of an
elementary reaction Rµ is equal to its molecularity ∣srµ ∣ = ∑N

i=1 srµi , where each stoichiometric
coefficient srµi gives the partial order of Rµ with respect to Si .17

Reaction Rate Constant

From eqs. (2.30) and (2.31), we find that the unit of the rate constant kµ of an elementary
reaction Rµ depends on the reaction order: (0) For a source-like reaction R0 the unit of k0 is

17It should be noted that the partial orders, molecularities and stoichiometric coefficients are only identical
in the case of elementary reactions. The partial order of a stepwise reaction is usually a real-valued, possibly
negative number, and the concept of molecularity is not defined in that case, see further [80, 81].
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equal to the product of the inverse units of Ω and time, (1) for a unimolecular reaction R1 the
unit of k1 is equal to the product of the inverse unit of time, and (2) for every bimolecular
reaction R2 the unit of k2 is equal to the unit of Ω times the inverse unit of time.

In general, the rate constant kµ of a reaction Rµ also depends on the absolute temperature
T and activation energy Ea as described by the (empirical) Arrhenius equation [13, 80, 81]

kµ = Aexp{− Ea

kBT
}, (2.32)

where kB denotes the Boltzmann constant and Ea is the activation energy in molecular units.
The pre-exponential factor A in eq. (2.32) is related to the frequency of collisions of Rµ reactant
molecules and has the same unit as kµ. As predicted by collision theory and transition state
theory of chemical kinetics, the factor A also weakly depends on the absolute temperature
T , see [12]. In contrast to the specific probability rate constant cµ, however, we find the rate
constant kµ to be independent from the system’s volume V .

2.3.2 Representation with ODEs

Let ηµ(t) denote the average number of firings of a reaction Rµ per Ω until time t, with
ηµ(0) = 0 for all µ = 1, . . . ,M. According to the definition of a reaction rate vµ , see eq. (2.30),
in classical reaction kinetics ηµ(t) is considered to be the solution of the ODE

d
dt

ηµ(t) = vµ(x(t)), with ηµ(0) = 0,

or in integral form

ηµ(t) =
ż t

0
vµ(x(s)) ds.

The species levels x(t), necessary for evaluating are given by the net changes ξµ via

x(t) = x(0) +
M
∑
µ=1

ξµηµ(t) = x(0) +
M
∑
µ=1

ξµ
ż t

0
vµ(x(s)) ds, (2.33)

for some initial levels x(0) = x0 at time t = 0. Differentiating eq. (2.33) with respect to time t
shows that x(t) is given as the solution of the initial value problem

d
dt

x(t) =
M
∑
µ=1

ξµvµ(x(t)) ∶=f (x(t)), with x(0) = x0. (2.34)
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Eqs. (2.34) build the usual ODE-model of deterministic reaction kinetics, a coupled system
of M autonomous ODEs of first order. If the considered chemical system does not include a
source-like reaction, then thisODE-system is homogeneous; otherwise it is non-homogeneous.
If all reactions Rµ are at most of first order, then all rates vµwill be constant or linear functions
such that eqs. (2.34) form a system of linear ODEsand an analytical solutionmight be available.
Given the large variety of well-developed numerical methods for the integration of ODEs,
cf. [119–122], finding a numerical solution of the ODE-model of deterministic reaction kinetics
is in general not problematic, even for large and more complex, possibly stiff systems. The
following well-known result in the study of differential equations guarantees local existence
and uniqueness of a solution x(t) of eqs. (2.34).

Theorem 2.3.1 (Picard–Lindelöf Theorem, cf. [119]). Let f ∶ Rn → Rn be a locally Lipschitz
continuous function, i.e., there exists a constant L > 0 such that

∥ f (x) − f (y)∥ ≤ L∥x − y∥, for all x ∈ Rn and y ∈ Br(x),

where Br(x) ∶= {y ∈ Rn ∶ ∥x − y∥ ≤ r} is some closed r-neighborhood around x with r > 0.18
Then, the initial value problem

d
dt

x(t) = f (x(t)), with x(0) = x0.

has a unique solution defined on an interval [0;T], with T > 0.

In our case, every component of the right hand side f is a polynomial function, because it is
a linear combination of the reaction rates vµ that are polynomial functions by definition. Since
every polynomial function is Lipschitz continuous on any bounded interval of its domain
of definition, it follows that f is also locally Lipschitz continuous. Thus, from Theorem 2.3.1
we know that the ODE-system (2.34) uniquely determines x(t) on some finite time interval.
However, it should be noted that without any additional assumptions this result applies only
locally, i.e., the solution of eqs. (2.34) might blow up and reach infinity in finite time, cf. [119].

Example 2.3.1. LetM = N = 1, consider the reaction R1∶ 2 S1 GGGA 3 S1, such that ξ1 = 1 and

v1(x) = k1x2, and assume that x0 > 0. Then, the solution of the ODE-model (2.34) is given
by x(t) = x0/(1 − k1x0t), and we have x(t)→∞ as t → 1/(k1x0) <∞.

18Here and in the following, ∥ ⋅ ∥ denotes the Euclidian norm on an n-dimensional vector space Rn , i.e.,
∥x∥ =

√
∑n

i=1 x i 2 for x ∈ Rn .
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2.4 The Relationship between Stochastic and Deterministic
Reaction Kinetics

In the sequel, we study the relationship between the stochastic and the deterministic for-
mulation of reaction kinetics. We start by examining the relation between the propensity
aµ and the rate vµ of a reaction Rµ, see Subsection 2.4.1. That followed, we identify the
continuous–deterministic process x(t) that satisfies eq. (2.33) as the large-size system limit of
the discrete–stochastic process X(t) satisfying eq. (2.6) for every finite time t. This well-known
limit behavior of the stochastic process X(t), known as its thermodynamic limit, was first
pointed out by T. G. Kurtz in [63]. In Subsection 2.4.2, we recall Kurtz’s Theorem that follows
from his more general results on the limit behavior of Markov jump processes [123, 124].

The deterministic process x(t) is casually interpreted as describing the average system
dynamics. By computing the evolution of the CME average, it is shown in Subsection 2.4.3
that this interpretation is in general incorrect. From Kurtz’s result, however, one expects
such relation to hold for general reaction systems whenever the species are present in large
numbers and the system is sufficiently close to the thermodynamic limit. We study this
relation more closely in Subsection 2.4.4, by seeking an approximate solution to the CME
using a Wentzel–Kramers–Brillouin (WKB)-ansatz, which provides an alternative approach
to derive the ODE-model of deterministic reaction kinetics as the large-size system limit of
stochastic reaction kinetics, cf. [18]. This will also serve as a preliminary to Chapter 4, where
the same techniques are applied to the large copy number subspace of a system in order to
derive a hybrid stochastic–deterministic solution of the CME.

2.4.1 The Relation between Propensity and Rate of a Reaction

In stochastic reaction kinetics the number of firings of a reaction Rµ is modeled as a non-
homogeneous Poisson process with intensity aµ. Hence, aµ(X) gives the expected number
of Rµ firings per unit time if the system is in state X, see eq. (2.4). In deterministic reaction
kinetics, the rate vµ(x) gives the average number of Rµ firings per Ω and per unit time, given
the system is in state x = X/Ω. Thus, from the large-size system assumption underlying the
continuous approximation of deterministic reaction kinetics (see Section 2.3), we infer that
the reaction rate vµ(x) approximates the Ω-scaled propensity αµ(x) ∶= aµ(X = xΩ)/Ω for
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2.4 The Relationship between Stochastic and Deterministic Reaction Kinetics

Ω≫ 1 and Xi ≫ 1, i = 1, . . . ,N . Below, we study this relation more closely for the case of
elementary reactions.

The rate vµ of an elementary reaction Rµ is given by the law of mass action as

vµ(x) = kµ
N
∏
i=1
(xi)

srµi , (2.35)

where the rate constant kµ, is independent of Ω, see Subsection 2.3.1. By eqs. (2.2) and (2.3),
the propensity aµ of an elementary reaction Rµ is given as

aµ(X) = cµhµ(X) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

cµ
N
∏
i=1

Xi!
srµi!(Xi − srµi)!

if Xi ≥ srµi for all i = 1, . . . ,N ,

0 otherwise,
(2.36)

where we can rearrange hµ(X) as follows

hµ(X) =
N
∏
i=1

Xi!
srµi!(Xi − srµi)!

= 1
∏N

j=1(srµ j!)

N
∏
i=1

srµ i−1

∏
s=0
(Xi − s), (2.37)

if Xi ≥ srµi for all i = 1, . . . ,N . In order to compare aµ(X) and vµ(x), we substitute Xi = xiΩ
in eq. (2.36) and divide by Ω, which gives the Ω-scaled propensity αµ(x) as

αµ(x) =
aµ(xΩ)

Ω
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

cµΩ∣s
r
µ ∣−1

∏N
j=1(srµ j!)

N
∏
i=1

srµ i−1

∏
s=0
(xi −

s
Ω
) if xi ≥

srµ i
Ω for all i = 1, . . . ,N ,

0 otherwise,

(2.38)

where ∣srµ ∣ = ∑N
i=1 srµi denotes the molecularity of Rµ. The Ω-scaled propensity αµ gives the

expected number of Rµ firings per Ω and per unit time in stochastic reaction kinetics.
We observe that if xi = 0, for some i = 1, . . . ,N , then the related factors in αµ(x) and vµ(x)

are the same, i.e., for srµi/Ω = xi = 0, the corresponding factor in αµ(x) as well as in vµ(x) is
equal to one; otherwise, if srµi/Ω > xi = 0, then both functions αµ(x) and vµ(x) are equal to
zero. Hence, we consider xi > 0 for every i = 1, . . . ,N and assume that xi = Xi/Ω remains
constant as Ω →∞ and Xi →∞ (which is the usual definition of the thermodynamic limit,
see [10, 64]). As the stoichiometric coefficients srµi are some non-negative integers (usually

35



Modeling of Biochemical Reaction Networks

srµi ≤ 2), we find that xi ≥ srµi/Ω is always satisfied for sufficiently large Ω. The Ω-scaled
propensity αµ(x) is thus given by eq. (2.38) as

αµ(x) = ĉµ
N
∏
i=1

srµ i−1

∏
s=0
(xi −

s
Ω
) = ĉµ

N
∏
i=1

⎡⎢⎢⎢⎢⎣
(xi)

srµi
srµ i−1

∏
s=0
(1 − s

xiΩ
)
⎤⎥⎥⎥⎥⎦

= ĉµ
N
∏
i=1
(xi)

srµi(1 +O(Ω−1)), (2.39)

as Ω →∞ and Xi →∞ for every i = 1, . . . ,N , where we substituted

ĉµ ∶= cµ
Ω∣s

r
µ ∣−1

∏N
j=1(srµ j!)

. (2.40)

Therefore, the leading order terms of αµ(x) are of the same form as the rate function vµ(x),
compare eqs. (2.39) and (2.35), with the factor of proportionality given by kµ = ĉµ.19 Further-
more, we observe that if srµi ≤ 1 for all i = 1, . . . ,N , then eq. (2.39) holds withoutO(Ω−1).

In summary, the above results show that the rate vµ of an elementary reaction Rµ is the
leading order approximation of the related Ω-scaled propensity αµ in the thermodynamic
limit. If the partial order of all reactant species is less than two, i.e., srµi ≤ 1 for all i = 1, . . . ,N ,
then vµ and αµ are identical.

The Relation between Specific Probability Rate Constant and Reaction Rate Constant

From eqs. (2.39) and (2.40) we infer that the specific probability rate constant cµ of an elemen-
tary reaction Rµ is related to the reaction rate constant kµ of Rµ as follows

cµ = kµ
∏N

i=1 srµi!

Ω∣s
r
µ ∣−1

. (2.41)

Since kµ is independent of Ω, this relation points out the Ω-dependence of cµ.
Only for unimolecular reactions, i.e., ∣srµ ∣ = 1, the specific probability rate constant is

independent of Ω. In a unimolecular reaction, the molecules of a particular species undergo
some prescribed change. It is an empirical fact that for any such reaction encountered in
practice, the rate constant will depend on structural properties of the molecule, and possibly
also on the system temperature, however, it will not depend on the volume of the system, as
comprised by Ω, see [64].

19Since kµ is Ω-independent, the relation kµ = ĉµ implies that ĉµ is also independent of Ω.
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For bimolecular reactions R2, i.e., ∣srµ ∣ = 2, the specific probability rate constant is propor-
tional to the inverse of Ω. This inverse Ω-dependence arises from the collision probability
comprised by cµδt, because the probability that two molecules will collide in the next δt
decreases linearly in a well-stirred system if the confining volume increases, cf. Subsection 2.2.1
and Example 2.2.2.

For a source-like reaction, i.e., ∣srµ ∣ = 0, cµδt gives the probability that new molecules will
be introduced at some uniformly random location inside the system in the next δt. Eq. (2.41)
states that the specific probability rate constant must have the form cµ = kµΩ in order to
behave reasonable in the thermodynamic limit, cf. [64].

The Dependence of a Reaction Propensity on the System Size

The reaction propensity aµ of an elementary reaction Rµ with respect to the rate constant kµ
is given by eqs. (2.36), (2.37) and (2.41) as

aµ(X) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

kµ
Ω∣s

r
µ ∣−1

N
∏
i=1

srµ i−1

∏
s=0
(Xi − s) if Xi ≥ srµi for all i = 1, . . . ,N ,

0 otherwise.

(2.42)

In Table 2.3, the propensities of all relevant elementary reactions are given in terms of kµ and
compared with the related rate functions. As can bee nicely seen from Table 2.3 and eq. (2.42),
a propensity behaves like aµ(X) = O(Ω) as Ω →∞ and Xi →∞ while xi = Xi/Ω remains
constant for all i = 1, . . . ,N , i.e., a propensity diverges linearly to leading order as the system
approaches the thermodynamic limit. In the following, we denote this Ω-dependence of a
propensity by writing aΩµ .

Equivalently, the Ω-scaled propensity αµ of an elementary reaction Rµ, given in terms of
kµ as

αµ(x) =
aΩµ (xΩ)

Ω
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

kµ
N
∏
i=1

srµ i−1

∏
s=0
(xi −

s
Ω
) if xi ≥

srµ i
Ω for all i = 1, . . . ,N ,

0 otherwise,

either (i) remains constant, if srµi ≤ 1 for all i = 1, . . . ,N , or (ii) converges to a constant value,
if some srµi > 1, in the thermodynamic limit. Namely, for all x ∈ RN

≥0, we have αµ(x) = vµ(x)
in case (i), or αµ(x)→ vµ(x) in case (ii), since then αµ(x) = vµ(x) +O(Ω−1) by eq. (2.39).
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2.4 The Relationship between Stochastic and Deterministic Reaction Kinetics

2.4.2 TheThermodynamic Limit

In the following, we explicitly account for the Ω-dependence of a propensity aΩµ and study
the limit behavior of the Ω-dependent Markov jump process XΩ described by

XΩ(t) = XΩ(0) +
M
∑
µ=1

ξµP µ(
ż t

0
aΩµ (XΩ(s)) ds), (2.43)

where the propensity aΩµ of a reaction Rµ is given by eq. (2.42), ξµ denotes the correspond-
ing net change and P µ, µ = 1, . . . ,M, are independent, unit Poisson processes. As before,
XΩ(t) represents the state of the chemical system at time t in terms of number of molecules
X = (X1, . . . , XN)T ∈ NN

0 of the species.
In the previous subsection, we have seen that in the thermodynamic limit, defined as the

limit where the number ofmolecules of all species and the system volume approach infinity, i.e.,
Xi →∞ for all i = 1, . . . ,N and Ω →∞, while the species concentrations x = X/Ω remain
constant, every propensity aΩµ (X = xΩ) diverges linearly to leading order. The Ω-scaled
propensity αµ(x) = aΩµ (xΩ)/Ω hence converges in the thermodynamic limit to a constant
value, which is equal to the related rate vµ(x). Based on this observation, one probably
expects a similar limit behavior for the sequence of normalized process xΩ ∶= XΩ/Ω. Indeed,
as pointed out by T. G. Kurtz [63], his results in [123, 124] show that in the thermodynamic
limit xΩ approaches the related process of deterministic reaction kinetics, given by

x(t) = x(0) +
M
∑
µ=1

ξµ
ż t

0
vµ(x) ds, (2.44)

where the rates vµ are given by eq. (2.31). This important result on the relationship between
the stochastic and the deterministic modeling approach is stated in the following theorem;
for the sake of its importance and clarity, we also recall its proof.

Theorem2.4.1 (T. G. Kurtz [123]). Suppose XΩ(t) satisfies eq. (2.43) and x(t) satisfies eq. (2.44)
for every t ≥ 0. If

lim
Ω→∞

XΩ(0)
Ω

= x(0), (2.45)

then

P[ lim
Ω→∞

sup
s≤t
∥X

Ω(t)
Ω
− x(t)∥ = 0] = 1,

for all finite times t ≥ 0.
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Note. In Theorem (2.4.1), global existence of the solutions of eqs. (2.43) and (2.44) is assumed.
However, if these solutions blow up and reach infinity in some finite time T , say, almost-sure
convergence of xΩ(t) ∶= XΩ(t)/Ω to x(t) still holds for every t < T . The proof of Kurtz’s
Theorem (2.4.1), as given below, mainly follows the results presented in [87, 88, 125]. It is
based on an application of the strong law of large numbers (SLLN) to Poisson processes and a
consequential proposition, as well as a variant of the integral form of the Grönwall–Bellmann
inequality:

Theorem 2.4.2 (SLLN for Poisson Processes [126]). LetP be a Poisson process with intensity
λ, then

P[ lim
t→∞

P(t)
t
= λ] = 1.

Proposition 2.4.3 (D. F. Anderson & T. G. Kurtz [88]). LetP be a unit Poisson process, then

P[ lim
Ω→∞

sup
λ≤λ
∣ 1
Ω
P(Ωλ) − λ∣ = 0] = 1,

for any λ ≥ 0.

Lemma 2.4.4 (An Integral Form of the Grönwall–Bellmann Inequality [87]). Let g be a Borel-
measurable function that is bounded on bounded intervals, satisfying g(t) ≤ A+ B

şt
0 g(s) ds

for all t ≥ 0 and some constants A, B ∈ R≥0. Then,

g(t) ≤ AeBt ,

for all t ≥ 0.

Proof of Theorem 2.4.1. Dividing both sides of eq. (2.43) by Ω > 0, we find that for all t ≥ 0
the Ω-scaled process xΩ(t) = XΩ(t)/Ω satisfies

xΩ(t) = xΩ(0) +
M
∑
µ=1

ξµ
Ω
P µ(

ż t

0
aΩµ (xΩ(s)Ω) ds)

= xΩ(0) +
M
∑
µ=1

ξµ
Ω
P µ(Ω

ż t

0
αµ(xΩ(s)) ds),

where we substituted aΩµ (xΩ) = Ωαµ(x) in the second equality. Now, consider the centered
processes P̃ µ(ΩΛµ(t)) ∶= P µ(ΩΛµ(t)) −ΩΛµ(t) with Λµ(t) ∶=

şt
0 αµ(xΩ(s)) ds for every

µ = 1, . . . ,M, such that

xΩ(t) = xΩ(0) +
M
∑
µ=1

ξµ
Ω
P̃ µ(ΩΛµ(t)) +

M
∑
µ=1

ξµ
ż t

0
αµ(xΩ(s)) ds,
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for all t ≥ 0. Since the reaction rates vµ(x) are Ω-independent and further αµ(x)→ vµ(x)
for every x ∈ RN

≥0 in the thermodynamic limit, it follows that for all t ≥ 0

∥xΩ(t) − x(t)∥ ≤ ∥xΩ(0) − x(0)∥ + ∥
M
∑
µ=1

ξµ
Ω
P̃ µ(ΩΛµ(t))∥ + ε1Ω

+
XXXXXXXXXXX

ż t

0
f (xΩ(s)) − f (x(s)) ds

XXXXXXXXXXX
, (2.46)

where f (x) ∶= ∑M
µ=1 ξµvµ(x) and ε1Ω ∶= ∥∑

M
µ=1 ξµ

şt
0 αµ(xΩ(s)) − vµ(xΩ(s)) ds∥, satisfying

ε1Ω → 0 as Ω →∞. For fixed t ≥ 0, we know that xΩ(t) will be contained in some compact
set KN

Ω ⊂ E
N
Ω , where E

N
Ω ∶= R

N
≥0 ∩ {n/Ω ∶ n ∈ NN

0 }, such that

αµ ∶= sup
x∈KN

Ω

αµ(x) <∞,

for all µ = 1, . . . ,M. Hence,

ε2Ω ∶= ∥
M
∑
µ=1

ξµ
Ω
P̃ µ(ΩΛµ(t))∥ ≤

M
∑
µ=1

∥ξµ∥
Ω

sup
s≤t
∣P̃ µ(ΩΛµ(s))∣ (2.47a)

≤
M
∑
µ=1

∥ξµ∥
Ω

sup
s≤t
∣P µ(Ωαµs) +Ωαµs∣ (2.47b)

≤
M
∑
µ=1
∥ξµ∥(

1
Ω
P µ(Ωαµ t) + αµ t). (2.47c)

We recall that the superposition ofM independent Poisson processesP1(t), . . . ,PM(t)with
intensities λ1, . . . , λM , as in the right sides of inequalities (2.47b) and (2.47c), for instance,
is a Poisson processP(t) ∶= ∑M

µ=1P µ(t) with intensity λ = ∑M
µ=1 λµ, cf. [83]. Applying the

SLLN for Poisson processes (Theorem 2.4.2), we thus obtain

lim
Ω→∞

M
∑
µ=1
∥ξµ∥(

1
Ω
P µ(Ωαµ t)+αµ t) =

M
∑
µ=1
∥ξµ∥2αµ t =

M
∑
µ=1
∥ξµ∥ lim

Ω→∞
( 1
Ω
P µ(Ωαµ t)+αµ t),

with probability one, which shows that we can interchange limit and summation on the right
side of inequality (2.47c). Since inequalities (2.47b) and (2.47c) further imply dominated
convergence, we can also interchange limit and summation on the right of inequality (2.47a)
and apply Proposition 2.4.3, i.e.,

lim
Ω→∞

M
∑
µ=1

∥ξµ∥
Ω

sup
λµ≤λµ
∣P̃ µ(Ωλµ)∣ =

M
∑
µ=1
∥ξµ∥ lim

Ω→∞
sup
λµ≤λµ
∣ 1
Ω
P µ(Ωλµ) − λµ∣ = 0,
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with probability one, where λµ ∶= αµ t for each µ = 1, . . . ,M. Therefore, we have

P[ lim
Ω→∞

ε2Ω = 0] = 1,

for all t ≥ 0.
Clearly, the right hand side f ( ⋅ ) = ∑M

µ=1 ξµvµ( ⋅ ) in eq. (2.46) is Lipschitz continuous on
any bounded set KN ⊂ RN

≥0, i.e., there exists a constant LK > 0 such that

∥ f (x) − f (y)∥ ≤ LKN∥x − y∥,

for all x , y ∈ KN . Putting things together, we thus have

∥xΩ(t) − x(t)∥ ≤ ∥xΩ(0) − x(0)∥ + εΩ + LKN

ż t

0
∥xΩ(s) − x(s)∥ ds,

for all t ≥ 0, where εΩ ∶= ε1Ω + ε
2
Ω → 0 asΩ →∞. Applying the Grönwall–Bellmann inequality

(Lemma 2.4.4) with g(t) ∶= ∥xΩ(t) − x(t)∥, A ∶= ∥xΩ(0) − x(0)∥ + εΩ and B ∶= LKN , we get

∥xΩ(t) − x(t)∥ ≤ (∥xΩ(0) − x(0)∥ + εΩ)eLKN t ,

for all t ≥ 0, and the statement of the theorem follows from condition (2.45) and the fact that
limΩ→∞ εΩ = 0 with probability one.

2.4.3 Averaging of the CME

The deterministic process x(t) of classical reaction kinetics is customarily interpreted as
describing the average system dynamics. In the following, we study the origin of such in-
terpretation by deriving evolution equations of the first moments of the discrete–stochastic
process XΩ(t), whose PDF P(X; t) evolves in time as described by the CME

∂
∂t

P(X; t) =
M
∑
µ=1

aΩµ (X − ξµ)P(X − ξµ; t) − aΩµ (X)P(X; t). (2.48)

We recall that the expected value of any function f of XΩ ∈ NN
0 at time t is defined as

E[ f (XΩ)] ∶=
∞
∑
X1=0
⋯

∞
∑
XN=0

f (X)P(X; t) = ∑
X≥0

f (X)P(X; t). (2.49)

Multiplication of the CME with f (X) and subsequent summation over X gives

∑
X≥0

f (X) ∂
∂t

P(X; t) = ∑
X≥0

f (X)[
M
∑
µ=1

aΩµ (X − ξµ)P(X − ξµ; t) − aΩµ (X)P(X; t)]. (2.50)
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We note that further manipulation on the infinite series in the right hand side of eq. (2.50) is
only justified under absolute convergence of the series∑X≥0 f (X)aΩµ (X − ξµ)P(X − ξµ; t)
and ∑X≥0 f (X)aΩµ (X)P(X; t), where the propensities aΩµ are polynomial functions of X.
Therefore, in the following20, we let f be a polynomial function and assume that sufficiently
many moments21 of XΩ exist at time t, cf. [127], such that eq. (2.50) can be written as

∑
X≥0

f (X) ∂
∂t

P(X; t) =
M
∑
µ=1
[∑
X≥0

f (X)aΩµ (X − ξµ)P(X − ξµ; t) − ∑
X≥0

f (X)aΩµ (X)P(X; t)].

(2.51)
Next, we show that the lower bound of the first sum in the right hand side of eq. (2.51) can

be changed to ξµ, i.e.,

∑
X≥0

f (X)aΩµ (X − ξµ)P(X − ξµ; t) = ∑
X≥ξµ

f (X)aΩµ (X − ξµ)P(X − ξµ; t), (2.52)

for every µ = 1, . . . ,M. For that purpose, we consider the variables Xi , i = 1, . . . ,N , separately
and distinguish between the three possible cases: (i) ξµi = 0, (ii) ξµi > 0, or (iii) ξµi < 0.

(i) If ξµi = 0, the lower bound of summation in eq. (2.52) remains unchanged.

(ii) If ξµi > 0, the terms for Xi ∈ I ∶= {0, . . . , ξµi − 1} are omitted in the right hand side of
eq. (2.52). But these are equal to zero, since for every Xi ∈ I we have

Xi < ξµi ⇒ Xi − ξµi < 0 ≤ srµi
eq. (2.3)
⇒ aΩµ (X − ξµ) = 0.

(iii) If ξµi < 0, the terms for Xi ∈ I ∶= {ξµi , . . . ,−1} are added in the right hand side of
eq. (2.52). But these are equal to zero, since by definition of the net changes we have

ξµi = spµi − s
r
µi ⇔ −ξµi = srµi − s

p
µi ≤ s

r
µi ,

such that for every Xi ∈ I

Xi < 0 ⇒ Xi − ξµi < −ξµi ≤ srµi
eq. (2.3)
⇒ aΩµ (X − ξµ) = 0.

20Alternatively, we could make the physically plausible assumption that XΩ can only take values on some
finite subset KN ⊂ NN

0 ; and set aΩ
µ (X) = 0 and P(X; t) = 0 for all X ∉ KN , and aΩ

µ (X) = 0, if (X + ξµ) ∉ KN , to
further ensure that XΩ can not leave KN . Then, the series in eq. (2.50) would be effectively finite sums over all
X ∈ KN .

21Given a vector m = (m1 , . . . ,mN)T ∈ NN
0 , then the (uncentered) moment of some X ∈ NN

0 associated with
m is given by E[Xm], where Xm ∶= (X1)m1 ⋅ . . . ⋅ (XN)mN . We call ∣m∣ ∶= ∑N

i=1 m i the order of the moment. If
N = 2, for instance, then the moments of first order are E[X1] and E[X2], and the second order moments are
E[X1X1], E[X1X2] and E[X2X2].
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Therefore, equality (2.52) holds and since further

∑
X≥ξµ

f (X)aΩµ (X − ξµ)P(X − ξµ; t) = ∑
X≥0

f (X + ξµ)aΩµ (X)P(X; t),

for every µ = 1, . . . ,M, we find that eq. (2.51) can be written as

∑
X≥0

f (X) ∂
∂t

P(X; t) =
M
∑
µ=1
∑
X≥0
[( f (X + ξµ) − f (X))aΩµ (X)P(X; t)].

The time-evolution of the expectation of f (XΩ) is hence given by

∂
∂t
E[ f (XΩ)] =

M
∑
µ=1

E[( f (XΩ + ξµ) − f (XΩ))aΩµ (XΩ)]. (2.53)

Remark 2.4.1. The above result shows that the total probability mass ∑X≥0 P(X; t) ≡ 1 is
conserved by the CME, i.e., by eqs. (2.49) and (2.53) with f ( ⋅ ) ≡ 1 we have

∂
∂t ∑X≥0

P(X; t) = 0.

By taking f (X) = X in eq. (2.53), the time-evolution of the expected value of XΩ is given
as

∂
∂t
E[XΩ] =

M
∑
µ=1

ξµE[aΩµ (XΩ)]. (2.54)

It should be noted that this is an exact result, valid as long as the underlying reaction model is
properly formulated such that the corresponding moments of XΩ in eq. (2.54) exist, cf. [127].
Furthermore, observe the similarity of eq. (2.54) to the ODE-model of deterministic reaction
kinetics. This becomes more obvious if we take f (X) = X/Ω, such that eq. (2.53) gives the
time-evolution of the expected value of the species concentrations xΩ = XΩ/Ω as predicted
by the CME, i.e.,

∂
∂t
E[xΩ] =

M
∑
µ=1

ξµ
Ω
E[aΩµ (ΩxΩ)] =

M
∑
µ=1

ξµE[αµ(xΩ)], (2.55)

where we employed linearity of the expectation and substituted the Ω-scaled propensities
αµ(x) = aΩµ (xΩ)/Ω in the last equality. Since further αµ(x) = vµ(x) +O(Ω−1), one might
infer from eq. (2.55) that the deterministic process x(t) of classical reaction kinetics approxi-
mates the CME average E[xΩ].
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However, we note that eq. (2.55) does in general not yield a closed system of equations
for the average E[xΩ] due to the unknown expectation E[αµ(xΩ)]. Only if all propensities
αµ(xΩ) were constant or linear functions of xΩ (as it is the case for zero and first order
reactions, respectively), then we could put E[αµ(xΩ)] = αµ(E[xΩ]) and completely express
the right hand side of eq. (2.55) in terms ofE[xΩ]. In this case, eq. (2.55) would thus constitute
a closed system of equations for E[xΩ], i.e.,

∂
∂t
E[xΩ] =

M
∑
µ=1

ξµαµ(E[xΩ]),

which is equaivalent to the ODE-model of classical reaction kinetics.
As soon as any reaction Rµ is of second or higher order, however, this will generally not be

the case. Because then the corresponding propensity αµ(xΩ) is a nonlinear function of xΩ for
which E[αµ(xΩ)] ≠ αµ(E[xΩ]) in general. For example, consider a bimolecular reaction R2,
whose propensity is of the form α2(xΩ) = k2xΩi xΩj . SinceE[xΩi xΩj ] ≠ E[xΩi ]E[xΩj ], eq. (2.55)
would then not be closed, but would include the second moment E[xΩi xΩj ] on the right hand
side. Of course, the evolution equation of E[xΩi xΩj ] could be derived from eq. (2.53) by
putting f (X) = XiX j/Ω2 = xix j. But the right hand side of the resulting equation would
then introduce moments of order three. In general, eq. (2.55) has thus to be regarded as an
open-ended hierarchy of moment equations [128].

The idea ofmoment closure methods is to approximate the exact, open system of evolution-
equations of all moments up to some order n by a closed system, where the unknown higher
moments are estimated from a small number of stochastic simulations, e.g., [129], or replaced
by nonlinear functions of the first n moments, e.g., [127, 130, 131]. The common problems of
moment closure methods are, however, to a priori predict an adequate truncation order n
and that the produced ODE-system can become very stiff as moments of higher order are
considered, cf. [127]. Usually, the first issue is tackled by comparing the results obtained for
increasing n. Such an a posteriori procedure, however, can fail if higher order truncations
result in a reduced accuracy of the lower order moments, which depends on the chemical
system under consideration and is yet not studied on theoretical grounds [127, 129].

Obviously, in deterministic reaction kinetics no distinction is made between the expecta-
tion of products and the product of expectations, i.e., independence of the random variables
is automatically assumed in a deterministic context, such that E[xΩi xΩj ] = E[xΩi ]E[xΩj ], for
instance, in the case of bimolecular reactions. This assumption of zero covariance nullifies the
effects of correlations (i ≠ j) and the effects of random fluctuations (if i = j). However, from
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Kurtz’s Theorem, studied in the previous subsection, we infer that E[xΩi xΩj ] ≈ E[xΩi ]E[xΩj ]
or more generally E[αµ(xΩ)] ≈ αµ(E[xΩ]) can be expected to hold for general reaction net-
works if the species are present in large numbers (close to the thermodynamic limit). In this
case, the CME average should thus be well-approximated by the corresponding deterministic
process of classical reaction kinetics.

2.4.4 Leading-Order WKB-Approximation for the CME

In the following, we study the aforementioned implications more closely. Starting point is a
system-size related scaling of the CME with ε ∶= Ω−1 as a parameter of smallness, motivated
by the classical scaling in deterministic reaction kinetics. By applying a WKB-approximation
[18, 65] to the resulting ε-scaled CME and further use of Laplace’s method of integral ap-
proximation (see Appendix B), we are then able to demonstrate that the ODE-model of
deterministic reaction kinetics approximates the evolution of the CME average to leading
order as ε → 0.

System-Size Scaled CME

Analogous to classical reaction kinetics (see Section 2.3), we assume that the number of
molecules Xi , i = 1, . . . ,N , are large such that the state space can be represented by real
numbers x = (x1, . . . , xN)T ∈ RN

≥0, where

xi ∶= ε ⋅ Xi (i = 1, . . . ,N), (2.56)

with ε≪ 1 denoting some scaling factor. By taking ε = Ω−1, eq. (2.56) becomes identical
to the large-size system assumption underlying the continuous approximation in the de-
terministic framework. The ε-scaled propensity of an elementary reaction is hence given
by αµ(x) = ε ⋅ aεµ(X = x/ε), see Subsection 2.4.1. We further assume that the propensity
functions αµ are sufficiently continuously differentiable with respect to x. To keep the prob-
ability invariant under the change of variables performed in eq. (2.56), the PDF Pε(x; t) of
the ε-scaled population levels x is given by Pε(x; t) = ε−N ⋅ P(X; t). Hence, under the above
system-size scaling, the CME can be written as

ε
∂
∂t

Pε(x; t) =
M
∑
µ=1

αµ(x − εξµ)Pε(x − εξµ; t) − αµ(x)Pε(x; t). (2.57)
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WKB-Approximation of the PDF

In the following, we seek an approximate solution of the ε-scaled CME (2.57) in the form of
an asymptotic expansion as ε → 0. We assume that the PDF Pε(x; t) can be represented in a
WKB-like series expansion with respect to the spatial coordinate x, i.e.,

Pε(x; t) = Cδ exp{
1
δ
s0(x; t)}

∞
∑
n=0

δnUn(x; t) as δ → 0, (2.58)

where the factor Cδ is related to the normalization of Pε(x; t), cf. [65, 132, 133]. The unknown
functions s0 and Un, n = 1, 2, . . ., in eq. (2.58) are assumed to be sufficiently continuously
differentiable with respect to the arguments x and t.

In general, the WKB-technique is a powerful method for approximating the solution of a
linear differential equation whose highest derivative is multiplied by a small parameter ε, well-
known from the calculation of semi-classical approximations in quantum mechanics, see [65]
for further information. In the context of the CME, the leading order WKB-approximation
s0, also called eikonal function, is known to describe the mode of the PDF in the basin of
an attractor [132–134], which, as we will see shortly, naturally leads to the corresponding
deterministic formulation of the chemical system [18].

