
Chapter 6

Pulse Characterisation Techniques

A detailed investigation of complex molecular systems interacting with femtosecond laser

radiation is only meaningful if one possesses all information about the laser pulses used in the

experiment. Measurements of the beam energy, spectral distribution, spatial profile, and wave

front can be easily done even in the case extremely short laser pulses. But the measurement

of both, amplitude and phase, of very short laser pulses in the time domain is not a trivial

problem.

First, methods for temporal pulse characterisation are described in this chapter. After that,

spatial characterisation techniques of laser beams are presented. And finally, the energetic

properties of laser pulses are described.

6.1 Temporal Pulse Characterisation

6.1.1 Methods of Temporal Pulse Characterisation

Usually, a short event can be characterised by another, even shorter event. Classical elec-

tronic techniques using fast streak cameras for temporal pulse width characterisation have,

at best, a resolution of ∼ 0.5 ps [Kim03]. Hence, femtosecond pulse characterisation in the

time domain requires other methods. These are based either on spectral interferometry or

optical correlation techniques that make use of the short pulse itself. The simplest method

is an “autocorrelation measurement”. It provides minimum information namely the pulse

duration[SGR87, TDF97]. There is some information on the pulse shape as well albeit sym-

metrised. The second method is the “frequency-resolved optical gating” (FROG) technique.
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FROG involves a relatively simple experimental setup for determining the spectrally resolved au-

tocorrelation function. Coupled with a mathematical algorithm this allows one to retrieve both

the pulse amplitude and phase [Ktr93, DFT96, TDF97]. If a well characterised reference pulse

is available, one may employ the so-called “cross-correlation frequency resolved optical gating”

(XFROG). It involves measuring the spectrally resolved cross-correlation (sum frequency gener-

ation) of the unknown pulse with a full characterised reference pulse [LGK98, YFK01, DGX02].

Another method, based on spectral interferometry, is “spectral phase interferometry for di-

rect electric-field reconstruction” (SPIDER) [IWa99, Dor99]. SPIDER is ideally suited for the

characterisation of ultrashort single pulses [GSM99]. It combines a rather simple experimental

setup with a robust and non-iterative mathematical algorithm for fast and noise insensitive

pulse reconstruction. Moreover, the reconstructed pulse is free from ambiguities of time di-

rection even when the second order nonlinearity is used. Combination of FROG and spectral

interferometry leads to a new method which is known as “temporal analysis, by dispersing

a pair of light electric fields” (TADPOLE). This technique does not use a nonlinear optical

medium and therefore has an extremely high sensitivity [LCJ95, FBS96, DBL00]. But it re-

quires that the spectral width of the unknown pulse is completely covered by the spectral

width of the reference pulse.

Alternatively, different methods for temporal pulse characterisation can be applied. The

preference of one or another method depends on a wide range of circumstances such as required

accuracy of measurements, complexity of pulse structure, pulse duration, available pulse energy,

or accessibility of a fully characterised reference pulse. In our case intensity autocorrelation

and FROG technique are used for characterisation of the pulses directly delivered by the the

laser system. The alignment of the shaper needs the possibility to control both amplitude

and phase on-line. That is the reason why a SPIDER is employed for the shaper alignment.

The same technique is used for the characterisation of sub -10 fs pulses. And finally, in pulse

shaper experiments, where a reference pulse is available, the resulting complicated pulses are

characterised by the XFROG method. A detailed description of all these techniques is given

below.

6.1.2 Autocorrelation Measurement

Fig. 6.1 shows the setup for the intensity autocorrelation measurement used in the present
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Figure 6.1: Schematic diagram of an autocorrelator (if the detector is a photodiode) or of
a FROG setup (if the detector is a spectrometer).

work. The setup is designed to minimise temporal and spectral aberrations. The unknown

pulse is split into two parts by a 50% : 50% thin (thickness of 1 mm) beamsplitter. One pulse

is variably delayed with respect to the other pulse by passing through a computer controlled

motorised translation stage. Then these pulses are focused by a lens with a focal length of

50 mm and overlapped under a crossing angle into a nonlinear optical medium, as a second

harmonic generating (SHG) crystal. In the actual setup the type I of a beta-barium borate

(BBO) crystal with a thickness of 50µm is used. Such crystal thickness is small enough to

minimise temporal smearing and to fulfil the conditions of phase matching [Wei83, OKG00].

