VE(RI|H[IVS|TI
o\ TA|S * .

||ILIB|ER
4| TR[S #|§

Engineering of Algorithms for

Personal Genome Pipelines
DISSERTATION

zur Erlangung des Grades

eines Doktors der Naturwissenschaften (Dr. rer. nat.)

am Fachbereich fiir Mathematik und Informatik

der Freien Universitat Berlin
vorgelegt von Manuel Holtgrewe
Betreuer: Prof. Dr. Knut Reinert

Berlin 2015

Erstgutachter: Prof. Dr. Knut Reinert

Zweitgutachter: Prof. Dr. Alexander Goesmann

Tag der Disputation:

Dienstag, 20. Oktober, 2015

ii

Abstract

Recent technical advances in high-throughput sequencing technologies and their commercial
availability at low costs have paved the way for revolutionary opportunities in the life sciences.
One milestone was reaching the $1000 genome, allowing to determine the genetic makeup of
hundreds of human individuals within a week for less than $1000 each. This ongoing revolution
of the life sciences creates new challenges for the software and algorithms that are processing
this data. In my thesis, I consider a typical software pipeline for determining the genome of a
human individual.

For the preprocessing pipeline step, I describe a method for error correction and consider the
comparison of such methods. For the read mapping step, I provide a formal definition of read
mapping and I present a software package implementing a benchmark for read mapping, based
on my formal definition. I then describe the implementation, parallelisation, and engineering of
a fully sensitive read mapper and evaluate its performance. For the variant calling step, I present
a method for the prediction of insertion breakpoints and the assembly of large insertions.

Of course, such a pipeline is not limited to the processing of human data but it is also applicable to
data from other mammals or organisms with smaller and less complex genomes. The presented
work is available as an efficient open source C++ implementation, either as parts of the SeqAn
library or as programs using SeqAn.

ii

Zusammenfassung

Die technischen Fortschritte der letzten Jahre im Bereich der Hochdurchsatzsequenzierung und
die kommerzielle Verfiigbarkeit dieser Technik haben den Weg fiir revolutiondre Moglichkeiten
in den Lebenswissenschaften geebnet. Ein Meilenstein dabei war das Erreichen des sogenanten
1000 Dollar Genoms. Es ist heute moglich, das Erbgut von hunderten von Menschen in unter einer
Woche fiir weniger als je 1000 Dollar auszulesen. Diese Revolution der Lebenswissenschaften
stellt auch neue Herausforderungen an die Software und Algorithmen fiir die Verarbeitung dieser
Daten. In meiner Arbeit betrachte ich eine typischen Pipeline um ein menschliches Genom zu
dekodieren.

Fiir den Vorverarbeitungsschritt beschreibe ich eine Methode zur Fehlerkorrektur und vergleiche
verschiedene solcher Methoden. Fiir den Read Mapping Schritt entwickle ich zunéchst eine for-
male Definition von Read Mapping und stelle dann ein Softwarepaket vor, dass den Vergleich von
Read Mappern, basierend auf der formalen Definition, erlaubt. Danach beschreibe ich die Imple-
mentierung, Parallelisierung, und das Engineering eines vollsensitiven Read Mappers. Fiir den
Schritt der Variantenanalyse présentiere ich eine Methode fiir die Vorhersage von Bruchpunkten
und eine Methode fiir das gezielte Assemblieren von langen Insertionen.

Eine solche Pipeline kann selbstverstandlich auch fiir genomische Daten von anderen Siugetie-
ren oder Lebewesen mit kiirzerem, weniger komplexen Genom einsetzt werden. Die vorgestellte
Arbeit ist als effiziente, quelloffene C++ Implementierung verfiigbar, zum Teil als Bestandteil der
SeqAn Bibliothek und zum Teil als Programme auf der Grundlage von SeqAn.

Acknowledgements

I want to thank everyone who supported me during my PhD work and the writing of my thesis.
First and foremost, I have to express my gratitude to my supervisor Knut Reinert. My work
and research would not have been possible without his continuous, patient, and constructive
support. In particular, he always took the time to give helpful and constructive remarks whenever
I knocked on his door.

I'am thankful to Alexander Goesmann for his willingness to appraise this thesis and I am indebted
to the German Research Foundation (DFG) and the German Federal Ministry of Education and
Research (BMBF) for providing the funding for my research.

I was lucky to be involved in a number of successful collaborations. I thank Anne-Katrin Emde
and David Weese for the work on RaBEMA, David Weese for collaborating on RAZERS 3, Leon
Kuchenbecker for joint work on ANISE and BasiL, and Marcel Schulz, David Weese, and Hugues
Richard for the collaboration on FIONA.

Also, I would like to thank all current and previous members of the Reinert lab at Freie Uni-
versitat Berlin for a friendly, productive, and stimulating work environment. I also thank the
BioStore team (Bjorn, David, Jochen, and Sabrina) for the motivating joint work on said project.
In addition, I am grateful to my colleagues at Nick Robinson’s lab at Charité Universitatsmedizin
for creating an equally friendly and productive work environment and interesting collaborations.
I am grateful to Birte, Enrico, Jochen, Justin, Kathrin, Leon, and Max for helping me by proof-
reading my thesis and giving many helpful comments. Further, a big thank you to the SeqAn
team (Anne-Katrin, Bjorn, Enrico, Birte, David, Hannes, Jochen, Kathrin, Knut, Rene, Sabrina,
and Stephan) for creating a productive developer group.

Last but not least, I thank my family, my friends, and especially Jasmin for their continuous and
unconditional support over the last years.

vii

Contents

1

Introduction

1.1 Biological Background

1.2 Sequencing and Resequencing

1.3 Algorithm Engineering

1.4 Thesis Outline

Preliminaries

2.1 Mathematical Preliminaries
2.1.1 Logic
2.1.2 SetsandRelations L
2.1.3 Sequences, Strings and Alphabets 0 0oL
2.14 String Distance Metrics oo oL
215 Alignments L
2.1.6 StringSearch

2.2 Algorithmic Background
2.2.1 Alignment Algorithmso o
222 AlignmentKinds
2.2.3 Linear Scanning Algorithms
224 SuffixTrees

Data Preprocessing
3.1 Quality Control Measures

3.2 Read Error Correction Approaches
3.2.1 The Spectral Alignment Approach
3.2.2 The Substring Tree Approach
3.2.3 The Multiple Sequence Alignment Approach

O© NN =

11
11
11
12
12
13
14

15
15
17
18
19

23

24
25
27
27

ix

Contents

3.3 Read Error Correction Evaluation
3.3.1 Evaluation Approaches
3.3.2 Evaluation Metrics e

3.4 Read Error Correction Results
34.1 ResultsonIlluminaData
34.2 454 andIonTorrentdata

3.5 Chapter Conclusion

4 Read Mapping

4.1 A Formal Definition of Read Mapping
4.1.1 Differences to Solving the Biological Problem
4.1.2 An Intuition for Read Mapping Matches
413 AFormal Match Definition
414 A Formal Definition of Single-End Read Mapping
4.1.5 Single-End Versus Paired-End Mapping

4.2 RABEMA — A Method for Benchmarking Read Mappers
4.2.1 Gold-Standard Generation
4.2.2 Read Mapper Result Comparison
4.2.3 A Peculiarity with Reverse-Strand Matches
4.2.4 DPossible ExtensionstoRABEMA L.