Differentiating eq. (2.58) with respect to time t gives

∂
∂t

Pε(x; t) = Cδ exp{
1
δ
s0(x; t)}

∞
∑
n=0

δn−1(Un(x; t)
∂
∂t

s0(x; t) + δ
∂
∂t
Un(x; t)),

which we will use to express the left hand side of the ε-scaled CME (2.57) under the above
WKB-ansatz. In the right hand side of eq. (2.57), we first substitute the WKB-expansions of
Pε(x; t) and Pε(x − εξµ; t) as given by eq. (2.58). Then, we Taylor expand the propensities
αµ(x − εξµ) and the eikonal s0(x − εξµ; t) and the functions Un(y − ευµ ∣ Z; t), n = 1, 2, . . . ,
in the expression for Pε(x − εξµ; t) around the state x, i.e.,

αµ(x − εξµ) = ∑
∣γ∣≥0

(−εξµ)γ

γ!
∂γxαµ(x)

and

Pε(x − εξµ; t) = Cδ exp{
1
δ ∑∣γ∣≥0

(−εξµ)γ

γ!
∂γxs0(x; t)}

∞
∑
n=0

δn(∑
∣γ∣≥0

(−εξµ)γ

γ!
∂γxUn(x; t)),

with multi-index γ = (γ1, . . . , γN) ∈ NN
0 and notations ∣γ∣ = γ1 + . . . + γN , γ! = γ1! ⋅ . . . ⋅ γN !,

xγ = (x1)γ1 ⋅ . . . ⋅ (xN)γN and ∂γx = ∂γ1x1 . . . ∂γNxN , where ∂γ ix i ∶= ∂γ i /∂xiγ i for i = 1, . . . ,N .
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Hence, to this step the CME (2.57) can be written as

ε
δ
Cδ exp{

1
δ
s0(x; t)}

∞
∑
n=0

δn(Un(x; t)
∂
∂t

s0(x; t) + δ
∂
∂t
Un(x; t))

= Cδ

M
∑
µ=1

⎡⎢⎢⎢⎢⎣
(∑
∣γ∣≥0

(−εξµ)γ

γ!
∂γxαµ(x)) exp{

1
δ
∑
∣γ∣≥0

(−εξµ)γ

γ!
∂γxs0(x; t)}

×
∞
∑
n=0

δn(∑
∣γ∣≥0

(−εξµ)γ

γ!
∂γxUn(x; t)) − αµ(x) exp{

1
δ
s0(x; t)}

∞
∑
n=0

δnUn(x; t)
⎤⎥⎥⎥⎥⎦
.

(2.59)

Comparing the terms of leading order on both sides of eq. (2.59) gives

ε
δ
Cδ exp{

1
δ
s0(x; t)}U0(x; t)

∂
∂t

s0(x; t)

= Cδ exp{
1
δ
s0(x; t)}U0(x; t)

M
∑
µ=1

αµ(x)
⎡⎢⎢⎢⎢⎣
exp{− ε

δ
ξ T
µ ∇s0(x; t)} − 1

⎤⎥⎥⎥⎥⎦
, (2.60)

where ∇s0(x; t) ∶= (∂x1 s0(x; t), . . . , ∂xN s0(x; t))
T denotes the gradient of s0 with respect to

x. By dominant balance, the order on both sides of eq. (2.60) has to be the same. Thus, δ
has to be proportional to ε, i.e., δ ∼ ε as ε → 0,22 and for simplicity we choose δ = ε. Then,
eq. (2.60) is satisfied if we set

∂
∂t

s0(x; t) +
M
∑
µ=1

αµ(x)[1 − exp{−ξ T
µ ∇s0(x; t)}] = 0. (2.61)

This is a linear PDE of first order for the eikonal function s0, which can be solved by the
methods of characteristics, see [135] and below.

Substituting eq. (2.61) back into the full expression of the CME (2.59), we find the evolution
equations of the functions Un, n = 1, 2, . . ., to be determined by
∞
∑
n=0

εn+1
∂
∂t
Un(x; t)

=
M
∑
µ=1

exp{−ξ T
µ ∇s0(x; t)}

⎡⎢⎢⎢⎢⎣
(∑
∣γ∣≥0

(−εξµ)γ

γ!
∂γxαµ(x)) exp{

1
ε ∑∣γ∣≥2

(−εξµ)γ

γ!
∂γxs0(x; t)}

×
∞
∑
n=0

εn(∑
∣γ∣≥0

(−εξµ)γ

γ!
∂γxUn(x; t)) − αµ(x)

∞
∑
n=0

εnUn(x; t)
⎤⎥⎥⎥⎥⎦
.

22We use the asymptotic notation f (x) ∼ g(x) as x → x0 if limx→x0 f (x)/g(x) = 1, cf. [65].
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Comparing the terms of orderO(ε) on both sides in the above equation, for instance, gives a
linear first order PDE for U0, which is a sort of transport equation (cf. [133]):

∂
∂t
U0(x; t) =

M
∑
µ=1

exp{−ξ T
µ ∇s0(x; t)}[αµ(x)

1
2
ξ T
µ ∇2s0(x; t)ξµU0(x; t)

− ξ T
µ ∇αµ(x)U0(x; t) − αµ(x)ξ T

µ ∇U0(x; t)],

where ∇2s0(x; t) denotes the Hessian matrix of s0 with respect to x.
In the following, we show that the leading order WKB-approximation of the mode of

Pε(x; t), i.e., the absolute maximum point of s0, follows the deterministic path of classical
reaction kinetics.

Leading Order Approximation of the PDF

A convenient approach for the analysis of the eikonal function s0 is to consider the PDE (2.61)
as the Hamilton–Jacobi equation for the action of an auxiliary system with coordinates x(t)
and momenta p(t) ∶= ∇s0(x; t), cf. [132, 136]. The HamiltonianH of this system is defined as

H(x , p) ∶= − ∂
∂t

s0(x; t)
eq. (2.61)=

M
∑
µ=1

αµ(x)[1 − exp{−ξ T
µ p}],

and Hamilton’s equations of motion of the system are thus given by

d
dt

x(t) = ∂
∂p
H(x , p) =

M
∑
µ=1

ξµαµ(x(t)) exp{−ξ T
µ p(t)}, (2.62a)

d
dt

p(t) = − ∂
∂x
H(x , p) =

M
∑
µ=1
∇αµ(x(t))[ exp{−ξ T

µ p(t)} − 1]. (2.62b)

These equations define the characteristics of the PDE (2.61) (where H ≡ const) and their
solution determines s0(x; t), cf. [135].

At this point, it is essential for us to point out howmaxima of s0 are propagated by eqs. (2.62)
in time. Observe that if the initial function s0(x; t = 0) has a unique absolute maximum at
x = x0, say, where

p0 ≡ ∇s0(x = x0; t = 0) = 0,

thenH(x0, p0) ≡ 0 and the equations of motion that propagate the maximum point x(t) and
the corresponding p(t) in time are given by eqs. (2.62a) and (2.62b) as

d
dt

x(t) =
M
∑
µ=1

ξµαµ(x(t)) with x(0) = x0, (2.63a)
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and
d
dt

p(t) = 0 with p(0) = p0 = 0, (2.63b)

respectively. This shows that x(t) remains a unique maximum point of s0 for all times t ≥ 0,
because of the uniqueness of paths under given initial conditions.23 The solution of eq. (2.63a)
hence gives the most probable values x(t) of the species levels as ε → 0. Moreover, we note
that eq. (2.63a) is identical to the ODE-model of deterministic reaction kinetics. Since further
αµ(x) = vµ(x) +O(ε) as ε → 0, see Subsection 2.4.1, the above result shows that if the system
is close to the thermodynamic limit, then the classical deterministic solution more closely
describes the mode trajectory of the corresponding CME probability distribution rather than
its average [18].

Laplace’s Integral Approximation of the PDF

We linked the ODE-model of deterministic reaction kinetics to the evolution equation (2.63a)
for the most probable value of the species levels x (as given by the maximum of s0) and
showed that this maximum remains unique at x(t) for all times t ≥ 0. In the following, we
demonstrate that this result has an important implication for computing expectations of the
underlying process xε(t). Because of the exponential form of the WKB-ansatz (2.58), we can
use Laplace’s method of integral approximation (see Appendix B) to compute integrals of the
form

E[ f (xε)] ∶=
ż ∞

0
f (x)Pε(x; t) dx = Cε

ż ∞

0
f (x) exp{1

ε
s0(x; t)}

∞
∑
n=0

εnUn(x; t) dx ,

as ε → 0. If the eikonal function s0(x; t) has a unique absolute maximum at the point x = x(t),
then by Laplace’s method it follows that

ż ∞

0
f (x) exp{1

ε
s0(x; t)} dx = exp{

1
ε
s0(x(t); t)}

¿
ÁÁÀ (2πε)N

∣∇2s0(x(t); t)∣
( f (x(t)) +O(ε)),

as ε → 0. Here and in the following, we consider the generic case that x is a non-degenerate
maximum of s0 and further use that the Hessian matrix ∇2s0(x = x( ⋅ ); ⋅ ) is hence negative
definite, such that the determinant ∣∇2s0(x = x( ⋅ ); ⋅ )∣ ≠ 0.

23Assume there exists a solution (y(t), p(t)) of eqs. (2.62) with initial conditions y0 ≠ x0 and p0 ≠ 0, but
such that p(t = T) = 0 and hence y(t = T) is an extremum of s0(x; t = T), for some T > 0. Then, one could
reverse time in eqs. (2.63a) and (2.63b) and conclude that necessarily p0 = 0, which yields a contradiction.
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The above result has an immediate consequence: Since the total probability has to integrate
to one for any value of ε, we can compute s0(x = x( ⋅ ); ⋅ ) and U0(x = x( ⋅ ); ⋅ ) directly, i.e.,

1 ≡
ż ∞

0
Pε(x; t) dx

= Cε

ż ∞

0
exp{1

ε
s0(x; t)}(U0(x; t) +O(ε)) dx

=
exp{ 1ε s0(x(t); t)}√
∣∇2s0(x(t); t)∣

(U0(x(t); t) +O(ε)), (2.64)

where we substituted Cε = (2πε)−N/2 in the last equality, as the above equation holds for all
ε and we have assumed s0 and U0 to be independent of ε. For the same reason, it further
follows from eq. (2.64) that

s0(x(t); t) = 0 and U0(x(t); t) =
√
∣∇2s0(x(t); t)∣, (2.65)

for all t ≥ 0. Moreover, we find that theO(ε) corrections in the last equality of eq. (2.64) must
be identical to zero. In particular, this shows that the expectation of any function f of xε can
be approximated as

E[ f (xε)] = Cε

ż ∞

0
f (x) exp{1

ε
s0(x; t)}(U0(x; t) +O(ε)) dx

=
exp{ 1ε s0(x(t); t)}√
∣∇2s0(x(t); t)∣

( f (x(t))U0(x(t); t) +O(ε))

= f (x(t)) +O(ε), (2.66)

as ε → 0, where we applied Laplace’s method and the results for s0 and U0 given in eqs. (2.65).
It should be noticed that, according to the conservation relation (2.64), the last equalities in
eq. (2.66) hold without theO(ε) corrections if f is a constant function.

The result in eq. (2.66) specifically shows that E[xε] = x(t) +O(ε) and Var(xε) = O(ε)
as ε → 0. In the large-size system regime, i.e., ε = Ω−1 ≪ 1, the PDF Pε(x; t) of xε(t)will thus
be tightly concentrated about its distribution mode, such that fluctuations can be neglected.
Hence, the stochastic process xε(t) is well-approximated by its distribution mode that, in
agreement with Kurtz’s Theorem, follows the deterministic path of classical reaction kinetics.

We can further use the above results in view of our studies in Subsection 2.4.3 on the evolu-
tion of the expected value E[xε]. First notice that by assuming existence of sufficiently many
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moments of xε, an averaging of the ε-scaled CME (2.57) can be performed as demonstrated
in Subsection 2.4.3 for the unscaled CME (2.48), i.e.,

∂
∂t
E[xε] =

ż ∞

0
x

∂
∂t

Pε(x; t) dx

= 1
ε

ż ∞

0
x

M
∑
µ=1

αµ(x − εξµ)Pε(x − εξµ; t) − αµ(x)Pε(x; t) dx

= 1
ε

M
∑
µ=1
[
ż ∞

0
(x + εξµ)αµ(x)Pε(x; t) dx −

ż ∞

0
xαµ(x)Pε(x; t) dx]

=
M
∑
µ=1
[ξµ

ż ∞

0
αµ(x)Pε(x; t) dx]. (2.67)

By employing the WKB-ansatz (2.58) for Pε(x; t) in eq. (2.67) and applying Laplace’s integral
approximation in combination with the results for s0 and U0 given in eqs. (2.65), we find

∂
∂t
E[xε] =

M
∑
µ=1
[ξµCε

ż ∞

0
αµ(x) exp{

1
ε
s0(x; t)}(U0(x; t) +O(ε)) dx]

=
M
∑
µ=1

ξµαµ(x(t)) +O(ε), (2.68)

as ε → 0. Again, this shows that in the large-size system regime the expectation E[xε] is
well-approximated by the distribution mode x. It can be nicely seen that the error made
by neglecting the effects of correlations and fluctuations in deterministic reaction kinetics
(e.g., assuming E[xεi xεj] = E[x

ε
i ]E[xεj]) is of orderO(ε) as ε → 0. As we have seen in Subsec-

tion 2.4.3, for systems including only reactions up to order one, the evolution of E[xε] and
the ODE-model of the deterministic process x(t) are identical, such that E[xε] = x(t). This
implies that in such case also eqs. (2.66) and (2.68) hold withoutO(ε).

In Chapter 4, we use the above methods to derive a direct hybrid formulation of biochemical
reaction networks, where the levels of species limited to small numbers are modeled discretely,
while the levels of species present in large numbers are approximated by (partial) expectations.
The derivation is based on a decomposition of the joint PDF into the marginal PDF of the
‘discrete’ species and the conditional PDF of the ‘continuous’ species. In contrast to above,
we then apply the WKB-approximation and Laplace’s method only on the conditional PDF
of the continuous species.
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3
Hybrid Stochastic–Deterministic Simulation of
Biochemical Reaction Networks

The costs of computing an exact stochastic simulation generally scale with the number of
reaction events that have to be simulated. This renders exact indirect methods, such as the SSA,
numerically infeasible whenever the system includes many rapidly firing reactions and species
with a large number of molecules. In hybrid simulation methods, fast reactions associated
with large species levels are approximated as continuous processes, either in a stochastic
or deterministic context, whereas all other reactions are still realized as discrete stochastic
processes. By exploiting such partial continuous approximations, hybrid methods are capable
of decreasing the computational cost substantially, while capturing relevant stochastic effects
arising from small numbers or fluctuations in slow reaction events.

We outline and discuss hybrid simulation approaches in Section 3.1, providing a detailed
derivation of a hybrid stochastic–deterministic variant of the SSA, mainly following [56, 61,
137]. In Section 3.2, we study an application of this indirect hybrid method to a mathematical
model of the replication dynamics of the human immunodeficiency virus (HIV) [138]. Here,
the main objective is the in silico-based design and validation of a drug treatment strategy for
HIV-infected, treatment-naïve patients. Based on hybrid simulations, we are able to utilize
and evaluate a novel mathematical concept that prevents the emergence of drug-resistance
by applying a single, pro-active treatment switch that can lead to significant improvements
compared to conventional treatment strategies [139].

3.1 Hybrid Simulation Approaches

We recall that in stochastic reaction kinetics the state of the system after elapse of some small
increment in time dt > 0 can be represented as

X(t + dt) = X(t) +
M
∑
µ=1

ξµP µ(
ż t+dt

t
aµ(X(s)) ds).
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For convenience, we adopt the notation of differential equations in the following and write
the above equation as

dX(t) =
M
∑
µ=1

ξµdP µ(t),

where dX(t) ∶= X(t + dt) − X(t) and dP µ(t) ∶= P µ(
şt+dt
t aµ(X(s)) ds). Now, the idea of

hybrid simulation methods is to partition the reactions in the above equation into a subset
Md ⊆ {1, . . . ,M} of discretely treated reactions and a subsetMc ∶= {1, . . . ,M} ∖Md of
continuously approximated reactions. The discrete reactions are then simulated by a Monte
Carlo (MC)-method, e.g., the direct method as in the SSA, while the continuous reactions are
approximated either by employing a CLE approximation, e.g., [50, 53–56], or deterministically
using theODE-formulation of classical reaction kinetics, e.g., [50, 53, 57–62]. The key principle
of such indirect hybrid methods is to efficiently monitor and simulate the occurrences of
the discrete reaction events while simultaneously simulating the dynamics of the continuous
reaction processes. A review of different hybrid simulation methods is also given in [92].

In the following, we successively discuss appropriate partition strategies, the resulting
hybrid system representation, as well as the realization of the discrete reactions in a stochastic–
deterministic simulation.

3.1.1 Partitioning of the Reactions

Suggested hybrid simulation approaches vary in their underlying partitioning strategies.
In general, the partitioning of the reactions into discrete and continuous processes can
either be static [50, 53, 57, 59] or dynamic [54–56, 58, 60–62], i.e., the subsetsMc andMd

are constant or change during simulation, respectively. The partitioning might be based
on some heuristics [50, 53], e.g., obtained by a few exact stochastic simulations or some
insight into the system under consideration [57, 59]. For example, it is often reasonable to
approximate metabolic reactions as continuous processes, while gene regulatory processes
usually necessitate a discrete formulation.

An automated repartitioning of the reactions during simulation can be realized according
to some predefined criteria with respect to the levels of species involved in the reactions [58],
the values of the reaction propensities [50, 53], or, most commonly, some combination of
the two [54–57, 59–62]. Clearly, a dynamic partitioning strategy introduces some additional
computational costs compared to a static partitioning. At the same time, however, it offers a
more general and reliable way of employing hybrid simulations, e.g., when the state of the
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system varies considerably over time. Therefore, we consider a dynamic partitioning of the
reactions into time-dependent subsetsMc(t) andMd(t), based on criteria defined below.

In the context of the CLE (see Subsection 2.2.6), we already encountered sufficient condi-
tions for the continuous approximation of a reaction Rµ during a time interval [t; t + dt): (a)
The expected number of Rµ firings in [t; t + dt) has to be much larger than 1, i.e.,

E[dP µ(t)] =
ż t+dt

t
aµ(X(s)) ds ≫ 1, (3.1)

and (b) the value of its propensity aµ has to change insignificantly during [t; t + dt), i.e.,

aµ(X(s)) ≈ aµ(X) ∀s ∈ [t; t + dt), (3.2)

where X(t) = X, such that eq. (3.1) can be approximated as E[dP µ(t)] ≈ aµ(X(t))dt ≫ 1.
As further discussed in Subsection 2.2.4, the above Leap Condition (3.2) can always be satisfied
if the chemical species are present in sufficiently large numbers. In particular, the relative
change in the value of aµ during [t; t + dt) will be negligible if the level X i(t) of every Rµ

reactant is much larger than the absolute change ∣dX i(t)∣ it undergoes by all reactions in
[t; t + dt). By choosing dt such that no discrete reaction fires during [t; t + dt), it is sufficient
in a hybrid setting to require that X i(t) is much larger than the absolute change caused by
the continuous reactions only.

Given X(t) = X, it is thus typically assumed that a reaction Rµ can be modeled continu-
ously if the following two criteria are satisfied [56, 61, 62]:

aµ(X(t)) > Ca , (3.3a)

X i(t) > CX ⋅ ∣ξµi ∣ (i = 1, . . . ,N), (3.3b)

for some pre-defined values of the parameters Ca ≫ 1 and CX ≫ 1. If one of the above criteria
is not satisfied, then the reaction is modeled as a discrete stochastic process.

The parameter Ca in criterium (3.3a) defines how many reaction events have to occur
on average per unit time in order for the process to appear continuously. In other words,
a reaction Rµ is continuously approximated if its expected next reaction time, given by
1/aµ(X(t)), is shorter than 1/Ca ≪ 1. This is exactly the property that renders an exact
stochastic simulation of Rµ slow. By criterium (3.3b) it is ensured that every species which
gets affected by a continuous reaction Rµ and contributes to aµ or the propensity of any
other continuous reaction is present in large enough numbers, such that the relative change
∣ξµi ∣/X i(t) caused by an Rµ firing is smaller than or equal to 1/CX ≪ 1. Of course, the exact
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relation of criterium (3.3b) to condition (3.2) more specifically depends on the actual system
under consideration, and some examples exists where criterium (3.3b) can be relaxed while
still obtaining good approximations [61]. However, more general studies on its practical
implementation are yet not available, and the handling of fast reactions involving small
number of molecules is sill an open question in hybrid approaches [92].

It should be noticed that as the values of both parameters Ca and CX increase towards
infinity, we approach the conditions of the thermodynamic limit where a deterministic ap-
proximation becomes accurate. Usually, values in the range of ten to hundred are used for Ca

and CX , see [56, 61]; the resulting approximation error, however, will depend on the specific
problem. For the hybrid stochastic–deterministic simulations of the HIV-dynamics model
presented in Section 3.2, we set both, Ca and CX , equal to 20. The reaction partitioning
was then dynamically updated as follows: Initially and after each discrete reaction event,
every reaction was (re-)classified as a continuous or discrete process by (re-)evaluating the
partitioning criteria (3.3). Between discrete reaction events, however, we only monitored
criteria (3.3) with respect to the continuous reactions, i.e., Rµ , with µ ∈Mc(t), was reclassified
as a discrete reaction at time t if aµ(X(t)) reached Ca or any X i(t) reached CX ⋅ ∣ξµi ∣ during
numerical integration of the corresponding ODE-system, see next subsection. This updating
strategy was chosen in order to avoid potential instabilities in the reaction partitioning, due
to some propensities or species level hovering around the critical values Ca or CX , respec-
tively. Furthermore, it reduced the computational costs that are introduced by a dynamic
partitioning.

3.1.2 Hybrid System Representation

Given X(t) = X, we define a partitioning of the reactions according to criteria (3.3) into the
subsetsMd(t) andMc(t) of discrete and continuous reactions, respectively, such that

dX(t) = ∑
µ∈Md(t)

ξµdP µ(t) + ∑
µ∈Mc(t)

ξµdP µ(t), (3.4)

We recall that in the CLE approximation (see Subsection 2.2.6), the discrete-valued Poisson
randomvariable dP µ is approximated by a corresponding real-valued normal randomvariable
N µ, i.e., for X(t) = X

dP µ(t) ≈ P µ(aµ(X)dt) ≈N µ(aµ(X)dt, aµ(X)dt),
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whereN µ(m, σ2) denotes a normal random variable with mean m and variance σ2. The first
step in this approximation is justified by condition (3.2) and the second by condition (3.1).
Thus, applying the CLE approximation to all continuous reactions in eq. (3.4) results in

dX(t) = ∑
µ∈Md(t)

ξµdP µ(t) + ∑
µ∈Mc(t)

ξµ[aµ(X(t))dt +
√

aµ(X(t))N µ(0, 1)
√
dt], (3.5)

which is the hybrid formula underlying discrete stochastic–continuous stochastic simulation
methods, e.g., [50, 53–56].

It should be noticed that the relative fluctuations in the increment dP µ(t) of a continuous
reaction in eq. (3.5) scale like

√
Var(dP µ(t))

E[dP µ(t)]
= 1
√

E[dP µ(t)]
≈ 1
√

aµ(X(t))dt
,

which will be much smaller than 1 for any µ ∈Mc and small time increment dt as guaranteed
by criterium (3.3a). Hence, we assume that it is reasonable to neglect fluctuations related to the
continuous reactions in eq. (3.5), i.e., the random components ξµ

√
aµ(X(t))N µ(0, 1)

√
dt,

and that the contribution of all continuous reactions is well-represented by the deterministic
components ξµaµ(X(t))dt, such that eq. (3.5) further simplifies to

dX(t) = ∑
µ∈Md(t)

ξµdP µ(t) + ∑
µ∈Mc(t)

ξµaµ(X(s))dt. (3.6)

This is the general hybrid system representation of stochastic–deterministic simulation ap-
proaches, e.g., [50, 53, 57, 59–62].

In line with our studies in Section 2.4, the partial deterministic approximation exploited
in eq. (3.6) is justified by large values of the propensities and species levels being associated
with the continuous reactions, which can both be guaranteed by the partitioning criteria (3.3).
Although eq. (3.6) is less accurate than the CLE approximation (3.5), it is acceptable if one is
primarily interested in the fluctuations of species present in small numbers [53, 62], as it is
typically the case. A major benefit of the deterministic approximation is that as long as no
discrete reaction fires, the system dynamics is simply given by

d
dt

X(t) = ∑
µ∈Mc(t)

ξµaµ(X(s)), (3.7)

which can usually be efficiently solved with high accuracy using one of the well-documented
numerical integration methods for ODEs, cf. [119–122].
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3.1.3 Simulation of the Discrete Reactions

We proceed by deriving a stochastic simulation procedure for the discrete reactions in eq. (3.6),
analogously to the derivation of the SSA, see Subsection 2.2.3. In the hybrid setting, however,
we now have to account for changes in the propensity value of a discrete reaction, resulting
from changes in the number of molecules by the continuous reactions. Given X(t) = X, the
probability pd(τ, j ∣X; t)δt that the next discrete reaction fires during [t + τ; t + τ + δt) and
that this will be the discrete reaction R j is hence given by

pd(τ, j ∣X; t)δt = pd0(τ ∣X; t)(a j(X(t + τ))δt + o(δt)), (3.8)

with j ∈Md(t + τ) and pd0(τ ∣X; t) denoting the probability that no discrete reaction fires in
[t; t + τ), given X(t) = X.

To determine pd0(τ ∣X; t) in eq. (3.8), we consider the change in this probability during an
infinitesimal time increment δτ. As the increments of Poisson processes are independent, we
have

pd0(τ + δτ ∣X; t) = pd0(τ ∣X; t)(1 − ∑
µ∈Md(t+τ)

aµ(X(t + τ))δτ + o(δτ)), (3.9)

where the second factor gives the probability that no discrete reaction fires in [t + τ; t + τ + δτ).
Subtracting pd0(τ ∣X; t) from both sides of eq. (3.9), dividing by δτ and taking the limit δτ → 0
results in

dpd0(τ ∣X; t)
dτ

= −ad0(X(t + τ), t + τ)pd0(τ ∣X; t),

where ad0(X(t), t) ∶= ∑µ∈Md(t) aµ(X(t)) is the collective propensity of all discrete reactions
at time t. Since pd0(0 ∣X; t) = 1, the solution of the above ODE is given by

pd0(τ ∣X; t) = exp{−
ż t+τ

t
ad0(X(s), s) ds}.

Substituting this result into eq. (3.8), dividing both sides by δt and taking the limit δt → 0
finally results in

pd(τ, j ∣X; t) = exp{−
ż t+τ

t
ad0(X(s), s) ds}a j(X(t + τ)), (3.10)

with j ∈Md(t + τ).
We continue by exploiting the relation pd(τ, j ∣X; t) = pd( j ∣ τ, X; t)pd(τ ∣X; t) in order

to derive the marginal probability pd(τ ∣X; t) that the next discrete reaction fires at time
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t + τ and the conditional probability pd( j ∣ τ, X; t) that this will be the discrete reaction R j.
Summation of eq. (3.10) over the subset of discrete reactions at time t + τ gives

pd(τ ∣X; t) = ∑
j∈Md(t+τ)

pd(τ, j ∣X; t) = exp{−
ż t+τ

t
ad0(X(s), s) ds}ad0(X(t + τ), t + τ), (3.11)

which shows that the time until the next discrete reaction event is an exponential random
variable with time-dependent parameter ad0(X(t), t). From eqs. (3.10) and (3.11) it further
follows that

pd( j ∣ τ, X; t) = pd(τ, j ∣X; t)
pd(τ ∣X; t)

=
a j(X(t + τ))

ad0(X(t + τ), t + τ)
, (3.12)

with j ∈Md(t + τ) and pd(τ ∣X; t) > 0.1 Thus, the index of the next discrete reaction that
fires is an integer random variable with point probabilities a j(X(t + τ))/ad0(X(t + τ), t + τ),
for every j ∈Md(t + τ).

We employ the direct method to generate random samples τ and j according to the
distributions implied by eqs. (3.11) and (3.12), respectively. Given τ and X(t + τ) as the
solution of the ODE-system (3.7), we can generate a random sample j ∈Md(t + τ) as in the
SSA but restricted to the subset of discrete reactions: Draw a random number r2 from the
standard uniform distribution U(0, 1) and take

j = the smallest integer such that
j

∑
µ=1
1Md(t+τ)(µ)aµ(X(t + τ)) ≥ r2a

d
0(X(t + τ), t + τ),

(3.13)
where 1Md(t) denotes the indicator function of the subsetMd(t) of discrete reactions at
time t

1Md(t)(µ) =
⎧⎪⎪⎨⎪⎪⎩

1 if µ ∈Md(t),

0 otherwise.

The cumulative distribution function (CDF) of the time until the next discrete reaction
event is given by eq. (3.11) as

F(τ ∣X; t) =
ż τ

0
pd(s ∣X; t) ds = 1 − exp{−

ż t+τ

t
ad0(X(s), s) ds}. (3.14)

By the inversion generating method [89], we can generate a random sample from this distri-
bution by drawing a random number r1 from the standard uniform distribution U(0, 1) and

1If pd(τ ∣ X; t) = 0, no discrete reaction fires during [t; t + τ], such that we do not have to evaluate
pd( j ∣ τ, X; t), but only simulate the continuous reactions.
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solving the equation r1 = F(τ ∣X; t) for τ. Setting eq. (3.14) equal to (1 − r1), which like r1 is
a random number from U(0, 1), yields

g0(τ ∣X; t) ∶=
ż t+τ

t
ad0(X(s), s) ds + ln(r1) = 0, (3.15)

which is the generating formula we have to solve in order to compute the next reaction time,
cf. [56, 61]. To illustrate the similarity of the above equation to the corresponding generating for-
mula (2.12a) in the SSA, we observe that if ad0 is a constant function, i.e., ad0(X(s), s) ≡ ad0(X)
for all s ∈ [t; t + τ], then by eq. (3.15)

g0(τ ∣X; t) = ad0(X)τ + ln(r1) = 0 ⇒ τ = 1
ad0(X)

ln( 1
r1
).

It should be noticed that the function g0(τ ∣X; t) defined in eq. (3.15) is monotonically non-
decreasing for τ ≥ 0, since propensities are non-negative functions by definition. Furthermore,
since r1 ∈ (0; 1), we have g0(0 ∣X; t) = ln(r1) < 0 and differentiation of eq. (3.15) with respect
to τ shows that the value of g0(τ ∣X; t) increases according to the ODE

d
dτ

g0(τ ∣X; t) = ad0(X(t + τ), t + τ) (3.16)

This suggests a relative simple procedure to determinewhen the next discrete reaction fires: We
integrate eq.(3.16) togetherwith theODE-system (3.7) for the initial values g0(0 ∣X; t) = ln(r1)
and X(t) = X, respectively, until time τ = s such that g0(s ∣X; t) = 0. Then, we use eq. (3.13)
to decide which discrete reaction has to be simulated and update X(t + τ) accordingly.

As mentioned before, the above algorithmic approach is equivalent to Gillespie’s Direct
Method implemented in the SSA, (see Subsection 2.2.3), but it additionally accounts for time-
varying propensities of the discrete reactions. Gillespie’s Direct Method has been utilized in
the hybrid methods proposed in [50, 53, 54, 57, 58, 60–62]; time-varying propensities, however,
have been explicitly incorporated only by Alfonsi et al. [61] and are otherwise approximated
during simulation (e.g., by artificially introducing a ‘probability of no reaction’ that adjusts
the discrete time steps and allows to gradually update the propensity values [53]). It is also
possible to simulate the discrete reactions based on variants of Gillespie’s Next Reaction
Method [55, 56, 59, 61] or Gibson & Bruck’s First Reaction Method [61]. However, this
requires to solve a system of differential equations of the type of eq. (3.16), one for each
discrete reaction, which generally increases the computationally complexity.
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3.1.4 Algorithmic Implementation

In summary, the derived hybrid stochastic–deterministic simulation method comprises the
following algorithmic workflow:2

(1) Initialize t ← t0 and X(t0)← X0, setMd(t0)← {1, . . . ,M} andMc(t0)← ∅, and
choose partition thresholds Ca and CX and a final simulation time tend.

(2) Draw a random number r1 from U(0, 1) and set g0(t ∣ t) = ln(r1).

(3) For every reaction Rµ (µ = 1, . . . ,M):

(i) If aµ(X(t)) > Ca and X i(t) > CX ⋅ ∣ξµi ∣ for all i = 1, . . . ,N ,
setMc(t)←Mc(t) ∪ µ andMd(t)←Md(t) ∖ µ.

(ii) Otherwise, setMc(t)←Mc(t) ∖ µ andMd(t)←Md(t) ∪ µ.

(4) Solve the ODE-system for the subsetMc(t) starting at time τ = t

d
dτ

X(τ) = ∑
µ∈Mc(τ)

ξµaµ(X(τ)) together with d
dτ

g0(τ ∣ t) = ∑
µ∈Md(τ)

aµ(X(τ)),

(3.17)
until the first time τ = s, where:

(a) g0(s ∣ t) = 0 and a discrete reaction R j with j ∈Md(s) has to be performed:

(i) Draw a random number r2 from U(0, 1).

(ii) Take j as the smallest integer such that

j

∑
µ=1
1Md(s)(µ)aµ(X(s)) ≥ r2

M
∑
µ=1
1Md(s)(µ)aµ(X(s)).

(iii) Set t ← s and X(s)← X(s) + ξ j, and go to Step (2).

(b) aµ(X(s)) = Ca or X i(s) = CX ⋅ ∣ξµi ∣ for some µ ∈Mc(s) and some i = 1, . . . ,N :

(i) SetMc(s)←Mc(s) ∖ µ andMd(s)←Md(s) ∪ µ.

(ii) Set t ← s and go to Step (4).

(c) s = tend, then stop simulation.

2It should be noticed that as long as either the subsetMc(t) orMd(t) is empty, automatically a full
discrete–stochastic (SSA) or a full continuous–deterministic simulation is performed, respectively.
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In Step (4) of the above algorithmic scheme, events related to (a) the occurrence of a
discrete reaction or (b) the repartitioning of a continuous reaction have to be detected during
numerical integration of theODEs (3.17). To this end, event functions Fi(τ) can be introduced,
e.g., F0(τ) ∶= g0(τ ∣ t) or Fµ(τ) ∶= Ca − aµ(X(τ)), such that Fi(s) = 0 at those points in time
τ = s where a corresponding event is located. Then, the problem of event detection during an
successful integration step from time tn−1 to tn becomes: (i) Detecting the possible occurrence
of zero-crossings of any Fi between tn−1 and tn, and (ii) finding (within a predefined numeric
tolerance) the smallest root of Fi(s) with s ∈ (tn−1; tn].

Problem (i) is usually tackled by comparing the signs of Fi(tn−1) and Fi(tn), i.e., if
Fi(tn−1) × Fi(tn) ≤ 0, then an event occurred during (tn−1; tn]. This strategy works cor-
rect as long as the number of roots of Fi in (tn−1; tn] is odd, which will always be the case
for F0(τ) = g0(τ ∣ t), for instance, since g0(τ ∣ t) is monotonic in (tn−1; tn]. A multiple (even)
number of zero-crossings may occur if the dynamics of Fi is faster than the dynamics of the
system state [140]. The possibility of an even number of roots can be eliminated by explicitly
including the dynamics of Fi in the ODE-system (3.17) or in the step-size selection of the
numerical integration method, cf. [141, 142]. If a zero-crossing is detected, an algorithm such
as the regula falsimethod or Brent’s method [143] can be used to find the smallest root of Fi
in (tn−1; tn], where a successive numerical solution of the ODEs (3.17) can be avoided by use
of a numerical integration method that supplies a dense output interpolation, cf. [119–122].
Typically, common computational software programs, e.g., Matlab® orMathematica®, already
include ODE-integration methods that comprise event detection and dense output.

3.2 An Application: HIV Quasi-Species Dynamics during
Pro-Active Treatment Switching†

In the sequel, we study an application of the above stochastic–deterministic simulation
algorithm to an HIV-dynamics model that we previously proposed in [138]. Using hybrid
simulations, we are able to predict and evaluate (in terms of the mathematical model) a simple
treatment strategy, where a single, pro-active switch from an induction to a maintenance
drug regimen is applied. The proposed induction–maintenance (IM) strategy demonstrates

†The contents of this section are based on: M. von Kleist, S. Menz, H. Stocker, K. Arasteh, C. Schütte, and
W. Huisinga. HIV Quasispecies Dynamics during Pro-Active Treatment Switching: Impact on Multi-Drug
Resistance and Resistance Archiving in Latent Reservoirs. PLoS ONE, 6(3): e18204, 2011.
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significant improvements in terms of resistance archiving and virological response compared
to conventional treatment strategies. While continuous pro-active treatment alternation
improved the clinical outcome in a randomized trial [144, 145], our results indicate that a
similar improvement might be reached by a single pro-active treatment switch. The clinical
validity of this finding, however, remains to be shown in a corresponding trial.

3.2.1 Background

Since 1996, HIV infection is treated with a combination therapy, known as highly active
anti-retroviral therapy (HAART) [146, 147]. The initial clinical success of HAART had led
many researchers to believe that eradication of HIV could be feasible. However, it was soon
realized that inducible pro-virus persists in latently infected cells despite ongoing therapy,
and that this latent reservoir prevents HIV eradication within the patients lifetime [148–153].
Latent infection is established when CD4+ T-lymphoblasts with integrated pro-virus escape
both immune effector mechanisms and cytopathic effects of the virus [148, 154], and revert
to a resting memory state [155]. Besides preventing eradication, the latent reservoir also
serves as a memory for any quasi-species replicating during infection [156, 157], including
drug-resistant variants. The contents of this archive are strong predictors of future treatment
failure [156, 158].

