Contents

1	Intro	oduction	1
2	Obj 2.1 2.2	ects of Investigation C ₆₀ Fullerene and its Properties Model Peptides and Methods of Investigations	5 5 12
3	Inte	raction of Strong Laser Fields with Matter	17
	3.1	General Aspects	17
	3.2	Multiphoton Ionisation and Fragmentation	19
	3.3	Energy Redistribution	27
4	Exp	erimental Apparatus	31
	4.1	Vacuum Chamber	31
	4.2	Molecular Beam Source	32
	4.3	Time of Flight Mass Spectrometry	35
	4.4	Photoelectron Spectroscopy	40
	4.5	Ion and Electron Detection	41
5	Fem	itosecond Laser Pulses	51
	5.1	Mathematical Description of Laser Pulses	51
	5.2	Generation of Femtosecond Laser Pulses	57
		5.2.1 Femtosecond Oscillators	57
		5.2.2 Chirped Pulse Amplification	60
		5.2.3 Multipass Amplification Laser System	62
	5.3	Generation of sub -10 fs Pulses	64
	5.4	Laser Intensity and Polarisation Control	66
	5.5	Average Intensity of Elliptically Polarised Light	70
	5.6	Pulse Shaping	71
6	Puls	e Characterisation Techniques	79
	6.1	Temporal Pulse Characterisation	79
		6.1.1 Methods of Temporal Pulse Characterisation	79
		6.1.2 Autocorrelation Measurement	80
		6.1.3 FROG Technique	83
		6.1.4 XFROG Method	86
		6.1.5 SPIDER Technique	87
	6.2	Spatial Laser Beam Characterisation	90

	6.3	Pulse Intensity and Fluence	93	
7	Opti 7.1 7.2	imisationIntroduction to Mathematical OptimisationMethods of Stochastic Optimisation7.2.1Simulated Annealing	95 95 97 97	
	73	7.2.2 Evolutionary Algorithms	100	
	1.5		104	
8	Exci 8.1	tation of C ₆₀ Multiphoton Ionisation of C ₆₀ 8.1.1 Different Ionisation Mechanisms	113 113 113	
		8.1.2Saturation Intensity	115 117 119	
	8.2	Pulse Duration Dependent Study	120 120 124	
	8.3	Polarisation Dependent Study	123 128 128 128 140	
9	Dyna	amics of Ultrafast Energy Redistribution in C_{60}	143	
	9.1 9.2 9.3 9.4 9.5	Energy Coupling	143 145 148 149 158	
10	Mas 10.1	s Spectrometry of Model Peptides Experimental Results	165 165	
11	Sum	mary and Outlook	179	
Bil	Bibliography			
Cu	Curriculum Vitae			
Ac	Acknowledgements			

List of Figures

2.1	The structure of C_{60} fullerene	6 10
2.2	Illustration of the energetics for plasmon enhanced multiphoton process in the	10
2.4	generation of C_{60}^{q+} with different final charge state q (adopted from [HSV92]) . Model peptides used in present work	11 14
2 1	Different photoionication regimes as a function of the lacer intensity and photon	
J.1	energy	20
3.2	Perturbative nonlinear regime of ionisation $(\gamma > 1)$	21
3.3	Strong field regime of ionisation $(\gamma \ll 1)$	23
3.4	Illustration of energy relaxation processes in large but finite systems	29
4.1	Photograph of the vacuum apparatus	32
4.2	Photograph of the oven	34
4.5 1 1	Experimentally measured shape and Gaussian fit of Xenon peak	30 38
4.5	Charged particles detection schemes	43
4.6	Pulse height distribution	45
4.7	The standard deviation of the integrated ion yield	47
4.8	TOF mass and photoelectron spectra of C_{60} fullerene	48
5.1	Pulses of different shapes (Lorentzian, Gaussian, and sech ² with 100 fs FWHM)	
F 0	and their autocorrelation functions	55
5.2 5.3	Laser system for the generation of sub -10 fs pulses and an example of the pulse	63
	temporal profile produced by this system	65
5.4	The action of $\lambda/2$ - and $\lambda/4$ -plates on linearly polarised light	69 79
5.5 5.6	The layout of SLM S 640/12	73 74
5.7	Calibration of LCM	74 76
6.1	Schematic diagram of an autocorrelator/FROG setup	81
6.2	Pulse duration measurement by the autocorrelation technique for the pulse	00
63	Temporal characterisation of the pulses produced by the Multipass laser system	82 84
6.4	Schematic diagram of a cross-correlator/XFROG setup	87
6.5	Temporal characterisation of the pulses passed through the shaper setup	88
6.6	Principle of SPIDER apparatus	89
6.7	Spatial beam characterisation	92