4.3 Read Mapping Approaches and Methods L.
43.1 The Practical Setting of Read Mapping
432 Theoretical Insights
433 Filtration-Based Methods
434 Index-Based Methods

4.4 RAzerS 3 — Parallel, Fully Sensitive Read Mapping
44.1 Algorithmic Overview
4.4.2 Parallelization Design Lo
4.4.3 Further Optimizationsin RAZERS3
4.44 The ParallelizationinRAZERS3
4.4.5 Filtration and Verification Performance Trade-Offs

4.4.6 Evaluation of the Parallelization

4.5 RABEMA and RAzERS 3 Results
4.5.1 Evaluation Methods
4.5.2 Results and Discussion i

4.6 Chapter Conclusion

5 Variant Detection

5.1 Small Variants

28
29
30

34
36
37

40

44
45
46
51
53
53

54
55
56
57
57

39
60
61
63
64

64
65
67
68
71
71
74

76
77
79

84

Contents

5.2 Structural Variants Lo 90
5.2.1 Approaches and Methods for Structural Variant Calling 92
5.2.2 The Paired Read Approach 92
5.2.3 The Split Read Approach 93
5.2.4 The Read Depth Approach 95
5.2.5 The Assembly Approach 95
5.2.6 Hybrid Methods and Others 96
5.3 BAsiL — Insertion Breakpoint Detection 97
5.3.1 Insertions Types and their Signatures 97
5.3.2 Filter Pipeline Steps 102
5.3.3 OEA Clustering Algorithm 104
5.3.4 Clipping Clustering Algorithm 106
5.3.5 Combining OFEA and Clipping Signals 106
5.4 ANISE — Insert Sequence Assembly oo Lo 108
541 OVerview 108
5.4.2 Overlap-Layout-Consensus Contig Computation 111
5.4.3 CopySeparation 114
54.4 Scaffolding 119
5.5 Evaluation Using Synthetic Sequence 122
5.5.1 Evaluated Pipelines, 123
5.5.2 Recoveryand ErrorRate 124
5.5.3 Evaluation Program LBA 125
5.5.4 Synthetic Sequence Benchmark Setting 126
5.5.5 Insert Assembly Results L. 126
5.5.6 Discussion 127
5.6 Evaluation Using Simulated Insertions in Real Biological Sequence 128
5.6.1 Simulated Insertions Benchmark Setting 128
5.6.2 BasiL Cluster Selection Evaluation 129
5.6.3 Insert Site PredictionResults 131
5.6.4 Insert AssemblyResults L. 132
5.6.5 Discussion e 133
5.7 Evaluation using Real-World Data 135
5.7.1 Filtration of Predicted Sites L. 136
5.7.2 Filtration of Assembled Contigs 137
5.7.3 Re-Anchoring of the Assembled Contigs. 138
5.7.4 Validation Using Fosmid Sequence 139
5.7.5 Validation Using Capillary Sequenced Contigs 141
5.7.6 Validation Using the hg38/GRCh38 Reference Sequence 142
5.7.7 Validation Using the NCBI BLAST nt Database 143
5.7.8 Validation Using Paired-Read Data 145
5.7.9 Overlap of Predicted Breakpoints 146
5.7.10 Sequence-Based Overlap of Assembled Contigs 148

xi

Contents

5701 DISCUSSION .+« « © oo oo e 149

5.8 Chapter CONCIUSION v v v vttt 151

6 Discussion and Conclusion 153
A MasoN - Simulation of Nucleic Sequence 177
B Sequencing Technology Overview 181
C Contributions to Software Engineering and Usability 185
D Program Versions and Calls Used in the Evaluation 193
E Full Read Mapping Tables 199
F Full Error Correction Tables 207
G Extended Variant Calling Results 213
H BLAT ldentities and Scores 215
[Cluster Linking Algorithms 217
Abbreviations 225
Index 227

Curriculum Vitae 231

xii

List of Figures

1.1 Structure of DNA and fundamental dogma of biology

1.2 Overview of the algorithm engineering approach to algorithmics 8
2.1 Example of a dynamic programming matrix for aligning two sequences 17
2.2 Examples of different kinds of alignments, 18
2.3 The suffix tree for the word BANANA 20
3.1 Bar chart of the per-base quality values as visualized by FAsTQC 23
3.2 The k-mer coverage of the E. coli genome and a 30x Illumina read dataset. . . . 26
3.3 Example of a substitution error and its effect on the substring tree 28
3.4 Example of read alignments before and after correction 31
4.1 Three examples of different kinds of read alignments 45
4.2 A semi-global alignment of a read to the genome endinginagap 47
43 Alignments of the read TCCCAAC against two locations in the reference sequence 47
4.4 Examples for alignments of reads from tandem repeats 48
4.5 Two neighboring tracetrees 49
4.6 Example of the error landscape before and after smoothing 50
4.7 A peculiarity with matches on the reverse strand 58
4.8 Example of the pigeonhole and k-mer lemma 62
4.9 Overview of the data flow in the RAZERS program 65
4.10 Overview of the parallel data flowinRazerS3 69
4.11 Running time profilesfor RAZERS3 Lo 73
4.12 Ratios of running time with pigeonhole and SWIFT filter 75
5.1 Multi-read alignment with an SNV and microindels 89
5.2 Typesofstructural variants L. 91
5.3 Overview of structural variants and detection approaches 93
54 Overview of the Basimethod 97
5.5 Examples of paired read signatures of medium and large insertions 98

xiii

List of Figures

Xiv

5.6

5.7

5.8

5.9

5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24
5.25
5.26
5.27
5.28
5.29
5.30
5.31

C1
Cz2
C3
C4
C5
C.6
C7

G.1

Paired read signature for an insertion breakpoint 0oL 100
Ambiguous paired-read signatures of breakpointso L. 101
Clipping signature for an insertion breakpoint 102
Example for the ambiguity in OEA signals 105
Example for the combintation of OEA and clipping signals 107
A high-level flow diagram of ANISE 109
An overview of the workflow in ANISE 110
Example of abestoverlapgraph L. 113
The general idea behind the copy separationstep 116
Example for the copy separationstep 117
Example for the scaffolding stepin ANISE 121
Example for scores in an LBA alignment 125
Overview of the synthetic copy benchmark generation 126
Data generation for simulated insertions benchmark 128
Comparison of the two OEA cluster selection strategies in BasiL 130
Comparison of the insertion site prediction of different methods 131
Percentage of recovered sequence data for the heterozygous data sets with . . . 134
Filtration of predicted sites and assembled contigs 136
Results for the validation using fosmid contigs 140
Validation of the assembled contigs using fosmid and capillary sequence 141
Results for the validation using capillary contigs 142
Results for the validation hg38 sequence 143
Validation results using the NCBI BLAST nt database 144
Results for the validation using paired-end mapping 146
Venn diagrams of breakpoint-wiseoverlap 147
Venn diagrams of sequence-wise overlap 148
Example usage of the seqan: : ArgumentParserclass 188
Top of the output of the argument parser, displayed as Linux man page 188
Beginning of C++ comment with DDDoc comment 189
HTML documentation generated for function globalAlignment() 190
Beginning of the C++ comment with dox documentation 190
HTML documentation generated for function globalAlignment() 191
Example of the CDasH dashboard 192
Percentage of recovered sequence data for the homozygous data sets 214

List

of Tables

3.1
3.2

4.1
4.2
4.3
4.4
4.5

5.1
5.2
53
5.4

E.1
E.2
E3
E4
E.5
E.6
E.7

F.1
F.2
F.3
F.4
F.5
F.6

G.1

Read error correction results on Illuminadata
Read error correction results on 454 and IonTorrent data

Overview of sequencing technologies

Running time of the RAZERS 3 mapping step in different variants, excluding I/O .

RABEMA scoresinpercent
Results of the variant calling benchmark
Mapping time and accuracy of single-end and paired-end mapping .

A subset of the methods available for the detection of SVs from NGS data

Synthetic copy benchmark results
Insertion assembly results on simulated heterozygous insertions . .
Statistics about verification of contigs exclusive to one method . . .

Datasets used for creating the experimental maps
Full results for single-end variation detection experiments
Full results for the paired-end variation detection experiments
Extended experimental results for real-world single-end data
Extended experimental results for long simulated single-end data . .
Extended experimental results for real-world paired-end data
Extended experimental results for long simulated paired-end data . .

Identifiers, sources, and length of the reference sequences used in the evaluation

Information on the read sets used in the evaluation
Running time and memory consumption on Illumina data
Running time and memory consumption on 454 and IonTorrent data
Complete list achieved for different parameterizations of CoraL . . .

Complete list achieved for different parameterizations of HYBRIDSHREC

Insertion assembly results on simulated homozygous insertions case

36
37

60
71
79
81
82

94
127
132
149

199
200
201
202
203
204
205

208
208
209
210
211
212

213

XV

Chapter 1

Introduction

In 2001, the draft sequence of the whole human genome was published simultaneously by the
publically funded Human Genome Project (HGP) (Lander et al, 2001) and a privately funded
project at Celera Genomics (Venter et al., 2001). This event marked a milestone in life sciences
since having a reference genome facilitates important studies. Such studies include the analysis
of individual whole genomes, e.g., for the diagnosis of rare diseases but also also the analysis of
tumors for facilitating more targeted chemotherapies.