Despite the impressive improvement of antiviral therapy, many patients still experience
virological failure caused by selection of drug-resistant virus populations. Current guidelines
recommend changing treatment after confirmation of virological failure. However, in face of
the rapid viral turnover this approach could be sub-optimal [159], as treatment change after
appearance of virological failure allows for expansion and potential archiving of drug-resistant
strains. An optimal treatment strategy should thus prevent viral relapse with drug-resistant
strains and, more importantly, prevent these mutants from establishing latent infection.

IM approaches are used for the treatment of a growing number of infectious and neoplastic
diseases [160–162]. Treatment begins with an intensified induction regimen (composed of a
number of potent and potentially toxic drugs), which is subsequently replaced by a mainte-
nance regimen (composed of a smaller number of less toxic drugs) [163]. However, patients
treated with a large number of drugs are particularly vulnerable to drug interactions [164]
and adverse side effects that complicate therapy and seriously undermine the success of clini-
cal management [165]. Another approach to overcome the development of resistance is to
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alternate anti-retroviral therapy [166]. This strategy has been shown to significantly delay
virological failure [144, 145], yet it is flawed by its high psychological and physical burden [167].

We propose an approach that combines the advantages of conventional IM and treatment
alternation strategies, but minimizes their inherent disadvantages. We suggest a single, pro-
active treatment switch from an inducer to a maintenance drug combination. Initially, the
inducer combination should rapidly lower the viral population size and eliminate resistant
mutants. Before drug-resistant strains are likely to be archived, the inducer combination will
be replaced by a maintenance regimen with a completely different resistance profile. Based
on hybrid stochastic–deterministic simulations of a HIV-dynamics model that integrates the
mode of action of all approved and some developmental drugs [138], we are able to study
a novel mathematical concept, which prevents the emergence of drug-resistance in each
individual realization (virtual patient) by switching between therapies. Utilizing this concept,
we deduce a distribution of switching times from the hybrid simulations, used to determine
a single fixed duration for the induction therapy that increases the probability of treatment
success in the whole virtual patient population and minimizes the risk of resistance archiving
in the latent reservoir. Finally, we evaluate the performance of this novel IM-strategy against
conventional HAART by comparing the statistics obtained from corresponding hybrid

3.2.2 Results

Mathematical HIV-Dynamics Model of Viral Replication, Mutation and Drug Interference

We have previously introduced a novel model of HIV-dynamics [138] that allows the mecha-
nistic integration of all novel and some developmental HIV drugs. We extended this model by
the compartment of very long lived, latently infected T-cells TL, which are believed to prevent
eradication of HIV [168] and to lead to archiving of drug-resistance [156, 157]. The resulting
model is depict in Figure 3.1. It comprises uninfected T-cells and macrophages, TU and MU,
respectively, non-infectious virus VNI, infectious virus VI(i) of mutant strain i = 1, 2, . . . ,
and infected cells belonging to each mutant strain i: infected T-cells and macrophages prior
to proviral genomic integration, T1(i) andM1(i), and infected T-cells and macrophages after
proviral genomic integration T2(i), TL(i) and M2(i). Latently infected cells TL(i) do not
express viral genes but can become activated, transforming TL(i) into virus producing cells
T2(i). A detailed description of the model and its parameterization is given in Appendix A.
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The overall dynamics in the model comprises several viral strains, each with species whose
copy numbers can vary over several orders of magnitude (from 0 to ≈ 1011). For this reason,
we employed a hybrid approach in order to (i) correctly account for stochastic fluctuations in
slow reactions and species present in small numbers, and (ii) reduce the computational costs

adverse side effects that complicate HIV therapy and seriously
undermine the success of clinical management [18].
Another approach to overcome the development of resistance is

to alternate antiretroviral therapy [19]. This strategy has been
shown to significantly delay virological failure [20,21], yet it is
flawed by its high psychological and physical burden [22].
We propose an approach that combines the advantages of

conventional IM- and treatment alternation strategies, but
minimizes their inherent disadvantages. We suggest a single,
pro-active treatment switch from an inducer drug combination to
a maintenance combination. The inducer drug combination
should rapidly lower the viral population size and eliminate
resistant mutants. Subsequently, it will be replaced by a
maintenance drug regimen with a completely different resistance
profile, before drug resistant strains are archived.
We have previously introduced a novel model of virus dynamics

and adaptation [23], which allows us to consider the distinct
molecular effects of all novel (and some developmental) HIV
drugs. In this article, we present a novel mathematical concept,
which prevents the emergence of drug resistance in each
individual realization (virtual patient) of the model by switching
between therapies. Utilizing this concept, we deduce a distribution
of (individual) switching-times, which we use to determine a single
fixed duration for the induction therapy, which increases the
treatment success probability in the whole virtual patient

population and which minimizes the risk for resistance to become
archived in the latent reservoir. Finally, the performance of this
novel induction-maintenance-strategy is evaluated against con-
ventional HAART therapy.

Results

Virus dynamics model
We have extended the existing viral dynamics model, described

in [23], for the compartment of very long lived, latently infected T-
cells TL (Fig. 1 and Materials and Methods section), which are
believed to prevent eradication of HIV [24] and to lead to the
archiving of drug resistance [9,10].
Briefly, the virus dynamics model (Fig. 1) comprises T-cells,

macrophages, free non-infectious virus (TU,MU,VNI, respectively),
free infectious virus of mutant strain i,VI(i), and five types of
infected cells belonging to mutant strain i: infected T-cells and
macrophages prior to proviral genomic integration (T1(i) and
M1(i), respectively) and infected T-cells and macrophages after
proviral genomic integration (T2(i),TL(i) and M2(i), respectively).
The latently infected cell type TL does not express viral genes, but
can become activated with rate a, transforming this cell into a
virus producing post-integration infected T-cell T2. The average
rates of change of the different species are displayed in theMaterials
and Methods section. All parameter values have been chosen

Figure 1. Extended virus dynamics-, mutation- and drug interference model. Target cells (TU,MU) can become successfully infected by
infective virus VI with infection rate constants bT and bM, respectively, creating early infected cells T1 and M1 . Infection can also be unsuccessful
after the step of viral fusion (rate constant CLT and CLM), eliminating the virus and rendering the cell uninfected. Early infected cells T1 andM1 can
also destroy essential viral proteins or DNA prior to integration, returning the cell to an uninfected stage. The genomic viral DNA can become
integrated with rate constants kT and kM creating post-integration, infected cells T2,TL and M2 . The latently infected cell type TL does not express
viral genes, but can become activated with rate a, transforming this cell into a productively infected T-cell T2 . Virus producing cells T2,M2 release

new infectious- and non infectious virus VI and VNI with rate constants NT, cNTNT{NT
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and NM, dNMNM{NM
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, respectively. Phenotypic mutation
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respective rate constants dx and the free virus (infectious and non-infectious) gets cleared with rate constant CL (not shown in the illustration). The
site of drug interference with the replicative cycle of HIV is indicated by blue bars for the respective drug classes (NRTIs, NNRTIs, FIs, CCR5-inhibitors,
INIs, PIs, and maturation inhibitors).
doi:10.1371/journal.pone.0018204.g001
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Figure 1. Extended virus dynamics-, mutation- and drug interference model. Target cells (TU,MU) can become successfully infected by

infective virus VI with infection rate constants bT and bM, respectively, creating early infected cells T1 and M1. Infection can also be unsuccessful

after the step of viral fusion (rate constant CLT and CLM), eliminating the virus and rendering the cell uninfected. Early infected cells T1 andM1 can

also destroy essential viral proteins or DNA prior to integration, returning the cell to an uninfected stage. The genomic viral DNA can become

integrated with rate constants kT and kM creating post-integration, infected cells T2,TL and M2. The latently infected cell type TL does not express

viral genes, but can become activated with rate a, transforming this cell into a productively infected T-cell T2. Virus producing cells T2,M2 release

new infectious- and non infectious virus VI and VNI with rate constants NT, cNTNT{NT!
"

and NM, dNMNM{NM!
"
, respectively. Phenotypic mutation

occurs at the stage of viral genomic integration kT,kM (see [23]). All cellular compartments x can get destroyed by the immune system with

respective rate constants dx and the free virus (infectious and non-infectious) gets cleared with rate constant CL (not shown in the illustration). The

site of drug interference with the replicative cycle of HIV is indicated by blue bars for the respective drug classes (NRTIs, NNRTIs, FIs, CCR5-inhibitors,

INIs, PIs, and maturation inhibitors).

doi:10.1371/journal.pone.0018204.g001
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adverse side effects that complicate HIV therapy and seriously
undermine the success of clinical management [18].
Another approach to overcome the development of resistance is

to alternate antiretroviral therapy [19]. This strategy has been
shown to significantly delay virological failure [20,21], yet it is
flawed by its high psychological and physical burden [22].
We propose an approach that combines the advantages of

conventional IM- and treatment alternation strategies, but
minimizes their inherent disadvantages. We suggest a single,
pro-active treatment switch from an inducer drug combination to
a maintenance combination. The inducer drug combination
should rapidly lower the viral population size and eliminate
resistant mutants. Subsequently, it will be replaced by a
maintenance drug regimen with a completely different resistance
profile, before drug resistant strains are archived.
We have previously introduced a novel model of virus dynamics

and adaptation [23], which allows us to consider the distinct
molecular effects of all novel (and some developmental) HIV
drugs. In this article, we present a novel mathematical concept,
which prevents the emergence of drug resistance in each
individual realization (virtual patient) of the model by switching
between therapies. Utilizing this concept, we deduce a distribution
of (individual) switching-times, which we use to determine a single
fixed duration for the induction therapy, which increases the
treatment success probability in the whole virtual patient

population and which minimizes the risk for resistance to become
archived in the latent reservoir. Finally, the performance of this
novel induction-maintenance-strategy is evaluated against con-
ventional HAART therapy.

Results

Virus dynamics model
We have extended the existing viral dynamics model, described

in [23], for the compartment of very long lived, latently infected T-
cells TL (Fig. 1 and Materials and Methods section), which are
believed to prevent eradication of HIV [24] and to lead to the
archiving of drug resistance [9,10].
Briefly, the virus dynamics model (Fig. 1) comprises T-cells,

macrophages, free non-infectious virus (TU,MU,VNI, respectively),
free infectious virus of mutant strain i,VI(i), and five types of
infected cells belonging to mutant strain i: infected T-cells and
macrophages prior to proviral genomic integration (T1(i) and
M1(i), respectively) and infected T-cells and macrophages after
proviral genomic integration (T2(i),TL(i) and M2(i), respectively).
The latently infected cell type TL does not express viral genes, but
can become activated with rate a, transforming this cell into a
virus producing post-integration infected T-cell T2. The average
rates of change of the different species are displayed in theMaterials
and Methods section. All parameter values have been chosen

Figure 1. Extended virus dynamics-, mutation- and drug interference model. Target cells (TU,MU) can become successfully infected by
infective virus VI with infection rate constants bT and bM, respectively, creating early infected cells T1 and M1 . Infection can also be unsuccessful
after the step of viral fusion (rate constant CLT and CLM), eliminating the virus and rendering the cell uninfected. Early infected cells T1 andM1 can
also destroy essential viral proteins or DNA prior to integration, returning the cell to an uninfected stage. The genomic viral DNA can become
integrated with rate constants kT and kM creating post-integration, infected cells T2,TL and M2 . The latently infected cell type TL does not express
viral genes, but can become activated with rate a, transforming this cell into a productively infected T-cell T2 . Virus producing cells T2,M2 release

new infectious- and non infectious virus VI and VNI with rate constants NT, cNTNT{NT

! "
and NM, dNMNM{NM

! "
, respectively. Phenotypic mutation

occurs at the stage of viral genomic integration kT,kM (see [23]). All cellular compartments x can get destroyed by the immune system with
respective rate constants dx and the free virus (infectious and non-infectious) gets cleared with rate constant CL (not shown in the illustration). The
site of drug interference with the replicative cycle of HIV is indicated by blue bars for the respective drug classes (NRTIs, NNRTIs, FIs, CCR5-inhibitors,
INIs, PIs, and maturation inhibitors).
doi:10.1371/journal.pone.0018204.g001
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profile, before drug resistant strains are archived.
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molecular effects of all novel (and some developmental) HIV
drugs. In this article, we present a novel mathematical concept,
which prevents the emergence of drug resistance in each
individual realization (virtual patient) of the model by switching
between therapies. Utilizing this concept, we deduce a distribution
of (individual) switching-times, which we use to determine a single
fixed duration for the induction therapy, which increases the
treatment success probability in the whole virtual patient

population and which minimizes the risk for resistance to become
archived in the latent reservoir. Finally, the performance of this
novel induction-maintenance-strategy is evaluated against con-
ventional HAART therapy.

Results

Virus dynamics model
We have extended the existing viral dynamics model, described

in [23], for the compartment of very long lived, latently infected T-
cells TL (Fig. 1 and Materials and Methods section), which are
believed to prevent eradication of HIV [24] and to lead to the
archiving of drug resistance [9,10].
Briefly, the virus dynamics model (Fig. 1) comprises T-cells,

macrophages, free non-infectious virus (TU,MU,VNI, respectively),
free infectious virus of mutant strain i,VI(i), and five types of
infected cells belonging to mutant strain i: infected T-cells and
macrophages prior to proviral genomic integration (T1(i) and
M1(i), respectively) and infected T-cells and macrophages after
proviral genomic integration (T2(i),TL(i) and M2(i), respectively).
The latently infected cell type TL does not express viral genes, but
can become activated with rate a, transforming this cell into a
virus producing post-integration infected T-cell T2. The average
rates of change of the different species are displayed in theMaterials
and Methods section. All parameter values have been chosen

Figure 1. Extended virus dynamics-, mutation- and drug interference model. Target cells (TU,MU) can become successfully infected by
infective virus VI with infection rate constants bT and bM, respectively, creating early infected cells T1 and M1 . Infection can also be unsuccessful
after the step of viral fusion (rate constant CLT and CLM), eliminating the virus and rendering the cell uninfected. Early infected cells T1 andM1 can
also destroy essential viral proteins or DNA prior to integration, returning the cell to an uninfected stage. The genomic viral DNA can become
integrated with rate constants kT and kM creating post-integration, infected cells T2,TL and M2 . The latently infected cell type TL does not express
viral genes, but can become activated with rate a, transforming this cell into a productively infected T-cell T2 . Virus producing cells T2,M2 release

new infectious- and non infectious virus VI and VNI with rate constants NT, cNTNT{NT
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and NM, dNMNM{NM
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, respectively. Phenotypic mutation

occurs at the stage of viral genomic integration kT,kM (see [23]). All cellular compartments x can get destroyed by the immune system with
respective rate constants dx and the free virus (infectious and non-infectious) gets cleared with rate constant CL (not shown in the illustration). The
site of drug interference with the replicative cycle of HIV is indicated by blue bars for the respective drug classes (NRTIs, NNRTIs, FIs, CCR5-inhibitors,
INIs, PIs, and maturation inhibitors).
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Figure 3.1:HIV-dynamics model of viral replication, mutation and drug interference. Target cells TU and
MU can become infected by infective virus VI (with rate constants βT and βM), producing early infected
cells T1 and M1. Infection can also be unsuccessful after viral fusion (CLT and CLM), eliminating the
virus and rendering the target cell uninfected. Early infected cells T1 and M1 can also destroy essential
viral proteins or DNA prior to integration (δPIC,T and δPIC,M), returning the cells to an uninfected stage.
The genomic viral DNA can become integrated (kT and kM) creating post-integration, infected cells T2,
TL and M2. The latently infected cell type TL (created with probability p) does not express viral genes,
but can become activated (with rate constant α), transforming TL into a productively infected T-cell
T2. Virus producing cells T2 and M2 release new infectious and non-infectious virus VI and VNI (NT,
N̂T − NT and NM, N̂M − NM, respectively). Phenotypic mutation occurs at the stage of viral genomic
integration. TU and MU are produced by the immune system with constant rates λT and λM, all cell
types x get destroyed with respective rate constants δx , and free virus (infectious and non-infectious) gets
cleared with rate constant CL (not shown in the illustration). The sites of drug interference are indicated
by blue bars for the respective drug classes (NRTIs, NNRTIs, FIs, CCR5-inhibitors, INIs, PIs, and MIs).
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substantially by approximating the fast, large-number system dynamics deterministically. We
used the hybrid method derived in Section 3.1, where a reaction Rµ was deterministically
approximated during simulation if both, the value of its propensity and the levels of all species
affected by Rµ, were above a threshold value of 20. Otherwise, the reaction was treated as a
discrete stochastic process.

Realization and Implementation of the Model: We implemented the stochastic–deterministic
simulation algorithm from Subsection 3.1.4 for the above HIV-dynamics model in C++ ,
utilizing an ODE integrator that is based on numerical differentiation formulas [169] and
uses strategies for event detection and error- and step size-control comparable to ode15s in
Matlab® [170].3 Numerical integration and event detection was performed with a relative
error tolerance of 10−6 and an absolute error tolerance of 10−9. Simulations were run on 112
Intel® Xeon™ CPU E5440 cores with 2.83GHz at the high performance computing cluster
of the National University of Ireland, Maynooth (NUIM), utilizing the Intel® C++ and
FORTRAN compilers and the Intel® math kernel library (MKL). To evaluate the proposed IM-
strategy against conventional HAART (data shown in Figure 3.4), for instance, we performed
12, 000 hybrid realizations. With realization start (t0 = 0) the effects of drug treatment were
simulated until t = 730days was reached. The average runtime on a single core was ≈ 1.5 h
per realization, resulting in an overall computation time of ≈ 18, 000 h.

Treatment Change Before Virological Failure

Currently, changes of anti-retroviral treatment regimes are largely triggered by virological
failure or toxicity. In Figure 3.2A, we show the viral load during a hybrid simulation in the
case of first-line treatment failure. The corresponding population dynamics of HIV is shown
in Figure 3.2B. During first-line treatment failure, resistant mutants (green and cyan lines)
are selected from the quasi-species population and quickly become the dominant population,
leading to viral rebound (observe that fluctuations are captured for low levels in the hybrid
simulation). While the total virus population is temporarily shrinking, mutants that confer
resistance against a potential follow-up treatment (red line, dark grey shaded area) are depleted
(possibly eradicated, by correctly accounting for discretely changing low levels in the hybrid
setting). However, during viral rebound the total population re-expands and consequently
erroneous reverse transcription generates novel mutants that can confer resistance against a

3A Matlab®-implementation of our simulation code is provided in the Supporting Information to [139].
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second-line therapy. Once the total population size has been restored, a second-line therapy,
although composed of entirely different drugs, is as likely to fail as before initiation of the
first-line therapy. Furthermore, drug-resistant viral strains are likely to become archived while
they dominate the population (light grey shaded area).

In Figure 3.2C, we show the viral load during the proposed IM-therapy. The corresponding
population dynamics of HIV is shown in Figure 3.2D. The inducer combination reduces the
viral load (see Figure 3.2C). However, treatment is changed (vertical dashed lines) to the
maintenance combination, before resistant strains (green and cyan lines) can become more

Our virtual patients are monitored every month for efficacy
assessment until virus levels fall below the limit of detection (50 HIV
RNA/mL plasma). Thereafter, they are monitored every other
month. Virological failure has been defined according to treatment
guidelines [24]: At the first efficacy assessment (one month after
treatment initiation), viral load should have fallen by at least 2 logs
[HIV RNA/mL plasma]. Each consecutive measurement should be
below the previous assessment. By month 4, viral load should be
below the level of detection (50 HIV RNA/mL plasma). After that,
detectable virus is defined as virological failure.
We implemented conventional HAART in the following way:

The virtual patients are initially treated with a drug combination
consisting of two nucleoside reverse transcriptase inhibitors
(NRTIs) and one non-nucleoside reverse transcriptase inhibitor
(NNRTI) (e.g. tenofovir (TDF) + emtricitabine (FTC) + efavirenz
(EFV)), until virological failure is detected, in which case treatment
is changed to a second line regimen consisting of a protease
inhibitor (PI), an integrase inhibitor (InI) and an entry inhibitor
(EI) (e.g. ritonavir (RTV) -boosted PI + raltegravir (RLV) +
maraviroc (MVR)).
In the proposed induction-maintenance-strategy, patients are

initially treated with a combination consisting of a PI, an InI and
an EI, until tswitch~80 days. After that, a treatment consisting of
two NRTIs and one NNRTI is applied. If failure is detected at any
efficacy assessment time point, treatment change is applied.

In the following, we performed 1000 hybrid stochastic-determin-
istic simulations for each relevant parameter set (deduced fromTable
S1) and counted the number of realizations, in which virological
failure occurred. Furthermore, we assessed, if the number of drug
resistant mutants in the very long-lived infected cells TL was higher
at the end of the simulation than upon initiation of treatment. In this
case we recorded ‘‘archiving’’ of drug resistance. The results of our
simulations are discussed in the next section.

Proposed induction-maintenance-strategy improves
success rate and minimizes archiving of drug-resistance
Fig. 4A shows that the proposed induction-maintenance-

strategy (blue line) with a fixed treatment switch time of
tswitch~80 days leads to a significant reduction in the probability
to experience virological failure compared to the conventional
treatment strategy (red line). This observation holds true for a wide
range of parameters (see Table 2, second column). In only two
cases, where failure rarely occurs during conventional therapy, we
do not get significant differences at the p= 0.05 level.
Fig. 4B shows that virological failure and the average number of

archived drug resistancemutations are strongly correlated (spearman’s
correlation coefficient rSw0:99, pv0:001). This indicates that vi-
rological failure is a strong predictor for drug resistance archiving.
Tables 2 (third–fifth column) show the number of cases in which

archiving of multi-drug resistant viral strains (with §2, §3 and

Figure 2. Abundance of viral mutants during first-line treatment failure and during proposed induction-maintenance strategy.
A: Plasma virus load during first line treatment failure (blue line). B: Total abundance of distinct viral mutants during first-line treatment failure.
C: Plasma virus load (blue line) during proposed induction-maintenance strategy with switch between induction- and maintenance treatment at 80
days (vertical dashed line). D: Total abundance of distinct viral mutants during proposed induction-maintenance strategy. The magenta line denotes
the abundance of wildtype virus. Green- and cyan lines denote the abundance of mutants that are part-resistant against the first line regimen
(resistant against two out of three drugs) and mutants that are fully resistant against the first line regimen, respectively. The red lines denote the
abundance of all mutants, which are part-resistant against a second line treatment. The area under the red line is highlighted by the dark grey shaded
area, to stress the negative impact of these mutants on the success of a second line regimen. The light shaded area in panel B indicates that resistant
mutants are more abundant than the wildtype and therefore highlights when drug resistance archiving in latently infected cells takes place. The
simulations were performed by assuming 70% drug efficacy g(wt,j) and a fitness loss s of 20% per drug resistance mutation. Furthermore, it was
assumed that a single point mutation can confer absolute resistance to a single drug.
doi:10.1371/journal.pone.0018204.g002
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Figure 3.2: Abundance of viral mutants during first-line treatment failure and proposed IM-strategy. A
and B: Plasma virus load and abundance of distinct viral mutants during first-line treatment failure,
respectively. C and D: Plasma virus load and abundance of distinct viral mutants during IM-strategy,
respectively, switching from induction to maintenance therapy after 80 days (vertical dashed lines).
Magenta lines show the abundance of wild type; green and cyan lines show the abundance of mutants
that are part-resistant (against two out of three drugs) and full-resistant against the first-line regimen,
respectively; red lines show the abundance of mutants that are part-resistant against the second-line
treatment, where the area under the curve is dark grey shaded to stress the negative impact on a success
of the second-line regimen. The light shaded area in panel B highlights that full-resistant mutants are
more abundant than wild type virus, indicating when drug-resistance archiving in latently infected
cells takes place. Simulations were performed for drug efficacy η(wt, d) = 70% and fitness loss s = 20%
per drug-resistance mutation. It was further assumed that a single point mutation can confer absolute
resistance to a single drug.
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abundant than the wild type (magenta line). Therefore, at the time of treatment change, total
virus has been decreased and mutants that confer resistance to the maintenance therapy (red
line, dark grey shaded area) are likely to be eradicated, which improves the probability to
achieve durable virological suppression. With this strategy, the abundance of the wild type is
larger than the abundance of drug-resistant mutants, which further lowers the probability that
drug-resistance enters the latent reservoir (light grey shaded area is absent in Figure 3.2D).

Determination of Treatment Changing Time

To determine an optimal time point for switching from inducer to maintenance combinations,
we first determined relevant sets of parameters for (i) the efficacy η(wt, d) of drug d against
the wild type ‘wt’ and (ii) the fitness loss s(d) that is associated with resistance development,
since the corresponding in vivo parameters are known to vary substantially between different
patients [171]. For simulation purposes, we assumed that one point mutation is sufficient to
create high-level resistance (99%) to a single drug. This is somewhat a worst-case assumption,
but is justified for a number of drugs, see, e.g., [172, 173].

Then, we use an algorithm that automatically switches from inducer to maintenance
combination, minimizing virological failure in each realization (virtual patient) by utilizing
the ‘reproductive capacity’ Rcap(d). We introduced the reproductive capacity in [138] and
provide its derivation for the extended HIV-model 3.1 in Appendix A. The reproductive
capacity Rcap(d) can be interpreted as the expected total number of infectious offspring that
the whole viral population produces under treatment d during one round of replication. It
can be calculated from any simulation and enables to evaluate the state of infection from the

Figure 3.3:Histogram of optimal, individ-
ual treatment switching times. Times for
switching from induction to maintenance
therapy were automatically determined
and carried out in the simulations, using
eq. (3.18). The 0.5th percentile tswitch =
80 days was used as a fixed switching time
in the suggested IM-strategy. Hybrid simu-
lationswere performed at clinically relevant
parameter sets, cf. [139]. Drug switches oc-
curred in a total of 5, 478 out of 6, 000 sim-
ulations.

§5 drug resistance mutations) occurred in the latent reservoir,
under the proposed induction-maintenance strategy and conven-
tional HAART, respectively. It can be seen that the proposed
treatment strategy leads to a significant reduction in multi-drug
resistance archiving for the majority of parameters evaluated. This
indicates, that although two treatment lines have been used for the
novel therapy, more therapeutic options are on average available
in the follow-up period, compared to conventional therapy.

Discussion

We have presented and tested (in terms of a mathematical
model) a very simple treatment strategy that can lead to significant
reductions in virological failure in comparison to conventional
HAART treatment. A unique drug combination (inducer
combination) is used for a short time (80 days) and pro-actively
switched to a maintenance combination. The purpose of the
inducer combination is to decrease viral population size and
thereby increase the likelihood that the subsequent therapy
(maintenance) will achieve durable suppression. Clinical imple-
mentation of this novel treatment strategy requires only one
additional clinical visit at 80 days in comparison with the
conventional HAART therapy. The important finding of our
study is, that although two drug combinations are always utilized
during the proposed induction-maintenance strategy, less archiv-
ing of drug resistance occurs in comparison with a conventional
treatment strategy, where a second treatment line would be
applied only in the case of virological failure or toxicity. Less drug
resistance archiving implies that more treatment options will be
available for the follow-up and long-term management of HIV-
infected patients when the proposed induction-maintenance
treatment strategy is used (see Table 2, third–fifth column).
Fig. S1 shows that only a few archiving events (§40 fully

resistant mutants) are sufficient to eliminate treatment options
permanently. The number of circulating latently infected cells is
small [2,7,30,31]. Detecting a small subset of mutants within the
circulating latently infected cells is experimentally not feasible,
because standard sequencing technology will detect the major
strains [32], while novel, second generation methods require large
samples [33]. Hence, mathematical modelling is a reasonable tool
to investigate drug resistance archiving following treatment
application.
The time for switching between combinations tswitch ( = 80 days)

is the most critical parameter for the success of the proposed
strategy. The following two considerations have to be taken into
account: (i) The inducer combination should be applied only for a

Figure 3. Histogram of optimal, individual treatment switching
times. Switching times for changing from inducer- to maintenance
therapy were automatically determined and carried out (using eq. (1)).
The 0.5th percentile, marked by the red line, was determined and the
corresponding time tswitch~80 days was used as a fixed value in the
suggested strategy to switch from inducer- to maintenance therapy.
Hybrid deterministic-stochastic simulations were performed at clinically
relevant parameter sets (see Table S1). Drug switches occurred in a total
of 5478 out of 6000 simulations.
doi:10.1371/journal.pone.0018204.g003

Figure 4. Kaplan-Meier estimates for treatment success, and correlation between virological failure and archiving of drug
resistance. The plots summarize the results trough the whole simulated parameter space from Table 2 (12000 simulations in total). A: Probability of
no virological failure (%) for the IM-strategy (blue line) and the conventional therapy (red line), respectively. Dashed lines are the 95% confidence
ranges, calculated using Greenwood’s formula. Virological failure was defined according to [24] and is summarized in section ‘‘Implementation of
conventional vs. proposed induction-maintenance-strategy’’. B: The probability to virological failure vs. the average number of drug resistance
archiving in the latent reservoir. A strong positive correlation (pv0:001) between virological failure and drug resistance archiving exists, as indicated
by spearman’s non-parametric rank correlation coefficient rSw0:99.
doi:10.1371/journal.pone.0018204.g004
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perspective of any potential treatment d. As the viral population adapts to some currently
applied treatment, Rcap(d) changes accordingly: Rcap(d) is large initially and decreases
subsequently until drug-resistant strains develop and begin to render treatment d inefficient.
We want to assess the point in time when an inducer combination stops to provide benefits
(in terms of the viral population) for the next (maintenance) drug combination. Thus, we
evaluate Rcap(d) for d = maintenance combination while the inducer combination is applied
and change from induction to maintenance therapy when Rcap(d) reaches its minimum, i.e.,

switch if: d
dt

Rcap(d) = 0. (3.18)

The derived individual switching times from a total of 6, 000 hybrid simulations are shown
in Figure 3.3. We chose the 0.5th percentile tswitch = 80 days as a fixed time for treatment
change in the proposed IM-strategy. In the sequel, we evaluate, if the proposed IM-strategy
with the chosen value for tswitch leads to a general improvement compared to conventional
HAART, in terms of treatment success and drug-resistance archiving.

Implementation of Conventional vs. Proposed IM-Strategy

In order to reflect the clinical practice of HIV care, we implemented the following routine for
assessing the efficacy of the applied treatment combinations. Our virtual patients are moni-
tored every month for efficacy assessment until total virus level falls below the detection limit
(50HIV RNA/mL plasma). Thereafter, they are monitored every other month. Virological
failure has been defined according to current treatment guidelines [168]: At the first efficacy
assessment (one month after treatment initiation), viral load should have fallen by at least
2 logs HIV RNA/mL plasma. Each consecutive measurement should be below the previous
assessment. By month 4, viral load should be below the level of detection (50HIV RNA/mL
plasma). After that, detectable virus is defined as virological failure.

We implemented HAART as follows: Initially, the virtual patient is treated with a combina-
tion of twonucleoside reverse transcriptase inhibitors (NRTIs) and one non-nucleoside reverse
transcriptase inhibitor (NNRTI) (e.g., tenofovir (TDF) + emtricitabine (FTC) + efavirenz
(EFV)), until virological failure is detected. Then, treatment is changed to a second-line
regimen consisting of a protease inhibitor (PI), an integrase inhibitor (INI) and an entry
inhibitor (EI) (e.g., ritonavir (RTV) boosted PI + raltegravir (RLV) +maraviroc (MVR)).

In the proposed IM-strategy, patients are initially treated with a combination consisting of
a PI, an InI and an EI, until tswitch = 80 days. After that, a treatment consisting of two NRTIs
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and one NNRTI is applied. If virological failure is detected at any efficacy assessment time
point, treatment change is applied.

We performed 1, 000 hybrid simulations of both strategies, conventional HAART and
the proposed IM-therapy, for each beforehand identified, clinically relevant parameter set
(see first column in Table 3.1 and further [139]), and counted the number of realizations in
which virological failure occurred. Furthermore, we assessed if the number of drug-resistant
mutants in the very long-lived, latently infected T-cells TL was higher at simulation end than
upon treatment initiation. In such case, we recorded ‘archiving’ of drug-resistance.

Table 3.1: Probability of virological failure and archiving of multi-drug resistant virus during proposed
IM-strategy vs. conventional HAART. Columns 2–5 show the distinct treatment outcome of 1, 000
hybrid stochastic–deterministic simulations for the IM-strategy (left entry) and HAART (right entry),
respectively, for different parameter sets P1–P12 in terms of drug efficacy (1 − η) and mutation-associated
reproductive fitness loss s. Column 2: Percentage of virological failure after 2 years of therapy according
to current HIV treatment guidelines [168]. Columns 3–5: Probability of the archiving of multi-drug
resistance during treatment. Further, the results of cross-tab χ2-tests of independence between treatment
strategy (IM vs. HAART) and outcome are stated (§: p = 0.001, ∗: p = 0.05). A small p-value indicates
that different outcomes are due to the treatment strategy and not to random effects.

Parameter Set Failure Rate Probability of Multi-Drug Resistance Archiving
ID (1 − η; s) IM, HAART ≥ 2 mutations ≥ 3 mutations ≥ 5 mutations

P1 (0.70; 0.30) 1.7%, 4.8%§ 1.8%, 4.8%§ 1.7%, 4.8%§ 0.0%, 0.1%
P2 (0.70; 0.25) 4.2%, 14.2%§ 4.8%, 14.2%§ 4.2%, 13.9%§ 0.1%, 0.2%
P3 (0.70; 0.20) 6.6%, 41.8%§ 18.5%, 42.2%§ 9.6%, 41.6%§ 0.1%, 2.9%§

P4 (0.75; 0.25) 0.9%, 2.8%∗ 0.9%, 2.9%∗ 0.9%, 2.8%∗ 0.0%, 0.0%
P5 (0.75; 0.20) 1.8%, 12.5%§ 2.2%, 12.6%§ 1.8%, 12.5%§ 0.0%, 0.4%
P6 (0.80; 0.20) 0.7%, 2.2%∗ 0.8%, 2.3%∗ 0.7%, 2.2%∗ 0.0%, 0.2%
P7 (0.80; 0.15) 3.1%, 21.9%§ 2.8%, 22.1%§ 3.1%, 21.9%§ 0.2%, 0.9%∗

P8 (0.80; 0.10) 7.9%, 44.0%§ 9.3%, 44.0%§ 8.3%, 44.0%§ 0.7%, 14.6%§

P9 (0.85; 0.15) 0.6%, 0.6% 0.9%, 1.3% 0.6%, 0.6% 0.0%, 0.0%
P10 (0.85; 0.10) 2.4%, 7.1%§ 2.7%, 8.1%§ 2.4%, 7.2%§ 0.3%, 0.4%
P11 (0.85; 0.05) 33.7%, 59.1%§ 34.7%, 59.5%§ 34.0%, 59.3%§ 3.4%, 17.2%§

P12 (0.90; 0.05) 1.2%, 1.8% 2.3%, 2.5% 1.3%, 1.8% 0.1%, 0.1%
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Proposed IM-Strategy Improves Success Rate and Minimizes Archiving of Drug-Resistance

Table 3.1 (third–fifth column) shows the number of cases in which archiving of multi-drug
resistant viral strains (with ≥ 2, ≥ 3 and ≥ 5 drug-resistance mutations) occurred in the latent
reservoir under the proposed IM-strategy and conventional HAART, respectively. It can
be seen that the proposed treatment strategy leads to a significant reduction in multi-drug
resistance archiving for the majority of evaluated parameters. This indicates, that although
two treatment lines have been used for the novel IM therapy, more therapeutic options are on
average available in the follow-up period, compared to conventional therapy.

Figure 3.4A shows that the proposed IM-strategy (blue line) with a fixed treatment switch-
ing time of tswitch = 80 days leads to a significant reduction in the probability to experience
virological failure compared to the conventional treatment strategy (red line). This observation
holds true for a wide range of parameters (see Table 3.1, second column). In only two cases,
where virological failure rarely occurs during conventional therapy, we do not get significant
differences at the p = 0.05 level. As further depict in Figure 3.4B, virological failure and the
average number of archived drug-resistance mutations are strongly correlated (Spearman’s

§5 drug resistance mutations) occurred in the latent reservoir,
under the proposed induction-maintenance strategy and conven-
tional HAART, respectively. It can be seen that the proposed
treatment strategy leads to a significant reduction in multi-drug
resistance archiving for the majority of parameters evaluated. This
indicates, that although two treatment lines have been used for the
novel therapy, more therapeutic options are on average available
in the follow-up period, compared to conventional therapy.

