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Abstract

Increased efforts towards device miniaturization have led to the emergence of a
new class of ad-hoc networks, the so called wireless sensor networks. Individual
devices or nodes are commonly battery-powered, small in size, equipped with a
variety of sensors, frugal processing capabilities and a wireless transceiver. Spa-
tially distributed within a deployment area, these nodes are able to autonomously
form a network and cooperatively serve a specified task, for instance to acquire
environmental data, to detect predefined events and/or to enable direct, physical
interaction. Applications that rely on wireless sensor network technology are there-
fore typically concerned with the investigation of phenomena that either spread
over a large area, that demand for autonomous scheduling over a great period of
time, that require unobtrusive mechanisms for data collection or immediate reac-
tivity to observed states. A wireless sensor network can hence be understood as
an application enabler, a tool which can be utilized to build a specific application
rather than having a purpose of its own.

Application development for these kinds of networks is however complex, error-
prone and tedious: Resource scarcity, timing constraints and a typically asyn-
chronous operational model inherent to embedded devices are directly exposed
to a programmer while at the same time, the need to map application semantics
to run on a distributed, unreliable network has to be objected. Instead of be-
ing able to implement the envisioned application in a problem-oriented manner,
the developer is forced to take a system-oriented viewpoint. This circumstance is
especially disadvantageous when considering application domain experts and not
professional software developers to be prospective users.

This thesis proposes a holistic programming model called FACTS that com-
bines two well-known mechanisms for abstracting from low-level challenges into
a dedicated framework for wireless sensor network programming: Abstraction
through provision of a better conceptual model via a higher-level language at
design time, and abstraction due to deliberate support, especially at runtime.

First of all, FACTS increases the expressiveness of sensor networking concerns
with the help of a domain-specific language. Event-centric, problem-oriented task
specification is enabled relying on a rule-based programming paradigm, while at
the same time accessible hardware-related functionality is limited to only rele-
vant features. Reactivity is captured at the language level by means of utilizing a
natural, declarative yet concise representation. Moreover, application knowledge
can be denoted equally well with the help of rules, as has already been proven
e.g. in the context of business rule specification, making rules a good choice for
non-professional developers.
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Furthermore, substantial support in terms of runtime support, development
toolchain and encapsulation of typical sensor networking routines is provided
within the FACTS middleware framework. The developer is empowered with
a set of tools that accompany him throughout the development process and allow
for simplified programming, debugging and testing. A core element here is the
runtime environment that can be utilized on typical, small-scale wireless sensor
nodes. It ensures the stable execution of rule-oriented programs by shielding a pro-
grammer from concerns such as manual stack management, correct event ordering
and timing prerequisites of the underlying hardware. A number of protocols and
applications ported to and developed for FACTS validate approach usability and
shed a light on its advantages as well as on its bounds.
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Chapter 1

Introduction

Embedded devices are nowadays the insects of technology - there are simply more
around than one would ever imagine! Already in the year 2000, out of all shipped
processors 98% have been embedded CPUs, preferably microcontrollers with an
8- or 16-bit datapath and extremely limited RAM sizes [135]. Commonly found
for instance in automation, vehicles, consumer electronics or medical equipment,
these processors are designed to run specific tasks instead of serving as a general-
pupose computing device and dissolve in their host, not being visible to a user.
As size and production cost matter since these are the critical parameters for
market success and obtainable profit, on-chip resources are usually constraint to
the absolute minimum.

With the emergence of so called smart objects, thus objects of everyday life
empowered with computational and possibly communicational capabilities, the
border between pure embedded devices and traditional, computational rich sys-
tems clearly blurs. These devices are envisioned to be ubiquitous and inexpensive,
yet expected to be reconfigurable and easy to adapt. Since the mere number of
electronic objects to handle has dramatically increased over the past years, usage
and maintenance convenience have become ever more important for purchase de-
cisions. Appropriate means to control smart items are mandatory for their fast
adoption. A typical product that resembles these demands is the ePaper technol-
ogy embedded in a corresponding reading device [63]: this simple electronic item
mimics an everyday item (regular paper), seeks to provide its key advantages over
already available displaying technologies (greater angle of vision, reflective instead
of transmissive display and high contrast) and enhances it with the capability to
hold libraries of books on a chip. The deliberate design decision for less function-
ality (no support for multi-media) in favor of lowest possible power consumption
points out another observable trend for increased emphasis on energy-efficiency:
A new sensitivity towards environmental concerns and a fatigue of a constant
need to recharge all kinds of objects has triggered a movement for green IT -
resource-efficient, environmentally compatible technology that nevertheless pro-
vides up-to-date functionality.

1



2 1. Introduction

A class of devices that is on the verge of the embedded domain are wireless
sensor networks (WSNs). Battery-powered and small in size, individual devices,
so called wireless sensor nodes, are spatially distributed to autonomously form an
ad-hoc network. Each node is commonly equipped with a variety of sensors to
sample data of physical phenomena, a wireless transceiver to interoperate with
other sensor nodes in the network and frugal processing abilities. Rather than
being objects of everyday life, they serve as a tool for distributed data acquisition,
event detection or direct, physical interaction. A wide range of different applica-
tions can hence instantly benefit from depending on this technology. Usually, these
applications are concerned with the investigation of phenomena that either spread
over a large area, that demand for autonomous scheduling over a great period of
time, where the intervention of taking data samples has to be non-invasive, or that
depend on immediate reactions to a specific state which is possibly acquired from
distributed data samples.

In the remainder of this chapter, we present the motivation for introducing
a holistic, rule-based programming framework to enable improved sensor node
tasking in Section 1.1. Afterwards, we will point out the main contributions of
this thesis in Section 1.2, before turning to the actual structure of this work in
Section 1.3.

1.1 Problem Statement

Within the above section, the statement has been made that smart objects, and
in particular wireless sensor networks, are at the verge of the embedded domain.
From a system-oriented point of view, this is not evident as they depend com-
pletely on embedded hardware. However, unlike embedded devices that are in
general build and programmed to satisfy a single purpose, wireless sensor net-
work capabilities allow for their application in a diversity of problem domains,
making them a valuable tool in miscellaneous settings. As such, wireless sensor
networks have e.g. been successfully applied by biologists to monitor chemical pro-
cesses within redwood trees [140] or the habits of vulnerable animals [100, 106],
by geologists to investigate the development of glacial regions [103], for object [11]
and asset tracking of freight containers [119], but also in home automation [70],
to enable event-detection in general [122] or for emergency response in medical
applications [59].

Clearly, the application logic, thus the actual task that is determined to be
running on the sensor network, will typically be defined by the corresponding do-
main experts. Only they have the knowledge to specify what kind of data has to
be taken and at what rate, how to process the acquired samples, what states have
to be monitored and how to react appropriately in respect to different situations.
Since requirements may change over the time of network deployment, especially
when utilized in a setting that is motivated by a research question, network recon-
figuration and/or retasking has to be made available. These requirements totally
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Figure 1.1: Collar for dairy cows (a) Transponder at the neck of the cow and (b)
main external parts of the transponder [taken from [68]]

differ from general embedded device utilization patterns: Here, devices are pro-
grammed by professional developers, implemented firmware is flashed once onto a
device and will afterwards never be touched again. Given approximately the same
hardware resources but a different background and expertise in embedded pro-
gramming, it becomes evident that domain experts will face a number of concerns
when trying to map envisioned network behavior into software.

In the following, a somewhat extraordinary but valid, real-world example for a
possible wireless sensor network application will be illustrated to point out, what
in detail the core challenges are that developers face when trying to implement
wireless sensor network applications.

1.1.1 Cow tracking to assist studies on social interaction patterns
for increased dairy productions

In agricultural dairy farming, the condition and well-being of a herd has a great
impact on the health of individual animals, and in turn on their actual productiv-
ity. Lately, veterinary research has especially focussed on studying social behavior
and interaction patterns of dairy cows [57] in order to relate findings to the occur-
rence of diseases that inhibit optimal stock breeding conditions. To assist these
efforts, an exact mechanism to position individual cows within a stable, but also
outside in the meadows has to exist, as well as a backbone system that is able
to process acquired data. One possibility to set up a local indoor position mea-
surement system has been presented in [68], where radar transponders have been
integrated into a collar worn by each cow, see Figure 1.1. Since the antenna for
the transponder is mounted high on the animal, signal shading and masking by
the animals’ body can be prevented. A corresponding reception system built from
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several basestations that listen to emitted data have been installed at the stable
ceiling to enable minimal signal disturbance. Positioning is then implemented
relying on a time of arrival approach, relating emitted radar signals received at
various base stations to one another to calculate a cows relative position [81].

The prime goal of the system setup presented above targets pure data acqui-
sition and offline data evaluation as no means for direct interaction are available.
The system itself is passive. However, in case transponder and basestation nodes
become smart, thus are exchanged by wireless sensor nodes that feature on-node
data processing capabilities, the complete system is able to become (re)active [129].
A whole new spectrum of possible applications can then be enabled, ranging from
the implementation of simple alerting strategies in case animals do not get enough
water over the course of a day, refuse or are unable to move according to usual
animal movement patterns or are simply sensed to be sick due to subsequent mea-
surements of increased body temperature, up to sophisticated direct interaction.
Concentrated pellets enhanced by supplementary vitamins or minerals may be
fed automatically to cows that have an increased demand due to their individual
health condition or social grouping of specific cows may be enforced or prevented
by means of controlling gates and passages to name but a few scenarios that are
conceivable.

To implement necessary data acquisition patterns, control mechanisms and
reactions according to predefined animal conditions, an agricultural farmer or a
veterinary has to denote the corresponding rules that capture each target situation
in combination with the envisioned system behavior and map this application
knowledge to work on the embedded sensor network platform.

1.1.2 Challenges for wireless sensor network programming

While the first step, the clear specification of system behavior, can already be time-
consuming but manageable even by non-expert programmers, the second step of
transferring the application knowledge to a wireless sensor network application is
tedious and challenging. As has been stated before, the target platform consists
of embedded devices, exporting a low-level of abstraction from system properties
such as resource scarcity, both in terms of available energy and memory, lim-
ited processor performance and available interfaces for debugging and control, the
typically asynchronous operational mode as well as the need to satisfy timing con-
straints directly to the programmer. For reasons of increased flexibility in regard
to deployment strategies, sensor nodes are equipped with wireless networking ca-
pabilities. However, wireless links are unreliable, so that additional attention has
to be payed to overcome inconsistent states among sensor nodes due to lost pack-
ages. Finally, wireless sensor network applications often take a network-level view
upon problem definition, thus understand the network itself as a tool to imple-
ment the solution to the specific assignment in question. Coordination of nodes is
therefore mandatory to achieve the envisioned behavior. Years of research have al-
ready pointed out that the development of applications depending on distributed
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networks is cumbersome and calls for a thorough understanding of underlying
network implications.

In summary, the following properties of wireless sensor networks render soft-
ware development to be a challenging task:

• Embedded hardware: Since wireless sensor nodes build upon simple micro-
controller architectures to optimize for cost and size, system properties such
as resource scarcity and the corresponding demand for energy-efficient task-
ing, interrupt-driven execution and timing concerns are visible throughout
the software stack and have to be handeled appropriately. The interface
for software development therefore enforces a system-oriented point of view,
offering only a low level of abstraction to a software developer.

• Asynchronism: The preferred execution model for wireless sensor network
processing tasks depends on an event-driven control loop. This choice is
motivated by the quest for maximizing energy efficiency, allowing a node to
return to a low-power idle mode in case no actions are required. While this
strategy allows to substantially increase node lifetime, it shifts the burden
of coping with asynchronism to the programmer. Push semantics which are
not captured well with predominantly used imperative programming models
have to be integrated into program flow.

• Wireless networking: The flexibility of wireless networking comes at the
cost of unreliable network links. In addition, wireless communication is
also costly in terms of energy spent on both sending and receiving nodes.
Therefore, from a programming perspective, considerable effort has to be
put into balancing the urge for reliable communication and energy-efficient
software implementation.

• Distribution: Due to a foremost network-level conception of wireless sensor
network applications, coordination and synchronization of groups of nodes
are often mandatory for successful execution. This however is, especially in
respect to the afore mentioned costly and unreliable means for communica-
tion, a challenging demand programmers have to face.

If we now relate the denoted challenges of the WSN domain to the expectations a
potential user has regarding future applications, the actual problem that requests
a sensitive, yet powerful intervention as visualized in Figure 1.2 becomes evident.

On the one hand, one can draw from the example sketched in Section 1.1.1 that
a domain expert comprehends her envisioned application in terms of the problem
that needs to be solved. Interaction and reaction patterns are expressed with
network behavior in mind and the focus is clearly to capture correct application
semantics. The taken viewpoint is thus problem-oriented.

On the other hand, the target platform that enables to build powerful, dis-
tributed applications in a low-cost manner is extremely challenging in respect to
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Figure 1.2: Imbalance of viewpoints for application development in wireless sensor
networks, see also [120]

the demand for expertise knowledge in software development. A low level of ab-
straction due to relying on embedded, distributed devices that interoperate with
the help of wireless communication imposes a system-oriented point of view on
corresponding programmers.

The central concern of this dissertation is to close the gap situated in between
the problem- and the system-oriented world.

1.2 Contributions

This thesis proposes a holistic programming model called FACTS that combines
two well-known mechanisms for abstracting from low-level challenges into a dedi-
cated framework for wireless sensor network programming:

First of all, FACTS increases the expressiveness of sensor networking concerns
with the help of a dedicated, domain-specific language. Event-centric, problem-
oriented task specification is enabled by relying on a rule-based programming
paradigm, while at the same time accessible hardware-related functionality is lim-
ited to only relevant features. Reactivity is thus captured at the language level
by means of utilizing a natural, declarative yet concise representation. Moreover,
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application knowledge can be denoted equally well with the help of rules, as has
already been proven e.g. in the context of business rule specification.

Furthermore, substantial support in terms of runtime support, development
toolchain and encapsulation of typical sensor networking routines is provided
within the FACTS middleware framework. The developer is empowered with
a set of tools that accompany him throughout the development process and allow
for simplified programming, debugging and testing. A core element here is the
runtime environment that can be utilized on typical, small-scale wireless sensor
nodes. It ensures stable execution of rule-oriented programs by shielding a pro-
grammer from concerns such as manual stack management, correct event ordering
and timing prerequisites of the underlying hardware. A number of protocols and
applications have been ported to and developed for FACTS to validate approach
usability and shed a light on its advantages as well as on its bounds.

This combination of language, development and runtime support allows for a
shift of the developers’ focus from platform-specific concerns back to the applica-
tion semantics.

Overall, the contributions of this thesis can be summarized as follows:

• Qualitative analysis of the current state of the art: Numerous abstractions
to overcome the intrinsic challenges of WSN programming concerns have
been proposed so far. A set of conceptual and functional criteria has been
compiled to analyze the most prominent and distinctive approaches and
provide a means for their evaluation.

• Specification of a suitable and concise language for WSN tasking: The ap-
proach proposed in this thesis evolves around the rule-based programming
language RDL, which has been especially crafted to suit WSN challenges.
Motivating the reasons for conceptual design decisions and implemented
functionality, language syntax is denoted and semantics presented in a for-
mal manner. To evaluate language utility, thus to provide a first impression
on its pragmatics, examples for typical usage scenarios as well as paradigm
shortcomings are critically discussed.

• Provision of a versatile programming framework: The FACTS middleware
framework comprises a set of tools to aid in the development process, amongst
them different backends to which RDL rules can be compiled to. Powerful
support during the test- and the deployment phase enable the implemen-
tation of well-crafted, stable and scalable sensor network protocols and ap-
plications that run equally well in simulation and real-world environments.
Furthermore, the design space for system-related access to hardware has
been explored, and an elegant means for low-level configuration and control
has been integrated into the framework.

• Evaluation of optimization strategies towards better memory consumption
and increased runtime performance: Adding an additional layer of soft-
ware in between system and application and depending on interpretation
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instead of native execution automatically results in performance loss. To
lower this impact, optimization strategies targeting better memory utiliza-
tion and faster rule interpretation have been explored and quantified.

• Extensive testing of approach validity by implementation of a variety of pro-
tocols and applications: A great number of typical sensor networking tasks
has been implemented on the FACTS middleware framework, amongst them
two prominent routing protocols and a real-world application. These have
been utilized on the one hand to verify that qualitative goals have been
successfully met, on the other to quantify their performance.

1.3 Thesis Overview

This thesis comprises eight chapters that present, analyze and evaluate the pro-
posed middleware framework FACTS, and put the corresponding developments
into the context of current research directions. Following this introductory chap-
ter, key technologies, application areas and widely adopted software stacks for
wireless sensor networks, as well as basic approaches to capture event-centricity
and to develop reactive software are presented in Chapter 2. General terms, def-
initions, concepts and keywords that are utilized throughout the thesis will be
clarified here, providing a reader with the necessary background.

A more specific viewpoint concerning the problem of abstraction provision for
wireless sensor networks will be taken in Chapter 3. Therefore, a representative ex-
cerpt of current approaches and models is categorized by their specific perspective
on valuable abstraction methodology. In order to enable a thorough qualitative
analysis, basic idea and implementation are presented for each approach, before
functional demands derived for wireless sensor network abstractions in general are
used to judge the individual focus of the corresponding abstraction.

Chapter 4 finally turns to the main part of this thesis. Since the FACTS
middleware framework comprises several components to be discussed in subsequent
chapters, the intention of this chapter is to provide a brief overview of functional
parts, thus allow for a first, high-level impression. Moreover, the set of metrics
developed and applied in Chapter 3 to similar abstraction approaches are used to
point out FACTS qualities and its prime abstraction goals.

FACTS exports a rule-based programming paradigm to serve as a means for
wireless sensor network protocol specification. A comprehensive introduction of
the therefore developed ruleset definition language (RDL) is the concern Chapter 5.
After a presentation of the rather concise RDL syntax, a formal specification by
means of denotational semantics provision follows. The picture is completed by a
discussion of language pragmatics: Programming patterns, derived from various
rule-based implementations, that on the one hand tackle intrinsic shortcomings
of event-driven application development and on the other feature common WSN
data processing approaches, enable an abstract conception of language features.
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Design and implementation of the functional parts of the FACTS middleware
platform are discussed in Chapter 6. These comprise the ruleset compiler, which
maps the problem-oriented specification of node-local behavior to an executable
bytecode and a corresponding runtime environment in charge of interpretation.
Target platforms for the compiler subsume a functional simulation environment
for improved, fine-grained protocol debugging, the MSB430 ScatterWeb platform
for real-world deployments and the ns-2 network simulator simulating a network
of ScatterWeb sensor nodes. Furthermore, an approach for a lightweight inte-
gration of configuration and control issues for underlying hardware capabilities
is introduced, exploiting available middleware abstractions. Where applicable,
optimization schemes and their impact are presented and quantified.

Chapter 7 is devoted to demonstrate in detail how the FACTS programming
framework works in practice. Therefore, system-level and application rulesets have
been implemented to explore the design space of RDL programming capabilities.
Middleware functionality available for re-use comprises e.g. two established rout-
ing protocols especially designed for the wireless sensor networking domain. Both
have been implemented in a native and in a rule-based manner and compared con-
cerning their performance in regard to usual protocol metrics as well as to quantify
the impact of interpretation. A prototype application that has been successfully
simulated to run on the FACTS framework is concerned with a monitoring task
for a fence and implements event detection mechanisms respectively.

Finally, Chapter 8 wraps up this thesis and points out distinct findings and the
main contributions. A small outlook on future concerns and unsolved, but relevant
problems that need to be addressed to put the vision of ubiquitous, technological
progress accessible to a vast audience to practice conclude this thesis.
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Chapter 2

Background

Holistic wireless sensor network tasking concerned with the provision of both a
practical conceptual model at design time and a powerful execution environment
at runtime requires a broad foundation within software development. Therefore,
this work has been inspired by a variety of existing methodologies and concepts
stemming from and evaluated within different areas of computer science, trans-
formed them into suitable tools for the target domain and fused them into a
comprehensive framework.

This chapter provides general information on research areas that substantially
influenced this work, namely the state of the art in wireless sensor networking and
concepts and practice for event processing. Hence, it introduces definitions and
terms drawn from these domains, clarifies basic technological aspects that this the-
sis is based on and presents core directions that developments may have targetted.
Rather than dwelling in details, the interested reader will be redirected to relevant
work with pointers to the corresponding research papers where appropriate.

The organization of this chapter is as follows: Section 2.1 features a brief in-
troduction to wireless sensor networks. Besides providing a general description
of technological aspects, software stack and application areas, this section will
highlight the challenges that differentiate these networks from other ad-hoc net-
working approaches in more detail. Since the approach this thesis suggests to
adopt is a representative of event-driven architectures, Section 2.2 will clarify rele-
vant terminology this domain utilizes and present common classes of event-centric
architectures. Within this scope, Section 2.2.4 is especially concerned with rule-
based approaches. With a brief introduction to rule-based programming and a
differentiation of available dialects, their implications on application areas and
implementation, this section renders a picture of substantial efforts undertaken
in this area. Section 2.3 finally discusses presented findings and wraps up this
chapter.

11
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2.1 Wireless Sensor Networks

Technological progression and its massive application in both industrial and per-
sonal life revolutionized everyday processes in industrial countries over the last two
decades. Mass production of personal computers, handhelds and cell phones in
combination with a steady increase in availability of wireless connectivity, better
service provision and richer device functionality have lead to their wide acceptance
and almost seamless integration into many aspects of human being life. Corre-
sponding wireless networking technologies and standards such as Wireless LAN,
UMTS or GSM are typically operated in an infrastructure-based manner and pro-
vide a central access point that coordinates network setup, medium access among
participants and forwards data to its intended recipients.

Decentralized wireless networks, or ad-hoc networks, are in contrast networks
that depend on mechanisms to self-organize coordinated network behavior. The
assignment of which node is in charge to forward packets for its neighboring nodes
is not fixed but has to be adapted dynamically with respect to network connectiv-
ity. As nodes may be mobile and wireless link quality may vary over time, network
topology is likewise subject to change. Ad-hoc networks are especially valuable in
situations or regions where infrastructure-based networks are either too costly to
deploy and maintain (e.g. for large scale and/or temporary environmental mon-
itoring), when their setup time is too long for the requested operational setting
(e.g. after a natural disaster) or spontaneous meshes are sufficient (e.g. to build
a personal area network for the exchange of electronic vCards).

The tremendous efforts put into minituarisation of integrated circuitry has led
to shrinking sizes of wireless technology within the last few years and gave rise to
the vision of so called Smart Dust [145]. These tiny devices envisioned to be the
size of a dust particles, are able to communicate with each other, to sense their
environment and to locally perform basic processing on acquired data, can be dis-
tributed in large quantities. In general, these wireless sensor networks (WSNs)
come in different sizes, ranging from developments of nodes manufactured as a
system-on-a-chip (SoC), e.g. Smart Dust, over practical-sized platforms that de-
pend on components available commercially of-the-shelf (COTS), e.g. the Mote
family [78], up to huge, specialized single-pupose nodes, e.g. the SOSUS plat-
form [151]. All of these however have in common that they are deployed close
to physical phenomena which are to be observed by means of sampling available
sensors and that they communicate with each other autonomously to self-organize
the desired network behavior. As a consequence, the number of nodes that form a
WSN depends on the range a corresponding sensor can cover, the area over which
the observed aspect spreads and demanded accuracy, and may range from a couple
of nodes up to several hundert.
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(a) (b) (c) 

(d) (e) (f) 

Figure 2.1: Wireless sensor network platforms (a) Smart Dust [114] (b) CCR
node [114] (c) Spec node [77] (d) MicaZ platform [39] (e) MSB430 modular sensor
board [14] (f) SunSpot platform [2]

2.1.1 Platforms

The design and assembly of wireless sensor node platforms has received a lot of
attention. An exemplary overview of a few, popular sensor nodes is presented
in Figure 2.1 where the upper row depicts prototypes that conform to a SoC
design and the lower presents those that have been put together from commercially
available parts. For instance, 2.1 (a) shows a Smart Dust node developed in 1999,
which gave rise to the vision of invisible, low-cost data acquisition. This platform,
mounted upon a button cell and featuring a tiny, digital controller, as well as the
CCR node depicted in 2.1 (b), depend on optical data transmission: Light emitted
by a laser from a basestation allows for communication to the nodes, whereas the
motes communicate in backward direction by modulating their reflectivity using
a so called MEMS corner cube [86].

Optical communication requires a line of sight in between communication part-
ners, which is, in combination with the necessary communication initiation by a
basestation, a fairly strong restriction. Hence, communication based on radio fre-
quency transmission is nowadays preferred. Platforms depicted in 2.1 (c) - (f)
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therefore all feature a radio transceiver, allowing for omnidirectional communica-
tion thus increased flexibility for deployment strategies. On the downside however,
these systems have a higher energy consumption due to geometrical signal atten-
uation.

While the goal for maximal reduction of physical sensor node size has been
a driving force at first, for a lot of experiments, mid-size platforms prove to be
sufficient. Moreover, node size is also predetermined by the energy requirements
for specific deployments, which in most cases are a lot higher than what a button
cell can provide. Naturally, this dependency triggered a lot of interesting research
in the area of energy harvesting and its applicability within the WSN domain,
which is discussed in detail in [125] and left out here for brevity.

The majority of platforms are larger size COTS platforms as presented in the
second row of Figure 2.1, such as e.g. the Berkeley Mica mote family [79], the Scat-
terWeb MSB430 platform [14, 96], both representatives of research initiatives, or
the Sun Spot platform [2] as a commercial product. Other system architectures
not displayed here include BTnodes [21], Smart-Its [17], and for instance Parti-
cles [42]. These devices are typically equipped with a reprogrammable 8- to 32-bit
microcontroller in charge of controlling the sensors, peripherals, eventually the RF
radio and of executing the current application. Memory sizes are typically around
5KB for volatile SRAM and 55KB-128KB for non-volatile Flash memory. Addi-
tionally, secondary storage may be available, e.g. provided as EEPROM memory
or via an external SD-card. Chosen frequency band and thus transceiver capabil-
ities vary amongst the different architectures; especially in a research setting, RF
radio transceivers which operate in the 868MHz and the 443MHz ISM band are
preferably chosen, but platforms utilizing the license-free 2,4GHz frequency band
can equally be found, see also Table 2.1 for a first impression. Available sensors are
often supplied on an additional board, which can be adapted due to application
concerns and are therefore not listed here. A detailed overview of existing popular
WSN platforms and their individual setup can be found in [15] and an evaluation
of a small subset including metrics to judge them in [20].

2.1.2 Application Scenarios

Wireless sensor networks are a versatile tool for in-situ data acquisition and imme-
diate, localized reactions. Since the deployment itself can be literally untethered
from any infrastructural requirements, the set up of a working system is very
flexible, and therefore especially beneficial for short term deployments, for deploy-
ments that lack existing infrastructure to build upon (e.g. in wildlife) or demand
for constant adaptiveness due to e.g. node mobility. Applications and studies
carried out with WSN technology so far either focus on constant, often long-term
data collection or they are set up for event detection and immediate reporting.
Note that this classification is not exclusive (meaning that often times, elements
of both design goals are combined) but rather yields to illustrate the extreme ends
of the design space for WSN applications.
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Table 2.1: Wireless Sensor Networking Platforms

Mica2Dot MicaZ MSB430 Sun Spot

Microcontroller ATmega128L ATmega128L TI MSP430F1612 ARM7
Architecture 8-bit 8-bit 16-bit 32-bit
SRAM 4KB 4KB 5KB 256KB
Flash 128KB 128KB 55KB 2MB
User Interface 3 LED 3 LEDs 1 LED 2 LEDs

Radio CC1000 MPR2400 CC1020 CC2420
RF band 315-916MHz 2,4Ghz 402-915 MHz 2,4GHz

The prime goal of monitoring application deployments carried out in the past
has been to observe a specific phenomena to control or understand (natural) pro-
cesses. Representative approaches have been concerned with studying the habits
of animals such as zebras, birds or cattle [98, 100, 68], with observing environmen-
tal states of e.g. glaciers, mountains or volcanos [103, 134, 149] or with the quest
for structural monitoring of e.g. bridges, buildings or dikes [89, 29, 127]. Often,
required data rates are rather low, whereas deployment time can span over a long
period of time.

Military, medical or logistics applications [11, 118, 59] commonly put their
emphasis on the detection of specific data items or network states to either invoke
a localized reaction or to emit an early warning about a critical situation. In case
a predefined event is likely to occur, sampling frequencies of sensors involved in
phenomena detection are increased so that accurate, fine-grained data is available
about the event in question if necessary.

In the following, an exemplary application from both ends of the spectrum is
sketched in more detail to convey a feeling for design goals, setup prerequisites
and system sizes.

Environmental research: Redwood Tree Monitoring

Environmental processes and developments are complex research subjects. For a
thorough understanding of observed phenomena, an environmental researcher has
to examine a number of different parameters which may influence the subject of
interest, put these into relation to one another and finally develop a hypothesis to
be verified. However, data collection is not always easy as traditional hardware
may be too intrusive, too expensive or the area to cover too vast or inaccessible.

One of many deployments motivated by a biological research question carried
out with wireless sensor networks has been a set up within a redwood tree to
monitor its micro-climate [140]. Variations in temperature, humidity and light are
known to appear over time and spatial distribution in a tree, but exact, concur-
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rent measurements have been missing. A wireless sensor network consisting of 33
Mica2Dot nodes has therefore been deployed within a coastal redwood canopy at
different heights and positions with respect to the stem of the tree. Over a period
of 44 days, each sensor node was requested to measure temperature, relative hu-
midity and light emission every 5 minutes, log the data locally and forward it in
a multi-hop manner to a dedicated gateway of the network. Overall, the system
was able to acquire multi-dimensional data as envisioned, however data yield, thus
data delivery performance, has been disappointingly small as nodes died and logs
filled early due to mismanagement. Nevertheless, the project revealed the fea-
sibility of sensor networking technology for monitoring tasks as well as common
pitfalls that need to be taken into account ahead of deployment time.

Vehicle tracking: The VigilNet Project

The design of a system for surveillance with applications such as vehicle tracking
and event detection with the help of wireless sensor networking technology has
been the goal of the VigilNet project [73]. Relying on 70 sensor nodexs, the gen-
eral objective has been the provision of an early-warning mechanism which is able
to detect and track a vehicle within the deployment area at reasonable precision
and confidence. To furthermore guarantee both, lifetime of the complete network
and latency of event reporting, to stay within acceptable bounds, a sophisticated
software architecture to coordinate network-wide duty cycling and time synchro-
nization has been developed. The network is split into distinct regions, each
establishing a backbone to a predefined relay node and stable sensing coverage,
before uninvolved nodes may put themselves to sleep and sensing by only a des-
ignated section starts. In case an event, thus a vehicle, is detected, sensor nodes
in the corresponding target area are awakened and fine-grained data collection is
triggered. Simultaneously, reports on the tracked vehicle are constantly sent to
the a central entity in charge to allow for an adequate reaction.

2.1.3 Operating Systems and Protocol Stack

Not only a large number of different sensor networking platforms are by now
available, but also a variety of operating systems that a programmer can rely on.
Networked, resource-constrained devices are, for reasons of energy-efficiency and
small memory footprint, often operated in an event-driven manner which is typi-
cally mirrored by the OS. Besides the provision of a convenient and safe abstrac-
tion from hardware resources, including timers, memory, basic communication and
sensor primitives, and eventually additional service support, an OS therefore also
exports its design philosophy to a programmer. Nowadays, a number of operating
systems especially designed for wireless sensor networks exist such as for instance
TinyOS [4], Manits [22], Contiki [46] and SOS [72]. To showcase the design space
of existing developments, the following will feature a concise overview of TinyOS,
Contiki and the ScatterWeb hardware abstraction layer that FACTS utilizes.
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TinyOS

TinyOS, with its wide-spread usage, active community, open-source availability
and magnitude of projects relying on its abstractions, is the de facto standard op-
erating system for wireless sensor networks. It promotes a component-based model
for organizing software parts by enforcing modularity at design-time instead of re-
lying on the usual structure of a layered architecture. Components can e.g. wrap
hardware functionality or application-level code and make their implementation
then available via interfaces which may in turn be wired together for application
composition.

Concurrency is handled in TinyOS with two distinct mechanisms, namely tasks
and events. A task may be posted by a component and will run to completion be-
fore the thread of control is returned to its originator. The TinyOS task scheduler
implements a FIFO queue to process incoming tasks according to their order-
ing. To ensure responsiveness of the system, tasks should therefore contain a
non-blocking, short-running set of instructions. On the other hand, events, which
typically represent hardware interrupts, may preempt tasks and events, and also
run to completion. In case a long-running operation has to be triggered by a
component, a split-phase operational model is suggested. The invocation of a so
called command, declared in the public interface of a component, will start the
corresponding execution and an event is raised upon completion to signal this
to the calling component. Consequently, it has to implement an event handler
to be executed thereafter. The flow of control is thus handled via commands in
a top-down, and notification via events in a bottom-up direction. Programmers
utilizing TinyOS are directly exposed to the impact that long-running executions
have on the system and have to address this within their sourcecode - traditional,
sequential program flow is hence not simulated by TinyOS.

With the provision of active messages, TinyOS mimics the port concept uti-
lized by the TCP/IP stack: Each message is tagged with an identifier which is
mapped to a specific handler on the reception side of the message. Simple uni-
cast and broadcast functionality for one-hop communication is wrapped in the
GenericComm module, thus can be wired to an application. Furthermore, the
hardware abstraction consists of a set of core components that encapsulate e.g.
microcontroller usage or clocks and timers, exporting a corresponding interface to
make them accessible.

TinyOS components have to be implemented in the nesC programming lan-
guage, an extension of C that enables the separation of concerns into individual
components [61]. However, many features that C offers to a programmer, such as
dynamic memory allocation, the specification of pointers, etc., are suppressed by
nesC in order to improve execution safety. Since other common problems such as
deadlocks and race conditions can however occur during execution due to the sup-
ported concurrency model, this static language design can be used for compile-time
analysis. Besides the provision of core OS functionality, an extensive toolchain,
including a simulator and a huge code base, is available for TinyOS.
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Contiki

Contiki is the runner-up in the world of operating systems for wireless sensor
networks. The driving force for the development of this OS has been to make
it an open-source, portable, multi-tasking OS that can be utilized on a number
of systems even with a different hardware background. Written in the C pro-
gramming language, Contiki revolves around an event-driven kernel with three
concurrency models supported: events, threads and the so called protothreads. In
general, asynchronous processing requests, e.g. interrupts, are encapsulated in
non-preemptable events, dispatched to running processes by an event scheduler,
which then run to completion. Since stack memory can be regained after an event
handler returns, the kernel may use a single shared stack for process execution. In
addition to asynchronous event processing, the scheduler allows for interleaving it
with periodical polling. Upon invocation, all processes (usually processes operat-
ing close to the hardware) that implement a poll handler are called, which allows
them to e.g. check the status of hardware devices.

Support for the specification of multi-threading programs is available with
Contiki as a library that may optionally be linked. Since the demand for a separate
stack per thread and the need for locking mechanisms to access shared resources are
inherent to the multi-tasking operational model, additional overhead incurs with
its utilization. Stack has to be allocated prior to thread execution and cannot be
shared thereafter until the thread returns, making this concurrency model quite
costly in terms of memory consumption, a circumstance not always feasible for
every application or platform.

A unique mixture of events and threads offered by Contiki are the protothreads.
As opposed to usual threads, a protothread is stackless, thus does not have a
history of function calls and can not, as a consequence, invoke a blocking function.
It implements a conditional, blocking wait statement to be checked whenever the
function that specifies it is invoked. In practice, this allows a function to run up to
a certain point in a program, return the control flow to the scheduler and release its
stack, then wait for an event to occur and return to exactly the previously stored
location of execution within the function when being invoked the next time. In
case additional stateful information for context conservation is needed, this has
however to be stored in global variables.

Naturally, a number of core OS services are available in Contiki, including a set
of modules for general hardware abstraction, implementations for timer utilization,
reprogramming, sensor integration and memory management. With support for
both IP networking achieved by the µIP stack [45] and low-power radio utilization
with the Rime stack [47], a versatile communication subsystem is also part of
the Contiki operating system. Similar to the TinyOS community, the Contiki
developers are a very active research group, providing a number of additional
tools available for download on their website.



2.1 Wireless Sensor Networks 19

FAT TimeNet SDCard String System Timers

CC1020 Comm Configuration Data Messaging

Scatterweb 3.x API

User Application

System Software

Figure 2.2: ScatterWeb 3.x software architecture

ScatterWeb firmware

Akin to the above presented full-fledged operating systems, the firmware of the
ScatterWebMSB430 also follows an event-centric approach for processing. Schedul-
ing is performed within a super loop, polling individual modules that represent
their hardware counterparts and dispatching incoming events to their designated
handlers. Figure 2.2 depicts the available implementations that serve as abstrac-
tions for an application to rely on. Core functionality includes a module to control
the microcontroller with support for basic tasks such as interrupt handling, a set
of communication services such as packet handling and medium access and the
provision of an interface to timer abstractions and I/O handling. Besides, a set
of services that implement e.g. drivers for optional sensors or basic access mecha-
nisms for secondary storage are provided as libraries, thus can be linked if required.

All in all, the system implementation is very lean, exporting a set of basic event
handlers to be implemented according to application needs and an API restricted
to the absolutely necessary functionality to a programmer. Since the ScatterWeb
firmware, and likewise any application that builds upon it, is implemented in ANSI
C, no explicit software development design is enforced, which is on the one hand
beneficial as it leaves maximum control to the developer, but on the other hand
is also a burden, as it requires a certain degree of expertise.

Considerable effort has been made to port e.g. a variety of MAC, routing
and security protocols to the ScatterWeb platform, validating its versatile capa-
bilities. Furthermore, ScatterWeb nodes have been utilized within a number of
research projects and experiments with an impressive diversity of subjects, includ-
ing concerns to autonomously position the sensor nodes [142, 64], provision of
programming abstractions [7, 24] or utilization in hazardous environments [13]. A
solid codebase is thus available for fast prototyping.
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2.2 Event Processing Systems

In everyday life, asynchronous, ubiquitous incidents that have a meaning to their
recipients and/or request some kind of reactions are commonly referred to as
events. A traffic light turning to green, the crash of a hard disk of a computer
or the birthday of a good friend are labeled to be events since they all share a
sense of change: A significant modification in contrast to the previous situation of
the person exposed to an event occurs and requires an approriate reaction. In the
above mentioned context, a roaring engine of a vehicle, a replacement of the hard
drive or a written birthday card may be observable consequences.

Likewise, significant change of (system) state is a central concern in computer
science and can therefore be found throughout various domains: Operating sys-
tems feature interrupts and signals, the former to indicate a special event such
as the expiration of a timer to the processor, the latter to allow for inter-process
communication (IPC) of concurrent processes; Active databases utilize events to
monitor relevant operations on their data, to incorporate integrity constraints,
workflow management or alerting strategies; Events in programming languages
may e.g. be used to model exceptional states of the running system or to comprise
user and/or device interaction; Knowledge representation relies on a multitude of
input events to derive complex states or high-level events, thus to infer knowledge
from available data and build powerful expert systems. All of these areas model at
least partially their input parameters determining program flow as events. Upon
detection, these are filtered and processed by the invocation of corresponding ac-
tions or handlers.

Although the general idea of significant change constituting an event is widely
accepted, the semantics of the term event as well as the actual event processing
nevertheless varies among operational areas. Some treat events as transient, thus
occurences have to be explicitly captured or will otherwise be lost, whereas for oth-
ers, events are durative, thus may effect system state even at a later point in time
when adding to a complex event. Furthermore, event handling or, more broadly
speaking, the action space that is related to the occurrence and/or detection of an
event, can range from side-effect free alerting to transactional processes.

After clarifying basic terms and pinpointing general implementation concerns
in event-centric environments, we will briefly discuss the implications that the
semantic differences in event and action space have on their design. Focussing on
rule-based approaches to process events, we will provide a systematic analysis of
popular rule dialects.

2.2.1 Historical background

Due to its versatility, no single, generally accepted definition of the term event
can be postulated. The question how to describe, detect, process and react to
events has seen a tremendous amount of research, primarily in two distinct areas
- active databases and artificial intelligence [58]. As a result of separate goals
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and efforts, both coined a slightly different notation and terminology for similar
terms, a circumstance that in the current quest for standardization receives a lot of
attention in the Semantic Web community. Considerable effort has been directed
towards clarifying these differences and their implications to enable the fusion of
both worlds [111].

Active databases

Starting in the late 1980s, the need for a better integration of monitoring capabil-
ities for events led to the progression from traditional to active databases. Instead
of purely reacting to user queries, inserts and updates, database systems were
enhanced to concurrently inspect internal and external events, and to derive and
recognize patterns of event combinations.

Active databases typically rely on the ECA (Event-Condition-Action) paradigm
and corresponding event algebras to define complex event patterns and to enable
the automatic triggering of actions in response to their detection. The structure
of such event-condition-action (ECA) rules - "ON event IF condition DO action"
- provides an elegant means to express event-driven behavior: Whenever a simple
or complex event is detected, denoted in the ON clause, and the condition(s) in
the IF clause evaluate to true, the action following a keyword resembling the DO
part is triggered. Common events that are monitored with active rules include
particular operations on the data itself, transaction events or method execution in
object-oriented databases. Condition statements usually involve SQL queries with
non-zero return values while invocation of SQL updates can be found in the action
part. Well-known active database systems are e.g. HiPac [41], Starburst [152] or
Sentinel [30] to name but a few.

Often times, the mere detection of simple events and a rigid, preprogrammed
reaction executed by one dedicated event handler in direct response is however not
satisfactory. Instead, particular patterns of event combinations allow for a better
expression of application logic. The ability to detect composite events is a key
feature of active databases and presumes the availability of a distinct model to
describe such composition. Chosen operators for the constitution of a particular
event algebra and supported primitive events differ however among implementa-
tions, see SAMOS [60] or COMPOSE [62] for details. A commonly cited event
specification language is SNOOP [31]. Basic operators such as conjunction, dis-
junction and negation are supported as well as sequential composition, a bound
selection and periodic and a-periodic event sequence definitions. With their help,
the expressiveness of the event part of an ECA rule is enhanced and the description
of high-level, application-specific situations with active rules is facilitated.

Knowledge Representation, KR event/action logics

The second area that has seen extensive research on event processing is Knowledge
Representation (KR). Here, the general idea is to capture causality, thus to develop



22 2. Background

a set of axioms and notations to determine necessary and sufficient conditions for
events to happen. From the fact that certain events are known to have occurred,
KR approaches infer new knowledge on application-specific questions, system state
or upcoming events. A prominent example for KR approaches are expert sys-
tems [25]: Knowledge bases are built from expertise knowledge in problem areas
that feature a high complexity with respect to correlated data. Therefore, causal-
ity between events and actions or relationships between data items of interest is
acquired and modeled using a KR formalism. Ideally, the obtained knowledge base
can then be consulted in decision processes, e.g. for health diagnoses to correctly
interpret patients’ symptoms (MYCIN system [26]), in monitoring applications to
derive critical situations (REACTOR [10]) or during planning (configuration of
Vaxen computers [104]).

Rather than focussing on event detection, KR event/action semantics rely on
event occurrence and inference mechanisms to reason about consequences. Al-
beit two methods, backward and forward chaining, for reasoning exist, inference
for event processing typically favors forward chaining: Starting from available
data, thus knowledge about already acquired and/or anticipated events, inference
rules are applied to extract additional information and to determine proper con-
sequences. The backward chaining approach is exactly contrary: Given a certain
goal, the inference engine inspects available data and inference rules to find ev-
idence that supports the hypothesis. Rules are analyzed by their consequents
(THEN part) that match this hypothesis before evaluating their antecedents (IF
part).

Similar to event algebras used in active database, the KR event/action logics
build upon powerful formalism such as Event Calculus [92] or Interval Calculus [9]
to allow for temporal reasoning. The former for instance divides the world in
events that happen at a point in time and initate/terminate time intervals and
fluents, which represent properties of the system that hold over time.

2.2.2 Terms and Definitions

Primitive Event:

• Within the active database community, the term event (a.k.a raw, primitive
or atomic event) refers to an “instantaneous, atomic occurrence of interest
at a point in time” [33]. Instances of primitive events can be detected by a
system only if the event type or class is known a priori. Formally, an event
(both atomic and complex) is defined as a function mapping from the time
domain onto boolean values:

E : T → {True, False}

E(t) =
{
T (rue), if an event of type E occurs at time point t
F (alse), otherwise.
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Semantically, the focus of event processing in an active database sense is on
event detection. The function D(E, t) can therefore be introduced to denote
that an event instance e of type E has been detected at time t. Events
are consumed upon detection thus transient and do not contribute to future
complex events unless explicitly bound via variables.

• The (temporal) KR event/action logics view on events is slightly different:
Predominantly, events occur over an interval of time. However, since a
discretized model of time is sufficient for most applications, an atomic event
may be defined to happen at an atomic interval in time. According to this,
event occurrence is generally denoted by the function O(E, [t, t′]). Hence,
occurrence of an atomic event can be defined as O(E, [t, t]), a circumstance
that is expressed e.g. in Event Calculus by the function "happens(E, T )". In
contrast to active databases, events in KR are non-transient. Represented as
durative facts, they can initiate and/or terminate validity intervals in which
particular properties (fluents in Event Calculus) are true.

Table 2.2 summarizes the main differences of event properties in both worlds
discussed above.

Complex Event: Complex events (a.k.a composite events) are built from oc-
curred atomic or other complex event instances according to operators of an event
algebra [111]. Note however that in order to reuse derived or detected complex
events for subsequent detection of other complex events, these events have to be
made persistent.

Event context: Conditions for event detection and/or deriviation comprise state-
ments for analyzing and filtering the event itself, but often times also depend on
the current context of the system, commonly denoted as the event context. Con-
text characteristics may involve temporal aspects (such as whether another event
has been detected within a given time frame prior to the current event), spatial
(e.g. concerning the actual location of the event source), state (e.g. current power
level of the processing entity) or semantic aspects (e.g. do the roles of event source
and sink match) to decide on appropriate event processing.

Event Processing: The term event processing subsumes several steps to prop-
erly handle incoming events to a system. These include operations applied to
(raw) event instance (detection, transformation, deletion), analysis of the current
event context, eventually the selection and composition of events for complex event
derivation and trigger of actions as a consequence of the overall detected situa-
tion. Event processing can either rely on a pull model in case the system actively
acquires information about its environment, or on a push model when events are
detected externally and pushed into the otherwise passive system.
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Table 2.2: Event Processing Objectives

Active DB KR event/action logics

Event instantaneous interval
transient durative

Concern Event detection Event occurence
Composition Event algebra Event calculus
Goal Reaction Reaction / Deduction

Several papers have pointed out that there are logical shortcomings and unin-
tended operator semantics when reducing the temporal scope of events to points
in time as promoted in early active database work [111, 58]. Briefly speaking, the
problem that arises in this context is due to the combination of a volatile event
definition and a lack of expressiveness for time intervals. The specification of e.g.
a sequence of more than two events preserving event order is simply not possible
in this case. Events can only be specified to happen after the detection of another,
but not in between two events.

To overcome this deficiency, two different solutions can be applied. One pos-
sibility is to turn to an interval-based event definition, thus shift from a notion of
event detection to event occurrence and adapt the utilized event algebra accord-
ingly. The advantage of this approach is that it clearly maps the real-world model
of complex events better: Instead of being detected at the time of detection of the
last contributing event, the complex event itself is durative, spanning from initia-
tion to termination event. However, this comes at the price of potentially complex
interval conditions, which may affect both event definition and event processing
in a negative manner.

A second solution is to keep the event history so that temporal reasoning,
even with the limited event detection semantics, is possible. The drawback of
strictly persistent events is obvious: The event processing system is prone to
overflow, unless adequate heuristics to restrict kept events to only relevant ones are
incorporated. On the other hand, the event model itself features less complexity,
thus may be more accessible for certain application areas.

2.2.3 Implementing Event Processing Systems

The notion of events is an intuitive metaphor to capture reactivity to stimuli stem-
ming from both outside and inside a system. Regarding the software design, event
processing can be a quite complex concern that comprises event occurrence/de-
tection and derivation of complex events via event fusion, context analysis and
evaluation of time dependencies. The actual implementation of reactivity, or more
precisely the integration of reactive behavior into the software stack, varies how-
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ever among programming models and differs with respect to direct support of the
above mentioned challenges.

The utilization of a certain programming model defines the conceptual view a
programmer relies on to structure his programs. In case software development is
e.g. exposed to an operating system abstraction, a programmer will most likely
think in terms of processes, threads, semaphores and so forth. Given a program-
ming language abstraction, language elements such as e.g. classes and objects
or functions and variables will dominate the mental model associated with pro-
gram design. The more expressive a provided abstraction is, the larger is usually
the software stack needed to support it, a circumstance of great importance in
the embedded domain. For instance, high-level programming abstractions seldom
execute directly on the hardware of a system, but rather depend on a runtime en-
vironment which in return may be built upon code libraries, components of a mid-
dleware system and OS system calls. Taking these observations into account and
relating them to event processing implementations, two main directions towards
enabling an event model can be discriminated: process-oriented and event-driven
approaches.

Note that in the following, we will solely introduce these two basic design
strategies. A discussion of rule-based event processing, although being a subclass
of event-driven approaches, will follow in greater detail in the subsequent section
due to its importance in the context of this thesis.

Process-oriented Approaches

The first approach to object event processing is to incorporate the asynchrony of
events into a sequential program flow. The most common way to accomplish this
is to rely on multi-threaded programming and to encapsulate reactive behavior in
individual threads. Whenever the occurrence of a particular event is recognized
in a given context, the corresponding thread waiting for this event becomes active
and can be executed by the operating system. Otherwise, the thread simply blocks,
giving other threads the opportunity to get scheduled in the meantime. Typically,
each event or set of related events is associated with one thread. Listing 2.1
visualizes a simple threaded program that processes events. The conditions for
event detection/occurrence, often referred to as the event header, are associated
with variables or devices monitored by the operating system which signals the
thread scheduler to activate waiting threads upon change. Examples for event
conditions include e.g. the reception of a certain packet, a timer interrupt or the
manipulation of a specific state variable. Upon thread activation, the adequate
event handler is called and executed.