Besides biotechnical and organizational challenges, decoding a genome as complex as the one of
human also created computational challenges. For example, for a long time it was not clear which
strategy for decoding the human genome was the better one. The two considered strategies
were hierarchical shotgun sequencing and whole genome shotgun sequencing. Even in 1997, Green
discarded the whole genome shotgun strategy proposed by Weber and Myers (1997) as not cost-
effective and predicted that it would not work. Despite these doubts, whole genome shotgun
sequencing has become the standard method for obtaining the sequence of full genomes. Notably,
the challenges of whole genome shotgun sequencing were largely resolved using algorithmic
advances by computer scientists developing a whole genome shotgun assembler program (Myers
et al., 2000).

Since 2001, there have been large advances in the area of sequencing, the process of reading out
sequence information from genetic samples. The HGP ran from 1990 to 2003 and had a total
cost of 3 billion US dollars (Collins and Hamburg, 2013). The cost of sequencing a single base
(genomic sequence character) at the beginning of the HGP was $1 and reached 10 cents in 2003.
Today, 1 million bases can be read for 4 cents (Quail et al.,, 2012) with modern high throughput
sequencing (HTS) machines. In 2014, HTS machine manufacturer Illumina announced the pos-
sibility to sequence a whole human genome for less than $1000, taking less than three days per
genome (Hayden, 2014). Thus, individual whole human genomes can now be decoded for a cost
six orders of magnitude below the cost of creating the initial draft sequence and in days instead
of a decade.

Chapter 1 Introduction

Processing the output of one HTS machine can already be challenging and many laboratories
have more than one such machine. Also, many more machines will be deployed in the future
after the first FDA (Food and Drug Agency) authorization for a HTS machine for clinical use
in 2013 (Collins and Hamburg, 2013). Further, it has previously been estimated (e.g., by Mardis
(2006)) that a price of less than $1000 per genome breaks a cost/benefit barrier. The individual
genome will become so useful in relation to its cost, that whole genome sequencing will become
standard practice as determining the blood type is today. Thus, the analysis of genomic infor-
mation will become commonplace in clinics and will create computational challenges in many
places. At the same time, solutions to these challenges will create equally wide-spread benefits.

The topic of this thesis is the engineering of algorithmic methods for determining the genome
of a single individual. Decoding an individual genome with all features and differences to the
reference sequence is computational challenging. Thus, new algorithmic methods have to be
designed and carefully implemented such that they allow a robust and efficient analysis. The
relevance of this topic will even increase further given the current developments in sequencing
technologies and their distribution to clinics.

Structure of This Chapter. In this chapter, I give an introduction to the topic of this thesis
by giving a rough overview of the biological background and outlining the pipeline of steps usu-
ally performed for obtaining an individual’s genome. In Section 1.1 I give a short, non-exhaustive
outline of the biological background and introduce relevant terms from molecular biology. Then,
in Section 1.2 I present a short overview of sequencing technology and the bioinformatics appli-
cations in resequencing. In Section 1.3 I briefly describe the algorithm engineering approach to
algorithmics. Finally, in Section 1.4 I give an outline of this thesis.

1.1 Biological Background

In this section, I introduce some fundamental terms from molecular biology and genetics. Readers
who are already familiar with these topics can skip ahead to Section 1.2 on page 5.

DNA, RNA, and Proteins

Deoxyribonucleic acid (DNA) is an essential molecule in all known life forms that encodes the
genetic information for an individual. Its double helix structure was discovered by Watson and
Crick in 1953. Since then, a lot of effort has been invested in understanding the genome (the
entirety of genetic information) of individual organisms and the relation to the genome of other
organisms.

Usually, DNA molecules consist of two strands of nucleotides that are coiled around each other
and form a double helix as can be seen in Figure 1.1a. A nucleotide consists of an organic base,
a sugar, and phosphate groups and forms a monomer. In a DNA strand, the nucleotides are
covalently linked into polymers having a sugar-phosphate backbone. The occuring bases are

1.1 Biological Background

DNA
NN
mRNA TI'EI'ISI:FIpTIOr‘I)

AT
/ Mature mRANA

—= = Adenine
=1 = Thymine
3 = Cytosine

3 = Guanine

Transport to cytoplasm for
protein synthesis (franslation)

[_]=Phosphate

backbone

Cell membrane

(a) DNA structure (b) fundamental dogma of biology

Figure 1.1: This figure shows (a) the double helix structure of DNA and (b) the “fundamental dogma of biology”
of the transcription of DNA to mRNA followed by the translation of mRNA to proteins.
Source: National Institute of Health

adenine, cytosine, guanine, and thymine, often abbreviated as A, C, G, and T. Overall, a DNA
molecule can be seen as a linear sequence of these bases (note that in most prokaryotes such
as bacteria, the DNA molecules are cyclic). Cells of eukaryotic organisms such as human often
have multiple DNA molecules, called chromosomes. The term ploidy describes the number of
chromosome copies in each cell (for example, humans are diploid, having two copies of each of
the 22 autosomal (non-sex) chromosomes). In summary, the genome of an individual consists of
a number of DNA sequences, one for each chromosome copy.

The sugars in the backbone have five carbon atoms and are joined together by phosphate groups.
A numbering from one to five of these carbon atoms has been established. The sugars are joined
by phosphate groups between the third carbon atom of the one and the fifth carbon atom of
the other (or next) nucleotide. Together with the asymmetry of the nucleotide molecules, this
numbering leads to a 5" and a 3’ end of each DNA strand.

In the double helix, each nucleotide is paired with a nucleotide from the other strand. Each
nucleotide is always paired with its complement via hydrogen bounds: A is paired with T, and
C is paired with G. The labels forward strand and reverse strand are assigned to the strands in
an arbitrary but fixed order. As text, each strand is written from the 5’ to the 3’ end as a string
of the characters A, C, G, and T. The reverse strand can be obtained from the forward strand by
reversing the characters’ order and complementing them (and vice versa).

One important function in organisms is the replication of DNA molecules to generate exact copies

Chapter 1 Introduction

of the chromosomes. In cells, this is performed by specialized enzymes called DNA polymerase.
The hydrogen bonds between the nucleotides on opposite strands are relatively weak. During
the process of replication, these bonds are broken. Then, the polymerase reads one strand of the
DNA in the direction from the 5’ to the 3’ end and builds the reverse-complement from 3’ to 5°
end by adding the complementing nucleotides.

Another important function in organisms is the generation of proteins. Proteins are polymers
of amino acids and perform a large part of an organism’s functionality. For example, almost
all enzymes are proteins. For creating proteins, an intermediate step called transcription is per-
formed to obtain ribonucleic acid (RNA) molecules. An enzyme called RNA polymerase uses a
DNA molecule as a template for synthesizing an RNA module. RNA molecules are similar to
DNA molecules but are single-stranded, use uracil (often abbreviated as U) instead of thymine,
and are less stable due to their structure. There are various kinds of generated RNA molecules
and an important distinction is between messenger RNA (mnRNA) and non-messenger RNA (also
often called non-coding RNA).

After some processing, the then mature mRNA is used for translation into proteins. The transla-
tion is performed by complex molecular machines called ribosomes. The whole process is outlined
in Figure 1.1b. For the translation, triplets (triples) of RNA nucleotides (called codons) are trans-
lated into one amino acid each. The translation can be seen as a function from the set of 64 RNA
nucleotide triplets to the set of 20 standard amino acids while some triplets are reserved for en-
coding stop codons. The amino acid methionine corresponds to a start codon. In the standard
genetic code used for human chromosomes, the number of codons for each amino acid varies
from one to six codons per amino acid.

Protein-coding regions on the genome are examples of genes. The term gene is used to describe a
region in a genome that encodes a functional unit for the organism. In eukaryotes such as human,
protein-coding genes often consist of exonic and intronic regions, also called exons and introns.
Both exons and introns are first transcribed from the genome into premature mRNA (the gene
is expressed). Then, in the processing into mature mRNA, the introns are removed in the splicing
step. The mature mRNA is then translated into proteins, such that the exons are translated into
amino acids and code for the protein while introns do not. It is known that the expression level
of genes can be increased or decreased (regulated) by the presence and action of certain proteins
and non-coding RNA.

Genetic Variation

The precision of DNA replication is ensured by complex mechanisms that even include a proof-
reading step (Berg et al., 2002, ch. 27). Nevertheless, errors might occur during replication at low
probabilities and they might not be detected. In this context, an error means the deviation of a
replicated DNA molecule from its template DNA polymer.