Discussion

We have presented and tested (in terms of a mathematical
model) a very simple treatment strategy that can lead to significant
reductions in virological failure in comparison to conventional
HAART treatment. A unique drug combination (inducer
combination) is used for a short time (80 days) and pro-actively
switched to a maintenance combination. The purpose of the
inducer combination is to decrease viral population size and
thereby increase the likelihood that the subsequent therapy
(maintenance) will achieve durable suppression. Clinical imple-
mentation of this novel treatment strategy requires only one
additional clinical visit at 80 days in comparison with the
conventional HAART therapy. The important finding of our
study is, that although two drug combinations are always utilized
during the proposed induction-maintenance strategy, less archiv-
ing of drug resistance occurs in comparison with a conventional
treatment strategy, where a second treatment line would be
applied only in the case of virological failure or toxicity. Less drug
resistance archiving implies that more treatment options will be
available for the follow-up and long-term management of HIV-
infected patients when the proposed induction-maintenance
treatment strategy is used (see Table 2, third–fifth column).
Fig. S1 shows that only a few archiving events (§40 fully

resistant mutants) are sufficient to eliminate treatment options
permanently. The number of circulating latently infected cells is
small [2,7,30,31]. Detecting a small subset of mutants within the
circulating latently infected cells is experimentally not feasible,
because standard sequencing technology will detect the major
strains [32], while novel, second generation methods require large
samples [33]. Hence, mathematical modelling is a reasonable tool
to investigate drug resistance archiving following treatment
application.
The time for switching between combinations tswitch ( = 80 days)

is the most critical parameter for the success of the proposed
strategy. The following two considerations have to be taken into
account: (i) The inducer combination should be applied only for a

Figure 3. Histogram of optimal, individual treatment switching
times. Switching times for changing from inducer- to maintenance
therapy were automatically determined and carried out (using eq. (1)).
The 0.5th percentile, marked by the red line, was determined and the
corresponding time tswitch~80 days was used as a fixed value in the
suggested strategy to switch from inducer- to maintenance therapy.
Hybrid deterministic-stochastic simulations were performed at clinically
relevant parameter sets (see Table S1). Drug switches occurred in a total
of 5478 out of 6000 simulations.
doi:10.1371/journal.pone.0018204.g003

Figure 4. Kaplan-Meier estimates for treatment success, and correlation between virological failure and archiving of drug
resistance. The plots summarize the results trough the whole simulated parameter space from Table 2 (12000 simulations in total). A: Probability of
no virological failure (%) for the IM-strategy (blue line) and the conventional therapy (red line), respectively. Dashed lines are the 95% confidence
ranges, calculated using Greenwood’s formula. Virological failure was defined according to [24] and is summarized in section ‘‘Implementation of
conventional vs. proposed induction-maintenance-strategy’’. B: The probability to virological failure vs. the average number of drug resistance
archiving in the latent reservoir. A strong positive correlation (pv0:001) between virological failure and drug resistance archiving exists, as indicated
by spearman’s non-parametric rank correlation coefficient rSw0:99.
doi:10.1371/journal.pone.0018204.g004
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Figure 3.4: Kaplan–Meier estimates of treatment success, and correlation between virological failure
and drug-resistance archiving. The plots summarize the results trough the whole simulated parameter
space from Table 3.1 (12, 000 hybrid simulations in total). A: Probability of no virological failure for
the IM-strategy (blue line) and conventional HAART (red line), respectively. Dashed lines are the 95%
confidence ranges, calculated using Greenwood’s formula. Virological failure was defined according
to current treatment guidelines [168]. B: Probability of virological failure vs. average number of drug-
resistance archiving in the latent reservoir. A strong positive correlation (p < 0.001) between virological
failure and drug-resistance archiving exists, as indicated by Spearman’s non-parametric rank correlation
coefficient rS > 0.99.
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correlation coefficient rS > 0.99, p < 0.001). This indicates that virological failure is a strong
predictor for drug-resistance archiving.

3.2.3 Discussion

We studied an application of a hybrid method to a comprehensive HIV-dynamics model that
well-illustrated the advantages obtained by a stochastic–deterministic system representation:
Neither a purely stochastic (due to numerical complexity) nor a purely deterministic approach
(due to lack of stochastic effects) would have allowed to perform our in silico study. Using
hybrid simulations, however, we were able to derive and test (in terms of the mathematical
model) a very simple treatment strategy that can lead to significant reductions in virological
failure in comparison to conventional HAART.

A unique inducer combination is used for a short time (80 days) and pro-actively switched
to a maintenance combination. The purpose of the inducer combination is to decrease the
viral population size and thereby increase the likelihood that the subsequent (maintenance)
therapy will achieve durable suppression. Clinical implementation of this novel treatment
strategy requires only one additional clinical visit after 80 days in comparison to conventional
HAART. The important finding of our study is that although two drug combinations are
always utilized during the proposed IM-strategy, less archiving of drug-resistance occurs
compared to conventional HAART, where a second treatment line would be applied only in
the case of virological failure or toxicity. Less drug-resistance archiving implies that more
treatment options will be available for the follow-up and long-term management of HIV-
infected patients when the proposed IM-strategy is used (see Table 3.1, third–fifth column).

Only a few archiving events (≥ 40 fully resistant mutants) are sufficient to eliminate treat-
ment options permanently, cf. [139]. The number of circulating latently infected cells is
small [152, 154, 174, 175]. Detecting a small subset of mutants within the circulating latently in-
fected cells is experimentally not feasible, because standard sequencing technology will detect
the major strains [176], while novel, second generation methods require large samples [177].
Hence, mathematical modeling is a reasonable tool to investigate drug-resistance archiving
following treatment application.

The time for switching between combinations tswitch (= 80 days) is the most critical param-
eter for the success of the proposed IM-strategy. The following two considerations have to
be taken into account: (i) The inducer combination should be applied only for a short time,
to prevent the selection and archiving of mutants, which are resistant to the current drug
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carrying the first-, the second- and the both drug-resistance

mutations and m~2:16:10{5 is the single point mutation rate [42].
It is reasonable to assume that resistant mutants are, at best, as
likely to enter the latent reservoir as the wildtype in the absence of
any drugs, due to their inherent fitness loss, i.e. P(dbl:jTL)
ƒFdbl::wt. Considering a maintenance combination consisting of
efavirenz (EFV), tenofovir (TDF) and emtricitabine (FTC), with
primary resistance mutations K103N, K65R and M184V and
respective selective disadvantages for the single-point mutants
sK103N~0:125,sK65R§0:8 and sM184V§0:9 [43] and additive
fitness losses in the double mutants sK103N=K65R,sK103N=M184V,

sK65R=M184V (i.e. sdbl:~1{(1{s1):(1{s2)), the probability that

mutants, resistant against two out of three maintenance drugs,

enter the latent reservoir are P(K103N=K65RjTL)ƒ5:10{9,

P(K103N=M184VjTL)ƒ4:10{9 and P(K65R=M184VjTL)ƒ
6:5:10{10 respectively. Using in vivo data, Chun et al. [7]
estimated the average number of latently infected cells with

replication-competent provirus to be TL&1:4:106 cells, so that
the expected number of partly-resistant mutants E(dbl:,TL)~
TL

:P(dbl:jTL) that are archived prior to treatment initiation
is E(K103N=K65R,TL)ƒ0:007,E(K103N=M184V,TL)ƒ0:006
and E(K65R=M184V,TL)ƒ0:0009. In other words, it is very
unlikely that part-resistant mutants are archived in patients prior
to treatment, since E(dbl:,TL)%1. Furthermore, part-resistant
mutants are still susceptible to one out of the three drugs in the
maintenance combination. For triple-drug (fully) resistant strains,
the likelihood of archival copies is even smaller.
Infection with drug resistant strains, mainly against established

drug classes, is a major, growing health concern [44]. During
infection with drug-resistant viral strains, archivation in the latent
reservoir is likely, since this reservoir is established early in the
infection [45]. If the circulating viral population reverses to a drug-
susceptible type, archived resistant mutants from the time of
infection might remain undetected and can complicate subsequent

treatment (see Fig. S1). This particular circumstance applies
equally to the proposed induction-maintenance therapy and
conventional HAART.
For our strategy, we have chosen drugs from novel classes (e.g.

InI, EI) for the inducer-combination, while we selected drugs from
well-established classes for the maintenance combination (NNRTI,
NRTI). This has the following rationale: The inducer combination
will only be applied for a short time (80 days), while the
maintenance combination could possibly be applied for much
longer periods of time (until it fails, or toxicological events occur).
Second or third generation drugs within the established drug-
classes are often more convenient to apply (e.g. once daily dosing)
and are less toxic, which has important implications for the long-
term management of HIV [46]. Secondly, drugs from the novel
drug classes (InI, EI), are currently not available as generic
formulations, whereas low-cost alternative drugs exist for estab-
lished drug classes. Therefore, in order to reduce treatment costs,
it is of advantage to select a strategy, in which inexpensive drugs
can be used for the majority of time, while cost-intensive ones are
only applied for short treatment periods.
Some drug classes can cause a distinct viral load decline. In

particular, the only approved InI raltegravir causes a more rapid
viral load decay, compared with other HIV inhibitors [47,48]. It
might therefore seem logical, based on viral load decay, to use
raltegravir in the induction treatment. It has been shown,
however, that the faster viral decay with raltegravir could be a
consequence of the particular site of action of InIs within the viral
life cycle and may not be due to an overall increased removal rate
of replication-competent viral compartments by raltegravir
[23,49]. Long-term studies of raltegravir- versus efavirenz-based
HAART showed equal outcomes with either therapies [50,51],
arguing against the superiority of raltegravir-based drug combi-
nations in removing replication-competent virus; however, further
analysis is required.
Intuitively, it might be more advantageous to use drug

resistance tests to guide treatment switches, instead of using a
fixed time for a pro-active switch from inducer- to maintenance
combination [19]. However, under the considerations discussed
above, a switch from inducer- to maintenance combination should
be applied before any resistant strains become abundant. This
implies that the most frequent viral strain at the time of switch
should be the wildtype. Standard assays fail to detect minority
species [32]. Ultra-deep/pyro-sequencing might provide a more
holistic picture of the quasi-species composition and can pick up
viral mutants that are abundant in &1% of the quasi-species
population and if the sample is large enough [33,39,40]. However,
even in this case, viral mutants are likely to dominate once the
results are available (w1 week), owing to the rapid viral kinetics
[52].
In our in silico study, we considered time-invariant, as well as

anatomically homogeneous average drug efficacy (1{g), for the
ease of modelling. It is also possible to consider drug- and patient-
specific time-varying pharmacokinetics and to study the impact of
compliance on drug resistance development. However, if compli-
ance is identical between the two study arms, the qualitative
difference between the outcome of conventional HAART versus
the proposed induction-maintenance strategy is not expected to
change. As shown in Table 2, the proposed induction-mainte-
nance therapy performs better than conventional HAART for a
wide range of parameter values for (1{g). Furthermore, it was
shown in a clinical study [20,21] that treatment alternation leads
to significantly less virological failure than conventional HAART,
when compliance is imperfect but identical between the two study
arms. However, since the study in [20,21] is not identical to the

Figure 5. Kaplan-Meier estimates of treatment success (prob-
ability of no virological failure) for very high initial abundance
of drug resistant mutants. The figure shows the outcome of 500
simulations for the proposed induction-maintenance strategy (blue
line) and for the conventional HAART therapy (red line), respectively.
Dashed lines indicate the 95% confidence ranges, calculated using
Greenwood’s formula. The initial abundance of drug resistant mutants
was set to 1% of the population. Other parameter values: (1{g)= 0.75,
s=0.8.
doi:10.1371/journal.pone.0018204.g005
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Figure 3.5: Kaplan–Meier estimates of
treatment success (probability of no virolog-
ical failure) for very high initial abundance
of drug-resistant mutants. The outcome
of 500 hybrid simulation for the proposed
IM-strategy (blue line) and for the conven-
tional HAART (red line), respectively, are
shown. Dashed lines indicate the 95%
confidence ranges, calculated using Green-
wood’s formula. The initial abundance of
drug-resistant mutants was set to 1% of
the population. Other parameter values:
(1 − η) = 0.75, s = 0.8.

combination and would limit its further use (risk of the strategy), (ii) while at the same time,
it has to be applied long enough to possibly eradicate viral mutants, which are resistant to the
next drug combination (benefit of the strategy).

The time required for resistant mutants to emerge during therapy depends on their abun-
dance before therapy initiation (if they pre-exist and are selected from the quasi-species
population) and on their genetic distance to the wild type (if resistance is de novo devel-
oped). As discussed above, we determine the abundance of mutants at the time of therapy
initiation by utilizing the deterministic fix-point of the model as a starting condition for the
hybrid simulations. In Figure 3.5, we demonstrate the non-inferiority of our approach if
drug-resistant mutants are more abundant than expected (1% of the wild type level, i.e., the
detection limit of second generation sequencing technologies [177–179]). We assumed the
shortest genetic distance possible between wild type and fully drug-resistant mutants (one
mutation creates full resistance against a single drug, such that three distinct mutations create
full resistance against a triple drug combination). For some drugs, however, only subsequent
accumulation of mutations creates fully drug-resistant mutants [180]. In the hybrid simula-
tions, drug-resistance thus develops more rapidly than in vivo for drugs with a large genetic
barrier [181]. This implies that the inducer combination could possibly be applied for a longer
time than the predicted 80 days. However, our results demonstrate that even this very short
time can improve the clinical outcome significantly (see Figures 3.4 and 3.5, and Table 3.1).

Eradication of viral mutants also depends critically on their abundance before therapy
initiation and on the rate at which viral compartments (and hence resistant mutants) are
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cleared. The in vivo elimination rate of viral compartments has been quantified and validated
in a number of clinical studies [182–184]. We used the expected abundance of viral mutants
(the deterministic fix-point of the model) to estimate the abundance of different viral mutants
at the time of treatment initiation. The results in Figure 3.5 also show non-inferiority of our
approach for the case where an unexpectedly high abundance of drug-resistant mutants is
present, which would require longer time for eradication.

One limitation of the proposed IM-strategy is the potential inability to eliminate viral
strains that carry resistance to the maintenance therapy. This is particularly the case, if
viral mutants, carrying resistance against all (or the majority of) drugs in the maintenance
combination, are already archived in the latent reservoir before treatment initiation. In patients
infected by wild type virus, however, the likelihood that part-resistant mutants (against two
out of three drugs in the maintenance regimen) enter the latent reservoir prior to treatment is
so small that their expected number archived in the latent reservoir is uncritical (much less
than one), cf. [139]. Furthermore, part-resistant mutants are still susceptible to one out of the
three drugs in the maintenance combination, and for triple-drug (full-)resistant strains, the
likelihood of archival copies is even smaller.

Infection with drug-resistant strains against established drug classes is a major, growing
health concern [185]. During infection with drug-resistant viral strains, archiving in the
latent reservoir is likely, as it is established early in the infection [186]. If the circulating
viral population reverses to a drug-susceptible type, archived drug-resistant mutants from
the time of infection might remain undetected and can complicate subsequent treatment,
cf. [139]. However, this particular circumstance applies equally to the proposed IM-therapy
and conventional HAART.

For our strategy, we have chosen drugs from novel classes (e.g., INI, EI) for the inducer
combination, while we selected drugs from well-established classes for the maintenance
combination (NNRTI, NRTI). This has the following rationale: The inducer combination will
only be applied for a short time (80 days), while the maintenance combination could possibly
be applied formuch longer periods of time (until it fails, or toxicological events occur). Second
or third generation drugs within the established drug classes are often more convenient to
apply and less toxic, which has important implications for the long-term management of
HIV [187]. Secondly, drugs from the novel drug classes (i.e., INI, EI) are currently not available
as generic formulations, whereas low-cost alternative drugs exist for established drug classes.
Therefore, in order to reduce treatment costs, it is of advantage to select a strategy, in which
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inexpensive drugs can be used for the majority of time, while cost-intensive ones are only
applied for short treatment periods.

Intuitively, it might be more advantageous to use drug-resistance tests to guide treatment
switches, instead of using a fixed time for a pro-active switch from inducer to maintenance
combination [166]. However, under the considerations discussed above, such switch should
be applied before any resistant strains become abundant. This implies that the most frequent
viral strain at the time of switch should be the wild type. Standard assays fail to detect
minority species [176]. Ultra-deep/pyro-sequencing might provide a more holistic picture of
the quasi-species composition and can pick up viral mutants that are abundant in ≈ 1% of the
quasi-species population if the sample is large enough [177–179]. However, even in this case,
viral mutants are likely to dominate once the results are available (> 1week), owing to the
rapid viral kinetics [188].

In our in silico study, we considered time-invariant, as well as anatomically homogeneous
average drug efficacy (1 − η) for ease of modeling. It is also possible to consider drug- and
patient-specific time-varying pharmacokinetics and to study the impact of compliance on
drug-resistance development. According to the performed hybrid simulations, however, the
qualitative difference between the outcome of conventional HAART versus the proposed
IM-strategy is not expected to change if compliance is identical between the two study arms.
As shown in Table 3.1, the proposed IM-therapy performs better than conventional HAART
for a wide range of parameter values for (1 − η). Furthermore, it was shown in a clinical
study [144, 145] that treatment alternation leads to significantly less virological failure than
conventional HAART, when compliance is imperfect but identical between the two study
arms. However, since the study in [144, 145] is not identical to our IM-strategy, a clinical study
should be performed to fully investigate its potential. Ideally, this prospective randomized trial
could evaluate the time to virological failure in patients taking a single unchanged regimen
and patients on IM-regimens. Importantly, the trial should be designed to evaluate whether
the IM-strategy affects the durability of second- and third-line regimens. The presence and
relative frequency of viral minority populations as well as their mutational patterns could be
monitored by analyzing proviral DNA from circulating T-cells using, e.g., next-generation
sequencing. This data could serve to validate the improvements expected from our in silico
predicted IM-treatment strategy.
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4
Hybrid Stochastic–Deterministic Solution of the CME‡

In this chapter, we present and theoretically justify a hybrid stochastic–deterministic approach
to solve the CME directly. Starting point is a partitioning of the system into discrete and
continuous species and reactions, see Subsection 4.1.1. Accordingly, we decompose the joint
PDF P(Y , Z; t) into the marginal PDF P(Z; t) of the discrete species and the conditional PDF
P(Y ∣ Z; t) of the continuous species. In light of the thermodynamic limit, we assume that the
PDF P(Y ∣ Z; t) of the continuous species will be tightly concentrated about a deterministic
path for given levels Z of the discrete species. Based on a scaling parameter ε, motivated by
large population levels and fast reactions, and a corresponding multi-scale expansion of the ε-
scaled CME that uses the WKB-approximation, we demonstrate that fluctuations in the levels
of the continuous species can indeed be neglected and P(Y ∣ Z; t) is well-approximated by its
distribution mode. Applying Laplace’s method of integral approximation, we are then able to
derive hybrid evolution equations that comprise a CME for the PDF P(Z; t) of the discrete
species coupled to evolution equations for the related expected levels of the continuous species
for each discrete state Z. This approach can be interpreted as taking ‘partial’ expectations
over the continuous species, see Subsection 4.1.2.

Our hybrid method does not suffer from the disadvantages of indirect methods, see
Chapter 1. In contrast to indirect hybrid methods, the impact of changes in the distribution of
the discrete species on the dynamics of the continuous species is taken into account explicitly,
see Subsection 4.1.7. Our direct hybrid approach is more efficient than indirect approaches
if the reaction system comprises a few species in low quantities and the remaining species
in larger levels or associated with rapidly firing reaction channels. This is typically the case
for systems that integrate gene expression, regulation and metabolic pathways. We illustrate
the performance of our hybrid stochastic–deterministic approach in applications to different
model systems of biological interest.

‡The contents of this chapter are based on: S. Menz, J. C. Latorre, C. Schütte, and W. Huisinga. Hybrid
Stochastic–Deterministic Solution of the Chemical Master Equation. Multiscale Modeling and Simulation (under
review), 2011.
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4.1 Derivation of the Hybrid CME–ODEMethod

In the following, we derive a general hybrid description of the system dynamics where the
time-evolution of the PDF P(Z; t) of species present in small numbers Z is coupled to the
time-evolution of the partial expectations

EZ[Y] ∶=∑
Y
YP(Y , Z; t) = P(Z; t)∑

Y
YP(Y ∣ Z; t)

of species with population levels Y adequate for a continuous deterministic approximation.
The derivation is based on the WKB-ansatz used in Subsection 2.4.4 to link the ODE-model
of classical reaction kinetics to the leading order WKB-approximation of the full CME. In
order to maintain the effects of fluctuations on the system dynamics, we apply this ansatz
in the following only partially, i.e., we seek a WKB-approximation for the conditional PDF
P(Y ∣ Z; t) of the continuous species. This approach will allow us to derive the dynamics of
both species on the different time scales. The resulting equations for the short-time scale can
be understood in the sense of the central limit theorem (CLT): Species with high population
levels and fast reaction rates will be sharply distributed around the unique most probable
value. The time-evolution of this point will be formally derived and its uniqueness, together
with the resulting asymptotic form of the conditional probability P(Y ∣ Z; t), allow us to apply
Laplace’s method in order to obtain evolution equations that live on the longer-time scale.

4.1.1 Partitioning of the System

We partition the system with respect to the species and their expected number of molecules.
Assume that for a given reaction network it can be distinguished between:

(i) ‘Continuous’ species Sci , i ∈ N c ≠ ∅, whose changes in number of molecules are ap-
proximated by continuous deterministic processes.

(ii) ‘Discrete’ species Sdi , i ∈ N d = {1, . . . ,N}∖N c , whose changes in number ofmolecules
retain a discrete stochastic description.

Intuitively, we aim at a partitioning of the set of species into those that are present in
small numbers and where stochastic fluctuations might be important (discrete species), and
those that are present in larger numbers such that a representation by continuous variables
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introduces only a negligible error and where fluctuations are expected to be less important.
This partitioning is disjoint, i.e.,N c ∪N d = {1, . . . ,N}, and we rearrange the species-related
variables accordingly:

X = (Y , Z)T, and ξµ = (υµ , ζµ)T (µ = 1, . . . ,M),

where Y and υµ denote the number of molecules and net changes of all continuous species Sci ,
with i ∈ N c , and Z and ζµ denote the number of molecules and net changes of all discrete
species Sdi , with i ∈ N d , respectively. Finally, we represent the joint probability function
P(Y , Z; t) using conditional probabilities as

P(Y , Z; t) = P(Y ∣ Z; t)P(Z; t).

To correctly account for stochastic fluctuations in the discrete variable Z, we assume that
all reactions that act on a discrete species Sdi are modeled as discrete stochastic processes
(in line with the partitioning criteria in indirect hybrid approaches, see Subsection 3.1.1).
All other reactions influence only the continuous species. Based on the above assumption,
these reactions are approximated as continuous deterministic processes. Hence, the discrete–
continuous partitioning of the species induces a corresponding partition of the reactions:

(i) ‘Continuous’ reactions do not change the number of molecules of any discrete species
Sdi , i.e.,

ζµ = 0 ∀µ ∈Mc , (4.1a)

whereMc ≠ ∅ denotes the set of all continuous reactions.

(ii) ‘Discrete’ reactions change the number of molecules of at least one discrete species Sdi ,
i.e.,

ζµ ≠ 0 ∀µ ∈Md , (4.1b)

whereMd = {1, . . . ,M} ∖Mc denotes the set of all discrete reactions.

Notice that this partitioning is again disjoint, i.e.,Mc ∪Md = {1, . . . ,M}.
As a consequence of the above partitioning, the net changes of the reactions can be rear-

ranged as
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Grouping terms together, we thus obtain the CME of the partitioned system as

∂
∂t
[P(Y ∣ Z; t)P(Z; t)] = P(Z; t) ∑

µ∈Mc
aµ(Y − υµ , Z)P(Y − υµ ∣ Z; t) − aµ(Y , Z)P(Y ∣ Z; t)

+ ∑
µ∈Md

[aµ(Y − υµ , Z − ζµ)P(Y − υµ ∣ Z − ζµ; t)P(Z − ζµ; t)

− aµ(Y , Z)P(Y ∣ Z; t)P(Z; t)].
(4.2)

4.1.2 Partial Averaging of the CME

Our hybrid solution of the CME can be interpreted as taking partial expectations over the
continuous species. In the following, we introduce this approach by studying the evolution
of the partial expectation EZ[ f (Y)] = ∑Y f (Y)P(Y , Z; t) of a suitable test function f of Y .
First, notice that a partial averaging of the CME (4.2) can be performed along the lines of the
total averaging discussed in Subsection 2.4.3: By multiplying the partitioned CME (4.2) with
f (Y), summing over Y , assuming existence of sufficiently many partial moments1 of Y and
re-arranging terms, we find the time-evolution of the partial expectation of f to be given as

∂
∂t
EZ[ f (Y)] = ∑

µ∈Mc
EZ[( f (Y + υµ) − f (Y))aµ(Y , Z)]

+ ∑
µ∈Md

EZ−ζµ[ f (Y + υµ)aµ(Y , Z − ζµ)] −EZ[ f (Y)aµ(Y , Z)]. (4.3)

For f ( ⋅ ) ≡ 1 the above equation gives the evolution of the PDF P(Z; t) of the discrete
species, i.e.,

∂
∂t

P(Z; t) = ∑
µ∈Md

EZ−ζµ[aµ(Y , Z − ζµ)] −EZ[aµ(Y , Z)]

= ∑
µ∈Md

E[aµ(Y , Z − ζµ) ∣ Z − ζµ]P(Z − ζµ; t) −E[aµ(Y , Z) ∣ Z]P(Z; t), (4.4)

where E[ f (Y , ⋅ ) ∣ ⋅ ] ∶= ∑Y f (Y , ⋅ )P(Y ∣ ⋅ ; t) denotes the conditional expectation of a func-
tion f of Y , and by definition EZ[ f (Y , Z)] = E[ f (Y , Z) ∣ Z]P(Z; t). We observe that if
all discrete reactions are at most of first order with respect to the continuous species, i.e.,

1In line with the definition of partial expectations, we callEZ[Ym] the partial moment of Y ∈ NN c

0 associated
with the vector m = (m1 , . . . ,mN c )T ∈ NN c

0 , where N c denotes the number of continuous species.
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4.1 Derivation of the Hybrid CME–ODEMethod

∣srµ ∣N c ∶= ∑i∈N c srµi ≤ 1 for all µ ∈Md , then we can put E[aµ(Y , ⋅ ) ∣ ⋅ ] = aµ(E[Y ∣ ⋅ ], ⋅ ) in
eq. (4.4), such that

∂
∂t

P(Z; t) = ∑
µ∈Md

aµ(E[Y ∣ Z − ζµ], Z − ζµ)P(Z − ζµ; t) − aµ(E[Y ∣ Z], Z)P(Z; t). (4.5)

Given the related partial expectations EZ[Y] of the continuous species,2 we could hence
propagate P(Z; t) in this case by solving eq. (4.5). For general reaction networks, however,
eq. (4.5) is not exact.

By taking f (Y) = Y in eq. (4.3), we find the time-evolution of the partial expectations
EZ[Y] of the continuous species to be given as

∂
∂t
EZ[Y] = ∑

µ∈Mc
υµEZ[aµ(Y , Z)]

+ ∑
µ∈Md

EZ−ζµ[(Y + υµ)aµ(Y , Z − ζµ)] −EZ[Yaµ(Y , Z)]. (4.6)

Similarly as above, taking expectations and propensities can be exchanged in the first sum on
the right hand side of eq. (4.6) if all continuos reactions are at most of first order with respect
to Y . In the second sum, however, this is only possible if all discrete reactions are of zero order
with respect to Y , such that their propensities are independent of Y , i.e., aµ(Y , Z) = aµ(Z)
for all µ ∈Md . Thus, if (a) ∣srµ ∣N c ≤ 1 for all µ ∈Mc and (b) ∣srµ ∣N c = 0 for all µ ∈Md , we
find that

∂
∂t
EZ[Y] = ∑

µ∈Mc
υµaµ(E[Y ∣ Z], Z)P(Z; t) + ∑

µ∈Md

υµaµ(Z − ζµ)P(Z − ζµ; t)

+ ∑
µ∈Md

EZ−ζµ [Y]aµ(Z − ζµ) −EZ[Y]aµ(Z). (4.7)

We notice that under condition (b) ∣srµ ∣N c = 0 for all µ ∈Md , the evolution of P(Z; t) is
given by eq. (4.5). Thus, if conditions (a) and (b) are satisfied in a given reaction system, then
eqs. (4.5) and (4.7) give a closed system of exact evolution equations for the PDF P(Z; t) of the
discrete species and the partial expectationsEZ[Y] of the continuous species for every discrete

2Notice that terms of the form aµ(E[Y ∣ Z], Z)P(Z; t) can be computed from (i) P(Z; t) or (ii) EZ[Y]
without solving for E[Y ∣ Z] if the corresponding reaction is of (i) zero or (ii) first order with respect to the
continuous species, as assumed in eq. (4.5). Because then: (i) the propensity aµ is independent of E[Y ∣ Z], or
(ii) we have aµ(E[Y ∣ Z], Z)P(Z; t) = aµ(EZ[Y], Z).
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state Z.3 The full discrete state space is then effectively reduced to the subspace associated
with the discrete species and all problematic dimensions, associated with species present in
large numbers, are canceled out. In the following, we demonstrate that this approach can be
generalized to approximate the dynamics of more complex systems.

4.1.3 Scaling of the Continuous Species and Reactions

According to our assumption on the continuous species, we scale their population levels with
a factor ε≪ 1, i.e.,

y ∶= ε ⋅ Y . (4.8)

The parameter ε is related to the abundance of the continuous species Sci and used in the
following asymptotic approximation to derive a partial limit of reaction kinetics. The exact
value of ε may not be required, since the final equations in the scaled state space can be
transformed back to the original unscaled state space. However, as the following hybrid
approach gives an asymptotic approximation, the resulting error depends on the validity of
this partial continuous–deterministic approximation and only vanishes in the limit as ε → 0.

In order to keep the probability invariant under the change of variables (4.8), the PDF of
the scaled population levels is given by

Pε(y, Z; t) = Pε(y ∣ Z; t)Pε(Z; t) ∶= ε−N
c
⋅ P(Y ∣ Z; t)P(Z; t),

where N c denotes the number of continuous species. Hence, with respect to the scaled levels,
the partitioned CME (4.2) reads

∂
∂t
[Pε(y ∣ Z; t)Pε(Z; t)]

= Pε(Z; t) ∑
µ∈Mc

aεµ(y − ευµ , Z)Pε(y − ευµ ∣ Z; t) − aεµ(y, Z)Pε(y ∣ Z; t)

+ ∑
µ∈Md

[aεµ(y − ευµ , Z − ζµ)Pε(y − ευµ ∣ Z − ζµ; t)Pε(Z − ζµ; t)

− aεµ(y, Z)Pε(y ∣ Z; t)Pε(Z; t)], (4.9)

3It should be noticed that even though a discrete reaction does not necessarily has to act on the continuous
species, i.e., υµ = 0 for some µ ∈Md , it always contributes to the evolution of the partial expectations EZ[Y] by
changing their distribution on the discrete state space through the terms in the last sum on the right hand side
of eq. (4.7). This impact of a discrete reaction on the expectations of the continuous species is not immediately
present in indirect hybrid methods. It becomes only implicitly incorporated when the statistical properties of an
ensemble of hybrid realizations are computed, see further Subsection 4.1.7.
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4.1 Derivation of the Hybrid CME–ODEMethod

where aεµ(y, Z) = aµ(Y = y/ε, Z) for all ε > 0. Intuitively it is clear that the intensity of a
reaction process does not depend on the scale of the reactant levels, see also [189]. For
example, one might interpret the scaling as some transformation of units.

In accordance with the definition of the continuous species, we assume that the scaling of
their levels imposes a corresponding scaling of the continuous reactions, analogously to the
deterministic formulation of reaction kinetics. If N c = N and thus all levels are scaled, we
require that our hybrid approach coincides with the purely deterministic limit. In this case,
the parameter ε can be linked to the Ω-scaling in classical reaction kinetics via ε = Ω−1 (cf.
Section 2.4). Therefore, in line with the results in Subsection 2.4.1, we assume a corresponding
ε-scaling of the propensities of all continuous reactions

αµ(y, Z) ∶= ε ⋅ aεµ(y, Z) = ε ⋅ aµ(Y = y/ε, Z) ∀µ ∈Mc . (4.10a)

In our context, however, the above ε-scaling of propensities is only applied to the subsetMc

of the reaction system, since firing of a discrete channel results in changes of the process Z(t),
which, by definition, necessitates stochastic reaction kinetics. Hence, the propensities of all
discrete reactions are assumed to satisfy

αµ(y, Z) ∶= aεµ(y, Z) = aµ(Y = y/ε, Z) ∀µ ∈Md . (4.10b)

Intuitively, we require that—due to the larger number of molecules of the continuous
species and their appropriate representation by continuous variables—the propensities of
reactions that exclusively act on the continuous species are of the order of 1/ε≫ 1 larger
than the propensities of reactions that act on the discrete species. Under assumptions (4.10),
eq. (4.9) becomes

∂
∂t
[Pε(y ∣ Z; t)Pε(Z; t)]

= 1
ε
Pε(Z; t) ∑

µ∈Mc
αµ(y − ευµ , Z)Pε(y − ευµ ∣ Z; t) − αµ(y, Z)Pε(y ∣ Z; t)

+ ∑
µ∈Md

[αµ(y − ευµ , Z − ζµ)Pε(y − ευµ ∣ Z − ζµ; t)Pε(Z − ζµ; t)

− αµ(y, Z)Pε(y ∣ Z; t)Pε(Z; t)]. (4.11)

In the following, we seek an approximate solution of the ε-scaled CME (4.11) in the form
of a multi-scale expansion. Similar as in Subsection 2.4.4, we assume that the conditional
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probability Pε(y ∣ Z; t) can be represented in a WKB-like series expansion with respect to the
spatial coordinate, i.e.,

Pε(y ∣ Z; t) = Cε exp{
1
ε
s0(y ∣ Z; t)}(U0(y ∣ Z; t) + εU1(y ∣ Z; t) + . . . ), (4.12)

where the factor Cε is related to the normalization of Pε(y ∣ Z; t). As before, we assume that
the functions s0 and Un, n = 0, 1, . . . , in the above asymptotic expansion of Pε(y ∣ Z; t) are
sufficiently continuously differentiable with respect to the arguments y and t. We represent
the PDF Pε(Z; t) of the discrete species in an asymptotic series with respect to the spatial
coordinate of the form

Pε(Z; t) = P0(Z; t) + εP1(Z; t) + . . . , (4.13)

where the functions Pn, n = 0, 1, . . . , are assumed to be sufficiently continuously differentiable
with respect to time t.

4.1.4 Leading Order Approximation of the Conditional PDF

Below, we determine a solution of the conditional PDF Pε(y ∣ Z; t) to its leading orderO(ε−1),
following the same steps as in Subsection 2.4.4. First, we study the left hand side of the ε-scaled
CME (4.11). Differentiation of eqs. (4.12) and (4.13) with respect to t gives

∂
∂t

Pε(y ∣ Z; t) =
1
ε
Pε(y ∣ Z; t)

∂
∂t

s0(y ∣ Z; t)

+ Cε exp{
1
ε
s0(y ∣ Z; t)}(

∂
∂t
U0(y ∣ Z; t) + ε

∂
∂t
U1(y ∣ Z; t) + . . . ),

and
∂
∂t

Pε(Z; t) =
∂
∂t

P0(Z; t) + ε
∂
∂t

P1(Z; t) + . . . .

Hence, on the left hand side of eq. (4.11), we find to leading order

∂
∂t
[Pε(y ∣ Z; t)Pε(Z; t)]

= Pε(Z; t)
∂
∂t

Pε(y ∣ Z; t) + Pε(y ∣ Z; t)
∂
∂t

Pε(Z; t)

= Cε(
1
ε
P0(Z; t) exp{

1
ε
s0(y ∣ Z; t)}U0(y ∣ Z; t)

∂
∂t

s0(y ∣ Z; t) +O(1)). (4.14)
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4.1 Derivation of the Hybrid CME–ODEMethod

In the right hand side of eq. (4.11), we Taylor-expand the eikonal function s0(y − ευµ ∣ Z; t)
and U0(y − ευµ ∣ Z; t) around the state y, i.e.,

s0(y − ευµ ∣ Z; t) = s0(y ∣ Z; t) − ευ T
µ ∇s0(y ∣ Z; t) +O(ε2)

and

U0(y − ευµ ∣ Z; t) = U0(y ∣ Z; t) +O(ε),

respectively. This implies the following expansion of the conditional PDF

Pε(y − ευµ ∣ Z; t) = Cε exp{
1
ε
s0(y ∣ Z; t)} exp{−υ T

µ ∇s0(y ∣ Z; t)}(U0(y ∣ Z; t) +O(ε)),

(4.15)
Similarly, we Taylor-expand αµ(y − ευµ , Z) in eq. (4.11) as

αµ(y − ευµ , Z) = αµ(y, Z) +O(ε). (4.16)

Substituting expansions (4.15) and (4.16) into the right hand side of the ε-scaled CME (4.11),
using eq. (4.14) on the left hand side, dividing by Cε and comparing the terms of orderO(ε−1)
on both sides, we find that the leading order approximation of the continuous processes for a
given discrete state Z to be determined by

∂
∂t

s0(y ∣ Z; t) = ∑
µ∈Mc

αµ(y, Z)[exp{−υ T
µ ∇s0(y ∣ Z; t)} − 1], (4.17)

where we divided both sides by P0(Z; t) exp{ 1ε s0(y ∣ Z; t)}U0(y ∣ Z; t).4
The PDE (4.17) can be considered as the Hamilton–Jacobi equation for the action of a

system with coordinates y(t ∣ Z) and momenta p(t ∣ Z) ∶= ∇s0(y ∣ Z; t), see Subsection 2.4.4,
where the HamiltonianHZ is defined as

HZ(y, p) ∶= −
∂
∂t

s0(y ∣ Z; t) = − ∑
µ∈Mc

αµ(y, Z)[exp{−υ T
µ p} − 1].