Evidently, this approach is quite convienent from a programming perspective,
since the control flow can be directly derived from the program text of each thread.
Ordinary control sequences such as loops, conditional statements and function calls
are at a programmer’s disposal to express appropriate actions, essential to ensure
reactivity of the program at any time, can easily be supported so that long-running
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Listing 2.1: Event processing based on threads.
1 void main () {
2 create ( thread_1 );
3 // ...
4 create ( thread_n );
5 }
6 void thread_1 () {
7 event_t event; // local variable for event data
8

9 wait (EVENT_1 , event); // blocking wait for event 1
10 handle (event .data);
11 }
12 // ...
13 void thread_n () {
14 // ...
15 }

operations or blocking calls do not corrupt program behavior. The burden of -
possibly preemptive - scheduling of threads is left to the operating system, so that
only synchronization and shared memory have to be mastered by the programmer.

On the downside, the utilization of threads introduces severe costs regarding
stack memory. Each thread is provided with its own context and thread state
which has to be pushed onto the stack upon switching the currently executed
thread. This has of course a slightly negative effect the on the execution time as
well, see [87] for details. Furthermore, threads do not provide support for detecting
composite events at a conceptual model. In fact, the relationship between raw
events and threads can be expressed as a one-to-one mapping.

Event-driven Approaches

In contrast to the first class, approaches that follow an event-driven approach allow
events to explicitly control program flow. At no point in time, a program should
block and wait for some specific event to happen. Instead, it is accepted that data
flow does neither conform to a known schedule nor has a predefined order.

An unpretentious way to implement an event-driven system is to wrap all event
handling into a single superloop as shown in Listing 2.2. After initialization, the
system constantly polls for new events and invokes their event handlers if necessary.
Due to its simplicity, this model is very lean, but offers almost no support for a
programmer regarding e.g. event buffering and ordering, enforcement of timing
constraints or efficient resource handling. Generally, since event-driven systems,
especially in the embedded domain, often depend on to a single thread of control,
invoked actions have to be non-blocking and terminate in a bounded amount time.
In case actions contain blocking functions, these have to be transformed into two
fractions: a non-blocking request and a completion event generated by an interrupt
that can trigger the continuation of the prior action.
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Listing 2.2: Implementation of a simple control loop.
1 void main () {
2 // ...
3 while (true) { // runs forever
4 if ( event_1 ) then event_handler_1 ();
5 if ( event_2 ) then event_handler_2 ();
6 //..
7 if ( event_n ) then event_handler_n ();
8 }
9 }

A more sophisticated approach to put the event-driven idea into practice and
expose a push semantic to the developer is a pattern sometimes referred to as the
event dispatcher pattern. (Primitive) events emitted by event sources are pushed
upon recognition into a global event queue. An event dispatcher launched at
system start time (line 4) accesses this queue (line 2) to schedule appropriate
handlers according to the event type of a dequeued event, see Listing 2.3 for an
exemplary implementation. Therefore, event-driven programs consist of a set of
actions specified as event handlers which are scheduled according to the order of
their correspondent incoming events. Mapping of events to actions in this basic
implementation once again adhere to a one-to-one mapping scheme, implemented
via a switch-statement (lines 11-17).

Clearly, while event driven approaches mirror the asynchronous world of events
better, they come at the cost of sacrificing the nowadays prevalent sequential pro-
gramming model, and along with it the convenient programming construct of the
call stack. Coordination, continuation and context preservation, things managed
by the call stack in ordinary programs, now have to be addressed explicitly by
the programmer. Management of system state and control flow internal to event
handlers are exposed and request application-specific solutions. Valuable charac-
teristics of event-driven design such as increased flexibility of programs and agility
of systems and a more concise and cohesive model of the problem domain however
add to the popularity of this model.

2.2.4 Rule-based Event Processing

Recall the definition of the term event processing in Section 2.2.2 which comprised
more than mere detection of event occurrences and immediate action invocation.
For the above mentioned models to conform to this definition, the one-to-one re-
lationship of mapping events to handlers has to be substituted by a possibility to
also process complex events. In this case, the relationship of events to handlers
is broadened to a many-to-many mapping, with multiple (primitive) events con-
tributing to different complex events. Multiple event occurrences, possibly in a
given sequence, time frame and context are however difficult to express: Unless
the number of complex events is deceivingly small and their nature simple so that
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Listing 2.3: Common event-driven processing pattern.
1 void main () {
2 event_t event_queue [ MAX_EVENTS ];
3 // runs forever
4 event_dispatcher ();
5 }
6 // schedule next element in event queue for processing
7 void schedule () {
8 event_t event;
9 event = dequeue (next); // fetch next event from queue

10

11 switch (event.type) {
12 case type_1 :
13 event_handler_1 (event.data);
14 break ;
15 case type_2 :
16 // ...
17 }
18 }
19 void event_handler_1 (event.data) {
20 process (data);
21 }

encoding them directly with the help of state variables is an option, the usage of
a higher-level of abstraction is favorable. Extracting significant features such as
support for complex event specification which is common to a set of applications
and shifting them to system responsibility not only leverages programming effort,
but also reinforces code reliability, readability and maintenance. Popular concepts
to handle this concern include frameworks that provide publish/subscribe mecha-
nisms enabling exactly the circumstance described above of one event contributing
to several complex events, or reactive rules that expose a language-based abstrac-
tion to complex event specification. Since the latter approach is examined in this
thesis, we will provide an introductory summary on reactive rules.

Reactive rules, in contrast to logic rules, actively update and change system
state upon execution. Due to their declarative nature and fine-grained modularity,
rule languages have always been a popular approach to capture reactive behavior,
with prominent rule engines being e.g. JESS [56] or commercial systems such
as ILog [1]. Just as there have been different approaches towards the notion of
events 2.2.1, processing languages based on rules as well differ in syntax, target
domain and execution semantics. Two basic classes can be distinguished - lan-
guages that follow an ECA paradigm on the one hand and production rules on the
other [19]. In both cases, the processing entity that interprets rules and schedules
them for execution is referred to as the rule engine.
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ECA rules

Event-Condition-Action rules consist of three different parts. The first part, typ-
ically marked by a keyword (e.g. ON ), states the initiation event(s), the second
denotes the condition part of the rule (started e.g. with IF) and a last (e.g.
marked by DO) specifies the actions to be executed upon rule triggering. This
clear separation into distinct parts can foster a separation of concerns which may
in its extreme result in different sub-languages and even data models for each in-
dividual part of a rule: an event specification language for part one, e.g. SNOOP
[31], a query language such as SQL for part two to query persistent data and a
host language to specify actions. Action invocation includes raising new events,
procedure calls, data manipulation and eventually modifications of the rule base.
Strict separation has its advantages and shortcomings. A positive effect is that
internal system state and data is not directly exposed to the event processing en-
tity, a benefit that is of utmost importance in distributed settings. Then again,
the flow of information between rule parts is not given. Due to the transient na-
ture of events in ECA languages, event data has to be extracted and forwarded
to subsequent rule statements, a circumstance usually solved via binding data of
interest to variables.

The execution of a single rule is straight-forward: Upon event recognition
and a positive condition evaluation result, the rules actions are executed in an
atomic manner, thus either occur completely or none at all. In case multiple rules
react to the same event, several scheduling strategies can be applied with different
execution semantics. The scheduler can e.g. select a single rule from the so called
conflict set based on a predefined priority ordering of rules, but also choose it in a
non-deterministic fashion. Or, if by design of the rule base multiple matches can
only occur by mistake, the scheduler may simply reject the complete conflict set
and report an error. A last possibility is to select all rules in the set and execute
them sequentially. However, it has to be clear what effect the generation of new
events as a result of action execution has on following rules in this strategy - they
can either be suspended being replaced by a new conflict set or events can be hold
back until the complete conflict set has been executed. All mentioned cases are
valid scheduling strategies, but of course have a big impact on the design space of
the associated rule bases.

Although ECA rule languages originate from the Active Database domain,
their popularity reached the general area of distributed systems long ago [32].
This is not a big surprise given the fact that events make a good abstraction to
exchange information which has been extensively probed in Event Notification
Systems (ENS) [28]. Furthermore, the push mentality of the event concept which
is usually adopted nicely meets common requirements such as avoidance of un-
necessary traffic, fast reactivity and low resource consumption. Nowadays, ECA
rule variants are deployed as business rules, to coordinate workflows and espe-
cially in distributed web-based applications such as e-business and semantic web
applications to provide required reactivity in a declarative manner.
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Production rules

Production rule syntax differs from ECA rules in that instead of explicitly nam-
ing the event that activates rule execution, they react to changes in system state.
Likewise, the syntax takes the form WHEN condition DO action, hiding the ac-
tivation event. The term production (rule) itself originates from the Chomsky
hierachy of formal grammar types [34], where rewriting rules are used to denote a
generative grammar of a language.

Production rule systems have received a lot of attention e.g. in the area of
Artificial Intelligence to serve as a format for knowledge representation, but have
also been used to encode e.g. application logic or business rules. The number of
rules is typically rather large, operating on a single working memory, a finite set
of data items sometimes referred to as the fact base. The representation of data
items is however left up to the data model. Unlike ECA rules, a system to process
production rules shares this working memory among rules and rule parts, thus
exhibits a tighter integration.

Regarding rule evaluation, production rule systems can in general follow both,
the forward or the backward chaining approach to determine upcoming system
state. However, if rules are applied in an event processing thus reactive context,
forward chaining inference will be the algorithm of choice since it maps the data-
driven incremental push semantics of incoming events: Whenever an update, due
to an internal or external event, is recognized on the fact base, the precondition
for rule execution is evaluated by means of pattern matching. Therefore, the
situation described in the condition part is matched against the working memory
which represents the current situation of the system. In case a fact or object of
a certain type became available due to a preceding update or it diminished, or
monitored values of fact/object variables changed, rule precondition and current
state may match, leading the rule engine to fire the rule and schedule its actions.
Statement execution will be invoked on data items matching the condition part,
also called the rule instance. The refraction principle, a fundamental concept in
production rule systems to prevent infinite triggering of the same rule, denotes
that once a rule instance has been executed, its condition has to become false on
these data items.

Execution semantics of multiple rules reacting to change has to be specified
exactly in order to guarantee intended rule program behavior. The main criterion
to differentiate production rule execution algorithms is whether the execution of
a particular rule from the conflict set influences the successive conflict set (and
to what extent) or not. In stateful implementations, the eligibility of rules to
trigger varies during conflict set execution, thus the state reached after one rule
has been processed may validate previously inactive rules to join the conflict set
and remove rule instances whose condition parts become false. Simply speaking,
changes on the working memory directly effect rule eligibility. The Rete Algorithm
is the most well-known pattern matching algorithm to efficiently implement state-
ful production rule systems [52]. It exploits the fact that updates to the working
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memory usually influence only a small number of data items and that patterns
in the condition part tend to occur in more than one rule to minimize the search
space for conflict set recalculation. A stateless implementation of a production
rule system is applied in case attributes denoted in the condition part of a rule
cannot be modified by executing a rule’s action. Typical application areas that
lack the need for inference chaining, which thus can be implemented in a stateless
way are e.g. filtering applications that operate on a tuple-by-tuple basis or data
validation methods.

Production rule systems are often applied to problems that are logically rich
and focus on state management. Especially stateful rule engine implementations
with their inference chaining capabilities offer a tool to process event sequences
and provide case-sensitive reactions dependent on the particular system state.

2.3 Concluding Remarks

Wireless sensor networks have now been explored, deployed, tested, adapted and
studied for almost a decade in a variety of applications, revealing their great poten-
tial, however at the same time the inherent properties requiring utmost attention
when yielding a successful utilization. Many of these, e.g. the demand for unat-
tended operation, physical robustness of nodes, conceptual robustness to cope with
unreliable links and high network dynamics, or the concern of node heterogeneity,
have already become apparent in the early years [124]. As real-world experiences
have been scarce at that time, these challenges have primarily been derived from
envisioned application scenarios and issues that represented interesting research
questions in this context. Correspondingly, primary concerns also included ex-
tremes such as excessive miniaturization or very large network sizes, which have
lost their appeal over time. Back then, the focus has definitely been on the big,
visionary picture.

Reality struck most early projects when simply a lack of solid software de-
velopment and extensive testing in combination with an overly-ambitious time
schedule resulted in, at least partially, non-operational deployments. Identify-
ing those circumstances that rendered achieving project goals difficult triggered a
shift of perspective to node-local concerns. Since a stable execution of software
is mandatory to obtain practically usable networks, a great deal of low-level soft-
ware for sensor nodes and tools aiding in the software development, debugging and
evaluation process has ever since been implemented. Furthermore, deployments
revealed that although the design space for wireless sensor networking applications
is huge, each individual project typically has to be only concerned with a small
subset of challenges to be met, emphasizing the need for careful, modular and
very targeted software design. Thanks to implementations such as the presented
operating systems, both platforms and software stack have nowadays matured,
allowing computer scientists to utilize WSNs at quite reasonable effort. Bridging
the gap to domain-experts to really make WSN capabilities available for a greater
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audience without limiting these networks per se to a set of toy instructions is
definitely a very urgent topic to address.

Due to the primarily reactive nature of most applications for wireless sensor
networks, the quest for a small footprint and energy-aware implementation, event-
centric processing is the de facto standard software design for crafting the protocol
stack of WSNs. Therefore, the second part of this chapter has been concerned with
clarifying how the term event has been conceived over time and application do-
mains, and what effect a different concept has on the actual implementation of
event processing systems. It is interesting here to point out that especially high-
level abstractions such as rule-based programming paradigms reveal severe seman-
tic differences which can be appointed to their sources of origin. As a consequence,
a concise specification of model semantics has to be provided when introducing or
utilizing such a model in order to prevent a false interpretation, a concern that
will be discussed in Chapter 5.2.



Chapter 3

Related Work

Support for rapid development, yet dependable execution of software for wireless
sensor networks is not only mandatory to enable their adoption beyond academia,
but also to provide a solid ground for fundamental research on algorithms. Prob-
lems such as for instance scalability, in-network coordination, efficient data pro-
cessing or real-time, distributed event detection in a massively distributed envi-
ronment have to be studied and solved for these networks to be used to their
full potential. The key to meeting the challenges introduced in Section 2.1 is to
provide a sound level of abstraction that software development can rely on.

Simplification of non-trivial control or data aspects greatly eases application
development and is therefore a central method in computer science to make com-
plex systems accessible and controllable. Generally speaking, abstraction allows
a programmer to concentrate on a few, basic concepts rather than having to deal
with a mass of details. WSNs comprise a mass of details concerning very different
problem areas, but at the same time offer very little processing capabilities on the
nodes themselves. Hence, proposed abstractions for this domain differ in concept,
mechanism and practice they implement, thus problem they solve and viewpoint
they provide.

This chapter will give an overview to what ends abstractions have been ex-
plored and what functionality for application development is explicitly supported.
Therefore, a description of basic classes of abstractions that share a common idea
will be first introduced and analyzed. Dependent on the provided classification,
examples of work related to this thesis will be presented in a second step and
qualitatively analyzed in a third.

33



34 3. Related Work

3.1 Perspectives on Abstraction

Abstraction provision for wireless sensor networks can be as diverse as distinct
challenges have to be addressed. To narrow down the scope of abstraction mecha-
nisms reviewed in the following, we assume a basic operating system to be present,
thus low-level hardware related functionality relevant to upper layers to be imple-
mented and accessible via a specific interface. Therefore, the software layer in
between system and application, which we denote as the middleware layer, and its
characteristics are subject to analysis.

The term middleware is traditionally associated with hiding the protocol layer,
sophisticated service provision beyond OS features and deployment in a distributed
environment. Bernstein [18] specifies a set of criteria commonly addressed by mid-
dleware services including independence of the chosen platform so that middleware
services have to be portable to a variety of system architectures with modest and
predictable effort, supply of functionality that meets the need of a wide range of
different applications and distribution of the service itself. In short, the compila-
tion of a catalogue of such properties enables a functional view upon middleware
implementations.

In a wireless sensor network context however, the application of above men-
tioned criteria to classify approaches is not conclusive: Due to the limited resources
available on sensor nodes, middleware development is much more driven by classes
of applications to be supported rather than aiming at a general-purpose solution.
Suggestions for classification therefore explore middleware approaches from a va-
riety of angles. Key to a classification presented by Heinzelman et al. [74] is e.g.
a distinction between providing a reactive or a proactive handle to the sensor net-
work by means of a middleware. This choice contributes to the fact that applica-
tion information is usually not strictly isolated from underlying software to enable
better resource utilization [124], either to support QoS-aware applications [43]
with proactive measures or to enable application-specific reactions to network dy-
namics. Adaptive fidelity algorithms [157], cross-layer optimization [102] and QoS
specification methods have therefore been studied thoroughly. Overall, one can
deduce that the perspective on abstraction taken here is to abstract from the
network.

Analyzing the programming paradigm that a middleware offers to fill in the
gap between system and application entails a different view on sensor network
middleware [121]. The distinctive measure then is the mental model that a pro-
grammer may rely on during the software development process. A taxonomy of
programming models is presented in [115], dividing approaches into those that
offer some kind of support (either for composition, to overcome distribution or
optimization issues) and another group that enables a programmer either to ab-
stract from node-local or global node behavior within the sensor network context,
with the latter being refined in [133]. While the commonality all approaches share
is supplying a dedicated way of programming to task sensor networks, the in-
tention what problem to address with this differs among approaches. Generally,
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Figure 3.1: Classification of middleware abstractions for wireless sensor networks

when adopting a certain programming model, the level of abstraction from control
and/or data concerns is increased.

In order to provide a more holistic view on sensor network middleware, we
present a classification that combines the findings mentioned above into a single
model depicted in Figure 3.1. While lacking a degree of detail in terms of functional
correlation between middleware and application it supports, it allows for quickly
grasping motivation and method of proposed approaches.

Each axis represents a basic dimension of abstraction that addresses a core
problem area a developer is exposed to when dealing with wireless sensor networks.
Support, assigned to the x-axis of our model, can be attributed to those approaches
that implement supportive measures in terms of services or components to solve a
specific problem or to fulfill a certain task. Encapsulation of predominant WSN-
specific needs into self-sufficient components, an orientation towards light-weight
middleware functionality enabling context-dependent linking of software, modular
instead of monolithic software architectures and the urge for re-applicability reflect
prevailing design rationals. Characteristic approaches therefore usually provide a
predefined, architectural framework which will be reviewed in Section 3.6.

On the y-axis, we denote distribution as a major challenge thus fundamental
dimension for abstraction provision. Here, coordination and control of network
subsets or groups is the prime concern. The granularity at which such subsets can
be formed and addressed varies among middleware implementations and may span
from nodes within a one-hop network vicinity, often referred to as a neighborhood,
over spatial or logical groups to complete network coverage. As a consequence
of utilizing a wireless medium to interconnect a possibly large number of sensor
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nodes, additional complexity arises to encounter network dynamics. A selection
of approaches classified to explore this abstraction dimension will be presented in
Section 3.2.

To overcome the discrepancy between system- and problem-oriented viewpoint
that the sensor network domain imposes on application development, a common
mechanism is to supply a dedicated programming paradigm. Therefore, the z-axis
of the classification is associated with what we call concept mapping as a way of
reflecting the ability of approaches to conceptually meet key WSN challenges. Due
to the embedded nature of deployed devices, the syntax of utilized languages is
often ill-suited to express application semantics, incorporation of system-related
functionality has to be addressed and thus straight-forward application develop-
ment is hindered. Section 3.4 points out relevant projects relying on a concept
mapping abstraction and analyzes their advantages and shortcomings.

Naturally, many approaches exploit abstraction in more than one of the pre-
sented dimensions. Moreover, classifying a particular approach is neither nec-
essarily a matter of a boolean decision for one class but can be gradual, nor is
it a significant alleviation for middleware selection if left too vague: Nodal dis-
tribution can e.g. be objected at different levels of abstraction, ranging from
node-level to network-level transparency. Likewise, a countermeasure can be im-
plemented in a variety of ways, utilizing for instance distributed data structures,
language supplements or predefined protocols. Both, concept and implementation,
can have a serious impact on selection preferences. To achieve a finer categoriza-
tion of available middleware implementations, we therefore subsume approaches
that substantially interleave two of the discussed dimensions under their own la-
bel. Hence, approaches entitled to belong to the macroprogramming plane, see also
Section 3.3, introduce a programming model particularly to overcome distribution
challenges. In case modularity has been an integral design rationale of a domain-
specific programming abstraction, we will refer to corresponding implementations
as representatives of composite programming, being reviewed in Section 3.5. Fea-
tured middleware abstractions of the (x,y)-plane, consolidating supportive func-
tionality with distribution transparency, are discussed in Section 3.7 and will be
denoted as dispersed structuring in the following.

At this point, it is noteworthy to mention that the classification as such does
not yield a qualitative evaluation of approaches in terms of individual practicality:
A higher level of abstraction or integration does not automatically correspond to
being the better platform. Instead of providing a sharp functional or analytical
distinction between middleware approaches, the intention of this classification is
rather to point out the general design space of application development on top
of selected approaches presented in the following. At the end, a summary of the
findings is compiled in Table 3.1.
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3.2 Distribution Abstractions

As soon as sets of nodes have to interact to accomplish a task together, the pro-
grammer has to select, task and organize the corresponding nodes accordingly.
Middleware approaches that implement a distribution abstraction offer support
on at least one of these and allow to abstract from problems arising from nodal
distribution.

An early representative called Hood has been proposed by Whitehouse et al.
in [150]. This middleware architecture provides an interface for an application to
a subset of the sensor nodes that are in physical vicinity, called a neighborhood.
Based on criteria for choosing neighbors and a set of attributes to be shared, a user
can specify different kinds of neighborhoods. Hence a neighborhood is formed by
those nodes within a one-hop distance that are e.g. able to provide temperature
readings. Hood then handles any management issues arising, like supervision of
neighborhood lists, data caching and sharing among nodes and the definition of
messaging protocols.

Communication within a neighborhood is based on a broadcast/filter mech-
anism, thus follows a one-to-many pattern. If a node wants to share one of its
attributes, it simply broadcasts the value. Incoming packets are filtered, and nodes
can determine whether or not the received attribute should be cached. Sharing
core ideas with reflective memory, each node will allocate a mirror structure for
reflecting values of every node in its neighborhood list. There is no feedback to
the node that sent the value, so in contrast to concepts building upon reliable
networking, Hood can cope with asymmetric links between nodes but at the same
time cannot guarantee message delivery.

Looking at the programming part of the approach, a neighborhood becomes a
programming primitive. To create a new neighborhood and to allow its individual
parameterization, a code generation tool has to be invoked by the developer. The
system itself builds upon TinyOS and uses its core communication components,
see also 2.1.3. Interfaces offered by Hood provide handles to access neighborhood
attributes and define sharing and updating strategies. Furthermore, values of
neighbors stored locally on a node and can be annotated with so called scribbles.
These simply note extra information, for example the quality of the link to the
mirrored node.

Overall, a programmer who builds applications upon Hood is given the possi-
bility to address and control functional parts of a network vicinity together, instead
of issuing single nodes. Thus, this project alleviates effort for maintenance and
takes the burden of dealing with distribution of updates in a neighborhood from
the programmer. On the downside, Hood only provides best-effort message deliv-
ery based on broadcasting and restricts neighborhoods to one-hop. Consequently,
the usage of Hood makes only sense in environments that employ cheap broadcast
mechanisms and not e.g. rely on TMDA-based MAC protocols. Furthermore,
Hood is not a runtime environment: dealing with race conditions, thrashing or
live locking due to miscalculation in memory consumption are not addressed.
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Logical Neighborhoods, proposed by Mottola et al. in [105] expand the idea
of forming neighborhoods from a set of nodes in a one-hop vicinity as proposed
by Hood to a logical partition of a sensor network that operates in a multi-hop
manner. To accomplish this task, the Logical Neighborhoods framework provides
two basic components.

First of all, a declarative language called SPIDEY is utilized to specify a node’s
exported attributes in a template, and to define neighborhoods with the help of
predicates over such node templates. The actual membership of nodes to a specific
neighborhood is determined at instantiation time, and requires an application
programmer to declare the starting point of neighborhood construction. A nice
feature to bound energy consumption on sensor nodes in terms of messages sent is
that the framework implements a credit-based cost function, which may be used
to restrict the scope of neighborhoods, and thus enables application-level control
of resource consumption.

The second part of the Logical Neighborhood’s framework is a neighborhood
routing primitive that enables nodes to multicast values to other all members
of the neighborhood. To this end, a structureless routing mechanism has been
implemented that enables message delivery even in dynamic environments.

From an application programmers point of view, distributed applications may
be built in a cost-sensitive manner without having to explicitly develop under-
lying network protocols when relying on Logical Neighborhoods. Nevertheless,
node-level code has still to be written to express application semantics such as
data filtering, processing and forwarding. Additions to Logical Neighborhoods
have been proposed to furthermore raise the level of abstraction [112], but will be
omitted here for brevity.

A third approach explicitly using the notion of a group as a primitive to specify
data sharing mechanisms is Abstract Regions [148]. Dependent on spatial prop-
erties such as geographical location or radio connectivity, regions of sensor nodes
can interact, thus share data in a <key, value> manner, establish shared vari-
able values within a region or count participating nodes. Implemented on top of
TinyOS, it exports an interface for the above mentioned functionality, but leaves
details on region definition up to the programmer. To cope with the problem of
hidden communication cost that transparent networking bears, the authors pro-
vide a tuning interface for applications to specify bounds on e.g. the number of
message retransmissions.

The implementation of Abstract Regions seems to be neither fish nor fowl:
on the one hand, complex operations e.g. reduction of distributed values into
a shared variable have been implemented and provided while on the other, it
is left completely open in how far means for region specification are available.
Furthermore, the span of abstractions within the framework introduced ranges
from very high when looking at region operations to MAC-layer concerns to be
tweaked by the application.



3.3 Macroprogramming Abstractions 39

3.3 Macroprogramming Abstractions

Distribution abstractions provide an interface that offers primitives for smart in-
formation diffusion to a subset of nodes in the network, implemented in the host
language and accessible usually with the help of an API. In contrast, approaches
we consider to be macroprogramming approaches make substantial use of a pro-
gramming language itself being a tool to address distribution. In a sense, we
adopt the term macroprogramming as it is generally referred to programming ab-
stractions for specifying global, network behavior in the community [115], which
introduces a shift in perspective from tasking individual nodes to writing network
programs.

TinyDB [99] and Cougar [158] have been early projects to alleviate network-
level programming from application programmers. Their idea of a middleware
is using a database abstraction to enable the utilization of a well-known, declar-
ative programming language upon the distributed nodes without an application
programmer having to consider any network issues. Therefore, the network es-
tablished by the sensor nodes is understood as a distributed database which can
be queried using a query language. Since both approaches share general language
semantics, we will focus on TinyDB in the following.

Besides basic SQL primitives, the authors of TinyDB added some essential
keywords specific to the sensor network domain to enhance the language. Each
node of a TinyDB network contributes one row to a single, virtual table to query
execution, and each column represents one of the attributes that can be queried.
A query processor is running on every node to handle and to possibly aggregate
the sensor data questioned by the query specification. Thus to obtain values
from the network, a user issues a query, which is then automatically routed to
all nodes. TinyDB maintains a spanning tree from the node where the request
has been initialized, so that resulting data can be sent back in reverse direction.
Queries may be marked to be evaluated periodically, or values to be aggregated,
summed up or grouped on their way back through the network. Any maintenance
concerning bootstrapping or failure of nodes or routing issues will be handled by
TinyDB without any interaction with the programmer.

With its SQL-style programming manner, TinyDB offers a high-level interface
to a sensor network that is already widely accepted. On the downside, querying
approaches do provide only side-effect free interaction, a fact that restricts ap-
plication development substantially. Furthermore, tasking beyond a central-sink
architecture for data streaming is not intended.

The Regiment system as proposed in [109] and its actual implementation
evaluated in [108] supports application programmers by providing a functional
domain-specific language. Instead of specifying node-level behavior, Regiment
offers macroprogramming primitives and thus enables the specification of global
programs that are compiled into an intermediate language to be interpreted on
individual nodes.
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From the authors point of view, the core element that wireless sensor network
application scenarios feature are data streams. Originating from a set of spa-
tially distributed sensor nodes, Regiment therefore provides language primitives
to process these streams, to transparently aggregate data from multiple nodes
forming neighborhoods and to abstract from data acquisition details and storage.
The result of processed data streams, which can for example be detected events
such as a sensor value exceeding a threshold within a certain region of nodes, are
automatically forwarded to a predefined base station.

Regiment programs are composed of functions that manipulate so called sig-
nals, which represent streams of data samples at a given time, and of functions that
can act upon regions, which represent collections of signals. To construct a region,
a programmer may either form it starting at a certain node in the network via
invoking a spanning tree algorithm, or he can rely on two different gossip-based
primitives. With the help of these constructs, programs that include filters on
data streams of nodes, their organization into neighborhoods and their automatic
delivery at a central entity can be easily defined. Note that it is not possible to
alter node-local state since the Regiment language is, just as TinyDB, side-effect
free. Source code is compiled to an intermediate language called Token Machine
Language (TML), which is interpreted on the nodes accordingly. A token is akin
to an active message, encapsulating a payload of private data and triggering the
execution of an associated token handler upon reception.

The main benefit of utilizing Regiment is that it offers a very high level of ab-
straction to organize data streams, which makes it especially appealing for rapid
prototyping. Once again, Regiment is side-effect free, limiting applications to mere
read access.

Kairos [115] and its successor Pleiades [91] share the same idea of annotating
sequential code with macroprogramming statements. They both provide language
primitives to access node-local state and iterate over a set of nodes, but differ in
the way they support serializability, concurrency and code migration.

Three simple extensions to C sourcecode have been introduced by Kairos:
The node data type allows for logical naming of sensor nodes and exports a set
of common operations on nodes, a call of get_neighbors() returns a list of one-
hop neighbors that may be manipulated iteratively and the ability to access data
remotely is supplied for named nodes. To put into effect the annotations mentioned
above, a preprocessor filters the program for these enhancements. A compiler then
generates node-level code, with Kairos commands being translated into calls to a
Kairos runtime that has to be preinstalled on every node. Any variable that
is subject to remote access, so called managed objects, or referenced by a node
but resides at a remote node, so called cached objects are managed by the runtime
environment. Program execution that involves remote access follows a synchronous
execution model and is internally dispatched to asynchronous message passing
between participating sensor nodes by the Kairos runtime.

Pleiades basically explores a similar approach, thus augments C with language
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primitives, but furthermore offers support for reliable concurrent execution of code
on multiple sensor nodes. The Pleiades runtime takes care of synchronized ac-
cess to shared variables, guarantees serializability and locks resources accordingly.
Both, the compiler and the runtime system support a distributed deadlock detec-
tion and recovery algorithm to avoid potential deadlocks when invoking a concur-
rent iteration over a set of nodes, a feature made available by introducing a so
called cfor loop. Furthermore, the program will automatically be partitioned by
the compiler into nodecuts, node-level programs, whose control flow is managed
and migrated between nodes by the runtime environment in order to minimize
communication costs. Pleiades programs are translated into nesC code, with the
Pleiades runtime being a collection of TinyOS modules.

By injecting new statements that guard shared variables and allow for simple
manipulation of a set of neighbors, a programmer relying on these macroprogram-
ming approaches is relieved from having to explicitly address shared state. This
very convenient feature naturally comes at the cost of unknown and uncontrollable
costs for message transmission.

An approach to offer a configuration environment for nodes in sensor net-
works is suggested by Frank et al. [123] [55] with the Generic Role Assignment
project. Motivated by the challenge of intricate configuration issues of large scale
sensor networks after the deployment of nodes, their goal is to enable network
self-organization: nodes have to evaluate their own status within the network,
compare it to surrounding nodes and then adjust their behavior themselves. To
accomplish such automated, self-sustained operation, nodes agree on specific roles
each of them will take within the network that have to be specified prior to their
deployment. A role is denoted with a set of predicates over system properties
of sensor nodes. Conditions of such rules to adapt a role may involve local in-
formation, but also span over a well-defined set of neighboring nodes properties.
Language-wise, simple boolean predicates, a conditional, distributed count and so
called retrieve predicates to bind results of distributed evaluations to a local vari-
able are available. After diffusion of a compiled role specification into the network,
the role evaluation process will start automatically and eventually end in a stable
network configuration.

Generic role assignment acts as a decentralized framework organizing the dis-
tribution, communication and evaluation mechanisms involved in role constitution.
This is especially beneficial for applications that can be divided into preferably
small number of distinct roles a node can adapt. A threat to energy-efficiency
may be possible oscillation of roles: minor local changes can eventually trigger a
global, network-wide reconfiguration process. A major disadvantage is the lack of
ability to integrate node state into role assessment which prevents fine-grained,
state-based programming of sensor networks.
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3.4 Abstraction via Concept Mapping

Pure domain-specific languages that neither fall into the category of languages or
language additions promoting network-level programming nor foster a modular,
component-based approach, but provide substantial abstraction from sensor node
hardware and programming style are subsumed under the label of concept map-
ping approaches. Embeddedness, event-centricity and stateful coordination are
the main challenges investigated by research in this domain.

A prominent way of supporting sensor network application development is the
provision of a runtime environment or virtual machine. A multitude of efforts have
been put into practice with e.g. Squawk [130] running Java ME CLDC 1.1 compli-
ant programs, Scylla [131] designed to enforce reliable error recovery and memory
access and VM* [90], a framework for synthesizing individual, application-specific
runtime environments interpreting Java code. To this end, Lewis et al. [93] have
also developed a family of virtual machines, subsumed under the keyword Maté,
as well as a specific bytecode they can interpret to tackle the problem of retasking
a network at runtime and provide a concise domain-specific language for sensor
networks. The vanilla VM, Bombilla, executes statements written in TinyScript, a
simple imperative language resembling BASIC syntax, while in addition Mottle, a
scheme-inspired C derivative is available supporting a richer data model. Both lan-
guages are compiled down to an assembler-like instruction set that combines low
and high-level instructions, and allows three possible operand types to be used:
values, sensor readings and messages. Besides basic instructions for arithmetic
computations, halting and branches, sensor network specific commands are avail-
able which will in turn be issued on a stack-based architecture built upon TinyOS.
A thread pool of contexts encapsulate reactions to system events and application
commands, own an individual operand stack and can be scheduled concurrently.
A build-in routing algorithm may be called by issuing a single instruction, which is
in charge of sending the specified packet to its destination. Also, another specific
instruction allows packets to forward themselves and install new applications in
the network that the packet encapsulates, thus realizing viral code updates. Eight
instructions are left undefined for application-specific implementation to provide
a tailored language specification, see [95].

A safe execution environment as provided by a virtual machine hides the com-
plexity of the hardware or, in this case, TinyOS’s complex, asynchronous execution
model, and prevents system crashes. The instruction set design is especially tar-
geted to the sensor network domain. On the downside, the stack-based architecture
and the specified ISA are at a very low-level of abstraction and intentionally lack
expressiveness: Programmer intervention is part of the design strategy.

Support for event-centric programming and stateful coordination of actions has
been proposed by Kasten et al. [88] with the OSM (Object State Model) program-
ming model. Applications expressed in OSM have to be partitioned into the set of
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states they convey and events and/or state changes that lead to state transition.
Resulting state machines may be hierarchically composed into superstates, as well
as declared to run (conceptually) concurrently. OSM applications are compiled
into native C using Estrel as an intermediate language.
The main benefit of utilizing OSM is its support for explicit state manipulation
thus flow control and transparent scoping including memory management for vari-
ables declared to deal with application state. The authors thereby object to the
problem of sharing state among different actions in event-centric programming:
since local variables are automatically released from the stack after the respective
function has run to completion, state may either be preserved via global variables
at the cost of constant memory locking or via manually crafted state structures
often prevented due to lack of dynamic memory management upon sensor nodes.

Although OSM empowers developers with a well-defined interface to stateful
coordination, the language semantics fall short in respect to expressing events.
Naturally, the occurrence of multiple concurrent events within one state can only
lead to one state transition. Events are thus consumed on a priority-based seman-
tic. As a consequence, the ability to specify a concatenation of multiple events
necessary for state transition is not part of the OSM features.

A combination of state-based shared memory and a rule-based behavior defi-
nition for sensor nodes is pursued with the Dynamic Embedded Sensing and Ac-
tuation Language (DESAL) [12]. Programmers are equipped with a possibility
to specify directional shared variables to serve as a communication substitute be-
tween program components. To utilize the soft state shared memory provided by
DESAL, a developer denotes, possibly conditional, read or write bindings between
variables which are then governed at runtime by a rule engine. Due to the unre-
liable wireless medium, distant variables may not yet be bound at runtime when
requested to be evaluated, a problem that DESAL addresses by skipping the asso-
ciated commands. Application semantics are mapped to rule specification, which
take the form of a list of boolean expressions over state variables that guard state
modification. Rule evaluation is triggered on a periodical basis, individually de-
noted with each rule body and scheduled in a best-effort manner.

Handling distributed state across unreliable networks, as well as addressing
event-centric data processing are challenges that certainly need to be addressed.
While the solution proposed with DESAL intends to overcome inconveniences
caused, it runs short in several aspects: First of all, the specification of bindings
assumes prior knowledge of the network setup to run in a controllable manner,
a circumstance that limits applicability of DESAL. Although dynamic binding of
variables is available, the entire program semantic may change if utilized leading
to adaptivity that is rather harm- than helpful. Furthermore, reaction to events
is artificially delayed by the scheduling policy for rules that questions a developer
to explicitly time the evaluation which may not scale with increasing application
complexity.
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A quite similar rule-based approach to facilitate application development has
been introduced in [128]. Once again, declarative rules are embedded into im-
perative control sequences, a design choice which aims at masking the event-loop
without having to sacrifice rule-based application logic. Here, sets of rules com-
bined into tasks, which are evaluated together every given time interval, encapsu-
late control flow. Once again, the authors chose static over dynamic scheduling
motivated by the fact that this allows for compile-time program verification per-
mitted due to predictable scheduling. This way, runtime reliability can be assured
for a given network topology within a synchronized network. Interaction between
nodes, rules or with the underlying system for sensing and actuation is modeled
with the definition of abstract channels, which in turn are implemented via dec-
laration of persistent memory on a node’s heap. Channels may either be accessed
with a send or a receive operation, thus share directional semantics with DESAL
but allow for multiple readers at a time. For maximum reachable energy efficiency,
the compiler should be aware of the underlying TDMA MAC protocol to schedule
energy intense tasks such as logging during the awake time of a sensor node, thus
maximize sleep cycles.

Presented language primitives in the paper share a high level of abstraction,
but lack any pointers towards a real-world implementation. Therefore, it is ques-
tionable in how far the ideas presented are really tested within a testbed.

3.5 Composite Programming

Difficulties in application development in an embedded context are often a result
of a low level of abstraction concerning the underlying hardware. Domain-specific
languages that are explicitly designed to enable modular composition of middle-
ware functions can be classified under the term of Composite Programming ap-
proaches. The discussion of representative approaches is subject to this section.

With the prime intention to serve as an intermediate language that higher-level
abstractions (such as Regiment) can compile down to, Newton et al. [107] propose
the Token Machine Language (TML). The general model evolves around the notion
of a distributed token machine running on the sensor nodes, scheduling individual
tokens via their associated handlers for execution, thus borrowing the idea of
vertical integration of execution and communication from Active Messages [144].
Each token possesses private data to carry its state and can be augmented with a
set of arguments when traveling through the network or during local interaction
to allow for parameter passing. All token objects are stored locally on a node
within the sole dynamically allocated memory, a heap called token store, with
their private memory only accessible by their dedicated handler. Interaction of
token handlers with the token scheduler and the token store is restricted to a set
of predefined operations to schedule, query, distribute and delete tokens, while
manipulation of private token data or the bounded memory available for shared
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data is left unrestricted. To avoid the introduction of a dynamically growing call
stack and to allow for guarantees on termination of handlers, the execution of
subroutine calls is split at compile time using CPS (continuation passing style)
transformations into pre- and postcall handlers. All live data is explicitly pushed
into a subtoken used later on for continuation. Non-recursive subcalls can also
be inlined if the preset upper bound for maximal execution time per handler is
still met. Nevertheless, the implementation of TML cannot support real-time
scheduling due to the underlying TinyOS operating system and its split-phase
operations e.g. utilized for sampling a sensor: events firing within the operating
system introduce unpredictable time delays resulting in best-effort scheduling of
tokens.

To enable support for a variety of applications, application-specific language
additions have to be integrated into the interface offered to token handlers, a cir-
cumstance that reveals TML to rather be a model for component-based application
implementation than a fixed language. Also, since token interaction is not directly
allowed within the handlers it is evident that any coordination has to be pushed
to shared memory. It is left unclear in how far race conditions are objected. Re-
gardless of the difficulties mentioned above, application implementation in TML
offers abstracting from memory management when adhering to its premises. In its
current version, TML is build on top of TinyOS with its runtime as well as a TML
program running as TinyOS modules after compilation. A lean implementation
comes at the cost of direct linking of TML programs to the operating system.

With the introduction of the sensor network application kit (SNACK), Green-
stein et al [67] seek to provide a modular, component-based service library ac-
cessible to application programmers for sensor network tasking. To achieve this,
they introduces a service-specification language operating on top of nesC [61] and
especially designed to enable controlled sharing of variables as well as parame-
ter passing between components. A compiler will parse SNACK-language service
compositions and translate given component interdependencies into nesC compo-
nent source code, which can then eventually be compiled to a binary image. A
library, being the integral part of SNACK, consisting of popular services such as
messaging, storage and a timer abstraction outsource low-level system interaction
from application semantics when linked to the application.

SNACKs component-based specification language is a nice way of introducing
modularity into nesC programming, with valuable services already provided as a
library by SNACK developers. Apart from this, component implementation does
not provide any extra benefit from utilizing pure nesC code: split-phase execution,
concurrency and interrupt handling do still have to be understood and addressed,
and another high-level configuration language learned. Therefore, using SNACK
makes sense in case a viable library is already at hand.
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3.6 Abstraction via Support

In contrast to the other primary dimensions, approaches that offer abstraction
via support have no predefined functional or conceptual mechanisms they convey,
but rather provide an infrastructural framework to encapsule functional units and
mediate between application and system or system-related functionality. Rep-
resentative approaches provide network management services such as e.g. code
distribution [82] and take the form of libraries [35] or frameworks [102].

RUNES [37] is an approach that fulfills the classical requirements of a mid-
dleware. Designed to alleviate problems arising from heterogeneity of interacting
devices, both in terms of manufacturer, operating system and system capabili-
ties, and dynamic network settings, the authors propose a supporting middleware.
Self-contained components feature necessary middleware functionality and can be
individually deployed at runtime according to application needs. To enable this,
a component model serves as a basis to specify basic runtime units and their cor-
responding interfaces in a language-independent manner. A middleware kernel,
written in the host language of the device and running on each participating node
in the network, processes modeled interdependencies of components at runtime.

A variety of platform-dependent implementations of the component model
have been developed, including a Java virtual machine based implementation, a
C/Unix-based implementation as well as an implementation running on the Con-
tiki operating system to ensure the applicability of the model on heterogeneous
systems. Components available for reuse include a data dissemination and a data
acquisition component for sensor nodes as well as a data logging and packet for-
warding component for desktop computers.

The clear separation of platform-dependent and middleware concerns provides
an application programmer with a nice tool to develop dedicated, clean compo-
nents. Nevertheless, low-level details of embedded programming are still exposed
to a programmer since RUNES offers a tool to design programs rather than a
mechanism to explicitly address inconveniences. A change in perspective from
offering functional to conceptual support can be observed.

Impala [97], is an architecture implemented within the ZebraNet project [85].
The primary design goal has been to build a modular, lightweight runtime environ-
ment for applications that manages both devices and events. Hence, Impala splits
the field of duty into two layers, one to encapsulate the application protocols and
programs for ZebraNet, and an underlying layer that contains functions for appli-
cation updates, adaptation and event filtering. Application programming follows
an event-based programming paradigm, thus any application deployed upon the
nodes has to implement a set of event and data handlers to respond to different
types of events, including timer, packet, data and device events. Besides supplying
event filter mechanisms, Impala emphasizes the need for integrating adaptation
and updates of applications at runtime within the system architecture.
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Adaptation of an application or an application-level protocol can become nec-
essary due to changes of the system, e.g. failure of certain sensors or low battery
level, as well as application specific modifications, e.g. a sudden drop of success-
fully delivered packages. A middleware agent, the Application Adapter, checks
the overall state of the system on a regular basis and selects the most suitable
configuration according to the present circumstances. Dynamic software updates
may be mandatory during execution. Since ZebraNet equips wildlife animals that
freely move with sensor nodes, the encountered network topology is highly dy-
namic. Software can therefore often be received in incomplete bundles of packets,
rendering simultaneous re-programming of all nodes impossible. The Applica-
tion Updater serves as a management component for available versions and code
bundles.

Although proposed to serve as a general purpose middleware, Impala is very
explicit about which event handlers have to be present in the system since these
are directly integrated in provided modules. One can derive from the specified
functionality that services such as the adaptation of application-level protocols
are tightly coupled with information available from the routing subsystem as well
as the operating system. Porting Impala to a different system certainly involves
more than just a re-adjustment to available resources.

The idea of Sdlib [35] is to provide a standard library for operations commonly
found in WSNs. Basic usage patterns and protocols are to be extracted from appli-
cations and encapsulated into separate components which may then be linked by
a variety of different applications if needed. Sdlib has been particularly designed
for TinyOS, thus features TinyOS modules written in nesC, allowing applications
to invoke functionality with wiring the offered modules. Data collection as well
as data dissemination serve as examples for application-independent functionality
that has been outsourced to sdlib modules. To benefit from sdlib, each sensor node
participating in the network has to be flashed with the sdlib runtime engine. This
is a core management entity supplying auxiliary service such as a data flow com-
ponent, a simple memory management component or a component to guarantee
reliable transmission of messages.

A toolbox of services controlled by a runtime subsumes sdlib features. Sticking
to nesC code and the TinyOS operating system naturally restricts sdlibs applica-
bility and portability, especially in respect to the RUNES approach. On the other
hand, disassembling applications into functional parts to foster software reuse
greatly eases application development and debugging, making Sdlib an interesting
approach when composing TinyOS applications.

3.7 Dispersed Structuring

Significant support to cope with distribution is the characteristic attribute of ap-
proaches classified under the key Dispersed Structuring. The ultimate goal is to
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offer a purposive additive that enables a lightweight implementation of distributed
algorithms. As such, the provided means are not part of the utilized programming
language but rather take the form of an API or conceptual model developers can
rely on.

The latest addition to the Lime family of middleware platforms TeenyLime,
proposed by Costa et al. [38], offers a data-centric view upon nodal distribution.
Instead of relying on an explicit group or neighborhood primitive as proposed by
approaches in Section 3.2, transparent and data-centric interaction among nodes
is the key abstraction mechanism utilized. Specifically designed to enable sophis-
ticated sense-and-react applications in wireless sensor networks, it allows for data
sharing among neighboring nodes with its tuple space implementation. State-
ful coordination with the possibility to reliably share data, the ability to specify
multiple tasks and support for reactive interactions are the main benefits that
TeenyLime provides to an application programmer.

Central to the TeenyLime implementation is the tuple space, a shared data
repository which can be accessed with read and write commands to insert and
retract data tuples via pattern matching. The local tuple space of a node is
automatically shared with its one-hop neighbors and therefore serves as a commu-
nication primitive. For instance, nodes can publish their ability to provide sensor
data by putting a special tuple that indicates this ability into the tuple space.
When another node wants to invoke a reading, it matches the pattern of this ca-
pability tuple and will be automatically provided with the data sample requested.
Furthermore, the TeenyLime API specifies commands to add and remove reactions
whose action parts will be triggered upon the emergence of a tuple. Stateful co-
ordination is also transparently supported by the introduced reliable operations.
The TeenyLime middleware is implemented in nesC on top of TinyOS.

Since data sharing in a local context is facilitated by the tuple space interface
and due to a simple API that TeenyLime offers, a developer can benefit from re-
lying on this middleware implementation when localized interactions have to be
coordinated, as well as reliable networking is necessary. TeenyLime clearly ad-
dresses distribution challenges in a sense-and-react context, but is not a general
runtime that ensures memory bounds.

Agilla [51] provides an abstraction for wireless sensor networks that relies on
mobile agents. A special runtime environment featuring a tuple space for asyn-
chronous communication between multiple agents residing on a host and an exe-
cution platform for agents are the core features of Agilla. The general idea is to be
able to deploy a vanilla sensor network that only features the Agilla runtime en-
vironment. Later on, different applications may be inserted into the network with
the help of agents encapsulating application logic. These agents autonomously
move around the network to gather data or coordinate local tasks. Agent specifi-
cation relies on the Maté instruction set, enhanced with specialized instructions to
support agent migration, agent cloning and tuple space modifications. Naturally,
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the Agilla runtime environment is implemented in TinyOS.
To permit a utilization of agent-based application development in meshed en-

vironments, thus couple several sensor networks using an IP-network in between,
Hackmann et al [69] combine Agilla and Limone, an agent platform capable to sup-
port more elaborate devices than sensor networks, into Agimone. Cross-network
interaction is based on intelligent gateways: Each WSN is associated with one
dedicated gateway to enable its advertisement to other participating networks.
For an Agilla agent to migrate to a distant WSNs, it has to be wrapped into a
Limone agent at the gateway, transferred across the IP-network relying on Limone
migration and unwrapped and re-injected into the target network.