Such errors give rise to differences between individual genomes, and differences between two
genomes are called variations. Such variations include the substitution of single nucleotides (sin-
gle nucleotide variants or SN'Vs) and the insertion or deletion of short parts of the DNA polymer
(indels). Larger variations are often called structural variants (SVs). SVs include the inversion,

1.2 Sequencing and Resequencing

insertion, and duplication of DNA molecule segments. The borders of the segments that are sub-
jected to structural variation are called breakpoints. It might not be possible to pinpoint them to
a single base, so a breakpoint might also refer to a region of the genome.

Such variation gives rise to different forms of genes, their alleles: in general, in each human cell,
the two chromosome copies differ. Thus, a given gene on one chromosome copy will be slightly
different on the other copy, each being one allele of the gene. This also holds for non-coding
segments (loci) on the chromosomes.

The genotype is the specific genetic make-up of an individual. In diploid organisms, such as
human, the two copies of a chromosome can have different variants. Here, it makes sense to
consider the genetic make-up of each copy separately, the haplotype (short for haploid genotype)
for each copy. For example, there might be two SNV positions in a gene and the individual’s
genome has different values for both of them, say the characters C and G on the first haplotype
and the characters A and T on the second haplotype. In general, this can lead to encoding two
different proteins and one needs to know the actual haplotypes to know which proteins are
encoded. A genotype that has the same allele for both copies is called homozygous and a genotype
with different alleles for the copies (as in the example above) is called heterozygous.

There are also other sources of variation besides imperfect replication. For exampe, retroviruses
have the ability to integrate virus DNA or RNA into the host genome, causing insertions into the
DNA molecule in one cell with respect to another cell. Further, certain bacteria have the ability
to exchange genetic material which can also be the cause for variation between two bacteria’s
genomes. In primates, such as human, Alu elements (short genome segments comprising about
10% of human DNA) are a source of further genomic variation. Together with LINE-1 elements
(short genome segments comprising about 17% of human DNA), Alu elements can insert them-
selves into DNA. Alu elements play an important role in the evolution of primates (Shen et al,
2011).

Depending on their kind and location, variations can yield advantages or disadvantages for the
affected cell or individual. For example, variations might increase or lower an individual’s sus-
ceptibility to certain diseases. Variants might also lead to the resulting cell not being capable of
survival. A change might also have no effect, for example when a SNV in a coding region does
not alter the encoded amino acid.

The term polymorphism describes a variant that has no adverse effect on the individual, is thus
able to spread throughout the population and be observed at a relatively high probability. In
recent years, large-scale databases variants have been built for estimating variant frequencies.
SNVs are the most common and best-studied type of variant and dbSNP (Sherry et al, 2001)
is a large-scale database of single nucleotide polymorphisms (SNPs), annotated with frequency.
Commonly, a SNV is called a SNP if it occurs in at least 1% of the population.

1.2 Sequencing and Resequencing

The genome of an organism cannot be obtained directly from its chromosomes. Rather, due to
technical limitations, only small sections of DNA molecules can be read out in a process called

Chapter 1 Introduction

sequencing. These can then later be jigsawed together in de novo assembly or a reference sequence
can be used in resequencing to help obtain the genome. Contiguous sequence parts resulting from
assembly are usually called contigs.

Genome Sequencing. The traditional sequencing technology is Sanger sequencing and yields
long reads at a relatively low throughput. Sanger sequencing was used both by Celera Genomics
and the HGP for obtaining the initial draft sequence of human, for example. In contrast, HTS
platforms yield shorter reads at much higher throughput rates. Important examples for HTS
platforms are the ones by Illumina, 454/Roche, and the IonTorrent technology by Life Sciences.
In Appendix B, I describe these sequencing technologies in more detail. Here, the following
description of technologies involved in DNA sequencing is sufficient.

DNA can be replicated at high efficiency using a process called polymerase chain reaction (PCR).
Further, DNA can be randomly cut into small pieces in a process called shearing. The sequence
of these small reads can then be read out by sequencing. Using PCR, followed by shearing and
sequencing, sequencing machines obtain sequence data in reads (the sequence of relatively short
DNA polymers) such that each base in the genome is represented (covered) by multiple bases in
the reads. For example, when it is known that a genome has a length of ~ 5 mega base pairs
(Mbp), as is the case for E. coli, and a total of 25 Mbp of read bases is generated, the genome is
said to be sequenced to a coverage of 5x.

The literature contains a lot of work that deals with estimating the necessary coverage for ob-
taining an organism’s genome, depending on the genome length, the read length, and other
parameters. One of the important early works is the one by Lander and Waterman (1988). An
extension of this model is due to Roach et al. (1995) who extend the results by Lander and Wa-
terman (1988) to whole-genome sequencing (the original model was formulated for the clone
fingerprinting problem). These articles provide mathematical models that allow to estimate the
success of a de novo sequencing project depending on the chosen parameters for the sequencing
process (and thus the necessary coverage).

Resequencing. When the reference sequence for an organism is available, resequencing exper-
iments can be performed for obtaining the sequence of an individual of the same or a similar
species. The aim is to identify similarities and differences to the selected reference sequence.

An important example for resequencing is obtaining the full genomic sequence of a human in-
dividual (the donor) using HTS. The sequenced information can then be used to determine the
donor’s genomic variations, e.g., the nucleotides at SNV positions. One aim of ongoing research
is to understand genomic predisposition for diseases. Studies aiming at correlating genomic fea-
tures with diseases or features of the individual (such as hair or eye color) are called genome-wide
association studies (GWAS).

Another example of resequencing has been performed by Izutsu et al. (2012). A strain of D. me-
lanogaster was kept in a dark environment for 57 years. The authors obtained a sample of this
strain’s DNA, sequenced it, and identified genetic adaption of this fruit fly strain to its dark
environment. Thus, resequencing allows the observation of evolution in terms of the genomes

1.3 Algorithm Engineering

of individuals or populations.

While the reference sequence can be the genome of any particular individual, often a consensus
sequence of some sort is used. That is, after obtaining the sequence of a collection of individuals,
the most prevalent genotype (the wild-type) of a genomic location is chosen as the reference
for this location. Often, such a reference sequence is accompanied by a database of observed
polymorphisms, e.g., dbSNP. This allows to determine the genotype at a SNP position even if the
individual has the same nucleotide as the reference and no variant would be called without the
database information.

The current standard coverage for the resequencing of whole human genomes with Illumina
reads is 30-35x. The redundancy is required for covering most parts of the human genome and
also for allowing the reliable detection of variants. There is some discussion on which sequencing
depth should be used. For example, Ajay et al. (2011) found that at a coverage of 40x, reliable
genotyping is possible for 95% of the genome. These authors argue against using only a 30x
coverage for resequencing which, by their findings, leads to reliable genotyping of 90% or less of
the genome.

A typical software pipeline for the analysis of HTS resequencing data consists of the
following steps:

« The input consists of the considered organism’s reference genome and a set of HTS reads.

« The reads are first subjected to the preprocessing step: the quality of the reads is analyzed
in the quality control sub step and the correction of sequencing errors can be attempted.

« This is followed by the read mapping step: for each read, the sample location is searched
for in the reference genome. That is, this step attempts to find the location in the reference
genome that corresponds to the location where the read was sampled from in the donor
genome.

« After read mapping, the variant analysis step follows. In this step, the mapped reads are
analyzed for variants with respect to the reference genome.

1.3 Algorithm Engineering

Algorithm engineering (Sanders, 2009) is an approach for practical algorithm research and de-
velopment that is inspired by the scientific method by Popper (1934). An overview is shown in
Figure 1.2. This section describes the algorithm engineering approach as it applies to bioinfor-
matics and the work described in this thesis.

The aim of algorithm engineering is to develop practical solutions for algorithmic problems and
to analyze and understand their performance on real world input data sets. This aim is congruent
with the aims of this thesis. The algorithm engineering development process resembles a cycle of
the steps (1) design, (2) analysis, (3) implementation, (4) experiments. In Appendix C, I describe

Chapter 1 Introduction

my contributions to software and algorithm engineering for the SeqAn algorithm library (Déring
et al., 2008).