It is important to mention that the crossing angle must be as small as possible to avoid losses

of temporal resolution [TKS96, BPW99].

The SHG crystal produces a signal at twice the frequency of the input pulse in the direction

of the bisector of the two incoming pulses. The autocorrelation signal is related to the inten-

sities of the two incoming pulses by Eq. (5.17). An aperture lets pass only the autocorrelation

signal. One extra reflection is used to remove the remaining radiation at the frequency of

the input pulse. A 100 mm focal length lens focuses the autocorrelation signal onto a pho-

todiode interfaced to a LabVIEW computer. To achieve better statistics the measurement of

the autocorrelation signal (Eq. (5.17)) at each time delay δ is done for 1000 laser shots and a

complete cycle of measurements is usually repeated at least 10 times. The minimal step of the
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Figure 6.2: Pulse duration measurement by the autocorrelation technique for the pulse
produced by the Multipass laser system. The measured autocorrelation is depicted by black
open squares and fitted with Gaussian, sech2, and Lorentzian functions as it is shown by
full red, dashed blue, and dotted olive lines, respectively. The pulse durations (FWHM)
are 32.77± 0.46 fs, 29.09± 0.34 fs, and 21.89± 0.22 fs according to Gaussian, sech2, and
Lorentzian fits, respectively.

time delay available from the motorised translation stage is 4 fs. The intensity autocorrelation

shows a maximum at δ = 0 and is always symmetrical. Autocorrelation measurements provide

only a limited amount of information about an unknown pulse. Specifically, it contains no

information about the phase of the pulse and the symmetry of any autocorrelation trace is

a serious disadvantage for pulse form determination. To obtain information about the pulse

width one has to make an intelligent guess about pulse shape. Generally, the full width at

half-maximum (FWHM) of the unknown pulse τ is proportional to the FWHM of the mea-

sured intensity autocorrelation function τAC . But the proportionality factor (or deconvolution

factor) varies significantly for different pulse shapes (see Sec. 5.1 and Eq. (5.18)).

Fig. 6.2 shows the autocorrelation measurement of the pulse produced by the Multipass

laser system. The measured autocorrelation is depicted by black open squares and fitted
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with Gaussian, sech2, and Lorentzian functions as it is shown by full red, dashed blue, and

dotted olive lines, respectively. The pulse durations (FWHM) obtained by Gaussian, sech2, and

Lorentzian fits are 32.77± 0.46 fs, 29.09± 0.34 fs, and 21.89± 0.22 fs, respectively. It is clear

that the laser pulse duration determined in a such type of measurements strongly depends

on the assumption about the pulse shape. Among these three fit functions the sech2 one

describes the measured data better excepting the region of rather large wings coming from a

small pre-pulse which is not resolved in this measurement. Therefore, the sech2 pulse shape is

always assumed later on for the pulse duration estimations in autocorrelation measurements.

Also it is difficult to determine the presence or absence of some systematic or random errors

in the measured autocorrelation function. Nevertheless, the autocorrelation measurement can

be a powerful tool for the pulse width determination of simple pulses with an a priori known

shape.

6.1.3 FROG Technique

As described above, the intensity autocorrelation measurements do not give sufficient in-

formation for full temporal characterisation of arbitrary shaped pulses. The FROG technique is

free from the drawbacks of an autocorrelation measurement. This technique operating in the

“time-frequency domain” involves both temporal resolution and frequency resolution simulta-

neously. FROG does this by spectrally resolving the signal pulse in any type of autocorrelation

measurement performed in an instantaneously responding nonlinear medium. Depending on

the nonlinear optical effect used for the signal pulse generation there are several FROG ge-

ometries such as polarisation gating (PG), self diffraction (SD), transient grating (TG), third

harmonic generation (THG), and second harmonic generation (SHG) [TDF97].