Using Agilla or Agimone to implement sensor network applications can be
useful when multiple applications have to utilize the same network that are not
known at deployment time. Since agents provide a mechanism to transfer both
code and state across networks, the provision of services encapsulated into distinct
agents can be beneficial: Service placement strategies may adopt to current load,
energy or resource utilization. On the downside of this approach, communication
costs and processing time are much higher for transferring agents than for simple
message passing. Applications that basically feature data streaming operations
will eventually suffer from these increased cost.

3.8 Conceptual Evaluation of Middleware Approaches

All middleware approaches, along with an intuitive measure to depict and judge
their prevailing design rationale, are summarized in Table 3.1. The chosen scale
ranges from - , assigned to those middleware proposals that do not address a given
dimension at all, up to ++, which denotes a very strong emphasis on the corre-
sponding abstraction. In between these extremes, 0 is used to tag implementations
that comprise slight tendencies towards offering supportive measures, whereas +
stands for a genuine, conceptual integration of the abstraction mechanism in ques-
tion.

Once again it is important to point out the conclusions that can be drawn
from the table to avoid its misinterpretation. A higher score in a given dimen-
sion does not automatically make an approach the better choice for any appli-
cation. Rather, this measure reflects the degree of commitment or dedication to
the specific problem area and the resulting level of abstraction. Judged from an
application programmers point of view, one can generally conclude that the higher
the score, the less previous knowledge about intrinsic challenges is assumed, and
the better the approach is suited for rapid prototyping. Clearly, approaches that
provide support to more than one end of the abstraction spectrum by means of a
stringent conceptual model to interleave domains are definitely superior to both
single target or what we call patchwork approaches. An instance of the second
group is e.g. the basic implementation of Logical Neighborhoods. Recall that it
facilitates data sharing among logical neighbors, giving the developer a nice way
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Table 3.1: Characteristic abstraction mechanism of middleware approaches

Approach Support Distribution Language

Hood 0 + -
Logical Neighborhoods + ++ 0
Abstract Regions - ++ -

TinyDB 0 ++ +/++
Regiment 0 ++ +
Kairos and Pleiades + + +
Role Assignment 0 ++ 0/+

Maté 0 0 +
OSM 0 - +
DESAL - 0 +

TML + - +
SNACK ++ - +

Runes + - 0
Impala ++ - -
Sdlib ++ -/0 -

TeenyLime + + 0
Agilla and Aginome + + -

Implementation of abstraction by approach:
- = none 0 = low + = medium ++ = high

to think about the structure of a network. When it comes to tasking the nodes
though, this point of view cannot be applied any more, thus the model breaks,
leaving a developer with programming individual nodes again. A good example
for a cohesive application of an adopted model is the TinyDB framework: The
network is always treated as a distributed database, and therefore no means for
individual, inter-node communication is incorporated in the query language. On
the downside, this of course limits the influence a developer can have on network
setup and communication costs to zero.

As can be derived from this, abstractions are always in the crossfire of being
too high, thus preventing application-level influence on cost parameters, or too
low when not being able to significantly impact on simplifying application devel-
opment. Their utilization naturally comes at the risk of hidden costs in terms
of performance loss, timing prerequisites or message overhead, thus factors not
included in a qualitative evaluation. The quantitative metrics studied for mid-
dleware approaches in wireless sensor networks differ not only among abstraction
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dimensions, but also target platform, operating system and even implementation,
and are therefore not included in the above evaluation.

3.9 Functional Evaluation of Middleware Approaches

The goal of middleware is to provide the application developer with comfort-
able means to implement applications. Thus, this section discusses the presented
middleware approaches in respect to their appropriateness for the development
of heterogeneous, distributed sensor network applications. Therefore, we analyze
how far common building blocks shared by many application instances are directly
supported, which will be briefly introduced in the following. In contrast to the di-
mensions evaluated in the preceding paragraph, we now switch from a conceptual
to a functional discussion of representative middleware approaches.

3.9.1 Common Application Building Blocks

Although the design space for putting applications on top of wireless sensor net-
works into practice is vast, several usage patterns enjoy frequent employment.
These patterns comprise a variety of ways how and where to deal with sampled
data, address post-deployment interaction with sensor nodes or the entire net-
work respectively, and explore general concerns of dealing with heterogeneity of
deployed devices. In how far middleware approaches explicitly foster one or more
of these patterns reveals functional dependencies between classes of applications
and the middleware instances, thus allow a functional estimation of appropriate-
ness of a certain middleware for a class of application. To emphasize the relevance
of given patterns, well-known deployments and applications associated with it are
pointed out.

Data Streaming Pattern (DS)

Streaming of data from multiple nodes to a dedicated sink for the sake of data
collection is a common task performed in sensor networks. A read-only request is
issued, possibly filtered by means of predicate specification on values, position or
participating nodes and processed within the network. Depending on the applica-
tion, streaming may be scheduled as an automatic, periodic task, e.g. for contin-
uous supervision of data evolution, issued in an ad-hoc or even in an event-centric
manner. A precondition for enabling data streaming in a multi-hop environment
is the existence of a route from every node to the sink, thus a working routing
protocol that data streams can rely on.

Real-world examples following a data streaming paradigm that have been built
with wireless sensor networks include predominantly environmental deployments
such as [103, 140, 149] or [106]. Here, the network has been used to learn more
about the climate, eruptions of volcanoes or the behavior of birds. Especially
in this domain, infrastructure is often not directly accessible and phenomena are
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usually spread over a certain region, making wireless sensor networks a valuable
tool for data acquisition. Other examples that rely on data streaming include
structural health monitoring of buildings or bridges [156] or tracking applications
that strive for providing fresh information on the geographic position on certain
persons [11].

Sense-And-React-Pattern (SAR)

Another usage pattern for wireless sensor networks can be summed up under the
keyword Sense-And-React-Pattern. Deployed to monitor their spatial vicinity, fil-
ter relevant changes and react in a predefined manner to recognized events, sensor
nodes can act as remote, distributed guards on physical phenomena. Therefore,
data in SAR usually resembles a limited, local scope of validity and triggers local
actions denoted by predefined control laws. These control laws can manifest them-
selves in simple events such as a value passing a certain threshold but can also
be complex conjunctions of multiple spatio-temporal conditions. To add robust-
ness to the system, thus avoid triggering a wrong action based on a faulty sensor
reading or due to the spatial distribution of an event, values are often collected
from multiple nodes physically close to one another. Coordination and control
of localized interaction and a meaningful and rich language to express events are
major challenges in SARP.

Heating, ventilation and air-conditioning (HVAC) applications [44], event de-
tection and classification [154] or reactive sampling as proposed in [27] are real-
world examples that follow a SARP paradigm.

Read-Only-Pattern (RO)

The potential for localized data acquisition is a key reason to utilize sensor net-
works. For many applications, it is sufficient to have read access upon the sensor
node, thus solely gather and process available data. In this case, stateful adap-
tation of system parameters as well as user interaction after deployment are not
integral parts of the application design.

Practical implementations of such read-only applications are for instance the
vineyard monitoring experiment [16] where sensor nodes were densely deployed
to monitor temperature variations, or the setup for habit monitoring on Great
Duck Island [100]. Applications involving passive RFID chips can be seen as the
prototype systems that constitute themselves on read-only patterns.

Read-Write-Pattern (RW)

While in a data streaming context status information is predominantly transmitted
from a data source to a sink, many applications need an uplink to the sensor
network to operate in a useful manner. From a user perspective, this uplink
can either be used to tweak parameters such as the sensor sampling frequency or
to provide software updates on deployed sensor nodes. Therefore, we categorize
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middleware approaches to support this pattern whenever an application is capable
to adjust system behavior dynamically during the time of deployment.

Volcano monitoring [149] is e.g. an application that makes use of a read-write
pattern by adapting the sampling frequency on event recognition to assure a good
trade-off between data granularity on the one side and energy exposure on the
other. Another example of read-write pattern necessity is an emergency deploy-
ment for road tunnel supervision, proposed in [37], that explicitly enables dynamic
loading of new software components onto deployed sensor nodes to reconfigure us-
age scenes.

Entity-Processing-Pattern (EP)

Node-level processing has to be available on any sensor node participating in an
active manner in a sensor network application beyond pure data acquisition. The
entity-processing-pattern is in contrast not concerned with whether node-level
processing is physically possible, since this is taken as a given fact, but rather
states that the application requires selective tasking of individual nodes. The
selection can be based on node addresses as well as distinct attributes a node
exposes to the application.

Once again, a use case that makes heavy use of the entity-processing-pattern
is the (HVAC) example: Water sprinkler activation based on previously detected
smoke in a room should be manageable at node-level with specific selection to
ensure case-sensitive, precise behavior.

Group-Processing-Pattern (GP)

Unlike Internet-scale networks, the goal of a single node in a wireless sensor net-
work is often of minor importance. Instead, many applications rely on a network
scenario which is set up to serve as an entity rather than individual nodes pursuing
their own determination, an understanding that calls for new addressing and data
manipulation schemes. To achieve coordinated behavior among network subsets,
corresponding primitives or services have to be provided transparently to ease ap-
plication development. Prominent use cases that will benefit from such patterns
include retasking a selection of nodes sharing a common attribute, e.g. similar
sensors or physical proximity or distributed event recognition.

A running implementation featuring group processing schemes has for example
been tested in EnviroTrack [23]. The presence of an object, a distributed environ-
mental event recognized by a group of sensor nodes, is associated with one logical
instance maintained by the network, which is in turn used to implement object
tracking.

Heterogeneity and Internetworking (Inet)

While the patterns presented so far purely address activities internal to sensor
networks, internetworking and heterogeneity become integral issues when real-
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izing ubiquitous computing in a mesh-network context: Not only sensor node
capabilities may vary among deployed nodes in the network regarding available
sensors or actuators, but applications may span over different classes of devices
that differ in magnitudes concerning general processing and storage performance.
These problems, along with the provision of means to transparently cross network
boundaries, are commonly addressed with the help of middleware by hiding the
underlying layers and exporting a system-independent interface for service invo-
cation.

Experiments that target heterogeneous hardware include e.g. a road tunnel
disaster management application that involves interaction of sensor nodes with
handheld and server-sized devices proposed by Costa et al. [36] as well as the e.g.
tracking of firemen as studied in the FeuerWhere project [13].

3.9.2 Discussion

Table 3.2 depicts an overview of the discussed middleware approaches and their
functional analysis based on the patterns compiled above. Once again, the focus is
on typical requirements for wireless sensor network applications and their support
by the middleware approaches with their choice being to some extent arbitrary.
The provision of patterns is discriminated in two classes: • marks patterns explic-
itly supported by an approach, whereas ◦ marks patterns which can be possibly
implemented with the associated middleware approach, but are not in its focus.

As can be derived from the applications discussed, real-world sensor network
scenarios tend to either use the network to acquire spatio-temporal data under
harsh conditions, thus in unaccessible regions, over a long period of time or in
a high granularity, or deploy the nodes to trigger in-network reactions e.g. via
actuators to enable decentralized system behavior. Within this design space, the
former practice usually incorporates a means for streaming information, possibly
filtered, to a central entity for processing and storage, thus makes use of the data
streaming pattern, while the latter requires primtives for event and action seman-
tics, thus relies on the sense and react pattern. Therefore, it is not astonishing
that almost all approaches offer implicit support for at least either one of these
basic utilization patterns.

Another obvious observation is the fact that approaches designed to overcome
distribution issues commonly implement a group processing pattern. A noteworhty
exception are those implementations subsumed under the keyword dispersed struc-
turing: Here, support is shifted from a logical/physical networking point of view
to the utilization of a data structure which disguises distribution.

An interesting factor for evaluation is whether the middleware explicitly grants
write access on sensor nodes. Basically, this parameter has been chosen to reflect
the adaptability of approaches at deployment time, so to what extent an interface
is available for applications and/or users to dynamically adjust system behavior
based upon network state. It is clear that the lack of such write access mechansims
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Table 3.2: Functional analysis of middleware approaches.

Approach DS SAR RO RW Inet EP GP

Hood ◦ • ◦ •
Logical Neighborhoods • ◦ •
Abstract Regions ◦ ◦ ◦ •

TinyDB • • • ◦ •
Regiment • • •
Kairos and Pleiades ◦ • •

Mate ◦ • • •
OSM • • •
DESAL ◦ • ◦ ◦ ◦

TML ◦ ◦ ◦ ◦
SNACK • • ◦ ◦

Runes • ◦ ◦ • ◦ ◦
Impala ◦ ◦ ◦ ◦ •
Sdlib • ◦ •

TeenyLime ◦ • • • ◦ •
Agilla and Aginome ◦ ◦ ◦ • •

• Explicit support
◦ Implicit support

DS = Data Streaming
SAR = Sense-And-React
RO = Read-only
RW = Read-write

Inet = Internetworking
EP = Entity Processing
GP = Group Processing

at the middleware layer does not necessarily doom applications to static behavior:
if the middleware is e.g. accessible via a dedicated API, the application can sim-
ply bypass it and invoke underlying system functionality to achieve the requested
behavior. Explicit support however is rather scarce and cannot be attributed to a
single dimension of abstraction. A slight tendency towards approaches implement-
ing a language abstraction can be observed, but by no means can be categorized
to be of prime interest in this abstraction dimension.

Finally, key assignments such as addressing heterogenity of devices and pro-
vision of end-to-end service invocation even accross networking domains cannot
be confirmed to be the driving forces for middleware concepts in wireless sensor
networks: only a quarter of the investigated approaches address these challenges,
with only half of them considering them to be issues of prime importance.
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3.10 Critical Evaluation

A lot of effort has been put into making wireless sensor networks accessible for
a broad community beyond experienced programmers and sensor networking ex-
perts. While the last two section thoroughly discussed general motivation and
in-detail conceptual and functional parameters for each approach, this section is
taking a step back, evaluating the overall merit of proposed abstraction categories
with respect to a programmers’ expectation. Doubtlessly, these expectations may
differ dependent on the actual expertise of a developer and the specific applica-
tion or class of applications one is eager to build, however the following, very basic
demands are unlikely to change.

• Reliable and robust software development: First and foremost, software has
to work. Reliable and robust software is the fundamental key for successful
deployments. As a consequence, a valuable abstraction shields a programmer
especially from those errors that arise from intrinsic difficulties of the target
domain that go beyond his usual experience background as these are hard
to track.

• Fast prototyping: Independent of the actual project, cutting development
time is a concern which directly influences overall project costs. Naturally,
the earlier within the development process design decisions can be tested and
explored, the better can the software be targeted to individual requirements.
Support for rapid prototyping is thus an important feature that middleware
platforms should address appropriately.

• Dedicated support throughout the software development process: The avail-
ability of a nice, conceptual abstraction is great, but practically irrelevant if
not embedded within a reasonable tool chain which allows for its exploita-
tion. Similar to the demand for fast prototyping capabilities, the software
engineering perspective should not be disregarded.

Looking at the distinct categories of middleware approaches, the central question
which challenge is the foremost concern that hinders reliable and robust software
development yields two answers: Either, approaches emphasize that it is the dis-
tribution and networking issue that developers face, or they target to overcome
the concern of software development for embedded hardware.

To our understanding of the problem domain, the second problem is the most
critical challenge to address for reasons of ease of development and mere software
size. Although abstractions that offer mechanisms for improved development of
distributed applications substantially reduce overall programming effort, this is
only the case when applications can directly benefit from the offered mechanism.
Naturally, the provision of a build-in routing protocol suits e.g. solely those appli-
cations that not only rely on a data streaming pattern, but also feature the network
topology, thus associated roles of individual nodes, the approach foresees. Similar
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conclusions can be drawn for e.g. the prominent neighborhood abstractions: Lo-
calized interaction is certainly an important building block of many applications,
but once again not a key concern shared by all. Once the functionality supported
is not a central concern of the envisioned application scenarios, or only to a small
extend, it is questionable whether the constraint memory resources should be oc-
cupied by the associated middleware abstraction, or whether the deployment of
an application-specific implementation is not favorable.

In contrast to this, embedded hardware with its emerging challenges are a
fundamental reality shared by all sensor network applications. One has to be
aware that this is not to say that distribution and networking are note equally
important issues, yet the nature of how exactly this manifests itself is a lot more
specific to individual applications. Therefore, objecting the intrinsic problems
that arise from embedded sensor node tasking, that hamper software reliability
and application robustness in the first place, is the more appropriate choice.

Returning to the initial abstraction dimensions and planes that approaches
can be classified within, see Figure 3.1, this request is predominantly objected
by those that foster improved capabilities for concept mapping, as well as those
that in addition provide supportive measures. A closer look at the proposed
abstractions in these domains reveals however that none of the suggested solutions
is able to fulfill all basic demands denoted above, each lacking at least one of
them. The least valuable abstraction is certainly DESAL, since, to the best of
our knowledge, no implementation exists at all. Maté, even though providing
a virtual machine to shield a programmer especially from the rather demanding
TinyOS event model, exposes only a very limited set of low-level instructions to
a developer. This hinders rapid prototyping in case more than standard sense
and send operations are needed. Likewise, relying on TML as a basis for sensor
network application development is only partially satisfactory. It demands for
application-specific adaptation by design, a circumstance however coherent as it
targets to serve as an intermediate language.

Among all proposed approaches, SNACK is the one that objects both the
request for rapid prototyping and for reasonable support in terms of software en-
gineering capabilities. Simulation and evaluation tools developed for TinyOS can
directly be utilized since SNACK is a framework for TinyOS service composition.
On the downside, the interface to programming is still the nesC language with
the underlying TinyOS operating system, leaving low-level concerns such as stack
management and event-centric task decomposition up to the programmer. These
in turn are explicitly addressed with the OSM programming model: Managed state
variables and stack management definitely facilitate application development and
at the same time ensure software robustness. But then again, only a prototypical
implementation of an OSM compiler, and no support for pre-deployment testing
and evaluation is available.

The gap of missing a programming framework which addresses embedded,
event-centric programming challenges, but at the same time provides substantial
support throughout the software development process still remains to be closed.
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3.11 Concluding Remarks
The goal of this chapter has been to provide insights on the current state of the
art in middleware developments targetting wireless sensor networks. Unlike well-
known middleware approaches utilized in classical distributed systems, approaches
designed for this domain face challenges beyond distribution and/or mobility: the
embedded nature of devices that restricts excessive resource exploitation, the un-
reliable wireless medium as well as the predominantly event-driven operational
scheme call for suitable abstractions to enable rapid application development.

In order to offer a thorough evaluation of presented middleware approaches,
we depend on a twofold qualitative analysis. First of all, we motivate the chosen
selection by means of classifying the perspective on abstraction each scrutinized
approach conveys. This way, its inherent conceptual point of view becomes ap-
parent. The presented classification is complemented by a functional analysis
to precisely elaborate the actual benefit an application programmer can expect
to experience when building upon a chosen platform. To this end, we base our
evaluation on common usage patterns shared by and derived from real-world sen-
sor network deployments. With both metrics at hand, future developments can
quickly be evaluated and easily be put into the hitherto existing context.

The analysis has also revealed that those approaches that object distribution
problems have reached a very mature state as arising problems are addressed
in a multitude of different flavors. This can however not be attested to those
middleware implementations targeting to offer dedicated abstraction from sensor
node tasking. Especially in case supportive measures throughout the development
process are needed, a major gap still to be closed becomes apparent.



Chapter 4

The FACTS Middleware
Framework

The last chapter presented general concepts and contributions to grant assistance
in tedious sensor network programming, followed by a review of state-of-the art
approaches to overcome WSN specific challenges. As has been pointed out, an ap-
proach that comprises both a strong conceptual model to support robust software
development and a holistic framework has up to date not been available. In this
chapter, we introduce our solution to object this gap, a middleware framework
called FACTS. The core idea for designing FACTS has been to provide a simple
but versatile model for dealing with both an event-based execution environment
and wireless communication using a unified data model. A developer is empowered
to describe node-local behavior by means of rule specification. Composed of a con-
dition part stating under what circumstances or event a sensor node is requested
to become active, and a corresponding action part automatically executed upon
condition verification, a rule becomes the basic programming primitve to prompt
individual nodes. The motivation for depending on this declarative programming
paradigm has been the straight-forward mental model the choice offers to cope
with the prevalent event-centric usage pattern of sensor networks: Rules provide
an intuitive, modular and simple handle to specify reactive programs, thus have
the potential to allow for fast and flexible implementation of application concerns.

To alleviate programming efforts, the FACTS framework comprises a compre-
hensive programming model, a suite of programming tools for rule compilation and
debugging and a tailored runtime environment for the sensor nodes to shield the
programmer from intrinsic hardware, data and communication matters. The re-
mainder of this chapter will briefly give an overview of the FACTS framework and
associated supportive tools in Section 4.1 and present basic language primitives in
Section 4.2 to highlight its general idea. Section 4.3 applies the insights gained to
point out how FACTS can be conceived with regard to the previously evaluated
approaches. In-detail information on addressed framework components concerning
design, implementation and performance will be provided in subsequent chapters.
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Figure 4.1: Facts framework toolchain

4.1 FACTS concept and components

Driven by the quest to enable rapid sensor network programming with a clear
abstraction from both event-centricity and embeddedness, FACTS offers a rule-
based programming language that can be interpreted on various platforms. Figure
4.1 gives an overview of the usual steps involved in application development as well
as the core elements available during this process.

4.1.1 Application development with FACTS

At the beginning, the envisioned behavior of sensor nodes is described with sets of
rules specifying what events are of interest and how to react upon their detection.
Events may be simple such as the sudden availability of a new sensor reading or
the reception of a packet over the radio interface, but can also comprise complex
time, state and data dependencies. Events, stateful information and user-defined
data, thus any data visible to an application programmer, is wrapped into a so
called fact, a mere list of attribute/value pairs tagged with a name and additional
system-generated information. The ruleset(s) that outline rule/fact interaction are
then input to a ruleset compiler, see Section 6.1, which in turn ouputs a concise
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bytecode dependent on the target platform.
FACTS supports three different backends. First of all, a Haskell [138] back-

end with Hugs [5] being the corresponding interface can be used, which enables
debugging of developed rulesets at a very fine granularity and allows for formal rea-
soning about the language. A developer can specify a network of nodes runnning
the same ruleset and a flow of events that enter the system at a certain time, then
step through the bytecode and trace the flow of execution. Further compilation
targets include the ScatterWeb sensor network platform and the ns-2 network
simulator [49]. In both cases the compiler produces basically the same output
solely differing in their individual representations. This bytecode can be deployed
and afterwards interpreted by the FACTS runtime environment.

4.1.2 FACTS runtime environment

As can be derived from the above, FACTS programs are not compiled into na-
tive code, but into a dedicated bytecode which has been optimized for size and
deployment flexibility. The architectural model therefore implemented is that of
an interpreter or process virtual machine, providing a sandboxed runtime envi-
ronment for rules. Besides the operating system, FACTS remains the only active
process executed on the nodes, with all application-level logic purely supplied in
rulesets. The advantages of utilizing such an approach, especially in the context
of wireless sensor networks, are at hand:

• Managed access to OS functionality: Providing a thin layer of software in
between application and operating system allows to guard and eventually to
prohibit access to underlying system resources. If crafted well, the interface
of a virtual machine will enable a developer to abstract from low-level con-
cerns and concentrate on the application logic instead. Implementationwise,
the necessity for manual stack management in embedded programming is in
particular one of the big barriers preventing rapid prototyping and stable
execution. Shifting this concern to a runtime environment can significantly
leverage application design.

• Supervised scheduling of application-level source code: The event-centric ap-
plication semantic predominantly applied within the sensor network domain
has been frequently named to be a major challenge in programming [93, 88].
Naturally, asynchronous behavior due to incoming interrupts and a non-
linear flow of program execution require programming expertise to achieve
the envisioned network behavior. Once again, a virtual machine can export
a higher level of abstraction, thus a simpler execution model to the user and
shield any scheduling and timing demands from her.

• Platform independence of application-level source code: A well-known and
often exploited advantage of utilizing interpreted bytecode is its indepen-
dence of a specific hardware platform. Heterogeneous sensor networks that
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integrate devices of variable magnitude will strongly benefit from a virtual
machine solution; available resources can be allocated individually while at
the same time a unified programming model facilitates a global view on the
problem domain.

• Increased flexibility for runtime retasking: Due to the embedded nature of
sensor nodes, programming efforts often favor a monolithic, tightly-coupled
implementation over a modular one. As a consequence, a clear separation of
concerns, e.g. of application-level software and operating system functional-
ity is seldom enforced and therefore frequently bypassed. While this is not
recommended from a software engineering point of view, it becomes a real
problem when in-situ software updates have to be made available at runtime.
Over-the-air (OTA) reprogramming can either be necessary for reasons of
scalability or of limited physical access to sensor nodes [85], and involves
both software distribution and linking. The tighter coupled systems are,
the less intuitive and manageble differential updates of native code become,
leading to the distribution of complete images in the worst case, see e.g.
Deluge [82] or TinyModules [141] for an in-depth discussion. Also, bytecode
can be significantly smaller, making OTA flashing less expensive in terms of
energy spent for mere software distribution.

The general architecture of the FACTS runtime environment and its relationship
to underlying software components is visualized in Figure 4.2. Each node exhibits
a central entity for scheduling rule evaluation, the rule engine, and global storage
for data, the fact repository. Hence, control flow and manual memory man-
agement are the intgeral parts of programming whose pecularities are hidden from
a developer. The supplied ruleset may either be used to implement middleware
functionality such as e.g. routing algorithms or management of neighborhoods
or application-level concerns. Note however that this distinction between mid-
dleware and application-level rulesets is rather a semantically motivated than an
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architectual differentiation. Upon event notification, the rule engine schedules the
rules for interpretation: Conditions of rules are evaluated by means of matching
against the facts in the repository which will eventually lead to triggering the ex-
ecution of their action part. This forward chaining approach allows to generate
new knowledge in terms of facts, thus shares production rule semantics.

The interface to the firmware is kept simple: Bottom-up, FACTS intercepts
firmware callbacks from sensors if requested to do so, user-defined timers and
dedicated FACTS radio packets, with return values being pushed as facts into the
fact repository. Since interaction with the operating system is also necessary in
a top-down direction, e.g. to log data to secondary storage or to control sensor
calibration, a thin layer of functions has been introduced that may be invoked
from the action-part of a rule.

4.2 RDL language

As pointed out in [66], an important key to good language design is to not forget
that languages are designed first and foremost to be used by people, and then
interpreted by machines. The language itself determines how a problem will be
conceived, and in response, how easy it is to be described in the corresponding
language. Directly related to this quest for usability is the aim for language
brevity: Flexible, basic programming constructs are preferable when yielding fast
prototyping and solid, maintainable sourcecode. While a broad language API with
various data structures directly integrated into the language itself can be beneficial
for general-purpose programming languages, it is certainly neither mandatory nor
necessarily better for domain-specific language design such as targeted in this
context. Naturally, the chosen data and programming model have a great impact
on language expressiveness - as experienced programmers usually strive to have
as much control as they can to impact their implementation according to their
needs, the main challenge for language design is to balance abstraction, brevity
and low-level control according to the envisioned operational purpose.

4.2.1 Basic Building Blocks of RDL

Taking the challenges that software development for wireless sensor networks bear
from the introduction in Chapter 2 and relating them to the general demands pre-
sented above, the objectives for designing the ruleset definition langauge (RDL)
were clear: The programming abstraction has to be
(1) small and concise,
(2) reflect the event-centric model employed to operate these networks,
(3) feature a very general data model suitable to unify computation and commu-
nication, and
(4) nevertheless provide a powerful interface for device-level interaction.
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In the following, only a small overview of RDL concepts is provided, closing with
a concrete example of RDL rule syntax. Chapter 5 features a detailed review
of the language, with the corresponding grammar being additionally provided
in Apppendix A and exemplary implementations in Appendix B. Details on the
actual implementation of rule evaluation strategies and processing concerns will
be the topic of Chapter 6.

Rules

To implement the event-centric processing scheme, thus solely react to relevant
changes of the environment, rules are a perfect match [19]. They nicely mirror the
push semantics prevalent in wireless sensor network applications, where incoming
data obtained from sensors or received via the radio interface triggers reactions
on a node, whereas otherwise nodes turn to low-power mode for power efficiency.
Reactions may subsume filtering actions, aggregation schemes, chains of data pro-
cessing steps which distill high-level or complex events from several low-level data
items or simple reactions that trigger actors or start new routines on a node. As
a consequence, a rule is the basic computational entity available in RDL.

RDL rules are reactive rules, sets of conditional actions with conditions being
indicated by a left arrow (←) and statements, marked by a right arrow (→).

rule name priority
<- condition [condition_list]
-> action [action_list]

RDL rules are neither classical production rules, although their WHEN condition
THEN action structure may convey this assumption, nor pure ECA rules but
integrate characteristics of both worlds into one approach. Reactive rules gener-
ally correspond to change. While production rules trigger upon a modification
of their working memory, thus actively maintain rule engine state, ECA rules
solely depend on rule-local state, defined by objects and events matched by a rule.
Therefore, the semantics of reactivity and its implementation are slightly different:
ECA rules, typically denoted in an ON event IF condition THEN action format,
explicitly name and model events in contrast to a state-driven approach pursued
by production rules.

RDL rules are best described as production rules implementing an explicit
event concept, a circumstance that can be attributed to its data model. Both
events and state are fused into the single data abstraction of a fact, see also the
following section, but can be discriminated via information on their state tagged to
each individual fact. The sum of all rules that form a semantical entity is referred
to as a ruleset in RDL. To ensure confluence and observable determinism of rules
a priority has to be applied at the time of definition [6]. Priorities do not have
to be unique, however non-deterministic scheduling of rules tagged with the same
priority is then accepted.
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Facts

An expressive, yet simple and versatile data model is an important basis for suc-
cessful language design. Similar to the database community, we chose to use a
declarative, tuple-based data abstraction which furthermore yields to unify the
representation of computation and communication. The idea has been to render
the origin of incoming data obsolete, unless explicitly requested by the envisioned
application. In general, the reaction to a specific data item has to be the same,
whether it has been obtained from sensors on the node itself, it is a result of a
successful production run of deployed rules or whether it has been sent by a neigh-
boring sensor node. Due to their versatility, we chose so called facts, named tuples
of typed key-value pairs (called properties) to serve as the basic data model. For
instance, a fact representing a reading of a temperature sensor on a node may be
expressed as

temperature [value = 20]

Facts are not only a straight-forward way to specify application level data, but
also allow for wrapping low-level data such as sensor readings, timer interrupts or
return values of library calls into a distinct format. Pattern matching used during
rule condition evaluation can simply be applied on the facts themselves as well
as on their corresponding properties. Note that this data and processing model
emphasizes content-based data handling rather than demanding for an instruction-
oriented processing scheme.

Each fact can be understood as a global variable with global scope, thus is vis-
ible throughout the deployed ruleset. Note that the difference to global variables
utilized in imperative programming is however crucial: Memory can be concep-
tually de-allocated at runtime simply by deleting a fact from the repository, and
reused for allocating other facts by subsequent rules. Within traditional event-
processing systems, efficient memory utilization is a genuine problem as actions
often times have to be implemented in a split-phase manner, see also 2.1.3. Due to
stack unrolling, automatic variables cannot be used to share program state leading
to a massive declaration of global variables that however tie up valuable resources
over the complete execution time for a program.

In contrast to other rule languages and motivated by the target domain be-
ing resource-constrained devices, RDL does not support any rule-local, automatic
variables. While this naturally causes some inconvenience since operations to bind
and thus re-use results of pattern matching operations to local variables are not
available, the benefits however outweigh the drawbacks. Given solely global data
storage available for a developer, the stack size, a major cause of runtime errors
and system crashes during sensor network deployments, can be completely super-
vised by a runtime system. Typically, a certain amount of memory is allocated
at compile-time for storing facts, which in our implementation corresponds to the
fact repository.

Facts are automatically tagged with their creation or update time, their orig-
inator and state, thus whether they can be conceived as events or not, see also
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Section 5.2. This way, spatial as well as temporal reasoning is possible, and high-
level, complex events may be specified within rule conditions.

4.2.2 Conditions: Guards upon Reactivity

Within the condition part of a rule, a developer can denote the circumstances that
lead to rule triggering. In detail, supported types of conditions include test for
existence of a fact of a specific type (via the declaration of an exists condition),
evaluation of fact properties (via the definition of eval conditions) and conditions
that specify unary operations on the set of all available facts (e.g. sum and count)
or on dedicated fact properties (e.g. min and max). Pattern matching of avail-
able facts to given constraints will then be applied to resolve the conditions and
eventually return a boolean value indicating the result of this evaluation process.

The quite limited set of operators available for condition specification is how-
ever very powerful as soon as operators are nested or combined sequentially.
Threshold specification for certain fact properties is available as well as range
queries applied to a filtered subset of facts or the definition of conditions for tem-
poral or spatial relationships between individual facts. With these at hand, sophis-
ticated condition specification is supported, or more precisely adequate filtering
mechanisms on the set of available facts are available.

4.2.3 Statements: Combining general and domain-specific
demands

The action part of a rule, composed of one or more statements, serves two differ-
ent requirements: the definition of common data manipulation instructions, but
also the specification of what can be subsumed under the keyword of domain-
specific instructions. The former simply resemble well-established schemes from
database systems, where insertion, update and deletion of rows, columns or sin-
gle tuples in tables can be applied. In general, their counterpart in RDL, the
Define, Set and Retract statement, operate on the set of facts that are filtered
via their name, which in turn yields set-based manipulation granularity. How-
ever, with the application of filtering conditions, manipulation granularity can of
course be broken down to individual facts where required. With these statements
at hand, a programmer is hence able to denote new facts needed to encapsulate
program knowledge, modify individual properties of available facts and erase any
data items that have become obsolete. Once again, we’d like to point out that
no local variables exist, and therefore any assignment of new values to properties
or fact filtering inquiry depends on pattern matching mechanisms. However, it
is possible to name specific filtering patterns to foster code readability which are
then referred to as slots.

The more interesting set of statements is directly related to the actual interface
a wireless sensor node exposes to a developer. Typical hardware components that
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are available and need to be integrated into a domain-specific language abstrac-
tion include a variety of sensors, usually chosen according to application needs, a
wireless transceiver and some kind of interface to a hardware timer. Optionally,
sensor nodes may be equipped with additional, secondary storage such as an SD
card, actuators mounted on the node itself to allow for ad-hoc physical reactions
or modules for audio-visual feedback (e.g. a beeper or LEDs).

When embedding access to these components into the language it is necessary
to allow for as much low-level parameter tweaking as possible to not prohibit ap-
plication fine-tuning, but at the same time grant usability within the frame of the
language. Since configuration concerns for the wireless transceiver are typically
the same regardless of the actual transceiver model1, communication requests can
simply be expressed by issuing a Send statement. Here, a developer has to clarify
where to send a certain fact, so either in a unicast or a broadcast manner, and
whether the transmission power is to be explicitly set. Note that the chosen data
model allows to abstract from actual packet transmission since the burden of wrap-
ping or segmenting data is shifted to the responsibility of a runtime environment.

However, all other hardware components may substantially differ in terms of
available parameter space for an actual unit, even in case they belong to the
same device category. To cope with this problem, any other low-level functional-
ity exposed by a sensor node is accessible via a Call statement. The number of
parameters passed when issuing a Call statement can then match the number of
possible configuration parameters of the given unit, which will be identified by a
keyword made available as part of the language itself. As a matter of fact, this
approach requests the adaptation of RDL to a given sensor node platform, as each
low-level functionality has to be exported to be callable from RDL. Nevertheless,
it enables a very targeted language design which on the one hand allows for ex-
tensibility if needed, but still respects the limits that embedded devices impose on
software development. A detailed overview of the interface design will be given in
Chapter 6.3. As has been pointed out before, return values of statements (e.g. a
sensor sample previously requested) are wrapped as facts upon completion of the
corresponding function call, asynchronously pushed into the runtime environment
and made available for subsequent rule evaluation.

A last category of statements available in RDL are those that manipulate fact
state, represented by the Flush and the Touch statement. In case explicit flow
control has to be integrated into a set of interacting rules, these statements provide
the needed interface, see also Section 5.3 for more details.

4.2.4 Rules in Action

The rather abstract presentation of language constructs denoted above is able
to convey the basic idea of programming wireless sensor nodes with RDL, but
certainly lacks a way to present the actual elegance of using the language. Consider

1We assume the utilization of RDL for the implementation of protocols situated above the
MAC layer, and export simple MAC layer characteristics to the programmer.
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Listing 4.1: The Hello World program as an RDL rule.
1 ruleset HelloWorld
2 /* Incoming hello facts could have the following structure
3 * fact "hello" [val = "world "]
4 */
5

6 rule printHello 100
7 <- exists {"hello"}
8 -> call printFact ({"hello"})

therefore the RDL implementation of the classical HelloWorld program presented
in Listing 4.1.

The ruleset HelloWorld contains a single rule called printHello which is
labeled to have a scheduling priority of 100 (a number that is used to determine
the evaluation order of rules upon the occurrence of a new event, see Section 5.2 for
details). Whenever a hello event is recognized, thus a (new) fact named "hello"
appeared, the rule triggers and calls a function named printFact from the set of
exported system functions. This in turn is instructed to print all facts and their
corresponding properties that match the name hello to standard output.

Several interesting observations can already be derived from this small exam-
ple: First of all, the way the rule is denoted, it is completely oblivious to the origin
of the hello fact. It may have been received over the radio interface from a neigh-
boring node or issued by a firmware function due to the execution of a callback.
In case this rule is part of a different ruleset that comprises further rules, it will
also fire when one of these rules alters a hello fact, e.g. by setting the property
val to "folks" instead. Unlike usual ECA semantics, the event of the occurrence of
hello is not transient but its existence is preserved in the fact repository (unless
explicitly retracted by a rule), a circumstance that allows for a straight-forward
implementation of predicates on event sequences.

With the absence of local variables, RDL rule evaluation depends solely and
at any time on pattern matching. As a consequence, the hello event, which
usually concerns only a single fact, will, the way it is denoted in the statement
in line 8, result in printing all available hello facts within the fact repository.
There is no implicit binding of the event to some internal variable and passing it
between condition and statement part of rules. Rather, every condition and every
statement is independently evaluated in regard to the current state of the fact
repository.

Ruleset evaluation is always triggered upon the occurrence of a new event
which manifests itself in a new or altered fact. Then, all premises of the rules are
checked whether they incorporate a reaction to this event and whether all other
conditions specified are met to potentially execute their corresponding statements.
Unless triggered rules specify productions, see also Section 6.2, the rule engine will
return to an idle state until the next event occurs.
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Listing 4.1 serves to provide only a first impression on the language itself.
Detailed information with more sophisticated examples will be made available in
subsequent chapters of this thesis.

4.3 Qualitative Evaluation of the FACTS middleware
framework

To sum up the brief introduction of the FACTS middleware framework presented
above, it is interesting to compare and relate its features to the approaches that
have been discussed in the preceding chapter. Recall that mechanisms to achieve
abstraction for tasking wireless sensor networks have been roughly categorized into
the three dimensions Support, Distribution and Concept Mapping, each of which
addressing a key challenge in WSN programming.

The FACTS middleware framework incorporates with RDL a domain-specific
language for WSNs (thus alleviates the actual process of mapping problems to
sourcecode with the help of a language), and a versatile runtime environment
(thus offers substantial support to a software developer). Languagewise, rules and
rulesets are per se modular programming constructs that, in addition to reflecting
the event-driven aspect of programming, allow for a very fine granularity of code
composition. Due to its focus on improving the node-level programming interface
exposed to a programmer, FACTS does not provide any explicit mechanism to
overcome the challenging pecularities of distribution. This design choice can be
attributed to the fact that it has not been possible to derive one dedicated interac-
tion scheme valid for all kinds of wireless sensor network applications or protocols.
Often times, the implementation of e.g. transparent routing or neighborhood
management schemes are simply not needed, but automatically integrated into
approaches and thus flashed onto the sensor nodes. Naturally, precious memory is
then consumed for non-functional parts, a circumstance that to our understand-
ing has to be prevented by design. Therefore, FACTS favors to push distribution
issues into dedicated rulesets that may be linked when needed, leaving protocol
engineering to the developer.

Hence, it can be classified to belong to the approaches subsumed under the
keyword of Composite Programming.

Table 4.1 relates FACTS to the other approaches that belong to the Compos-
ite Programming category, namely the Token Machine Language (TML) and the
Sensor network application kit (SNACK). As has been pointed out in detail in Sec-
tion 3.5, the former is designed to serve as an intermediate language, offers tokens
and token handlers as its basic programming abstraction, but still requires the
implementation of application-specific token handlers per application. Therefore,
rather than emphasizing the language perspective by providing a self-contained
language, the focus is on utilizing a distinct mental model in combination with
a dedicated execution environment. Language and support perspective can be
judged to be equally met at a medium level.
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Table 4.1: FACTS in relation to other Composite Programming approaches

Composite Programming Support Distribution Language

FACTS ++ - ++
TML + - +
SNACK ++ - +

Implementation of abstraction by approach:
- = none 0 = low + = medium ++ = high

SNACK follows a different approach: It is basically a meta-language built on
top of nesC to enable better service definition and composition. The SNACK
library provides a powerful, component-based API, with the language being a ve-
hicle to combine supplied services. This all yields an implementation of supportive
measures by means of introducing an additional layer of software in between sys-
tem and application, composable via language constructs. Hence, support can be
definitely rated to be high with the language perspective being solely of medium
importance.

In contrast to these two approaches, RDL is an integral part of FACTS, a
stand-alone language that neither forces the programmer to be aware of and un-
derstand the underlying target language, which is mandatory for programming
with SNACK, nor to enhance the language with specific handlers for each appli-
cation. The design of the statement part of a rule is a compromise between the
quest for language conciseness and the availability of a rich API in native code
for means of runtime efficiency. In special cases, e.g. when complex mathematical
functionality is required for a given concern, the current API of available, native
function calls may not suffice, thus additions to the language may be required.
However, for the majority of typical WSN applications, the implemented API will
most certainly meet their needs, a fact that substantially differentiates them from
TML token handlers.

Programming support is provided at different levels of the FACTS framework.
First of all, it is granted at the language level, offering powerful abstractions to
express event-centricity and to specify modular software components. In addition,
the programmer is also shielded from runtime concerns, including error-prone,
manual stack management and the enforcement of the correct event ordering.
Due to this, we can attest FACTS to score high not only on the language, but also
on the support scale.

Turning to the functional analysis of FACTS in respect to TML and SNACK,
no surprises are revealed, see Table 4.2. Key design goals of FACTS have been
to enable an improved specification of reactivity as well as a sufficient, yet not
restrictive integration of device-level interaction into a high-level programming ab-
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Table 4.2: Functional analysis of Composite Programming approaches.

Approach DS SAR RO RW Inet EP GP

FACTS ◦ • • • ◦ •
TML ◦ ◦ ◦ ◦
SNACK • • ◦ ◦

• Explicit support
◦ Implicit support

DS = Data Streaming
SAR = Sense-And-React
RO = Read-only
RW = Read-write

Inet = Internetworking
EP = Entity Processing
GP = Group Processing

straction. Hence, FACTS can be attested to explicitly support the sense-and-react
pattern, the read-write-pattern and the entity processing scheme which reflects its
focus on node-level tasking.

As an intermediate language, TML does not export a rich set of features itself,
but rather serves as an additional layer of software to abstract from the underlying
TinyOS operating system. Since the token handler concept can be utilized to
implement reactive behavior in case a token corresponds to an event, at least
implicit support can be appointed here. Implicit support can also be attributed to
the implementation of the read-only and the read-write-pattern, since they require
bypassing the TML abstraction, a statement that equally applies to read-write
support in SNACK.

The SNACK library offers several particular implementations to stream ob-
tained data through a network, e.g. a simple, duplicate-surpressing flooding pro-
tocol and a tree-based routing protocol with the root being a data sink, indicating
direct support. Regarding FACTS, one can argue whether it is correct to assign
implicit data-streaming support to it: On the one hand, there is no such thing as
a dedicated ruleset for this task that is automatically supplied with the FACTS
runtime environment upon flashing it onto a node. Nevertheless, amongst others,
rulesets that implement data streaming algorithms are available, see Chapter 7
and may be linked to newly developed applications on demand. Also, addressing
device heterogeneity with FACTS is feasible and in fact easier to achieve than for
the other two approaches: While their implementations are tightly coupled to the
TinyOS operating system, the system interface specified for FACTS is small, and
porting the runtime environment only a matter of adjusting this interface and the
allocated memory available for fact storage.
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4.4 Concluding Remarks
The intention of this chapter has been to put individual building blocks of the
FACTS middleware framework into a broad context and provide a brief, introduc-
tory overview of all of its components. The core of the framework evolves around
the rule-based programming language RDL which offers reactive production rules
as a means to express sensor network algorithms. Rule evaluation can be triggered
by incoming events, data items that are wrapped into the dedicated format of a
so called fact, with the rule evaluation process depending on pattern matching.

Due to numerous advantages that runtime environments are able to offer, and
that in our opinion legitimate eventual loss in execution latency, rules are com-
piled to bytecode and interpreted on a process virtual machine. This runtime
environment comprises a rule engine in charge of rule evaluation and scheduling,
and a fact repository as the central means of data storage for application-level
data. Furthermore, a set of complementary tools that enhance the debugging and
testing cycle of software development are part of the FACTS family.

The chapter is finalized by a quick review of FACTS feature in respect to pre-
viously introduces programming abstractions. Overall, this qualitative evaluation
revealed FACTS to be a decent abstraction in terms of conceptual and functional
features, exporting a solid, node-level programming abstraction to wireless sensor
network programmers.



Chapter 5

RDL: Rules to rule wireless
sensor networks

RDL, the ruleset definition language, has been proposed to facilitate instructing
wireless sensor nodes. Similar to any other programming language, syntax, se-
mantics and pragmatics characterize its subtle nature and therefore serve as a key
to understanding the language’s practicality.

A presentation of its syntax manifests a language’s symbols and denotes how
they can be combined to specify well-formed words, phrases and sentences thus
programs. Hence, the syntax definition reveals the internal structure of a language.
Since only programs that are syntactically correct do have a semantics, syntax
specification is a natural starting point of language design and evaluation.

Denoting a language’s semantics in turn corresponds to giving an explanation
of its meaning. Therefore, a denotational semantics specification provides insights
on how a proper sentence of the language is supposed to be evaluated by the
machine that is tasked to execute a given program. Independent of any issues
concerning compilers, machines or interpreters, the semantics of a language are to
be universally applicable. During the design phase of a language or when porting
it to run on different system architectures, a denotational semantics can be utilized
to achieve envisioned language functionality and perserve its execution behavior
across platforms.

Finally, language pragmatics reflect the usability of a language. Pragmatics are
neither subject to specification nor measurable in a straight-forward quantitative
manner. Rather, they mirror the ease of use of a language, its application area
and whether stated goals that lead to language specification were successfully
met. Therefore, pragmatics can be conceived as the inner beauty of a language, a
fact that can be described and pinpointed with showcase applications; evaluation
beyond this is subject to empirical, long-term studies.

This chapter is dedicated to discuss RDL language syntax, semantics and prag-
matics to provide a detailed overview of how the language works. Therefore, the
core language syntax is presented in Section 5.1, followed by a formal denotation
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of its semantics in Section 5.2. A discussion of language pragmatics is provided
in Section 5.3, where a few design patterns are presented that have been proven
useful when utilizing RDL as a holistic programming language for wireless sensor
networks. Since the discussion of language paragmatics can nevertheless also be
conceived as stating its practical relevance, we will return to this in Chapters 7
in more detail. At the end of this chapter, we will point out relevant steps un-
dertaken to enhance the core language in Section 5.4, and evaluate in how far
the introduced additions fill in a gap of missing features in a plausible manner.
Section 5.5 summarizes the findings in regard to language design and concludes
this chapter.

5.1 RDL core language syntax
Programming languages conform to a context-free grammar. A set of productions
maps so called nonterminals - abstract symbols from a specific alphabet - on the
left-hand side of a production rule, to a sequence of nonterminal and terminal
symbols on the right hand side. A language therefore corresponds to the set
of possible sequences one can generate from repeated application of right-hand
side productions to nonterminal symbols, starting from a predefined distinguished
nonterminal, the goal symbol.

Successive subsections cover a piecemeal discussion of the lexical 5.1.1 and
syntactic 5.1.2 grammar of RDL to allow for a comprehensible presentation. A
complete specification conforming to EBNF style conventions for reference pur-
poses can be found in Appendix A.

5.1.1 The Lexical Grammar

Denoting the lexical grammar clarifies how input elements from the ASCII char-
acter set are combined to form whitespaces, comments and tokens in RDL. Only
the latter contribute to the syntactical grammar of the language, thus whitespaces
and comments have to be discarded during the translation step of RDL programs
from a stream of input elements to a sequence of terminal symbols.

input ::= [inputelement+]
inputelement ::= whitespace

| comment
| token

token ::= identifier
| keyword
| literal
| seperator
| operator
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Whitespace

ASCII space, horizontal tab, form feed and line terminators are defined as whites-
pace.

whitespace ::= ASCII SP character (0x20) ”space”
| ASCII HT character (0x09) ”tab”
| ASCII FF character (0x0C) ”form feed”
| line_terminator

line_terminator ::= ASCII LF character (0x0A) ”line feed”
| ASCII CR character (0x0D) ”carriage return”

Any occurence of whitespace is eliminated during lexical analysis of program com-
pilation to obtain the tokens necessary for syntactical analysis.