Design Step. In the first step, the algorithm is designed, e.g., using existing algorithmic build-
ing blocks and data structures. In traditional algorithmics, algorithms are designed to have low
running time and memory usage. The considered problems are either solved exactly or quality
guarantees are sought for. Often in traditional algorithmics, running time and memory usage
are considered in big-O notation only, i.e., ignoring constant factors and summands, and on the-
oretical machine models.

In contrast, algorithm engineering seeks to create more practical solutions. For example, constant
factors are important since real machines have limited resources and doubling memory usage
might increase the cost by an even larger factor and make an algorithm economically infeasible
to use. Furthermore, algorithms do not just have to work on paper, but their implementation
must be feasible. Ideally, practical algorithms allow for simple implementation which often leads
to fewer bugs and good performance.

Also, for many AP-hard problems, no constant factor approximations are possible in general.
However, the real inputs might not be worst case scenarios, so heuristics might yield better
running times and sufficiently good results in practice.

Analysis Step. The next step is an analysis of the previously designed algorithm’s resource
requirements. The result of this step are bounds on the running time and memory consumption
of the algorithm. Further, realistic models should be used, e.g., using realistic models for disk I/O

algorithm realistic models

engineering real inputs

design }

falsifiable
{ analysis hypotheses,

\ induction
dedulction

perf. guarantees

experiments }

suorjeordde

[implementation} appl. engineering

algorithm libraries

. J

Figure 1.2: Overview of the algorithm engineering approach to algorithmics.
Adapted from (Sanders, 2009).

1.4 Thesis Outline

when processing large inputs instead of assuming constant time memory access costs. This gives
important hints at whether the algorithm is practical for real input data sets at all. Ideally, better
performance guarantees can be deduced for the expected kinds of inputs than in the general case.

Implementation Step. Here, the algorithm is carefully implemented. To be of practical use,
implementations must be correct and have a low resource consumption. Conversely, incorrect
results or too high resource requirements (either by bugs or bad software engineering) can lead
to being impractical. If available, previously deduced guarantees can help as checks to determine
whether an implementation is of good quality.

In this step, there is a big overlap with software engineering and the best practices from this field
should be used. For example, comprehensive automated tests help with writing implementations
with fewer errors and not introducing regression errors in existing ones. Good documentation
helps sustainable software engineering and reuse. Ideally, the implemented algorithmic solutions
are made available as algorithm libraries such as MCSTL (Singler et al, 2007), STXXL (Dementiev
et al., 2008), or SeqAn (Doring et al., 2008) do.

Experiment Step. The implementation should then be tested on real data sets. In bioinformat-
ics, the comprehensive evaluation on real data is crucial since many important features of biolog-
ical data are not fully understood or hard to simulate. In many cases, data is available in public
databases such as GenBank (Benson et al., 2000), the Sequence Read Archive SRA (Leinonen et al.,
2011b), or the European Nucleotide Archive ENA (Leinonen et al, 2011a).

Despite the shortcomings, simulated data is very useful when there is no ground truth available
as is often the case in bioinformatics. Simulations are useful to complement the evaluation with
real world data. The results of the experiments can then be used to improve the current algorithm
design or create a new one.

The experiments should be driven by falsifiable hypotheses. For example, when an algorithm is
designed to work well for repetitive genomic regions then care has to be taken to create appro-
priate experiments and check whether this design goal was actually achieved.

1.4 Thesis Outline

In this thesis, I give an overview of the state of the art in the algorithmic aspects of resequencing
and describe my contribution to this field. The thesis is roughly structured after the typical
resequencing pipeline outlined above.

In this chapter, I gave an introduction to the biological background. In Chapter 2 I give formal
and mathematical preliminaries and describe some important fundamentals from the area of
bioinformatics. In Chapter 3 I give an overview of the currently used approaches and methods
in read preprocessing for quality control and read error correction. I discuss approaches for the
evaluation of read error correction tools and present an experimental study for the comparison
of read error correction methods. In Chapter 4 I give an introduction to and a formal definition

Chapter 1 Introduction

for the problem of read mapping and describe the state of the art for read mapping approaches
and methods. Then, I present the RAZERS 3 read mapping method, the RaABEMA method for the
comparison of read mapping methods, and close with the description of an experimental study
of read mapping methods. In Chapter 5 I give an overview of current methods for the detection
and analysis of genomic variants. I then proceed to the description of the methods BasiL and
ANisE for large genomic insertion analysis and close with an experimental evaluation of these
two methods. Finally, in Chapter 6 I give a conclusion to the thesis.

10

Chapter 2

Preliminaries

In this chapter, I first give a description of the formal notation and terms used in this thesis in
Section 2.1. This is followed by a short description of linear scanning algorithms and sequence
alignment in Section 2.2 since these are two recurring topics in the thesis.

2.1 Mathematical Preliminaries

2.1.1 Logic
As usual, the logical operations and between two predicates p and ¢ is denoted as p A ¢ and the
operation or is denoted as p V q. Also, if p implies g, this is denoted as p — q.

Often, one needs an indicator function for a predicate. Given a predicate p, the indicator function
is defined as

2.1.2 Sets and Relations

Sets. Sets are denoted using curly brackets (e.g., {0, 1,2} denotes the set with three elements
0, 1, and 2). Dots are used to denote that a sequence continues with (e.g., {0,1,...,9,10}) or
without (e.g., {0,1,...}) abound. As usual, N is the set of the non-negative (natural) numbers
{0,1,2,...} and Z is the set of all integers {...,—2,-1,0,1,2,...}.

11

Chapter 2 Preliminaries

The Cartesian product of two sets S7 and S is denoted as S7 x S3. S1 being a (true) subset of
Sy is denoted as S1 C Ss. S1 being a subset of or equal to S5 is denoted as S; C So.

The size of set S is denoted as |.S|.

Relations. A relation R over a set S is a set of ordered pairs (R C S x S). Given a set S and
a relation R over S, the membership of a pair in the relation (a,b) € R for a,b € S is denoted
as aRRb.

In this thesis, the following properties of relations are of interest. Given a relation R over set S
and a, b, c € S. The relation R is reflexive if aRa holds for all @ € S. The relation R is symmetric
if aRb — bRa holds for all a,b € S. The relation R is transitive if (aRb A bRc) — aRc holds
for all a, b, c € S. An equivalence relation is defined as a relation R that is reflexive, symmetric,
and transitive.

2.1.3 Sequences, Strings and Alphabets

A sequence (string) S over a set A (the alphabet) of length k is denoted as S = (sg, s1,...,8k-1)
(si € A). The length of S is denoted as |S]|.

The concatenation of two sequences S and 7' is written as S - T'.

Given a finite set A and a sequence S = (so, s1,...,Sk—1) of length k with s; € A for all 4.
S[i] = s; is called the i-th character of S for 0 < i < |S| (0-based string indices are used as is
common in the C programming language, for example). The empty string is denoted as &.

In this thesis, I use the alphabets DNa = {A,C,G, T} and DnaA5 = {A,C,G, T,N}.

Substrings. It is often convenient to have access to contiguous substrings. Given a string .S
and an integer i (0 < i < |S|).

The prefix of length n of S is defined as: prefix(s,n) := (sg,...,Sp—1). The suffix of length
n of S is defined as: suffix(s,n) := (sn,...,8g/—1). The infix from i to j in S is defined as:
infix(s,7,7) := (sS4, ..., 5j-1).

2.1.4 String Distance Metrics

Given two strings H and V' over an arbitrary alphabet. Often, it is of interest to measure how dif-
ferent or similar H and V' are. Two common and simple ways of measuring such string distances
are Hamming distance (Hamming, 1950) (see also (Gusfield, 1997, p. 403)) and edit distance (Lev-
enshtein, 1965) (see also (Gusfield, 1997, p. 215)).

Hamming Distance. Given two strings H and V of equal length /. The Hamming distance
0y, is defined as the number of mismatches between two strings:

12

2.1 Mathematical Preliminaries

T
L

SW(H.V) = Y [H] # V1],

I
o

Edit Transcript. One common way of defining edit distance is using edit transcripts. An edit
transcript is a series of operations describing a transformation from one string into another. The
operations are the deletion of a character, the insertion of a character, and the substitution of a
character. The set of the first two operations is often abbreviated as indel. Further, a match
describes that a character remains unmodified. These operations are denoted as D, I, S, and M.
The first three operations are called edit operations.

Edit Distance. Given two strings H and V, each of arbitrary length. The edit distance 6. (H, V)
of H and V is defined as the minimal number of edit operations (thus excluding M) to transform
Hinto V.