SHG FROG was chosen in this work as a standard measurement technique for the char-

acterisation of the pulses produced by the laser system because it is the most sensitive and

simple FROG geometry. It involves only a second order nonlinearity. The main disadvantage

of SHG FROG is the symmetry with respect to the time delay and, hence, SHG FROG has

an ambiguity in the direction of time. This ambiguity can be removed in one of several ways

[TDF97]. Practical implementation of this technique is done using the setup shown in Fig. 6.1,

where the SHG signal is spectrally resolved by the spectrometer (AvaSpec-2048, Avantes BV).

The spectral resolution of the spectrometer is 0.17 nm and it is enough for these purposes.
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Figure 6.3: Temporal characterisation of the pulses produced by the Multipass laser system:
(a) recorded FROG map; (b) frequency marginal and autoconvolution; (c) reconstructed
temporal intensity and phase from the FROG map; (d) measured autocorrelation function.

The spectral response of the spectrometer is calibrated using a source of well-characterised

emission spectrum.

The spectrogram of the signal pulse in SHG FROG is given by

ISHGFROG(ω, δ) =

∣∣∣∣∫ ∞
−∞

E(t)E(t− δ)e−iωt dt
∣∣∣∣2 . (6.1)

In contrast to the autocorrelation measurements described by Eq. (5.17) this spectrogram

provides an unknown pulse representation as a two dimensional function of frequency and delay

time and comprises essential information required for full pulse characterisation. One example

of a spectrogram or “SHG FROG map” is shown in Fig. 6.3a. This is the spectrogram of the

pulses produced by the Multipass laser system. Any FROG map is a type of time-frequency

distribution that contains all relevant information about the pulse. An iterative pulse retrieval

algorithm extracts the pulse intensity and phase from a FROG map by finding the electric
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field that best reproduces the map. It must be mentioned before discussing the algorithm

that FROG provides consistency checks not available with autocorrelation measurements. An

electric field sampled at N points has 2N degrees of freedom (N points of both magnitude

and phase), but it corresponds to a FROG map with N2 points. The fact that the FROG

map contains redundant data allows for such checks. This is accomplished by comparing the

”frequency marginal” of the FROG map with the independently measured pulse spectrum

[DFT96, TDF97]. The frequency marginal is the FROG map integrated with respect to the

delay

M f
FROG(ω) =

∫ ∞
−∞

ISHGFROG(ω, δ) dδ . (6.2)

The frequency marginal has to be equal to the autoconvolution of the fundamental pulse

spectrum S(ω)

M f
FROG(ω) =

∫ ∞
0

S(ω′ − 2ω0)S(ω′ − ω)dω′ , (6.3)

where ω0 is the carrier frequency. A systematic experimental error such as incorrect wavelength

or temporal calibrations of FROG data, insufficient doubling crystal bandwidth, spatial or

temporal distortions of the pulses at the focus can be a reason of non-agreement of the

SHG FROG frequency marginal with the autoconvolution of the pulse spectrum. Fig. 6.3b

shows an example of how the frequency marginal can be used to check the validity of SHG

FROG measurements. There is rather good agreement of the frequency marginal with the

autoconvolution of the measured spectrum. Small narrowing of the frequency marginal is

explained by insufficient doubling crystal bandwidth or/and other bandwidth losses in the

FROG setup. Thus, this marginal provides a powerful check of the experimental apparatus.

Moreover, it is possible to correct the measured FROG map by multiplying its with a ratio of

the fundamental pulse spectrum autoconvolution and the frequency marginal. There is also a

“delay marginal”

Md
FROG(δ) =

∫ ∞
0

ISHGFROG(ω, δ) dω , (6.4)

which is essentially the same as an autocorrelation function and can be used for a quick

estimation of τ .