Comments

Just as in other popular programming languages such as Java [65] or C# [76],
comments in RDL can be of two different kinds: Either, all text in between the
ASCII characters /* and */ is ignored, or the characters // indicate that all text
following them up to the end of the line is discarded.

comment ::= single_line_comment
| multi_line_comment

single_line_comment ::= ’//’ [input_character*] line_terminator
input_character ::= ASCII input character

line_terminator
multi_line_comment ::= ’/*’ not_star_char comment_tail
comment_tail ::= ’*’ comment_tail_star

| not_star_char comment_tail
comment_tail_star ::= /

| ’*’ comment_tail_star
| not_star_not_slash_char comment_tail

not_star_char ::= input_character except ’*’
| line_terminator

not_star_not_slash_char ::= input_character except ’*’ or ’/’
| line_terminator
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Identifiers

An identifier is a sequence of ASCII characters with the restriction that this
sequence may neither equal an RDL keyword, nor a boolean_literal.

identifier ::= [a−zA−Z_][a−zA−Z_\−0−9]∗ except keyword or
boolean_literal

Keywords

Keywords are character sequences that may not be used as identifiers in RDL
programs since they convey a specific meaning for syntactic interpretation.

keyword ::= one of ’call’ ’count’ ’define’ ’exists’ ’eval’ ’fact’
’flush’ ’max’ ’min’ ’name’ ’pow’ ’retract’ ’rule’
’ruleset’ ’send’ ’set’ ’slot’ ’sum’ ’this’ ’touch’

Apart from the above mentioned keywords, a number of reserved system identi-
fiers exist. These system identifiers mainly encapsulate domain-specific aspects
of the FACTS middleware framework. Although the same constraints on usage
applies to them as to the keywords, they are not part of the language but of the
implementation of FACTS, and are therefore discussed in Section 6.3.

Literal

Value domains supported by RDL include integer values, strings and booleans.
Literals are the source code representation of these (primitive) types.

literal ::= integer_literal
| string_literal
| boolean_literal

integer_literal ::= [0− 9]+
string_literal ::= ”[a−zA−Z_][a−zA−Z_\−0−9]∗”
boolean_literal ::= ’true’

| ’false’

Due to the target domain of embedded systems and the predominant 16bit ar-
chitcture of utilized microcontrollers, Integers have a width of 16bit and are read
in an unsingned manner. The value range covered by RDL therefore equals to 0 -
(216 − 1).
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Seperator

To syntactically seperate individual parts of the programming language, a set of
symbols is reserved to represent these seperators in RDL. The following tokens
are part of this set.

seperator ::= one of ’[’ ’]’ ’{’ ’}’ ’(’ ’)’ ’,’ ’←’ ’→’

Operator

RDL supports the expression of both unary and binary operations on values as
well as comparison operations for evaluation. While unary operations are mainly
denoted with the help of predefined keywords, the language sticks to commonly
utilized symbols for binary expressions. Logical and arthimetical operations are
available for processing input values in RDL.

operator ::= one of ’+’ ’−’ ’∗’ ’/’ ’%’ ’&’ ’|’ ’^’ ’∼’ ’=’
’==’ ’! =’ ’<’ ’> ’<=’ ’>=’

5.1.2 The Syntactic Grammar

The specification of a lexical grammar basically enables the implementation of
a parser. With this at hand, an input stream of symbols denoted in the source
code file can be read and tokenized. Akin to natural languages processing, this
transformation maps characters to words.

With its specification of valid combinations of tokens, a syntactic grammar
allows for forming sentences from input tokens, which corresponds to the next step
necessary towards gaining executable binaries. Implementationwise, a syntactical
grammar is needed to write a compiler for a language. The following sections
cover the syntactic grammar of RDL and clarify what structure precisely input
well-formed RDL programs have to conform to.

Names

The declaration of and reference to entities within a programming language de-
pends on names. Namable entities in RDL are names, facts and slots which are
subject to the preceeding section. A concept that is tightly coupled to names is
the question of scope, thus the validity and visibility of a name within a program.
Within RDL, the scope of a name corresponds to the ruleset that it has been de-
clared in. Since the core language supports only a single, global ruleset, problems
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such as shadowing cannot appear. Nevertheless, the availability of naming names
allows for clarifying the utilized names within one ruleset.

named_name ::= ’name’ identifier ’=’ name
name ::= identifier

| string_literal

Data Types

The ruleset definition language is a weakly typed language. Variable types are not
explicitly declared at initialization time but simply derived by the compiler during
compilation from input values. Hence, typing is static, performed at compilation
time with the advantage of requiring less effort on the part of the programmer.
Nevertheless, the interpretation of RDL is type safe: the runtime environment
checks at execution time whether requested operations on values are allowed and
handles errors accordingly.

type ::= primitive_type
| composite_type
| filter_type

primitve_type ::= boolean_literal
| integer_literal
| string_literal

composite_type ::= fact
filter_type ::= slot

Unlike widespread programming languages such as C or Java, RDL does neither
distinguish Strings from characters, nor support common string operations such
as concatenation or substring extraction. For reasons of bytecode conciseness and
lack of user interaction at runtime, these features have been omitted. Instead,
Strings are mapped to unique integer values during the compilation process and
can therefore be categorized as primitive types. This design decision has the
advantage that variable values are of constant size, a fact that enables efficient
memory management insusceptible to errors at runtime.

Besides primitive data types, RDL specifies a composite_type called fact and
a filter_type called a slot. Each fact has at least a name and may optionally
be declared to have a set of properties. These named tuples of key/value pairs
constitude the data abstraction available to a programmer. Qualified access to
corresponding values can be obtained by refering to the appropriate name and/or
property of the fact. Note that there is no declaration phase followed by an
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instantiation phase as it is common in object-oriented languages. Actuals are
directly assigned to the properties of a fact at declaration time.

fact ::= name property_list_opt
property_list_opt ::= [ ’[’ property_list ’]’ ]
property_list ::= property { ’,’ property }
property ::= key ’=’ variable
key ::= [a−zA−Z_][a−zA−Z_\−0−9]∗
variable ::= boolean_literal

| integer_literal
| string_literal
| slot

Fact processing itself is subject to pattern matching which implies a non-standard
programming model for data access: Filtering of facts via slots substitutes for
explicit binding of facts to variables or for direct memory access via addressing.
A slot specifies the kind of fact and/or fact property that a programmer wants to
filter, possibly with a set of conditions that have to furthermore be met to return
a match. Hence, slots are neither pointers nor references to specific facts or fact
properties but are resolved upon available facts at runtime. This way, the lan-
guage itself prohibits any dynamic memory allocation on behalf of an application
developer besides fact definition.

slot ::= identifier
| ’{’ name condition_list_opt ’}’
| ’{’ name key condition_list_opt ’}’

condition_list_opt ::= [ ’[’ condition_list ’]’ ]
named_slot ::= ’slot’ identifier ’=’ slot

Slots can be named so that reuse of declared filters within the ruleset is avail-
able. An in-depth discussion of condition evaluation will be presented in following
subsections.

Blocks

The fundamental execution entity of an RDL program is a ruleset. An identifier
has to be assigned to each ruleset, followed by an arbitrary number of blocks of
sequences of either declarations of names or slots, definition of facts or execution
instructions via rule specifications. Naturally, names of facts and slots referenced
within a rule have to be declared beforehand to ensure proper use, a property that
can easily be verified by the compiler.
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ruleset ::= ’ruleset’ identifier block_list
block_list ::= block {block}
block ::= named_name

| named_slot
| fact
| rule

The definition of facts within a block is comparable to the definition of static vari-
ables common in programming languages such as C or Java. Hence, they mainly
serve two different objectives: First of all, these facts store constants used through-
out the ruleset, e.g. parameters for system-related configuration or thresholds for
measurements. Then, the programmer should not evict them during runtime to
assure a running system. The second possibility is to use them in a volatile manner
to initialize e.g. facts produced at runtime or parameterize initialization calls to
underlying system functions such as timers or sensors. In this case, cleaning up
the facts after usage will free precious resources at runtime.

All facts declared ouside a rule context will be instantiated once when program
execution begins.

Rules, Conditions and Statements

Syntactically, rules in RDL follow a simple IF condition THEN action structure.
Each rule is tagged with a specific identifier, a priority to indicate execution order
in compliance with other rules, a list of conditions that correspond to the IF part
and a set of statements that denote the action part.

A rule fires whenever the conjunction of all its conditions evaluates to true.
Then, the set of statements will sequentionally be executed in the order of their
definition in an atomical manner. Unlike other languages that are popular es-
pecially in the ECA domain, RDL offers no ELSE construct. Nevertheless, the
semantics of RDL rule triggering requires a fresh event, thus a newly added or
altered fact to take part in the condition evaluation, which will be discussed in
detail in Section 5.2.

rule ::= ’rule’ identifier priority condition_list
statement_list

priority ::= [-] [0-9]+
condition_list ::= ’←’ condition [condition_list]
statement_list ::= ’→’ statement [statement_list]

Conditions allow to specify guards upon actions. Since all data is represented in the
format of a fact, conditions consequently probe whether facts exist or value ranges
of their properties can be met. Two different kinds of conditions can be defined:
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With the help of a condition starting with the exists keyword, a programmer
can test upon existance of a specific fact, possibly requesting it to satisfy given
constraints. An eval-condition allows to compare values of fact properties to one
another with a multitude of operators. Naturally, conditions can be nested to
obtain a suitable expressivity for the given problem domain.

condition ::= ’exists’ slot
| ’eval’ ’(’ expression comparison_op expression ’)’

comparison_op ::= ’==’
| ’! =’
| ’>’
| ’<’
| ’>=’
| ’<=’

Statements encapsulate the actual instructions for processing facts. Available op-
erations are straightforward and enable a developer to insert new facts into the
fact repository with the define statement, to delete facts matching a specified filter
with the retract statement, to update individual properties of a fact via the set
statement, to send a fact either in a broadcast or unicast manner to neighboring
nodes via the send statement, to mark facts as unmodified or modified or to call
a system function.

statement ::= ’define’ name initializer_list_opt
| ’retract’ slot
| ’set’ slot ’=’ expression
| ’send’ expression expression slot
| ’flush’ slot
| ’touch’ slot
| ’call’ identifier expression_list_opt

When defining a fact during rule execution, its properties can be assigned using
a list of initializers. The rvalues of each property are set to equal an expression,
whose value can be derived at runtime, see also the following paragraph.

initializer_list_opt ::= [ ’[’ initializer_list ’]’ ]
initializer_list ::= initializer ’,’ initializer
initializer ::= key ’=’ expression
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Expressions

Expressions capture most of the work done during rule processing. Used for de-
noting side effects including assignment of values to fact properties, for evaluation
of filtering conditions to determine rule triggering or for denoting values to be
passed as arguments, expressions are the central tool to control the values of fact
properties.

expression_list_opt ::= [ ’(’expression_list’)’ ]
expression_list ::= expression { ’,’ expression}
expression ::= variable

| ’(’ unary_op expression ’)’
| ’(’ expression binary_op expression ’)’

To be able to support a multitude of operations on fact properties conveniently,
RDL offers a rich set of operators. Unary operations include the possibility to
count the number of available facts of a certain kind, to sum up the values of a
dedicated property of all facts of a certain kind, to filter the minimum or maximum
value of a property, and to filter the negation of a specified value of a property.
Naturally, a concatentaion of filtering conditions on the facts in question can
furthermore be applied.

Binary operations include addition, subtraction, product, division, the modulo
and the exponential operation, as well as the logical operations AND, OR and
XOR.

unary_op ::= ’count’
| ’sum’
| ’min’
| ’max’
| ’∼’

binary_op ::= ’+’
| ’−’
| ’∗’
| ’/’
| ’%’
| ’pow’
| ’&’
| ’|’
| ’^’
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5.2 A Denotational Semantics for RDL
The formal specification of the semantics of a language is an important step to
warrant its correct implementation across platforms. One way to fulfill this de-
mand is to specify its operational semantics: The evaluation process of a program
written in the language being fed into an interpreter then denotes its meaning.
The Haskell interpreter [136] which has been designed for RDL is an instance of
such an operational approach. Although in many cases an algorithmic represen-
tation such as the implementation of an interpreter can give a valuable intuition
towards how the language is to be perceived, machine-independence cannot be
provided since language semantics take the form of interpreter configurations.

The provision of axiomatic semantics is another common method to illustrate
intended language semantics. Symbolic logic is used to define properties of lan-
guage constructs as axioms and inference rules so that program properties can
afterwards be deduced. This approach is especially suited to point out character-
istic properties to a programmer and prove their validity, but may run short on
actually capturing a complete program‘s meaning.

A third option towards the specification of language semantics which lies in
between the above mentioned ends is to provide what is called the denotational
semantics of the language in question. The goal here is to construct a mean-
ing function that produces the (input/output) function of a program, given any
program in the corresponding language [132, 126]. In the following, we will es-
tablish the denotational semantics for RDL. To ensure readability, we depend on
the formalism introduced for the Starburst production rule system [152] where
applicable, but naturally extend it to meet RDL semantics.

5.2.1 Domains

Semantic domains are sets of value spaces in programming languages. As such,
they serve as the foundation for functions that operate upon these domains, which
in turn are used to specify the meaning function of a specific language. RDL
comprises the following domains:

• Let FS be the domain of fact repository states.
If f is a state in FS, then f = {f1, f2, ..., fn}, with each fk being a fact,
which is a compound set of named tuples, called properties.

• Let P be the domain of well-formed properties. Let fk be a fact in f , then
fk = {fk.pj , fk.pid, fk.pname, fk.ptime, fk.pstate} denotes its properties with
j ≥ 0 and where each property pi is a key-value tuple. We assume that
facts are automatically tagged with a set of four different system properties
(psystem in the following) at the time of their creation. These are, in contrast
to the regular properties, mandatory for every fact and include an identifier
naming the last node that altered the fact, the name of the fact, a timestamp
identifying its creation or update time and its current state.
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• Let ∆ be the domain of sets of fact repository changes.

If δ is a set of changes in ∆, then δ = [M,Ret, E,Rep], with M denoting the
set of modifications, Ret the set of retractions, E the set of events and Rep
the set of repressions. For the sake of simplicity, let δm identify solely the set
of modifications, thus δm = [M, ∅, ∅, ∅], let δret denote the set of retractions,
thus δret = [∅, R, ∅, ∅], let δe denote the set of events, thus δe = [∅, ∅, E, ∅]
and finally let δrep denote the set of repressions, thus δrep = [∅, ∅, ∅, Rep].

M = {〈fi.pj , vj〉} where 1 ≤ i ≤ n and 〈fi.pj , vj〉 exists. Each pj is a
property of a manipulated fact fi and vj is the value of the corresponding
property. M subsumes all facts that have been newly defined due to rule
execution or whose property values have been changed. Consequently, these
facts are results of calling the Define or the Set statement in the rule action
part, see Section 5.1.2.

Ret = {fi} where 1 ≤ i ≤ n and each fi is a fact that has been retracted from
the fact repository. Ret thus subsumes all facts that are not available any
more after the execution of a rule because they have been deleted by calling
the Retract statement. Evidently, a fact is retracted with all its properties.

E = {fi} where 1 ≤ i ≤ n and each fi is a fact that represents an event in the
fact repository. Facts in E have either been explicitly set to appear as events
via a call of the Touch statement at execution time, or they have been added
by the runtime environment to the repository after the production process
returned.

Rep = {fi} where 1 ≤ i ≤ n and each fi is a fact whose ability to trigger
other rules is repressed. Facts in Rep have been modified to repress reactions
by means of calling the Flush statement within the action part of a rule.

Note that in the current implementation of the FACTS runtime, facts are
assigned to belong to the above mentioned sets of changes by simply tagging
them with specific system state variables.

• Let R be the domain of RDL production rules.

If r is a rule in R, then generally r is a function that takes a set of fact
repository changes δ and a fact repository state f as input parameters, to
then return a boolean value, a new fact repository state as well as a new set
of changes. Thus,

r : ∆× FS → {true, false} ×∆× FS

Let C be the domain of sets of RDL rule conditions and A be the domain
of sets of RDL rule actions. An alternative representation for a rule ri is to
split it into a concatenation of its conditions and actions. This way, we are
able to be more specific about the conditions to be met for rule triggering
than e.g. in [152].
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If cki is the set of k conditions in C for rule ri, then c is a function that
takes a set of fact repository changes δ and a fact repository state f as input
parameters to return a boolean value. In the following, let fci denote the
set of facts that are referenced in cki . Then, the set of conditions of rule ri
evaluates to true in case all of the following holds:

c : ∆× FS → {true, false}
ci(δ, f) = true iff

∧n
k=1 c

k
i = true

∧ ∃fj ∈ fci , so that fj ∈ δe.
Thus, the conjunction of all conditions of the corresponding rule have to be
true and at least a fact involved in successful condition evaluation has to be
an event.
Accordingly, a set of actions ali in A will be triggered only in case ci returns
true, and will then take the set of changes δ and fact repository state f to
return new changes δ and a new state f .
The set of actions is denoted as follows1:

a : ∆× FS → ∆× F
ali(δ, f) ↓ 1 = [∅, ∅, ∅, ∅] and ali(δ, f) ↓ 2 = f iff ci(δ, f) = false

ali(δ, f) ↓ 1 = [M ′, Ret′, E′, Rep′] and ali(δ, f) ↓ 2 = f ′ iff ci(δ, f) = true

meaning that neither an operation is scheduled, nor a new state is obtained
in case the rule condition is false. Condition evaluation is thus free of
side effects. Otherwise, the actions ali of ri are executed, which yields a
new fact repository state as well as a new set of changes, see also function
Accumulate-Change in the next section.

• Let O be the domain of priority orderings of rules.
If o is a priority ordering in O for rules r in R, then
o = {rj ≥ ri, | rj has precedence over ri} with 1 ≤ i, j ≤ n and where
≥ is transitive and irreflexive, but not necessarily total. Without loss of
generality, we assume the index i of a rule ri to be expressed as a natural
number, thus i ∈ N with a greater index indicating a higher scheduling
priority.

• Let PS be the domain of sets of processing states.
If σ is a set of processing states in PS, then σ = [Av,Ex, i] with Av ⊆ P (R)
denoting the set of rules available for execution, Ex ⊆ P (R) describing the
set of rules that have been executed during the current production run and
i ∈ N denoting the index, thus scheduling priority of the last rule that has
been executed. Note that P (R) identifies the powerset of input rules. Once

1As introduced in [152], we use ↓ i to denote the projection on the ith element in a Cartesian
product.
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again for the sake of simplified denotation, we will refer with σav solely to
the set of available rules, σex to the set of executed rules and and σi to the
index.
Then, σ = [{ravj}, {rexk}, i] so that 0 ≤ avj , exk ≤ n and Av ∩ Ex = ∅ and
1 ≤ i ≤ n.

5.2.2 Supporting Functions

In the following, all formal definitions of functions are given using the widespread
λ-calculus, originally introduced by Church [80], which allows to express a func-
tion‘s actions on its arguments. A number of input expressions Ei, each separated
by a comma with 1 ≤ i ≤ n, is simply mapped to a (set of) output expressions,
which in turn are separated by a period from the input. The meaning function that
actually captures language semantics depends on a concatenation and composition
of the following auxiliary functions.

• Function Get-Index takes a rule ri and returns its index, which represents
its scheduling priority.
Get-Index: R→ N

Get-Index = λ ri. i

• Function Max-Priority takes a set of rules (with P (R) being the powerset of
rules) and an ordering O and returns the maximum index of the rules, which
corresponds to the index of the rule with the highest scheduling priority.
Max-Priority: P (R)×O → N

Max-Priority = λ {r1, r2, ..., rn}, o.
Get-Index(ri) so that ∀i 6= j, 1 ≤ j ≤ n : rj > ri /∈ o

• Function Update takes a rule ri being executed and a processing state σ and
returns a new processing state that will be valid after rule execution.
Update: R× PS → PS

Update = λ ri, [{ravj}, {rexk}, i].
[{ravj} \ ri, {rexk} ∪ ri, Get-Index(ri)]

• Function Run-Rule takes a rule ri, a fact repository state f , a processing
state σ, a set of changes δ and a processing state σ. It returns
(1) the new state of the fact repository obtained after executing all of ri‘s
actions, starting with the fact repository state f ,
(2) the global set of changes resulting from accumulating the new set of
changes produced by executing ri to the set of changes that have been ob-
tained from previously executed rules and
(3) a new processing state for the current run.
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Run-Rule: R× FS ×∆× PS → FS ×∆× PS
Run-Rule = λ ri, f, δσ.

〈ri(δ, f) ↓ 3, Accumulate-Change(ri(δ, f) ↓ 2, δ), Update(ri, σ)〉

• Function Accumulate-Change takes two sets of changes δ1 and δ2 and returns
the set of accumulated change, also denoted as the net effect of change. For
instance, a modification or repression of a fact will render no change in case
it is deleted afterwards.
Accumulate-Change: ∆×∆→ ∆
Accumulate-Change = λ [M1, R1, E1, Rep1], [M2, R2, E2, Rep2].

[M ′, R′, E′, Rep′], with
M ′ = (M1 −∗ (R2 ∪ E2 ∪Rep2)) ∪M2

R′ = R1 ∪ (R2 −∗ (M1 ∪ E1 ∪Rep1))
E′ = (E1 −∗ (M2 ∪R2 ∪Rep2)) ∪ E2

Rep′ = (Rep1 −∗ (M2 ∪R2) ∪ E2) ∪Rep2

where F1 −∗ F2 is defined as {fx ∈ F1 | fx does not appear in F2}.

• Function Swap takes the net effect of the sets of changes produced during
a run of the rule engine through all input rules and recalculates a new set
of event changes δe. Any modifications to the fact repository are therefore
simply swapped to be new events and thus allow for a new production run.
All other sets of changes are omitted since they are irrelevant for future rule
scheduling decisions.
Swap: ∆→ ∆
Swap = λ [M,R,E,Rep]. [∅, ∅,M, ∅]

• Function Prepare-Production takes the global set of changes, a processing
state and a priority ordering to re-assign all settings necessary for a new
production run through the corresponding rules. Therefore, it returns a
revised version of the sets of changes and initializes the processing state to
contain all rules in the set of available rules, none in the set of executed ones
and finally sets the index to the rule with the maximal scheduling priority.
This will be the starting point for a new rule evaluation run.
Prepare-Production: ∆× PS ×O → ∆× PS
Prepare-Production = λ δ, σ, o.

〈 Swap(δ), [{r1, ..., rn}, ∅, Max-Priority({r1, ..., rn}, o)]〉

• Function Choose-Triggered takes a processing state, the global set of changes,
a fact repository state and a priority ordering. It returns a rule r which is
triggered by the changes present in δ such that no rule with precedence over
r in o is triggered.
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Choose-Triggered: PS ×∆× FS ×O → R

Choose-Triggered = λ σ, δ, f, o.

Select(Eligible(σ, δ, f, o))

• Function Eligible takes a processing state σ, the changes δ, a fact repository
state f and a rule ordering o. As a result, it return a set of rules that
are triggered by the changes and according to the current state of the fact
repository and the current processing state such that no other rule in r with
precedence over the chosen one is present in o.
Eligible: PS ×∆× FS ×O → P (R)
Eligible = λ σ, δ, f, o.

{ri | 1 ≤ i ≤ σi ∧ ri ∈ σav ∧ ri(δ, f) ↓ 1 = true ∧
{rj | 1 ≤ j ≤ σi ∧ rj ∈ σav ∧ rj(δ, f) ↓ 1 = true ∧

rj > ri ∈ o} = ∅}

• Function Select takes a set of rules and deterministically chooses one.
Select: P (R)→ R

Select is undefined and never applied to the empty set. As we assume a
programmer to be aware of race conditions when explicitly specifying rules
of the same priority, we take as given a reasonable definition of this function.

5.2.3 The Meaning Function

Semantics of programming languages are usually denoted by a function commonly
referred to as the meaning functionM. Input toM are the set of rules R ∈ P (R)
and an ordering o ∈ O, given that all rules in o are also in R. M[R, o], thus
the meaning of R and o, is a function operating on a set of changes δ and a fact
repository state f . It eventually outputs a new fact repository state which is a
result of processing the rules according to the given input. In case rule processing
does not terminate, the function returns ⊥ (bottom). M is defined as follows:

M : P (R)×O → ∆× FS → FS ∪ {⊥}

M[{r1, ..., rn}, o] = λ δ, f. f.M′(f, Prepare-Reaction(δ, {r1, ...rn}, o))

Function Prepare-Reaction takes a set of changes, thus afore recognized events,
a set of rules and a priority ordering to start checking for denoted reactions to
these events. It simply returns the set of changes, the set of rules and the index
of the rule(s) with the highest priority to be evaluated first, which is then used to
bootstrap the rule evaluation process. Note that events that have occurred during
a production rule run are automatically inserted into δ by the rule engine when
these productions have terminated.
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Prepare-Reaction: ∆× P (R)×O → ∆× PS

Prepare-Reaction = λ δ, {r1, ..., rn}, o.

〈[∅, ∅, E, ∅], [{r1, ..., rn}, ∅, Max-Priority({r1, ..., rn}, o)]〉

The final recursion is captured in functionM′, which takes a rule ordering o to re-
turn the least fixed point function F . Input parameters to F are a fact repository
state f , a set of changes δ and a processing state σ. In case no (more) rules are
triggered by the changes in δ, F returns a (potentially new) fact repository state
f . In all other cases, it calls the function Choose-Triggered to choose a rule ri with
maximal priority in regard to the current processing state, and re-applies itself to
the new state, changes and processing state which result from calling Run-Rule.
Eventually, when no rule is eligible to be processed in respect to available rules
in the processing state, all modifications to the fact repository will be scheduled
as new events calling the function Prepare-Production and rule evaluation restarts.

M′ : O → FS ×∆× PS → FS

M′ = λ o.Least-Fixed-Point( λ F.

λ 〈f, δ, {r1, ..., rn}, σ〉.

if Eligible(σ, δ, f, o) = ∅ ∧ δm = ∅ then f

else if Eligible(σ, δ, f, o) = ∅ ∧ δm 6= ∅

then Prepare-Production(δ, σ, o)

let ri =Choose-Triggered(σ, δ, f, o) in

F (Run-Rule(ri, f, δ)))

As can be seen, the actual process of rule evaluation is split into two, alternating
phases: In a first phase, all reactions to the current events in δe are scheduled
for execution according to the rule processing order o. As soon as all appropriate
rules have been scheduled, the set of changes is updated by omitting all events,
retractions and repressions, setting all modifications to function as new events and
once again resume processing by re-entering the first phase.

5.2.4 Discussion

The formal notation of the declarative semantics presented above have clearly
been inspired by the work presented in [152]. Since both, the Starburst produc-
tion rule language and RDL, share common concepts such as rules, sets of changes
that influence rule scheduling decisions and a current state for the data, the cor-
responding definitions of these domains and the naming of supporting functions
have been chosen to match where appropriate to not confuse the reader. However,
fundamental differences regarding the nature of the sets of changes and the effect
of change on the scheduling decisions are worth pointing out.
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The Starburst rule language has been specified to operate in a database con-
text. Production rules serve as a means to denote active behavior, triggered by
classical database operations such as INSERT, DELETE, and UPDATE opera-
tions and are applied to specific tables within the database. Rules are activated
for instance at the end of a successful transaction or at any other user-specified
rule assertion point, but not at an arbitrary point in time. Upon activation, the
sets of changes are distributed to all rules and the rule with the highest priority
amongst all activated rules is chosen and executed in case the conditions are met.
All changes that result from this execution are directly re-applied to the former
set of changes, re-distributed to all rules, and once again, the activated rule with
the highest priority is a candidate for scheduling. The effect of change due to rule
execution is therefore immediately visible.

The RDL rule language favors a different execution semantics for its rules. First
of all, rule processing will start at an arbitrary point in time, namely whenever a
new event has been recognized. The function Prepare-Reaction expresses exactly
this reactive behavior as it triggers a new run through the available rule base upon
the occurrence of a new element in δe. Data sample facts, timer interrupt facts
or facts received via the radio transceiver pushed into the fact repository by the
runtime environment are typical events that appear in δe. Reaction granularity is
therefore on the level of tuples or facts, not on tables and favors an immediate rule
execution model. Naturally, this is a result of the envisioned application domain
of event processing rather than to utilize RDL for data monitoring.

Due to a different data manipulation schema and execution model for rules
supported by the RDL language, the available sets of changes as well as their
influence on the scheduling semantics tremendously differ from those available
within the Starburst system: Rule evaluation is divided into individual runs, which
correspond to a complete, in-order evaluation cycle of the rule base. Upon event
recognition, the rule with the highest priority reacting to this event is scheduled for
execution and, in case the actions modify the fact repository, the incurred change
is added to δ by calling the Accumulate-Change function. Note however that
fact insertion or updates are not automatically visible as events, but contribute
to the modifications in δm, instead. Afterwards, the run resumes, evaluating all
rules with lesser or equal priority than the formerly executed rule, see function
Eligible, thus preserving rule evaluation order within a run, until no more rule is
eligible to trigger. Consequently, one event may trigger multiple rules unless the
corresponding fact is removed prior to the evaluation of subsequent rule premises.

In case no more rule is eligible to trigger, two possible operational paths can
be followed: Either, no modifications to the fact repository have occurred during
the previous run, thus the productions have come to a stable state and the rule
evaluation process terminates. Or, the net effect of change regarding fact modifi-
cations is not empty, thus new facts have been produced or facts have been altered,
leading to the necessity to resume a new production rule run. Then, all old events
δe which have been properly reacted to during the last run are evicted from the set
of changes, and all modifications are instead swapped to serve as new events that
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possibly demand for reactions by calling the function Prepare-Production. Once
again, recursive evaluation of the rule base is triggered.

Note that the differentiation of facts into modifications and events has a clear
advantage when utilizing production rules in an event-processing domain, since
it fuses production rule and ECA rule semantics into one, hybrid concept. As
the syntax suggests, the programmer is facing production rules realizing stateful
semantics: Fact insertion, alteration and retraction directly influence the set of
rules that may trigger immediately after the corresponding rule has been executed.
The conflict set of rules is recalculated as fact repository state may have changed,
and as a result rules may join or leave this set. However, rule evaluation order
is kept and the event set of changes is not effected unless on purpose.2 Rules
can thus generate new events, but not necessarily every fact that e.g. serves as a
temporary variable, a means to store stateful information or to pass data between
rules automatically becomes an event. From a programming perspective, reaction
and production are manageable in an easy manner at the same time with the same
data abstraction.

5.3 RDL Language Pragmatics

Given the fact that a programming language is the vehicle to map a problem of
a certain domain or application area, a specific routine or process to software,
the pragmatics of a language can be understood as an indication for how well the
chosen language suits the demand for expressiveness and applicability. In order
to judge, or more precisely investigate language pragmatics, the following section
will shed some light on common programming patterns which result from extensive
work on and with RDL. Note that the intention is to discuss language usage at
a rather abstract level to provide an understanding of general issues rather than
application-specific problems.

RDL is a language that has been designed specifically to meet challenges ex-
posed by the wireless sensor network domain, but at the time is general enough
to serve as a holistic programming language in a sense that it does not restrict
a programmer to a certain class of implementable applications or protocols for
networks. In order to achieve both of the stated goals, simple event processing
routines as well as what can be labeled as algorithmic knowledge have to be ex-
pressible in RDL rules. As has been stated before, the usage of reactive production
rules in a sensor networking context is beneficial since it nicely leverages event-
centric processing and knowledge representation and combines them in a single
mental model.

The patterns presented below can be roughly categorized into two distinct
groups: The first class comprises those patterns that are applicable to overcome
problems which result from choosing a rule-based abstraction in the first place:
since control flow is completely shielded from a programmer and handed to a rule

2This can be the case when implementing control sequences, see 5.3.
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engine, one has to literally trick the system in case the implementation relies on
a more sophisticated control mechanism than simple if-then-else statements. It is
important to point out, that RDL has not been specified to primarily focus on
procedural programming, since then, choosing a rule-based programming abstrac-
tion would have been simply wrong. Rather, the common case is an event-based
processing scheme, and the intention of presenting control patterns is to point out
suitable workarounds for those cases that do need special attention.

The second group of patterns are processing schemes specific to the sensor net-
working domain. These are simply general observations how to deal with incoming
data in RDL in the most efficient way, how to organize common data processing
steps and how to speed up rule evaluation by minimizing the fact repository search
space.

5.3.1 Control Patterns

Imperative programming languages are nowadays prevalently used. As a conse-
quence, a software developer is prone to structure and express algorithms in terms
of basic control structures he/she is familiar with. Therefore, languages that lack
these control mechanisms can lead to mild irritations since the programmer has
to rethink the problem. For instance, popular control structures such as while
and for loops can be essential to capture processing semantics, but have to be
mapped to consecutive event-action pairs to be utilized in a rule-based implemen-
tation. Unlike execution strategies for imperative languages where execution state
is automatically obtained in the program stack, event-centric processing lacks a
governed and for a programmer accessible state. Therefore, state has to be ex-
plicitly managed by the application programmer, a necessity that one has to be
aware of. A third mechanism that is lacking is the ability to outsource common
functionality applicable to a variety of data items to a method or function.

Control patterns, such as the ones presented below, are always concerned with
node-local processing to allow for interaction and information passing between
individual rules and thus can be understood as enablers for sophisticated data
processing algorithms.

The WHILE-Loop

A common problem a developer encounters when having to express iterations in
rule-based languages such as RDL is that there is a need to map this behavior
into interacting event-action pairs and to manually control the looping conditions.
Therefore, to implement a while loop in RDL, one has to take advantage of the
fact that (1) production rule evaluation will not stop unless no new events appear
in the fact repository during the last run and (2) each production run itself can
be understood as a loop.

Recall once again the definition of successful condition evaluation from Sec-
tion 5.2.1: A rule will be executed if all of its conditions evaluate to true, and one
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Figure 5.1: Mapping a while loop to RDL rules

of the facts involved in successful condition evaluation is tagged to be an event
via its state property. Thus, to make use of the repetitive rule evaluation process,
a fact that controls the while statement and is kept to appear as an event, has
to be generated. One could also think of this as a GOTO statement that operates
across production rule runs.

Figure 5.1 depicts the idea of incorporating iterative processing into RDL. The
key is to simply split the task of loop control and condition evaluation into two
separate concerns, thus spawn a new fact (iterator in this particular case) when
the while condition (denoted as cond in the flow chart) becomes true. Then,
execution of every statement in the body of a traditional while loop is guarded
by both, the while condition and the iterator fact. This ensures that the body
of the loop will be evaluated and eventually executed in a sequential manner,
an execution path that is unusual for rule-based processing, but mandatory for
correct loop reproduction. At the end of the body, the fact for loop control has
to be updated, no matter whether a true update of its values is necessary or not.
This warrants that the fact will be swapped into the set of modifactions δm and
re-appears to be an event once a new production run is scheduled. The last rule
rk discards the loop control fact and will only fire in case its preceding rule did
not. While this rule is not mandatory to implement a while loop, it is however
good programming practice to not thrash the fact repository. Naturally, any rule
that has a lesser priority than rk has to be inhibited to fire during the execution
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of the conceptual while loop.
An alternative solution to implement the while loop would be to update a fact

that is referenced in the while condition itself. While it may work, experience
has shown that this practice is prone to errors, since these facts may well be
part of other rule conditions. In this case, unintentional triggering of non-related
rules can cause misbehavior of the complete ruleset. Note that the extension to
building a for loop using the above mentioned pattern is uncomplicated: The fact
that controls the loop has to created with an additional property that serves as a
counter variable and will be incremented during the update in rk+1. Likewise, the
condition referencing this fact for guarding the body of the while loop has to be
adjusted accordingly.

Finite State Machines

The lack of a call stack, inherent to event-centric processing, is a challenge a
programmer has to face when utilizing RDL. Although unfamiliar at first, this
problem can be fixed fairly easy when implementing stateful algorithms with the
help of a finite state machine. Clearly, the task of managing state is shifted from
the system to the programmer which is a burden, however its translation to rules is
straight-forward. Moreover, explicit state management clarifies intended program
flow, thus improves program readability.

To incorporate a finite state machine into a set of rules, it has been proven
useful to establish one dedicated fact for controlling state, see Figure 5.2. This
fact (named state here) should have a property which is used to reflect the state
that the system currently resides in. State transition rules can be specified to fire
either in case an arbitrary condition evaluates to true, e.g. as shown in rule rk+j ,
dependent on a particular state or due to a combination of both, e.g. rule rk.
Naturally, entering a specific state can also lead to the execution of a number of
actions, depicted in rule rk+i, that do not incorporate any change to the current
state. Be aware that the definition or modification of the state fact will render it
to be part of the set of modifications δm and that reactions can hence not directly
trigger subsequent rules. Instead, they will be delayed to the next production run
to prevent race conditions and ensure correct execution order according to the
priority ordering.

Once again, a programmer has to be careful to prevent incidental rule trigger-
ing which may result from updating the state fact. Here, a rule of thumb is to
proceed as follows: In case immediate, unconditional reactions are the only result
of the execution of a state transition rule, thus no rules reference the state fact in
combination with other conditions in their condition part, the finite state machine
can be understood as a generalization of a GOTO statement and there is no need
to worry about subsequent rule triggering.

However, in case conditional execution during specific states is given, e.g. as
denoted in rule rk, the programmer should carefully check whether its execution
is intended to happen in both cases, when reaching the proper state but also
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Figure 5.2: Building a finite state machine in RDL rules

when other facts have been modified that are referenced in the condition. To
prevent the state fact to act as a trigger, it can always be flushed after state
transition. As a consequence, the developer then has to once again split the task
of representing state and trigger provision into two separate facts: the state fact,
which has to be flushed after every modification and a dedicated trigger fact, e.g.
called state_trigger, which can be referenced in the condition part of only the
corresponding subset of rules that actually are meant to immediately fire.

Generic Matching

The definition of subroutines is a very powerful and basic instrument to organize
software: Common tasks that are utilized throughout a program are wrapped into
distinct functions, which are then callable from any place in the given source.
Since the sourcecode itself is more compact and code duplication avoided due to
code reuse, the actual cost of software development can be cut while at the same
time maintainability, quality and reliability increase.

A feature that is especially useful in this context is the introduction of polymor-
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rk+1 :

rk :

fact_x true

...

gen true
action 1

...
action n

gen [val = "x", ...]
touch ({"gen"}) fact_z gen [val = "z", ...]

touch ({"gen"})true

Figure 5.3: Avoidance of code obfuscation with generic matching.

phic functions: Given different types of data that all request for similar processing
semantics, the name for calling the corresponding function will be the same, but
return value or input parameters may be of different type.

Since control flow is per se not sequential in rule-based processing, code reuse
cannot be obtained at the level of subroutines, but has to be treated at the level of
proper rule invocation. A problem that appears often in this context is that either
different facts are supposed to trigger the same action or that a similar processing
scheme is requested to be applied to different facts. Of course this issue shares some
resemblance with polymorphic functions, especially when rules serve as guards e.g.
to a set of rules that implement a sequential portion of software. However, in this
particular paradigm, the quest for genericness may better be expressed as an urge
for generic matching capabilities.

We refer to the workaround offered to avoid code obfuscation as generic match-
ing in the following.

The problem to solve is to enable successful matching of different fact types
against the same filter or condition within language bounds. As fact types are
denoted by the name of a fact, which in turn are used to resolve pattern match-
ing requests, the options are to either extend the language or to modify the facts
requested to match the filtering condition to the required fact type. The first solu-
tion, e.g. realizable via introduction of generic fact types that a fact instance can
inherit, is not feasible within RDL, so that the pattern presented here implements
a means of casting a fact to another fact type instead. In the exemplary case
illustrated in Figure 5.3, this new fact is labeled to be of arbitrary type gen (for
generic).

Say for instance that the rule rk implements a series of actions and/or controls
a certain processing loop that should be triggered by or invoked upon different fact
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types, fact_x to fact_z in this case. At first glance, a developer would therefore
denote basically the same processing steps (those shielded by the condition of
rk) once for every fact type, each in a closed set of interacting rules, leading to
massive redundancy. A more condensed way to achieve the same behavior is to
specify one rule per fact type which copies its contents to another fact whose name
(thus type) corresponds to the name requested by the actual rule implementing the
processing scheme. This generic fact holds all of the properties of its originating
fact in addition to a property that stores the fact’s name to enable to re-build the
source fact after the generic has been handled appropriately. One can understand
the generic fact to serve as the trigger and the argument to be "passed" for the
guarded operations. Type casting is hence implemented by means of fact copying.

The invocation of the touch statement upon gen is a means to directly influence
rule engine control flow. Recall that any new or altered fact will be part of the set
of modifications, thus their ability to trigger rule execution is delayed to the next
production run. A touched fact appears as an event right away - and can trigger
rules of lesser priority right away.

Note that in case fact properties are altered or otherwise used in rule rk, it is
mandatory that the different fact types being processed adhere to the same set of
properties to warrant proper handling.

5.3.2 WSN-specific Programming Patterns

Event-driven architectures rely on incoming data, or more specifically recognized
events, to trigger processing activities. Since they are deployed to acquire, process
and eventually share data samples, wireless sensor nodes are a typical represen-
tative of such event-driven systems. Independent of the actual application that is
implemented, the foremost task of a wireless sensor node is therefore to react to
any incoming data in an appropriate manner. The programming patterns intro-
duced below reflect our experience in how to efficiently implement data processing
routines in RDL, dependent on the intended application behavior and processing
model.

Chain of Filters

The chain of filters pattern is a straight-forward data processing scheme whose
intention is the efficient utilization of the scarce resources of a wireless sensor
node. To achieve prompt reactivity on every node, processing time as well as
allocated facts in the fact repository have to be cut to a minimum. The key to
achieving this goal is to simply drop any data item, any fact received via the radio
interface, literally any fact residing in the fact repository as soon as possible.

The implementation of a chain of filters makes use of the priority ordering spec-
ified for every ruleset. By prioritizing those filtering rules that are very restrictive
in terms of data items that pass these rules without being processed and/or re-
tracted, the most common cases are to be filtered first, see Figure 5.4. Subsequent
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Figure 5.4: Chaining of filters for efficient data processing

rules have only to be evaluated for a fraction of all incoming facts since the early
eviction of the initial trigger renders condition evaluation superfluous. Rules such
as e.g. rule rk+1 that filter 60% of all facts named data are quite common in
wireless sensor network applications: Usually, only a small value range for data
samples is of interest. Outliers can then be immediately dropped and remaining
data items instantly aggregated (see rule rk). Note that it is however essential
to retract or modify the incoming fact in the body of a processing rule to either
remove it from the fact repository or swap it to the set of modifications δm to
achieve the effect of successful evaluation suppression.

The positive effect of incorporating this pattern into the data processing chain
is twofold: On the one hand, the search space for pattern matching during con-
dition evaluation is kept small if only significant data is kept. Furthermore, the
utilization of the fact repository is optimized. On the other hand, the unnecessary
evaluation of rules is suppressed in case triggering facts are evicted early. Nat-
urally, this can, dependent on the number of rules, speed up the rule evaluation
process tremendously and, due to a lesser workload on the CPU, save valuable
energy otherwise wasted for needless processing.

Hierarchical Data Fusion for Complex Event Recognition

While wireless sensor nodes are capable enough to execute basic data process-
ing and compression algorithms, storage for data samples is often a bottleneck.
Dependent on the deployed platform and the application itself, two general ap-
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Figure 5.5: Filtering and fusing data for complex event detection

proaches how to deal with these samples can be observed. Monitoring applications
that focus on pure data acquirement predominately build upon sensor network
hardware with large, secondary storage. During the deployment of the network,
samples are swapped to storage and information passing in-between nodes is kept
to a minimum. A low energy consumption due to communication avoidance and
the availability of all raw data at the end of a deployment are major advantages.
Then again, network behavior is rather passive, event detection can only be per-
formed offline and clearly the great potential of the sensor network technology is
not exploited.

Whenever sensor nodes are deployed to immediately react to recognized events,
the data management strategy is naturally different. In this case, all relevant
data has to be accessible fast so that excessive swapping and searching can be
prevented. Instead, a pattern implementing a hierarchical data fusion algorithm,
see Figure 5.5, is often used to cut data size, yet maintain crucial information and
at the end enable the inference of complex or composite events [31]. Therefore,
a concatenation of several processing steps that can be nicely mapped to rules
is necessary, typically starting with adequate filtering as described in the pattern
presented above. In a next step, aggregation schemes which operate upon samples
of the same kind and/or data fusion algorithms [40] to relate different types of
aggregates are applied. The goal is to semantically compress raw samples to
local events, thus add meaning to the data whilst optimizing for storage at the
same time. Numerous publications have explored this topic, e.g. [33], [58], its
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corresponding implementation in rules is straight-forward.
As soon as local events have successfully been recognized on an individual

node, the application may have instructed it to react in a variety of ways: Actors
available on the sensor node may be activated, information may be passed to
a dedicated source across the network or further in-network processing may be
triggered, as depicted in rules rk+j and rk in Figure 5.5. Here, the detection of an
event is verified by means of querying the neighborhood for their results, achieved
by distributing the local event. In case the conditions for global event detection
are met, which can for instance be implemented as a simple majority vote, the
sensor node that initially requested reassurance will fire an appropriate reaction.

It is noteworthy to point out that the sheer size of data which has to be
stored on a node can be tremendously minimized when utilizing this pattern.
Each step up the hierarchy increases the level of compression, moving from raw
data samples over aggregates to local events, which may then even be fused to
events that represent a region covered by a set of sensor nodes. Not only is this
beneficial regarding node-local storage capacity, but it also helps to keep network
load low as lesser traffic is imposed when relying on compressed data to forward.
For concrete numbers on possible savings and a detailed implementation of this
pattern in RDL rules, the interested reader may be referred to an experiment
described in [154]. Also note that aggregation schemes may well be applied whilst
routing events from sources to a data sink, see e.g. [147], which clearly is just a
different approach towards implementing this pattern.

5.3.3 Remarks

Real-world applications and protocols are often composed of autonomous process-
ing parts or phases which are plugged together to achieve the envisioned behavior
of a node. From a software engineering point of view, it is beneficial to map such
parts to well-known programming patterns where possible. This not only clari-
fies needed control and data structures, but also adds to the readability of the
implementation and may speed up the development process.

The patterns presented above have been retrieved from different rulesets and
implementations that were developed with RDL. For successive processing of facts
of the same type that need to implement many-to-many matching semantics un-
der state-based constraints, the utilization of the while-loop has for instance been
very helpful. This has been used to find adequate routing options in the PST
routing example which will be discussed in detail in Section 7.2. Complex event
detection, thus the definition of causal and/or temporal dependencies between
sensor samples, derived events and e.g. network state, can in most cases be easily
mapped to a state machine. Reaching a specific state presumes a primitive event
to have occurred, and rules for fusing state information can act upon these state
facts to recognize the incidence of a complex event scheme. A representative im-
plementation is for instance the cow tracking example presented in the motivation
to this thesis. Finally, fact casting for generic matching has been a widely applied
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pattern. A very basic task that can be nicely implemented with it is for instance
the definition of a holistic aggregation scheme for sensor samples. For long term
environmental monitoring, the individual samples are usually of minor importance
and it is enough to provide solely the value distribution by extracting average and
median values for a specific sample period and all available sensors. Since sensor
samples usually resemble the same fact structure, the pattern allows to specify
aggregation functionality only once, and invoke it on the different samples.

Both, the chain of filters and the hierarchical data fusion pattern basically stem
from the same, real-world experiment which is discussed in detail in Section 7.4.
There, the number of samples streaming into the system have been almost over-
whelming in case a local event triggered, so that fast filtering was mandatory to
actually keep the system up and running. The more semantics were added to the
raw data, the less the sheer volume became, a circumstance found very helpful
for speeding up the evaluation process along the line of complex event processing
schemes.

In general, these patterns are in no way comprehensive, which was however
never the motivation. Rather than elaborating on all possible and useful patterns,
the prime intention has been to provide some hints on how to implement recurring
algorithmic sequences that are not directly covered by language constructs, and
how to cope with common WSN specific challenges.

5.4 Towards mature language design

The RDL language presented so far is absolutely suitable to implement a wide
range of wireless sensor network protocols and applications. Stand-alone, all rele-
vant processing and communication capabilities are provided to efficiently denote
reactive, node-local behavior. However, to serve as a language that enables a more
mature approach towards software development, thus exhibits constructs as e.g.
support for modularity that programmers are nowadays used to from high-level
programming languages, relevant features are missing. It is also unclear, whether
the complete lack of imperative control sequences has been a good choice, or
whether an integrative approach would be preferable

In this section, two approaches to enhance or to alter the core language by
provision of additional functionality are briefly introduced and discussed. The first
aims at studying a means to integrate the imperative and the rule-based paradigm
at the language level. The question has been whether there is a possibility to take
the look and feel of a more familiar programming language such as for instance C#
and integrate an RDL derivative that basically promotes the same functionality. It
turned out to be a quite experimental approach resulting in a conceptual language
called Small# with very interesting features, which in the end however lacked the
capabilities of the core language.

The starting point for the second study has been the unchanged, core language
itself. Here, the focus has been to provide additional, lightweight language con-
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structs that enable a better software design in terms of established, compile-time
support for increased code stability and better encapsulation of concerns [84].

5.4.1 Small# - A conceptual approach towards paradigm fusion

Unlike the development process for RDL where an analysis of demands and goals
from a problem-oriented point of view led to the final language syntax and se-
mantics, the design process pursued for Small# has been bottom-up. Available
hardware platform, system interface and the denoted requirement to integrate
RDL rule specification semantics into a stripped-down C# for embedded devices
were taken to weave a programming fabric. Design thus started with crafting
a suitable instruction set in combination with a specification of supported data
types. Based upon this set of available instructions, a high-level representation
depending on a familiar syntax has been developed to enable sensor node tasking.
Once again, an interpreter architecture was chosen to warrant correct execution
semantics. Note that a complete reference of the final instruction set architecture,
the implementation of a virtual machine (VM) and the Small# syntax can be
found in [117]; in the following, the goal is solely to sketch the initial idea and
discuss its practicality.

The Small# virtual machine instruction set architecture (ISA)

Bottom-up design usually starts from picking up the pieces that are already at
hand, a fact that is confirmed in the Small# ISA. The definition of data types is
straight-forward, exporting common types such as boolean, unsigned integer and
so forth directly from the underlying system to the ISA. In addition, the data
types Function, Address, Slot and Fact are given, with the first three being
references to memory and the last being an index to a separately managed memory
region for fact storage.