7.1	Diagram of the simulated annealing algorithm	98
7.2	Basic scheme of the genetic algorithm	101
7.3	Scheme of the adaptive closed loop setup	105
7.4	Results of the test optimisations	109
8.1	Typical mass spectra of C_{60} produced by laser pulses of 795 nm wavelength with a pulse duration of 25 fs (top) and 5 ps (bottom)	114
8.2	lonisation potentials for different charge states of C_{60}^{q+}	118
8.3	Comparison between experimental data of C_{60} photoionisation and the theoretical ionisation rates derived from S-matrix theory by A. Becker and F. H. M. Eaisal	110
84	Mass spectra obtained from photoionisation of C_{60} with 9 fs laser pulses centred	115
0.1	at 765 nm in intensity range between 4×10^{13} W/cm ² and 4.0×10^{14} W/cm ² .	121
8.5	Experimental yields of C_{60}^{q+} ions measured as a function of intensity for 27 fs and 9 fs laser pulses and their fits	122
8.6	Yields of C_{60}^+ and C_{60}^{2+} calculated by solving the coupled differential equations .	125
8.7	Saturation intensities for C^{q+}_{60} ions as a function of the final charge state q	126
8.8	Mass spectra of C_{60} after excitation with linearly and circularly polarised laser radiation of 27 fs pulses at 797 nm	129
8.9	Integrated yield of Xe ⁺ measured at 797 nm normalised to the yield with linear	
	light polarisation plotted as a function of ellipticity angle β and laser intensity .	131
8.10	Integrated yield of C_{60}^+ and C_{60}^{3+} measured at 797 nm normalised to the yield	
	with linear light polarisation plotted as a function of ellipticity angle and laser	
0.1.1	intensity	133
8.11	Integrated yield of C_{60}^+ and C_{60}^{++} ions normalised to the yield with linear light polarisation plotted as a function of ellipticity angle and laser intensity after	
	interaction of C_{60} with 399 nm laser pulses	134
8.12	Integrated yield of fragments ΣC^+_{60-2n} and ΣC^{3+}_{60-2n} measured at 797 nm nor-	
	malised to the yield with linear light polarisation plotted as a function of ellip-	
	ticity angle and laser intensity	135
8.13	Examples of classical electron trajectories in the combined field of C_{60}^+ and linearly or circularly polarised light	136
8 14	Probability to find different recollision energies for electrons emitted from the	100
0.11	inner $(0.65a)$ and outer radius $(1.00a)$ of the C_{60} molecule in linearly or circu-	
	larly polarised light at $I = 4.3 \times 10^{14} \text{W/cm}^2$, 797 nm	139
8.15	Photoelectron spectra of C ₆₀ obtained with laser intensity of $1.4 \times 10^{14} \text{ W/cm}^2$	
	for linear and circular light polarisations	141
0.1		
9.1	Illustration of energy redistribution processes in laser excited C_{60} molecule mon-	144
0.2	Comparison between different parts of the C mass spectrum obtained with	144
9.2	9 fs laser pulses and 27 fs laser pulses for equivalent intensities	146
93	$\sum C_{n+1}^{+} = \sum C_{n+1}^{2+} = \sum C_{n+1}^{2+} = \text{fragment ion yield obtained with 27 fs and}$	140
5.0	9 fs laser pulses plotted as a function of the laser intensity on log-log scale \dots	147
9.4	Results of one colour pump-probe experiment with 9 fs laser pulses	149
9.5	Mass spectra with blue (399 nm, 3.4×10^{12} W/cm ²) and/or red (797 nm, $5.1 \times$	
	10^{13}W/cm^2) laser pulses $\dots \dots \dots$	150