The corresponding Hamilton’s equations of motion read

d
dt

y(t ∣ Z) = ∂
∂p
HZ(y, p) = ∑

µ∈Mc
υµαµ(y(t ∣ Z), Z) exp{−υ T

µ p(t ∣ Z)},

d
dt

p(t ∣ Z) = − ∂
∂y
HZ(y, p) = ∑

µ∈Mc
∇αµ(y(t ∣ Z), Z)[exp{−υ T

µ p(t ∣ Z)} − 1]. (4.18)

4If P0(Z; t) exp{ 1ε s0(y ∣ Z; t)}U0(y ∣ Z; t) = 0, eqs. (4.11) and (4.14) result in an algebraic equation for
s0(y ∣ Z; t). This situation will be jointly dealt with the case where P0(Z; t)≪ 1, see Subsection 4.1.6.
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In Subsection 2.4.4, we have seen that maxima of s0(y ∣ Z; t = 0) are propagated along the
characteristic whereHZ ≡ 0.

We assume that the initial function s0(y ∣ Z; t = 0) has a unique global maximum at
y = y0(Z), where

p0(Z) ≡ ∇s0(y = y0(Z) ∣ Z; t = 0) = 0.

The equations of motion for the propagation in time of the maximum point y(t ∣ Z) and
corresponding p(t ∣ Z) are

d
dt

y(t ∣ Z) = ∑
µ∈Mc

υµαµ(y(t ∣ Z), Z) with y(t = 0 ∣ Z) = y0(Z) (4.19)

and
d
dt

p(t ∣ Z) = 0 with p(t = 0 ∣ Z) = p0(Z) = 0,

respectively. Because of the uniqueness of paths under given initial conditions, it follows that
y(t ∣ Z) remains the unique maximum of s0(t ∣ Z) for all t > 0. Thus, the solution y(t ∣ Z) of
eq. (4.19) gives the most probable values of the continuous species for a given discrete state Z,
which is identical to the classical solution of biochemical reaction kinetics if we consider the
discrete state Z to be constant.

However, it is important to realize that a solution of eq. (4.19), or more generally eqs. (4.18),
is only valid on the O(ε) scale, but the continuous processes also depend on the discrete–
stochastic dynamics evolving on theO(1) scale. Hence, we wish to derive evolution equations
for the continuous species that live on scales of orderO(1). In indirect multi-scale methods,
for instance, eq. (4.19) is usually solved up to the predicted time of a next stochastic reaction
event where the system is then updated accordingly and propagation of the characteristics
continued for the corresponding new initial conditions, see Chapter 3 and Subsection 4.1.7
(see also [190] for an analysis on this type of multi-scale numerical methods).

4.1.5 Laplace’s Integral Approximation of the Conditional PDF

In the previous subsection, we derived the evolution equation (4.19) for the most probable
value of yε for each discrete state Z and showed that this maximum will remain unique at
y(t ∣ Z) for all times t > 0. As demonstrated in Subsection 2.4.4, because of the special form
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4.1 Derivation of the Hybrid CME–ODEMethod

of the WKB-ansatz (4.12) and the above results, we can use Laplace’s method to compute
expectations of the process yε, e.g.,

E[ f (yε) ∣ Z] =
ż ∞

0
f (y)Pε(y ∣ Z; t) dy

= Cε

ż ∞

0
f (y) exp{1

ε
s0(y ∣ Z; t)}(U0(y ∣ Z; t) +O(ε)) dy

= Cε exp{
1
ε
s0(y(t ∣ Z) ∣ Z; t)}

¿
ÁÁÀ (2πε)N c

∣∇2s0(y(t ∣ Z) ∣ Z; t)∣

× ( f (y(t ∣ Z))U0(y(t ∣ Z) ∣ Z; t)+O(ε)), (4.20)

where we consider the generic case that the maximum of s0(y ∣ Z; t) at y = y(t ∣ Z) is non-
degenerate, such that ∣∇2s0(x = x( ⋅ ); ⋅ )∣ ≠ 0. By definition, the conditional probability
Pε(y ∣ Z; t) has to integrate to one for any value of ε, i.e.,

1 ≡
ż ∞

0
Pε(y ∣ Z; t) dy = Cε

ż ∞

0
exp{1

ε
s0(y ∣ Z; t)}(U0(y ∣ Z; t) +O(ε)) dy

=
exp{ 1ε s0(y(t ∣ Z) ∣ Z; t)}√
∣∇2s0(y(t ∣ Z) ∣ Z; t)∣

(U0(y(t ∣ Z) ∣ Z; t) +O(ε)), (4.21)

where we substituted Cε = (2πε)−N
c/2 in the last equality, see Subsection 2.4.4. It thus follows

that s0(y = y( ⋅ ∣ Z) ∣ Z; ⋅ ) and U0(y = y( ⋅ ∣ Z) ∣ Z; ⋅ )must be given as

s0(y(t ∣ Z) ∣ Z; t) = 0 and U0(y(t ∣ Z) ∣ Z; t) =
√
∣∇2s0(y(t ∣ Z) ∣ Z; t)∣, (4.22)

for all Z and all t ≥ 0. At the same time, theO(ε) corrections in the last equality of eq. (4.21)
must be identical to zero. This shows that the conditional expectation in eq. (4.20) can be
approximated by

E[ f (yε) ∣ Z] = f (y(t ∣ Z)) +O(ε). (4.23)

From the conservation relation (4.21), it further follows that the above equality holds without
O(ε) if f is a constant function.
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In the following, we are interested in the partial expectation of a function f of yε with
respect to the PDF Pε( ⋅ , Z; t), which can be approximated with the above results as

EZ[ f (yε)] ∶=
ż ∞

0
f (y)Pε(y, Z; t) dy =

ż ∞

0
f (y)Pε(y ∣ Z; t) dy ⋅ Pε(Z; t)

= E[ f (yε) ∣ Z] ⋅ (P0(Z; t) +O(ε))

= f (y(t ∣ Z))P0(Z; t) +O(ε). (4.24)

Similarly, by applying Laplace’s method and the results for s0 and U0 as given in eqs. (4.22),
we find that all expectations with respect to Pε( ⋅ , Z; t) can be computed from y(t ∣ Z) and
P0(Z; t).5

Approximation of the PDF of the Discrete Species

We use the previous results to derive the evolution equation of P0(Z; t). First, we note that
according to eq. (4.4) the evolution of Pε(Z; t) is given as

∂
∂t

Pε(Z; t) = ∑
µ∈Md

E[αµ(yε , Z − ζµ) ∣ Z − ζµ]Pε(Z − ζµ; t) −E[αµ(yε , Z) ∣ Z]Pε(Z; t),

where we substituted αµ for the discrete reactions as given by eq. (4.10b). This equation implies
that the evolution of Pε(Z; t) is given by scales of order O(1). Therefore, the dynamics of
Pε(Z; t) can be expressed as

∂
∂t

Pε(Z; t) =
∂
∂t

P0(Z; t) + ε
∂
∂t

P1(Z; t) + . . .

=∑
µ∈Md

E[αµ(yε, Z − ζµ) ∣ Z − ζµ]P0(Z − ζµ; t) −E[αµ(yε, Z) ∣ Z]P0(Z; t) +O(ε).

(4.25)

Employing the Laplace approximation given in eq. (4.23) and comparing the terms of order
O(1) on both sides of eq. (4.25) yields the time-evolution of P0(Z; t) as

∂
∂t

P0(Z; t) = ∑
µ∈Md

αµ(y(t ∣ Z − ζµ), Z − ζµ)P0(Z − ζµ; t) − αµ(y(t ∣ Z), Z)P0(Z; t). (4.26)

5From this result we can infer that the assumption that s0 has a uniquemaximum at t = 0 may be relaxed. If
initially s0 has many local maxima at y i0, i = 1, 2, . . ., these maxima will evolve independently in time according
to eq. (4.19). The approximation of partial expectations of the form (4.24) will then be a superposition of terms
of the form f (y i(t ∣ Z)), as long as the distance between these maxima isO(1) so that Laplace’s method can be
applied.
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Approximation of the Partial Expectations of the Continuous Species

Next, we derive the evolution equation of the leading order approximation for the partial
expectations of the continuous species on the O(1) scale. As shown above, the partial
expectation of any function f of yε with respect to Pε( ⋅ , Z; t) can be approximated by
EZ[ f (yε)] = f (y(t ∣ Z))P0(Z; t) +O(ε). This approximation is consistent with the derived
evolution of P0(Z; t) in eq. (4.26). More importantly, it also allows us to derive the evolution
of the leading order approximation of EZ[yε], i.e.,

E0
Z[y] ∶= y(t ∣ Z)P0(Z; t). (4.27)

First note that according to eq. (4.6), the evolution of EZ[yε] is given as

∂
∂t
EZ[yε] = ∑

µ∈Mc
υµEZ[αµ(yε , Z)]

+ ∑
µ∈Md

EZ−ζµ[(y
ε + ευµ)αµ(yε , Z − ζµ)] −EZ[yεαµ(yε , Z)] (4.28)

where we substituted αµ for the continuous and discrete reactions as given by eqs. (4.10a) and
(4.10b), respectively. Once again, we observe that terms of orderO(ε−1) do not appear in the
right hand side of eq. (4.28), and therefore the dynamics of EZ[yε] can be approximated by

∂
∂t
EZ[yε] =

∂
∂t
E0
Z[y] +O(ε)

= ∑
µ∈Mc

υµE[αµ(yε , Z) ∣ Z]P0(Z; t) +O(ε)

+ ∑
µ∈Md

E[yεαµ(yε , Z − ζµ) ∣ Z − ζµ]P0(Z − ζµ; t) −E[yεαµ(yε , Z) ∣ Z]P0(Z; t).

Applying the Laplace approximation given in eq. (4.23) and comparing the terms of order
O(1) on both sides, we find

∂
∂t
E0
Z[y] = ∑

µ∈Mc
υµαµ(y(t ∣ Z), Z)P0(Z; t)

+ ∑
µ∈Md

αµ(y(t ∣ Z − ζµ), Z − ζµ)E0
Z−ζµ [y] − αµ(y(t ∣ Z), Z)E0

Z[y]. (4.29)
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The above eqs. (4.26) and (4.29) describe the evolutions of P0(Z; t) and E0
Z[y]. It is worth

mentioning that although E0
Z[y] is determined explicitly by y(t ∣ Z) and P0(Z; t), it cannot

be recovered by direct integration of eqs. (4.19) and (4.26), since the evolution of y(t ∣ Z) as
given by eq. (4.19) is only valid on the orderO(ε). The evolution equation (4.29) of E0

Z[y],
on the other hand, is valid on the order O(1), which is the scale we are interested in. The
corresponding conditional levels y(t ∣ Z) of interest (i.e., where P0(Z; t) > 0) can then be
recovered by relation (4.27), as we shall see in the next subsections.

4.1.6 Final Equations of the Hybrid CME–ODE Approach

Summarizing, we derived the following hybrid system approximating the coupled dynamics of
the stochastic and deterministic processes. The time-evolution of the probability distribution
P0(Z; t) of the discrete species is given by eq. (4.26), i.e.,

∂
∂t

P0(Z; t) = ∑
µ∈Md

aµ(Y(t ∣ Z − ζµ), Z − ζµ)P0(Z − ζµ; t) − aµ(Y(t ∣ Z), Z)P0(Z; t), (4.30a)

where we re-substituted the functions αµ by the original propensities aµ for the discrete
reactions using eq. (4.10b). By eq. (4.29), the partial expectations E0

Z[Y] = ε
−1E0

Z[y] of the
continuous species for a discrete state Z are determined by

∂
∂t
E0
Z[Y] = ∑

µ∈Mc
υµaµ(Y(t ∣ Z), Z)P0(Z; t)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
impact of the continuous reactions

+ ∑
µ∈Md

aµ(Y(t ∣ Z − ζµ), Z − ζµ)E0
Z−ζµ [Y] − aµ(Y(t ∣ Z), Z)E

0
Z[Y]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
impact of the discrete reactions

, (4.30b)

where we replaced all αµ by the original propensities aµ as given by eqs. (4.10).
To obtain the solution of the conditional levels Y(t ∣ Z) from the above equations, we

use definition (4.27), i.e., divideE0
Z[Y] = Y(t ∣ Z)P0(Z; t) by P0(Z; t) > 0. If P0(Z; t) = 0, the

conditional levels Y(t ∣ Z) are not defined but also not of any practical interest. We further
note that P0(Z; t) = 0 for a discrete state Z implies that also E0

Z[Y] = 0, and thus all terms in
the right hands sides of the above evolution equations (4.30) that are associated with Z are
also equal to zero. Hence, we do not need to specify the levels Y(t ∣ Z) in our hybrid model if
P0(Z; t) = 0, but for convenience may set them equal to zero in such case.

90



4.1 Derivation of the Hybrid CME–ODEMethod

As the size of the discrete state space is drastically reduced, a standard numerical integra-
tion of eqs. (4.30) becomes applicable even for more complex systems. During numerical
integration of the hybrid system the propensities have to be evaluated at every integration
step. This requires the explicit computation of the conditional value Y i(t ∣ Z) of a continuous
species Sci from P0(Z; t) and E0

Z[Y i] whenever P0(Z; t) > 0 and: (a) Sci is a reactant of a
discrete reaction, or (b) Sci is a reactant of a second or higher-order continuous reaction.
To avoid numerical instabilities for P0(Z; t) ≈ 0, we introduce a threshold value δ ≪ 1: If
P0(Z; t) ≤ δ, we set P0(Z; t) = 0 and E0

Z[Y] = 0 in the evaluation of eqs. (4.30), such that the
actual dynamics of the hybrid system will be constrained to those discrete states Z where
P0 (Z; t) > δ during integration. Basically, this is the same strategy as proposed by Henzinger
et al. [66], but carried over to our closed hybrid formulation. For appropriate choices of δ,
the additional error made with this criterion can be expected to be negligible, cf. [66, 191]. A
reasonable choice for δ would be a value not greater than the allowed absolute error used in
the numerical integration of the hybrid system.

4.1.7 Related Indirect Hybrid Approach

Let us point out the equations of the processes Y and Z associated with the continuous
and the discrete species, respectively, that underly our hybrid model (4.30). As shown in
Subsection 2.2.2, the full stochastic process X(t) = (Y(t), Z(t))T can be represented by

X(t) = X(0) +
M
∑
µ=1

ξµP µ(
ż t

0
aµ(X(s)) ds),

where P µ, µ = 1, . . . ,M, are independent, unit Poisson processes. Based on the system
partitioning of our hybrid approach (see Subsection 4.1.1), we can write the above equation
separately as

Y(t) = Y(0) + ∑
µ∈Mc

υµP µ(
ż t

0
aµ(Y(s), Z(s)) ds) + ∑

µ∈Md

ζµP µ(
ż t

0
aµ(Y(s), Z(s)) ds)

(4.31a)
and

Z(t) = Z(0) + ∑
µ∈Md

ζµP µ(
ż t

0
aµ(Y(s), Z(s)) ds), (4.31b)

where we used that ξµ = (υµ , ζµ)T with ζµ = 0 for all µ ∈Mc , see eq. (4.1a). We notice that the
processes Y and Z are not independent of each other, as the propensities in eqs. (4.31a) and
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(4.31b) will in general depend on both, Y and Z, respectively. According to our assumptions
on the continuous species and reactions (see Subsection 4.1.3), eqs. (4.31) scale like

y(t) = y(0)+ ε ∑
µ∈Mc

υµP µ(
1
ε

ż t

0
αµ(y(s), Z(s)) ds)+ ε ∑

µ∈Md

ζµP µ(
ż t

0
αµ(y(s), Z(s)) ds)

(4.32a)
and

Z(t) = Z(0) + ∑
µ∈Md

ζµP µ(
ż t

0
αµ(y(s), Z(s)) ds), (4.32b)

where we substituted y = εY and replaced all propensities aµ by the scaled propensities αµ as
given by eqs. (4.10). The above set of stochastic equations (4.32) is equivalent to the ε-scaled
CME (4.11), which was the starting point of our multi-scale analysis.

Next, we study the limit behavior of y and Z as ε → 0. Obviously, the stochastic process
Z associated with the discrete species remains unchanged as ε → 0, see eq. (4.32b), which is
in complete agreement with our desired partial limit. For the process y associated with the
continuous species, we can apply the SLLN for Poisson processes (Theorem 2.4.2) as in the
classical thermodynamic limit (see Subsection 2.4.2) and find that

lim
ε→0
∥ ∑
µ∈Mc

ε υµP µ(Λµ(t)/ε) − υµΛµ(t)∥ = 0,

almost surely, whereΛµ(t) ∶=
şt
0 αµ(y(s), Z(s)) ds. The contribution of the discrete reactions

in eq. (4.32a), however, vanishes in the limit as ε → 0, i.e.,

lim
ε→0
∥ ∑
µ∈Md

ε ζµP µ(Λµ(t))∥ = 0,

since Poisson processes have a finite activity (i.e., almost all paths have only a finite number
of jumps along finite time intervals). Hence, we have

y(t) a.s.Ð→ y(0) + ∑
µ∈Mc

υµ
ż t

0
αµ(y(s), Z(s)) ds,

as ε → 0. Putting things together, the processes Y and Z underlying our hybrid model (4.30)
are thus given by

Y(t) = Y(0) + ∑
µ∈Mc

υµ
ż t

0
aµ(Y(s), Z(s)) ds (4.33a)

and
Z(t) = Z(0) + ∑

µ∈Md

ζµP µ(
ż t

0
aµ(Y(s), Z(s)) ds), (4.33b)
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where we re-substituted Y = ε−1y and the original propensities aµ as given by eqs. (4.10).
Eqs. (4.33a) and (4.33b) could be used in a corresponding indirect hybrid method to

compute realizations of Y and Z, see Chapter 3. Suppose the system is initially in the states
Y(τ0) = Y0 and Z(τ0) = Z0 at time τ0 = 0. Then, eq. (4.33a) or, equivalently, the ODE

d
dt

Y(t) = ∑
µ∈Mc

υµaµ(Y(t), Z(t)) (4.34)

will be solved in a hybrid simulation for Y(τ0) = Y0 from time t = τ0 up to the predicted
firing time t = τ1 of the first discrete reaction R j with j ∈Md . The discrete states will then
be updated according to R j, i.e., Z1 ← Z0 + ζ j, and integration of eq. (4.34) will be continued
from time t = τ1 for Z(τ1) = Z1 until the predicted firing time t = τ2 of the next discrete
reaction. A realization of the coupled processes {(Y(t), Z(t)), t ≥ 0} will hence be of the
form ⋃i=0,1,...{(Y(t), Zi), t ∈ [τi ; τi+1)}, where Y(t) is the solution of the ODE (4.34) with
Z(t) = Zi for t ∈ [τi ; τi+1). In an individual hybrid realization the discrete reactions thus affect
the dynamics of Y by changing the values of the propensities in eq. (4.34). Most importantly,
however, these ‘switches’ in the dynamics of Y also have an impact on its ensemble average,
which appears in our direct hybrid model as additional coupling terms in eq. (4.30b), but may
be unexpected when only looking at eq. (4.34).

4.1.8 Coarse Graining of the Continuous Processes

In most systems, reactions are typically of zero, first or second order and the propensity
functions will thus depend on the level of a few species only, see Table 2.3. If the propensities
of the continuous reactions are constant on a subsetZk of discrete states, thenwemay associate
a single ODE with the entire subset Zk rather than an ODE for each element of the subset.
We therefore seek subsets Zk of discrete states such that for all µ ∈Mc :

aµ( ⋅ , Z) = const for all Z ∈ Zk . (4.35)

If criterion (4.35) holds, it follows that the evolution equations of the eikonal functions
s0( ⋅ ∣ Z; t) are identical for every Z ∈ Zk . Given equal initial conditions Y = Y0(Z) for all
Z ∈ Zk , they hence propagate in time along the same characteristic Y(t ∣Zk). Consequently,
in this case we can assign the same partial expectation EZk [Y] to each subset Zk . The time-
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evolution of its leading order approximationE0
Zk
[Y] ∶= Y(t ∣Zk)∑Z∈Zk

P0(Z; t) is then given
by summation of eq. (4.30b) over all discrete states Z ∈ Zk , i.e.,

∂
∂t
E0
Zk
[Y] = ∑

µ∈Mc
υµaµ(Y(t ∣Zk),Zk) ∑

Z∈Zk

P0(Z; t)

+ ∑
µ∈Md

∑
Z∈Zk

[aµ(Y(t ∣ Z − ζµ), Z − ζµ)E0
Z−ζµ [Y] − aµ(Y(t ∣ Z), Z)E

0
Z[Y]],

(4.36)

where aµ(Y(t ∣Zk),Zk) in the first sum on the right hand side denotes the propensity of a
continuous reaction on Zk evaluated for Y(t ∣Zk). Again, the second summand in the right
hand side of eq. (4.36) describes the impact of the discrete reactions on the partial expectation
of the continuous species. As these are coarse grained, all terms related to an exchange on the
same subset Zk cancel out, and only those terms related to an in- or outflow of probability to
be in Zk remain in the second summand of eq. (4.36).

Any conditional value Y(t ∣Zk) necessary for the evaluation of eq. (4.36) can be computed
from E0

Zk
[Y] ∶= Y(t ∣Zk)∑Z∈Zk

P0(Z; t) and the PDFs P0(Z; t), for all Z ∈ Zk , as described
in the previous subsection. Further, we have Y(t ∣ Z) = Y(t ∣Zk) for all Z ∈ Zk , which can
also be used to compute the leading order approximation E0

Z[Y] = Y(t ∣ Z)P0(Z; t) of the
partial expectations at a specific state Z, necessary for evaluating the second summand in
the right hand side of eq. (4.36). The evolution equations for the PDF P0(Z; t) of the discrete
species are not affected by the suggested coarse graining.

4.1.9 Algorithmic Flow

The main steps of our hybrid approach can be summarized as follows:
Step 1 (Partition the System): Define a partition of the species into continuous species Sci ,

with i ∈ N c ≠ ∅, and discrete species Sdi , with i ∈ N d = {1, . . . ,N} ∖N c . Such partitioning
can be based on the expected levels and conservation properties of the species, different
time-scales of the reactions or other prior knowledge on the system dynamics. Partition the
reactions according to conditions (4.1a) and (4.1b), i.e., assign every reaction that changes the
level of any discrete species to the subsetMd of discrete processes, and each reaction that solely
affects the level of the continuous species to the subsetMc of continuous processes. The subset
Mc is assumed to be non-empty in our hybrid approach, i.e., a continuous–deterministic
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4.1 Derivation of the Hybrid CME–ODEMethod

approximation should not be applied if all reactions act on the discrete species. Conversely, if
the subsetMd is empty, a purely deterministic simulation of the system can be performed.

Step 2 (Formulate Hybrid CME–ODE Equations): If the dynamics of the discrete species
is a priori known to be restricted to a specific subspace, formulate the corresponding system
of (linear) ODEs for the time-evolution of the PDF as described by eq. (4.30a). Otherwise,
choose a reasonable initial subset of discrete states, the approximation error can then be
bounded by the FSP algorithm, cf. [25] and Subsection 2.2.5. If coarse graining can be applied
to the continuous processes (see Subsection 4.1.8), assign a system of ODEs to propagate
the partial expectations of the continuous species on every discrete subset Zk as given by
eq. (4.36). Otherwise, assign an ODE-system as given by eq. (4.30b) to every discrete state Z.

Step 3 (Compute Numerical Solution): Numerical integration of the final hybrid model
requires appropriate methods for the efficient solution of differential algebraic equations
(DAEs). Since a variety of such methods are available and choosing the optimal one for
the case at hand is a problem on its own, we refrain from addressing this topic in depth.
Instead, we apply a straight-forward approach that exploits the threshold value δ introduced
above: Choose an appropriate δ for the evaluation of the continuous levels from E0

Z[Y] or
E0
Zk
[Y], respectively. Start numerical integration of the system. If necessary, monitor the

loss in probability mass and dynamically update the support of the system by expanding the
discrete state space based on the FSP algorithm, i.e., update the ODE-system for the PDF of
the discrete species and the associated expectations of the continuous species. For state space
expansion, strategies elaborated in [25, 29, 104, 109] can be used.

To highlight the benefits of our approach, we compare numerical costs in terms of number
of equations that have to be integrated. Let Nd and N c denote the number of different
discrete and continuous species, respectively. Assume that the number of molecules of each
discrete species is bounded by the same maximal value m and the level of every continuous
species can maximally reach h, with h ≫ m by assumption. Hence, the state space of the full
system would include (m + 1)Nd ⋅ (h + 1)N c possible states that have to be considered in the
spatial discretization of the CME. In contrast, in our approach the system dynamics would be
described by (m + 1)Nd ⋅ (1 + N c) equations only. These are given by the (m + 1)Nd states
necessary for the support of the PDF of the discrete species, and the ODEs for the partial
expectations of the N c continuous species associated with each every discrete state. The
reduction would be even higher if the continuous processes can be further coarse grained to
subsetsZk of discrete states. In that casewewould only have (m + 1)N

d + K ⋅ N c equations, for
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instance, where K ≪ (m + 1)Nd denotes the number of discrete subsetsZk . As the numerical
costs of our hybrid approach basically scale with the number of discrete states, we expect
it to be especially efficient for systems that include a few species which have to be modeled
discretely, such as gene regulatory or signaling networks.

4.2 Numerical Studies

The SSA and an explicit Runge–Kutta method of order 4 with error and step size control were
implemented in C++ . All numerical experiments were performed on an Intel® Core™2 Duo
processor with 2GHz and 2GBRAM. In each example, the numerical solution of the proposed
hybrid approach was compared to the corresponding predictions obtained from ten thousand
SSA simulations of the full CME.Numerical integration of the hybrid equationswas performed
with an absolute tolerance of 10−6 and a relative tolerance of 10−3. The above introduced
δ-threshold was set to 10−6, in line with the absolute tolerance. For state space truncation,
appropriate maximal levels of each discrete species were chosen initially, accounting for
higher values than observed in all corresponding SSA simulations. No additional boundary
conditions were applied to the truncated systems, such that the resulting truncation error
could be monitored by loss of probability mass. At final time points of all experiments, the
truncation error was found to be much lower than the tolerated absolute error.

4.2.1 A Simple Switch-Model

Metastability is an important property of biological systems, necessitating in general a stochas-
tic modeling approach for its in silico analysis. As a first test example for our hybrid approach,
we designed a simple bistable model:

R1∶ S1
k1

GGGGGA S2, R2∶ S2
k2

GGGGGA S1,

R3∶ C + S1
k3

GGGGGA S1, R4∶ S2
k4

GGGGGA C + S2, (4.37)

The concept behind this network is that S1 and S2 represent two metastable states of a more
complex system, derived by some coarse graining of underlying subprocesses. Even though S1
and S2 are actually no molecular species but account for different internal states of the system,
we can treat these states as discrete species with a possible value of either zero or one within
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Figure 4.1: Illustration of the simple bistable system (4.37). Left: The system can switch between two
(discrete) states S1 and S2. The dynamics of the (continuous) species C depends on the actual state
of the system: C is degraded in S1 and produced in S2, respectively. Right: Typical results of a single
SSA-realization of system (4.37) for the parameter values listed in Table 4.1.

the framework of our approach. Transitions between S1 and S2 are modeled by reactions R1

and R2 that are treated as discrete processes in the following. Depending on the actual state
of the system, the continuously treated species C gets either degraded or produced through
reactions R3 and R4, respectively, as illustrated in Figure 4.1 (left panel). We included this
state-dependence of R3 and R4 in their stoichiometries, see eqs. (4.37). The discrete states S1
and S2 are not changed by firings of the channels R3 or R4, and hence, these reactions are
treated as continuous deterministic processes (see also Figure 4.1, right panel, for a typical
SSA-realization of the system).

The full set of hybrid equations of network (4.37) is given by

∂
∂t

P0(S1; t) = −k1P0(S1; t) + k2P0(S2; t) = −
∂
∂t

P0(S2; t),

∂
∂t
E0
S1[Y] = −k1E

0
S1[Y] + k2E

0
S2[Y] − k3E

0
S1[Y],

∂
∂t
E0
S2[Y] = +k1E

0
S1[Y] − k2E

0
S2[Y] + k4P0(S2; t), (4.38)

where P0(S1; t) and P0(S2; t) denote the probabilities that the system is at time t either in state
S1 or state S2, respectively. The approximated partial expectations of species C with respect to

k1 k2 k3 k4
0.06 0.04 0.2 500.0

Table 4.1: Parameter values used for the bistable system (4.37)
(Ω = 1). Initially, the system is with probability one in state S1 with
ten thousand entities of species C.
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Figure 4.2: Time evolution of system (4.37) as predicted by ten thousand SSA runs (solid lines) and the
numerical solution (marked by dots) of the corresponding hybrid equations (4.38) for the parameter
values listed in Table 4.1. The level of C as predicted by a purely deterministic simulation of system (4.37)
is shown in the lower right panel (dashed line).

the states S1 and S2 are denoted by E0
S1[Y] and E

0
S2[Y], respectively. It should be noticed that

the corresponding conditional levels Y(t ∣ S1) and Y(t ∣ S2) of C do not have to be computed
for the evaluation of the hybrid equations (4.38). This is always the case if the propensities
of all continuos reactions are constant or linear functions of Y and the propensities of all
discrete reactions are constant with respect to Y .

In Figures 4.2 and 4.3, the numerical solution of eqs. (4.38) is compared to predictions
obtained by ten thousand SSA simulations. In the upper panels of Figure 4.2, the time-
evolution of the probabilities P0(S1; t) and P0(S2; t) (upper left), as well as the evolution of
the partial expectations E0

S1[Y] and E0
S2[Y] (upper right) are shown. In the lower panels

of Figure 4.2 the corresponding conditional levels Y(t ∣ S1) and Y(t ∣ S2) (lower left) and
the approximation of the total expectation E0[Y] = E0

S1[Y] +E
0
S2[Y] of C (lower right) are

depicted. Additionally, the level of C as predicted by a purely deterministic simulation of
system (4.37) is shown in the lower right panel of Figure 4.2 (dashed line). The relative error
between the solution of the hybrid equations (4.38) and the results obtained by the SSA
simulations is plotted against time in Figure 4.3.
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Figure 4.3: Relative error of the
numerical solution of the hy-
brid equations (4.38) with re-
spect to the predictions obtained
by ten thousand SSA runs of
system (4.37), as shown in Fig-
ure 4.2.

Our hybrid solution is in excellent agreement with the SSA results, whereas a purely
deterministic simulation fails to correctly predict the dynamics of the continuous speciesC. As
discussed in Subsection 2.4.3, independence of all random variables is automatically assumed
in the deterministic approach, such that the propensity of the continuous, bimolecular reaction
R3 in network (4.37), for instance, gets approximated as a3(E[S1],E[Y]). Obviously, this
approximation is inappropriate, since the expected level of the discrete species S1 is always
small (E[S1] ≤ 1). In our hybrid approach, we account for the dependence of the continuous
deterministic processes on the discrete stochastic processes—an averaging is only partially
applied with respect to the continuous species that are expected to be present in large copy
numbers. Furthermore, for the model system (4.37), our hybrid equations (4.38) correspond
to the exact evolution equations (4.4) and (4.6) derived in Subsection 4.1.2. This is guaranteed
by two properties of the network: Decoupling between the continuous species C and the
discrete reactions R1 and R2, and linearity of the continuous reactions R3 and R4 with respect
to the continuous species C. For that reason, the discrepancies to the SSA results, as shown in
Figure 4.3, are mainly associated with the sampling error of the MC-method.

4.2.2 Viral Infection Kinetics

As a second example, we consider the infection model of a non-lytic virus proposed by Sri-
vastava et al. [17]. We also use this model to illustrate the suggested coarse graining of the
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continuous processes. The model includes three viral components: Viral nucleic acids, classi-
fied as either genomic (gen) or template (tem), and viral structural protein (struct), governed
by six elementary reactions:

R1∶ gen
k1

GGGGGA tem, R2∶ tem
k2

GGGGGA ∅,

R3∶ tem
k3

GGGGGA tem + gen, R4∶ gen + struct
k4

GGGGGA ∅,

R5∶ tem
k5

GGGGGA tem + struct, R6∶ struct
k6

GGGGGA ∅. (4.39)

The infection of the host-cell is initiated with a single molecule of tem, where the template
tem denotes the ‘active’ form of nucleic acids that is involved in the catalytic synthesis of
the viral components gen and struct (reactions R3 and R5, respectively). The gen component
refers to nucleic acids that transport the viral genetic information, e.g., DNA or RNA, which
gets either processed into the active form tem (reaction R1), or used together with structural
proteins struct to build a new viral cell that gets released from the host (reaction R4). The
number of tem and struct molecules is further regulated by degradation (reactions R2 and R6,
respectively). The considered values of all rate constants are given in Table 4.2.

Even though the network (4.39) has a relative simple structure, it is capable of resembling
realistic scenarios of a viral infection by rendering two steady states; the first representing
a successful infection with approximately 20 gen, 200 tem and 10, 000 struct molecules, and
the second representing a successful rejection with no molecule of any viral component left.
However, a purely deterministic simulation of system (4.39) will never account for these
different scenarios, as the first steady state is deterministically stable, whereas the second,
absorbing state is deterministically unstable, cf. [17]. To study the system behavior correctly,
the discrete–stochastic formulation has to be used instead. Unfortunately, the systemdynamics
lives on a much too large state space to solve the corresponding CME directly (e.g., there are
more than 42 million states that ‘directly’ connect the two steady states), and usually SSA
realizations of the system are considered instead.

Table 4.2: Parameter values of the viral infection kinetics model (4.39) in unit per day (Ω = 1), cf. [17].
Initially, the system is with probability one in the state with one tem, and zero gen and struct molecules.

k1 k2 k3 k4 k5 k6

0.025 0.25 1.0 7.5 × 10−6 1000 2.0
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As the level of struct is at least two orders of magnitude larger in a successful infection than
the levels of tem and gen (except for some transient phase), we treat struct as a continuous
species; and regard tem and gen as discrete species. Accordingly, reactions R1–R4 are treated as
discrete processes; reactions R5 and R6 are approximated as continuous processes. Although
reactions R3 and R5 include tem as a reactant species, they are handled differently in our
approach: R3 acts on the discrete species gen, whereas R5 acts on the continuous species struct
(tem is not affected by both reactions). Therefore, R3 is treated as a discrete process, while R5

is treated as a continuous process.
Since the propensities of both continuous reactions, R5 and R6, have constant values for a

fixed number of temmolecules, we further coarse grain the number of continuous processes,
i.e., we associate a single continuous process to the subset of discrete states where the level of
tem is the same. We use each of these processes to obtain a deterministic approximation of
the expected level of struct conditioned on the number of temmolecules. This further reduces
the number of hybrid equations significantly.
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Figure 4.4: Marginal PDF of tem after t = 50, 100, 150 and 200 days in the viral infection kinetics
model (4.39) for parameter values listed in Table 4.2. The approximations obtained by ten thousand
SSA runs are indicated by bars, the numerical solution of the suggested hybrid model is marked by dots,
purely deterministic predictions are highlighted by dashed lines.
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Figure 4.5: Marginal PDF of gen after t = 50, 100, 150 and 200 days in the viral infection kinetics
model (4.39) for parameter values listed in Table 4.2 (visualized with a bin-width of five). The approxima-
tions obtained by ten thousand SSA runs are indicated by bars, the numerical solution of the suggested
hybrid model is marked by dots, purely deterministic predictions are highlighted by dashed lines.
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Figure 4.6: Expected values of struct conditioned on the number of tem molecules after t = 50, 100, 150
and 200 days in the viral infection kinetics model (4.39) for parameter values listed in Table 4.2. The
approximations obtained by ten thousand SSA runs are indicated by bars, the numerical solution of the
suggested hybrid model is marked by dots, purely deterministic predictions are highlighted by dashed
lines.
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Figure 4.7:Evolution of the expected level of struct in system (4.39) for parameter values listed in Table 4.2.
The approximation obtained by ten thousand SSA runs is plotted as a solid line, the predicted expectation
in the hybrid approach is marked by dots, the purely deterministic prediction is illustrated by a dashed
line. Bottom: The relative error of the hybrid solution with respect to the SSA results against time.