The ISA targets a RISC-inspired load/store architecture, however with variable-
sized opcodes to prevent memory wastage later on in the compiled bytecode. The
actual instruction set comprises 60 instructions, which can be categorized into six
different groups:

• Instructions that provide basic load/store operations for stack-based pro-
gram execution

• Instructions to manipulate program flow

• Instructions for arithmetic and logic operations

• Instructions for direct fact manipulation

• Instructions that allow for controlling communication devices (radio, serial
interface)
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• Instructions that directly export offered firmware functionality to manipulate
and control the sensor hardware

Each instruction is encoded with a distinct opcode and an operand if necessary
to obtain a concise bytecode, which can then be interpreted by a Small# virtual
machine respectively. What is now interesting to see is how rules, facts and slots
are represented at the instruction set level and intended to be integrated within the
virtual machine. This will later on determine the access strategy that is available
from a language that compiles down to the given bytecode format.

A function comprises a sequence of instructions that semantically belong to-
gether. Representing a function via an address that indicates the starting point
of this sequence within the bytecode is therefore a natural approach. A rule can
be understood as a set of two consecutive functions, one that evaluates the rule
precondition and one to be eventually called via a jump instruction at the end of
successful condition evaluation implementing the required actions. Finally, also a
slot can be perceived as a mere sequence of filtering conditions, yielding a byte-
code representation of both, a rule and a slot, by provision of the address of the
sequence starting point.

Facts are a specialized format to encode data of global scope. Since they are
not automatically managed, they require proper handling by a virtual machine
at runtime. Dependent on the VM implementation, an address that points to a
reserved memory region for that fact, or an index to an element of a data structure
chosen for storage as suggested in this ISA can be utilized for fact encoding.

As can be seen from the ISA layout, a stack-based instruction execution model
is the basis for the architecture: all fact processing, reactions and filtering mech-
anisms are denoted as functions. Parameters such as variables, constants or fact
addresses are pushed onto the stack and evaluated according to the decoded in-
structions. This design choice clearly mirrors the intent to integrate rule-based
processing capabilities into imperative programming - and not vice versa.

The Small# language

While it is possible to write assembler-lookalike programs with the ISA briefly
introduced, a decreased level of abstraction will most certainly not satisfy future
developers. The provision of a high-level language that can compile down to this
intermediate bytecode is a more rewarding approach. Listing 5.1 visualizes an
example that implements periodic temperature sampling in Small#, a potential
language syntax for a hybrid C#/RDL approach.
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Listing 5.1: Simple temperature monitoring in Small#.
1 class MonitorTemperature {
2

3 const int maxTemp = 25;
4 int sum , count , average ;
5

6 // filter requirement for a temperature fact
7 slot temperature = Temperature (this.state == " modified " , this

.time < System . getCurrentTime ());
8

9 // Function to trigger an alarm
10 void TemperatureExceeded (int current ) {
11 System . SerialWriteLine (" Current " + current + " Average " +

average );
12 }
13

14 // rule that fires upon new temperature facts
15 rule TemperatureMeasured (100)
16 cond { System . Exists ( temperature )}
17 inst {
18 sum += temperature .Value;
19 count += 1;
20 average = sum/count;
21 if ( temperature .Value > 25) {
22 TemperatureExceeded ( temperature .Value);
23 }
24 else {
25 System . SerialWriteLine ("OK");
26 }
27 System . DeleteFact ( temperature );
28 }
29 // Entry point , initialize temperature sampling
30 void main () {
31 sum = count = average = 0;
32 System . SampleTemperature ((60 * 1024) , 0, 0);
33 }
34 }

Similar to C# programs, the main function is the entry point to start the
execution of the MonitorTemperature program. Here, the global variables sum,
count and average are initialized to zero, and a function that is defined in a
separate System class to trigger periodic sampling of a temperature sensor once
a minute is called. Program execution then stalls, and will only be re-activated
upon the occurrence of a fact named Temperature. This matches the name of
the fact denoted in the condition specified in line 16, which in turn points to slot
temperature (lines 7 - 8) for predicate evaluation. The rule TemperatureMeasured
will trigger in case the state property of a temperature fact is set to modified and
its creation time does not lie in the future, a simple sanity check. Then, the action
part of the rule (lines 18-28) is executed, the average temperature calculated, and
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an alarm message printed to a serial interface in case a predefined threshold value
for the current measurement is exceeded. At the end of the processing cycle, the
fact referenced by the temperature slot is retracted from the system.

Note that while the bytecode has been extensively tested on a dedicated virtual
machine for the target ISA, the language itself has never passed the conceptual
stage. The reasons for this will be reconsidered in the subsequent section.

Discussion

The central question that needs to be answered to judge a hybrid approach as for
instance the Small# language is what the actual benefit in contrast to either a pure
rule-based or a pure imperative language for WSN tasking is. As can be directly
drawn from the design of the ISA and the presented sample code, the prevalent
view on software development has changed from a problem-oriented (RDL) to an
instruction-oriented perspective which is typical for the imperative paradigm.

The provision of local variables, the ability to specify functions that can be
called from the rule body and the availability of instructions to define control
sequences for sure facilitate the implementation of sophisticated data processing
schemes: In contrast to RDL, values of matched fact properties can be bound
to variables and common sequences of operations are directly accessible from the
action part of a rule. This can be done by calling a subroutine instead of wrapping
the behavior into another rule. Even if-then-else statements can be part of an
action and do not have to be outsourced, which most probably increases code
readability.

But all the advantages named above could have been equally achieved when re-
lying on the implementation of simple event handlers as presented in Section 2.2.3.
In this case, an interpreter architecture would be obsolete, granting increased pro-
cessing speed at lesser sourcecode to maintain. However, some features that are
gained when adding the fact-based data model and the rule abstraction to im-
perative programming are then lost. Recall that event handlers follow a simple
one-to-one matching scheme, thus the occurrence of an event will invoke exactly
one handler. The ability that distinct processing paths can be followed at the same
time as provided by one-to-many matching semantics is not supported. Also, a
unified data model as enforced in RDL and at least supported by Small# sub-
stantially abstracts from machine-driven data handling, hence allows for a more
problem-oriented utilization of data items.

Nevertheless, the hybrid programming model introduces some inherent, major
drawbacks that rendered further research in this direction rather fruitless. First
and foremost, the availability of local variables and primitive data types in combi-
nation with the fact model breaks the introduced data and processing abstraction
with severe consequences: As a stack-based processing approach is chosen for ex-
ecution and a developer is able to manipulate this stack according to his needs,
manual stack management is pushed back to be his responsibility. At the same
time, the availability of language constructs for explicit flow control allows for the
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definition of long-running functions, possibly leading to timing problems when uti-
lized on embedded hardware. In contrast to pure RDL execution schemes where
processing concerns are completely shielded from the developer and handled in the
runtime environment, this is not feasible any more within the hybrid model. Sec-
ond, redundancy is introduced into the programming model which is of course a
result of paradigm fusion: One can for instance write a function that evaluates the
rule conditions by means of iterating over the fact repository, or one could rely on
the functionality provided by a runtime, which will trigger the same action when
questioned to evaluate a slot. Also, if-then-else sequences can be applied to avoid
rule specification, which is the case in the example program, or, the same process-
ing semantics may be achieved by specification of additional rules. Of course, a
possible workaround is to get rid of one or the other, but then either paradigm is
marginalized.

Summing up these observations, the disadvantages that the integration of
paradigms at this level and for the given purpose introduce, clearly outweigh
the advantages gained. Despite of this rather disappointing result, the evaluation
of the Small# approach however pointed out important features of the pure pro-
gramming paradigms that otherwise might have not been revealed in this clarity.

5.4.2 mRDL - Enhancing RDL for improved modularity

The Small# approach focussed on exploring whether an adaptation of RDL by
addition of imperative control and data manipulation constructs is plausible. In
contrast to this, the approach presented and discussed in the following is concerned
with staying within the conceptual bounds of the language and analyze, once again
with a top-down approach, whether RDL misses important features, what exactly
their nature is and how these shortcomings can be objected.

A first hint towards a missing language feature has already been mentioned
in Section 5.3.1 where the need for a mechanism to reduce code obfuscation has
been tackled. Looking back, one can read between the lines, that this is not only
an issue at the granularity of rules, but can be extrapolated to complete rulesets.
Within a ruleset, functional polymorphism can be achieved with a guarding rule
that exports a specific fact as an interface, but how to cope with the problem
at a larger scope has not yet been discussed. In general, the open question is
how to specify a reasonable encapsulation of concerns with the ability to share
and to make the provided implementation accessible in a coordinated, structured
manner. Note however that this is not a question of a functional deficiency of the
language, but rather a question of missing language support for improved software
engineering techniques.

Missing pieces for support of modular software development with RDL

In general, modular software development is concerned with encapsulating soft-
ware parts that functionally belong together into a so called software component.
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Each component consists of the implementation of a requested operation in combi-
nation with the therefore required data structures, and an interface which exports
a handle to utilize this functionality [110]. Earlier we discussed that due to a lack
of sequential program flow for custom rule-based processing, it is not reasonable to
integrate language constructs equivalent to subroutines into a rule-based language.
At a larger scope however, thus when it comes to the implementation of either
complete protocols or functionally independent sets of control rules, the option for
code reuse becomes an interesting feature. In RDL, the equivalent to a software
component can be denoted to be a ruleset.

Since the mere existence of a keyword to specify software components is not
enough, a number of issues still have to be addressed to be able to actually depend
on sharing ruleset functionality:

• Ruleset interdependency: While it is possible to assign specific rules to belong
to a certain ruleset, RDL features no mechanism to denote the correlation
of different rulesets.

• Namespaces: Facts are global variables, hence have global scope and names
are visible throughout the rule base. In case several, independently devel-
oped rulesets are used together, erroneous node behavior due to a clash of
names is inevitable with core RDL syntax.

• Information hiding: Unless explicit access restrictions are introduced, rules
from different rulesets can interact, thus trigger each other, whether this
is intended or not. Encapsulation of concerns cannot be granted with core
RDL.

Syntactical changes in mRDL

A couple of mechanisms have to be added to address the shortcomings pointed out
above and embed countermeasures into the language. First of all, it is necessary
to provide a means for specification of ruleset interdependency. For instance, if
ruleset A comprises rules that express the application logic, and ruleset B rules
that implement a data streaming protocol, then for A to use B, a mechanism has to
be available to instruct the compiler that (1) A is not operational without B, thus
A depends on B, and (2) in which order rules of these rulesets should be checked.
Similar to an import instruction for classes in Java or an include instruction in
C to point to relevant header files, the RDL syntax is therefore enhanced by the
keyword depends, indicating that a ruleset cannot be utilized without the avail-
ability of the ruleset that it declares to depend on. Furthermore, since scheduling
semantics within a ruleset should be kept, evaluation order amongst rulesets has
to be denoted with an additional assignment of priority. Typically, the lower in
the stack implemented functionality can be categorized, the higher is the assigned
scheduling priority.
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Since facts serve as a means of internal communication of system state between
rules for forward chaining, the probability of an unintentional clash of names
when sharing a global namespace among rulesets increases with the number of
rules provided. A simple, yet effective mechanism to avoid this, is to enable the
declaration of namespaces, which restrict the scope of names to the rulesets they
have been declared in. Unless explicitly addressed, fact names outside the current
ruleset are then not visible. As a consequence, the danger of unintentional trigger
provision during ruleset specification is avoided.

Nevertheless, without a means to support ruleset interaction, the concept of
modular software development is rendered useless. The key to controlled rule
‘invocation‘ is clearly to provide (1) a dedicated interface that exports the fact
signature, thus its internal structure to the issuing ruleset and (2) a mechanism
to allow for cross-ruleset visibility and addressing of fact names. The straight-
forward approach to embed these requests into RDL is to force a programmer to
explicitly declare any name visible across ruleset boundaries and to set it to be
public. The interface to a ruleset therefore constitutes itself in a list of names of
corresponding facts that will trigger rules when inserted into the fact repository.
In order to utilize and address a fact of a foreign namespace, the rulesets‘ name
followed by a period has to precede the factname in question.

Given a ruleset A which wants to trigger a rule rb in ruleset B, one of the
triggering facts for this rule has to be declared public. Once again, the issue of
generic matching becomes apparent in case the fact is supposed to serve as more
than a mere trigger, but will be altered or used for parameterization of the rule
intended to trigger. In the present model, only a mechanism that resembles ‘call
by value‘ semantics is supported3, a circumstance that, in respect to the predomi-
nantly utilized pattern matching, is not optimal. We therefore experimented with
introducing the possibility of passing references to fact types, and apply matching
upon reference resolution. However, in practice this approach turned out to be
very prone to errors due to utterly complex slot specification schemes and resulted
in ambiguous semantics for matching fact properties on referenced fact types.

Practical relevance of mRDL

Support for modularity is not only beneficial from a software engineering point
of view, but is especially in the context of wireless sensor networks of practical
relevance for differential updates. Recall that a prime application area of WSNs
is their utilization for environmental or habit monitoring. Software updates nec-
essary during the time of deployment are resource-intense operations as the image
has to be diffused to all target nodes over-the-air, which is costly in terms of en-
ergy spent. Furthermore, the image has to be stored in memory until all parts
fragmented over a set of update packets have been received, taking up valuable

3Be aware that this is a leaky metaphor since rule-based processing depends on matching, not
on method invocation.
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memory capacity. The smaller the update, the faster is a node able to resume its
actual task and the less energy is wasted.

Differential updates at system runtime are especially easy to support when the
deployed software is already structured in a modular manner. Since each ruleset
hides its implementation behind its interface, their exchange is unpretentious as
long as the interface is kept regardless of the severity of change. A tremendous
number of protocols for differential updates of native images [101], bytecode [93]
and even complete reflashing [82] at runtime have been proposed that address
issues such as efficient image distribution [71], state management [137] and network
synchronization [94]. Further research targeting this direction has therefore not
been undertaken within this thesis.

Outlook and Discussion

One feature that has not been addressed in the above mentioned enhancements
is the type system. RDL supports only a small subset of available data types
that are commonly utilized in full-fledged programming languages. For all of
the experiments carried out so far, this has been a sufficient choice. However,
in case RDL is utilized for the implementation of more sophisticated problems
that e.g. demand for high-precision data samples, the available set naturally has
to be adjusted. Also, for better error checking capabilities at compile time, the
introduction of a strict type system which is currently not enforced in RDL is a
reasonable refinement.

5.5 Concluding Remarks
In this chapter the domain-specific, rule-based programming language RDL has
been presented in syntax, semantics and pragmatics and discussed in depth. The
extent of the language syntax itself is rather small and features only a limited set
of simple grammar elements: rules, facts and slots, binary and unary expressions,
basic fact manipulation schemes and an interface to the underlying hardware.
Nevertheless, their application in a nested manner is especially powerful to spec-
ify complex filtering predicates operating on the fact repository, adding to the
language’s expressiveness.

The denotational semantics revealed interesting insights on actual language
usability and clarified how exactly RDL rules have to be conceived: Reactivity is
the foremost concern that the language absorbs, however not in a manner con-
gruent to the ECA paradigm. Instead, events are persistent and map current
system state within the fact repository. Furthermore, the evaluation process of
rules follows stateful semantics, meaning that changes introduced by a rule are
directly accessible by subsequent rules. At the same time, correct event and rule
evaluation order are strictly enforced as a facts’ ability to trigger rules is delayed
to emerge at the beginning of a new production run. As a result, production rule
semantics and sound event processing can be supported at the same time.
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In case intended application or protocol semantics do not follow an event-driven
or knowledge representation approach, but rather build upon typical imperative
processing schemes, the utilization of RDL is not optimal. Due to a lack of di-
rectly accessible mechanisms to control program flow, a developer has to exploit
language evaluation semantics to obtain the requested processing sequence. To
alleviate this task, several programming patterns derived from running RDL pro-
grams have been presented and discussed. With these at hand, unorthodox lan-
guage utilization is facilitated, opening up a wider spectrum of possible application
domains for RDL.

Since the request for support of common imperative programming sequences
became apparent quite early during the language development process, an ap-
proach to fuse language constructs from both, the rule-based and the imperative
paradigm, has been explored. Already observable at the level of the instruction
set, but clearly visible within evaluated Small# sample code, this approach how-
ever turned out to be not feasible: excessive redundancy, a lack of a clear data
model and no real advantage over any of the pure approaches resulted in project
termination. Another approach that has however been successfully tested was to
amend the core language RDL to support a modular software development pro-
cess. The addition of a few, simple grammar elements has had the desired effect so
that related practical issues such as differential reprogramming capabilities may
now easily be integrated into the framework.

All in all, this chapter demonstrated RDL to be a language that provides the
designated programming abstraction. It turned out that even when facing subop-
timal envisioned program structure, RDL is nevertheless a valid and operational
choice, however at the cost of explicit exploitation of language semantics.



Chapter 6

Implementing FACTS

For actually running rules on sensor nodes or within network simulations, these
have to be made available, manageable and interpretable. As has been highlighted
in Section 4.1 for reasons of increased portability, supervised stack utilization
and better retasking capabilities at runtime, the chosen model to deal with user-
specified rules is that of a runtime environment which interprets rules compiled
to a concise bytecode. The focus of this chapter is on the implementation of the
necessary components to enable rule interpretation, as well as on the different
parts of the FACTS toolchain.

Based on the fact that subsequent sections build upon the results of the com-
pilation process, this chapter starts off with a detailed description of the steps
undertaken for bytecode generation in Section 6.1. With the help of well-known
tools for lexical analysis and parsing, the RDL compiler, often also labeled as
FACTS-rc, has been implemented to create a viable bytecode for later on in-
terpretation. Several optimizations to gain a leaner bytecode and to speed up
bytecode evaluation at runtime have been explored and will therefore also be part
of the discussion in this section.

RDL rules can not only be executed upon the ScatterWeb MSB430 sensor
nodes, but compilation targets also include one of the standard network simula-
tors, ns-2, and a Haskell backend which has primarily been used during language
specification. While the emphasis of Section 6.2 is clearly on practical aspects
of rule engine implementation, it will as well introduce the different backends
available for RDL interpretation and reveal their general design.

This chapter is finalized by a discussion of issues that have to be taken into
account for designing a sound, easy-to-use interface to sensor node hardware in
Section 6.3 given the perspective of an application developer. The need for ulti-
mate control of sensing components to achieve optimal application configuration
and the equally important support for rapid prototyping have to be balanced to
provide a platform that is suitable throughout application development time. This
request is objected by two mechanisms presented in this section, before Section 6.6
summarizes the findings of this chapter.
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Figure 6.1: Compilation targets and bytecode generation for FACTS

6.1 Rule Compiler

Rules denoted in the RDL language have to be compiled to bytecode in order
to enable their execution in different runtime environments. Within the FACTS
middleware framework, the ruleset compiler (FACTS-rc) therefore implements the
necessary steps to parse input rulesets into an abstract syntax tree (AST) and
generate interpretable bytecode from the obtained data structure. Figure 6.1
depicts the different backends that may be target to the compilation process to
provide an overview of involved components, which will however be revisited in
the following section.

6.1.1 Basic Compilation

The first step towards compilation is the lexical analysis of a given program.
The starting point for this process is the lexical grammar of RDL as provided
in Section 5.1.1, which allows the corresponding lexer to form tokens from the
input stream of ASCII characters. These are afterwards passed to a parser for
syntactical analysis. To this end, we depend on the freely available tools lex
and yacc [3] for convenient lexer generation for RDL and parsing. During these
steps, the input program is checked whether it conforms to the defined syntactical
structure a ruleset has to exhibit and will be allocated into the data structure of
an abstract syntax tree accordingly. Otherwise, an error is thrown indicating the
line that troubles the lexer or parser.

The interesting part is now how to proceed with the obtained AST, or more
precisely, how to structure the bytecode to gain a well-formed and concise layout of
the envisioned interpretable source. This is especially interesting for the bytecode
targeting the ScatterWeb backend, since in this case, execution time is an impor-
tant design rationale. Generation for the Haskell backend is a straight-forward,
syntactical transformation of the AST into Haskell definitions, thus does not re-
veal any new aspects beyond those discussed for FACTS-re bytecode generation,
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and will therefore be left out here for reasons of brevity.
In general, two different approaches are available to encode an AST, both with

clear advantages and disadvantage.

• Linked Lists: The obvious solution to transform the AST into interpretable
code is to utilize linked lists for storing the relationship between rule parts.
For each non-terminal element, a list of pointers to its parts has to be created
and, during the interpretation process, resolved, an approach that preserves
the initial AST as well as data locality. However, the overhead for using
pointers grows in a linear manner with the number of elements in a list, a
circumstance that has a direct, negative effect on bytecode size.

• Address-based Encoding: Another option for encoding is to resort to an
address-based scheme in combination with distinct arrays for individual ele-
ment types. The basic idea here is to count all rules, conditions, statements,
facts and so forth, allocate an array for each type respectively, and encode
the relationship between these arrays. A rule, which is a mere sequence of
conditions and statements, will hence be encoded by denoting the start and
end address of its conditions in the condition array, and of its statements in
the statements array correspondingly. While locality of data is lost due to
sorting the tokens by type and writing them into an array in a sequential
manner, the advantage is clearly the constant encoding overhead of maxi-
mum two addresses per element, thus independence of ruleset structure.

Since bytecode conciseness has been one of the design rationales, the second ap-
proach has been chosen for the FACTS-rc compilation process, with several mod-
ifications being additionally integrated to further compress the compiler output.
With the AST as input to the compilation process, FACTS-rc starts from the items
that are first accessed during rule evaluation, thus rules, to lay out the bytecode
for its easy traversal at evalation time. All tokens that are part of the blocks, i.
e. named slots or names, are directly copied to the location in the data structure
where they are actually referenced. Naturally, this will increase bytecode size at
first, since code can well be duplicated, a circumstance however tolerated due to
facilitated optimization which is later tackled in the compilation process.

Each parsed item is then either encoded by the addresses into the corresponding
arrays of its terminal and non-terminal items it is composed of, or, in case a
sequence of items is referenced, by their start and end address. An alternative
solution would have been to denote the start address and a value representing the
number of items in the sequence of interest. However, this would have resulted
in the allocation of an additional automatic variable per sequence for counting
during rule evaluation. Due to deep nesting of such sequences, the incurred stack
overhead can become significant, so that this choice has been discarded.

The encoding scheme for strings follows the request for small bytecode sizes:
No string is preserved in the bytecode, but mapped to a unique integer during



114 6. Implementing FACTS

Magic Number Header

Rules

Conditions

Statements

Slots

Expressions

Initializers

Variables

Facts

Properties

Figure 6.2: Abstract layout of a FACTS bytecode image

compilation instead. If necessary, the separation between rulesets is kept by re-
taining the namespace scope of names of facts, slots and names. This (lossy)
compression method is valid since no direct user interaction at runtime is neces-
sary. In order to ease debugging, the compiler will create a separate file which
denotes these key/value mappings along with the bytecode and can be consulted
if facts are printed over the serial interface.

Figure 6.2 shows the abstract layout of the compact structure of a FACTS-re
bytecode image after compilation. All tokens are simply parsed into their indi-
vidual arrays and then combined into one image to be interpreted on the sensor
node.

To summarize the steps discussed above, Figure 6.3 illustrates this complete
process from rule definition to image layout, skipping however the AST generation
for conciseness. An in-depth discussion, along with a complete example, can be
found in [153]. In the first part, one out of the rules of the "Xmas" ruleset is
given, see also Appendix B.1 for a complete implementation. This rule consists of
one condition and three statements to be executed upon event recognition. The
second part gives an idea of the data structures a ruleset is parsed to for further
processing; it declares a ruleset to consists of rules, facts and properties, a rule to
be denoted by its conditions and its statements and so forth. Finally, the actual
layout of the bytecode is depicted in the third portion of the figure, visualized
in its hexadecimal representation for simplified reading. Note that the last part
is actually intended to be interpreted by the ScatterWeb nodes and not read by
human beings and none of the parts is a complete representation of the chosen
ruleset.

Each rule image starts with a magic number, the sequence of hexadecimal
numbers 0xC7 and 0xFA (first row, first column at addresses 0x1000 and 0x1001
in the image) which have to be available at the beginning for the rule engine to
recognize the bytecode to be valid. Following this, the header information of the
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1000:100F C7 FA 14 10 74 10 70 16 70 16 84 16 8A 16 00 00
00 00 00 00 80 10 80 10 04 11 14 11 00 00 00 00...
86 10 86 10 1C 11 34 11 00 00 00 00 92 10 9E 10
3C 11 4C 11 00 00 00 00 A4 10 AA 10 54 11 6C 11
00 00 00 00 B0 10 BC 10 74 11 8C 11 00 00 00 00
C2 10 C8 10 94 11 BC 11 00 00 00 00 CE 10 D4 10
C4 11 DC 11 00 00 00 00 DA 10 E0 10 E4 11 EC 11
00 00 00 00 F2 10 F8 10 F4 11 FC 11 00 00 00 00
04 12 00 00 00 00 24 12 00 00 00 00 22 14 28 14
0D 00 64 12 00 00 00 00 46 14 4C 14 0D 00 52 14
58 14 01 00 84 12 00 00 00 00 70 14 76 14 01 00
B4 12 00 00 00 00 9A 14 A0 14 05 00 A6 14 AC 14
09 00 14 13 00 00 00 00 D6 14 DC 14 15 00 64 13
00 00 00 00 06 15 0C 15 05 00 9C 13 00 00 00 00
24 15 2A 15 01 00 30 15 36 15 01 00 3C 15 42 15
05 00 CC 13 00 00 00 00 4E 15 54 15 01 00 5A 15
60 15 05 00 0A 00 6C 15 6C 15 00 00 0C 00 70 15
74 15 00 00 0C 12 16 14 1C 14 03 00 3C 12 2E 14
00 00 04 00 4C 12 00 00 00 00 01 00 13 00 34 14
34 14 06 00 15 00 3A 14 40 14 06 00 16 00 78 15
7C 15 00 00 19 00 80 15 80 15 00 00 7C 12 00 00
00 00 01 00 94 12 7C 14 00 00 04 00 1C 00 8E 14
8E 14 06 00 A4 12 94 14 00 00 04 00 AC 12 00 00
00 00 01 00 D4 12 B2 14 00 00 04 00 E4 12 C4 14
00 00 04 00 F4 12 CA 14 D0 14 03 00 0C 13 00 00
00 00 01 00 2C 13 E2 14 00 00 04 00 34 13 E8 14
00 00 04 00 1C 00 EE 14 EE 14 06 00 3C 13 F4 14
FA 14 03 00 54 13 00 15 00 00 04 00 5C 13 00 00
00 00 01 00 12 00 84 15 84 15 00 00 7C 13 18 15
1E 15 03 00 8C 13 00 00 00 00 01 00 94 13 00 00
00 00 01 00 1C 00 48 15 48 15 06 00 C4 13 00 00
00 00 01 00 1C 00 66 15 66 15 06 00 E4 13 00 00
00 00 01 00 0C 00 00 00 00 00 00 00 22 00 00 00

1210:121F 00 00 00 00 0F 00 10 00 00 00 00 00 0F 00 11 00

0x1002-0x1013: header

0x1080-0x1103: conditions

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

0x1104-0x1203: statements

0x1203 - 1423: slots 

0x1014-0x107F: rules

1080:108F

1100:110F

[...]
rule getNumRows 100
<- exists {bootstrap}
-> define row [depth = 0]
-> define light [on = true, node = 0]
-> send systemBroadcast systemTxRange {row}
[...] 

rls_header_t
+ rules_first
+ rules_last
+ facts_first
+ facts_last
+ properties_first
+ properties_last

rule_t

+ conditions_first
+ conditions_last
+ statements_first
+ statements_last

condition_t

+ slot
+ unused_right_exp.
+ type = EXISTS

slot_t

+ fname = "bootstrap"
+ propKey
+ conditions_first
+ conditions_last

statement_t     (1)

+ name = "row"
+ parameters_first
+ parameters_last
+ type = DEFINE

statement_t     (2)

+ name_or_slot
+ parameters_first
+ parameters_last
+ type = DEFINE

statement_t     (3)

+ name_or_slot
+ parameters_first
+ parameters_last
+ type = SEND

intitializer_t

+ key = "depth"
+ expression

expression_t

+ type = CONSTANT
+ variable

variable_t

+ type = INTEGER
+ value = 0

Rule Excerpt

Bytecode Structure

Bytecode Layout

Figure 6.3: Transformation of the ChristmasLights ruleset to bytecode
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ruleset, thus the starting and ending addresses of rules, facts and properties are
denoted in the bytecode. If kept in mind that addresses are read backwards, one
can easily see in this image representation that rules are encoded starting from
address 0x1014 to address 0x107F, with the last rule starting at 0x1074.

In case we jump directly to address 0x1014, highlighted in yellow, two subse-
quent numbers that point to address 0x1080 can be found. Since the first rule of
the ruleset, the rule named getNumRows has only one condition, both the start and
the end address for the conditions of this rule are the same. The three statements
of rule getNumRows, are encoded from address 0x1104 to 0x1114, and highlighted
in green respectively. Before the next rule is encoded, the two following zeros are
due to an enhancement further described in Section 6.1.3. As can be derived from
the bytecode, the complete ruleset consists of nine rules, encoded from address
0x1014 to 0x107F,

Starting from address 0x1080, the condition of rule getNumRows is encoded.
In general, a condition is composed of a slot (or a left expression), an unused
value (or a right expression) and the type of the condition, which can be either
of type EXISTS or of type EVAL. Since in this case, an EXISTS condition is given,
no left and right expression are referenced, indicated by the zero values, whereas
the slot is available starting at address 0x1204, which is once again highlighted,
this time in magenta. Here, only the name of the slot, the value 0x000C, i.e. the
integer value that the string "bootstrap" has been mapped to during compilation,
is non-zero. No conditions and no property key have to be encoded for this slot.

The first statement out of the three can partially be followed within the byte-
code image at the bottom of the figure. The encoding provides an address for a
slot named "row" at address 0x120C, thus right after the magenta-coloured part
of the image, as well as its parameters ranging from address 0x1416 to address
0x141C and the type being a DEFINE statement. Parameters are however not dis-
played in the image, but solely exemplarily represented in the middle part of the
figure. The string "row" is in this ruleset mapped to the integer value 0x0022.

Overall, the complete "Xmas" ruleset is compiled to 1676 byte in this unop-
timized manner. In the next section, we address this rather big bytecode size by
introducing a way to optimize the compilation process. In order to give a first
impression on average ruleset sizes and statistics in terms of language constructs,
Table 6.1 depicts some numbers from different ruleset that will be further dis-
cussed in the next section. From a first glance, one can see that the mere number
of rules per ruleset can range from only four, up to more than fifty dependent on
the algorithmic complexity of envisioned node behavior.

6.1.2 Bytecode Optimization I: Smaller Image Size

In contrast to image generation for imperative programs, the layout of a rule-based
bytecode can be composed and optimized with almost no restrictions. Solely two
requirements have to be met: On the one hand, the order of rule evaluation
has to be preserved at execution time according to the ordering specified by the
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Table 6.1: Statistics of selected rulesets

Xmas Turing DD GRA FROMS

Rules 9 4 18 14 51
Conditions 22 7 46 63 331
Statements 32 10 55 35 205
Slots 20 21 34 64 829
Expressions 20 20 35 61 782

programmer. To prevent explicit encoding of rule priorities with each rule and
to bypass costly search operations within the bytecode for the next rule to check
at runtime, the ruleset is sorted in descending order prior to compilation so that
the rule engine may resort to sequential analysis. On the other hand, sequences
of statements have to be maintained to achieve correct application behavior and
sequences of conditions cannot be broken into parts to not obscure the encoding
scheme based on start and end addresses. Other than this, one is free to organize
and re-structure the image layout to gain leaner bytecode.

As has been pointed out, the basic encoding scheme presented in the previous
section still features a good deal of redundancy as every token is encoded in place,
even if the same item has already been denoted. Without any context-awareness,
the allocated memory will equal to the overall counted occurrences of items cor-
responding to the data structures as illustrated in Figure 6.2 multiplied by their
respective size, which is simply worst case. However, many rules share e.g. par-
tially the same conditions, reference the same slots or utilize the same expressions.
As long as the restrictions mentioned above are accounted for, this redundancy
can be discarded during the compilation process to optimize bytecode size.

At the beginning, and as visualized in the middle part of Figure 6.3, all parts
of a ruleset are parsed into a tree-based data structure with its root being the
rls_header_t structure. From an implementation point of view, whenever two or
more identical subtrees reside in the obtained data structure, the encoded informa-
tion is equal, therefore redundant and subject to optimization. By merging these
subtrees into one and adjusting all references accordingly, bytecode size can be
significantly cut. The remaining data structure then of course loses its tree-based
structure, but will still adhere to a directed acyclic graph (DAG).

Since the optimization process itself is recursive and all address adjustments
have to be completed prior to image generation, the bytecode optimization is per-
formed in two steps. Step one allocates all parsed items in their corresponding
arrays as usual to gather a temporary image layout, while step two merges mem-
ory regions, calculates and re-assigns new addresses and outputs the optimized
bytecode image afterwards. This simple compression scheme is not lossy, yet very
effective especially for large rulesets.
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Table 6.2: Bytecode sizes of selected rulesets

Xmas Turing DD GRA

unoptimized 1676 byte 2260 byte 4944 byte 6860 byte
optimized 914 byte 1110 byte 1682 byte 2004 byte
% saved 45,5% 50,8% 56,9% 70,8%

Table 6.2 gives an overview of possible savings for selected rulesets. These are
freely available from the FACTS project website [136] and therefore only presented
briefly here. The first, the Xmas ruleset implements coordinated scheduling of an
LED blinking pattern on ScatterWeb sensor nodes. Therefore, a master node
sends requests to light and/or turn the LED off to slave nodes, which filter these
commands dependent on their position in respect to the master node, see also
Appendix B.1 for the complete sourcecode. The Turing ruleset implements a
Turing machine, developed at the very beginning of language specification to probe
its capability. It comprises only four rules, one for moving along the tape, one
each for handling the actions on left and right border of the tape and one for
error detection.1 With DD, an implementation of the directed diffusion routing
protocol is referenced [83], which will be discussed in detail in Section 7.1. Its
implementation in rules is denoted in Appendix B.2 The last ruleset presented
is the GenericRoleAssignment ruleset (GRA), which implements the solution of
a coverage problem according to the GRA approach [55]. It is noteworthy that
almost all bytecode sizes can be cut in half through optimization, and, even though
the size of unoptimized bytecode may be initially quite large, in comparison to
those of a native implementation, see Table 7.1, these numbers account for only
a fraction of the required memory in ROM to denote the same algorithm. A
smaller bytecode image is benefical for reasons of more efficient OTA flashing
capabilities in terms of packets sent and energy spent for retasking, as well as for
mere programmability of sensor nodes in respect to encodable behavior.

Figure 6.4 clarifies how exactly the savings were achieved in relation to the data
structures. Rules, facts and properties are not touched during the optimization
process at all since they naturally represent distinct items, even in case e.g. two
facts of the same name and properties are specified. Not surprisingly either is the
low optimization capability for statements: Only in case the exact same sequence
of statements is present, optimization may be applied. In both, the DD and the
GRA ruleset, rules with only one statement but different conditions fulfill this
criteria.

Most appealing for optimization are slots, followed by variables and expres-
1The bytecode sizes differ slightly from those given in [153].This can be accounted to the fact

that unoptimized compilation here equals to worst case memory allocation with duplicate blocks
due to copying, as well as slight increases in size due to dependency tagging.
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Figure 6.4: Optimization per data structure

sions, a circumstance which mirrors the expectation: Slots are filters, introduced
to RDL to enable content-based addressing for facts. To facilitate reusability,
slots may be named and referenced by these names in subsequent rules, adding to
their repeated utilization. Likewise, variables denote the key/value tuples specified
within a property, thus are very elementary parts to be accessed during program-
ming. Expressions on the other hand are basic building blocks for conditions,
statements and slots, encoding search spaces for property values and operation
performed upon them. An interesting aspect is the discrepancy in values regard-
ing optimization values achieved for conditions. While no condition has been able
to be discarded in the Xmas ruleset, and roughly 25% in the directed diffusion
ruleset, the Turing ruleset allows for well over 70% of its conditions to be saved.
The reasons for this mixed ability for optimization become apparent when looking
at the exact context where conditions are saved in the latter: These conditions are
part of slot encoding, which are frequently referenced throughout the ruleset. In
contrast, the Xmas ruleset offers not a single slot with a condition, and therefore
no capacity for these immense savings.

6.1.3 Bytecode Optimization II: Faster Execution due to Depen-
dency Analysis

The structure of bytecode or executables after compilation can have a tremendous
influence on program execution time at runtime, a fact widely recognized within
the area of compiler construction. Several techniques to speed up program ex-
ecution are therefore directly applied at compile-time, such as loop unrolling to
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prevent speculative execution and/or branch prediction within the processor or,
more particular, the VLIW instruction sets to identify instruction level parallelism
(ILP).

The first step towards improved execution performance in the FACTS-rc im-
plementation has been to sort the rules according to their priority prior to starting
the compilation process. The rule engine may then pass sequentially through the
bytecode for rule evaluation. In order to provide further optimization, generally
two directions may be followed, runtime program analysis (such as e.g. imple-
mented with branch prediction mechanisms for sequential ISAs) or compile-time
program analysis. Due to stack memory constraints, we strongly emphasize the
usage of the latter.

Despite the first impression that all rules of a ruleset seem to be relatively in-
dependent entities for data processing, a lot of information on the actual program
flow is conveyed at specification time. Although the usual execution cycle for pro-
duction rules is triggered by an unpredictable event, the actual production process
is encoded within the control dependencies of the rules. Figure 6.5 illustrates this
relationship with the help of a small example.

On the left hand side, three arbitrary rules of a ruleset, along with the facts
they reference, are depicted. Note that in the following, the term input fact will
refer to those facts that are referenced in the condition part, whereas output facts
subsume those facts that are either defined or set in the statements of the rule
as they directly influence program flow during the next production run. In case
rule rk+2 is executed in this example, it thus alters fact x, rule rk+1 modifies
the facts fact a and fact y and finally rule rk the fact fact a, respectively. In
the next evaluation run, the execution of rule rk+2 may thus trigger itself again
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and/or rule rk+1, rule rk+1 may trigger the execution of rules rk and/or rk+2,
and rule rk may trigger itself, which is displayed in the middle part of the Figure.
Recall from Section 5.2 that only facts in δm will influence program flow in the
next run. This information denoting the control dependencies between individual
rules is labeled RTR (rule-triggers-rule) information. A different representation of
the same relationship is depicted in the right part, subsumed under the label ETR
(event-triggers-rule): Here, potential rules triggering associated with the output
facts of the rules are presented.

Compile-time optimization now builds upon the observation that this knowl-
edge about control dependencies is already available during bytecode generation.
The reverse conclusion that can be drawn if this knowledge is kept, is that unless
a certain rule has been executed in the previous run, another rule will not be
able to trigger, thus checking its conditions is not necessary. As a consequence,
the number of rules to be evaluated at runtime can be cut significantly if con-
trol dependencies are encoded within the bytecode. From a performance point of
view, it is wise to encode not only the control dependencies between rules, but
separately the (somewhat redundant) information on the distinct events that may
trigger a rule. This ensures fast reactivity of a system to incoming event facts at
the expense of slightly increased overhead in terms of bytecode size.

Implementation of the describe enhancements is straight-forward. The com-
piler keeps track of the input facts and the relevant output facts of a rule, and
creates a data structure per rule which holds these as a list, as well as a list of
rules that it is able to trigger. While passing through the source code, the list of
potential rules to trigger is filled for each rule as the compiler checks for equality of
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Table 6.3: Bytecode sizes of selected rulesets with compile-time enhancement

Xmas Turing DD GRA FROMS

unoptimized 1676 byte 2260 byte 4944 byte 6860 byte 18902 byte
optimized 914 byte 1110 byte 1682 byte 2004 byte 5660 byte
ct_opt + 132 byte + 48 byte + 284 byte + 184 byte + 1642 byte
ct_opt in % + 14,4% + 4,3% + 16,9% + 9,2% + 29%

input facts of already parsed rules and output facts of the current rule in question
and vice versa. In a second step, both ETR and RTR dependencies are derived
and encoded as follows:

Each fact is associated with a list of rules that have to be checked upon its
emergence, supplied as a start and end address of a memory region within the
bytecode that contains this in-order sequence of rules. Start and end address
of this ETR meta information is encoded within the header of the ruleset with
four additional bytes. Likewise, the RTR relationship is denoted for every rule
by supplying the start and and addresses of a bytecode section which captures
references to the rules that need to be evaluated at runtime given the rule is
executed. Figure 6.6 (a) shows the new bytecode layout obtained after tagging
the compile-time information to the initial image, while (b) visualizes the simple
addition that has to be made to the corresponding data structures. As can be
seen, both data structures contain the same information, and supplying only the
ETR would have been sufficient. The advantage of nevertheless encoding both
data structures becomes apparent at runtime, see also Section 6.2.3. For each
production run, an extra scan of the fact repository can be spared as the schedule
for rule checking may be acquired on-the-fly during the previous run.

For quantitative evaluation of the effect of compile-time tagging, two issues are
of interest: the incurred overhead in bytecode size as well as the performance gain
at runtime. Since the second measure can only be put into context if the general
rule evaluation scheme has been introduced, we will return to this in Section 6.2.3

Table 6.3 summarizes the overhead for the selected rulesets already evaluated
in the last section. Relative overhead is calculated in respect to the optimized
bytecode size to illustrate worst case. Besides the Turing ruleset, the relative
overhead created can be roughly categorized to be around 10 - 15%. The actual
size of meta information needed depends on two parameters: First of all, in case
the mere number of rules increases, the probability that rules reference similar facts
increases up to a certain point. It is quite frequent that independent application
states deal with completely different facts, so that as a rule of thumb only a
bound set of rules reference identical facts. Since the Turing ruleset has only four
rules, the bytecode needed to encode the RTR section is negligible, a fact which
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is nicely mirrored by the small overhead. Secondly, the number of distinct facts
used to encode application behavior plays an important role and goes directly
along the first influential parameter. In case a programmer uses a sole fact for
state management that is referenced and altered throughout a complete ruleset,
the individual rules appear extremely dependent on one another. This naturally
results in a very large overhead, which will not even help to speed up execution
during rule evaluation as will become evident later on.

6.2 FACTS runtime environment

The core of the FACTS runtime environment builds the rule engine with its as-
sociated fact repository. Under the supervision of the rule engine, rule bytecode
supplied by the corresponding compiler backend is interpreted, incoming events
are dispatched, rules are scheduled and data is acquired according to application
requests. At the beginning of the chapter it has been mentioned that several target
platforms for rule interpretation exist. Due to the focus of this work to provide
especially practical support for wireless sensor network tasking, in the following,
the emphasis will be on the rule engine implemented to run on sensor nodes at
first. Since however all targets face the same language, the major difference be-
tween them is the interface design to the underlying system. Later on, simulative
measures will as well be presented in Section 6.5 as they are an excellent means
for pre-deployment, large scale algorithmic testing.

Literature provides a wide range of algorithms to implement rule evaluation
strategies dependent on given language semantics. In case a forward-chaining
approach is intended, the basic evaluation cycle can be subdivided into a matching
phase of existing facts to a provided ruleset, a selection phase that determines the
actual rule to be executed and finally an action phase in which the right-hand-side
of the chosen rule is applied.

The most prominent approach for production rule processing, given the pre-
requisite of facing stateful language semantics as provided by RDL, is probably
the utilization of a Rete network which supplies very efficient pattern matching
capabilities [52]. Its general idea is based on the observations that within a rule
base, a lot of rules share similar conditions parts, and that changes to the fact
repository usually effect only a subset of all provided rules. These are then used
to substantially cut the amount of rules that have to be examined in each produc-
tion step, increasing reactivity of the system and execution speed. In a nutshell,
rules and facts are therefore organized in a direct acyclic graph of a so called Rete
network, where each node corresponds to a pattern in the condition part of a rule
that facts have to comply to. A path from the root to a leaf represents the com-
plete left-hand-side of a rule that has to evaluate to true before its actions may be
applied. Shared conditions of rules result in shared paths within the graph. Each
node simply keeps track of the facts that match its path from the root, and, in
case changes are applied, moves the fact accordingly through the network. The
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selection phase of the match-select-execute cycle is reached as soon as one or more
facts arrive at the end of a path.

The major drawback of Rete, and the reason why it is not applicable on wire-
less sensor nodes, is that it trades memory for execution efficiency. Clearly, the
complete rule base as well as at least all actively matching facts, have to be ma-
terialized for its implementation. While this is an acceptable requirement for
custom-equipped computational devices, especially embedded devices suffer how-
ever from severe memory shortage. In this case, optimization goals have to be
exactly the opposite to achieve a running system in the first place. Hence, rule
engine implementation for RDL interpretation has been concerned with minimiz-
ing stack memory consumption during rule processing instead, tolerating longer
execution time and sacrificing system reactivity in case memory can therefore be
spared.

Mere hardware constraints however not only influence the chosen rule process-
ing algorithm, but also have a direct impact on allocable memory for fact repos-
itory size and the size of the event buffer, and provide an upper bound on the
number of supplied rules. In the following, we will therefore present the basic rule
evaluation algorithm and quantify the impact of a revised algorithm utilizing the
dependency information supplied with the bytecode as discussed in Section 6.1.3.
A comprehensive overview of associated costs for different features implemented
with the vanilla FACTS runtime environment in terms of flash and stack memory
is given in Section 6.4 since this only makes sense when all features have been
reviewed.

6.2.1 Basic rule processing: Strictly sequential rule analysis

Rule processing in FACTS is determined by the interplay of the rule engine, the
fact repository and the rule image. Due to the sizes of the bytecode images, these
have to be stored in the flash memory, while the fact repository is allocated in
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Algorithm 1 Basic rule processing
1: for (i = header.rules_first to header.rules_last) do
2: read rule at address i
3: if (evaluate(rule.conditions_first, rule.conditions_last)) then
4: applyActions(rule.statements_first, rule.statements_last)
5: end if
6: end for

RAM to grant fast access at runtime. A careful utilization of stack memory by
the rule engine implementation will therefore yield increased capabilities for fact
storage.

From a global point of view, the FACTS-re runs as a sole user application on
top of the ScatterWeb MSB430 firmware, meaning that all incoming events and
callbacks are handled by FACTS. After a state of initialization, the INIT state, in
which global variables necessary for smooth operation are read from the header of
the bytecode image and facts specified to serve as constants are swapped into the
fact repository, the rule engine sets itself to a state of IDLE. From this point on,
the rule engine is operational, and will follow the interaction scheme illustrated
by the state diagram in Figure 6.7

Unless an external event triggers the rule engine to wake, it will resume in
IDLE mode, passing control to the underlying firmware. Any possibility may
now be explored for energy conservation, e.g. turning the microcontroller to low-
power mode or enabling wake-on-radio functionality if supplied by the transceiver,
making FACTS-re also from an implementation perspective compatible to the
requested event-centric processing scheme. Note that the application programmer
is however nicely shielded from any of these hardware concerns by design as he is
only exposed to rule specification.

Events streaming into the system are materialized as facts, put into a separate
event queue for further processing and the rule engine is notified accordingly.
Events comprise incoming packets, callbacks from formerly set user timers as well
as sensor samples that have been supplied by returning functions. All events, or
facts respectively, are tagged with a timestamp of their occurrence and sorted
within the queue in an ascending manner to enforce correct temporal order of
subsequent processing. As a reaction to a notification, the rule engine changes
state, becomes ACTIVE, dequeues the first event from the event queue to store it
within its fact repository and begins rule evaluation. The basic processing scheme
is denoted in Algorithm 6.1, and follows a very simple fetch-resolve-execute cycle.

In this evaluation variant, all rules are checked sequentially. Since on the
one hand, stack memory has to be used carefully, and to ensure limiting read
access to flash to only relevant elements on the other, rule parts are fetched solely
on demand. Scanning all rules (lines 1 and 2), their conditions are read one by
one and checked whether a fact matching the supplied pattern resides in the fact
repository. As soon as a condition fails to evaluate to true, lazy evaluation is
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applied and the rule engine jumps directly to the next rule encoded within the
image. In case all conditions of the current rule evaluate however to true, and
given the circumstance that one of the involved matches is a new event, all actions
of this rule are scheduled for execution (line 4). This loop terminates when all
rules have been successfully checked and statements applied if required.

Three options are then available for continuation: First of all, the run of the
rule engine may have spawned new facts. Then, the rule engine will turn from the
ACTIVE state to the PRODUCTION state, setting all previous event facts to reg-
ular facts, and all newly added facts to serve as events within the fact repository.
This does not effect the event queue at all, as this is a separate data structure
shielded from the internal workings of the repository. Indeed, all events recog-
nized concurrent to processing are stored in this event queue, which is however
completely independent of the current execution. Afterwards, rule evaluation is
triggered from the beginning until the production run cycle terminates and the
envisioned reaction to the triggering event is accomplished. The rule engine will
return back to ACTIVE mode.

Secondly, no new facts may have been added to the fact repository, but during
ruleset evaluation new events may have occurred. In this case, the next event,
which corresponds to also the next event from a temporal perspective, is dequeued
for adequate processing. A third possibility is that neither a production run is
necessary, nor are events available that request reactions. The rule engine may
then switch to IDLE mode. It has proven useful to have a mechanism for manual
termination of a rule engine at runtime, e.g. if during a deployment a node exhibits
faulty behavior for unknown reasons. A command, which is a means to invoke
functions via the serial interface provided by the ScatterWeb firmware, is therefore
implemented for FACTS to stop the engine. In state OFF, all registered timers are
removed and no events forwarded to the rule engine, prohibiting any processing.

The distinction between production and reaction is more than an implemen-
tation detail, making it necessary to point out their semantical difference: For
occurring events, it is mandatory to ensure strict temporal order in order to sup-
port complex event processing schemes and their correct evaluation as specified by
applications. However, facts produced as a matter of rule execution do not have
such a temporal aspect to them. Therefore, materializing these facts within the
fact repository at creation time is perfectly feasible. Or, to put it in other words,
the fusion of the ECA world with the production rule aspects within FACTS be-
comes apparent right at this point: Event-processing is combined with production
rule semantics in one, comprehensive model.