As already mentioned, the information contained in the FROG map is sufficient for a full

determination of amplitude and phase of the pulsed electric field. The goal of pulse retrieval

algorithm is to find an E(t) that satisfies Eq. (6.1). Several modification of FROG pulse

retrieval algorithms were developed and can now be used for electric field reconstruction.
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The simplest of them, but a very powerful one, is the method of generalised projections

[DFT94, TDF97]. This algorithm starts the first iteration with an initial guess of the pulsed

field E(t) and reconstructs the FROG map using Eq. (6.1). Then the FROG error G is

calculated as an rms difference between the measured FROG map IFROG(ωi, δj) and the

reconstructed FROG map I
(k)
FROG(ωi, δj)

G =

√√√√ 1

N2

N∑
i,j=1

∣∣∣IFROG(ωi, δj)− αI(k)
FROG(ωi, δj)

∣∣∣2 , (6.5)

where N is a size of the FROG map array, α is the real number for the renormalisation, and k

is the number of the iteration step. The algorithm analyses the FROG error G and generates

a new guess for E(t) using the method of generalised projections. Then the initial guess

is replaced with a new one and the whole procedure is repeated in a cycle. The goal of the

algorithm is to find such a pulsed field E(t) that minimises the FROG error G. For our purposes

of pulse characterisation the commercial program (FROG 3.0.9, Femtosoft Technologies) is

used. This program allows one to use several retrieval algorithms. The measured FROG map

together with the retrieved amplitude and phase of the pulses delivered by the laser system is

shown in Fig. 6.3a and Fig. 6.3c, respectively.

6.1.4 XFROG Method

For the temporal characterisation of shaped pulses with complicated structure XFROG is

applied. In this technique a fully characterised reference pulse is overlapped with the unknown

pulse to be characterised in the BBO crystal. The spectrally resolved sum frequency signal is

measured as a function of the delay between the reference and the unknown pulse and gives

the XFROG map

ISHGXFROG(ω, δ) =

∣∣∣∣∫ ∞
−∞

Eunknown(t)Eref (t− δ)e−iωt dt
∣∣∣∣2 . (6.6)

Both XFROG and SHG FROG use the same nonlinear process. But the SHG FROG involves

only one replica of an unknown pulse, while the XFROG involves two pulses that are not

identical. This leads to additional advantages of the XFROG technique. The main one is the

absence of a time ambiguity in XFROG maps. XFROG maps are more accessible to intuition

than FROG maps. Also this technique is better suited for characterisation of weak pulses.

The XFROG setup is similar to the FROG setup as shown in Fig. 6.4. A thin glass plate with a
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Figure 6.4: Schematic diagram of a cross-correlator (if the detector is a photodiode array)
or of an XFROG setup (if the detector is a spectrometer).

reflectivity of only 0.4 % is inserted into the laser beam path just in front of the shaper to create

the reference pulse. Phase and amplitude distribution of this pulse are determined by a FROG

as discussed above, and then used as the fully characterised reference. An additional delay line

is introduced to equalise the optical paths of both pulses, the reference pulse and the pulse

emerging from the the shaper which is to be characterised. The reference pulse is overlapped

with the unknown pulse in a BBO crystal. The sum frequency signal is measured for different

delays between the reference and the unknown pulse, thus generating the XFROG map. This

XFROG map then is used to reconstruct phase and amplitude of the unknown pulse, using

commercial XFROG software (FROG 3.0.9, Femtosoft Technology). Fig. 6.5a and Fig. 6.5c

show an XFROG map and the reconstructed amplitude and phase for the pulse propagated

though the shaper without applying any extra phase on it. Some pulse lengthening and pulse

shape distortions for the pulse propagated though the shaper as compared to the incoming one

are caused by the bandwidth losses in the shaper setup and unavoidable optical aberrations

induced in the shaper.

6.1.5 SPIDER Technique

During the shaper alignment a temporal pulse characterisation is performed using the
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Figure 6.5: Temporal characterisation of the pulses passed through the shaper setup: (a)
measured XFROG map; (b) temporal intensity and phase measured with SPIDER tech-
nique; (c) reconstructed temporal intensity and phase from an XFROG map; (d) measured
cross-correlation.

SPIDER technique (APE Spider, APE GmbH). The same technique is also employed for the

temporal characterisation of the sub -10 fs pulses. This interferometric technique is based on

nonlinear conversion of two temporally delayed replicas of an unknown pulse with a stretched

pulse[GSM99, SWW99].