9.6	Total ion yield of different charge states of C_{60}^{q+} , $q = 1 - 4$ as a function of the time delay between 399 nm pump pulse ($3.4 \times 10^{12} \text{ W/cm}^2$) and 797 nm probe	
	pulse $(5.1 \times 10^{13} \text{W/cm}^2)$	152
9.7	Total ion yield of different masses of C_{60-4n}^{3+} , $n = 0 - 3$ as a function of the time delay between 399 nm pump pulse $(3.4 \times 10^{12} \text{ W/cm}^2)$ and 797 nm probe	
	pulse $(5.1 \times 10^{13} \text{W/cm}^2)$	153
9.8	Relaxation times $ au_{el}$ for highly excited electrons due to electron-electron and	
	electron-vibrational coupling	155
9.9	Ratios H_{br}/O_r , H_{br}/O_r , and H_{br}/M_{br}	156
9.10	Result of C_{50}^+ optimisation	159
9.11	Correlation between C_{50}^+ and C_{48}^+ , C_{50}^+ , C_{60}^+ , C_{60}^{2+} , and C_{50}^{2+} ions during the	
	optimisation run	160
9.12	Comparison between two-colour pump-probe experiment and pulse shaping op-	
5.12	timisation	161
013	Period of the a (1) breathing mode as a function of the number of excited	101
5.15	electrons derived from NA-OMD simulations and as a function of charge state	
	derived from hybrid B3LVP level of the DET method	163
		105
10.1	Mass spectra of the Ac–Phe–NHMe molecular system recorded with laser pulses	
	of $3.7 \times 10^{13} \mathrm{W/cm^2}$ intensity and $32 \mathrm{fs}$ pulse duration centred at $797 \mathrm{nm}$	166
10.2	Different possible fragmentation channels of the Ac-Phe-NHMe molecular syster	n 167
10.3	Fragment ion yields of mass 43 u , mass 162 u , and the parent ion (mass 220 u)	
	of the Ac–Phe–NHMe molecular system recorded with 34 fs laser pulses plotted	
	as a function of the laser intensity on the log-log scale	168
10 4	Eitness f characterising the predominant formation of fragment mass 43μ as a	100
10.1	function of the generation in the adaptive feedback loop and SH-XEROG map	
	of the ontimal nulse chane	160
10 F	Temporal envelope and corresponding mass spectra recorded for the unchanged	105
10.5	ctrotched to 246 fc (EWHM) and optimal pulses	170
10.6	Distribution of individual entired pulses grouned according to the similarities	170
10.0	in sulses structure	171
107		1/1
10.7	Calculated triple pulse sequence in the time domain illustrating the effect of	1 70
10.0	different phase parameters Ψ on the pulse sequence	172
10.8	Ion yields plotted as a function of the relative phase shift in the parameterised	
	triple pulses and measured temporal envelope of the pulse sequence applied for	
	three different relative phase shifts $\Phi = 0, \pi/2$, and $3\pi/2$	173
10.9	Comparison between power spectra of the triple pulses assuming a third order	
	process and resonant two photon ionisation spectrum of Ac-Phe-NHMe	174
10.10)Fitness f characterising the enhanced formation of fragment mass 77 u as a	
	function of the generation in the adaptive feedback loop	175
10.11	Temporal structure and corresponding mass spectra of Ac–Ala–NHMe are	
	recorded with unshaped and optimal pulse	177

List of Tables

2.1	Optically active vibrational modes of C_{60} fullerene	8
4.1 4.2	Distances and voltage settings for the reflectron TOF mass spectrometer Distances and voltage settings for the photoelectron spectrometer	37 41
5.1	The mathematical description of some pulse shapes in the time and frequency domains	54
5.2	Deconvolution factors D_{AC} and time-bandwidth products K_{TB} for the various shapes of laser pulses	57
5.3	Output parameters of oscillator and amplifier of the multipass amplification laser system	64
7.1	Standard parameters for a free optimisation with the genetic algorithm	110