6.2.2 Pattern matching in detail

So far, the above sketched rule engine states reveal no details on how the actual
processing is implemented. In order to enable fast understanding, this is best
illustrated with the help of an example, an excerpt from the Xmas ruleset, see
Listing 6.1.
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Listing 6.1: Excerpt from the Xmas ruleset.
1 ruleset Xmas
2 [...]
3 fact system [ broadcast = 0, tx -range = 10]
4

5 slot systemBroadcast = { system broadcast }
6 slot systemTxRange = { system tx -range}
7 slot systemID = { system owner}
8

9 rule getNumRows 100
10 <- exists { bootstrap }
11 -> define row [depth = 0]
12 -> define light [ON = true , node = 0]
13 -> send systemBroadcast systemTxRange {row}
14

15 rule getMaxNum 99
16 <- exists { row_reply
17 <- eval ({ this depth} > {row depth })}
18 -> set {row depth} = { row_reply depth}
19 -> retract { row_reply }
20 -> call removeTimer ({ delay })
21 -> call setTimer ({ delay}, 1)
22

23 [...]
24

25 rule replyDepth 80
26 <- exists {row}
27 <- eval ( systemID != 1)
28 -> define row_reply [depth = systemID ]
29 -> send 1 systemTxRange { row_reply }
30 -> retract { row_reply }
31 -> retract {row}

Generally, these three rules implement a simple interaction scheme between
nodes within a network. A mastering node, marked with id 1, requests to find
out the maximum depth of the network by sending out a row fact (line 13). In
response, a set of slave nodes react by replying with their own id (line 29), copied
to a row_relply fact (line 28). Whenever a row_relply fact is recognized at
the master node, note that row_relply facts are sent in a unicast manner, it
will evaluate whether this new fact‘s annotated depth is larger than the depth
currently cached in a row fact (lines 16 and 17) and eventually update the fact
property.

The interesting part is the resolution of slots as pattern matching can become
arbitrarily complex. Recall that syntactically, slots may either be declared en
block for subsequent usage, e.g. the slot systemBroadcast, or denoted within the
rule itself, which however does not influence the evaluation process.

The simplest case of matching is when only a name of a slot is provided which is
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the case for the condition specified in line 10. The only requirement for triggering
rule getNumRows is the availability of an event fact named bootstrap in the fact
repository. Worst case, the rule engine will have to run through the fact repository
once for slot resolution. A similarly easy operation is the evaluation of the second
condition of rule replyDepth (line 27). Here, the property owner of a system
fact has to be checked and differ from one, an operation which involves additional
fetching of the fact’s properties for comparison.

As soon as slots exhibit patterns involving additional conditions, the reference
fact for condition evaluation has to be marked, which is done by a programmer
with the keyword this (line 17). All subsequent comparisons will therefore refer to
the current fact. From an implementation point of view, the context of the current
slot resolution has to be stored, and condition evaluation started by retrieving the
right-hand-side of the condition, strictly avoiding self-reference. All in all, the
process of evaluating the different language elements, relating them to each other
and keeping track of the context they reside in, is recursive, comprising quite some
effort to keep correct rule engine state.

Regarding stack memory, sooner or later the rule engine may nevertheless run
into a problem. This circumstance is owed to the fact that the RDL grammar
allows for infinite nesting of slots, conditions and expressions. Below, this prob-
lem is illustrated with the help of a possible production derived from the RDL
grammar, which is for reasons of brevity displayed in a simplified manner, see also
Section 5.1.

slot → identifier | name [key] [condition]
condition → ‘←‘ ‘exists‘ slot | ‘←‘ ‘eval‘ (expression comp

expression)
expression → variable | (unary_op expression) | (expression

comp expression)
variable → bool | integer | string | slot

slot ⇒ name [key] [condition]
⇒ name [key] ‘←‘ ‘eval‘ (expression comp expression)
⇒ name [key] ‘←‘ ‘eval‘ ((unary_op expression) comp

variable)
⇒ name [key] ‘←‘ ‘eval‘ ((unary_op (expression comp

expression) ) comp slot)

Practically, this infinite nesting cannot be supported since stack overflow will then
crash a node at runtime. The precautions taken to prevent this scenario is to cut
recursion at a reasonable depth: Binary expressions are not eligible to be nested
within other binary expressions, while slots referred to within expressions may not
exhibit conditions. At first sight, this may seem very restrictive, especially in the
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Algorithm 2 Rule processing with available dependencies: Reaction to event
1: given the event that triggers the reaction
2: for (i = header.meta_first to header.meta_last) do
3: read ETR information at address i
4: if (ETR fact name matches event) then
5: for (i = etr.rules_first to etr.rules_last) do
6: read rule at address i
7: if (evaluate(rule.conditions_first, rule.conditions_last))

then
8: applyActions(rule.statements_first, rule.statements_last)
9: end if

10: end for
11: end if
12: break for loop
13: end for

latter case, since e.g. a set statement can then not filter conditional patterns for
their right-hand-side of the assignment. It does however not effect the general
expressivity of the language. The problem can be simply bypassed by specifying
a temporary fact for binding an arbitrarily complex slot in question to a property,
which may then be easily referenced within the expression.

6.2.3 Rule processing utilizing compile-time dependency analysis

The rule evaluation and pattern matching scheme presented above requires re-
current resolution of patterns provided within the bytecode image against the
current state of the fact respository, which is a costly procedure in terms of eval-
uation time. Optimization strategies can either tackle this problem at runtime
by means of caching valuable information such as resolved slots, indexing the fact
repository for better access or structuring the evaluation path as e.g. done within
a Rete network, or at compile-time preventing unnecessary rule evaluation cycles
in the first place. Since available RAM prohibits extensive exploration of the first
approach, we rely on the second option.

In Section 6.1.3 the motivation of supplying additional information on inter-
rule dependencies has already been presented. Hence this section is dedicated to
the actual utilization of the available dependency information at runtime, and the
effect this enhancement has on the overall performance of the rule engine.

One important difference to the basic rule processing scheme is that depen-
dent on the current state the rule engine resides in, separate regions within the
bytecode image are consulted for building the actual evaluation schedule. In the
basic scheme, this schedule subsumes all rules. In case compile-time information
is available, a fact that is denoted within the header of the image and thus rec-
ognized by the rule engine at initialization time, an incoming event will activate
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Algorithm 3 Rule processing with available dependencies: Concurrent scheduling
of productions
1: given a queue q of addresses of rules to check
2: j = sizeof(q)
3: for (i = 0 to j) do
4: a = dequeue_first(q)
5: read rule at address a
6: if (evaluate(rule.conditions_first, rule.conditions_last)) then
7: applyActions(rule.statements_first, rule.statements_last)
8: enqueue(rtr.rules_first, rtr.rulesl̇ast)
9: end if

10: end for
11: remove duplicate rule addresses from q
12: sort q

scanning the ETR region of the bytecode. The corresponding algorithm is denoted
in Algorithm 2 of this section.

This region contains the addresses of all rules that may possibly be triggered
by the dequeued event in the correct order for direct evaluation. Since the rules
referenced may only be a small portion of the ruleset, the associated for loop
(lines 5 - 10), may as well iterate over considerable less items for evaluation.
Note that with cutting the number of rules to be evaluated, the resolution of all
corresponding rule elements within the condition part can also be spared.

If the rule engine is executing productions, thus resides in PRODUCTION
state but also in the first run following an event trigger, the successive schedule is
acquired during the current execution, presented in detail in Algorithm 3.

This strategy exploits the fact that each rule is automatically tagged with
references to a bytecode region which encodes all rules its execution can invoke
in the next production run. Therefore, a queue that will later on comprise the
next schedule, is filled with the corresponding rule addresses after all statements
of the triggered rule are executed. Within one run through the rule base, several
rules may fire, thus enqueue their respective follow-up rules. Duplicates have to
be removed and the rules sorted according to their priority before restarting the
evaluation run. The vigilant reader may recall that rule priorities are not explicitly
denoted within the encoding scheme, and thus wonder how this sorting can take
place. However, it has to be pointed out, that the same information is conveyed
by the ordering of the rules within the bytecode image, and thus sorting can be
performed upon the cached addresses.
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6.2.4 Impact of utilizing compile-time dependency analysis on en-
gine performance

In order to evaluate the impact of compile-time analysis on system performance,
two representative rulesets have been chosen, namely the afore mentioned Xmas
ruleset and the DD ruleset implementing a directed diffusion variant. The reasons
for taking these ones is that their results nicely mirror the spectrum of achievable
performance gain, while at the same time the incurred overhead in terms of addi-
tional image size is roughly the same (14.4% vs. 16.9%). In the following, we will
first discuss the results of the Xmas ruleset execution, then turn to the DD ruleset
and provide an explanation for the observable differences afterwards.

For running the Xmas ruleset, a network of ten nodes has been utilized. The
application itself executes in rounds, each of which subsumes a master node re-
questing all slave nodes to enlight their LED following a predefined, temporal
pattern it specifies, and then turn their lights off upon demand. Overall, the
ruleset comprises 9 rules, 22 conditions, 20 slots and 20 expressions. The diagram
depicted in Figure 6.8 plots the average number of language constructs such as e.g.
rules, conditions and slots evaluated for both master and slave nodes separately
after five rounds from three runs of the experiment. Naturally the highest burden
is put on the master as the central coordinator, thus the numbers of evaluated
elements differ substantially.

Without available compile-time enhancements, all slave nodes run 20 times
through their ruleset, thus evaluate exactly 180 rules, about the same number of
conditions and resolve 273 slots. These numbers can be significantly cut to roughly
40 rules, 50 conditions and about half the number of slots with the availability of
compile-time information (slaves + ct). Regarding expressions, no improvement
can be obtained. All expressions that affect slave nodes are part of the statements
of rules, thus are equally resolved in both cases.

An even better result can be achieved for the master node: about 150 rule
evaluations compared to initially 500, a little less improvement regarding condi-
tions (363 against 221), almost a third of the number of slot, and more than half
the number of expressions can be spared with the help of dependency information.

Although these values provide a first impression on achievable performance
gain, they nevertheless hide the overhead of having to fetch and decode the de-
pendency information from the image. Since processing timespans are so short
that their exact measurement turned out to be difficult, we measure performance
gain in total number of bytes read from flash to RAM for evaluation purposes.
This is a reasonable metric as flash access time predominantly contributes to over-
all execution time. The corresponding results, average number of bytes read shown
on the y-axis and broken down to individual rounds on the x scale, are presented
in Figure 6.9.

For comparison purposes, round five is especially interesting: For the slaves,
that in regard to the master face only a fraction of the processing load, the actual
savings in terms of bytes read range around 30%. The overhead for reading the
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Table 6.5: Percentage saved (Xmas ruleset/5 rounds)

Bytes read Rules Conditions Slots Expressions

regular execution 11254 byte 212.4 207.3 381.4 208
+ ct analysis 6813 byte 51.4 68 170 151.8
% saved 39.5% 75.8% 67.2% 55.5% 27%

additional compile-time information has indeed a significant impact in this case,
with performance gain stabilizing after a few rounds to a constant factor since
processing during network initialization is also part of the displayed numbers.
The master node can benefit from the compile-time information even more: Less
than half the number of bytes (34kbyte vs. 12.6kbyte) have been swapped after
the execution of five rounds.

To sum up the results, Table 6.5 once again highlights the average benefit
of applying and utilizing compile-time dependency analysis with respect to the
entire network. All values are calculated by averaging obtained results after five
rounds, independent of the role nodes take within the network. With an overall
number of almost 40% less bytes read from flash, the effectiveness of the compile-
time analysis is not questionable. Conforming to the expectations, an impressive
number of rule evaluation and condition resolution can be cut and thus contribute
significantly to the achievable performance gain.

Results for the DD ruleset shed a slightly different light on the impact of compile-
time analysis. Once again, a network of ten nodes utilizing the topology depicted
in Figure 7.3 has been flashed with the appropriate ruleset, featuring about twice
the elements as have been available in the Xmas ruleset - 18 rules, 46 conditions,
34 slots and 35 expressions. Within the network, nodes can either have the role of
being a sink, thus issue requests for data, act as routers for both requests and reply
facts, or function as a data sink. The exact network layout and executed algorithm
will be discussed in Section 7.1. Similar to the above, results are displayed plotting
number of elements checked per type and role of the node in Figure 6.10 and
number of actually read bytes (this time in kbytes) against role in Figure 6.11.

The values have been obtained running the algorithm for approximately 100
seconds. In this time, the source node sent out 20 packets towards the sinks, while
these distributed between five and six route maintenance packets. Numbers have
been acquired in three distinct experiments and averaged afterwards.

Savings for rules and conditions range for sinks and sources well above 50% and
also slots and expressions, although not as overwhelming as in the Xmas ruleset,
confirm the general observation of high saving potential as in the previous data
set. Processing load put on the nodes that conform to the role of routers is with
respect to the other nodes higher, but unfortunately the impact of compile-time
information not as prominent as in the other cases. Note that the increase in
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Table 6.6: Percentage saved (DD ruleset / 100 seconds)

Bytes read Rules Conditions Slots Expressions

regular execution 79.3 kbyte 1726.5 2128.1 3382.9 1477.8
+ ct analysis 58.5 kbyte 800.1 1171.2 2435.8 1455.4
% saved 26.2% 53.7% 44.9% 28% 1.5%

expression evaluation utilizing compile-time dependencies can however not be at-
tributed to the optimization scheme itself, since by no means additional language
elements can appear for resolution. Rather, this mirrors the fluctuation within the
routing scheme, and probably a tendency to slightly longer routes in the corre-
sponding experiments. As a result of an increased number of hops between source
and sinks, the overall number of statements, and thus expressions, executed for
routing decisions will increase equally.

Turning to the chart which displays the average, total number of bytes read
from flash, the above presented differences become even more apparent. Although
for each type of network node, a utilization of compile-time dependency informa-
tion is able to lower the cost for read access to flash, the actual gain for routers is
with approximately 12% rather low, while the benefit for sinks and sources can be
identified to range between 30% to 40%. From a network perspective, Table 6.6
once again summarizes average savings in percent.

Despite the fact that the attainable impact of compile-time enhancements with
dependency information is much higher for the Xmas ruleset, the measurements
obtained for the DD routing ruleset still attest this strategy an impact that without
doubt legitimates its utilization.

A look at the actual rules reveals the reason for the different optimization
capabilities of the given rulesets. Only a third of the rules that are denoted in the
Xmas ruleset target slave node behavior, and associated facts solely affect these
rules upon rule execution. As a consequence, the compile-time information is
able to restrict the evaluation space for reactions and productions to a very small
subset. At the other extreme, facts that are involved in storing and updating
routing information are referenced throughout the DD ruleset, thus have a very high
visibility. Any change to this routing information will therefore yield scheduling
of almost all rules, a circumstance that in response requires swapping a lot of
compile-time information from flash as well as subsequent evaluation. The price
paid in additional flash access to read the optimization data does in this case not
pay off by cutting the number of rules to check. Recall that this is not the usual
case, since then no optimization could be measured.
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6.3 Interfacing the Sensor Node Hardware

So far, the focus of this chapter has been to illustrate how rules are compiled
to bytecode and then interpreted on a wireless sensor node. The essential ques-
tion how data is obtained, thus how exactly mandatory access to a sensor node’s
hardware capabilities is integrated in the process of rule evaluation has not been
touched yet and is subject to this section. Sensors, possibly actors or other de-
vices of the user interface (UI), peripheral hardware such as secondary storage or
a serial interface and, as has become apparent in Section 5.3, the possibility to
configure timers have to be made available to a programmer.

Exporting a reasonable interface to system-related settings to applications is
however a non-trivial task in middleware design: Clearly, many applications de-
veloped for wireless sensor networks demand for flexible adaptations to control
the available hardware at runtime which prohibits a static compile-time configu-
ration. Parameters such as sampling frequencies, actuation timing or thresholds
for data filtering have to be able to be individually altered based on the state
of a running application. Furthermore, as soon as the application development
process goes from a state of prototyping to application fine-tuning, a more elabo-
rate way of hardware configuration may be needed than at earlier stages. While
during prototyping e.g. energy-efficiency is negligible it will well be of interest
in a final deployment. Thus, the granularity of system access may vary over the
development time of an application. This trade-off of supporting a high level of
abstraction from system-related parameters to enable fast prototyping while at the
same time allowing access to low-level hardware settings for application fine-tuning
is addressed in this section.

Dependent on the usage pattern for system access, several options at different
layers of the system architecture are available to schedule hardware- or system-
related demands appropriately are available: Recall from the preceding chapter
that the lowest level of abstraction is inherent to the RDL language, which offers
an interface to arbitrary system functions via Call statements to export part of
the native API where required. This way, full control of hardware settings is
guaranteed whenever necessary. Figure 6.12 depicts the relationship between the
FACTS middleware framework, firmware and sensor node hardware. In terms of
hardware being subject to integration into RDL, the ScatterWeb MSB430 platform
comprises a set of sensors, some mounted on the core module while others reside
on an optional sensor board, a set of UI devices such as the LEDs, the serial
interface, the hardware timer and a slot for SD card integration.

To provide a better handle for hardware configuration and control at a higher
level of abstraction, so called context_facts have been added to the API of
FACTS. Dependent on the hardware resource, a corresponding context_fact
aggregates configuration parameters and/or encapsulates its operational mode. As
a consequence, a modification to a context_fact will result in the adaptation of its
represented resource, giving an application programmer an easy-to-use abstraction
to underlying hardware.



6.3 Interfacing the Sensor Node Hardware 137

Sensors

Temperature
Humidity

Acceleration
....

Hardware

SD-cardTimer

UI

LED
...

....

Operating
System

Middleware

FunctionsFirmware

FACTS

Figure 6.12: System properties to be integrated into FACTS

6.3.1 Language-inherent System Access

As mentioned above, Call statements are the basic access mechanism to hardware
and system-related parameters that FACTS provides. A thin layer of software in
between firmware and FACTS is necessary to tunnel firmware functions and make
them callable from RDL rules. Besides, a set of utility functions has also been
added to the Call API to grant support for additional low-level concerns.

Whenever such a Call statement is invoked, the corresponding action will be
executed once. The signature of a Call statement is not fixed, but depends upon
the called function to allow for adequate parameter passing. Return values will
be supplied as facts and pushed into the fact repository. Listing 6.3 provides
an overview of fact names and property keys for these system facts, whereas the
interfaces for calling ScatterWeb functions are denoted in Listing 6.2.

The perception application programmers have towards hardware resources
varies w.r.t. the different devices: Some, namely sensors and actors, need to be
able to be configured in full extent by the application itself and settings may even
vary over execution time. Hiding parameter adaption within the middleware for
these resources is hence counterproductive, if not even harmful. Then again, those
devices that we subsume under the label peripherials in the following are not sub-
ject to application-level tuning. Rather than being interested in their individual
configuration, developers request these devices to simply work. As a consequence,
application concerns can well be shielded from annoying configuration issues, and
interface design thus resort to the easiest utilization scheme possible.

Access to Sensors and Actors

Upon issuing a sampling request to the sensor node, a fresh reading is taken. The
return value will be asynchronously pushed into the fact repository as soon as
the called firmware function returns. All functions representing sensor hardware
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Listing 6.2: FACTS system call API.
1 // access to sensors
2 Call getTemperature ([ int res], [int mode ])
3 Call getHumidity ([ int res], [int mode ])
4 Call get3DSample ([ int sensitivity ])
5

6 // access to UI components
7 Call setLED ([ int mode], [int blink_times ])
8

9 // access to peripheral hardware
10 Call printFact (name fact_name )
11 Call logFact (name fact_name )
12

13 // access to timer
14 Call setTimer (name t_name , int interval )
15 Call removeTimer (name t_name )
16

17 // access to arbitrary functions
18 Call getRandom ()
19 Call getPosition ()
20 Call getSysInfo ()

can be called without arguments. In case no explicit information is supplied else
wise via context_facts, see Section 6.3.2, FACTS will simply default to lowest
resolution and accuracy.

The ScatterWeb MSB430 platform, used for a prototypical implementation of
FACTS, currently offers three different sensors, a temperature, humidity and an
acceleration sensor, and one LED with additional sensors and actuators attachable
on demand. Temperature and humidity readings can be sampled at a high or a low
resolution, with a high resolution taking about four times as long. Furthermore,
the humidity reading may be corrected by a temperature coefficient to gain better
quality, whereas the temperature reading may be represented in degree Celsius
or Fahrenheit which can be both controlled via the second property passed as a
parameter. The accelerometer allows for setting its sensitivity according to its
sampling domain, thus dependent on the application specific range of values that
are expected to be measured. The more sophisticated an application has to be
about its input values to enable decisions on application-relevant states and its
output values to precisely control the sensor node behavior, the more important
low-level configuration of the corresponding measurement hardware becomes - a
circumstance which is nicely reflected by the chosen access scheme.

Access to Peripheral Hardware

Peripheral devices, i.e. devices which offer a kind of background service such as
logging or printing debug information, should be accessible in the easiest manner
possible. In contrast to sensors and actors, explicit configuration is neither needed
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Listing 6.3: System facts that are returned when invoking system calls.
1 // sensor values
2 fact temperature [int value]
3 fact humidity [int value]
4 fact acceleration [int x, int y, int z]
5

6 // timer output
7 fact t_name
8

9 // utility function output
10 fact random [int value]
11 fact position [int x, int y]
12 fact init [bool acceleration , bool temperature , bool logFact ]

nor desired in their case. There is for instance not only no need to let applications
decide on the size of swap memory allocated to enable data logging on flash.
Potential memory shortage at runtime in case overly optimistic setting have been
chosen is instead a good reason to prohibit such low-level intervention.

FACTS implements mechanisms to log facts to an SD-card and to print facts
e.g. for debugging purposes using the serial interface. The interface to these pe-
ripheral devices reflects the above mentioned design rationale: logging or printing
using the Call statement is possible by specifying a name of a fact or a slot as
an argument without any additional configuration options. This content-based
utilization scheme mirrors the overall system design of the FACTS platform, ex-
porting straight-forward usage semantics to the application developer.

Access to System Functions

On the software side, Call statements can be used to access a subset of the in-
terfaces supplied by the ScatterWeb API as well as additional utility functions.
To keep the core framework as lean as possible, the number of implemented func-
tions is reduced to a very small set and comprises mechanisms to handle software
timers, for creation of random values and to support self reflection on a sensor
node. However, in case specific applications require additional, native function-
ality, this interface can be easily adapted and further, sophisticated processing
schemes such as e.g. complex, mathematical functions to aid in localization may
be added on demand.

As has been discussed extensively in Chapter 5.3.1, timers take a special role
during application development as they enable manual flow control, even within
the event-centric world of FACTS. Since any action has to be triggered by an event,
or more precisely by the occurrence of a new or altered fact, the timer interface is
the only possible source for explicit, delayed event generation. Consequently, the
expiration of a timer will generate a new event fact with its name being passed as
an argument to the corresponding function.
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Listing 6.4: Periodic sampling of the temperature sensor.
1 name trigSampling = " trigSampling "
2

3 rule defineTrigger 100
4 <- exists {"start"}
5 -> call setTimer ( trigSampling , 30)
6

7 rule sampleTemp 99
8 <- exists { trigSampling }
9 -> retract { trigSampling }

10 -> call getTemperature (1, 0) // high resolution , degree Celsius
11 -> call setTimer ( trigSampling , 30)

Sensor nodes do not necessarily have to be equipped in a homogenous man-
ner. Within a deployment, secondary storage or the additional sensor board are
often mounted to only a subset of nodes to cut overall setup costs. To circum-
vent the case that an application developer is forced to write different programs
dependent on the hardware setting, each node is enabled to dynamically query its
hardware capabilities at runtime. Upon the invocation of the getSysInfo() or
getPosition() function, either a fact reflecting a node’s available resources or a
fact that outputs position information if available is created and may then be used
for subsequent matching and conditional execution of software parts.

6.3.2 Context-aware Configuration and Control

Tunneling native functions and making them accessible in RDL is perfectly enough
to obtain operational rule programs. However, especially applications that make
excessive use of their hardware capabilities suffer from bloated code due to the
separation of configuration and control concerns that the event-driven model ex-
hibits. A simple, periodic sampling request as denoted in Listing 6.4 illustrates
this concern:

Given an arbitrary, triggering event, represented by a fact named start in this
example, periodic sampling of the temperature sensor at a high resolution is re-
quested. To initialize a control loop that captures this periodic behavior, a timer
needs to be defined to fire an adequate event, a fact called trigSampling in this
case (line 5), which is created upon timer expiration after 30 seconds. The rule
sampleTemp is the actual core to continuous data acquisition as it reacts to the oc-
currence of a trigSampling fact by issuing a call to sample the temperature sensor
(line 10) and setting a new timer to produce a trigSampling fact after 30 seconds.
Setting the operational mode, thus configuration of the sensor (high quality sam-
pling) and the sampling interval, thus its control loop, is split into individual steps
and have to be individually addressed for every sensor, and possibly every actuator
that is operated in a cyclic manner. As these settings are usually subject to change
dependent on the application state, special attention has to be paid to adjust all
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Listing 6.5: Context_facts for configuration.
1 // context_facts to configure the sensors
2 fact temperature_context [int samplefreq , int res , int mode]
3 fact humidity_context [int samplefreq , int res , int mode]
4 fact acceleration_context [int samplefreq , int sensitivity ]
5

6 // context_fact to specify timers
7 fact timer_context [int interval , name fact_name ]
8

9 // context_facts for peripherals
10 fact log_context [name fact_name ]
11 fact print_context [name fact_name ]

parameters according to the current situation. One can easily deduct that the
expression of periodical tasks is not optimal when relying on language-inherent
system access.

In contrast to sensors and actors, peripheral components exhibit an orthogonal
utilization scheme as they are predominantly operated in direct response to appli-
cation semantics. For instance, sampled data may only be relevant for logging to
flash in a specific application state inherent to the application. In this case, not
the control of application flow, but the filtering mechanisms lead to bloated source
code: RDL offers by design no straight-forward approach to address a single fact,
but filters facts via matching. As a consequence, all facts that currently reside
in the fact repository and match the requested slot for logging will be written to
flash when invoking a Call statement, even if they have been logged beforehand,
but need to reside within the fact repository e.g. to allow for later on aggregation.

To overcome all these difficulties, provide an easy-to-use abstraction and en-
able quick, context-aware hardware reconfiguration, we added the concept of
context_facts to the FACTS API. All configuration parameters relevant to oper-
ate sensors and actors, to define user timers or to use peripherals are assembled in
particular context_facts for the specified component. Added to the fact repos-
itory just as a regular fact, the rule engine will configure the requested resource
transparent to a programmer and according to its operational mode. The ad-
vantage of using specialized facts to integrate configuration and control is that
it is a simple augmentation of the framework while at the same time preserving
the overall unified data abstraction. A nice side-effect is that the transmission
of context_facts opens up a new means for local interaction between nodes, as
dynamic remote tasking can be easily implemented.

Usage of context_facts to encapsulate control loops

When utilizing a rule-based programming language such as RDL, the execution of
a rule demands for a prior event to trigger it. As has been extensively discussed
beforehand, implementing a scheduled task therefore requests a programmer to
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Listing 6.6: Periodic sampling of the temperature sensor with a context_fact.
1 rule defineTrigger 100
2 <- exists {"start"}
3 -> define temperature_context [30, 1, 0]

manually craft the triggering event with the help of a user timer to gain control
of program flow. Access to resources that are subject to periodic scheduling, see
Listing 6.4, has to be enclosed within a dedicated control loop.

A generic abstraction to hide this control loop and allow for cyclic fact gen-
eration is the timer_context fact, see Listing 6.5. Whenever a timer_context
fact is added to the fact repository, the rule engine will schedule a new, super-
vised timer. As soon as the amount of time denoted in the interval property
of the timer_context fact has passed, a fact with the specified name in the
fact_name property is created and added to the fact repository. In case the match-
ing timer_context fact still resides in the fact repository, the timer is again set
and the operation repeated until the context_fact is retracted. Modifications
to the interval of a timer_context will automatically lead to timer adjustments
right at alteration time, whereas a changed name of the expiration fact equals to
retracting the old timer_context and adding a new.

Usage of context_facts to aggregate configuration parameters

Convenient configuration and control can also be achieved for sensors and actors
with the help of context_facts. Facts for this category of devices combine the
ability to denote control information with the possibility to specify configuration
parameters, and aggregate these into one fact per component. Similar to the in-
terval property for timer_context facts, the samplefreq property displays inquiry
intervals, whilst configuration parameters equal those available in the basic Call
statements. Since the names of the facts that contain sensor measurements are
well-known within the language, explicit declaration of return values is not needed.
Both, configuration or control properties can be left unspecified so that either func-
tion can be used by itself: The omission of the sampling frequency renders the
context_fact to be a source of configuration parameters which will be applied
whenever a Call statement without parameters is invoked. Missing configuration
parameters in the contrary will allow for periodic utilization at default settings.

Unlike timer_context fact specification, only one context_fact per resource
is allowed. The notion here is that the context_fact represents its resource as
configuration parameters are explicitly provided. However, this does not prohibit
resource multiplexing: An issued Call statement will always be executed with the
settings that it promotes, yet the declaration of an additional context_fact, e.g.
by a different application running on a node, will overwrite previous settings due
to the global scope of the fact repository and global visibility of context_facts.
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Listing 6.6, a revised implementation of periodic sampling presented in List-
ing 6.4, makes use of the context_fact for temperature sensor configuration and
control to illustrates the gained features. In this particular example, lines of code
can be cut to almost a quarter in regard to the previously needed.

Usage of context_facts for semantic timing

Logging facts to flash or printing them for debugging purposes with the Call
statement turned out to be of a peculiar semantic during application development.
In order to prevent matching a multitude of facts that bear the same name, the
filtering has to be very precise, an effort that feels orthogonal to its purpose.
The usage of these peripherals has more a flavor of a background functionality
concurrent to the application than being an active part of it. Therefore, the
introduced context_facts for these resources overcome the challenge of what
we refer to as semantic timing: They basically realize a publish and subscribe
mechanism for specified facts to aid in the application development process rather
than to hinder fast prototyping.

Key to understanding their operation is that, in accordance to the event-driven
model, any fact of interest for constant logging or printing will be a fact that has
faced change during the last rule evaluation run. For instance, given the availabil-
ity of secondary storage as log space, the declaration of a log_context fact will
instruct the rule engine to log all facts that match the denoted name (which may of
course represent a slot, thus encapsulate arbitrary filtering mechanisms) and have
been added or altered. A copy of these facts is stored to a buffer page for later
eviction to flash. This way, a time series of modifications to a fact will also result
in a time series of logged facts on the SD-card, a circumstance that is valuable to
interpret system behavior during debugging or to follow data evolution in offline
analysis when recording values. Once again, log_context and print_context
facts are evaluated individually at each rule iteration so that modifications e.g.
to filtering parameters will directly have the desired effect. Naturally, the pro-
grammer is not restricted to the specification of a single context_fact as has
been the case when configuration settings are inherently provided, but may con-
sult application needs. Call statements are however completely oblivious to the
existence of context_facts; duplicate logging or printing due to multiple requests
can therefore not be prevented.

It is noteworthy to point out why this way of subscribing for facts can be inter-
preted as an action concurrent to application execution. Imagine a print_context
fact expressing its interest for acceleration facts without any filtering. Although
a rule that issues the print_context fact may e.g. only trigger on acceleration
facts of a high intensity, subsequent printing will not.
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Usage of context_facts for remote tasking

Syntactically, a context_fact is a regular fact, tagged with system information
upon creation and altering and subject to any manipulation process that RDL
offers. When turning from a node-local point of view on fact processing to a
global viewpoint on the network, the transmission of a context_fact can be used
for remote tasking. Upon reception, the rule engine of the node will add the fact
to the fact repository and automatically behave as if the fact had been created
locally.

This circumstance is especially advantageous in case stateful application be-
havior within a neighborhood of a node has to be achieved: Due to the broad-
cast nature of wireless communication, the coordination of physically close sensor
nodes for applications such as object tracking or distributed event detection can
be easily implemented by just sharing a specific configuration and/or control set-
ting for involved sensor components with sending only a single context_fact. On
the downside of dynamically tasking nodes in physical vicinity, the sudden appear-
ance of multiple context_facts for one resource can lead to unexpected behavior.
While having e.g. more than one log_context fact is not problematic (apart from
eventual thrashing of the fact repository) and may well be intended, a variety of
configurations for sensors received from neighboring nodes can entail race condi-
tions. Also, the reception of context_facts can of course make sensor nodes vul-
nerable to denial-of-service (DoS) attacks. Countermeasures, e.g. authentication
schemes to prevent these attacks have been explored intensively [113, 155, 116],
and are therefore not further discussed here.

6.4 Quantitative measures of the FACTS runtime en-
vironment

Previous sections have discussed a variety of features, both in terms of hardware
and software, that may be added to the vanilla implementation of the FACTS
runtime environment on demand. This section provides a very brief, comprehen-
sive overview of the actual impact of feature integration on both flash and RAM
memory. Table 6.7 captures all data measurements that have been carried out in
order to quantify FACTS-re deployment.

The ScatterWeb MSB430 firmware version 1.1 serves as the reference point
with no user application being linked to it. In order to clarify the individual
columns, one has to be aware that the text segment corresponds to the actual
binaries, the data segment refers to the initialized data while the bss segment
contains the uninitialized data specified within the program. Consequently, the
sum of text and data segment will reflect the amount of flash memory occupied
by the implementation, while the sum of data and bss segment provides a number
for the statically utilized RAM memory.

A pure implementation of the FACTS runtime environment thus covers 16kbyte
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Table 6.7: Memory consumption of FACTS-re implementation and various en-
hancements in comparison to pure ScatterWeb 1.1 firmware (in byte)

text data bss Flash SRAM

Firmware 20100 24 1452 20124 1476
Firmware + SD card 27474 20 2494 27494 2514

FACTS-re 35992 24 2460 36016 2484
FACTS-re + ct 37068 24 2496 37092 2520
FACTS-re + sensors 42390 26 2466 42416 2492
FACTS-re + SD card 40768 26 2992 40794 3018

of flash memory and allocates roughly an additional 1kbyte of RAM. Note that
data structures such as the fact repository (contributing with 930byte) and the
event buffer are already included in this statically allocated memory, as no dy-
namic memory allocation besides the stack is supported. Due to recurrent, nested
recursions during rule evaluation, a stack size of minimum 2kbyte has to be re-
served to keep the rule engine operational and prevent system crashes.

The integration of compile-time information analysis to speed up the rule eval-
uation process is not costly: An additional queue for schedule acquisition in terms
of RAM and 1kbyte flash for the corresponding software support have to be added.
More demanding is the support of supplementary hardware, such as the SD-card or
the optional SHT11 temperature and humidity sensor. Increased flash occupation
is a result of linking the appropriate binaries of driver libraries and exporting read-
/write access and sampling capabilities to the FACTS user, respectively. However,
due to the block access mechanism, the SD-card requires to reserve a buffer page
in RAM for caching the acquired values prior to eviction to flash. This justifies
the tremendous increase of allocated RAM upon its integration into the firmware
and FACTS, which is observable for both implementations.

The last question left unanswered is how many rules can be supported upon
an embedded processor. Scanning the implemented rulesets, one can derive that
800 to 1000byte roughly correspond to ten rules, although sizes naturally fluctu-
ate dependent on number of conditions, statements and diversity of implemented
patterns for matching. With this rough estimate and an overall flash memory size
of 55KB for the ScatterWeb platform, approximately 14kbyte to 19kbyte of flash
may be utilized for rules, yielding up to 200 rules.

The great advantage in contrast to a native implementation is that the occupied
RAM size will not vary and is thus independent of the number of rules deployed.
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6.5 FACTS within Simulation Environments

Running real-world experiments with wireless sensor nodes can be alleviated with
dedicated support and a good language abstraction. However, this does neither
take the burden of having to cope with distributed application specification from
a programmer nor shield her from the very time-consuming develop-flash-debug
cycle inherent to WSN programming. Each sensor node has indeed to be flashed
individually, configured according to application needs, distributed and the algo-
rithm in question run in order to debug and test its performance, a circumstance
that takes hours in case large network sizes are involved.

The common workaround is to resort to a simulation environment for testing
instead. Certainly, reality can never be completely modeled due to simulation
assumptions, statistical uncertainty may affect obtained results and one has to
ensure that the chosen model reflects reality in the first place. But it is nevertheless
a feasible approach to gain a general understanding of an algorithm’s behavior
and possibly explore its parameter space with controlled input values in a fast
manner. Simulation environments are hence a valuable and valid tool within the
development process to filter and address basic bugs of immature programs before
turning to real-world deployments.

For testing and debugging purposes of RDL programs, two simulation variants
are available: One can either rely on testing RDL programs with the help of the
network simulator ns-2, which is especially favorable in case the focus is on ex-
ploring network behavior and performance of the chosen implementation, or one
can utilize a command-line functional simulation tool which yields debugging at
a very fine granularity. In both cases, RDL programs do not have to be ported or
adjusted in any way, but simply the compilation target specified with dedicated
compiler flags. In the following, only the basic ideas, design rationales and objec-
tives are highlighted; the interested reader may refer to [153] for implementation
details.

6.5.1 ScatterWeb on ns-2

The ns-2 simulation framework is probably one of the most recognized discrete
event simulators within the wireless networking domain. Implemented in C++,
it provides a means to specify and run scripts written in the Tool Command
Language (Tcl) denoting network and simulation parameterization. A wide variety
of available radio-propagation models, implemented MAC and routing protocols
as well as supported mobility models add to its popularity, making it an adequate
choice for serving as a means to simulate ScatterWeb networks.

The approach to allow for the specification and execution of ScatterWeb soft-
ware on top of ns-2 is not restricted to or especially developed for FACTS, but
rather targets to enable debugging and testing of any user application built on
top of the ScatterWeb firmware. Hence, it is not an integral part of FACTS, but
has been successfully used for several applications as will e.g. be presented in
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Figure 6.13: Running ScatterWeb and FACTS on ns-2 (a) Conceptual model (b)
Implementation

Section 7.4 later on.
Figure 6.13 (a) illustrates the conceptual model which has been adapted to

achieve the envisioned integration: The key to avoid the need for adaptation is to
provide a layer of glue code in between the user application. the FACTS runtime
environment in this particular case, and the ns-2 simulator. The interface of
this glue code has to be identical to the one offered by the ScatterWeb firmware,
thus both have to comply to the same API for transparent execution capabilities.
Although this request is straight-forward, the actual implementation has to take
several requirements into account:

• The ScatterWeb firmware is closely tied to its underlying hardware and im-
plemented in C, while ns-2 is primarily implemented in C++. Header files
of the firmware have to be integrated due to the definition of data types
and constants mandatory for application development. Name clashes upon
linking ScatterWeb user application object code have to be considered.

• Static linking of ScatterWeb applications against the ns-2 binaries with the
help of implementing a simple compatibility layer is not possible. A network
of sensor nodes has to be simulated, all of which have to maintain their own
state. Static linking will however result in shared global variables among all
nodes instead of allowing for replicated stateful information.

Since an automatic conversion of C to C++ failed to succeed, the approach to-
wards integration has been the implementation of two C++ classes that cope with
the above mentioned challenges, see also Figure 6.13 (b). The ScatterWebAgent
class basically reimplements the ScatterWeb C API in C++ and deals with the
interaction with the ns-2 subsystem, whereas the ScatterWebUserAppAgent in-
herits this functionality and encapsules the application logic provided by the user
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application, thus the FACTS-re to allow for its simulation. To bridge the gap to
the ns-2 network stack, the ScatterWebAgent is derived from its Agent super-
class. The additional C++ class ScatterWebAgentTimer depicted in the Figure
implements a means to enable event scheduling for the simulated firmware follow-
ing ScatterWeb semantics.

Running RDL rules on ns-2 is now a very easy task. The ruleset has to be com-
piled for usage in the simulation environment, which basically provides the image
structured as discussed in Section 6.1 as a binary. A ScatterWebUserAppAgent
has to be adjusted to include the FACTS runtime environment, meaning that
global variables have to be declared separately, which then interprets the given
image. To create a network of ScatterWeb FACTS nodes, simulation parameters
such as network size and chosen MAC protocol have to be configured in a cor-
responding Tcl script for ns-2, and each node has to be instantiated to run the
ScatterWebUserAppAgent code. Naturally, the Tcl script allows to furthermore
specify calls to the functions available in that agent at discrete points in time,
which can be used to simulate certain events happening or periodic sampling
tasks.

All in all, this approach has proven to be very useful to understand network
behavior prior to an actual deployment, but also to rerun real-world experiments
with captured data traces to improve the overall quality of an implemented algo-
rithm. The great advantage with respect to the usual approach of implementing
an algorithm for usage in a simulator, and then re-implementing the same algo-
rithm for actual devices, is that the complete code base can be kept. This not
only saves a tremendous amount of time, but also ensures the fact that differences
in performance are with high probability a result of real-world effects and not of
different implementations. To support this hypothesis, experimental traces of the
FenceMonitoring experiment have been re-evaluated within the simulation and
were able to confirm this expectation, see also 7.4.

6.5.2 FACTS-hs: The Haskell backend for RDL rule evaluation

Functional languages such as Haskell comprise many advantages that make them
quite appealing for software development: First of all, the ability to specify higher
order functions allows for a very compact implementation of concerns while en-
suring type safety, a circumstance especially viable in a state of prototyping as
successive changes do not necessarily result in rampant source code. At the same
time, program behavior can be understood more easily due to the inherent lack
of side-effects upon function invocation. A nice feature of having a functional im-
plementation of a system design is that it directly serves as a formal specification,
enabling the assertion of important system properties if required.

The initial reason to resort to a Haskell implementation has been the quest to
obtain a reasonable environment to experiment with RDL language design issues.
In the end, it turned however out that the developed software serves for more
than a mere prototypical implementation, but can be used to conveniently debug
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complex rulesets at a very fine granularity simulating a distributed environment.
FACTS-hs, thus the functional backend for RDL interpretation, is implemented

as a Haskell module, and combines the implementation of rule interpretation func-
tionality as has been discussed intensively in Section 6.2 with its integration into
a command-line simulation tool. Simply speaking, an arbitrary-sized network of
sensor nodes can be created, all of which simultaneously execute RDL bytecode
dependent on their individual context in terms of fact repository state and prede-
fined events injected into the network at predefined simulation steps.

From an implementation point of view, a simulation is composed of its initial
state and the mentioned list of events that occur while running, while a network is
encoded as a list of nodes, each of which being represented as a tuple of its MAC
address to serve for unique identification, its position within the network and a list
of its rules, facts and available functions. In order to maintain simulation state,
the simulation step count, the current time and the network of sensor nodes at that
time as well as the queue of facts currently being transmitted, have to be available.
Whenever an event is said to effect a certain node, the simulation step at which
this event occurs has to be provided by the programmer. Then, a list of actions
associated with the event in question is executed. Each update of a fact advances
the simulation time by one to indicate a progression of time, overall allowing for
1000 updates per step. If during rule execution facts are scheduled to be sent,
then these queued facts are to be virtually transmitted between communicating
nodes by the simulation environment.

The public interface of the module provides constructors to allow for sensor
node and network creation which will in turn run provided bytecode for simula-
tion purposes. Furthermore, the FACTS-hs source offers constructors for rules and
rulesets, conditions and statements, slots and fact entities. Unlike the bytecode
image produced for the ScatterWeb backend, FACTS-hs bytecode is not a con-
cise encoding of given runtime behavior of sensor nodes, but a simple syntactical
transformation of the rules into Haskell sources that invoke the given constructors.

A simulation run iteratively transforms the current state of a given network
with a given ruleset into subsequent states. Therefore, the consequences of event
occurrences are evaluated at each node in the network and, in case rule conditions
are validated, the corresponding actions executed at involved nodes to infer new
network state. Since events manifest themselves as new facts appearing within a
node’s fact repository, this method can also be used to simulate sensor sampling
or timer interrupts that request reactions. An application developer may step
through the simulation to observe network behavior in response to given event
sequences and analyze whether the deployed ruleset mirrors his expectation.

In contrast to the ScatterWeb on ns-2 implementation, the Haskell backend
has the advantage and at the same time the disadvantage that network behavior
is not the focus of attention as lossless, instantaneous transmission is assumed.
Hence, its prime application area is to aid a programmer in identifying causal
dependencies between rules and rule parts respectively that may not be apparent
at first sight.
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6.6 Concluding Remarks
The emphasis of this chapter has been on the inner workings of the FACTS runtime
environment, spanning from compilation over execution up to its integration into
simulation frameworks. For each stage, we explained the basic design rationale
and its implementation, highlighted possible and adequate optimization strategies
and quantified the effects of chosen realizations. Furthermore, the design space for
hardware abstraction has been extensively explored in order to provide comfortable
access to underlying system functionality without loss of parameter control.

From a quantitative point of view, the results of implementing a rule-based
middleware framework are very encouraging: Not only is the approach feasible
from a perspective of mere implementation size and recursion depth for rule eval-
uation, thus practical on embedded hardware, it also nicely scales in terms of
number of deployable rules, supportable runtime storage of facts and auxiliary
hardware components for on-demand utilization. For an exhaustive, quantitative
study, numbers on implementation sizes, especially of other runtime environments
are not easy to obtain, either due to a lack of implementation or due to a lack
of publication and/or free access to software. However, memory consumption for
the vanilla implementation of the runtime environment (15.9kbyte flash, 1008byte
SRAM (including fact repository)) is absolutely comparable to e.g. Maté (16kbyte
flash, 849byte SRAM). Due to different design goals, chosen abstraction, under-
lying OS and implemented architecture one has to be aware that this can solely
reflect the appropriateness, not the quality of the presented implementation.

Optimization strategies for decreasing bytecode size and speeding up execu-
tion time have proven to be sound (with respect to the optimization target) and
efficient: The overhead incurred for tagging the bytecode with dependency infor-
mation, as well as the additional cost for rule evaluation and scheduling at runtime
are definitely legitimate in the face of 25% to 40% performance gain. Compile-time
size reduction of the bytecode image comes at no cost at all since this is performed
prior to the actual deployment on non-constraint machines.



Chapter 7

Utilizing FACTS:
Implementing middleware and
application-level functionality

Language pragmatics have already been discussed at a very abstract level in Chap-
ter 5, revealing primarily patterns to capture data processing demands of wireless
sensor networks and to circumvent general difficulties with event-centric program-
ming. This chapter will finally turn to hands-on experiences, implementations and
experiments carried out with RDL, exemplifying its utilization and the advantages
of depending on a sandboxed runtime environment for sensor network tasking.

One explicit rationale for FACTS has been to not address the distribution
dimension of abstraction by design, and therefore to not integrate a routing pro-
tocol into the framework per se. In general, it has been clearly a goal to avoid
the implementation of any functionality whose support is not mandatory for all
sensor network applications. Hence, supplementation instead of integration is the
fundamental approach of choice. The first part of this chapter will therefore high-
light how to supplement the framework with fruitful rulesets to incorporate mid-
dleware responsibilities, addressing distribution issues and coordinated behavior
among sensor nodes in particular. Two different routing schemes, the very basic di-
rected diffusion paradigm which yields data-centric communication with localized
interaction, and a sophisticated routing protocol that optimizes multiple-source,
multiple-sink routing with the help of feedback learning, have been implemented
and evaluated to point out RDL’s potential.

The second part of this chapter is concerned with the implementation of a
real-world experiment for distributed event detection. Here, the focus will be on
presenting especially the value of the tool chain, which enables to extrapolate
network behavior from results derived in a medium-sized deployment by running
the unchanged ruleset implementation in simulator.
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Figure 7.1: Directed Diffusion (one-phase pull) (a) Interest dissemination (b) Ini-
tail gradient setup (c) Data delivery along gradients

7.1 Routing I: Directed Diffusion

Given a deployment of sensor nodes within an environment to autonomously mon-
itor a specific environmental condition or detect the occurrence of a predefined
event, the question of what to do and where to store acquired (event) data is
naturally a central concern. A prominent choice is to send this information to one
or more dedicated nodes in the network (commonly referred to as sinks) which
take either the role of gateways to other networks, posses higher capabilities in
terms of hardware and/or possibly supply information on desired reactions. Nu-
merous approaches have explored the design space of routing protocols to achieve
energy-efficient [75, 143], adaptive [139] and scalable [50] information distribution
within sensor networks, see also [8]. Amongst these, Directed Diffusion [83], al-
ready mentioned in the previous chapter, takes a prominent role due to its simple,
yet versatile propagation scheme.

7.1.1 The directed diffusion routing protocol

Directed diffusion is a data-centric, multiple-source, single sink information dis-
semination protocol, which assumes all data generated by source nodes to be
represented as named tuples of attribute-value pairs. To bootstrap information
acquisition, a sink node describes its interest in application-specific data elements,
which it then propagates through the sensor network, see also Figure 7.1 (a). In
this first phase, the issued interests are forwarded within the network in a broad-
cast manner, and each participating node gathers information about its local,
one-hop neighborhood. This knowledge is denoted in so called gradients, data
structures that capture the next possible hop towards the direction of the sink,
visualized in Figure 7.1 (b). The original version of the algorithm provides a step
of path reinforcement afterwards. Therefore, source nodes infrequently send data
along all available gradients, and the sink node reinforces a particular path that
best suits the demands for delivery speed and path robustness. This information
is then again reapplied by the sensor nodes in between source and sink to identify
the single, best gradient to reach the target sink. Data delivery at full data rate
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will be triggered in a last step of the original implementation.
The variant we chose to implement skips the reinforcement phase and directly

sets the best gradient to the path with the smallest number of hops with respect
to the sink, see Figure 7.1 (c), commonly referred to as one-phase pull directed
diffusion. In the face of asymmetric links, this simplification may of course impact
protocol reliability, but it also cuts the number of packets that have to traverse
the network significantly. Route maintenance via periodic resends of sink an-
nouncements in terms of interests address the potential thread of broken routes
instead.