In Figures 4.4 and 4.5 the predicted PDFs of the discrete species tem and gen, respectively,
are shown at four different time points. The corresponding expected levels of struct for a
given number of temmolecules are plotted in Figure 4.6. The results of the hybrid model are
in excellent agreement with the approximations obtained by SSA realizations. Although the
initial number of struct is low, we observed no problems in treating struct as a continuous
species in the initial phase. This illustrates that the required large copy numbers of continuously
treated species seems to be only a sufficient condition and that our hybrid approach might
also be applicable to systems where initial levels of the continuous species are low. Further
investigations are thus needed to illuminate under which circumstances the conditions on
the continuous species can be weakened.

Furthermore, it can be seen that the conditional expected levels of struct remain almost
constant during later phase (compare the results for t = 100, 150 and 200days in Figure 4.6),
indicating that the continuously approximated processes are already in equilibrium. Instead
it is the probability to be in a specific subset of the discrete state space that changes (see
Figures 4.4 and 4.5), and hence the indirect impact of the discrete reactions that results in
changes of the partial expectations of struct (data not shown). As illustrated in Figure 4.7, this
results in a very accurate prediction of the total expectation of struct by the hybrid model,
whereas a purely deterministic model fails.
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4.2.3 Transcriptional Regulation

To further illustrate the proposed hybrid approach on a more complex biological system, we
consider the transcriptional regulatory system published in [49]. The system includes six
species, interacting through ten elementary reactions:

R1∶ mRNA
k1

GGGGGA mRNA + M, R2∶ M
k2

GGGGGA ∅,

R3∶ DNA⋅D
k3

GGGGGA DNA⋅D + mRNA, R4∶ mRNA
k4

GGGGGA ∅,

R5∶ DNA + D
k5

GGGGGA DNA⋅D, R6∶ DNA⋅D
k6

GGGGGA DNA + D,

R7∶ DNA⋅D + D
k7

GGGGGA DNA⋅2D, R8∶ DNA⋅2D
k8

GGGGGA DNA⋅D + D,

R9∶ 2M
k9

GGGGGA D, R10∶ D
k10

GGGGGA 2M, (4.40)

whereM is a protein (monomer) the can reversibly dimerise (R9 and R10) to form the tran-
scription factor D (dimer). The DNA template has two different binding sites for D, where
DNA denotes the state where both sites are free, DNA⋅D denotes the state where D is bound at
the first site, and DNA⋅2D denotes the state where the transcription factor D is bound at both
sites. In the model it is assumed that D can only bind to the second site (R7 and R8) if the
first site is already occupied (R5 and R6). Transcription only occurs from the state DNA⋅D
(reaction R3), where the transcription factor is exclusively bound to the first binding site of
the DNA. The produced messenger RNA,mRNA, is translated into proteinM (reaction R1).
Both,M andmRNA, are subject to degradation (R2 and R4).

Table 4.3: Parameter values of the transcriptional regulatory system (4.40) in unit per second, for
an average cell volume V ≈ 1.44 × 10−15 l (i.e., Ω = NAV ≈ 8.64 × 108 l/mol) and a 10-fold increased
transcription rate k3, cf. [49]. The system is started with probability one in the state with 2M, 6 D, 2
DNA, and no mRNA, DNA⋅D and DNA⋅2D molecules.

k1 k2 k3 k4 k5/Ω

0.043 7.0 × 10−4 0.72 3.9 × 10−3 0.014

k6 k7/Ω k8 k9/Ω k10

0.48 1.4 × 10−4 8.8 × 10−12 0.029 0.5
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Figure 4.8: Time evolutions of the expected values (black) plus/minus standard deviations (gray) in the
transcriptional regulatory system (4.40) for parameter values listed in Table 4.3. The approximations
obtained by ten thousand SSA runs are plotted as lines, the numerical solutions of the suggested hybrid
model are marked by dots.
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Figure 4.9: Absolute and relative (with respect to the SSA predictions) errors, respectively, of the results
shown in Figure 4.8. Black lines refer to the errors in expected values, gray lines to errors in standard
deviations.
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Figure 4.10: Time evolutions of the expected values (black) plus/minus standard deviations (gray) in
the transcriptional regulatory system (4.40) for parameter values listed in Table 4.3, but with a ten-fold
decreased transcription rate k3. The approximations obtained by ten thousand SSA runs are plotted as
lines, the numerical solutions of the suggested hybrid model are marked by dots.
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Figure 4.11: Absolute and relative (with respect to the SSA predictions) errors, respectively, of the results
shown in Figure 4.10. Black lines refer to errors in expected values, gray lines to errors in standard
deviations.
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4.3 Concluding Remarks

Based on common knowledge in cell biology, we expect the level of proteins to be much
larger than the levels of mRNA and DNA. Therefore, we regard the monomer and dimer
forms of the protein,M and D, as continuous species in our hybrid model, whereasmRNA
and all DNA forms (DNA, DNA⋅D and DNA⋅2D) are treated as discrete species. As reactions
R3–R8 change the levels of the discrete species, we treat these reactions as discrete processes.
Reactions R1, R2, R9 and R10 only change the levels of the continuous species (M and D)
and hence, are approximated as continuous processes. Given this partition of the species and
reactions, we can formulate and numerically solve the corresponding hybrid equations of the
system.

In Figure 4.8 the evolution of the system as predicted by the hybrid model is compared
to the results obtained from ten thousand SSA realizations. The predictions are in excel-
lent agreement, as further illustrated in Figure 4.9. We again emphasize that the results
computed with the SSA necessarily include an unknown sampling error. While the error
in the numerical integration of the proposed hybrid equations is controlled by standard
methods, the error made with an indirect Monte Carlo method is hard to estimate. In the
hybrid model, however, an additional error arises from approximating part of the network
continuously–deterministically.

We further studied the error related to modeling the two protein formsM and D as con-
tinuous species by decreasing the transcription rate k3, resulting in lower levels of monomer
M and, consequently, dimer D. As can be seen from the results shown in Figures 4.10 and
4.11, the error of our hybrid approximation increases in this scenario. Particularly in the later
transient phase (after ≈ 10min), the predicted standard deviations of the discrete species show
a noticeable deviation from the SSA results. However, these deviations are not surprising as for
lower levels ofM andD an error resulting from their continuous–deterministic approximation
increases, which is also intuitively clear.

4.3 Concluding Remarks

We used multi-scale analysis techniques to derive a novel hybrid model for approximation of
the PDF solution of the CME. To this end, we singled out a subspace associated with species
of low copy numbers and assumed that its complement subspace is associated with large copy
numbers which can be well approximated by a continuous distribution. We exploited the
natural decomposition P(Y , Z; t) = P(Y ∣ Z; t)P(Z; t) of the joint PDF into themarginal PDF
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P(Z; t) on the low copy number space and the conditional PDF P(Y ∣ Z; t) on the large copy
number space, where the condition is on the discrete states of the low copy number subspace.
The hybridmodel resulting frommulti-scale asymptotics based on this decomposition couples
a CME for P(Z; t) to DAEs for the first moments of P(Y ∣ Z; t). Therefore, in first instance,
there have to be as many DAEs for every discrete state Z of the low copy number CME as
‘continuous’ species are present in the system. Although this might first appear very complex,
the hybrid model solution is expected to be particularly suitable for networks including a
few ‘discrete’ species only, since the numerical costs directly scale with the size of the CME
subspace which is much smaller for the hybrid model than for the original CME. Moreover,
as shown in Subsection 4.1.8, under certain conditions the hybrid description can be further
coarse grained and the number ofDAEs effectively reducedwithout introducing any additional
approximation error. Hence, a direct solution of the proposed hybrid model becomes feasible,
which was demonstrated on a viral infection kinetics model and a transcriptional regulatory
network by using a straight-forward simulation approach.

The focus of our work was not on a particular numerical integration method for the
CME but rather on a general, theoretically justified approach for its direct, hybrid stochastic–
deterministic approximation. Similar approaches have been proposed by Henzinger et al.
[66] and, recently, by T. Jahnke [67]. In contrast to Henzinger et al. [66], we derived a
closed formulation where the distribution of the discrete species and the first moments of
the continuous species are coupled continuously in time. Our hybrid model (4.30) is more
closely related to Jahnke’s MRCE-model [67]. The evolution equations of the MRCE-model
are derived by a partial averaging of the CME (see Section 4.1.2) with respect to some variables
that are assumed to have zero covariance. This assumption becomes theoretically justified
for the continuous species in our hybrid approach under the considered partial scaling of
the system. In the light of our multi-scale expansion, we hence expect the MRCE-model to
approximate the system dynamics on theO(1) scale. At the same time, however, our analysis
also shows that the direct impact of slow reactions (associated with the discrete species) on
the dynamics of the continuous variables lives on a smaller scale and can thus be neglected in
a corresponding hybrid approximation up to orderO(1).

It should be emphasized that the resultingDAEs that govern the evolution of the continuous
variables are not identical with the usually expected equations of classical reaction kinetics, e.g.,
compare eq. (4.34) with eq. (4.30b). Instead, they include additional coupling terms resulting
from changes in the distribution of the population on the discrete subspace as given by the
discrete reactions in eq. (4.30b). The numerical experiments indicated that the required large
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number of molecules of all continuous species might be only a sufficient condition and that
our hybrid approach can also be applied for more general situations. In principle, we just have
to require the propensity scalings (4.10) to be valid in the specific subspaces, which can still be
satisfied even though the conditional level of a continuously treated species is (temporarily)
low. Further investigations are thus needed to illuminate under which circumstances the
conditions on the continuous species can be weakened. However, observation of a critically
large propensity (order ε−1) for one of the discrete reactions Rµ with µ ∈Md may spoil the
approximation property of the continuous variables if there exists a direct dependence (i.e.,
ζµ ≠ 0), and thus should be considered in choosing the discrete species and reactions. Such a
potential scenario has to be analyzed in further research, e.g., by additionally accounting for
different scales of the rate constants, which was out of scope for the present study.
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5
Elimination of Discrete–Stochastic Submodels:
Effective Protein Synthesis Rates
in the FlgM–FliA Regulatory Network§

In the previous chapters, we studied hybrid approaches that couple the discrete–stochastic
with the continuous–deterministic formulation of biochemical reaction networks. A hybrid
system representation allows to reduce the computational costs of simulation while preserving
characteristic properties related to fluctuations in small number of molecules. It is important
to realize, however, that this does not reduce the complexity of the model with respect to the
number of molecular species, reaction channels and, more generally, parameters. Usually,
some model parameters can be directly obtained from experiments or literature. Other
parameters, such as kinetic constants, can often not be measured directly and have to be
estimated indirectly by fitting the model to experimental data. However, parameter estimation
can only provide reliable results if the model complexity is in balance with the amount and
quality of experimental data [68]. If this is not the case, either additional data is required
or the model has to be simplified, e.g., based on time-scale separation [69–71], sensitivity
analysis [72, 73] or balanced truncation [74–76].

In this chapter, we employ a QSSA-like reduction approach to a detailed stochastic model
of gene expression. Our strategy is to eliminate the processes and parameters associated with
this detailed model in order to derive effective protein synthesis rates as typically used in
deterministic models of biochemical reaction networks. We demonstrate our approach on a
biological model of the interactions of two key proteins in the flagellar gene regulation cascade
of Escherichia coli (E. coli): the flagellar sigma factor FliA and its anti-sigma factor FlgM, see
Section 5.2. The interactions between FlgM and FliA serve as a major checkpoint during the
assembly process that temporally separates the expression of middle and late genes, see next

§The contents of this chapter are based on: S. Menz, R. Hengge, and W. Huisinga. Robustness and Sensitivity
of the FlgM–FliA Regulatory Network Controlling Flagellar Gene Expression in Escherichia Coli. In preparation,
2012.
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section. Our reduction approach, see Section 5.3, allows to mechanistically incorporate the
feedback between middle and late gene expression in a purely deterministic formulation of
the model. Sensitivity analysis of the derived model reveals that the checkpoint mechanism
is very sensitive to changes in levels of competing sigma factors, allowing the bacterium to
rapidly adapt to a changing environment, see Subsection 5.4.3. We also find a high sensitivity
to changes in the effective synthesis rates. However, this high sensitivity does not generally
carry over to parameters in the detailed model, demonstrating that sensitivity to changes in
effective reaction rates has to be interpreted with care.

5.1 Background

E. coli is a non-differentiating bacterium that exhibits very different ‘life-styles’: The bacteria
can occur as single planktonic and motile cells or they can exist as multicellular sessile aggre-
gates, i.e., in biofilms [192–197]. The motile state depends on properly controlled biosynthesis
of flagella that are complex rotating organelles anchored in the cell envelope. The flagella com-
prise three parts: the basal body, the hook and the filament, which are sequentially assembled
from the base to the distal end [198]. A remarkable aspect of flagellar assembly in E. coli is
that gene expression is temporally ordered and coupled to the assembly process [199]. The
same has been observed for other bacteria, like Salmonella typhimurium [200].

The flagellar gene regulation cascade of E. coli consists of more than sixty genes that are
organized in three hierarchically and temporally regulated transcriptional classes [201–203].
Global regulators feed into a single class 1 promoter which leads to the initiation of flagellar
synthesis. The class 1 (early) genes code for the subunits of the transcription factor FlhDC,
the flagellar master regulator that activates class 2 promoters [203, 204]. The protein products
of the class 2 (middle) genes are structural components of the flagellar hook basal body, as
well as the transcriptional regulators FliA and FlgM. FliA is an alternative sigma factor (σF)
that enables transcription of the class 3 (late) genes which encode the proteins for the flagellar
filament and the control of motility and chemotaxis [205, 206]. In the middle phase of flagellar
assembly, FliA is actively inhibited by FlgM, its anti-sigma factor, that tightly binds to FliA.

With the hook basal body, a type III secretion system is formed that is necessary for the
secretion of the flagellar filament subunits [198, 207]. The type III secretion system exports
FlgM to the outside of the cell with FliA acting as a type III chaperone that delivers FlgM to the
export machinery. [208]. The FliA-mediated export of FlgM results in the release of FliA from
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the FlgM:FliA complex, an increase in free FliA levels and eventually in activation of class 3
transcription [209]. In this way, class 3 gene expression of filament proteins is coupled to the
assembly process of the hook basal body [210]. While the sequential nature of middle and late
gene expression has been studied using real-time monitoring of transcriptional activation
based on β-galactosidase [195] and green fluorescent protein [199, 211] fusion measurements,
the dynamics of the FlgM–FliA checkpoint mechanism and the switch from middle to late
gene expression are only poorly understood.

The objective of our in silico study was to analyze the timing and robustness of the FlgM–
FliA core regulatory mechanism in terms of a mathematical model. Since regulation based
on protein-protein interaction can not be studied by means of gene transcription data, quan-
titative molecule data has to be used. In [210], a semi-quantitative model (i.e., in terms of
dimensionless concentration units) of the FlgM–FliA checkpoint in Salmonella enterica has
been constructed and analyzed with respect to gene transcription data. We used for the first
time quantitative measurements of FliA and FlgM protein numbers over time [195] to develop
and analyze a detailed deterministic reaction kinetics model of the FlgM–FliA regulatory
network in E. coli. To incorporate the feedback betweenmiddle and late gene expression in the
deterministic model, we derived effective protein synthesis rates based on a detailed stochastic
model of gene expression that explicitly accounts for initiation of late gene expression by FliA.
The resulting model extends the current verbal description of the FlgM–FliA interactions
by accounting for sigma factor competition for RNAP and the relation of effective protein
synthesis rates to key transcriptional and translational processes, necessary for thorough
analysis of their robustness and sensitivity.

Robustness is one of the fundamental characteristics of biological systems, defined as the
ability to maintain a persistent response in the presence of perturbations or alterations in
the involved molecular processes. Equally important, however, is the ability of a biological
system to rapidly adapt to a changing environment [212, 213]. In silico, the underlying question
of robustness: ‘‘How sensitive is the model to perturbations in the molecular processes?’’
is typically addressed by a sensitivity analysis of the predicted output in terms of model
parameters (e.g., rates, rate constants or concentrations of molecular species that were not
explicitly modeled). Our results provide detailed insight into the timing and robustness of the
FlgM–FliA checkpoint mechanism. Since flagella are a common and conservedmotive among
motile bacteria [214], our findings are expected to have implications beyond the present study
in E. coli.
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5.2 Mathematical Model of the FlgM–FliA Regulatory Network

Description of the Model

The proposed model of the FlgM–FliA regulatory network is illustrated in Figure 5.1. In the
model, the two key regulatory proteins FlgM and FliA form the FlgM:FliA complex with
association rate constant kon and dissociation rate constant koff [215]. FliA binds to the RNA
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Figure 5.1:Model of the central flagellar checkpoint mechanism in E. coli. Interactions between FliA and
FlgM are at the core, i.e., FlgM:FliA complex formation, FliA-mediated export of FlgM through the type
III secretion system, proteolysis of free FliA, FliA binding to RNAP, and σF:RNAP enabled class 3 gene
expression of FlgM. FliA is competing for binding to RNAP with the sigma factor σD.
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polymerase core enzyme RNAP with rate constant ka,σF and dissociates from the σF:RNAP
holoenzyme with rate constant kd [215]. FliA is competing for binding to RNAP with the
sigma factor σD, that binds the RNA polymerase core enzyme with rate constant ka,σD and
dissociates from the σD:RNAP holoenzyme with rate constant kd [215, 216].

FlgM and FliA are produced with rates kFlgM(t) and kFliA(t), respectively. These rates
comprise a low basal expression rate and a class 2 expression rate that is induced at time
tclass2 by the master regulator FlhDC [203, 204] (only implicitly considered in our model,
see Appendix C). In addition, FlgM is subject to class 3 expression that is induced by the
σF:RNAP holoenzyme. Class 3 expression of FliA was experimentally found to be negligible
in comparison to its class 2 expression [195].

As part of the hook basal body, a type III secretion system is established [198]. Upon
completion at time texport, FliA acts as a type III secretion chaperon [208] and intra-cellular
FlgM is exported with rate constant kexport from the FlgM:FliA complex into the extra-cellular
space, resulting in extra-cellular FlgMextern and free intra-cellular FliA.

The molecular species FliA, FlgM, FlgM:FliA, FlgMextern and FliA as part of the σF:RNAP
complex are subject to dilution with rate constant kdil, accounting for cell growth and division.
In addition, like some other sigma factors [217, 218], FliA is subject to proteolysis with rate
constant kprot [195]. The total number of sigma factor σD, given by σD plus σD:RNAP, and the
total number of RNA polymerases, i.e., RNAP plus σF:RNAP plus σD:RNAP, are assumed to
remain constant due to regulatory mechanisms that were not explicitly included in the model.

In summary, the proposed model of the FlgM–FliA regulatory network model involves
the following reactions:

∅
kFlgM(t)
GGGGGA
DGGGGG

kdil
FlgM, ∅

kFliA(t)
GGGGGA
DGGGGG

kdil
FliA,

FlgM + FliA
kon

GGGGGA
DGGGGG

koff
FlgM:FliA, FliA

kprot
GGGGGA ∅,

FlgM:FliA
kexport(t)
GGGGGA FlgMextern + FliA, FlgMextern

kdil
GGGGGA ∅,

FlgM:FliA
kdil

GGGGGA ∅, FliA + RNAP
ka,σF

GGGGGA
DGGGGG

kd
σF:RNAP,

σF:RNAP
kdil

GGGGGA RNAP, σD + RNAP
ka,σD

GGGGGA
DGGGGG

kd
σD:RNAP. (5.1)
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As the number of molecules of the species are expected to be sufficiently large according to
experimental measurements (see Appendix C), we choose the deterministic formulation of
reaction kinetics to transform the above biological model into a system of ODEs:

d
dt

FlgM = + kFlgM(t) − kon ⋅ FliA ⋅ FlgM + koff ⋅ FlgM:FliA − kdil ⋅ FlgM,

d
dt

FliA = + kFliA(t) − kon ⋅ FliA ⋅ FlgM + (koff + kexport(t)) ⋅ FlgM:FliA

− ka,σF ⋅ FliA ⋅ RNAP + kd ⋅ σ
F:RNAP − (kdil + kprot) ⋅ FliA,

d
dt

FlgM:FliA = + kon ⋅ FliA ⋅ FlgM − (koff + kexport(t) + kdil) ⋅ FlgM:FliA,

d
dt

FlgMextern = + kexport(t) ⋅ FlgM:FliA − kdil ⋅ FlgMextern,

d
dt

σF:RNAP = + ka,σF ⋅ FliA ⋅ RNAP − (kd + kdil) ⋅ σ
F:RNAP,

d
dt

σD:RNAP = + ka,σD ⋅ σ
D ⋅ RNAP − kd ⋅ σD:RNAP,

d
dt

σD = − ka,σD ⋅ σ
D ⋅ RNAP + kd ⋅ σD:RNAP,

d
dt

RNAP = − ka,σF ⋅ FliA ⋅ RNAP + (kd + kdil) ⋅ σ
F:RNAP − ka,σD ⋅ σ

D ⋅ RNAP,

+ kd ⋅ σD:RNAP, (5.2)

where zero-order rates are in units nM/min, first-order rate constants are in units min−1, and
second-order rate constants are in units (nM ⋅min)−1.

Class 2 expression is regulated by the master regulator FlhDC and the sigma factor σD,
while class 3 expression is regulated by the sigma factor FliA. Since the deterministic model of
biochemical reaction kinetics does not allowmodeling of gene expression on the level of single
molecules (in particular a single gene), we used the stochastic formulation of reaction kinetics
to derive effective class 2 and class 3 synthesis rates kFlgM(t) and kFliA(t). As a consequence,
we retained a mechanistic interpretation of the effective synthesis rates while keeping the
number of model parameters low.

5.3 Derivation of Effective Protein Synthesis Rates

We derived effective rates of protein synthesis based on the detailed mechanistic model
of gene transcription and translation illustrated in Figure 5.2. In this detailed model, we
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explicitly included the impact of transcription and sigma factors on the intermediate steps of
mRNA synthesis. This allowed us to derive protein synthesis rates as a function of the master
regulator FlhDC and the σD:RNAP complex for class 2 gene expression, and as a function of
the σF:RNAP complex for class 3 gene expression. Our reduction approach uses a QSSA-like

A Transcription of DNA to mRNA

SF

RNAP – Binding Side (BS) unblocked

TF

ka,TF

kd,TF

kinit,tc
Transcription

RNAP-BS blocked

ntc

Ntc - ntc

Initiation

Elongation

kelong,tc

mRNA

DNA DNA
TF

ka,RNAP

kd,RNAP

DNA
TF

RNAP

kelong,tc

kelong,tc

SF
RNAP

Ø
kdeg

B Translation of a Single mRNA

Ribosome – Binding Side (BS) unblocked

Ribosome

kinit,tl
Translation

Ribosome-BS blocked

ntl

Ntl - ntl

Initiation

Elongation

kelong,tl

Protein

mRNA

ka,Ribo

kd,Ribo

mRNA

Ribosome

kelong,tl

kelong,tl

Figure 5.2: Detailed mechanistic model of gene expression. (A) The transcription of DNA to mRNA is
separated into four states: free DNA, transcription factor (TF)-bound DNA, TF/SF:RNAP-bound DNA,
and initiated transcription with blocked RNAP-binding side (BS). From the last state, the RNAP-binding
side gets unblocked after a distance of ntc nucleotides is reached (promoter clearance). The exit rate
of this state determines the effective synthesis rate of mRNA. (B) The translation of a single mRNA is
separated into three states: free mRNA, ribosome-bound mRNA and initiated translation with blocked
ribosome-BS. Another ribosome can bind to the mRNA after ntl amino acids are synthesized.
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argument: If transcriptional and translational processes are not explicitly incorporated in
a model, we assume that in corresponding protein synthesis rates the variables associated
with these subprocesses are considered to be effectively in a quasi-steady state distribution for
given levels of transcription factors, RNAP holoenzymes and ribosomes.

For the process of gene transcription, we considered free DNA to which a transcription
factor (TF) may reversibly bind with association and dissociation rate constants ka,TF and
kd,TF, respectively. The transcription factor (TF)-bound DNA has an increased affinity for
binding the RNAP holoenzyme (SF:RNAP) to the promoter of the gene with association and
dissociation rate constants ka,RNAP and kd,RNAP, respectively. Once the RNAP complex is
bound, transcription is initiated with rate constant kinit,tc and the RNAP traverses the template
strand for the full gene length Ntc with elongation rate constant kelong,tc. For a length of ntc
nucleotides, the RNAP-binding side (BS) of the DNA is blocked due to steric constraints [219].
Thereafter, it is assumed to be unblocked again, allowing the next SF:RNAP complex to bind
and multiple transcription processes to run simultaneously along a single gene or operon.
The corresponding biological model is shown in Figure 5.2A.

Based on the stochastic formulation of reaction kinetics, we associated a Markov jump
process with the above model of gene transcription. Considering the transcription factor
and the RNAP holoenzyme as parametric input, the resulting Markov process is linear on
the state space of the four different DNA states (X1 ∶= free DNA, X2 ∶= TF-bound DNA,
X3 ∶= TF/SF:RNAP-bound DNA, X4 ∶= initiated transcription with blocked RNAP-binding
side). For our purpose, it was sufficient to lump the ntc and the Ntc − ntc elongation steps
with rate constant kelong,tc into single steps with rate constants k∗elong,tc ∶= kelong,tc/ntc and
kelong,tc/(Ntc − ntc), respectively (explicit consideration of the Ntc elongation steps would give
the same results). The infinitesimal generator Atc of the Markov jump process on the states
space (X1, X2, X3, X4) is given by

Atc =

⎛
⎜⎜⎜⎜⎜
⎝

−k∗a,TF k∗a,TF 0 0
kd,TF −(kd,TF + k∗a,RNAP) k∗a,RNAP 0
0 kd,RNAP −(kd,RNAP + kinit,tc) kinit,tc
0 k∗elong,tc 0 −k∗elong,tc

⎞
⎟⎟⎟⎟⎟
⎠

,

where k∗a,TF ∶= ka,TF ⋅ TF and k∗a,RNAP ∶= ka,RNAP ⋅ SF:RNAP are the binding rate constants pa-
rameterized in terms of the transcription factor TF and the RNAP holoenzyme (i.e., SF:RNAP
complex), respectively.
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We defined the effective synthesis rate kmRNA of mRNA as the steady state rate resulting
in the synthesis of new mRNA molecules. This is given, for instance, by the steady state rate
through the state X4, i.e., the product between the stationary distribution π = (π1, . . . , π4) of
the Markov jump process associated with state X4 and the exit rate constant of state X4

kmRNA ∶= π4 ⋅ k∗elong,tc. (5.3)

The stationary distribution satisfies the equation πAtc = 0. Solving for π and using eq. (5.3)
resulted in

kmRNA =
Vmax,tc ⋅ SF:RNAP
Ktc + SF:RNAP

, (5.4)

with maximal rate

Vmax,tc ∶=
kinit,tc ⋅ k∗elong,tc
kinit,tc + k∗elong,tc

and a Michaelis–Menten-like constant

Ktc =
(kd,RNAP + kinit,tc) ⋅ k∗elong,tc
ka,RNAP ⋅ (kinit,tc + k∗elong,tc)

⋅ (1 + KD,TF

TF
), (5.5)

i.e., the SF:RNAP concentration for which kmRNA = Vmax,tc/2, where KD,TF = kd,TF/ka,TF. As-
suming a linear degradation of the mRNA species, e.g., due to dilution processes, resulted in
a total steady state mRNA level of

mRNA∗total =
kmRNA

kdeg
. (5.6)

We next determined the protein synthesis rate per single mRNAmolecule. In combination
with the above result, this finally allowed us to derive the effective protein synthesis rate as a
function of both transcription factor and RNAP holoenzyme concentration. The derivation of
the effective protein synthesis rate per mRNA is based on the biological model of translation
shown in Figure 5.2B. For the process of translation, we considered a ribosome reversibly
binding to the mRNA with association and dissociation rate constants ka,Ribo and kd,Ribo,
respectively. From this ribosome-bound state the translation of the mRNA is initiated with
rate constant kinit,tl, and the ribosome starts to synthesize the decoded amino acid sequence
of length Ntl with elongation rate constant kelong,tl. Multiple ribosomes can bind to the same
mRNA and boost the translation process, with an average distance of ntl between them.
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The infinitesimal generator Atl corresponding to the Markov jump process on the states
space (Y1 ∶= free mRNA, Y2 ∶= ribosome-bound mRNA, Y3 ∶= initiated translation with
blocked ribosome-binding side) is given by

Atl =
⎛
⎜⎜⎜
⎝

−k∗a,Ribo k∗a,Ribo 0
kd,Ribo −(kd,Ribo + kinit,tl) kinit,tl
k∗elong,tl 0 −k∗elong,tl

⎞
⎟⎟⎟
⎠
,

where k∗elong,tl ∶= kelong,tl/ntl and k∗a,Ribo ∶= ka,Ribo ⋅ Ribo denotes the rate of ribosomal binding
to mRNA parameterized by the concentration Ribo of free ribosomes.

We defined the effective protein synthesis rate per mRNA as the steady state rate resulting
in synthesis of new protein molecules. This is given, e.g., by the steady state rate through
the state Y3, that is the stationary distribution µ = (µ1, µ2, µ3) of the Markov jump process
associated with state Y3 times the exit rate constant of state Y3. The total protein synthesis rate
ksynth is thus finally given by the synthesis rate per mRNAmolecule times the total number
of mRNA molecules, i.e.,

ksynth ∶= µ3 ⋅ k∗elong,tl ⋅mRNA∗total. (5.7)

The stationary distribution satisfies the equation µAtl = 0. Solving for µ and using eq. (5.7)
resulted in

ksynth =
Vmax,tl ⋅ Ribo
Ktl + Ribo

⋅mRNA∗total, (5.8)

with maximal rate

Vmax,tl ∶=
kinit,tl ⋅ k∗elong,tl
kinit,tl + k∗elong,tl

and a Michaelis–Menten-like constant

Ktl ∶=
(kd,Ribo + kinit,tl) ⋅ k∗elong,tl
ka,Ribo ⋅ (kinit,tl + k∗elong,tl)

.

The equation for ksynth can be further simplified if we assume that ribosomes are present
in such quantities that ribosomal binding is not the limiting step in the translation process.
This implies Ribo≫ Ktl, resulting in

ksynth = Vmax,tl ⋅mRNA∗total, (5.9)

or equivalently

ksynth =
Vmax ⋅ SF:RNAP
KM + SF:RNAP

, (5.10)
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where Vmax ∶= Vmax,tl ⋅ Vmax,tc/kdeg and KM ∶= Ktc. If condition Ribo≫ Ktl is not satisfied,
then we would nevertheless obtain the same eq. (5.10) for ksynth by replacing eq. (5.9) by
eq. (5.8) and assuming that the number of available ribosomes remains roughly constant.

In the flagellar gene regulation cascade, we have SF:RNAP = σD:RNAP and TF = FlhDC for
class 2 gene expression, resulting in a potentially saturable class 2 synthesis rate given by

kclass2 =
Vmax ⋅ σD:RNAP
KM2 + σD:RNAP

, (5.11)

with

KM2 =
(kd,RNAP + kinit,tc) ⋅ k∗elong,tl
ka,RNAP ⋅ (kinit,tc + k∗elong,tl)

⋅ (1 + KD,FlhDC
FlhDC

). (5.12)

For class 3 gene expression, it is SF:RNAP = σF:RNAP but no transcription factor is involved
such that the state X1 is not present. This can be accounted for by replacing the term
(1 + KD,TF/TF) by 1 in eq. (5.5). Hence, we derived a class 3 synthesis rate of the form

kclass3 =
Vmax ⋅ σF:RNAP
KM3 + σF:RNAP

, (5.13)

with

KM3 =
(kd,RNAP + kinit,tc) ⋅ k∗elong,tl
ka,RNAP ⋅ (kinit,tc + k∗elong,tl)

,

which was used in the FlgM–FliA interactions model to account for the feedback of FliA on
class 3 gene expression (see Table C.2 in Appendix C).

5.4 Results

The model was parameterized based on available in vivo data from E. coli or related bacteria,
which applied to the majority of parameters. If in vivo data were not available, data were taken
from in vitromeasurements. By dint of the above reduction process, only four parameters
related to the effective synthesis rates of FlgM and FliA had to be estimated based on our
experimental measurements [195]. The parameterization of the model is described in detail
in Appendix C. In the following, we present and discuss the results obtained from different
simulations performed with the model.
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5.4.1 Comparison to Experimental Data

Wild type: Figures 5.3A–C show the experimental data (mean ± one standard deviation) of
total intra- and extra-cellular FlgM and total FliA. Experimental data are given in number
of molecules, as determined fromWestern blots [195]. The solid line shows predictions of
the FlgM–FliA regulatory model based on the parameter values listed in Table C.2. Since the
experimental measurements only allow a first rough estimate for the start of class 2 expression
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Figure 5.3: In silico predictions compared to in vivo measurements of FlgM and FliA. Mean of exper-
imental data marked by stars; bars indicate ± one standard deviation. Wild type: (A) intra-cellular
total FlgM (free FlgM plus FlgM:FliA), (B) extra-cellular FlgM (relative to baseline level), and (C) total
FliA (free FliA plus FlgM:FliA plus σF:RNAP) vs. time. flgM- mutant: (D) total FliA (free FliA plus
σF:RNAP) vs. time. Predictions are based on the parametrization in Table C.2 (solid line), and varied
starting time of class 2 expression (otherwise identical parameters): tclass2 = 7, 8.5, 10, 11.5, 13min for
the wild type and tclass2 = 15.5, 17, 18.5, 20, 21.5min for the flgM- mutant.
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tclass2 (between 5 and 20min), model predictions are also shown for varying tclass2 times and
otherwise identical parameters: tclass2 = 7min (upper dotted line), tclass2 = 8.5min (upper
dashed line), tclass2 = 11.5min (lower dashed line), tclass2 = 13min (lower dotted line). We
observed that variations of tclass2 were most pronounced initially and decreased over time.

The model predictions are in very good agreement with our experimental data [195] and
other experimental findings [209]. For FliA, we observed a slight underestimation at 35min.
Upon start of class 2 expression at time tclass2, the levels of FlgM and FliA rapidly increase.
After completion of the type III secretion system, FlgM is exported to the extra-cellular
space, resulting in a continuous increase in extra-cellular FlgM (see Figure 5.3B). While FliA
continues to increase (see Figure 5.3C), the model predicts a noticeable transient decrease in
intra-cellular FlgM, until eventually newly synthesized FlgM molecules resulting from class 3
gene expression increase the level again (see Figure 5.3A).

flgM- mutant: By design, a flgM- mutant lacks FlgM and results can only be evaluated in terms
of FliA. Figure 5.3D shows the experimental data (mean ± one standard deviation) of total
FliA, as determined fromWestern blots [195]. The solid line shows predictions based on the
parameter values listed in Table C.2. As for the wild type, we further varied the starting time of
class 2 gene expression (otherwise identical parameters): tclass2 = 15.5min (upper dotted line),
tclass2 = 17min (upper dashed line), tclass2 = 20min (lower dashed line), tclass2 = 21.57min
(lower dotted line). Again, the variation is most pronounced initially and decreases over time.
The in silico predictions are in very good agreement with experimental data.

5.4.2 Validation of the Reduction Process

Having the effective synthesis rates of FlgM and FliA parameterized (as reported in Table C.2),
we were also able to parameterize the underlying detailed model of gene expression (depict
in Figure 5.2) on the basis of data available from literature and by exploiting the functional
relations as given in eqs. (5.3)–(5.10). The parameterization of the detailed gene expression
model is described in Appendix C; all parameter values are listed in Table C.3. This allowed
to transform the biological model of the FlgM–FliA regulatory network (5.1) into a discrete-
stochastic reaction kinetics model, where the class 2 and class 3 related syntheses of FlgM
and FliA are now implemented according to the detailed transcriptional and translational
processes shown in Figure 5.2.
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In Figure 5.4, we compare the average mRNA and protein levels of FlgM and FliA in the
wild type as predicted by 100 SSA-runs of this detailed stochastic model to the corresponding
levels in the reduced deterministic model (5.2). Even though the transcription and translation
related processes and variables are eliminated in the deterministic model, we can use eqs. (5.3)–
(5.10) and the parameterization of the detailed model (see Table C.2) to recalculate their
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Figure 5.4: Comparison of mRNA and protein levels in the detailed stochastic model (average of 100
SSA-runs, marked by symbols) and in the reduced deterministic model (solid lines) of the FlgM–FliA
regulatory network. The panels show the results obtained for the wild type with initiation of class 2
expression at time tclass2 = 10min: (A) mRNA of FlgM from class 2 (squares and black line) and class 3
(circles and gray line) transcription, (B) mRNA of FliA from class 2 transcription (squares and black line),
(C) total FlgM (intra-cellular free FlgM plus FlgM:FliA plus extra-cellular FlgM), and (D) total FliA
(free FliA plus FlgM:FliA plus σF:RNAP). In the stochastic model, protein synthesis is realized according
to the detailed transcriptional and translational processes shown in Figure 5.3 (parameterization given in
Table C.3). In the deterministic model, these processes are eliminated and protein synthesis is implemented
by the derived effective rates (parameterization given in Table C.2), with mRNA levels given by eq. (5.6).