The principle of a SPIDER is shown in Fig. 6.6a. An unknown pulse is split into two

replicas with a constant time delay δ between each another using a glass etalon or Michelson

interferometer. These replicas are with a stretched, chirped pulse in a nonlinear medium. The

chirped pulse is produced by stretching a part of the unknown pulse itself (alternatively, one

may use a pulse from an external source) in a dispersive delay line. This can be a block of

dispersive material (glass) as well as a pair of prisms or gratings. The width of the chirped

pulse has to be much larger than the time delay δ. Since there is a time delay between the

replicas, each pulse replica is upconverted in the nonlinear medium with a different frequency
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Figure 6.6: Principle of SPIDER apparatus: (a) SPADER optical layout; (b) algorithm
for the spectral phase reconstruction [IWa98]. For details see text.

slice of the chirped pulse, and consequently, the two upconverted pulses have slightly different

frequencies. The result of the mixing is two temporally delayed and spectrally shifted replicas

which interfere in a spectrometer producing an interferogram

S(ωc) = |E(ωc)|2 + |E(ωc + Ω)|2 + 2 |E(ωc)E(ωc + Ω)| ×

× cos [φ(ωc + Ω)− φ(ωc) + ωcδ] ,
(6.7)

where ωc is the central frequency of the pulse, δ is the fixed delay time between replicas, Ω

is the the frequency shift or the amount of spectral shear, E(ωc) is the pulse electric field in

frequency domain, φ(ωc) is the pulse phase. From this spectrogram it is possible to calculate

the spectral phase of the unknown pulse. For exact phase reconstruction the spectral shear

must satisfy the Whittaker-Shannon sampling theorem [Goo96]. The value of the spectral shear

is adjusted by changing the second order dispersion of the stretched pulse. In addition, the

interferogram sampling interval has to be not greater than the Nyquist limit [Goo96]. With the

calculated spectral phase, an additional measurement of the unknown pulse spectrum allows

one to completely characterise such pulse.

A robust non-iterative mathematical procedure can be used for the spectral phase extraction

from the measured spectral interferogram [TIK82]. This procedure is schematically shown in

Fig. 6.6b. First, the interferogram is Fourier transformed into the time domain. The result of

this transformation gives three peaks centred at t = 0, +δ. The peak near zero time (t = 0)

is due to the constant terms in Eq. (6.7), while the peaks at t = +δ are due to the cosine
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term. Each of these two peaks possesses all phase information. The peaks at t = −δ, 0 are

removed by filtering and the remaining peak at t = δ is inverse Fourier transformed back to

the frequency domain. After subtraction of the linear term ωδ that is due to the delay δ, the

remaining part is the phase difference between two frequencies separated by the spectral shear

Ω: φ(ωc + Ω)− φ(ωc). Finally, the spectral phase of the unknown pulse for a discrete set of

frequencies is reconstructed by concatenation of the phase in steps of Ω.

A result of the SPIDER technique applied to characterise a pulse propagated through the

shaper is shown in Fig. 6.5b. This result is rather similar to the one obtained with the XFROG

technique (Fig. 6.5c). Mainly, the difference between these two results comes from a fact

that these measurements were done in two different days. Larger distortions of the pulse

structure in the case of the XFROG technique are due to the iterative nature of the pulse

reconstructive algorithm. Nevertheless, both techniques found characteristic features of the

temporal pulse structure and determined essentially the same τ . Therefore, both SPIDER and

XFROG techniques can be employed for the temporal characterisation of femtosecond laser

pulse.

6.2 Spatial Laser Beam Characterisation

An idealised Gaussian beam can be considered as good approximation for the simplest

types of beams provided by laser sources. Its spatial parameters and propagation properties

are well known [BWo99]. But real beams deviate more or less from this idealised description.

The closest physical approach to the idealised Gaussian beam is the rotationally symmetric

beam from a low power TEM00 laser. For the sake of simplicity, only such type of beams is

analysed below.

Spatial characterisation of a laser beam at the focal point is very important for the deter-

mination of the interaction volume, laser fluence, and intensity. The essential information lies

in the knowledge of the spot size of a focused laser beam. Usually in laser physics the spot

size is depicted by w (a radius at which the intensity drops down to 1/e2 with respect to its

maximum value).