A common visualization of a transcript is to write the two strings below each other, inserting gaps
between the characters in the case of insertions. An insertion yields a gap in the first sequence
and a deletion yields a gap in the second sequence. Gaps are often denoted as hyphens “~”. For

example:

transcript MMMSMMIMMMDMM
H CGATGCTAGT-TA
\% CGAAGC—-AGTATA

Hamming Neighborhood. Given an integer d, the Hamming neighborhood of a string S is
the set of strings that have Hamming distance < d to S.

2.1.5 Alignments

Often, “writing two or more strings below each other with gaps” is formalized as (tabular) align-
ments. The alignment contains a row for each string and each row has the same number of
characters. For characters, the alphabet A of the strings and a non-alphabet gap character “-”
are used. Alignments of two strings are called pairwise alignments. When more than two strings

are aligned, this is called a multiple sequence alignment (MSA).

Alignment Scores. Alignments are often used in the context of sequence comparison and
determining the similarity or distance of strings. For this, (pairwise) alignment scores can be
used. In this thesis, I use the following definition.

Given an alignment A of two strings H and V/ its pairwise alignment score is computed as

13

Chapter 2 Preliminaries

score(A) := Z d(A[0, 7], A[1, j]) + c - gap-opens(A),
J

where Ai, j] is the character from row ¢ at position j in the alignment, § is a function that
assigns a numeric value to a pair of alignment characters, and gap-opens(A) is the number of
gaps opened in A.

In the case of ¢ = 0, the score is called linear and otherwise it is called affine. The score for align-
ment of characters against gaps and c is required to be smaller than zero so they are penalized.

In some cases, gaps are not penalized at the beginning or end (begin gaps or end gaps) of the first
or second row and the score is called begin (or end) gaps free in first (or second) sequence. A global
alignment is an alignment that has no free begin or end gaps. When the alignment is begin and
end gaps free in the second sequence, it is called a semi-global alignment of V against . When
the alignment is begin and end gaps free in both sequences, it is called an overlap alignment of

H andV.

Given two sequences H and V' and a score function, I define the pairwise alignment problem as
finding a pairwise alignment for 4 and V' such that the alignment score is maximized.

MSA Scores. As often in the literature, the extension of alignment scores to multiple sequence
alignments is defined in terms of pairwise alignments in a sum of pairs score. Each unordered pair
of alignment rows is considered and I define the score of the MSA as the sum of the scores of the
pairwise alignment created by using the selected MSA rows as rows for a pairwise alignment.

2.1.6 String Search

In many applications, it is of interest to find a small needle (or query) sequence in a long haystack
(or database) sequence.

Exact String Search Problem. Given a needle NV and a haystack H, a match of N in H is
defined as a position p such that infix(H, p, p+|N|) = N. I define the exact string search problem
to find the leftmost match of N in H. A natural extension is the exact string search all problem
to find all matches of N in H.

Approximate String Search Problem. Given a needle N and a haystack H, a distance func-
tion 4, and a maximal distance k. Approximate string search is a relaxation of exact string search
by allowing errors in the match.

In approximate Hamming distance string search, J;, is used as the distance function. Again, a
match is identified by its position p in H. I define the aim to find the leftmost match p of N in H
such that oy, (infix(H, p,p + |N|), N) < k, that is the Hamming distance of the needle and the

14

2.2 Algorithmic Background

match is at most k. Again, the extension to the approximate Hamming distance string search all
problem is the natural one.

Similarly, in approximate edit distance string search, d. is used as the distance function. The
definition of a match for edit distance matches is more involved and I will discuss it in Chapter 4.
For now, let a match be identified by its position p and length /. I define the aim to find the
leftmost match p of length ¢ such that o, (infix(H, p,p + ¢), N) < k.

It is one of the aims of Chapter 4 to give a precise formulation of approximate string search using
edit distance, especially when considering multiple matches.

2.2 Algorithmic Background

The Terms Approach and Method. In this thesis, I use the terms approach to describe a
class of algorithms for solving a specific problem. An example for an approach is the divide-and-
conquer approach for comparison-based sorting.

I use the term method to describe a realization of one or more approaches. Thus, QUICKSORT
and MERGESORT are both methods for sorting following the divide-and-conquer approach for
comparison-based sorting.

2.2.1 Alignment Algorithms

Efficient algorithms for finding optimal pairwise alignments are well-known early results of
bioinformatics. Needleman and Wunsch (1970) described an efficient solution to compute gen-
eral pairwise alignments with linear gap scores while Gotoh (1982) found an extension that also
works with affine gap scores. Both solutions are based on dynamic programming and have run-
ning time and space consumption of O(n - m) where n and m are the lengths of the first and
second sequence.

Here, the NEEDLEMAN-WUNSscH algorithm is described for linear gap costs g and for sequences
H and V. The used score function for scoring a pair of alignment characters is called s. The
solution is based on a dynamic programming (DP) matrix F’ with |H| + 1 columns and |V| 4+ 1
rows. Algorithm 2.1 shows the algorithm and Figure 2.1 gives an example.

F[i, j] is the entry of matrix F' in row ¢ and column j. The DP solution is based on a recurrence
relation. The base cases are given by F'[i,0] := i-g and F[0, j| := i-g. The recurrence relation is
Fli,j] := min(F[i—1, jl4+g, F[i,j—1]4+g, Fli—1, j—1]4+s(V[i], H[j])). The arguments to min
are the score for inserting a gap in V) inserting a gap in H, and aligning two string characters.

Besides storing the value of F'[i, j], each cell also stores a pointer (having a value from {+, 7, })
to indicate which one of the arguments to min was used. Note that there might be ambiguities,
but picking any best cell for basing the next store upon yields an optimal result of the algorithm.

After computing F' in quadratic time, the algorithm can now compute an optimal alignhment in
linear time in the traceback step. To compute an alignment with no free end gaps, the algorithm

15

Chapter 2 Preliminaries

Algorithm 2.1: The NEEDLEMAN-WUNSCH algorithm for computing global alignments.

Input :H,V // sequences to align
s // pairwise score function
gap-cost // gap cost of scoring scheme
Output : bestScore // score of best alignment
t // transcript representing alignment using

// M, I, D for match/mismatch, insertion, deletion

// allocate matrix and initialize first row and column
F < new (m+ 1) x (n + 1) matrix
Fi- gap-cost,0] <— (i,T) fori<—0...m
F[0,j- gap-cost] < (j,«—) forj<« 0...n
// fill matrix in column-wise fashion
fori< 1...mdo
forj< 1...mdo
match < (Fli —1,j — 1]+ s(H[i — 1], V]i — 1]),\)
insert <— (F'[i — 1, j] + gap-cost,?)
delete < (F'[i,j — 1] + gap-cost, <)
Fi, j] - min(match, insert, delete)
end

end

// compute traceback
bestScore < F'[m, n]
tyi,j« (),m,n

while (7, j) # (0,0) do

switch pointer (F[i, j]) do
case T
prepend(t,I)
i—i—1
case
prepend(t,D)
jj—-1
case \
prepend(t,M)
ijei—1,j—1
endsw
end

return bestScore, t

// compared by score

16

2.2 Algorithmic Background

El o -1 -2 -3 -4 -5 -6 -7
c| -1 1+ o0 -1 -2 -3 -4 =5
G| -2 0o 2 1 0 -1 -2 -3
Al -3 -1 1 3 2 1 0 -1

A -5 -3 -1 1 3 3 2 3

Figure 2.1: Example of a dynamic programming matrix for aligning two sequences. The match
score is 1, mismatch and gaps are penalized with —1. The scores and all possible pointers are shown
for each cell. The selected pointers are highlighted in red and give a chosen trace.

starts in cell (m, n) and follows the stored pointers to cell (0, 0). A traversal of a pointer 1 inserts
a gap in the H, < inserts a gap in V, and _aligns two characters.

When gaps at the end of H are to be ignored in the score, the traceback starts from the highest-
scoring matrix cell in row m and traceback starts at the highest-scoring matrix cell in column
n for free gaps in V. A simple extension is to search both column n and row m for the highest-
scoring cell if end gaps are free in both sequences.

Since the NEEDLEMAN-WUNSsCH algorithm is of practical importance, there is a number of robust
and efficient implementations, including the NEEDLE program in the EMBOSS (Rice et al., 2000)
package and functions in the SeqAn (Doéring et al., 2008) library as well as the SeqAn program
PAIR_ALIGN.