124



5.4 Results

values during simulation. The mRNA levels shown in Figure 5.4C+D, for instance, have been
computed in this way from eq. (5.6).

The predictions of the reduced deterministic model and the detailed stochastic model are
in very good agreement. In the reduced model, the mRNA and protein levels increase a bit
earlier and faster than in the detailed model (see Figure 5.4). This effect is related to the time
it takes the transcriptional and translational subprocesses to reach quasi-steady state, which,
by assumption, is not rendered in the effective synthesis rates. Thus, synthesis is slightly
delayed in the detailed but not in the reduced model. This becomes most pronounced in the
approximation of class 3 synthesis of FlgM (see Figure 5.4A), as it (a) integrates the class 2
related approximation of FliA and (b) is initially much slower than class 2 synthesis (which is
almost immediately saturated after initiation at time tclass2 = 10min). The resulting deviations
in the protein levels, however, are negligible (see Figure 5.4C+D).

5.4.3 Robustness and Timing of the Regulatory Mechanism

Class 3 Gene Expression is Induced only when Pool of Free FlgM is Drastically Reduced

We further studied in detail the checkpoint mechanism, i.e., the feedback of completion of
the type III secretion system on class 3 gene expression. In contrast to the experimental
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Figure 5.5:Detailed analysis of the FlgM–FliA interactions: free FlgM (blue), free FliA (green), FlgM:FliA
complex (red) and σF:RNAP complex (black). For the wild type (A), the most pronounced change in
terms of number of molecules is the rapid decrease in free FlgM upon start of export, but not as one
might expect in the level of FlgM:FliA. In the flgM- mutant (B), no delay between class 2 and 3 expression
is observed (dashed lines), as it is present in the wild type (solid lines).
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measurements, the mathematical model allows to distinguish between free and bound FliA, as
well as to monitor the predicted σF:RNAP level in order to study the onset of class 3 expression.
In Figure 5.5A, the predictions for FlgM, FliA and FlgM:FliA (left axis), and σF:RNAP (right
axis) in the wild type are shown.

Experimentally, it has been demonstrated that FlgM is exported from the FlgM:FliA
complexwith FliA acting as a type III secretion chaperone [208]. In silico, themost pronounced
change in terms of number of molecules is the rapid decrease in free FlgM upon completion
of the secretion system around 18min, but not as one might intuitively expects in the level of
FlgM:FliA. A closer look at the key reactions resolves this observation: Since FliA is released
from the complex when FlgM is exported, the availability of free FliA significantly increases.
However, due to the high affinity of FliA for FlgM, it immediately binds again to free FlgM.
Hence, initially the FliA-mediated export of FlgM effectively decreases the level of free FlgM,
with FlgM:FliA remaining at high level, but having a very short life span and being ‘produced
just in time’ for the export.

The tight balance of FlgM–FliA association, FlgM export and FliA release results in low
levels of free FliA during the first minutes of export (see Figure 5.5B). With continued export
of FlgM this balance is changed towards increasing levels of free FliA, which eventually results
in the formation of σF:RNAP and initiation of class 3 gene expression. As noted before, the
number of FlgM transiently decreases upon completion of the type III secretion system. Based
on the above analysis, we may now associate this transient decay with the decrease in the pool
of free FlgM. Only if this pool has been strongly reduced, class 3 gene expression gets initiated.

In Figure 5.5B, the timing of wild type and flgM- mutant is compared. Due to lack of
FlgM in the mutant, rising FliA levels immediately initiate class 3 expression. Thus, the delay
between class 2 and class 3 expression as observed in the wild type is absent in the flgM-

mutant (as also observed experimentally [195]).

Based on the reduced deterministic model we analyzed the robustness and sensitivity of the
FlgM–FliA regulatory checkpoint mechanism in its ability to tightly control σF:RNAP level,
which was considered as the critical marker for initiation of class 3 gene expression. Wild type
levels were compared to levels of different in silicomutants with ‘perturbed’ parameter values,
in order to access the robustness with respect to such alterations. We were interested in both,
the impact on the delay between class 2 and class 3 gene expression, as well as in changes in
the intensity of class 3 initiation defined by how fast σF:RNAP levels increase in comparison
to the wild type.
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Checkpoint is Robust to Perturbations in FlgM–FliA Association and Dissociation

Levels of σF:RNAP for wild type and in silicomutants with altered FlgM:FliA dissociation rate
constant (1000-fold decrease, and 100-, 500- and 1000-fold increase) are shown in Figure 5.6A
and inset. Changes of up to three orders of magnitude have only marginal influence on
σF:RNAP levels, thus rendering the regulatory network robust with respect to the binding
affinity of FlgM and FliA.
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Figure 5.6: Predicted σF:RNAP levels for the wild type (red, dashed line) and different in silico mutants
(solid lines). (A) Dissociation constant of the FlgM:FliA complex: 1000-fold decrease (dashed blue),
and 100-fold (green), 500-fold (yellow) and 1000-fold (solid blue) increase. (B) Rate of FliA proteolysis:
2-fold (green), 5-fold (yellow) and 10-fold (blue) increase plus proteolysis disabled (black). (C) Total level
of the sigma factor σD, from highest to lowest levels: 0.2-fold (blue), 0.4-fold (yellow) and 0.6-fold (green)
decrease, and 2-fold (green), 5-fold (yellow) and 10-fold (blue) increase. (D) Dissociation constant of
the σD:RNAP complex, from highest to lowest levels: 10-fold (blue), 5-fold (yellow) and 2-fold (green)
increase, and 0.5-fold (green), 0.2-fold (yellow) and 0.1-fold (blue) decrease.
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FliA Proteolysis and Sigma Factor Competition for RNAPModulate Intensity of Class 3
Gene Expression

The intensity of class 3 gene expression is directly related to the available level of σF:RNAP.
Figure 5.6B shows the changes in σF:RNAP levels resulting from an increase in the FliA
(σF) proteolysis rate constant. A higher proteolysis rate results in lower levels of σF and
consequently decreases the level of available σF:RNAP. In contrast, absence of proteolysis
resulted in slightly increased levels of σF:RNAP.

In silico experiments that directly alter the competition of sigma factors for RNAP revealed
a similar relation. In Figure 5.6C, we analyzed the robustness with respect to changes in
the level of σD competing for RNAP. We infer that the level of σD is negatively correlated
to the intensity of class 3 gene expression: Higher values of σD decrease the intensity of
class 3 expression, whereas lower values of σD increase the intensity. Analogous results can
be observed for alterations in the dissociation constant KD,σD = kd/ka,σD of the σD:RNAP
complex. The larger KD,σD the larger the intensity of class 3 expression, and vice versa (see
Figure 5.6D).

In all three cases, the considered in silico settings modulate the steepness of increase in
σF:RNAP levels and hence the intensity of class 3 expression. Most notably when altering the
sigma factor competition for RNAP, to which the regulatory mechanism is very sensitive.
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Figure 5.7: Predicted levels of free FlgM (solid lines, left scale) and σF:RNAP (dashed lines, right scale)
for the wild type (red) and different in silico mutants (yellow and green). (A) Effective FlgM export rate
constant kexport and (B) starting time texport of FlgM export, i.e., completion of type III secretion systems:
0.7-fold (yellow), 1-fold (red) and 1.4-fold (green) change.
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5.4 Results

Pool of Free FlgM Precisely Controls Free FliA Level and Acts as aMolecular Timer

From the results shown in Figure 5.5 we inferred that class 3 initiation is coupled to the
reduction of the pool of accumulated free FlgM. Since the timing of this reduction directly
depends on the FlgM export rate kexport and the time texport when the type III secretion
system is completed and export starts, we expected a change in the initiation of class 3
gene expression due to alterations in these two parameters. As illustrated in Figure 5.7, the
checkpoint mechanism is indeed sensitive to kexport and texport. Perturbations in these two
parameters affect both the point in time when the increase in σF:RNAP starts and the rate at
which σF:RNAP increases.

In addition to σF:RNAP levels, the levels of free FlgM are shown in Figure 5.7. Changes in
the above processes have a direct influence on the accumulation of free FlgM and the decay
of the FlgM pool. As can be nicely seen in Figure 5.7, the number of σF:RNAP complexes
does not start to increase until excessive free FlgM is exported from the cell. In this sense, the
intra-cellular pool of free FlgM acts as amolecular timer that precisely controls the start of
σF:RNAP formation and thus initiation of class 3 expression.

High Sensitivity of Effective Synthesis Rates does Not Necessarily Imply High Sensitivity
with respect to Parameters of the Subsumed Transcriptional and Translational Processes

Changes in the synthesis rate of FlgM or FliA alter the ratio between their levels in the system,
thus re-weighting the pool of free FlgM and its function as a molecular timer. Therefore, we
expected that the start of class 3 gene expression will be affected by changes in the effective
synthesis rates kFlgM and kFliA, shown in Figure 5.8A+B. An increased synthesis rate of FlgM
resulted in a larger pool of free FlgM, thus increasing the delay between start of export and
class 3 initiation (1.4-fold change, green). Contrarily, a decreased synthesis rate of FlgM
resulted in a shorter delay (0.7-fold change, yellow). The opposite relation holds for FliA.
A higher FliA synthesis rate increased the level of FlgM:FliA complex and thus effectively
diminished the pool of free FlgM, which shortens the delay between start of export and class
3 initiation (1.4-fold change, green). Again, the opposite occurred for a decreased synthesis
rate of FliA (0.7-fold change, yellow). The results illustrated in Figure 5.8A+B suggest that
the checkpoint mechanism is very sensitive to changes in the effective synthesis rates. Since
alterations of 30–40% might be expected on a population level, this high sensitivity of the
regulatory network was unexpected.
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Since the synthesis rates of FlgM and FliA are effective rates subsuming complex reaction
events of gene transcription and translation (see Section 5.3), we subsequently analyzed
the sensitivity of the regulatory network to changes in the underlying transcriptional and
translational parameters. Based on eqs. (5.3)–(5.10), we studied whether the same sensitivity
on σF:RNAP levels can be observed when altering the parameters of the processes that are
aggregated in the effective synthesis rates. All parameter values of the detailed transcription
and translation model are listed in Table C.3.
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Figure 5.8: Sensitivity of the core regulatory mechanism to the effective synthesis rates of FlgM and FliA.
Top: Predicted levels of free FlgM (solid lines, left scale) and σF:RNAP (dashed lines, right scale) for
the wild type (red) and different in silico mutants (yellow and green). (A) FlgM synthesis rate kFlgM
and (B) FliA synthesis rate kFliA: 0.7-fold (yellow), 1-fold (red) and 1.4-fold (green) change. Bottom:
Log-log plot of changes in the effective synthesis rates of FlgM (C) and FliA (C) with respect to changes in
subsumed rate constants of the detailed class 2 transcriptional and translational processes. These are
K∗D,FlhDC = KD,FlhDC/FlhDC, i.e., the ratio between the dissociation constant KD,FlhDC of the master reg-
ulator FlhDC for DNA-binding and its total level; the dissociation constant KD,RNAP = kd,RNAP/ka,RNAP
of the σD:RNAP complex to the class 2 promoter; and the initiation rate constants of transcription kinit,tc
and translation kinit,tl. The dashed black horizontal lines mark the 0.7-fold and 1.4-fold changes in kFlgM
and kFliA considered in (A) and (B).
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As can be inferred from Figure 5.8C+D, a high sensitivity of σF:RNAP levels to alter-
ations in the effective synthesis rates kFlgM and kFliA does not necessarily translate into
a high sensitivity with respect to alterations in the subsumed parameters of gene expres-
sion. The dashed black horizontal lines correspond to 0.7- and 1.4-fold changes in the
effective synthesis rates of FlgM and FliA. We infer that a 10-fold decrease or increase in
the dissociation constant KD,RNAP = kd,RNAP/ka,RNAP of the σD:RNAP complex or in the ratio
K∗D,FlhDC = KD,FlhDC/FlhDC for the master regulator FlhDC does not have any significant
impact on the effective synthesis rates of FlgM or FliA. We further infer that a 10-fold in-
crease in the initiation rate constants kinit,tc and kinit,tl of class 2 transcription and translation,
respectively, does only result in a roughly 2-fold increase in the effective synthesis rates. The
most pronounced impact was observed when reducing the above initiation rate constants by
a factor of 10, resulting in a similar decrease in the effective synthesis rates kFlgM and kFliA.
All these subprocesses hence operate close to saturation, which becomes only apparent on the
detailed level and can not be inferred from the corresponding lumped rates itself.

5.5 Discussion

We analyzed the FlgM–FliA regulatory network based on a deterministic model and quantita-
tive experimental data. To incorporate the feedback between middle and late gene expression,
we derived protein synthesis rates from a detailed stochastic model of the key transcriptional
and translational processes. Our reduction approach effectively eliminated these discrete-
stochastic submodels. The resulting functional relationship between the effective synthesis
rates and the detailed parameters allowed for a careful sensitivity analysis of the system.

The in silico levels of intra- and extra-cellular FlgM in the wild type as well as the levels
of FliA in the flgM- mutant are in excellent agreement with the in vivo data (Figure 5.3). For
the wild type, the model slightly underestimates the experimentally observed steep increase
in FliA after 35min (Figure 5.3C). In addition to the FlgM–FliA checkpoint, there exists a
number of interlocking positive and negative feedback loops with the potential to further
modulate class 2 and class 3 expression [200, 220, 221]. While we observed no impact when
reducing FlhDC concentration by a factor of 10 (Figure 5.8), a more significant decrease
will eventually slow down class 2 gene expression. From eqs. (5.4) and (5.5) we infer that
Ktc increases with decreasing FlhDC, such that eventually kmRNA will be proportional to
FlhDC/(FlhDC + KD,FlhDC). For small enough levels, class 2 expression will thus be con-
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trolled by FlhDC. This switch like dependence of class 2 expression on FlhDC concentration
might also serve as an explanation for the observed difference in tclass2 between wild type
and flgM- mutant, since in the latter case FlhDC concentration might already be subject to
FliA-controlled negative regulation.

A feedback loop with similar characteristics as the FlgM–FliA checkpoint mechanism is
the FliT–FliD regulatory system [220, 221]. FliT is the secretion chaperone for the filament
capping protein FliD. Upon completion of the type III secretion system, FliD is secreted
to the tip of the hook where it facilitates polymerizaton of the flagellar filament [221]. The
depletion of FliD from the cytoplasm eventually results in increased levels of free FliT. Free
FliT subsequently binds to the FlhC subunit of FlhDC and thereby inhibits transcription of
the middle genes whose products are no longer required for the assembly process [220]. We
expect that incorporation of the FliT–FliD feedback in the model will result in a larger class
2 synthesis rate of FliA in the parameter estimation process, and thus in a stronger initial
increase in FliA levels during class 2 expression. Increasing levels of free FliT after export of
FliD would then subsequently slow down class 2 gene expression. Importantly, the FliT–FliD
regulatory system is expected to exhibit the same characteristics as the FlgM–FliA checkpoint
mechanism. The herein presented analysis and results can thus serve as a starting point for
future experimental design and theoretical studies.

Sensitivity analysis of the FlgM–FliA regulatory mechanism revealed that the system is
robust to alterations in most of the parameters (Figures 5.6A and 5.8C+D). At the same time,
it is very sensitive to alterations in those input signals that are exploited by E. coli to adapt
and tune flagellar synthesis in face of a changing environment. These correspond either to
parameters that allow the cell to tune initiation of class 3 expression, e.g., in terms of strength
or start of export (Figure 5.7), or that serve as the entry point of other master regulators. The
increase in σF:RNAP is most notably affected by sigma factor competition (Figure 5.6C+D).
This tuning point allows for a direct, efficient and instantaneous alteration of flagellar synthesis,
which is important, for instance, in the transition from the motile-planktonic to the stationary
phase ‘lifestyle’, induced by the sigma factor σS [222, 223].

Before successful completion of the first type III secretion systems and subsequent start of
FlgM export, FliA is sequestered in the FlgM:FliA complex in its inactive form. Since only
free FliA can bind to the core enzyme RNAP, control of initiation of class 3 expression is
implemented by maintaining a certain ratio between FlgM and FliA. Upon start of export,
the pool of free FlgM is gradually degraded until a change in the FlgM–FliA ratio results in
sufficient many free FliA molecules to enable class 3 initiation (Figure 5.5A). In the absence of
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FlgM, this delay is not present and class 3 expression is closely following the increasing FliA
levels (Figure 5.5B). In [199] experimental evidence is given that when pre-existing flagella
are present, newly synthesized FlgM is already exported before new basal bodies have been
completed. In the proposed model, an increase in the number of successfully completed hook
basal bodies would correspond to an increase in the FlgM export rate. As shown in Figure 5.7,
this directly decreases the delay between start of export and class 3 initiation, as less free FlgM
is accumulated. The dynamic control of the pool of free FlgM analyzed herein could serve as a
mechanistic explanation of the above experimental observation, highlighting the fact that the
relative ratio of FlgM to FliA is important for the functionality of the checkpoint mechanism.

The σF:RNAP level also showed a high sensitivity to changes in the effective synthesis
rates of FlgM and FliA (Figure 5.8A+B). This theoretical finding was unexpected, since even
small alterations of 30–40% would imply a large impact on the timing and intensity of class 3
gene expression. A sensitivity analysis with respect to changes in parameters of the detailed
transcription and translation model (Figure 5.2) underlying the effective synthesis rates gave
further insight: Alterations in the detailed processes do not necessarily imply alterations of
the same order of magnitude in the effective synthesis rates. We find that the initiation rate
constants of transcription and translation show the highest sensitivity, but only when reduced
(Figure 5.8C+D). This suggests that potentially large variations in the flagella synthesizing
population (as suggested by the reducedmodel) are actually avoided by operating transcription
and translation of fliA and flgM close to saturation. On the other hand, sensitivity against
reduced rates of synthesis can effectively be used to integrate other stress signals.

In general, the functional relationships between kFlgM and kFliA and the detailed parameters
as given by eqs. (5.3)–(5.10) and depict in Figure 5.8C+D illustrate that an observed high
sensitivity with respect to effective rates does not directly carry over to the detailed parameters,
it breaks down into more diverse relations. This phenomenon is not restricted to the present
analysis. As a consequence, care has to be taken when interpreting results of robustness
analysis of general reaction kinetic models with respect to lumped or effective parameters.

Motility and biofilm formation in E. coli are both under control of regulatory feed forward
cascades with mutual interaction and cross-regulation at different levels [197, 223]. In this
context the derived model also constitutes a first step towards a more comprehensive model
of life style adaptation in E. coli. While experimental data on gene transcription or promoter
activity may provide further insight into the temporal hierarchy of gene expression, more
quantitative data in terms of number of molecules combined with mathematical modeling is
needed to analyze the regulatory processes on the protein interactions level.
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6
Summary & Conclusion

In this thesis, we presented different approaches that couple the discrete–stochastic with the
continuous–deterministic formulation of biochemical reaction networks. We demonstrated
how such hybrid approaches can be employed for the efficient simulation and thorough
analysis of systems of biological interest, such as viral dynamics and gene regulatory networks.

While current hybrid methods are almost exclusively indirect, i.e., relying on the com-
putation of ensembles of stochastic realizations, we were able to derive and theoretically
justify a novel hybrid stochastic–deterministic approach to solve the CME directly. In our
direct hybrid approach presented in Chapter 4, all problematic species that are present in
large numbers are effectively eliminated from the discrete state space by replacing them with
related expected levels. This approach can be interpreted as taking ‘partial’ expectations over
the large copy number subspace. In contrast to an indirect hybrid approach, the resulting
evolution equations explicitly incorporate the impact of changes in the singled out discrete
distribution on the expectations of continuous variables. We provided the conditions under
which such partial averaging of the CME is exact and, most importantly, by using multi-scale
expansion techniques, we further demonstrated that it can be generalized to approximate
the dynamics of more complex systems. A direct solution method does not suffer from the
disadvantages of an indirect, MC-based approach. We demonstrated the performance of our
direct hybrid stochastic–deterministic approach on a viral infection kinetics model and a
transcriptional regulatory network.

The numerical costs of solving the derived hybrid model equations scale with the size of
the singled out discrete subspace associated with species present in low copy numbers. Hence,
we expect our direct hybrid solution to be particularly suitable for networks including a few
‘discrete’ species only. Otherwise, an indirect hybrid method may be applied, such as the
deterministic–stochastic simulation algorithm presented in Section 3.1. We believe that the
application of thismethod to theHIV-dynamicsmodel studied in Section 3.2 clearly illustrated
the advantages obtained by a hybrid system representation: Neither a purely stochastic (due
to numerical complexity) nor a purely deterministic model (due to lack of stochastic effects)
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would have allowed to perform our in silico study. Using hybrid simulations, however, we
were able to design and test (in terms of the mathematical model) a novel treatment strategy
that can lead to significant improvements in comparison to conventional treatment strategies.
We discussed and demonstrated superiority of our pro-active treatment switching strategy
for different scenarios; nevertheless, the clinical validity of our finding remains to be shown.

If a purely deterministic formulation is found to be adequate or unavoidable (by reasons
of model and/or numerical complexity), our results presented in Section 5.4 clearly illustrated
that nonetheless care has to be taken when interpreting results of a sensitivity analysis with
respect to lumped or effective parameters. The reduction of the detailed stochastic model of
gene expression performed in Section 5.3 not only allowed us to derive effective protein synthe-
sis rates as typically used in deterministic models, but also made very explicit the assumptions
underlying such rates. Effectively, we eliminated the transcriptional and translational sub-
processes, but disclosed their functional relationship to the effective synthesis rates. A step
towards an intermediate model of gene expression would be to explicitly incorporate mRNA
species. Since we considered the processes involved in transcription and translation separately,
the presented derivation can be directly used to formulate effective mRNA synthesis rates
and rates of mRNA translation.

We successfully demonstrated our reduction approach on the deterministic FlgM–FliA
interactions model presented in Section 5.2. The proposed derivation of effective synthesis
rates, enabled us to mechanistically incorporate the feedback between middle and late gene
expression in the deterministic model. Thus, for the first time, we could perform a detailed
quantitative in silico study of the timing and robustness of the FlgM–FliA checkpoint mecha-
nism in the flagellar gene regulation cascade of E. coli. Sensitivity analysis pointed out that the
system is robust to most of the parameters, but still very sensitive to those input signals that
are exploited by E. coli to tune flagellar synthesis in view of a changing environment. Since
similar or analogous checkpoint mechanisms are present in many other motile bacteria, we
expect our findings to have implications beyond the present study.

It is evident that stochastic effects play a crucial role in biological processes, requiring efficient
mathematical modeling approaches that are capable to capture these effects. One of the most
promising directions is the development of hybrid methods, as these are flexible enough to
study stochasticity in large and ever more complex biological models that integrate processes
of different scales like gene expression, regulation and metabolism [92]. In this thesis, we
introduced the concept of a new hybrid methodology to directly couple the CME with the
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ODE formulation of biochemical reaction networks. There are some important open questions
related to such kind of direct hybrid models that will be subject of future research. These
include: Where are the limits of our hybrid approach, i.e., if there are species with moderate
copy numbers in between low and large copy numbers, when will their fluctuations destroy the
approximation quality of the model? In order to decide whether the asymptotic assumptions
underlying our hybrid model are valid, how can we estimate the value of the scaling parameter
ε for a given chemical reaction network? How can one construct an efficient and robust
numerical scheme that allows to adaptively change the low copy number subspace on the fly
during numerical integration based on some prescribed accuracy requirements? We believe
that the mathematical framework and fundamental understanding presented in this work
provides essential tools to tackle such problems.
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A
Description of the HIV-Dynamics Model

In [138], we introduced a novel HIV-dynamics model of viral replication, mutation and drug
interference that allows the mechanistic integration of all novel and some developmental HIV
drugs. We extended this model for the studies presented in Section 3.2 by the compartment
of very long lived, latently infected T-cells TL. The resulting model comprises uninfected
T-cells TU and macrophages MU, free non-infectious virus VNI, free infectious virus VI(i) of
mutant strain i = 1, 2, . . . , and infected cell types belonging to each mutant strain i: infected
T-cells T1(i) and macrophages M1(i) prior to proviral genomic integration, and infected
T-cells T2(i) and TL(i) and macrophages M2(i) after proviral genomic integration. The
deterministic formulation of the model is given by the following system of ODEs:

d
dt

TU = λT + δPIC,T ⋅ T1(i) − (δT +∑
i
βT(i , d) ⋅VI(i)) ⋅ TU,

d
dt

MU = λM + δPIC,M ⋅M1(i) − (δM +∑
i
βM(i , d) ⋅VI(i)) ⋅MU,

d
dt

T1(i) = βT(i , d) ⋅VI(i) ⋅ TU − (δT1 + δPIC,T + kT(i , d)) ⋅ T1(i),

d
dt

M1(i) = βM(i , d) ⋅VI(i) ⋅MU − (δM1 + δPIC,M + kM(i , d)) ⋅M1(i),

d
dt

T2(i) = ∑
j
(1 − p) ⋅ kT( j, d) ⋅ T1( j) ⋅ r j→i + α ⋅ TL(i) − δT2 ⋅ T2(i),

d
dt

TL(i) = ∑
j
p ⋅ kT( j, d) ⋅ T1( j) ⋅ r j→i − (α + δTL) ⋅ TL(i),

d
dt

M2(i) = ∑
j
kM( j, d) ⋅M1( j) ⋅ r j→i − δM2 ⋅M2(i),

d
dt

VI(i) = NT(i , d) ⋅ T2(i) + NM(i , d) ⋅M2(i)

− (CL + (CLT(i , d) + βT(i , d)) ⋅ TU + (CLM(i , d) + βM(i , d)) ⋅MU) ⋅VI(i),

d
dt

VNI = ∑
i
[(N̂T − NT(i , d)) ⋅ T2(i) + (N̂M − NM(i , d)) ⋅M2(i)] − CL ⋅VNI. (A.1)
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Description of the HIV-Dynamics Model

The model accounts for a production of uninfected target cells TU and MU by the immune
system with constant rates λT and λM, respectively. All cell types get destroyed by the immune
system, where the parameters δT, δM, δT1 , δM1 , δT2 , δTL and δM2 denote the corresponding
death rate constants of TU, MU, T1, M1, T2, TL and M2 cells, respectively.

Target cells TU and MU can become successfully infected by infectious virus VI(i) of
mutant strain i with rate constants βT(i , d) and βM(i , d), respectively, under treatment d,
creating early infected cells T1(i) and M1(i). Infection by virus VI(i) can also be unsuccess-
ful after the irreversible step of fusion, with rate constants CLT(i , d) and CLM(i , d) under
treatment d, eliminating the virus and rendering the target cells TU and MU, respectively,
uninfected. The parameters δPIC,T and δPIC,M refer to the intracellular degradation of essential
components of the pre-integration complex, e.g., by the proteasome of early infected cells T1

and M1, respectively, returning these cells to an uninfected stage.
Viral genome of mutant strain i is irreversibly integrated into the DNA of infected T-

cells T1 and macrophages M1 under treatment d with rate constant kT(i , d) and kM(i , d),
respectively, creating post-integration, infected cells T2, TL and M2. Latently infected T-cells
TL (created with probability p) do not express viral genes, but can become activated with rate
constant α, transforming TL into a productively infected T-cell T2. The parameters N̂T and
N̂M denote the number of total (infectious and non-infectious) virus released per day per late
infected T-cell T2 and macrophage M2, respectively. NT(i , d) and NM(i , d) give the number
of infectious virus VI(i) of mutant strain i released under treatment d per day per T2(i)
and M2(i), respectively. Free infectious and non-infectious virus, VI and VNI, respectively,
gets cleared by the immune system with rate constant CL. The parameter r j→i denotes the
probability to mutate from strain j to strain i, defined below.

Integration of Mutation Dynamics: The overall model comprises a complete mutagenic path-
way. In HIV-dynamics, genomic mutation occurs during the reverse transcription pro-
cess [224]. The reverse transcriptase of HIV lacks a proof reading mechanism in contrast to
host polymerase enzymatic reactions. However, viral proteins are only produced from newly
mutated viral genome after its integration into the host DNA, and the proteins required for
stable integration originate from the founder virus. Phenotypically, drug-resistance of new
mutants will thus only be observed after integration, i.e., in the infectious stages T2 and M2.

In general, the model includes a total number of 2L different viral strains i, containing
point mutations in any possible pattern of the considered number L of positions that may
mutate. In Figure A.1A, a mutagenic pathway for the example of two distinct mutations L = 2
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bT,(CCR5,FI,RTI)~(1{gCCR5):(1{gFI):(1{gRTI(rrev,w)):bT ð7Þ

CLT,(CCR5,FI,RTI)~(1{gCCR5):(1{gFI):
1

rrev,w
{(1{gRTI)

 !
:bTð8Þ

kT,(InI)~(1{gInI):kT ð9Þ

NT,(PI,MI)~(1{gMI):(1{gPI(rPR,w)):NT: ð10Þ

The same quantities are defined for macrophages by replacing
the subscript T by M; see Supplementary Text S1 for details. The
overall viral dynamics model comprises a complete mutagenic
graph. In HIV infection, genomic mutation occurs during the
reverse transcription process [50]. The reverse transcriptase of
HIV lacks a proof reading mechanism in contrast to host
polymerase enzymatic reactions. However, viral proteins from
newly mutated viral genomes are only produced after integration
of the viral genome into the host cell DNA. The proteins required
for the stable integration of the newly mutated viral genome
originate from the founder virus. Therefore, phenotypically, drug
resistance of new mutants will only be observed after integration,
i.e., in the infectious stages T2 andM2. In total, the model includes

2L different viral strains i that contain point mutations in any
pattern of the modelled L possible mutations. For two distinct
mutations L~2, the mutagenic graph is shown in Fig. 4A. Each
mutant i can mutate into every other mutant k in one step. The
probability pk?i to mutate from a strain k into another strain i can
be directly derived from the mutagenic pathways in Fig. 4A, i.e.,

pk?i~mh(i,k):(1{m)L{h(i,k), ð11Þ

where m denotes the mutation probability per base and reverse

transcription process (m&2:16:10{5 [50]), h(i,k) denotes the
hamming distance between strain k and strain i, and L is the total
number of different positions that are considered in our model.
The phenotype of each mutant strain i is modelled by introducing
a selective disadvantage s(i), which denotes the loss of functionality
(e.g., in the activity of some viral enzyme that is affected by the
mutation) relative to the wild type, and a strain specific inhibitory
activity (g(i,j)) of treatment j against the mutant strain i. For
example, the strain specific infection rate i under a certain
treatment j is given by b(i,j)~(1{g(i,j)):(1{s(i)):b(wt,w), where

b(wt,w) denotes the infection rate constant of the wild type wt in
the absence of drug w (given in Table 1). Since some viral strains
are present only in very low copy numbers, we used a hybrid
stochastic deterministic approach [51] to model the overall virus
dynamics model (see Materials and Methods section for details).

Reproductive capacity for predicting drug–specific
impact on viral replication
The production of infectious offspring is crucial for the survival of

a viral population. The phenotypic single-round infectivity assay
measures the amount of infectious offspring after one round of
replication. For a given drug, the assay quantifies the drug’s efficacy
by measuring the reduction in viral offspring relative to the drug-
free situation. We defined a new quantity—termed the reproductive
capacity Rcap—, which transfers the principle of the phenotypic
single-round infectivity assay into a mathematical term. Its
definition involves the quasi-species distribution and the basic
reproductive numbers of all pathogenic sub-stages. The reproduc-
tive capacity characterizes the fitness of a given state of the infection
from the perspective of a potential treatment j by quantifying the
expected total number of offspring under the treatment j.
The basic reproductive number R0 is a well characterized

quantity in epidemiology that denotes the expected number of

Figure 4. Fitness and possible mutational pathways. A: General transition pathways between wild type (00) and a fully drug resistant strain
(11) that involves two partly-resistant intermediates (10,01). B: Fitness in the presence of a drug. C: Fitness in the absence of drugs. Dashed line:
critical fitness that allows the strain to survive, i.e, R0(i)w1.
doi:10.1371/journal.pcbi.1000720.g004

Table 1. Model parameters generally used in simulations.

Parameter Value Reference Parameter Value Reference

lT 2:109 [57] lM 6:9:107 [33]

bT 8:10{12 [32] bM 1:10{14 }

bNNT
1000 [33] bNNM

100 [33]

dT,dT1
0.02 [33] dM,dM1

0.0069 [33]

dT2
1 [73] dM2

0.09 }

CL 23 [73] p:q:rPR,w 0.67 {

rrev,w 0.33 [74,75] m 2:16:10{5 [50]

kT 0.35 [75] kM 0.07 }

dPIC,T 0.35 [75,76] dPIC,M 0.0035 }

kmat 12 [34] - - -

All parameters in units [1/day], except p:q:rPR,w (unit less) and m in
½1=(rev:trans::base)$. } parameters chosen to reproduce clinical data. { chosen
according to the assumption that p~q~1 and utilizing parameters kmat and
CL to determine rPR,w~kmat=(kmatzCL)~0:67.
doi:10.1371/journal.pcbi.1000720.t001
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Figure A.1: Fitness and possible mutational pathways in the HIV-dynamics model if two mutations are
considered. A: General transition pathways between wild type (00) and a fully drug-resistant strain (11)
that involves two part-resistant intermediates (10, 01). B: Fitness in the presence of a drug. C: Fitness in
the absence of drugs. The dashed line indicates the critical fitness that allows the strain to survive (i.e.,
R0(i , d) = 1).

is shown. Each mutant can mutate into every other mutant in one step. As can be seen from
the example depict in Figure A.1A, the probability r j→i to mutate from a strain j into another
strain i is given by

r j→i ∶= µh(i , j) ⋅ (1 − µ)Lh(i , j)

where µ is the mutation probability per base pair during reverse transcription (µ ≈ 2.2 × 10−5,
see [224]), h(i , j) denotes the hamming distance between strain i and strain j, and L is
the total number of different positions subject to mutation (L = 6 in the later numerical
experiments).

Integration of Phenotypic Fitness and Drug Interference: The phenotype of each mutant strain i
is modeled by introducing a selective disadvantage s(i), which denotes the loss of functionality
(e.g., in the activity of some viral enzyme that is affected by the mutation) relative to the
wild type, and a strain specific inhibitory activity η(i , d) of a treatment d against the mutant
strain i. For example, the strain specific infection rate i under a certain treatment d is given
by β(i , d) = (1 − η(i , d)) ⋅ (1 − s(i)) ⋅ β(wt,∅), where β(wt,∅) denotes the infection rate
constant of the wild type in the absence of drug (parameters listed in Table A.1). The strain
specific inhibitory activity is calculated via η(i , d) = η(wt, d) ⋅ res(i , d), where the efficacy
of the drugs against the wild type η(wt, d) is generally stated in the corresponding tables and
figures (Figures 3.2 and 3.5, and Table 3.1) and the resistance of a particular mutant res(i , d)
was either set to 1 (100% susceptible) or 0.01 (99% resistant), if the particular mutant i
conferred resistance to the particular drug d. For further details on the integration of the
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Description of the HIV-Dynamics Model

Table A.1: Parameter values of the HIV-dynamics model, referring to the wild type ‘wt’ in the absence of
drug treatment ‘∅’. All parameters are in units day−1, except p, ρrev and b ⋅ q ⋅ ρPR (unit less), and µ in
(rev. trans. ⋅ base)−1. CLT/M(wt,∅) = (1/ρrev − 1) ⋅ βT/M(wt,∅) and NT/M(wt,∅) = b ⋅ q ⋅ ρPR ⋅ N̂T/M.

Parameter Value Reference Parameter Value Reference

λT 2 × 109 [226] λM 6.9 × 107 [227]
δT/T1 0.02 [227] δM/M1 0.0069 [227]
δT2 1 [184] δM2 0.09 [138]
CL 23 [184] δTL 0.0001 [163, 228]

δPIC,T 0.35 [229, 230] δPIC,M 0.0035 [138]
α 0.001 [228] p 8 × 10−6 [228]
µ 2.2 × 10−5 [224] ρrev 0.33 [230, 231]

kT(wt,∅) 0.35 [230] kM(wt,∅) 0.07 [138]
βT(wt,∅) 8 × 10−12 [232] βM(wt,∅) 10−14 [138]

N̂T 1000 [227] N̂M 100 [227]
b ⋅ q ⋅ ρPR 0.67 [138]

distinct molecular effects of different drugs in the model, we refer the interested reader to the
original publications [138, 225].

Parameterization of the Model

All parameter values have been chosen according to previous studies and are listed in Table A.1.
The particular viral decay dynamics after application of distinct drug classes was validated
in [138]. For the above parameter values, the model (A.1) reproduces an average frequency of
latently infected cells of 2.6 × 10−5 CD4+ T-cells (reference range: 8.2 × 10−7 to 2.05 × 10−4

CD4+ T-cells [152, 154, 174, 175]), a total of 4.5 × 106 latently infected cells (reference: [154]),
with a half-life of 20.6months (average value reported in [152, 233–236]: 21months) and a
plasma viremia of ≈ 1HIV RNA/mL [237] from the latent reservoir.