There are many techniques of measuring laser beam sizes [AHM71, SWe81, KLa83, HKo91].

If the radius of the focal spot is larger than the laser wavelength (w � λ), the intensity profile
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can be imaged by a CCD camera [MMR01] or simply be recorded by measuring the inten-

sity passed by a knife-edge scanning the laser beam in the focal plane [AHM71, FHS77].

Smaller spots can be characterised using different modifications of the knife-edge scan tech-

nique [STa75, CLL84, CGC86] or Ronchi ruling method [CLL84, CGC86].

Under the action of a focusing mirror (lens) with a focal length f and assuming a parallel

monochromatic Gaussian input beam, one can calculate the beam waist at the focal plane wf

with the following formula

wf =
fλ

πw0

, (6.8)

where w0 is the waist of the unfocused beam. Both waists have to be measured at 1/e2 level.

The measurement of the unfocused laser beam waist w0 is much simpler than the measurement

of wf at the focal plane. Therefore, one can measure the waist of the unfocused laser beam

and estimate the beam waist at the focal plane using Eq. (6.8). However, Eq. (6.8) assumes the

perfect focussing conditions which can not be always satisfied for real laser systems. Hence,

the direct measurement of the beam waist at the focal plane is more accurate and desirable.

In the present studies such measurement is done using the knife-edge scan at the focal

plane of the focusing mirror [FHS77], where a thin metallic plate is translated across the laser

beam and the intensity is recorded as a function of the plate position. For this measurement

the pulse energy has to be diminished by the several reflections from uncoated glass for the

reduction of the pulse intensity at the focal plane below the damage threshold of the metallic

plate used for the scanning. The spatial intensity distribution I(x, y) of a Gaussian beam at

the focal plane is

I(x, y) =
2P0

πw2
e−2x

2+y2

w2 , (6.9)

where P0 is the total laser power, x and y are coordinates in the plane perpendicular to the

beam axis. The origin of this coordinate system is taken on the beam axis. If the beam is

partly blocked by a plate aligned parallel to the y axis, the transmitted laser power is

P (x0) =

∫ ∞
−∞

∫ ∞
x0

2P0

πw2
e−2x

2+y2

w2 dydx =

√
2√
π
P0

∫ ∞
x0

1

w
e−

2x2

w2 dx =

=
1

2
P0 erfc

(√
2

w
x0

)
,

(6.10)

where x0 is the current position of the plate edge on the x axis. By scanning the x coordinate

with the plate and recording the transmitted laser power P (x) as a function of x, the beam
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Figure 6.7: Spatial beam characterisation: (a) measured knife-edge scan of the laser beam
for the Multipass laser system, its derivative, and Gaussian fit; (b) calculated spatial
intensity distribution using the waist obtained in Fig. 6.7a. The laser propagates in z
direction. The horizontal black dotted lines shows the beam waist w. The vertical black
dotted lines give the Rayleigh region. The red dashed lines indicate the molecular beam
interacting with the laser beam.

profile along the x axis is obtained by the differentiation of the recorded signal. To get the

beam profile in the perpendicular direction one has to repeat this procedure for the scanning

along y axis. Fig. 6.7a illustrates the result of a typical scan at the focal plane of a concave

mirror with f = 50 cm for the Multipass laser system. The derivative of this scan is fitted by

a Gaussian function with w = 72.3+1.1µm.

Close to the focal plane the beam collimation along the direction of propagation is char-

acterised by the Rayleigh length zR

zR =
πw2

λ
, (6.11)

defined as the distance between the focal plane and the plane at which the beam waist increases

by a factor of
√

2. For the waist measured in Fig. 6.7a w = 72.3µm, the corresponding

Rayleigh length is zR = 20.5 mm. The distance between the points ±zR about the waist is

called the confocal parameter

b = 2zR (6.12)

of the beam. Fig. 6.7b shows a (calculated) map of the spatial intensity distribution around

the focal plane for a focused laser beam centred at the wavelength of 800 nm. The beam

propagates along the z axis and has radial symmetry with respect to this axis at x, y = 0.
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The focal plane is perpendicular to both the picture plane and z axis. It is located at z = 0.