2.2.2 Alignment Kinds

As mentioned in Section 2.1.5, allowing different begin and end gaps to be free leads to different
kinds of alignments. In this section, I enumerate those of interest in this thesis and introduce a
nomenclature to make the description more precise. Figure 2.2 shows examples for the different
kinds of alignments.

Global Alignments. For global alignment, both begin and end gaps are not free which makes
most sense if the sequences are expected to be similar or originate from a common ancestor. The

17

Chapter 2 Preliminaries

@ H GAG-AGTGACCCAAT

NN |1

V. GTGGAGTGCCC—-—AT

() H GAGCAGTGACCCAAT
RN ||

V. -=——-CAGTTCCC-——~—

(0 H GAGCAGTGACC - ———

Ll ||
V - ——-CAGTTCCCCAAT

Figure 2.2: Examples of (a) a global alignment, (b) a semi-global alignment, and (c) an overlap
alignment.

edit distance between two sequences is an example for a global alignment with match score of 0,
and mismatch and gap scores of —1. Figure 2.2a shows an example for a global alignment.

Semi-global Alignment. Without loss of generaliy, in the case that sequence H is longer than
sequence V" and V is expected to be similar to only a part of H, it makes sense to align V' to H
in a semi-global alignment. Begin and end gaps are free in the row of V' but not of H. Figure 2.2b
shows an example of a semi-global alignment.

Overlap Alignments. Consider the case that the suffix of a sequence H is similar to the prefix
of another sequence V. In this case, the sequences can be aligned with free end gaps in the row
of H and free begin gaps in the row of V. Figure 2.2c shows an example of an overlap alignment.
Here, H hangs over to the left (and aligns to gaps at the beginning of the row of V) and V' hangs
over to the right (and aligns to gaps at the end of the row of H).

Containment Alignments and Overlaps. When no sequence in a pairwise alighment hangs
over the side of the other (at most one alignment row has leading and/or trailing gaps) then this is
called containment alignment. When considering overlap alignments, this is called a containment
overlap. Figure 2.2a and 2.2b show examples of containment alignments.

2.2.3 Linear Scanning Algorithms

Linear scanning is an algorithmic technique for efficiently analyzing points and intervals on the
line. Such objects may be genomic coordinates or regions on the genome. The approach is similar
to the sweep-line technique from computational geometry (Shamos and Hoey, 1976) where one
dimension is swept in a linear fashion to simplify the problem at hand.

18

2.2 Algorithmic Background

This technique is best explained with an example. Given a set of integer points and intervals, let
the task be to count the highest number of overlapping objects along the line.

Without loss of generality, the intervals are given as half-open intervals [a, b) and points are
represented as [a, a). For applying the technique, the intervals [a, b) are converted into a sorted
list of events, one for the start of the interval and one for the end of the interval. Each event is
represented by a pair (p, e) where p is a point or genomic position and e is a boolean flag that
indicates whether the event is an open or a close event. The pairs are sorted lexicographically
(the flag values compare OPEN < CLOSE) and then processed in their lexicographic order. The
algorithm considers each event only once and only performs a local operation using this infor-
mation. When designed carefully, such algorithms can run with low memory requirements and
be very fast.

In Algorithm 2.2, I give a solution to the problem of computing the maximal depth (coverage) of
intervals and points on the line. The input is a lexicographically sorted list of events containing
a start and end event each for each point and interval. For example, this can be used to compute
the maximal coverage given a list of read alignments. It is easy to extend this to writing out
all alignments that are in regions below a certain coverage. Also, it is possible to extend the
description above by allowing to attach arbitrary data to each interval and event. Further, it is
not necessary that all events are known before starting processing, but they can be generated by
another process as long as the linear scanning algorithm processes them in sorted order.

Algorithm 2.2: An algorithm for computing the maximal coverage of a multi-read alignment.

Input : events // sorted list of events (p,e)
Output: M < 0 // highest coverage

// initialize counter
m<+ 0

// process all events
for (p, e) in events do
if e = oPEN then
‘ m<+ m+1
else
‘ m<— m—1
end
M = max(M, m)

end
return M

2.2.4 Suffix Trees

The suffix tree is a versatile data structure for representing the structure of a string. A detailed
description and discussion of suffix trees can be found in (Gusfield, 1997, part II). In this section,

19

Chapter 2 Preliminaries

I

Figure 2.3: The suffix tree for the word BANANA.

I give a short description and some simple properties of suffix trees that apply to the contents of
this thesis.

Definition 2.1 (suffix tree (Gusfield, 1997)). A suffix tree for a string S of length ¢ is a rooted
directed tree with the following properties.

e The tree has { leaves numbered 0 to ¢ — 1.

e Each internal node except the root has > 2 children.

e Each edge is labeled with a nonempty substring of S.

¢ No two edges of a node can have edge labels beginning with the same character.

e For any leaft, the concatenation of the edge labels of the path from the root to i exactly spells
out the suffix of S that starts at position i.

To ensure that a suffix tree exists, a non-alphabet character $ is appended to the text. Figure 2.3
shows a suffix tree for the word BANANA. Suffix trees have a wide number of applications, includ-
ing exact and approximate string search. Generalized suffix trees are a variant of suffix trees that
allow to store the sequence of a set of strings. Suffix trees can be represented by different data
structures that improve on the time and memory characteristics of the pointer-based suffix tree
data structure and algorithms building and using it.

20

Chapter 3

Data Preprocessing

The read error correction method FIoNA was developed in collaboration with Marcel Schulz, David
Weese, Victoria Dimitrova, Sijia Niu, Knut Reinert, and Hugues Richard. We presented the method at
the European Conference on Computational Biology 2014 and published it in Bioinformatics (Schulz
et al, 2014):

M. H. Schulz, D. Weese, M. Holtgrewe, V. Dimitrova, S. Niu, K. Reinert, and H. Richard. Fiona: a
parallel and automatic strategy for read error correction. Bioinformatics, 30, 17:1356-63.

My contribution was mainly to the experimental evaluation that was continuously performed during
the development of FIONA. In this chapter, I describe the state of the art in data preprocessing and read
error correction and then focus on the aspects of the experimental evaluation of read error correction.

Modern sequencing machines produce reads in a highly automatized fashion and vendors often
market their technology as “push button” products. Nevertheless, sequencers still perform bio-
chemical experiments and rely on visual or electronic components such as CMOS camera chips
for measuring light intensity signals. Neither are these experiments perfect nor do the visual and
electronic components produce noise-free signals.

The sequencing machines themselves incorporate means to reduce the noise in these signals.
Despite this, the downstream analysis has to deal with errors in the sequencing data (sequencing
errors). In Appendix B, I give a general overview of important sequencing technologies. In this
chapter, Ifocus on the important sequencing technologies from 454/Roche (Margulies et al., 2005),
[lumina (Bentley et al, 2008), and on IonTorrent/IonProton by Life Technologies (Rothberg et al.,
2011).

During sequencing, errors do not occur uniformly at random. Rather, the errors follow certain

21

Chapter 3 Data Preprocessing

platform-specific profiles and there exist biases depending on the used sequencing platform. The
process of determining the base at a position in the read is called base calling. Generally, the
probability of an error increases over time during the sequencing process. Thus, bases called
earlier generally have a lower error probability than those called at a later stage. Furthermore,
the chemistry and other technology used can cause biases in the data.

In the remainder of this section, I give a summary of known error profiles and biases to set the
scene for read data quality control and read error correction described later in this chapter.

In Illumina data, the dominant kind of error are substitutions while indel errors occur at a lower
probability. Dohm et al. (2008) and Quail et al. (2012) found that sequence-dependent errors and
biases are also present in Illumina data. In 454 data, indels are the dominating kind of error and
are caused by calling wrong lengths of long homopolymers (stretches of the same nucleotide).
Gomez-Alvarez ef al. (2009) found that 454 data exhibits biases for reads starting at the same
or very similar positions lead to artificial replicates. Bragg et al. (2013) found that data gen-
erated by IonTorrent machines from Life Technologies also has indels as its dominating error
kind. However, IonTorrent data was found to be more prone than 454 data to deleting existing
homomonopolymers and inserting nucleotides that do not exist in the sequenced molecule.