Reproductive Capacity and Reproductive Numbers

In [138], we introduced the reproductive capacity Rcap(d), that can be envisaged as the amount
of infectious offspring that the whole viral population is expected to produce under some
treatment d during one round of replication. It allows to evaluate the infection state from

144



the perspective of a potential treatment d during simulation and was utilized in Section 3.2
to obtain switching times that maximize the benefit of an initial induction regimen for the
followingmaintenance regimen. The reproductive capacity Rcap(d) of the entire quasi-species
ensemble under treatment d is defined as the weighted sum of the basic reproductive numbers
of all pathogenic stages of mutant strains [138], i.e.,

Rcap(d) =∑
i
[VI(i) ⋅ RVI(i , d) + T1(i) ⋅ RT1(i , d) +M1(i) ⋅ RM1(i , d)

+ T2(i) ⋅ RT2(i , d) + TL(i) ⋅ RTL(i , d) +M2(i) ⋅ RM2(i , d)],

where RVI(i , d), RT1(i , d), RM1(i , d), RT2(i , d), RTL(i , d) and RM2(i , d) are the strain-
specific reproductive numbers of the different infective compartments.

The basic reproductive number R0 is a well-characterized quantity in epidemiology, denot-
ing the expected number of infections caused per infected individual/cell [238]. An infection
will spread if R0 > 1; it will die out if R0 < 1. The strain-specific reproductive number R0(i , d)
characterizes the fitness of a viral strain i in a pharmacologically modified environment,
specified by a drug treatment d. This is illustrated in Figure A.1 for the example of two distinct
mutations: Panel B shows the fitness landscape in the presence of some drug d, and panel
C shows the fitness landscapes in drug absence; the critical fitness R0(i , d) = 1 is indicated
by dashed lines. We used the survival function approach [239] to calculate the strain-specific
reproductive numbers, which is of particular value, since it captures the possible event of
mutation for all infective compartments.

For the above model, the reproductive numbers are given as follows: The reproductive
number RVI(i , d) of a single infective virus VI(i) of strain i under treatment d is given by

RVI(i , d) =
βT(i , d) ⋅ TU ⋅ kT(i , d) ⋅ (1 − p ⋅

δTL
δTL+α

) ⋅ NT(i , d)

cVI(i , d) ⋅ cT(i , d) ⋅ δT2

+ βM(i , d) ⋅MU ⋅ kM(i , d) ⋅ NM(i , d)
cVI(i , d) ⋅ cM(i , d) ⋅ δM2

,

with constants

cVI(i , d) = CL + (CLT(i , d) + βT(i , d)) ⋅ TU + (CLM(i , d) + βM(i , d)) ⋅MU,

cT/M(i , d) = δT/M + δPIC,T/M + kT/M(i , d).
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Description of the HIV-Dynamics Model

Infected cells are also pathogens, which can lead to a rebound of the disease even in the absence
of any virus. The basic reproductive numbers RT1(i , d) and RM1(i , d) of the infectious stages
T1(i) and M1(i), respectively, associated with viral strain i under treatment d are given by

RT1(i , d) =
kT(i , d) ⋅ (1 − p ⋅

δTL
δTL+α

) ⋅ NT(i , d)

cT(i , d) ⋅ δT2

⋅ r1(i , d)

and

RM1(i , d) =
kM(i , d) ⋅ NM(i , d)

cM(i , d) ⋅ δM2

⋅ r1(i , d),

where
r1(i , d) =

βT(i , d) ⋅ TU + βM(i , d) ⋅MU

cVI(i , d)
.

Finally, the reproductive numbers RT2(i , d), RTL(i , d) and RM2(i , d) of the infectious stages
T2(i), TL(i) and M2(i) associated with viral strain i under treatment d are given by

RT2(i , d) =
NT(i , d)

δT2

⋅ r2(i , d), RTL(i , d) =
α

δTL + α
⋅ RT2(i , d)

and

RM2(i , d) =
NM(i , d)

δM2

⋅ r2(i , d),

where
r2(i , d) = (

kT(i , d) ⋅ TU ⋅ βT(i , d)
cVI(i , d) ⋅ cT(i , d)

+ kM(i , d) ⋅MU ⋅ βM(i , d)
cVI(i , d) ⋅ cM(i , d)

).
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B
Laplace’s Method of Integral Approximation

Laplace’s method [240] is a general technique used for the asymptotic approximation of
integrals of the form

IΩ ∶=
ż

R
f (x)eΩϕ(x) dx as Ω →∞,

called Laplace integrals, where f and ϕ are real-valued, continuous functions defined on some
region R ⊆ Rd , such that IΩ is absolutely convergent for some value of Ω ∈ R+. For simplicity,
we consider in the following only the scalar case d = 1, such that R ∶=[a; b] is some interval
of the extended real line. We further assume that f and ϕ are sufficiently smooth functions.
Analogous results also hold for higher dimensions and under weaker assumptions on f and
ϕ, cf. [241–244]. The outline below mainly follows corresponding sections in [65, 245].

Laplace’smethod is based on the observation that if the continuous function ϕ has a unique
absolute maximum on R, at x = x̃, say, and f (x̃) ≠ 0, then only the immediate neighborhood
around x̃ originates to the full asymptotic expansion of IΩ. This follows from the fact that
eΩϕ(x) decays exponentially rapidly away from x̃, because ϕ(x) < ϕ(x̃) for all x ≠ x̃ in R, and
thus eΩϕ(x) = e−Ω(ϕ(x̃)−ϕ(x))eΩϕ(x̃) Î eΩϕ(x̃) as Ω →∞.1 Hence, we may write the integral
IΩ as

IΩ = eΩϕ(x̃)
ż

R
f (x)eΩϕ̃(x) dx as Ω →∞,

where ϕ̃(x) ∶= ϕ(x) − ϕ(x̃) with ϕ̃(x̃) = 0 and ϕ̃(x) < 0 for all x ≠ x̃ in R. In the following,
we study the asymptotic expansion of ĨΩ given by

ĨΩ ∶=
ż

R
f (x)eΩϕ̃(x) dx as Ω →∞.

We note that if IΩ converges absolutely for some value of Ω, say Ω0, then so does ĨΩ, because
∣ĨΩ0 ∣will differ from ∣IΩ0 ∣ only by the constant factor e−Ω0ϕ(x̃), i.e., ∣ĨΩ0 ∣ = e−Ω0ϕ(x̃)∣IΩ0 ∣. More-
over, if Ω ≥ Ω0, then eΩϕ̃(x) ≤ eΩ0 ϕ̃(x) for all x in R, since by definition ϕ̃ is a nonpositive
function on R. Hence, ĨΩ is also absolutely convergent for all Ω ≥ Ω0.2

1Here and in the following, we use the Vinogradov notations f (x)Î g(x) and g(x) Ï f (x) as x → x0,
which are equivalent to f (x) = O(g(x)) as x → x0.

2Conversely, as Ω →∞, existence of IΩ would be guaranteed by existence of ĨΩ only if ϕ(x̃) ≤ 0.
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Laplace’s Method of Integral Approximation

In general, there are three different cases to consider3:

(a) The maximum of ϕ occurs in the interior of R = [a; b] and is a stationary point of ϕ,
i.e., a < x̃ < b, and ϕ′(x̃) = 0 and ϕ′′(x̃) ≤ 0.

(b) The maximum of ϕ occurs on the boundary of R = [a; b] and is a stationary point of ϕ,
i.e., x̃ = a or x̃ = b, and ϕ′(x̃) = 0 and ϕ′′(x̃) ≤ 0.

(c) The maximum of ϕ occurs on the boundary of R = [a; b], but is not a stationary point
of ϕ, i.e., x̃ = a or x̃ = b, and ϕ′(x̃) ≠ 0.

In each of these cases, the asymptotic expansion of ĨΩ proceeds in the following steps:

1. The dominant contribution to ĨΩ originates from the immediate neighborhood about
the maximum x̃. We can reduce the range of integration to this local region for the
costs of only an exponentially small error as Ω →∞.

2. We assume that f (x) and ϕ̃(x) = ϕ(x) − ϕ(x̃) can be approximated in the local domain
about the maximum x̃ by their Taylor series expansions about x̃, i.e.,

f (x̃ +h) =
n
∑
k=0

f (k)(x̃)
k!

hk +O(hn+1) and ϕ̃(x̃ +h) =
n
∑
k=1

ϕ(k)(x̃)
k!

hk +O(hn+1),

where f (k) and ϕ(k) denotes the kth derivative of f and ϕ, respectively, and h ∶= x − x̃.
(Note that ϕ̃(x̃) = 0.) The order used for the Taylor expansions of f and ϕ̃ will dictate
the order of the asymptotic expansion of ĨΩ with respect to Ω.

3. The resulting integrals can be solved analytically by extending their integration limits
to infinity. Again, this results in only an exponentially small error as Ω →∞.

Below, we study these steps in more detail for case (a). For case (b) and (c), we briefly point
out technical differences that arise compared to case (a).

At first glance, it might seem foolish in the procedure outlined above to first restrict
integration to some small region and then extending it to infinity afterwards. However,
restriction of the full integral allows to replace f and ϕ̃ (or ϕ, respectively) by their Taylor or
some other asymptotic series expansions about x̃. As we will see shortly, this results in an

3For the cases (a) and (b), where x̃ is a stationary point of ϕ, we assume here that this maximum is non-
degenerate, i.e., ϕ′′(x̃) < 0. If more generally ϕ′′(x̃) = . . . = ϕ(p−1)(x̃) = 0 and ϕ(p)(x̃) ≠ 0, then pmust be even
and ϕ(p)(x̃) < 0 (otherwise x̃ would not be a maximum of ϕ), and we would find similar results as derived below.
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expansion of the integral ĨΩ into a series of Gaussian integrals. To evaluate these integrals, it
is then convenient to extend integration to infinity. Each change in the limits of integration
introduces only a small error that decays exponentially rapidly as Ω →∞.

Case (a): a < x̃ < b, and ϕ′(x̃) = 0 and ϕ′′(x̃) ≤ 0.

Step 1:We split the interval R = [a; b] into the local region about x̃, i.e., Rh ∶= [x̃ − h; x̃ + h],
and the remaining interval given byR ∖ Rh = [a; x̃ − h] ∪ [x̃ + h; b], where the value of h ∈ R+

is arbitrary, but necessarily 0 < h ≤ min(x̃ − a, b − x̃), such that

ĨΩ =
ż

Rh

f (x)eΩϕ̃(x) dx +
ż

R∖Rh

f (x)eΩϕ̃(x) dx as Ω →∞. (B.1)

Since ϕ̃ is continuous and ϕ̃(x) < ϕ̃(x̃) for all x ≠ x̃ in R, we can choose h so small that
ϕ̃(x) ≤ ϕ̃(x̃ + h) for all x ∈ R ∖ Rh . The contribution of the second integral in eq. (B.1) is then
of the orderO(eΩϕ̃(x̃+h)), because for all Ω ≥ Ω0 it holds

ż

R∖Rh

f (x)eΩϕ̃(x) dx ≤
ż

R∖Rh

∣ f (x)∣eΩϕ̃(x) dx =
ż

R∖Rh

∣ f (x)∣e(Ω−Ω0)ϕ̃(x)eΩ0 ϕ̃(x) dx

≤ e(Ω−Ω0)ϕ̃(x̃+h)
ż

R∖Rh

∣ f (x)∣eΩ0 ϕ̃(x) dx

≤ CeΩϕ̃(x̃+h),

where C ∶= e−Ω0 ϕ̃(x̃+h)∣ĨΩ0 ∣ > 0 is a constant. Hence, the integral
ş

R∖Rh
f (x)eΩϕ̃(x) dx decays

exponentially as Ω →∞, provided that h > 0, and thus ϕ̃(x̃ + h) < ϕ̃(x̃) = 0.
However, as we will see shortly, in the next step we further need h Î Ω−1/3, such that

h → 0 as Ω →∞. Since ϕ̃(x̃ + h) ∼ −h2 ∣ϕ
′′(x̃)∣
2 , we thus require that Ωh2 Ï 1, i.e., h Ï Ω−1/2

as Ω →∞, to guarantee that the second integral in eq. (B.1) still decays exponentially rapid as
h → 0. Putting things together, we have

ĨΩ =
ż

Rh

f (x)eΩϕ̃(x) dx +O(e−Ωh2c) as Ω →∞,

with Ω−1/2 Î h Î Ω−1/3 and c ∶= ∣ϕ
′′(x̃)∣
2 > 0.

Step 2: On the interval Rh = [x̃ − h; x̃ + h], we use the Taylor series expansions of f and ϕ̃
about x̃, such that

ĨΩ ∼
ż +h

−h
(

n
∑
k=0

f (k)(x̃)
k!

zk +O(zn+1)) exp{Ω(
n
∑
k=2

ϕ(k)(x̃)
k!

zk +O(zn+1))} dz (B.2)
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asΩ →∞, where we substituted z ∶= x − x̃. (Note that ϕ′(x̃) = 0.) We expand the exponential
function in the integrand of ĨΩ as

exp{Ω(
n
∑
k=2

ϕ(k)

k!
zk +O(zn+1))} = exp{−Ωz2c} exp{Ωz3(

n
∑
k=3

ϕ(k)

k!
zk−3 +O(zn−2))}

= exp{−Ωz2c}{1 +Ωz3(
n
∑
k=3

ϕ(k)

k!
zk−3 +O(zn−2)) +⋯},

(B.3)

where the derivatives of ϕ are all evaluated at x̃ and c = ∣ϕ
′′(x̃)∣
2 . This is where we need that

h Î Ω−1/3, i.e., Ωh3 Î 1 as Ω →∞, such that the above series converges for all z ∈ [−h;+h].
Substituting expansion (B.3) in eq. (B.2) and keeping only the terms of leading order gives

ĨΩ ∼ f (x̃)
ż +h

−h
e−Ωz2c dz as Ω →∞. (B.4)

Step 3: By extending the integration limits in eq. (B.4) to infinity, we find the Gaussian
integral4

ż +∞

−∞
e−Ωz2c dz =

√ π
Ωc

. (B.5)

This again introduces only an exponentially small error, since e−Ωz2c Î 1 for every z ≠ 0 as
Ω →∞. More precisely, we have

ż −h

−∞
e−Ωz2c dz +

ż ∞

h
e−Ωz2c dz = 2

ż ∞

h
e−Ωz2c dz = 2

ż ∞

h
(− 1

2Ωzc
) d
dz
[e−Ωz2c] dz

= − 1
Ωc

⎧⎪⎪⎨⎪⎪⎩

e−Ωz2c

z
∣
∞

h
+

ż ∞

h

1
z2
e−Ωz2c dz

⎫⎪⎪⎬⎪⎪⎭

< 1
Ωc

⎧⎪⎪⎨⎪⎪⎩

e−Ωh2c

h
+ e−Ωh2c

ż ∞

h

1
z2

dz
⎫⎪⎪⎬⎪⎪⎭
= 2e−Ωh2c

Ωhc
,

which is indeed exponentially smaller than
ş+∞
−∞ e−Ωz2c dz as Ω →∞. Thus, we finally derived

Laplace’s approximation, given by

ĨΩ ∼ f (x̃)
√

2π
Ω∣ϕ′′(x̃)∣

as Ω →∞, (B.6)

4The standard trick to evaluate the Gaussian integral (B.5) is to compute its square, inter-
pret this as a double integral in the plane and transform it to polar coordinates r and φ, i.e.,
(
ş+∞
−∞ e−Ωz2 c dz)2 =

ş+∞
−∞ e−Ωy2 c dy ⋅

ş+∞
−∞ e−Ωz2 c dz =

ť

R2 e−Ω(y
2+z2)c dy dz =

ş∞
0

ş2π
0 re−Ωr2 c dφ dr =

2π
ş∞
0 re−Ωr2 c dr = − π

Ωc e
−Ωr2 c ∣

∞
0 =

π
Ωc , from which follows that

ş+∞
−∞ e−Ωz2 c dz =

√ π
Ωc . The two coordinate

systems are here related by y = r cos(φ) and z = r sin(φ), such that r2 = y2 + z2.
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or, regarding the original integral IΩ = eΩϕ(x̃) ĨΩ, by

IΩ ∼ f (x̃)eΩϕ(x̃)
√

2π
Ω∣ϕ′′(x̃)∣

as Ω →∞.

Higher Order Terms: Using the same procedure as above, but considering higher terms in
the Taylor expansions of f and ϕ̃, e.g.,

ĨΩ ∼
ż +∞

−∞
{ f + f ′z + f ′′

2!
z2} exp{Ω(ϕ′′

2!
z2 + ϕ(3)

3!
z3 + ϕ(4)

4!
z4 + ϕ(5)

5!
z5)} dz

∼
ż +∞

−∞
{ f + f ′z + f ′′

2
z2}

× exp{−Ωz2c}{1 +Ω(ϕ(3)

6
z3 + ϕ(4)

24
z4 + ϕ(5)

120
z5 +Ωϕ(3)ϕ(3)

36
z6 + . . . )} dz,

(B.7)

as Ω →∞, where f , ϕ and their derivatives are all evaluated at x̃, and c = ∣ϕ
′′(x̃)∣
2 , we find a

series of Gaussian integrals in the expansion of ĨΩ, for which generally holds5

Ωp
ż +∞

−∞
zne−Ωz2c dz =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if n is odd,
Γ(k + 1/2)
ck+1/2

Ωp−k−1/2 if n = 2k is even,
(B.8)

where p, n and k ∈ N0, and Γ denotes the gamma function with

Γ(k + 1/2) =
√
π

k
∏
j=1

2 j − 1
2

.

Therefore, all terms in eq. (B.7) that are of odd order with respect to z will not contribute to
the full expansion of ĨΩ. All other terms, where n = 2k is even, will contribute to ĨΩ, with
terms of orderO(Ωpz2k) integrating to terms of orderO(Ωp−k−1/2). Considering only the
term of leading order gives the classical Laplace approximation (B.6). If we also consider
those terms in eq. (B.7) that integrate to terms of orderO(Ω−3/2) (i.e., related to p − k = −1
in eq. (B.8)), we find the next order in the expansion of IΩ = eΩϕ(x̃) ĨΩ, i.e.,

IΩ = eΩϕ(x̃)
√

2π
Ω ∣ϕ′′∣

⎛
⎝
f +Ω−1( f ′′

2 ∣ϕ′′∣
+ f ′ϕ(3)

2 ∣ϕ′′∣2
+ f ϕ(4)

8 ∣ϕ′′∣2
+ 5 f ϕ(3)ϕ(3)

24 ∣ϕ′′∣3
) +O(Ω−2)

⎞
⎠
,

as Ω →∞.

5Obviously, if n is odd, then
ş+∞
−∞ zne−Ωz2 c dz = 0. If n = 2k is even, consider the kth partial derivative of e−Ωz2 c

with respect to c, which gives
ş+∞
−∞ z2ke−Ωz2 c dz = (−Ω)−k

ş+∞
−∞

∂k
∂ck [e

−Ωz2 c] dz = (−Ω)−k ∂k
∂ck [

ş+∞
−∞ e−Ωz2 c dz] =

(−Ω)−k ∂k
∂ck [
√ π

Ωc ] = Ω
−k−1/2(

√
π∏k

j=1
2 j−1
2 )c

−k−1/2 = Γ(k + 1/2)/ck+1/2Ω−k−1/2.
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Laplace’s Method of Integral Approximation

Case (b): x̃ = a or x̃ = b, and ϕ′(x̃) = 0 and ϕ′′(x̃) ≤ 0.

If x̃ lies on the boundary of R = [a; b], we would restrict the integration domain in the first
step to either [x̃; x̃ + h], if x̃ = a, or [x̃ − h; x̃], if x̃ = b. After substituting the Taylor series
expansions of f and ϕ̃ about x̃, only that integration limit where x̃ is not located at can be
expanded to (plus/minus) infinity for costs of an exponentially vanishing error as Ω →∞.
Thus, we would compute the Gaussian integral

ş∞
0 e−Ωz2c dz = 1

2
√ π

Ωc , resulting in

IΩ = eΩϕ(x̃) ĨΩ ∼ f (x̃)eΩϕ(x̃)
√

π
2Ω∣ϕ′′(x̃)∣

as Ω →∞.

Case (c): x̃ = a or x̃ = b, and ϕ′(x̃) ≠ 0.

The situation is slightly different if ϕ′(x̃) ≠ 0 and (necessarily) x̃ is an endpoint ofR = [a; b].
Consider the case where the supremum of ϕ lies on the lower bound of R, i.e., x̃ = a. Then,
ϕ′(x̃) < 0 and

IΩ = eΩϕ(x̃) ĨΩ ∼ eΩϕ(x̃)
ż x̃+h

x̃
f (x)eΩϕ̃(x) dx

∼ f (x̃)eΩϕ(x̃)
ż h

0
e−Ω∣ϕ

′(x̃)∣z dz

∼ f (x̃)eΩϕ(x̃)
ż ∞

0
e−Ω∣ϕ

′(x̃)∣z dz = f (x̃)eΩϕ(x̃)

Ω∣ϕ′(x̃)∣
as Ω →∞.

If x̃ = b, then ϕ′(x̃) > 0 and a similar computation as above gives

IΩ = eΩϕ(x̃) ĨΩ ∼
f (x̃)eΩϕ(x̃)

Ωϕ′(x̃)
as Ω →∞.
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C
Parameterization of the FlgM–FliA Model

Experimental Measurements

In Barembruch and Hengge [195], the flagellar cascade was induced by activating flhDC
expression from an inducible promoter, which produces FlhDC levels comparable to those
in a wild type strain. Subsequently, molecular levels of FliA and intra- and extra-celular
FlgM were measured at several time points: immediately upon induction, and 5, 20, 35,
50 and 80min after induction. Table C.1 lists the number of molecules measured in two
independent experiments for the wild type and the flgM- mutant that are compared to our in
silico predictions in Figure 5.3.

Table C.1:Measured levels of FliA, intra- and extra-cellular FlgM. The number of molecules of total intra-
and extra-cellular FlgM and total FliA per cell in wild type, and the total number of FliA molecules per
cell in flgM- mutant have each been measured in two independent experiments.

Time Point
0 5 20 35 50 80(in min)

Wild Type

Total FlgM
848 975 4, 027 4, 239 5, 977 7, 630

2, 036 1, 697 5, 087 4, 875 6, 571 8, 690

FlgMextern
1, 484 424 636 11, 657 18, 312 26, 706
2, 544 2, 332 1, 696 12, 293 22, 044 34, 336

Total FliA
345 345 3, 537 7, 334 7, 248 8, 743
489 575 5, 465 7, 594 7, 622 8, 859

flgM- Mutant

Total FliA
35 29 431 2, 532 3, 596 4, 026
95 173 863 2, 818 3, 940 4, 170
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Parameterization of the FlgM–FliA Model

Baseline levels of FliA, FlgM and FlgMextern were calculated as the average values of the
corresponding measurements at time 0 and 5min, resulting in 1, 153nM for total FlgM,
1, 408nM for FlgMextern and 364nM for total FliA.

Parameterization of the Central FlgM–FliA Interactions Model

The central model of FlgM–FliA interactions shown in Figure 5.1 was parameterized based
on in vivo data from E. coli or related bacteria (this applied to the majority of parameters,
including all key parameters). When in vivo data were not available, data were taken from in
vitromeasurements or parameters were estimated based on our experimental measurements
[195]. All parameter values are listed in Table C.2.

In accordance with the experimental conditions in [195], the cellular volume of E. coli was
chosen as 2 × 10−15 l. The cellular volume was used to convert concentrations from molar
units to number of molecules, as determined experimentally and shown in all figures.

The association and dissociation rate constants of the FlgM–FliA binding kinetics have
been measured as kon = 0.053 (nM ⋅min)−1 and koff = 0.096min−1, respectively [215]. The
in vivo half-life of FliA has been measured in [195]. Since in the flgM- mutant FliA is not
protected against proteolysis, the rate constant of proteolysis has been determined from the
half-life measured in flgM-, resulting in kprot = 0.06min−1.

The results in [208] demonstrate that the export of FlgM is mediated by FliA, acting as
its type III secretion chaperone. We modeled the export of FlgM by the type III secretion
system as a first order reaction with the FlgM:FliA complex as reactant, and extra-cellular
FlgM and free (intra-cellular) FliA as products. The rate constant associated with this export
process is difficult to determine, since it depends on both, the number of available secretion
apparatuses and the unknown export rate per secretion apparatus. Thus, we estimated the
effective export rate constant kexport and the start of export texport based on the experimental
data of external anti-sigma factor FlgMextern [195]. This resulted in texport = 17min and an
export rate constant of 0.16min−1. The dilution rate constant kdil was determined from a
cell-cycle length of 24min (in accordance with the growth conditions in [195]), resulting in
kdil = ln(2)/24 ≈ 0.029min−1.

The average σD (σ70) level in E. coli has been reported as 14, 000nM (approximately 17, 000
molecules) [246]. The average level of RNAPwas set to 1, 700nM, which is 20% of the average
total RNAP level reported in [247] to account for the fact that a large number of core enzymes
is engaged in other pathways which are not part of the model [246, 247].
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Table C.2: Parameter values of the central FlgM–FliA interactions model. Initial concentration for wild
type: FlgM(0) = 725 nM, FlgM:FliA(0) = 310 nM, σD(0) = 12, 300 nM, σD:RNAP(0) = 1, 700 nM, all
others zero; and for flgM- mutant: FliA(0) = 100 nM, σD(0) = 12, 300 nM, σD:RNAP(0) = 1, 700 nM,
all others zero. These values are based on numerically estimated steady states. To convert the concentra-
tions of molar unit to number of molecules a cellular volume of 2 × 10−15 l was used.

Parameter Value Unit Reference

Wild Type

kFlgM(t)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

30, if t ≤ tclass2

500 + 1100 ⋅ σF:RNAP
10 + σF:RNAP

, otherwise
nM/min [195]

kFliA(t)
⎧⎪⎪⎨⎪⎪⎩

9 if t ≤ tclass2
300 otherwise

nM/min [195]

kprot 0.06 1/min [195]

kon 0.053 1/(nM ⋅min) [215]

koff 0.0096 1/min [215]

kexport(t)
⎧⎪⎪⎨⎪⎪⎩

0, if t ≤ texport
0.16, otherwise

1/min [195]

ka,σD 0.087 1/(nM ⋅min) [216]

ka,σF 0.029 1/(nM ⋅min) [215]

kd 0.023 1/min [215]

kdil 0.029 1/min [195]

tclass2 10 min [195]

texport 17 min [195]

flgM- Mutant (if different to wild type parameter)

kFlgM(t) 0 nM/min [195]

tclass2 18.5 min [195]
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Parameterization of the FlgM–FliA Model

The association and dissociation rate constants of σF (FliA) binding to RNAP have been
measured as ka,σF = 0.029 (nM ⋅min)−1 and kd = 0.023min−1, respectively [215]. The dissoci-
ation constantKD,σD of the σD:RNAP complex has been quantified in [216] asKD,σD = 0.26nM.
Since the single association/dissociation rate constants can not be derived from these mea-
surements, we set the value of the dissociation rate constant of σD identical to that of σF and
determined the association rate constant by ka,σD = kd/KD,σD = 0.087 (nM ⋅min)−1. We ob-
served that varying the value of kd for σD did not had any significant effect on the competition
for RNAP (data not shown).

The time tclass2 at which class 2 expression started was not measured experimentally.
Examining the experimental data of FliA in wild type and flgM- mutant revealed that the
largest variability (variation from mean value) was observed for the 20min measurement.
This is the phase when FliA numbers increase due to initiation of class 2 expression. While for
the wild type, the mean of the 20min corresponds to roughly 1/2 of the final level at 80min,
it is only 1/6 of the final level in the flgM- mutant. Assuming the same FliA synthesis rates
in wild type and flgM- mutant, this was considered as supporting evidence that the start
of class 2 expression was earlier in the wild type compared to the flgM- mutant. Parameter
estimation based on the experimental data for the wild type and the flgM- mutant resulted in
tclass2 = 10min and tclass2 = 18.5min, respectively.

Protein synthesis rates of FlgM and FliA were parameterized in the form

kprot =
⎧⎪⎪⎨⎪⎪⎩

kbasal if t ≤ tclass2
kclass2 + kclass3(σF:RNAP) otherwise,

were kbasal denotes a basal synthesis rate before induction, and kclass2 and kclass3 are the class 2
and 3 synthesis rates, respectively, after induction at time tclass2 by the master regulator FlhDC.
The basal synthesis rates kbasal were estimated from the experimental data such that the model
predictions were in agreement with the measured baseline levels of total FlgM and FliA.
This resulted in kbasal = 30nM/min for FlgM and kbasal = 9nM/min for FliA. Class 2 gene
expression was assumed to be rapidly saturated with start at time tclass2 (as supported by the
detailed transcription and translation model, see below and Figure 5.4), and hence modeled
by zero-order rates kclass2 ≈ Vmax. These kclass2 rates were determined by fitting the proposed
model to the experimental data of FlgM and FliA. This resulted in kclass2 = 500nM/min
for FlgM and kclass2 = 300nM/min for FliA. For FlgM we further determined the σF:RNAP
induced class 3 gene expression rate according to eq. (5.13) by using the experimental data of
FlgM for the wild type, resulting in Vmax = 1, 100nM/min and KM = 10nM.
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Parameterization of the Detailed Transcription and Translation Model

Based on measured levels of FlhC and FlhD, the FlhDC level in E. coli has been estimated in
[248] to be of approximately 200nM (≈ 250molecules) per differentiated cell. The dissociation
constants of FlhDC-binding to the target sites of the class 2 flagellar operons of E. coli were
measured in [249], i.e., 12 nM for flgB and 25nM for fliA, respectively.

The average dissociation rate constant of RNAP from the positions of promoters on
DNA has been measured in [250] as kd,RNAP = 40min−1. The corresponding association rate
constant ka,RNAP = 4 (nM ⋅min)−1 was estimatedwith respect to the effective binding constant
KB,RNAP = ka,RNAP/kd,RNAP of RNAP to DNA, which is approximately 0.1 nM−1 [251].

The average elongation kinetics of transcription and translation in E. coli have been re-
ported in [247] as kelong,tc = 3, 300 nucleotides per minute and kelong,tl = 1, 300 amino acid
residues per minute, respectively. According to the results in [219], the average distance
between two traversing RNAP molecules is approximately ntc = 100 nucleotides. The average
distance of ribosomes on an mRNA has been reported in [247] as ntl = 14 amino acids.

For the effective class 2 synthesis rates, see eqs. (5.11) and (5.12), the above parameter values
of the detailed transcription and translation model gave upper bounds for the Michaelis–
Menten constants, i.e.,

KM2 < 10 ⋅ (1 +
12

FlhDC
)nM,

in the case of FlgM, and

KM2 < 10 ⋅ (1 +
25

FlhDC
)nM,

for FliA. Hence, σD:RNAP ≈ 1700nM≫ KM2 for both, FlgM and FliA, which clearly sup-
ported the assumption of a rapid saturation of class 2 synthesis after induction at time tclass2.

The degradation rates of mRNAs were estimated by corresponding half-lifes measured
in [252], i.e., kdeg = ln(2)/0.45 ≈ 1.5min−1 for class 2 and kdeg = ln(2)/0.98 ≈ 0.7min−1 for
class 3 transcripts, respectively. The translation initiation rate was set to kinit,tl = 120min−1

accounting for an average number of approximately one hundred translations per mRNA as
reported in [247].

Measured values of the initiation rates of class 2 and class 3 transcription were not available.
However, having all other parameters fixed, we used the effective synthesis rates of FlgM
and FliA, reported in Table C.2, and eqs. (5.3)–(5.10) to compute the transcription initiation
rates kinit,tc. This resulted in kinit,tc = 37min−1 for FlgM and kinit,tc = 15min−1 for FliA. These
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Parameterization of the FlgM–FliA Model

values are comparable to the average transcription initiation rate of ribosomal genes, reported
in [247] as 53min−1.

All parameter values of the detailed transcription and translation model are listed in
Table C.3. These values were used for evaluating the reduced model (see Subsection 5.4.2),
and for the detailed sensitivity analysis of the effective synthesis rates of FlgM and FliA shown
in Figure 5.8C+D.

Table C.3: Parameter values of gene expression in the FlgM–FliA regulatory network.

Rate Constant Value Unit Reference

General Parameters

FlhDC 200 nM [248]
ka,RNAP 4 1/(nM ⋅min) [251]
kd,RNAP 40 1/min [250]
kelong,tc 3, 300 nucleotides/min [247]
ntc 100 nucleotides [219]

kinit,tl 120 1/min [247]
kelong,tl 1, 300 aa residues/min [247]
ntl 14 aa residues [247]

Class 2 Expression of FlgM

KD,FlhDC 12 nM [249]
kinit,tc 37 1/min see text
kdeg 1.5 1/min [252]

Class 2 Expression of FliA

KD,FlhDC 25 nM [249]
kinit,tc 15 1/min see text
kdeg 1.5 1/min [252]

Class 3 Expression of FlgM

kinit,tc 37 1/min see text
kdeg 0.7 1/min [252]
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Deutsche Zusammenfassung (German Summary)

Traditionell beruhen quantitative Modelle von Reaktionsnetzwerken auf der Sicht der klassi-
schen chemischen Kinetik. Unter der Annahme des thermodynamischen Grenzfalls (unend-
licher Molekülanzahlen-/Volumenlimes) werden Reaktionen hierbei vereinfacht als konti-
nuierliche, deterministische Prozesse modelliert. In zellulären Systemen, die Prozesse wie
Genexpression oder Signaltransduktion beinhalten, zeigt sich jedoch, dass zu beobachtende
diskrete Fluktuationen in geringen Molekülanzahlen von entscheidender Bedeutung sind.
In diesen Fällen ist eine Modellierung basierend auf der stochastischen Reaktionskinetik
erforderlich, in der Reaktionen als diskrete Zufallsprozesse beschrieben werden. Die zeitliche
Entwicklung der Wahrscheinlichkeitsverteilung an Molekülanzahlen ist hierbei durch die
chemische Mastergleichung (CME) gegeben, welche jedoch aufgrund ihrer hohen Dimensio-
nalität im Allgemeinen nicht direkt gelöst werden kann. Stattdessen ist es üblich eine indirekte
Lösung der CME durch Realisierungen des zugrundeliegenden Markov-Sprungrozesses zu
approximieren. Ein weitverfolgtes Ziel ist nun die Entwicklung solcher indirekten Methoden,
die die Simulation von komplexen, mehrskaligen Reaktionsnetzwerken ermöglichen.

Gegenstand dieser Arbeit ist die vielversprechende Entwicklung von sogenannten hybriden
Methoden, in denen schnelle Reaktionen assoziertmit hohenMolekülanzahlen kontinuierlich–
deterministisch und komplementäre Reaktionen diskret–stochastisch modelliert werden. Wir
demonstrieren den Nutzen einer hybriden Systembeschreibung an einem integrativen Mo-
dell der Replikationsdynamik des Humane Immundefizienz-Virus (HIV). Mithilfe hybrider
Simulationen ist es uns möglich eine neuartige Behandlungsstrategie für HIV-Patienten zu
entwerfen und zu validieren, die zu wesentlichen Verbesserungen gegenüber konventionellen
Behandlungsstrategien führen kann.

Während derzeitige hybride Methoden fast ausschließlich indirekte Näherungslösungen
liefern, wird in dieser Arbeit ein neuer hybrider Zugang zur direkten Lösung der CME
entwickelt. Anhand eines Mehrskalenansatzes werden Evolutionsgleichungen hergeleitet, die
eine CME auf reduziertem Zustandsraum mit Evolutionsgleichungen der deterministisch
approximierten Variablen koppeln. Hierdurch wird die Beeinflußung der Dynamik von
deterministischen Komponenten durch Veränderungen in der Wahrscheinlichkeitsverteilung
des stochastischen Teilsystems offensichtlich und kann, im Gegensatz zu indirekten hybriden
Methoden, explizit berücksichtigt werden. Wir illustrieren und diskutieren unseren direkten
hybriden Lösungsansatz an Modellsystemen von biologischem Interesse.

Im letzten Teil dieser Arbeit leiten wir effektive Proteinsyntheseraten, wie sie üblicherweise
in deterministischen Modellen genutzt werden, über Reduktion eines detaillierten, stochas-
tischen Genexpressionsmodells her. Wir nutzen unseren Reduktionsansatz um ein Modell
der Proteininteraktionen bei der flagellaren Genregulation in Escherichia coli abzuleiten. Die
erhaltenen funktionalen Zusammenhänge von Transkriptions- und Translationsprozessen zu
den Syntheseraten zeigen hierbei auf, dass sich eine hohe Sensitivität hinsichtlich effektiver
Raten nicht zwangsläufig auf zugrundeliegende Subprozesse übertragt.
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