For a better comparative study against the FROMS routing protocol [53] ad-
dressed in the next section, we furthermore extended the implementation to sup-
port multicast routing towards more than one sink. The key is to store one gra-
dient per sink at each intermediate node, instead of one global gradient, applying
straight-forward routing table semantics.

7.1.2 Implementation details

With its application-centric design, the representation of data in terms of tu-
ples and its explicit reference to different routing strategies as rules, the paper
describing the directed diffusion algorithm points out already the suitability of
implementing it in a rule-based manner. While in the following, we will only
discuss the most interesting rules for supplying an impression on language capa-
bilities, the complete ruleset as deployed for the later on evaluation can be found
the Appendix B.2.

The ruleset itself can be divided into different parts, each of which concerned
with grasping a certain detail of the routing procedure. The first block is, as
in most rulesets, dedicated to initialize global data, assign constant values and
declare names and slots that are commonly used throughout the complete ruleset,
see Listing B.2 (lines 1 - 38). Afterwards, protocol-specific parts follow: A set of
rules that describes the effort of sink nodes for announcing interest in concrete
data items (lines 39 - 99), a set of rules that captures node behavior upon reception
of interest facts (lines 100 - 165), rules that describe how and when data is
produced at a source node (lines 166 - 203), and finally a sequence of rules that
implements data handling concerns (lines 204 -269) subsume node reactions to
incoming facts.

This ruleset fragmentation already allows for two general conclusions; not all
rules are functionally dependent on one another, which influences priority ordering
constraints, and none of the nodes is actually in need of the complete ruleset for
its proper operation. Recall that this second observation is an important part of
the runtime optimization as these dependencies are exploited on a fact basis. The
lack of functional dependency between all rule parts simplifies priority assignment:
Not all rules of a ruleset have to be ordered appropriately, but rather the order
within dependent sequences has to be watched carefully.

The question how exactly priority ordering impacts rule execution can nicely
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be explained with the help of the interest handling rules (rules 5 - 9). A mandatory
condition for all of these rules to trigger is the availability of an interest fact, the
sufficient part chosen according to the specific reaction. The reaction, a possible
definition or update of the gradient associated with the sink, is dependent on
whether this particular interest is new, a duplicate with a better/worse hopcount
towards the sink, an interest which serves for route maintenance or the handling
node is the sink that issued the fact in the first place. Specification of these
conditions can be greatly facilitated if the core triggering fact is removed after
processing it, since then follow-up rules do no have to denote the complete search
space in their left-hand-side. For instance, assigning a high priority to rule 5 which
filters any interest that bounces from neighboring nodes at the sink, allows to
neglect this possibility in all subsequent rules. Given a different order of the rules,
the conditions will have to be customized to meet protocol semantics. All in all,
the application of the chain of filters pattern described in Section 5.3.2 is directly
visible in this sequence.

Looking at the ruleset as a whole, ordering of functional dependent sequences
in respect to one another is arbitrary as long as statements do not affect the
conditions of lower-priority rules, e.g. by removing, flushing, touching or setting a
certain fact addressed afterwards. Data handling rules (rules 12 -18) and interest
handling rules share no manipulation of the same facts, allowing to order these
parts independent of one another.

From a protocol specification point of view, denoting directed diffusion in RDL
is a straight-forward mapping of the original publication to source code. Data
items such as interests and gradients are easily described as facts, with an
interest carrying properties that denote its sequence number (ann = announce-
ment number), the sink that issued the request for data (sink), the hopcount from
the sink (weight) and the neighboring node that forwarded the fact (neighbor).
This last information is actually not needed, as this could also be derived from the
inherent owner property of the interest fact, but has been added for increased
readability of the ruleset. Likewise, a gradient, which is similar to an entry into
a routing table, comprises a property sink, indicating the final destination for
data items, the neighbor that it has to be forwarded to (neighbor) for reaching
this sink, the number of hops to reach that target node (weight) and finally the
sequence number of the last route maintenance packet (last_ann). As can be
directly derived from the source code, reaction provision in terms of rules is fairly
easy: The complete protocol can be specified in solely 18 rules. The event-centric
notion of protocol semantics are nicely mirrored in the RDL implementation as
the required reactivity comes natural with a rule-based language abstraction and
all data needed to encode protocol behavior is suitable for expression in terms of
facts.

A quantitative evaluation of this and the following routing protocol will be
provided in Section 7.3. Both share some similarities such as deployment topolo-
gies and metrics that may be well discussed together, and will be compared to a
native implementation as well.
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7.2 Routing II: Feedback Routing

The identification of the shortest path from a source to a sink, such as e.g. pro-
moted in the above presented one-phase pull directed diffusion protocol, is the
most common way to implement a routing algorithm. The FROMS routing proto-
col (Feedback Routing of Optimizing Multiple Sinks) optimizes for shortest path
in the presence of multiple target sinks by application of a Q-learning approach
and exploitation of the broadcast nature of wireless communication, providing a
more elaborate way of information diffusion than directed diffusion.

7.2.1 The FROMS routing protocol

FROMS has been designed to cope with wireless sensor network deployments
that require efficient data forwarding to multiple sinks at the same time. This
circumstance arises for example whenever a node has to diffuse event notifications
to more than one subscriber. The classical solution to this problem is the setup
of a multicast tree, which usually involves prior knowledge about the network
topology. Similar to multicast routing protocols, FROMS exploits the availability
of shared paths as well. In the face of absence of a priori topology information,
their presence has however to be learned from local interaction with neighboring
nodes and hence cannot be utilized at bootstrapping time, but has to be gained
during runtime instead.

Figure 7.2 illustrates this basic idea with the help of a very simple topology:
Given a network that features two sinks and a source of data, these sinks will
propagate their interest in specific data items via broadcasts to all nodes in the
network, see 7.2 (a), which is similar to the interest dissemination that is used in
the directed diffusion protocol. Gradient setup optimizing for the shortest path
to both sinks will e.g. result in the network state visualized in Figure 7.2 (b).
The shortest route to sink 1 as well as the shortest route to sink 2 will both have
a length of 2 hops each, a typical configuration that will for instance be chosen
when resorting to directed diffusion. However, while these paths resemble the
local optima to individual sinks, the global optimum for this setup is depicted in
Figure 7.2 (c). Here, an intermediate node that lies on the path from source to
sink 1 and to sink 2 is used so that one hop may be spared. The key concern of
FROMS is hence to identify, learn about and benefit from such shared paths in
order to globally optimize information flow to multiple sinks, relying exclusively
on local information.

To achieve this, and in contrast to directed diffusion, the protocol requests
nodes to keep not only the single, best gradient towards a sink during an initial-
ization phase, but to generate a full neighbor table with all available paths for
later on optimization. Each data item sent out by a source specifies its target
sinks, as well as the nodes that are in charge of forwarding this particular packet
within the data payload. The protocol exploits the broadcast nature of the wire-
less medium by sending out data packets to the broadcast address, leaving it to
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Figure 7.2: Idea of he FROMS routing protocol for routing to multiple sinks (a)
Dissemination of sink announcements (b) Local optima for independent routing
decisions (c) Global optimum

the nodes in network vicinity to decode forwarding responsibilities from the packet
itself. Naturally, this will cut costs on the sending side, since each data item has
to be issued only once for multiple recipients, however requires on the downside
idle listing of all nodes at any time.

Upon reception of a data packet, a sensor node consults its neighbor table
which denotes all possible options to route the data to the sinks the sensor node
is requested to reach. Dependent on a given cost function, typically hopcount,
these different options are evaluated and the best configuration is chosen. Corre-
spondingly, those neighbors picked for forwarding are denoted in the data payload,
before the packet is once again broadcasted.

Stand alone, a node will not be able to find globally optimal, shared paths.
Although each node can be aware of the fact that it may reach several sink nodes
using a dedicated neighbor from looking at the available gradients, any informa-
tion that spatially goes beyond this first hop has to be provided externally. The
presence of shared paths and their associated costs, have to be made available by
neighboring nodes.

FROMS therefore relies on a Q-learning algorithm, responsible for the supply
of feedback values to enable nodes to learn better, thus shorter, paths. Simply
speaking, information on shared path availability is streamed in an upwards di-
rection towards the source upon recognition. Implementationwise, this learning
strategy is integrated into the protocol as a phase of exploration which a node can
invoke to probe non-optimal paths. In a nutshell, a routing decision can follow
two objectives, either to exploit the available information and choose the best path
towards the given sinks, or to explore the network by choosing a random route and
eventually discover shared paths it has not been aware of somewhere down along
the path. In either case, the sensor node piggybacks the actual, best cost denoted
for routing to the requested targets on the data packet to inform its predecessor
about its local view on the network. Costs that were initially estimated to be
higher can eventually be corrected in case this feedback information is overheard,
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and shared paths identified via exploration can hence be made available.
In summary, FROMS comprises three distinct building blocks: a first phase in

which sinks disseminate interests in data that are then used to setup initial cost
estimates for routes, the implementation of the exploration/exploitation routing
phase and a mechanism to issue and integrate feedback values appropriately.

7.2.2 Implementation details

Bootstrapping FROMS with the help of propagation of interests in data by the
sink nodes is similar to the implementation of directed diffusion in rules, see Ap-
pendix B.3 for the complete ruleset. The differences here are simple naming con-
cerns (sink_announcement instead of interest) and the usage of a context fact
(line 47) for loop encapsulation, which is retracted after the initialization of the
routing infrastructure. Data dissemination rules (lines 64 - 93) likewise differ only
in minor details.

According to protocol semantics, the reception of sink_announcements will
yield the creation of so called PST_nodes (path sharing tree nodes), which are
basically representations of entries within a routing table. Each PST node fact
therefore stores the neighbor from which the information has been received in
combination with the sink that initially issued the request and the hopcount to
reach it, denoted within the property named cost. Furthermore, a unique_id
and a flag property are tagged to each PST node to facilitate identification and
matching later on during processing. For each sink that a sensor node is aware
of in the network, the minimal cost to route to this particular sink is stored in a
separate fact cachedMinCostSink, which is used for restricting the number of PST
nodes stored to only those not exceeding the overall path length by an additional
hop (lines 95 - 168).

The protocol proceeds to the next phase as soon as the first data packet is
received: The initial setup of the routing infrastructure is finalized by deriving
shared paths from the available PST node information and simply denoting this
knowledge in additional PST_nodes. PST nodes that target different sinks relying
on the same next hop neighbor are merged into a new one, decreasing the cost to
route to both sinks (which are combined using bitwise OR to encode their sharing
ability). For instance, the availability of a PST node to sink 1 using neighbor 4 as
the next hop, and of another PST node using neighbor 4 for to reach sink 2 will be
merged into an additional PST node yielding sink 3 (thus both sinks), once again
relying on node 4. Here, the elegance of pattern matching for information fusion
is directly visible in the source code. After a rule needed to tag all PST nodes
that fail to have a matching partner (lines 225 - 233), a single rule for iterating
over all available PST nodes is sufficient, since it will be executed as often as there
are still unmerged nodes in the fact repository. This is controlled simply by the
state_control fact utilizing the while-loop pattern as described in Section 5.3.1.
After successful setup, all needed information for routing is encoded and hence
available for subsequent decision making.
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A data fact received by a node can trigger different reactions, dependent on
the role of the node itself and the actual payload of the packet. First of all, the
information it conveys can be feedback on a prior routing decision, thus serve to
propagate learned costs about formerly unknown shared paths. Rules for feedback
handling (lines 293 - 349) are straight-forward. Each node temporarily remem-
bers routing decisions by caching these in a fact named feed_cache. In case a
data fact is overheard, the node checks whether it has such a fact from this par-
ticular neighbor on this particular routing choice and evaluates (a) whether the
cost for this path (represented by the chosen PST node) and (b) whether the
overall minimal cost for routing to the sink(s) have decreased. In either case, the
corresponding facts are updated, in the latter all cached values for accelerated
decisions on routing paths are also invalidated. Follow up rules will cleanup any
cached feedback (lines 342 - 349) and bouncing facts (lines 352 - 357) to prevent
repository thrashing.

A second possibility is that data is finally received by a sink node. Handling
rules involve simple counting for calculation of the packet delivery rate (lines 366
- 385), issuing of feedback and removal of facts not requiring further routing (lines
386 - 407). Finally, a last option is that the data fact effectively denotes a request
to forward it via the sensor node that is currently processing it. Then, the actual
target(s) are extracted from the data packet, (lines 418 - 431) and the modus
(exploration or exploitation) is determined (lines 437 - 458). We chose to set the
percentage of exploration packets to 30%, leaving 70% of the packets for routing
via the current best paths towards the sinks.

Implementing the exploitation strategy given solely the PST nodes requires
a bit of effort since it resembles a depth-first traversal of a tree, with the target
sink(s) being the root of this tree. All possible combinations to reach this root can
be understood as subtrees that need to be checked for lowest cost to finally obtain
the best path. Since this is a costly operation and sensor nodes are often required
to route to the same (subset of) sinks, the first step is to check whether a cached
route to the target sink(s) in question exists (denoted in the fact broute) that is
valid and may be reused (lines 504 - 516). Otherwise, the algorithm proceeds with
assigning a temporary minimum to the broute fact by searching for a PST node
with minimal costs that feature the target sink(s) (lines 519 - 531). If the sensor
node is responsible for forwarding to only one sink, processing will be stopped,
the properties of the data fact changed, feedback cached accordingly and the data
fact finally sent out (lines 533 - 562). However, in case multiple sinks are to be
reached, the complete imaginary tree has to be traversed. Likewise, the follow-up
rules implement such a search, matching all possible paths, storing these within
temporary croute facts (lines 626 - 634), which are compared to the current best
route (lines 637 - 657). In the end, this fact finally bears the required information
and is used to adjust data fact properties before actual transmission. As has been
stated above, this broute fact will also serve as a cache for future routing decisions
as long as it is not invalidated by incoming feedback or requests for different routes.

With respect to exploitation, denoting the exploration strategy is again very
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easy: Given a random value, the sensor node simply uses this to implement a
function mapping it to the available PST nodes for random choice (lines 766 - 768).
Eventually, a matching node is furthermore obtained, or in case this mechanism
failed due to very sparse number of PST nodes, a match-any strategy as a fallback
mechanism is implemented.

Overall, denoting FROMS with the help of RDL rules is a bit more com-
plex than the implementation of directed diffusion for two reasons: First of all,
the protocol itself features more options for nodes to decide on data handling,
which naturally increases protocol complexity accordingly. While this is however
true for implementations in any language, the second can be directly owed to the
promoted data model in RDL, representing any available data in terms of facts,
lacking higher-level data structures directly available to the programmer. As a
consequence, more effort has to be put into implementing things as e.g. trees or
iterators, which is mirrored in the implementation for the exploitation strategy.
However, the strict separation into individual phases once again allows to frag-
ment the complete ruleset featuring 51 rules into functional chunks of way below
ten interacting rules, facilitating the implementation drastically.

7.3 Comparison of native and rule-based routing pro-
tocol implementations

In order to evaluate a rule-based against a native implementation, we will rely on
a two-step process: In a first step, we investigate general performance metrics of
the routing algorithms implemented in both a native and a rule-based manner. If
obtained values are similar (or within the bounds of acceptable deviation), this
will ensure that a direct comparison is valid in the first place, as it is likely that we
face semantically similar implementations of the same algorithm. Afterwards, the
overhead of rule-based interpretation instead of native execution will be discussed.
We will resort especially to the second routing ruleset for doing so, as this features
more complex processing requests which are able to better illustrate the impact.

The native implementation of both, directed diffusion and FROMS presented
in the next section, have been provided by Anna Förster, with results publicly
available in [54].

7.3.1 General testbed setup and protocol parameterization

The results discussed in the following have been obtained running directed diffu-
sion (DD) and FROMS on the testbed depicted in Figure 7.3, using ScatterWeb
MSB430 sensor nodes flashed with the ScatterWeb firmware version 1.1. The
sink nodes (node 1 and 2) are placed directly opposite the source node (node 6),
with the visualized multi-hop topology artificially enforced using a packet filtering
script on each sensor node. This step has been mandatory to ensure comparability
of all test runs.
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Figure 7.3: Testbed topology for evaluating directed diffusion and FROMS

For each run, both in DD and FROMS, the source node issues 100 data pack-
ets to be routed to both sinks. During the protocol bootstrapping phase, the
interests and sink_announcements respectively, are diffused every 15 seconds
until the first data packet is received. Then, directed diffusion will issue route
maintenance packets every 50 seconds, while FROMS resorts to the exploration
and exploitation scheme as described above. All results displayed in the following
are averages from three consecutive runs of each algorithmic implementation.

7.3.2 Evaluation of routing protocol characteristics and perfor-
mance

Figure 7.4 summarizes measured values in terms of packet delivery rate and asso-
ciated costs for routing for each protocol, comparing native and rule-based imple-
mentation denoted on the x-axis of the diagram. Since the overall impression of
fairly similar value ranges can be confirmed for similar protocols, the first and fore-
most conclusion drawn from these experiments without looking into the details is
that, although different languages have been used for protocol implementation (C
for the native, RDL for the rule-based variants), protocol semantics are captured
equally well. This is a mandatory prerequisite for any further investigation.

For an evaluation of protocol performance, we rely on three distinct metrics,
the well-known packet delivery rate (PDR) which resembles the ratio of received
packets by the sink nodes divided by the number of packets initially issued by
the source, and two metrics that express how many hops a packet has traversed
within the network in order to reach its destination in relationship to the issue
rate and the success rate, respectively. The cost per generated packet is hence
the ratio of overall traffic load on the nodes, thus the sum of all data packets
sent within the network during an experimental run, and the number of issued
packes, while the costs per received packet calculates this in relationship to the
delivery rate. Both ratios are displayed in terms of number of transmissions (ETX)
each implementation features in average. Given the topology that is illustrated in
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Figure 7.4: Evaluation of routing costs and delivery ratio of DD and FROMS in
different implementations

Figure 7.3, the optimal value, resembling the optimal path from the source to the
sinks is three, as these hops are necessary to reach the sinks under the premise of
broadcast communication.

The value showing the most deviation for the different implementations is the
packet delivery ratio for directed diffusion. While an implementation running on
the FACTS framework yields a rate of 91%, the native implementation is only
able to confirm a rate of 82% successfully delivered packets. The reason for this
difference can probably be attested to the rather unstable protocol itself: Tim-
ing of route maintenance packets has a tremendous influence on subsequent data
transmissions as coincidently issued data and interest packets lead to a peak load,
and result in collisions not only corrupting data packets targeting sink nodes but
also maintenance packets. Formerly stable routes can then be replaced with longer
paths over less reliable links, which negatively impacts the delivery rate. A rather
high variance for the PDR is already observable in individual test runs of directed
diffusion. In contrast to this, the PDR of FROMS is almost the same for both
implementation, with a PDR of 94% for the native and 93.5% for the rule-based
variant. Lost packets are in this case due to usual collisions and interference, but
no protocol-inherent reasons can be derived.

The cost metrics to evaluate path lengths of routing decisions visualize for the
directed diffusion protocol that either the FACTS implementation has a tendency
towards resulting in slightly longer routes than the native one, or that the increased
packet loss for the latter is especially observable at early hops on the paths to the
sinks. Since the costs per generated data are almost equally high for both and the
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Table 7.1: Node-local memory characteristics of native and rule-based routing
protocol implementations

DD native DD FACTS FROMS native FROMS FACTS

ROM usage 8396 byte 1682 byte 12358 byte 5660 byte
RAM usage 2932 byte max. 200 byte 3326 byte max. 656 byte

native implementation features a smaller cost value for received packets despite
the fact of a lower delivery rate, either situation is a valid explanation.

For the FROMS routing protocol, both implementations nicely illustrate the
ability of FROMS to decrease the path length for reaching multiple sinks via its
learning strategy. Here, the native implementation clearly outperforms FACTS,
a circumstance that is at least partially a result of a node failure during experi-
mentation, which the protocol however bypassed choosing a longer route. Also,
the question how fast good, thus shared paths are chosen for exploration impacts
protocol convergence time, and as a result the overall number of packets to be
routed along the best path. From the traces we were able to derive that the
chosen exploration strategy may not have been optimal for the RDL routing im-
plementation, since path convergence has been obtained rather late during the
experiments, testing a lot of non-optimal routes previously.

Once again, it is noteworthy to mention that the intention of this evaluation
is neither to provide an in-depth analysis of different routing protocols, nor to
attest RDL any superiority in regard to performance metrics over a native im-
plementation. Rather, this section provides the essential background information
for confirming similar, if not identical protocol semantics regardless of the chosen
language for implementation.

7.3.3 Evaluation of node-local characteristics of distinct protocol
implementations

From the perspective of node-local abstraction provision, it is much more interest-
ing to evaluate characteristic metrics for analyzing the quantitative value of the
FACTS framework in regard to memory consumption and overhead in terms of
processing time. Table 7.1 provides numbers on the first issue, while the latter is
displayed for individual routing decisions by the nodes in Figure 7.5, respectively.
While often times, the value of abstraction is measured in lines of code (LOC),
this metric is to our understanding too vague for truly pointing out differences in
implementations as soon as one turns from toy to real application, as the experi-
ence of the programmer has too big of an influence on the actual outcome of the
results. As we will discuss in the following, already the numbers provided below
have to be put into context in order to prevent a misinterpretation of the results.
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Concerning memory consumption in terms of the binary image of the imple-
mentations (ROM), the resulting values can once again verify that one of the
design goals for FACTS, the provision of lean and concise bytecode for sensor net-
work tasking, has been met. The image for directed diffusion accounts for only a
fifth of the size of the native implementation, while the FROMS image in byte-
code takes up roughly 45% of the ROM compared to the native implementation.
Clearly, common tasks such as packet assembly and disassembly, event dispatch-
ing and queueing are responsibilities that within FACTS are shifted from the
programmer’s to the runtime’s responsibility and can therefore be spared during
protocol implementation. Hence, one has to be aware that mere protocol seman-
tics (FACTS) and protocol semantics in combination with pre- and postprocessing
concerns are mirrored in these values. Nevertheless, this also illustrates that the
FACTS approach is able to efficiently shield a programmer from commonalities in
WSN tasking, allowing her to focus on the actual problem specification.

A comparison of the numbers denoted for RAM usage has to be correlated
to the actual implementation strategy for denoting the routing infrastructure in
order to grant a just analysis. The rule-based approach here has been to only
keep absolutely relevant facts, thus knowledge acquired for routing decisions that
is not volatile, in its fact repository. To put it the other way around, all data
that is subject to frequent change is rather recalculated on the fly than stored, a
circumstance that will impact processing time as will be seen in the following. In
contrast, the native implementation favors to keep all information once derived
available in RAM to increase protocol reactivity.

As a consequence, RAM allocation for directed diffusion is very limited with
FACTS: solely two gradients (one for each sink), the system fact for initial protocol
setup and a possible interest or data fact arriving at the node coincidently at
the same time have to be materialized in the fact repository, which in turn will
occupy 200 byte of RAM. In contrast, the implementation of the directed diffusion
protocol allocates a huge part of the RAM (almost 3 kbyte) for route encoding,
which is partially owed to the fact that this part of the implementation is shared
by both, directed diffusion and FROMS for reasons of decreasing development
time.

Obtained values for the FROMS implementation substantiate this observation.
All full routes that may possibly be derived from the PST nodes given after the
announcement phase are pre-calculated by the native implementation and stored
in RAM, which in turn accounts for the very high RAM utilization of the protocol
implementation. Facing the encoding scheme for facts, which tags individual tuples
with additional system related parameters for event correlation, we estimated the
costs in terms of memory consumption to gain insights on whether this approach
would be a feasible choice for an RDL implementation, too. Given k sinks in the
network and n neighbors (indicating the density of the deployment), the worst
case memory consumption MPST for the PST nodes is denoted in Equation 7.1.

MPST = n ∗ (2k − 1) (7.1)
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Figure 7.5: Processing time for finding a route to the sink(s) in DD and FROMS
for different implementations

When implementing FROMS on the sensor nodes, this memory has to be at
least available in order to encode the routing table information unless the tree
is pruned using heuristics. With an encoding size of 46 bytes per PST node in
the current implementation of FROMS in RDL rules, a maximum density of four
neighboring nodes and two sinks, 12 PST nodes have to be materialized in the
worst case. However, all paths in a backwards direction towards the source are
automatically pruned due to the threshold definition for storing PST nodes, so
that a number of 8 PST nodes (386 byte) can be denoted as the actual worst case
for this implementation/topology combination.

If we now want to additionally keep all possible routes to the sinks, the imposed
cost of Cfullroutes can be calculated as follows:

Cfullroutes = nk +
k−2∑
i=0

(
k

i

)
∗ ni+1 (7.2)

Since each route in FACTS consumes 40 byte, the approach of storing all
available routes would be manageable for the given topology, yet render the routing
protocol to be the sole instance that is able to be deployed on the sensor node.
From a software development point of view, this is to our understanding not a
reasonable choice a programmer would make. Therefore, we accept the difference
in the individual implementations and instead evaluate the impact that this will
have on runtime performance.

Figure 7.5 gives an overview of the average time needed for a single routing
decision derived from all nodes of the network in all four implementations. In the
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light of knowledge of the encoding scheme of routing paths in both of the native
implementations and that all routing decisions either result in a single lookup
(in case of directed diffusion and route exploitation in FROMS) or the creation
of a random value prior to a lookup (FROMS exploration), the depicted results
of an average processing time of 45ms time are not astonishing. The rule-based
implementation of directed diffusion yields with an average value of 26ms roughly
the same value range, which is slightly lower due to the missing packet disassembly
and assembly steps in processing.

The average time to find a route in the rule-based implementation of FROMS
is with 65ms very promising at first sight, indicating that the overhead of bytecode
interpretation and subsequent runs of the rule engine is absolutely viable. While
this is true for most of the routing decisions, excellent protocol reactivity can
however not be attested in all cases: In order to allow for a fair judgement, the
absolute dispersion of values, depicted as well in the diagram in Figure 7.5, has
to be pointed out, which reveals the downside of choosing to optimize for storage
over computation time for routing table setup. As soon as a re-computation of
the best available route from all PST nodes becomes essential, this may take up to
475ms in the worst case for nodes that are very well connected. Since the native
implementation may resort to complete routes stored in RAM (which is not feasible
for the RDL implementation), this computational overhead is avoided. Protocol
reactivity is thus subject to a high variance, especially during the initial phase
which features frequent updates in route estimations. A straight-forward solution
to overcome this potential threat when utilizing FROMS in real-world applications
is to schedule route re-computation explicitly in idle times, resorting to potentially
non-optimal paths when fast routing decisions are needed. This filtering of local
minima of PST node entries can instead be implemented in a single rule, rendering
the costly depth-first tree traversal for searching obsolete.

7.4 Fence Monitoring

FACTS has not only been used to implement supportive measures for applica-
tions, but also to test and run applications themselves. The experimental use case
briefly introduced in this section has been carried out to evaluate the benefit of
collaborative, in-network event processing. Although the availability of localized
data processing capabilities is widely regarded as a key feature of wireless sen-
sor networks, most real-world deployments still rely on data-agnostic reporting
schemes, a circumstance we wanted to address.

The use case we decided to implement has been concerned with physical intru-
sion detection, evolving around the question whether it is feasible to distinguish a
person climbing over a construction fence from other movements the fence may be
exposed to. In order to emphasize the programming perspective, the focus here
will be on the actual implementation of the proposed algorithm and on the utility
of the available simulation tools, rather than on a general overview of experimental
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Figure 7.6: Deployment of the a ten-piece construction fence in the patio of the
institute (a) Schematic illustration (b) Picture of the actual deployment (c) Sensor
node mounted to the fence

concerns. A complete discussion of related issues such as e.g. sensor calibration
or deployment challenges can however be found in [154].

For running our fence monitoring experiments, we installed a ten-piece con-
struction fence in the patio of our institute and mounted one ScatterWeb MSB430
sensor node to each element as depicted in Figure 7.6. Furthermore, we defined
six distinct events that a fence may face, i.e. being kicked, being shaken for a long
or a short period of time, being used for leaning against it or peeking over it to
see beyond, and finally crossing it by climbing over the fence. With the help of
sampling the on-board accelerometer, the task has been to issue an alarm as soon
as a person crossing the fence has been identified from the sampling pattern. Nat-
urally, an analysis of the different events to find bounds for filtering background
noise and a pattern to match the climb event has preceded the actual detection
runs for calibrating the event detection architecture.

7.4.1 Implementation details

The actual event detection algorithm conforms to a hierarchical data processing ar-
chitecture, a valuable pattern for processing as already pointed out in Section 5.3.
The algorithm itself therefore proceeds in subsequent filtering steps, first removing
background noise, then proceeding to local event detection and, in case of success,
justifying or revoking the potentially detected event with the help of a neighbor-
hood query. Only when all stages have been passed by an event candidate, the
acquired data samples are classified to represent an intrusion and hence an alarm
is being issued. Based on a simple spanning tree, this alarm is forwarded to a
predefined sink node.
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Listing 7.1: The detection rules within the Fence Monitoring ruleset
1

2 rule aggregateShakeEvents 190
3 <- exists {shake}
4 <- eval (( count {shake }) >= localAggregationMinShakeEventsTrigger

)
5 <- eval (( sum {shake duration }) >=

localAggregationMinCombinedShakeDuration )
6 <- eval (( sum {shake duration }) <=

localAggregationMaxCombinedShakeDuration )
7 -> define climb [ confidence = (( max {shake intensity }) * (max {

shake duration }))]
8 -> retract {shake}
9

10 [...]
11

12 rule evalAcksOnTimeout 110
13 <- exists { neighborhoodAggregationTimerExpired }
14 <- eval (( count {ack }) >= neighborhoodAggregationMinAckTrigger )
15 -> define alert [ confidence = {climb confidence }]

The complete ruleset implementing the fence monitoring application can be
found in Appendix B.4 and relies on the provision of basic events, so called shake
facts down on the lowest layer by the firmware. Data samples are simply ag-
gregated into shake facts as soon as the intensity of the sampled acceleration
crosses a threshold.1 Each fact is tagged with two properties, the average mea-
sured intensity and the overall duration of this event before being pushed into
the FACTS runtime for processing.

From here on, the ruleset takes over the processing routine, see also Listing 7.1
which denotes the two rules for local, as well as neighborhood event detection. A
local event, thus a climb fact is created, whenever the number of available shake
facts exceeds a threshold (we derived a number of three shakes to serve as a good
estimate from the test runs), and the sum of their durations is within given bounds
(lines 2-6). Another rule, not displayed here, is in charge of purging shake facts
after a short period of time to react and process only fresh data.

In case a potential climb event has been detected, this hypothesis is tested
by broadcasting the fact to the one-hop neighborhood of nodes for verification
after a short delay. Network proximity exceeds spatial proximity in this scenario,
so that physical neighbors will by all means be reached. Each node receiving a
climb fact will check its fact repository whether it can confirm the observation,
and either acknowledge or reject the raised claim by sending an ack or a nack fact
accordingly. Upon reception of at least one acknowledgment, neighborhood event
detection is triggered, and an alert sent to a sink (lines 12-15).

1The intensity is a measure we defined as the absolute value of the sum of the differences of
current and previous sample in each dimension.



168 7. Utilizing FACTS

The small scale of deployment had the drawback that practically all nodes were
reachable within one hop, even after lowering the transmission range by setting
the signal strength of the transceiver to the minimum. To measure the impact
of in-network event detection and its implicit compression via events upon the
network load, we therefore re-applied the traces within the ns-2 simulator, see
also Section 6.5, and crafted a bigger, more realistic deployment scenario.

7.4.2 Results and outlook

The results obtained for detection have been quite reasonable, especially with
respect to other deployments such as [149]. For evaluating the actual quality of
event detection, we utilized two statistical metrics for binary classification, namely
sensitivity as a measure of correctly identified intrusion events, and specificity as
a measure of the share in false positives. We then differentiated between local and
neighborhood event detection, and measured the impact of the additional step of
in-network filtering.

Overall, the algorithm performs well in terms of not rejecting true positives in
the local event processing stage: With a 100% value for sensitivity, no intrusion
event has been discarded early. On the downside, the specificity value of 41.3%
indicates that the number of wrongly classified events is still high, since almost
60% of the event candidates do not represent climbs. The neighborhood filtering is
able to improve this specificity by 12.0%, unfortunately at the expense of a 13.3%
decrease in sensitivity.

Looking at the networking aspect of in-network event detection, early filtering
clearly has the anticipated effect of significant reduction of network load, even
though additional traffic is incurred by the neighborhood event detection. We uti-
lized a simulation scenario that featured a virtual fence around the US Embassy
in Berlin, in combination with a setting of 10m transmission range for the sensor
nodes to derive concrete values. Naturally, raw data streaming (thus streaming of
basic events i.e. shake facts) turned out to considerably stress network capabili-
ties. While the transmission of event candidates (i.e. climb facts) is able to reduce
this traffic by 79.3%, the overall reduction can be further improved to 93.4% when
relying on the complete event filtering hierarchy.

The fence monitoring deployment has been a great scenario to implement, de-
ploy, test and evaluate a small scale, real-world use case with available components
in terms of hard- and software. A tremendous amount of work has since been
dedicated to improve especially the event detection algorithm and supply more
sophisticated algorithms for pattern acquisition and classification, see [48, 146]
for further reading. From a networking perspective however, the impact of infor-
mation aggregation in different granularities and topologies has been able to be
quantified even with given prototypical implementation, see [154] for an in-depth
quantitative evaluation.
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7.5 Concluding Remarks
The main theme of this chapter has been to analyze whether real-world, wireless
sensor network specific problems can effectively be solved utilizing the FACTS
middleware framework. Therefore, a comparative study of two, in terms of com-
plexity very distinct routing protocols, implemented in a native and a rule-based
manner, as well as the implementation of an exemplary use case try to provide
valuable insights.

From the first part of this chapter, two claims concerning quantitative metrics
can be directly confirmed: RDL bytecode is in general very concise with respect to
native implementations of equal protocol semantics. Furthermore, in the average
case, the overhead for bytecode interpretation via production rule scheduling in
terms of actual processing time, is for the implemented problem at most approxi-
mately 45% higher than for native scheduling, given however different implemen-
tation strategies. Naturally, one has to be careful to not misinterpret this number:
Rather than serving as a fixed value for the impact of interpretation, it is only
able to provide a rough estimate for a general indication. Then again, the differ-
ent programming paradigms will always yield application- and paradigm specific
implementations, so that this at first sight vague conclusion is certainly more to
the point then running a benchmark program for deriving a coherent valuation.

On the downside, the implementation of the FROMS routing protocol has
also been able to push the framework to the limits. Especially the definition of
complex data structures allowing for very fast and efficient access is a problem that
cannot be sufficiently handled with the chosen data model and pattern matching
strategy. The unconditional support of spatio-temporal event processing patterns
via inherent tagging of facts furthermore imposes an inevitable overhead which is
counterproductive in case large amounts of data have to be encoded very efficiently.
The specification of index structures to speed up the access to specific data items
can however be implemented in an application-specific manner, but is not directly
supported by the language itself.

But not only quantitative values of the FACTS framework have become ap-
parent in this chapter. Once again, all three implementations presented above
revealed the advantage of empowering a developer with the possibility to adopt a
clearly problem-oriented viewpoint for protocol or application specification. De-
fined data is, with the exception of a few temporary facts that aid in matching and
filtering in the FROMS implementation, purely application- or protocol-specific.
Especially the fence monitoring ruleset is able to convey this circumstance with
the encapsulation of different event types in different facts after successful recog-
nition. Meaning is directly encoded within the fact specification, and reactions to
particular fact instances derivable from individual rules. All in all, this renders
rule-based protocol implementation with RDL on top of FACTS not only suitable,
but very valuable from a programming perspective.
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Chapter 8

Conclusions

This thesis has been dedicated to explore the design space for abstraction provision
in wireless sensor networks. Autonomous, small devices, deployable physically
close to phenomena of interest, reprogrammable and even enabled to interact with
other devices and networks bear a tremendous flexibility to serve as a technological
basis for new, exciting applications. Unfortunately, the great potential of these
networks has up to date not really been exploited, a fact that can be attributed
to a number of unsolved problems, including operational and economical reasons.
Costs are for instance still high and prototypical implementations beyond pure
scientific work rare, which makes investments in this technology risky. Benefit
and utility with respect to established technologies is yet to be substantiated.

A key aspect that hinders fast technological adoption is an observable lack of
intuitive handling of wireless sensor networks and their individual nodes, respec-
tively. Effective programming for this domain is highly demanding as network
and device-level challenges are most of the times directly visible to the applica-
tion developer, thus have to be thoroughly understood and objected accordingly.
Unlike for instance the enormous amount of creativity that the relatively simple
development of web content spawned early this century, this domain requires so-
phisticated software development skills which increases the barrier for getting in
touch with the technology in the first place.

As a result of an in-depth analysis of the domain itself, of its envisioned ap-
plications, its preferred software architectures and proposed middleware solutions,
the primary challenges and drawbacks that have to be addressed to overcome this
situation have been pinpointed at the beginning of this work. The main contribu-
tion of this thesis is the provision of a holistic node-level programming model and
middleware framework to facilitate wireless sensor network tasking. The frame-
work itself comprises a domain-specific language that enables the specification of
nodal behavior with the help of declarative rules, a corresponding runtime en-
vironment, implemented to run on top of both real sensor hardware and within
simulations which ensures robust application execution, and a rich set of middle-
ware abstractions to further complement the approach.
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8.1 Contributions

The FACTS framework objects the described problem of low productivity due to
the high domain-specific demands and the tedious software development utilizing
two well-known abstraction paradigms, fusing a domain-specific language and sup-
portive measures into one coherent programming model for wireless sensor network
tasking.

8.1.1 Provision of a classification model for wireless sensor net-
work abstractions

Abstraction from details, simplification of non-trivial processing and data concerns
by means of shifting the responsibility for their objection to a dedicated piece of
hard- or software is a fundamental mechanism to deal with complex problems.
Since software development for the wireless sensor networking domain can well
be categorized to bear such structural complexity, a number of approaches that
provide strategies and support to overcome the challenges of this particular domain
have been proposed in the past.

This thesis not only presents current state of the art and summarizes different
abstraction flavors, individual advantages, shortcomings and overall findings, but
furthermore provides a general classification scheme to grasp the inherent concep-
tual ideas of a certain approach, as well as to conceive its functional emphasis.
The three main dimensions of abstraction that can be utilized in a WSN context,
namely abstraction from distribution and networking concerns, abstraction from
programming perspective discrepancy as well as abstraction from intrinsic soft-
ware organization problems, are valuable instruments to reveal the inner workings
of any past, present and future abstraction implementation for this area. An ad-
ditional application of a set of classical metrics provided in this thesis to judge
approaches from a functional viewpoint will complement the conceptual evalua-
tion. Overall, this enables a very fine-grained classification of solutions, which may
easily be utilized when searching for a suitable abstraction addressing a dedicated
implementation problem.

8.1.2 Specification of a domain-specific programming language for
wireless sensor networks

To our understanding, the foremost challenge that has to be met for bridging
the gap towards improved sensor network tasking capabilities is to ensure the
availability of a simple, yet versatile means for problem-oriented task specification
on the one hand, and to warrant robust software development on the other. Due
to human nature, language and problem conception are tightly coupled to one
another, rendering the provision of an adequate language substrate in order to
increase expressiveness a great tool to handle difficulties that arise from target
and problem domain antagonisms.
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A major contribution of this thesis is the definition, implementation, applica-
tion, extension and evaluation of a concise, powerful programming language espe-
cially designed for the wireless sensor networking domain. Accepting the primarily
event-driven view upon software development instead of artificially disguising it,
a high-level, rule-based programming language called RDL (ruleset definition lan-
guage) has been specified to facilitate sensor node tasking. Interleaving general
concepts of ECA rules and production rule semantics not only allows for the spec-
ification of event-based reactivity of a sensor node, but also to derive knowledge,
e.g. on its current context or processing state from its available information. Pre-
cise execution semantics of RDL rules are denoted in a formal manner in order to
enable implementation-independent language perception.

8.1.3 Implementation of a holistic, node-level programming frame-
work

From a practical perspective, the provision of an abstraction is solely valuable in
case it simply works. Evidently, this demand not only concerns its mere availability
and adaptability to the encountered problem, but also subsumes the request for
reliability, general ease-of-use and support in all phases of the development process.

The core of this thesis evolves around the provision of a holistic, node-level
programming framework that enables wireless sensor nodes to interpret rule-based
programs denoted in RDL. Intrinsic challenges such as event ordering concerns,
direct exposure to hardware interfaces, packet handling and the obligatory need
for manual stack management on embedded devices are shielded from a program-
mer and supplied via easy-to-use interfaces. The stack itself is for instance neither
visible nor manipulable by a developer, shifting any responsibility for proper mem-
ory handling to the FACTS runtime environment, which in turn warrants robust
rule execution at runtime.

A variety of tools, e.g. for network simulation and debugging, and additions,
e.g. the provision of specialized facts to encapsulate configuration and controlling
concerns, to complement the programming framework have been proposed, tested
and their capabilities explored. A programming framework for a domain-specific
language exhibiting an equal state of maturity is to the best of our knowledge up
to now not available for the wireless sensor networking domain.

8.1.4 Exploration and exploitation of the design space for opti-
mizing the proposed programming model

Regardless of the target platform or deployment area, an optimal abstraction is
lightweight, highly flexible, easy-to-use, conceptually coherent and provides pow-
erful support for a dedicated problem area. Naturally, it has been a primary
concern of the framework proposed in this thesis to promote as many of these de-
sign goals as possible without breaking the inner, conceptual model of the FACTS
approach. Therefore, optimization strategies to obtain lean, modular bytecode



174 8. Conclusions

to support flexible sensor node retasking have equally been explored as well as
mechanisms to speed up the overall processing time of rule interpretation. A thor-
ough quantitative evaluation of their impact, relying on different use cases and
implementations allows to draw a positive conclusion on the utility of available
enhancements.

Pushing an approach to its limits often reveals interesting facts about the ad-
vantages and bounds of the proposed abstraction. In order to truly test the FACTS
programming model and grant a fair judgement with respect to prevalent imper-
ative implementations in this domain, a comparative study has been carried out,
utilizing two established routing protocols with highly distinct demands in terms
of protocol complexity. From a qualitative point of view, the RDL language is
clearly superior when it comes to denote causal dependencies, reactivity and event
patterns, runs however short in case very efficient encoding and access schemes
are needed for vast amounts of data. Correspondingly, highly complex search op-
erations within the data space impose a measurable overhead on the sensor node
due to subsequent rule scheduling. However, one has to be aware that this is not
the average case as we were able to confirm, but rather a finding revealed when
deliberately searching for model bounds. Being a high-level language abstraction
that depends on bytecode interpretation on embedded hardware, FACTS indeed
performs way better than ever imagined.

8.2 Outlook and Future Work

The FACTS programming model itself is a self-contained approach that nicely ful-
fills its initial goal. Three aspects would however be interesting to further investi-
gate, one concerning the language, another probing additional supportive measures
and a final to unleash the power of rule-based interaction within a broader context.

A next step to take towards more reliable language design is to introduce type
safety within the RDL language syntax, and naturally to ensure this by appro-
priately customizing the compiler. Stand-alone, this is solely an implementation
issue rather than being a research question. One drawback that became apparent
within the FROMS implementation has been the indifferent usage of facts to de-
note all data in the system, a problem that in databases, which equally depend on
a declarative data model, has been tackled with the introduction of binary large
objects (BLOBs). A very promising thing to look into is whether there exists a
deliberate data structure apart from facts that seamlessly integrates into the pat-
tern matching model, however provides a means for efficient storage capabilities
that software development for embedded devices can benefit from in situations
which lack explicit event semantics.

Putting differential sensor network retasking into practice is a second area
worth investigating. The availability of simple means for over-the-air substitu-
tion of rulesets naturally gives raise to a number of curiosity-driven experiments
yielding self-aware, autonomous adaptations of sensor nodes at runtime and spon-
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taneous exchange of rule configurations. Especially in a mobile environment that
features distinct, spatial surroundings and eventually calls for context-aware node
behavior, flexible rulebases seem to be a sensitive means to support small, low-
capacity devices yet enable powerful, in-situ reactivity.

A third area that probably has the capability to become a killer application
for rule-based interaction is when semantic web technology really hits the embed-
ded domain. Although this area is not new and a lot of work has already been
contributed on the integration of smart objects into the real world, an increase in
maturity, opening up the development to non-professionals by means of dedicated,
but not too constraint programming models and cheap technology can eventually
trigger exciting developments within the next years not foreseen now.
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Appendix A

The RDL language grammar

ruleset ::= “ruleset” identifier block_list
identifier ::= [a−zA−Z_][a−zA−Z_\−0−9]∗
block_list ::= block { block }
block ::= named_name

| named_slot
| fact
| rule

named_name ::= “name” identifier “=” name
named_slot ::= “slot” identifier “=” slot
fact ::= “fact” name property_list_opt
rule ::= “rule” identifier priority condition_list

statement_list
priority ::= [0−9]+

| −[0−9]+
slot ::= identifier

| “{” name condition_list_opt “}”
| “{” name key condition_list_opt “}”

condition_list_opt ::= [ condition_list ]
condition_list ::= “←” condition [ condition_list ]
condition ::= “exists” slot

| “eval” “(” expression comparison_operation
expression “)”

comparison_operation ::= “==”
| “! =”
| “<”
| “>”
| “<=”
| “>=”

statement_list ::= “→” statement [ statement_list ]
statement ::= “define” name initializer_list_opt
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| “retract” slot
| “send” expression expression slot
| “set” slot “=” expression
| “flush” slot
| “touch” slot
| “call” identifier expression_list_opt

expression_list_opt ::= [ “(” expression_list “)” ]
expression_list ::= expression { “,” expression }
expression ::= variable

| “(” unary_operation expression “)”
| “(” expression binary_operation expression “)”

unary_operation ::= “count”
| “sum”
| “product”
| “min”
| “max”
| “∼”

binary_operation ::= “+”
| “−”
| “∗”
| “/”
| “%”
| “|”
| “&”
| “^”

property_list_opt ::= [ “[” property_list “]” ]
property_list ::= property { “,” property }
property ::= key “=” variable
key ::= [a−zA−Z_][a−zA−Z_\−0−9]∗
variable ::= “true”

| “false”
| [0−9]+
| −[0−9]+
| quoted_string
| slot

initializer_list_opt ::= [ “[” initializer_list “]” ]
initializer_list ::= initializer { “,” initializer }
initializer ::= key “=” expression
name ::= identifier

| quoted_string
quoted_string ::= “”” ( “”” | [a−zA−Z_][a−zA−Z_\−0−9]∗ “”” )



Appendix B

Source code of selected rulesets

This appendix features a selection of rulesets implemented for evaluation by FACTS
and tested on the ScatterWeb MSB430 sensor nodes. Sources are freely available
for download on the project website [136].