The beam symmetry axis and the focal plane are indicated by solid lines. The beam waist

w = 72.3µm and the confocal parameter b = 41 mm are shown by the black dotted lines. As

discussed in Sec. 4.2, the diameter of the effusive molecular beam used in this work is only

DM = 5 mm at the point, where the molecular beam crosses the laser beam. The red dashed

lines in Fig. 6.7b represent the molecular beam. Since the Rayleigh length is larger than the

molecular beam diameter it is straightforward to assume for the experimental geometry used

in the present work that the interaction region is a cylinder with the radius w and the length

Dm. Intensity variations along the cylinder axis in this case are negligible small.

6.3 Pulse Intensity and Fluence

Intensity and fluence are two most important attributes of laser radiation when describing

laser-matter interaction. Mainly, intensity is considered in the present work for this character-

isation.

The intensity I(r, t) of an ideal Gaussian laser pulse at a given time t and a distance r

from the beam axis can be written as

I(r, t) = I0e
−2( rw)

2

e−4 ln 2( tτ )
2

, (6.13)

where I0 is the pulse peak intensity, τ is a temporal FWHM, and w is a beam waist (a radius

at which the intensity drop down to 1/e2 with respect to its maximum value). Sometimes, the

beam radius is measured at levels, where the intensity decreases to 1/e (w1/e) or 1/2 (w1/2).

These two quantities relate to w as

w1/e =

√
2

2
w (6.14)

and

w1/2 =

√
ln 2

2
w . (6.15)

Both spatial and temporal integration of Eq. (6.13) leads according to [HSc09] (see Eq. (13.67))

to the pulse energy

W = I0

∫ ∞
0

e−2( rw)
2
∫ ∞
−∞

e−4 ln 2( tτ )
2

drdt = I0
π
√
π

4
√

ln 2
w2τ . (6.16)
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The pulse energy can be quite easy measured by a photodetector. In this work, it is done

using the pyroelectric laser energy metre (TPM-300CE, Gentec Electro-Optics, Inc.). The

peak intensity is obtained from Eq. (6.16) by term rearrangement

I0 =
4
√

ln 2

π
√
π

W

w2τ
=

2
√

ln 2

π
√
π

W

w2
1/eτ

=
2
√

ln3 2

π
√
π

W

w2
1/2τ

. (6.17)

Intensity is commonly measured in units of [W/cm2]. Only spatial integration of Eq. (6.13)

gives the time dependent pulse power (the amount of energy per unit of time)

P (t) = I0e
−4 ln 2( tτ )

2
∫ ∞

0

e−2( rw)
2

dr = I0
π

2
w2e−4 ln 2( tτ )

2

. (6.18)

The peak power P0 is obtained from Eq. (6.18) at t = 0

P0 = P (0) = I0
π

2
w2 = I0πw

2
1/e = I0

π

ln 2
w2

1/2 . (6.19)

The peak intensity is simply equal to the pulse peak power divided by the waist area measured

at 1/e level as mentioned in [HSc09].

Integration of Eq. (6.13) over time only gives the fluence (the amount of energy per unit

of area)

F (r) = I0e
−2( rw)

2
∫ ∞
−∞

e−4 ln 2( tτ )
2

dt = I0

√
π

2
√

ln 2
τe−2( rw)

2

. (6.20)

The fluence is usually measured in units of [J/cm2]. The peak fluence F0 is obtained from

Eq. (6.20) at r = 0

F0 = F (0) = I0

√
π

2
√

ln 2
τ . (6.21)

Using Eq. (6.16) the expressions for peak power and peak fluence can be rewritten as

P0 =
2
√

ln 2√
π

W

τ
(6.22)

and

F0 =
2

π

W

w2
. (6.23)

Since the pulse energy, the pulse duration (Sec. 6.1), and the beam waist (Sec. 6.2) are

measurable, the intensity, the power, and the fluence can be calculated using Eq. (6.17),

Eq. (6.22), and Eq. (6.23), respectively.