B.1 The Xmas ruleset

Listing B.1: The Xmas program, coordinated enlightment.
1

2 ruleset ChristmasLights
3

4 /*
5 * Building an MSP430 christmas tree
6 * For decent christmas decoration
7 * (1) Insert new batteries into the nodes
8 * (2) Follow the staggering stacking instructions below and
9 * (3) Apply this ruleset

10 *
11 * |1| ( master node , id = 1)
12 * |2| |2| (nodes in 2nd row , id = 2)
13 * |3| |3| |3| (nodes in 3rd row , id = 3)
14 * |4| |4| |4| |4|
15 * ... ( supply all nodes available )
16 *
17 * Trigger enlightment with sending a bootstrap fact to the

master
18 *
19 */
20

21 name bootstrap = " bootstrap "
22 name timer_context = " timer_context "
23 name random = " random "
24

25 name system = " system "
26 name row = "row"
27 name row_reply = " row_reply "
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28 name trigger = " trigger "
29 name delay = "delay"
30 name counter = " counter "
31 name light = "light"
32 name ON = "ON"
33 name node = "node"
34

35 fact system [ broadcast = 0, tx -range = 10]
36

37 slot systemBroadcast = { system broadcast }
38 slot systemTxRange = { system tx -range}
39 slot systemID = { system owner}
40

41 // all the next rules coordinate master behavior
42

43 rule getNumRows 100
44 <- exists { bootstrap }
45 -> define row [depth = 0]
46 -> define light [ON = true , node = 0]
47 -> send systemBroadcast systemTxRange {row}
48

49 rule getMaxNum 100
50 <- exists { row_reply
51 <- eval ({ this depth} > {row depth })}
52 -> set {row depth} = { row_reply depth}
53 -> retract { row_reply }
54 -> call removeTimer ({ delay })
55 -> call setTimer ({ delay}, 1)
56

57

58 rule replyInitiate 99
59 <- exists {delay}
60 <- eval ({ row depth} > 0)
61 <- eval ( systemID == 1)
62 -> define timer_context [ interval = 1, ident = " trigger "]
63 -> define counter [ current = 0]
64 -> retract {delay}
65

66 rule selfEnlight 98
67 <- exists { trigger }
68 <- eval ({ counter current } == 0)
69 -> set { counter current } = ({ counter current } + 1)
70 -> call setLED (255)
71 -> set {light ON} = true
72 -> retract { trigger }
73

74 rule sendON 98
75 <- exists { trigger }
76 <- eval ({ counter current } != 0)
77 <- eval ({ counter current } < {row depth })
78 -> set { counter current } = ({ counter current } + 1)
79 -> set {light node} = { counter current }
80 -> send systemBroadcast systemTxRange {light}
81 -> retract { trigger }
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82

83 rule sendOFF 97
84 <- exists { trigger }
85 <- eval ({ counter current } >= {row depth })
86 -> set { counter current } = 0
87 -> set {light ON} = false
88 -> call setLED (250)
89 -> send systemBroadcast systemTxRange {light}
90 -> set {light node} = 0
91 -> retract { trigger }
92

93 // the following rules take care of slave behavior
94 rule replyDepth 80
95 <- exists {row}
96 <- eval ( systemID != 1)
97 -> define row_reply [depth = systemID ]
98 -> send 1 systemTxRange { row_reply }
99 -> retract { row_reply }

100 -> retract {row}
101

102 rule setON 79
103 <- exists {light
104 <- eval ({ this ON} == true)
105 <- eval ({ this node} == systemID )}
106 <- eval ( systemID != 1)
107 -> call setLED (255)
108 -> retract {light}
109

110 rule setOFF 78
111 <- exists {light
112 <- eval ({ this ON} == false)}
113 <- eval ( systemID != 1)
114 -> call setLED (250)
115 -> retract {light}
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B.2 The Directed Diffusion ruleset

Listing B.2: Directed Diffusion, one-phase pull variant
1

2 ruleset DirectedDiffusion
3

4 /*
5 * This implementation features two sinks (nodes 1 and 2)
6 * and one data source (node 6)
7 * Sink announcements , thus interests are issued every 15 seconds
8 * in case no data has yet arrived afterwards ,
9 * the route maintenance interval is set to 50 seconds

10 * In this time , 100 packets are issued by the source
11 * targeting both sinks
12 */
13

14 name data = "data"
15 name system = " system "
16 name intervals = " intervals "
17 name stats = "stats"
18 name bootstrap = " bootstrap "
19

20 /*
21 * The following two facts serve as a constants
22 * for system related parameters , as well as to
23 * parametrize the timing and packet concerns
24 */
25

26 fact intervals [annum = 0, pre_sink = 15, data = 5, post_sink =
50]

27 fact system [ broadcast = 0, tx -range = 10, counter = 0, cur_id =
0]

28

29 slot systemID = { system owner}
30 slot systemBroadcast = { system broadcast }
31 slot systemTxRange = { system tx -range}
32

33 slot ddAnn = { intervals annum}
34 slot pktCurID = { system cur_id }
35

36 slot preSink = { intervals pre_sink }
37 slot dataInt = { intervals data}
38 slot postSink = { intervals post_sink }
39

40 // Declaration of directed diffusion specific names
41

42 name interest = " interest "
43 name gradient = " gradient "
44

45 name retransmitSATimerExpired = " retransmitSATimerExpired "
46 name dataTimer = " dataTimer "
47 name triggerResendTimer = " triggerResendTimer "
48



B.2 The Directed Diffusion ruleset 201

49

50 /*
51 * Dissemination of Interests by the sink nodes
52 * The interval at which these announcements are spread changes
53 * upon reception of the first data packet from a source node
54 * These rules are solely triggered at the sinks
55 */
56

57

58 rule disseminateInterests 100
59 <- exists { bootstrap }
60 <- eval ( systemID < 3)
61 -> define interest [ann = ddAnn , sink = systemID , weight = 1,

neighbor = systemID ]
62 -> send systemBroadcast systemTxRange { interest }
63 -> retract { interest }
64 -> retract { bootstrap }
65 -> call setTimer ({ retransmitSATimerExpired }, preSink )
66

67

68

69 rule retransmitInterests 99
70 <- exists { retransmitSATimerExpired }
71 <- eval ({ system counter } == 0)
72 -> retract { retransmitSATimerExpired }
73 -> set ddAnn = (ddAnn + 1)
74 -> define interest [ann = ddAnn , sink = systemID , weight = 1,

neighbor = systemID ]
75 -> send systemBroadcast systemTxRange { interest }
76 -> retract { interest }
77 -> call setTimer ({ retransmitSATimerExpired }, preSink )
78

79

80

81 rule periodSinkHelloInit 98
82 <- exists {data}
83 <- eval ( systemID < 3)
84 <- eval ({ system counter } == 0)
85 -> set ddAnn = (ddAnn + 1)
86 -> call setTimer ({ retransmitSATimerExpired }, postSink )
87

88

89

90 rule periodicSinkHello 97
91 <- exists { retransmitSATimerExpired }
92 -> retract { retransmitSATimerExpired }
93 -> define interest [ann = ddAnn , sink = systemID , weight = 1,

neighbor = systemID ]
94 -> send systemBroadcast systemTxRange { interest }
95 -> retract { interest }
96 -> set ddAnn = (ddAnn + 1)
97 -> call setTimer ({ retransmitSATimerExpired }, postSink )
98

99
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100 /*
101 * Interest handling rules.
102 * These are applied by all nodes in the network
103 */
104

105

106 rule dropInterestsWhenSink 96
107 <- exists { interest
108 <- eval ({ this sink} == systemID )}
109 -> retract { interest }
110

111

112 rule reinforceInterests 95
113 <- exists { interest }
114 <- exists { gradient
115 <- eval ({ this sink} == { interest sink })
116 <- eval ({ this weight } > { interest weight })
117 }
118 -> set { gradient weight
119 <- eval ({ this sink} == { interest sink })} = { interest weight }
120 -> set { gradient neighbor
121 <- eval ({ this sink} == { interest sink })} = { interest neighbor }
122 -> set { gradient last_ann
123 <- eval ({ this sink} == { interest sink })} = { interest ann}
124 -> set { interest weight } = ({ interest weight } + 1)
125 -> set { interest neighbor } = systemID
126 -> send systemBroadcast systemTxRange { interest }
127 -> retract { interest }
128

129

130 rule removeDuplicateInterests 94
131 <- exists { interest }
132 <- exists { gradient
133 <- eval ({ this sink} == { interest sink })
134 <- eval ({ this last_ann } >= { interest ann })
135 }
136 -> retract { interest }
137

138

139 rule resendInterestForRobustness 93
140 <- exists { interest }
141 <- exists { gradient
142 <- eval ({ this sink} == { interest sink })
143 <- eval ({ this last_ann } < { interest ann })
144 }
145 -> set { gradient last_ann
146 <- eval ({ this sink} == { interest sink })} = { interest ann

}
147 -> set { interest weight } = ({ interest weight } + 1)
148 -> set { interest neighbor } = systemID
149 -> send systemBroadcast systemTxRange { interest }
150 -> retract { interest }
151

152
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153 /*
154 * When a new interested has been received , create a new gradient
155 * for it and broadcast it to the network .
156 */
157

158 rule handleInterests 92
159 <- exists { interest }
160 -> define gradient [sink = { interest sink}, neighbor = { interest

neighbor }, weight = { interest weight }, last_ann = { interest
ann }]

161 -> set { interest neighbor } = systemID
162 -> set { interest weight } = ({ interest weight } + 1)
163 -> send systemBroadcast systemTxRange { interest }
164 -> retract { interest }
165

166

167 // Slots identifying gradients to sink_1 and sink_2
168

169 slot route_sink_1 = { gradient neighbor
170 <- eval ({ this sink} == 1)}
171

172 slot route_sink_2 = { gradient neighbor
173 <- eval ({ this sink} == 2)}
174

175

176 /*
177 * Rules for data creation at the source node
178 */
179

180 rule produceData 91
181 <- exists { bootstrap }
182 <- eval ( systemID == 6)
183 -> set { system counter } = 100
184 -> retract { bootstrap }
185 -> define data [ pkt_id = ddAnn , sink1NB = route_sink_1 , sink2NB =

route_sink_2 , numHops = 1]
186 -> send systemBroadcast systemTxRange {data}
187 -> retract {data}
188 -> set ddAnn = (ddAnn + 1)
189 -> call setTimer ({ dataTimer }, dataInt )
190

191

192 rule sendData 90
193 <- exists { dataTimer }
194 <- eval (ddAnn <= { system counter })
195 -> retract { dataTimer }
196 -> define data [ pkt_id = ddAnn , sink1NB = route_sink_1 , sink2NB =

route_sink_2 , numHops = 1]
197 -> send systemBroadcast systemTxRange {data}
198 -> retract {data}
199 -> set ddAnn = (ddAnn + 1)
200 -> call setTimer ({ dataTimer }, dataInt )
201

202



204 B. Source code of selected rulesets

203

204

205 /*
206 * Data handling rules
207 *
208 * If a node receives a data paket , it will transmit it broadcast
209 * to the two sinks in question . Therefore , it will consults its
210 * gradients and set the routing info accordingly
211 */
212

213 rule handleDataAtSource 90
214 <- exists {data}
215 <- eval( systemID == 6)
216 -> retract {data}
217

218

219 rule handleNewDataAtSink 90
220 <- exists {data}
221 <- eval ( systemID <= 2)
222 <- eval ({ data pkt_id } > pktCurID )
223 -> set { system counter } = ({ system counter } + 1)
224 -> set pktCurID = {data pkt_id }
225

226

227 rule dropDataNotForMe 89
228 <- exists {data}
229 <- eval ({ data sink1NB } != systemID )
230 <- eval ({ data sink2NB } != systemID )
231 -> retract {data}
232

233

234 rule setRouteToSink12 87
235 <- exists {data}
236 <- eval ({ data sink1NB } == systemID )
237 <- eval ({ data sink2NB } == systemID )
238 <- eval ( systemID != 1)
239 <- eval ( systemID != 2)
240 -> set {data sink1NB } = route_sink_1
241 -> set {data sink2NB } = route_sink_2
242 -> set {data numHops } = ({ data numHops } + 1)
243 -> send systemBroadcast systemTxRange {data}
244 -> retract {data}
245

246

247 rule setRouteToSink1 87
248 <- exists {data}
249 <- eval ({ data sink1NB } == systemID )
250 <- eval ( systemID != 1)
251 -> set {data sink1NB } = route_sink_1
252 -> set {data numHops } = ({ data numHops } + 1)
253 -> send systemBroadcast systemTxRange {data}
254 -> retract {data}
255

256
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257 rule routeDataSink2 87
258 <- exists {data}
259 <- eval ({ data sink2NB } == systemID )
260 <- eval ( systemID != 2)
261 -> set {data sink2NB } = route_sink_2
262 -> set {data numHops } = ({ data numHops } + 1)
263 -> send systemBroadcast systemTxRange {data}
264 -> retract {data}
265

266

267 rule retractData 86
268 <- exists {data}
269 -> retract {data}
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B.3 The FROMS routing protocol

Listing B.3: The FROMS routing ruleset
1 ruleset FROMS
2

3 name system = " system "
4 name bootstrap = " bootstrap "
5 name PST_node = " PST_node "
6 name cachedMinCostSink = " cachedMinCostSink "
7 name basic_sink = " basic_sink "
8 name timer_context = " timer_context "
9 name data = "data"

10 name unmergedYet = " unmergedYet "
11 name tmp = "tmp"
12

13 fact system [ broadcast = 0, tx -range = 20, pst - nodeId = 1,
counter = 0, pkt_id = 0]

14 fact unmergedYet
15

16 slot systemID = { system owner}
17 slot systemBroadcast = { system broadcast }
18 slot systemTxRange = { system tx -range}
19 slot pstNodeId = { system pst - nodeId }
20

21

22 /*
23 * Phase 1: Sink announcements and PST_nodes setup
24 * the sink nodes (1 and 2) start dissemination of announcements
25 * every 15 seconds as long as no data arrives , they will repeat
26 * their requests which is controlled via the unmergedYet fact
27 * retracted after the first reception of data
28 * these rules are only executed by the sinks
29 */
30

31 // ------ sink_announce [sink , numHops , ttl] ------
32

33 name sink_announce = " sink_announce "
34 name retransmitSATimerExpired = " retransmitSATimerExpired "
35 name sendData = " sendData "
36 name stats = "stats"
37

38 slot sinkSink = { sink_announce sink}
39 slot sinkNumHops = { sink_announce numHops }
40 slot sinkSender = { sink_announce owner}
41 slot sinkTTL = { sink_announce ttl}
42

43

44 rule bootstrap 250
45 <- exists { bootstrap }
46 <- eval ( systemID < 3)
47 -> define timer_context [ interval = 15, ident = "

retransmitSATimerExpired "]
48 -> define stats [ current = 0, received = 0]
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49

50 rule retransmitSinkAnnouncements 249
51 <- exists { retransmitSATimerExpired }
52 <- exists { unmergedYet }
53 -> retract { retransmitSATimerExpired }
54 -> define sink_announce [sink = systemID , numHops = 1, ttl = 10]
55 -> send systemBroadcast systemTxRange { sink_announce }
56 -> retract { sink_announce }
57

58 rule removeSinkAnnouncementTrigger 248
59 <- exists { retransmitSATimerExpired }
60 -> retract { retransmitSATimerExpired }
61 -> retract { timer_context }
62

63

64 /*
65 * the source ( assigned to node 6) periodically starts
66 * disseminating data packets every 5 seconds
67 * these rules are only applied by the source node
68 */
69

70 // ------ data [pkt_id , sink1 , sink2 , feedback , from] ------
71

72

73 name dataTimer = " dataTimer "
74 name paket = "paket"
75

76

77 rule produceDataTimer 247
78 <- exists { bootstrap }
79 <- eval ( systemID == 6)
80 -> set { system counter } = 1
81 -> retract { bootstrap }
82 -> define paket [ counter = 1]
83 -> call setTimer ({ dataTimer }, 5)
84

85

86 rule sendData 246
87 <- exists { dataTimer }
88 <- eval ({ paket counter } <= 100)
89 -> retract { dataTimer }
90 -> define data [ pkt_id = {paket counter }, sink1 = 6, sink2 = 6,

feedback = 1, from = 6]
91 -> set {paket counter } = ({ paket counter } + 1)
92 -> call setTimer ({ dataTimer }, 5)
93

94

95 /*
96 * whenever a sink_announcement is coming in that features a new
97 * sink not seen before , generate a PST_node and
98 * retransmit the sink_announcement , otherwise
99 * see whether information stays within bounds , keep or discard

100 */
101
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102 // --- PST_node [unique_id , sink , neighbor_id , cost , flag] ---
103

104

105 slot cachedMinCostSinkFilter = { cachedMinCostSink cost
106 <- eval ({ this sink} == sinkSink )}
107

108 slot PST_SS_SN_cost = { PST_node cost
109 <- eval ({ this sink} == sinkSink )
110 <- eval ({ this neighbor_id } == sinkSender )}
111

112

113 rule dropAnnouncementWhenOriginator 240
114 <- exists { sink_announce
115 <- eval ({ this sink} == systemID )}
116 -> retract { sink_announce }
117

118

119 rule purgeOldSinkAnnouncements 239
120 <- exists { sink_announce
121 <- eval ({ this ttl} == 0)}
122 -> retract { sink_announce }
123

124

125 rule generatePSTNodeNew 238
126 <- exists { sink_announce
127 <- eval ({ this sink} != { PST_node sink })}
128 -> define PST_node [ unique_id = pstNodeId , sink = sinkSink ,

neighbor_id = sinkSender , cost = sinkNumHops , flag = 0]
129 -> define cachedMinCostSink [sink = sinkSink , cost = sinkNumHops ]
130 -> set pstNodeId = ( pstNodeId + 1)
131 -> set sinkNumHops = ( sinkNumHops + 1)
132 -> set sinkTTL = ( sinkTTL - 1)
133 -> send systemBroadcast systemTxRange { sink_announce }
134 -> retract { sink_announce }
135

136

137 rule updateCachedMinCostRetransmit 237
138 <- exists { sink_announce
139 <- eval ({ this numHops } <= cachedMinCostSinkFilter )}
140 -> set cachedMinCostSinkFilter = sinkNumHops
141 -> define sink_announce [sink = sinkSink , numHops = ( sinkNumHops

+ 1), ttl = ( sinkTTL - 1)]
142 -> send systemBroadcast systemTxRange { sink_announce
143 <- eval ({ this owner} == systemID )}
144 -> retract { sink_announce
145 <- eval ({ this owner} == systemID )}
146

147

148 rule updatePSTNode 236
149 <- exists { sink_announce }
150 <- eval ( PST_SS_SN_cost > sinkNumHops )
151 -> set PST_SS_SN_cost = sinkNumHops
152 -> retract { sink_announce }
153
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154 rule purgeDuplicate 235
155 <- exists { sink_announce }
156 <- eval ( PST_SS_SN_cost <= sinkNumHops )
157 -> retract { sink_announce }
158

159 rule sameSinkDifferentNeighbor 234
160 <- exists { sink_announce
161 <- eval ({ this numHops } <= ( cachedMinCostSinkFilter + 1))}
162 -> define PST_node [ unique_id = pstNodeId , sink = sinkSink ,

neighbor_id = sinkSender , cost = sinkNumHops , flag = 0]
163 -> set pstNodeId = ( pstNodeId + 1)
164

165

166 rule purgeSinkAnnouncements 233
167 <- exists { sink_announce }
168 -> retract { sink_announce }
169

170

171 /*
172 * Phase 2: Setup Routing Tables = PSTnodes (path sharing nodes)
173 * This is done by first generating new PSTnodes for shared
174 * routes , with the arrival of first data packet
175 * merged PSTs have a path to different sinks using the same
176 * neighbor ; sinks are therefore bitwise "OR"ed to denote a
177 * sharing instance ; creation of this data structure has to be
178 * done only once - indicated by fact " unmerged " present
179 * in case not performed before
180 */
181

182

183 name mergeInfo = " mergeInfo "
184 name state_control = " state_control "
185 name process = " process "
186

187 slot minNode = { PST_node unique_id
188 <- eval ({ this flag} == 0)}
189

190 slot minNodeSink = { PST_node sink
191 <- eval ({ this unique_id } == { mergeInfo cur_id })}
192

193 slot minNodeFlag = { PST_node flag
194 <- eval ({ this unique_id } == { mergeInfo cur_id })}
195

196 slot minNodeNeighbor = { PST_node neighbor_id
197 <- eval ({ this unique_id } == { mergeInfo cur_id })}
198

199 slot minNodeCost = { PST_node cost
200 <- eval ({ this unique_id } == { mergeInfo cur_id })}
201

202 slot matchingNodeSink = { PST_node sink
203 <- eval ({ this flag} == 0)
204 <- eval ({ this sink} != minNodeSink )
205 <- eval ({ this neighbor_id } == minNodeNeighbor )}
206
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207 slot matchingNodeCost = { PST_node cost
208 <- eval ({ this flag} == 0)
209 <- eval ({ this sink} != minNodeSink )
210 <- eval ({ this neighbor_id } == minNodeNeighbor )}
211

212 slot matchingNodeFlag = { PST_node flag
213 <- eval ({ this flag} == 0)
214 <- eval ({ this sink} != minNodeSink )
215 <- eval ({ this neighbor_id } == minNodeNeighbor )}
216

217

218 /* The flag is used for traversing the datastructure .
219 * It is set to 1 for all PST_nodes that cannot be merged
220 */
221

222 name target = " target "
223

224

225 rule tagUnmergable 220
226 <- exists {data}
227 <- exists { unmergedYet }
228 -> retract { timer_context }
229 -> set { PST_node flag
230 <- eval ({ this neighbor_id } != { PST_node neighbor_id })} =

1
231 -> define state_control [state = "pst"]
232 -> define cachedMinCostSink [sink = 3, cost = 255]
233 -> flush {data}
234

235

236 //in case the PSTs are merged , jump directly towards routing
237

238 rule triggerRoutingDirectly 219
239 <- exists {data}
240 -> define process
241 -> flush {data}
242

243 rule startMerging 218
244 <- exists { state_control
245 <- eval ({ this state} == "pst")}
246 <- exists { PST_node
247 <- eval ({ this flag} == 0)}
248 -> define mergeInfo [ cur_id = minNode , sink = 0, cost =

minNodeCost ]
249 -> set { mergeInfo sink} = minNodeSink
250 -> set { mergeInfo cost} = ( minNodeCost - 1)
251 -> set minNodeFlag = 1
252 -> define PST_node [ unique_id = pstNodeId , sink = ( minNodeSink |

matchingNodeSink ), neighbor_id = minNodeNeighbor , cost = ({
mergeInfo cost} + matchingNodeCost ), flag = 0]

253 -> set matchingNodeFlag = 1
254 -> set pstNodeId = ( pstNodeId + 1)
255 -> retract { mergeInfo }
256 -> set { state_control state} = "pst"



B.3 The FROMS routing protocol 211

257

258

259 /* when all PST_nodes have been created merging is finished !
260 * retract the unmergedYet fact to indicate that the next
261 * incomingdata packet will not trigger merging again , but
262 * solely route construction
263 */
264

265 name broute = " broute "
266 name state = "state"
267 name croute = " croute "
268

269

270 rule mergingDone 217
271 <- exists { state_control
272 <- eval ({ this state} == "pst")}
273 <- eval (( count { PST_node
274 <- eval ({ this flag} == 0)}) == 0)
275 -> retract { unmergedYet }
276 -> set { cachedMinCostSink cost
277 <- eval ({ this sink} == 3)} = (min { PST_node cost <- eval ({

this sink} == 3)})
278 -> define broute [sink1 = 255, sink2 = 255, cost = 255, satisfies

= 0]
279 -> define target [route = 0]
280 -> define state [ current = "undef"]
281 -> retract { state_control }
282 -> set {data sink1} = {data sink1}
283

284

285 /*
286 * Phase 3 - all routing information is there: FORWARDING
287 * data can now be forwarded either via exploration or
288 * via exploitation . Incoming data may also feature feedback
289 * information that is used to update , the
290 * infrastructure , thus learn about the topology
291 */
292

293 /* --- CASE: FEEDBACK ---
294 * incoming data is feedback on the actual cost for a chosen
295 * route. the node is overhearing a paket targeting other nodes
296 * for forwarding , but can utilize the piggybacked information
297 * for checking for new paths
298 */
299

300 // -- feed_cache [ unique_id (PST), neighbor_id (who ?)] --
301

302 name filterID = " filterID "
303 name feed_cache = " feed_cache "
304

305 slot filterID = { feed_cache unique_id
306 <- eval ({ this neighbor_id } == {data from })}
307

308
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309 rule applyFeedback 216
310 <- exists { process }
311 <- exists {data
312 <- eval ({ this from} == { feed_cache neighbor_id })}
313 -> define tmp [cur = { PST_node unique_id <- eval ({ this unique_id

} == filterID )}]
314

315 rule evalFeedbackBetter 215
316 <- exists { process }
317 <- exists {data
318 <- eval ({ this from} == { feed_cache neighbor_id })}
319 <- eval ({ PST_node cost
320 <- eval ({ this unique_id } == {tmp cur })} > {data feedback })
321 -> set { PST_node cost
322 <- eval ({ this unique_id } == {tmp cur })} = ({ data feedback } +

1)
323

324

325 rule learnedBetterPath 214
326 <- exists { process }
327 <- exists {data
328 <- eval ({ this from} == { feed_cache neighbor_id })}
329 <- eval ({ cachedMinCostSink cost
330 <- eval ({ this sink} == { PST_node sink
331 <- eval ({ this unique_id } == {tmp cur })})} > (min { PST_node

cost
332 <- eval ({ this unique_id } == {tmp cur })}))
333 -> retract { broute }
334 -> define broute [sink1 = 255, sink2 = 255, cost = 255, satisfies

= 0]
335 -> set { cachedMinCostSink cost
336 <- eval ({ this sink} == { PST_node sink
337 <- eval ({ this unique_id } == {tmp cur })})} = (min { PST_node

cost
338 <- eval ({ this unique_id } == {tmp cur })})
339

340

341

342 rule cleanupFeedback 213
343 <- exists { process }
344 <- exists {data
345 <- eval ({ this from} == { feed_cache neighbor_id })}
346 -> retract filterID
347 -> retract {tmp}
348 -> retract {data}
349 -> retract { process }
350

351

352 rule dropBouncingPakets 212
353 <- exists { process }
354 <- exists {data
355 <- eval ({ this pkt_id } <= { system pkt_id })}
356 -> retract {data}
357 -> retract { process }
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358

359 /* --- CASE: DATA HANDLING AT SINKS ---
360 * sinks count the acutal pakets that have arrived
361 * to later on derive the PDR and handle forwarding of
362 * those pakets that are heading towards the other sink
363 */
364

365

366 rule countPacketsAtSink1 201
367 <- exists { process }
368 <- exists {data
369 <- eval ({ this sink1} == systemID )}
370 <- eval ( systemID == 1)
371 -> set {stats current } = {data pkt_id }
372 -> set {stats received } = ({ stats received } + 1)
373 -> set {data sink1} = 255
374 -> flush {data}
375

376

377 rule countPacketsAtSink2 200
378 <- exists { process }
379 <- exists {data
380 <- eval ({ this sink2} == systemID )}
381 <- eval ( systemID == 2)
382 -> set {stats current } = {data pkt_id }
383 -> set {stats received } = ({ stats received } + 1)
384 -> set {data sink2} = 255
385 -> flush {data}
386

387

388 rule sendFeedbackSink 199
389 <- exists { process }
390 <- eval ( systemID < 3)
391 <- exists {data
392 <- eval ({ this sink2} == 255)
393 <- eval ({ this sink1} == 255)}
394 -> set {data feedback } = 0
395 -> set {data from} = systemID
396 -> send systemBroadcast systemTxRange {data}
397 -> set { target route} = 0
398

399

400 rule getRidOfUnwantedData 198
401 <- exists { process }
402 <- exists {data
403 <- eval ({ this sink1} != systemID )
404 <- eval ({ this sink2} != systemID )}
405 <- eval ({ state current } != " search ")
406 -> retract { process }
407 -> retract {data}
408

409

410

411
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412 /* --- CASE: GENERAL ROUTING ---
413 * first , set were the data is supposed to be
414 * forwarded to , then determine the mode ( exploit or explore )
415 */
416

417

418 rule setTargetNodes1 180
419 <- exists { process }
420 <- exists {data
421 <- eval ({ this sink1} == systemID )}
422 -> set { target route} = ({ target route} | 1)
423 -> flush { target }
424

425

426 rule setTargetNodes2 179
427 <- exists { process }
428 <- exists {data
429 <- eval ({ this sink2} == systemID )}
430 -> set { target route} = ({ target route} | 2)
431 -> flush { target }
432

433

434 name explore = " explore "
435

436

437 rule determineRoutingModeExplore 177
438 <- exists { process }
439 <- exists {data}
440 <- eval (({ system counter } modulo 3) == 2)
441 -> define explore
442 -> call getRandom
443 -> set { system counter } = ({ system counter } + 1)
444 -> set { system counter } = ({ system counter } modulo 10)
445 -> retract { process }
446 -> flush {data}
447

448

449 rule determineRoutingModeExploit 176
450 <- exists { process }
451 <- exists {data}
452 <- eval (({ system counter } modulo 3) != 2)
453 -> set {state current } = " exploit "
454 -> set { system counter } = ({ system counter } + 1)
455 -> set { system counter } = ({ system counter } modulo 10)
456 -> define croute [cost = 0, satisfies = 0, ptr = 255]
457 -> retract { process }
458 -> flush { croute }
459

460

461 /* --- CASE: EXPLOIT ---
462 * this means , choose the best available route to the sink(s)
463 * and will be done in 30 percent of the cases
464 */
465
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466 // ------ broute [sink1 , sink2 , cost , satisfies ] ------
467 // ----- croute [cost , satisfies , ptr] ------
468

469

470 rule prepareDataForRouting 175
471 <- exists {state
472 <- eval ({ this current } == " exploit ")}
473 -> set { system pkt_id } = {data pkt_id }
474 -> set {data sink1} = 255 // urx: hack.
475 -> set {data sink2} = 255
476 -> set {data feedback } = { cachedMinCostSink cost <- eval ({ this

sink} == { target route })}
477 -> set {data from} = systemID
478

479

480 name minMatchCost = " minMatchCost "
481 name minMatchID = " minMatchId "
482 name minMatchflag = " minMatchFlag "
483 name minMatchNB = " minMatchNB "
484 name router = " router "
485

486 slot minMatchID = { PST_node unique_id
487 <- eval ({ this flag} == 5)}
488

489 slot minMatchCost = { PST_node cost
490 <- eval ({ this flag} == 5)}
491

492 slot minMatchFlag = { PST_node flag
493 <- eval ({ this sink} == { target route })
494 <- eval ({ this cost} == (min { PST_node cost
495 <- eval ({ this sink} == { target route })}))}
496

497 slot minMatchNB = { PST_node neighbor_id
498 <- eval ({ this flag} == 5)}
499

500 slot router = { PST_node neighbor_id
501 <- eval ({ this unique_id } == { broute sink2 })}
502

503

504 rule shortcutBrouteAvailable 174
505 <- exists {state
506 <- eval ({ this current } == " exploit ")}
507 <- eval ({ target route} == { broute satisfies })
508 -> set {data sink1} = { PST_node neighbor_id
509 <- eval ({ this unique_id } == { broute sink1 })}
510 -> set {data sink2} = { PST_node neighbor_id
511 <- eval ({ this unique_id } == { broute sink2 })}
512 -> send systemBroadcast systemTxRange {data}
513 -> set {state current } = " feedback "
514 -> set { target route} = 0
515 -> retract { croute }
516 -> retract {data}
517

518



216 B. Source code of selected rulesets

519 rule findMinDirectly 160
520 <- exists {state
521 <- eval ({ this current } == " exploit ")}
522 <- exists { PST_node unique_id
523 <- eval ({ this sink} == { target route })}
524 -> set { PST_node flag} = 1
525 -> set minMatchFlag = 5
526 -> set { broute cost} = minMatchCost
527 -> set { broute satisfies } = { target route}
528 -> set { broute sink1} = minMatchID
529 -> set { broute sink2} = minMatchID
530 -> set {data sink1} = minMatchNB
531 -> set {data sink2} = minMatchNB
532

533 rule correctSink1 159
534 <- exists {state
535 <- eval ({ this current } == " exploit ")}
536 <- eval ({ target route} == 1)
537 -> set { broute sink2} = 255
538 -> set {data sink2} = 255
539 -> set { broute satisfies } = 1
540 -> define feed_cache [ unique_id = { broute sink1}, neighbor_id =

router ]
541

542 rule correctSink2 158
543 <- exists {state
544 <- eval ({ this current } == " exploit ")}
545 <- eval ({ target route} == 2)
546 -> set { broute sink1} = 255
547 -> set {data sink1} = 255
548 -> set { broute satisfies } = 2
549 -> define feed_cache [ unique_id = { broute sink2}, neighbor_id =

router ]
550

551 rule sendDataSimple 157
552 <- exists {state
553 <- eval ({ this current } == " exploit ")}
554 <- eval ({ target route} != 3)
555 -> send systemBroadcast systemTxRange {data}
556 -> set { cachedMinCostSink cost
557 <- eval ({ this sink} == { target route })} = minMatchCost
558 -> set { target route} = 0
559 -> set {state current } = "undef"
560 -> set { PST_node flag} = 1
561 -> retract { croute }
562 -> retract {data}
563

564 rule setStateToSearchRoute 156
565 <- exists {state
566 <- eval ({ this current } == " exploit ")}
567 -> flush {data}
568 -> set {state current } = " search "
569

570
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571 /*
572 * search for possible better matches than the ones
573 * denoted directly in the PST_nodes by constructing
574 * all possible routes ( croute ) and checking them agains the
575 * current best route ( broute )
576 */
577

578 name startNode = " startNode "
579

580 slot startNode = { PST_node unique_id
581 <- eval ({ this flag} != 2)}
582

583 slot startNodeSink = { PST_node sink
584 <- eval ({ this unique_id } == { mergeInfo cur_id })}
585

586 slot startNodeNeighbor = { PST_node neighbor_id
587 <- eval ({ this unique_id } == { mergeInfo cur_id })}
588

589 slot startNodeCost = { PST_node cost
590 <- eval ({ this unique_id } == { mergeInfo cur_id })}
591

592 slot potentialNodeSink = { PST_node sink
593 <- eval ({ this flag} == 1)
594 <- eval ({ this sink} != startNodeSink )
595 <- eval ({ this neighbor_id } != startNodeNeighbor )}
596

597 slot potentialNodeID = { PST_node unique_id
598 <- eval ({ this flag} == 1)
599 <- eval ({ this sink} != startNodeSink )
600 <- eval ({ this neighbor_id } != startNodeNeighbor )}
601

602 slot potentialNodeCost = { PST_node cost
603 <- eval ({ this flag} == 1)
604 <- eval ({ this sink} != startNodeSink )
605 <- eval ({ this neighbor_id } != startNodeNeighbor )}
606

607 slot potentialNodeFlag = { PST_node flag
608 <- eval ({ this flag} == 1)
609 <- eval ({ this sink} != startNodeSink )
610 <- eval ({ this neighbor_id } != startNodeNeighbor )}
611

612

613 rule startSearching 150
614 <- exists {state
615 <- eval ({ this current } == " search ")}
616 <- exists { PST_node
617 <- eval ({ this flag} == 1)}
618 <- eval (( count { PST_node
619 <- eval ({ this flag} == 10) }) == 0)
620 -> define mergeInfo [ cur_id = startNode , sink = 0, cost = 0]
621 -> set{ mergeInfo sink} = startNodeSink
622 -> set { mergeInfo cost} = ( startNodeCost - 1)
623 -> set { PST_node flag
624 <- eval ({ this unique_id } == { mergeInfo cur_id })} = 10
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625

626 rule isThereAMatch 149
627 <- exists {state
628 <- eval ({ this current } == " search ")}
629 <- exists { mergeInfo }
630 <- exists potentialNodeSink
631 -> set { croute cost} = ({ mergeInfo cost} + potentialNodeCost )
632 -> set { croute ptr} = potentialNodeID
633 -> set { croute satisfies } = ( potentialNodeSink | { mergeInfo sink

})
634 -> set potentialNodeFlag = 11
635

636

637 rule isMatchBetterThanBroute 148
638 <- exists {state
639 <- eval ({ this current } == " search ")}
640 <- exists { mergeInfo }
641 <- eval ({ croute satisfies } == { target route })
642 <- eval ({ croute cost} < { broute cost })
643 -> set { broute cost} = { croute cost}
644 -> set { PST_node flag
645 <- eval ({ this flag} == 10)} = 42
646 -> set { PST_node flag
647 <- eval ({ this unique_id } == { croute ptr })} = 42
648 -> set { broute sink1} = { PST_node unique_id
649 <- eval ({ this flag} == 42)
650 <- eval ({ this sink} == 1)}
651 -> set { broute sink2} = { PST_node unique_id
652 <- eval ({ this flag} == 42)
653 <- eval ({ this sink} == 2)}
654 -> set { PST_node flag
655 <- eval ({ this unique_id } == { croute ptr })} = 11
656 -> set { PST_node flag
657 <- eval ({ this unique_id } == { mergeInfo cur_id })} = 10
658

659

660 rule restartLoop 147
661 <- exists {state
662 <- eval ({ this current } == " search ")}
663 <- exists potentialNodeSink
664 -> set {state current } = {state current }
665

666

667 rule clear 146
668 <- exists {state
669 <- eval ({ this current } == " search ")}
670 -> retract { mergeInfo }
671 -> set { PST_node flag
672 <- eval ({ this flag} == 10)} = 2
673 -> set { PST_node flag
674 <- eval ({ this flag} == 11)} = 1
675

676

677
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678 rule finalRound 145
679 <- exists {state
680 <- eval ({ this current } == " search ")}
681 <- exists { PST_node flag
682 <- eval ({ this flag} == 1)}
683 -> set {state current } = {state current }
684

685

686 rule sendDataAfterLoop 144
687 <- exists {state
688 <- eval ({ this current } == " search ")}
689 -> set {data sink1} = { PST_node neighbor_id
690 <- eval ({ this unique_id } == { broute sink1 })}
691 -> set {data sink2} = { PST_node neighbor_id
692 <- eval ({ this unique_id } == { broute sink2 })}
693 -> set { cachedMinCostSink cost
694 <- eval ({ this sink} == { target route })} = { broute cost}
695 -> set {data feedback } = { cachedMinCostSink cost <- eval ({ this

sink} == { target route })}
696 -> set {data from} = systemID
697 -> send systemBroadcast systemTxRange {data}
698 -> set { target route} = 0
699 -> set { system pkt_id } = {data pkt_id }
700 -> set { PST_node flag
701 <- eval ({ this flag} != 1)} = 1
702 -> set {state current } = " feedback "
703 -> retract { croute }
704 -> retract {data}
705

706 /*
707 * after successfully sending the data , the node stores
708 * the costs and the neighbor it has utilized within a fact
709 * to apply feedback on eventually smaller costs thereafter
710 */
711

712 name neighborInCache1 = " neighborInCache1 "
713 name neighborInCache2 = " neighborInCache2 "
714

715 slot neighborInCache1 = { PST_node neighbor_id
716 <- eval ({ this unique_id } == { broute sink1 })}
717

718 slot neighborInCache2 = { PST_node neighbor_id
719 <- eval ({ this unique_id } == { broute sink2 })}
720

721

722 rule provideFeedBack 140
723 <- exists {state
724 <- eval ({ this current } == " feedback ")}
725 <- eval ( systemID > 2)
726 <- eval (( count { feed_cache
727 <- eval ({ this unique_id } == { broute sink1 })}) == 0)
728 <- eval ({ broute sink1} != 255)
729 -> define feed_cache [ unique_id = { broute sink1}, neighbor_id =

neighborInCache1 ]
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730

731 rule differentNeighbors 138
732 <- exists {state
733 <- eval ({ this current } == " feedback ")}
734 <- eval ( systemID > 2)
735 <- eval (( count { feed_cache
736 <- eval ({ this unique_id } == { broute sink2 })}) == 0)
737 <- eval ({ broute sink1} != { broute sink2 })
738 <- eval ({ broute sink2} != 255)
739 -> define feed_cache [ unique_id = { broute sink2}, neighbor_id =

neighborInCache2 ]
740

741

742 rule finishedExploitation 136
743 <- exists {state
744 <- eval ({ this current } == " feedback ")}
745 -> set {state current } = "undef"
746

747

748 /*
749 * --- CASE: EXPLORE ---
750 * when sent using the exploration strategy , a random value
751 * will be used to determine which route to pick
752 */
753

754 name random = " random "
755 name selected = " selected "
756

757 rule prepareDataForRoutingExplore 121
758 <- exists { explore }
759 -> set { system pkt_id } = {data pkt_id }
760 -> set {data sink1} = 255 // urx: hack. no match , value

stays
761 -> set {data sink2} = 255
762 -> set {data feedback } = { cachedMinCostSink cost <- eval ({ this

sink} == { target route })}
763 -> set {data from} = systemID
764

765

766 rule findGoodExploration 120
767 <- exists { explore }
768 -> define tmp [cur = (count { PST_node })]
769 -> set {tmp cur} = ({ random value} modulo {tmp cur })
770 -> set {tmp cur} = ({ tmp cur} + 1)
771 -> define selected [ptr = 255]
772 -> set { selected ptr} = { PST_node unique_id
773 <- eval ({ this sink} == { target route })
774 <- eval ({ this unique_id } >= {tmp cur })}
775 -> define selected [ptr = 255]
776 -> set { selected ptr <- eval ({ this ptr} == 255 )} = { PST_node

unique_id
777 <- eval ({ this sink} == { target route })
778 <- eval ({ this unique_id } <= {tmp cur })}
779
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780 rule checkOnePath 119
781 <- exists { explore }
782 <- eval ({ selected ptr} != 255)
783 -> set {data sink1} = { PST_node neighbor_id
784 <- eval ({ this unique_id } == { selected ptr })
785 <- eval ({ this sink} == { target route })}
786 -> set {data sink2} = { PST_node neighbor_id
787 <- eval ({ this unique_id } == { selected ptr })
788 <- eval ({ this sink} == { target route })}
789 -> set {data feedback } = { PST_node cost
790 <- eval ({ this unique_id } == { selected ptr })}
791 -> send systemBroadcast systemTxRange {data}
792 -> define feed_cache [ unique_id = { selected ptr}, neighbor_id = {

data sink1 }]
793 -> set { target route} = 0
794 -> retract { explore }
795 -> retract {data}
796 -> retract { random }
797 -> retract {tmp}
798 -> retract { selected }
799 -> set {state current } = "undef"
800

801

802

803 rule noSharedPath 118
804 <- exists { explore }
805 <- eval ({ selected ptr} == 255)
806 -> set {data sink1} = { PST_node neighbor_id
807 <- eval ({ this sink} == 1)}
808 -> set {data sink2} = { PST_node neighbor_id
809 <- eval ({ this sink} == 2)}
810 -> send systemBroadcast systemTxRange {data}
811 -> set { target route} = 0
812 -> retract { explore }
813 -> retract {data}
814 -> retract { random }
815 -> retract {tmp}
816 -> retract { selected }
817 -> set {state current } = "undef"
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B.4 The Fence Monitoring ruleset

Listing B.4: The Fence Monitoring ruleset
1 ruleset FenceMonitoring
2

3 /*
4 * This ruleset implements fence monitoring , i.e. it aggregates
5 * low -level events (both locally and within an
6 * n-hop neighborhood ) and routes high -level
7 * events to a base station .
8 */
9

10 name system = " system "
11 fact system [ broadcast = 255, tx -range = 10]
12 slot systemID = { system owner}
13 slot systemBroadcast = { system broadcast }
14 slot systemTxRange = { system tx -range}
15

16 // Define standard names and slots for this ruleset .
17

18 name init = "init"
19 name shake = "shake"
20 name climb = "climb"
21 name alert = "alert"
22

23 /*
24 * Step 0: Build Routing Tree / Route Alerts to Sink
25 * Build a spanning tree for routing and send any
26 * alert facts back to the sink.
27 */
28

29 name createRoute = " createRoute "
30 name route = "route"
31 fact route [ nextHop = 255]
32 slot routeNextHop = {route nextHop }
33

34

35 rule buildRoutingTreeOnInit 250
36 <- exists {init}
37 -> set routeNextHop = systemID
38 -> define createRoute [ source = systemID ]
39 -> send systemBroadcast systemTxRange { createRoute }
40 -> retract { createRoute }
41 -> retract {init}
42

43

44 rule addRoute 240
45 <- exists { createRoute }
46 <- eval ( routeNextHop == 255)
47 -> set routeNextHop = { createRoute source }
48 -> set { createRoute source } = systemID
49 -> send systemBroadcast systemTxRange { createRoute }
50 -> retract { createRoute }
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51

52 rule retractCreateRoute 235
53 <- exists { createRoute }
54 -> retract { createRoute }
55

56

57 rule processAlertsAtSink 230
58 <- exists {alert}
59 <- eval ( routeNextHop == systemID )
60 -> call printFact ({ alert })
61 -> retract {alert}
62

63

64 rule routeAlertsToSink 225
65 <- exists {alert}
66 -> send routeNextHop systemTxRange {alert}
67 -> retract {alert}
68

69

70 /*
71 * Step 1: Node -Local Event Processing
72 * Aggregate low -level shake events into a high -level climb event
73 */
74

75

76 name localAggregation = " localAggregation "
77 fact localAggregation [
78 discardEventsAfter = 30,
79 minShakeIntensity = 200,
80 minShakeDuration = 100,
81 minCombinedShakeDuration = 500,
82 maxCombinedShakeDuration = 1750 ,
83 minShakeEventsTrigger = 3
84 ]
85

86

87 slot localAggregationDiscardEventsAfter = { localAggregation
discardEventsAfter }

88 slot localAggregationMinShakeIntensity = { localAggregation
minShakeIntensity }

89 slot localAggregationMinShakeDuration = { localAggregation
minShakeDuration }

90 slot localAggregationMinCombinedShakeDuration = { localAggregation
minCombinedShakeDuration }

91 slot localAggregationMaxCombinedShakeDuration = { localAggregation
maxCombinedShakeDuration }

92 slot localAggregationMinShakeEventsTrigger = { localAggregation
minShakeEventsTrigger }

93

94

95 slot newShakeTime = {shake time
96 <- eval ({ this modified } == true)}
97

98
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99 rule purgeOldAndWeakShakeEvents 200
100 <- exists {shake}
101 -> retract {shake
102 <- eval ({ this time} < ( newShakeTime -

localAggregationDiscardEventsAfter ))}
103 -> retract {shake
104 <- eval ({ this intensity } <= localAggregationMinShakeIntensity )

}
105 -> retract {shake
106 <- eval ({ this duration } <= localAggregationMinShakeDuration )}
107

108

109 rule aggregateShakeEvents 190
110 <- exists {shake}
111 <- eval (( count {shake }) >= localAggregationMinShakeEventsTrigger

)
112 <- eval (( sum {shake duration }) >=

localAggregationMinCombinedShakeDuration )
113 <- eval (( sum {shake duration }) <=

localAggregationMaxCombinedShakeDuration )
114 -> define climb [ confidence = (( max {shake intensity }) * (max {

shake duration }))]
115 -> retract {shake}
116

117

118 /*
119 * Step 2: One -Hop Neighborhood Event Aggregation
120 * Broadcast new climb events to one -hop neighbors ,
121 * reply with ACK or NACK depending on local events .
122 * After a timer runs out , decide whether to send
123 * the event to the base station .
124 */
125

126 name ack = "ack"
127 name nack = "nack"
128 name neighborhoodSendDelayTimerExpired = "

neighborhoodSendDelayTimerExpired "
129 name neighborhoodAggregationTimerExpired = "

neighborhoodAggregationTimerExpired "
130 name neighborhoodAggregation = " neighborhoodAggregation "
131

132

133 fact neighborhoodAggregation [
134 minShakeEventsTrigger = 3,
135 minAckTrigger = 1
136 ]
137

138

139 slot neighborhoodAggregationMinShakeEventsTrigger = {
neighborhoodAggregation minShakeEventsTrigger }

140

141 slot neighborhoodAggregationMinAckTrigger = {
neighborhoodAggregation minAckTrigger }

142
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143 slot newReceivedClimbEvent = {climb
144 <- eval ({ this modified } == true)
145 <- eval ({ this owner} != systemID )}
146

147 slot newReceivedClimbEventID = {climb id
148 <- eval ({ this modified } == true)
149 <- eval ({ this owner} != systemID )}
150

151 slot newReceivedClimbEventOwner = {climb owner
152 <- eval ({ this modified } == true)
153 <- eval ({ this owner} != systemID )}
154

155

156 rule delayOnNewLocalClimbEvents 150
157 <- exists {climb
158 <- eval ({ this owner} == systemID )}
159 -> call setTimer ({ neighborhoodSendDelayTimerExpired }, 1)
160

161 rule broadcastNewLocalClimbEvents 145
162 <- exists { neighborhoodSendDelayTimerExpired }
163 -> send systemBroadcast systemTxRange {climb}
164 -> retract { neighborhoodSendDelayTimerExpired }
165 -> call setTimer ({ neighborhoodAggregationTimerExpired }, 3)
166

167 rule ackNewReceivedClimbEvents1 140
168 <- exists newReceivedClimbEvent
169 <- exists {climb
170 <- eval ({ this owner} == systemID )}
171 -> define ack [ eventID = newReceivedClimbEventID ]
172 -> send newReceivedClimbEventOwner systemTxRange {ack
173 <- eval ({ this owner} == systemID )}
174 -> retract {ack
175 <- eval ({ this owner} == systemID )}
176 -> retract newReceivedClimbEvent
177

178 rule ackNewReceivedClimbEvents2 130
179 <- exists newReceivedClimbEvent
180 <- eval (( count {shake }) >=

neighborhoodAggregationMinShakeEventsTrigger )
181 -> define ack
182 -> send newReceivedClimbEventOwner systemTxRange {ack
183 <- eval ({ this owner} == systemID )}
184 -> retract {ack
185 <- eval ({ this owner} == systemID )}
186 -> retract newReceivedClimbEvent
187

188 rule nackNewReceivedClimbEvents 120
189 <- exists newReceivedClimbEvent
190 -> define nack [ eventID = newReceivedClimbEventID ]
191 -> send newReceivedClimbEventOwner systemTxRange {nack
192 <- eval ({ this owner} == systemID )}
193 -> retract {nack
194 <- eval ({ this owner} == systemID )}
195 -> retract newReceivedClimbEvent
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196

197 rule evalAcksOnTimeout 110
198 <- exists { neighborhoodAggregationTimerExpired }
199 <- eval (( count {ack }) >= neighborhoodAggregationMinAckTrigger )
200 -> define alert [ confidence = {climb confidence }]
201

202 rule retractAcksAfterTimeout 100
203 <- exists { neighborhoodAggregationTimerExpired }
204 -> retract {ack}
205 -> retract { neighborhoodAggregationTimerExpired }
206 -> retract {climb}



Appendix C

Zusammenfassung

Die fortschreitende Miniaturisierung technischer Bauteile erlaubt mittlerweile den
flächendeckenden Einsatz kleinster Rechner, die sich durch drahtlose Kommu-
nikation miteinander verbinden. Ausgestattet mit einer Vielzahl von Sensoren
finden sich diese sogenannten drahtlosen Sensorknoten in ad-hoc Netzen zusam-
men, und ermöglichen so eine Vielzahl neuartiger Anwendungen. Die Program-
mierung dieser Sensornetze ist allerdings komplex und sehr fehleranfällig, da viele
Faktoren wie die räumliche Verteilung, die unzuverlässige drahtlose Kommunika-
tion und die Programmierung eingebetteter Systeme berücksichtigt werden müssen.

Diese Dissertation stellt eine regelbasierte, domänen-spezifische Sprache und
ein dazugehöriges Rahmenwerk vor, welches dem Programmierer eine abstrakte,
problem-orientierte Sichtweise auf das Sensornetz zur Verfügung stellt. Neu ist,
dass der Programmierer mit präzisen, mächtigen Sprachelementen die Reaktionen
eines Sensorknotens auf komplexe Ereignisse definieren kann, ohne sich system-
bedingter Abläufe bewusst sein zu müssen. Verschiedene Optimierungsverfahren
wurden vorgestellt, die sowohl die Laufzeit des Systems beschleunigen, als auch
den Speicherverbrauch minimieren. Die Evaluation hat nicht nur die Qualität
des Ansatzes in unterschiedlichsten Szenarien unter Beweis gestellt, sondern auch
quantitativ nachgewiesen, dass die durch die Abstraktion bedingten, durchschnit-
tlichen Verluste in Reaktivität keinen signifikanten Einfluss auf seine Nutzbarkeit
haben.

227
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