Ross et al. (2013) compared Illumina, IonTorrent, and Pacific Biosciences data and found biases
depending on GC content (the percentage of G and C in the genome sequence). They report
that Pacific Biosciences data is least prone to such biases, followed by Illumina, then IonTorrent.
The authors conclude that the bias depends on the used chemistry and also changes when the
chemistry is updated.

During base calling, the HTS machines also compute estimates on the probability of a base call
being correct and annotate each base with a quality value. Today, the de facto standard is using
the FASTQ file format (Cock et al.,, 2010) and annotating bases with phred qualities (Ewing and
Green, 1998). Phred qualities are base-wise error probabilities encoded into a printable ASCII
character, originally introduced in the PHRED (Ewing and Green, 1998) base caller for capillary
sequencing. This quality information can be used to ignore low-quality bases in variant calls or
ignore reads that have too many low-quality bases.

Structure of This Chapter. The topic of this chapter are strategies for dealing with erroneous
sequencing data in a preprocessing step. The first step in quality control usually is getting met-
rics summarizing the sequencing data quality. This is eventually followed by removing possibly
erroneous reads or read ends based on read base qualities. In Section 3.1 I describe approaches for
these two steps. It is desirable to detect errors from the raw read data and correct them instead
of removing reads or read suffixes. In Section 3.2 I describe approaches for read error correction
and list some important methods. This includes FioNa, the read correction method that I have
contributed to. In Section 3.3 I discuss methods for the evaluation of read error correction ap-
proaches and in Section 3.4, I give the results of an experimental study of read error correction.
In Section 3.5 I give a conclusion to this chapter.

22

3.1 Quality Control Measures

R rastqQC (= O 55
File Help

bad_sequence.txt | good_sequence_short. bxt

Basic Statistics
Quality scores across all bases (Ilumina »v1.3 encoding)

Per base sequence quality

32 7777111IIIIIIIIIIIIII

Per sequence quality scores |55 miNimimin|n
Per base sequence content [BN
Per base GC content

Per sequence GC content (22 r LU -]

Per base N content

Sequence Length Distribution| 16

1
Sequence Duplication Levels

Overrepresented sequences |1

[RISEST OT OLSEST OT O ool

Kmer Content

L

1 3 S 7 9 11 13 15 17 19 21 23 25 27 29 31 33 I/ I 9

Pasition in read (bp)

Figure 3.1: Bar chart of the per-base quality values for a 40 bp Illumina data set as visualized by
FasTQC.
Source: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

3.1 Quality Control Measures

Read Quality Metrics. In any environment, having a good measure on the quality of data is
the requirement for any profound action to ensure or possibly to improve the quality thereof.
FasTQC (Andrews, 2010) is a popular tool for computing and visualizing summary metrics for
HTS read data. The results produced by this program include statistical values on the distribu-
tion of base quality values for each position in the read, the GC content, content of N (non-called)
bases, and k-mer content shared with known contaminant sequences. Figure 3.1 shows a screen-
shot of the FastQC report window.

FasTQC is a good representative of quality control (QC) tools in that it provides a comprehensive
list of features. Other packages for QC, such as the FAsTX Tooirk1T (Gordon and Hannon, 2010),
provide similar functionality.

Read Trimming, Read Removal, and Contaminant Removal. As mentioned earlier, the
probability for an error increases over the sequencing process and thus along the length of the
reads. This is also visible in the base quality values as can be seen in Figure 3.1 for a set of [llumina
reads.

Isolated errors are not as problematic as multiple consecutive errors (stretches of erroneous bases).
In applications such as de novo sequencing or read mapping, single base miscalls can usually be
resolved using the information from neighboring bases and redundancy in sequenced bases. A
common approach (e.g., as taken by Bolger et al. (2014)) is to detect regions of low quality bases
by using sliding windows of the read and to consider the average quality value in the window.

23

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Chapter 3 Data Preprocessing

Depending on the specific method, the position of the stretch in the read, and the overall read
quality, the read is then trimmed (everything right of and including the low quality stretch is
removed) or the whole read is removed completely from further consideration.

Another source of errors are contaminants, i.e, sequence that is present in the read but not
in the sample of interest. This kind of errors includes the sequence of adapters and barcodes.
Adapters and barcodes are both short sequences at the ends of the reads. They are not part of
the sequenced sample but are attached to the reads for technical reasons. Since the sequence of
adapters and barcodes is known, a search for them can be performed in the reads and the cor-
responding sequence can be trimmed away. Popular tools for read trimming, read removal, and
adapter removal include the FAsTX Toork1T (Gordon and Hannon, 2010), TRiMmMoMATIC (Bolger
et al., 2014), and FLEXBAR (Dodt et al., 2012).

A further example for sample contamination is sequence from the Eppstein-Barr virus that
is commonly used in cell cultures for technical reasons (Laurence et al., 2014). The Univec
database (Kitts et al) contains the sequence of many known contaminants and can be used
for removing reads containing contaminant sequence.

3.2 Read Error Correction Approaches

While the removal and trimming of reads based on base quality is an effective measure, it leaves
undetected and isolated errors remaining in the reads. It would be beneficial to correct these
errors after quality-based read quality control to remove remaining errors or even before so that
less bases need to be removed in QC. In this section, I describe the approaches for read error
correction and their underlying ideas.

Genomes are usually sequenced at a sufficiently high coverage, such that the read data contains
redundant information. The fundamental idea behind read error correction is to use this redun-
dancy for first identifying errors and then correcting them. If the true alignment of the reads
to the genome sequence was known, one could easily identify errors as singular (or very low
frequency) deviations from the other reads overlapping with the erroneous base. However, read
error correction should also work when the reference genome is unavailable.

Note that this fundamental idea is limited to scenarios where low and high coverage can be
used for discriminating between correct and erroneous sequence (Kelley et al, 2010). In the
case of RNA-seq, for example, the abundance of sequence in the sequencing run depends on the
abundance of the sequence in the sample. The abundance of sequence in the sample, however,
cannot be assumed to be uniformly distributed. In fact, in RNA-seq, one is often interested in
measuring the difference in abundance levels. However, the fundamental idea can be applied to
the important cases of exome and whole genome sequencing.

Read error correction is an important topic in sequence assembly. Thus, early assemblers for
Sanger reads include error correction modules based on the two older approaches spectral align-
ment and multiple sequence alignment. For example, EULER (Pevzner et al, 2001) provided error
correction based on spectral alignment and ARACHNE (Batzoglou et al., 2002) uses error correction

24

3.2 Read Error Correction Approaches

based on multiple sequence alignment. Because of the high data volumes, the first assemblers
for short HTS reads relied on the computationally less expensive spectral alignment approach,
e.g., EULER-SR (Chaisson et al.,, 2004). Recently, a new approach based on suffix trees has been
introduced by Schréder et al. (2009) in the context of HTS read correction. Also recently, the
multiple sequence alignment approach has been revived by Salmela and Schréder (2011) for HTS
data.

I close this introduction with the note that there is no common formal definition of a READ-
ERROR-CORRECTION PROBLEM. Rather pragmatically, the aim of read error correction is to obtain
the actually sequenced nucleic sequence from the possibly erroneous reads. Within the imple-
mentation of read correction methods, however, the selection of a specific correction from a set of
candidate correction is often formulated as an optimization problem. Examples are the spectral
alignment problem described below and our formulation for optimal error correction selection
in (Schulz et al., 2014).

In the remainder of this section, I describe the basic idea behind the three approaches.

3.2.1 The Spectral Alignment Approach

A rough approximation of a window over the true read alignment against the reference is to con-
sider the k-mers in the read data set. Assuming approximately uniform coverage of the donor, a
k-mer without an error will in general not be unique since other reads will overlap and contribute
the same k-mer. However, a k-mer that has an error will in general have a very low frequency
or even be unique.

Figure 3.2 shows the k-mer spectra of the genome of E. coli and a 30x Illumina read data set of
E. coli for k = 15. The spectrum shows the abundance of k-mers with a certain frequency. Since
E. coli (Figure 3.2a) has a fairly simple genome with few repeats, most k-mers are unique. When
sequencing without errors and bias, one would expect a coverage of 30x for all unique k-mers.
In contrast, a typical k-mer spectrum for read data sets looks as shown in Figure 3.2b. Uneven
coverage leads to the bell shape to the right (good k-mers). Sequencing errors are unique to one
read or only occur in few reads and thus cause many k-mers with low frequency (bad k-mers).

The first step in spectral alignment-based methods is to find a threshold to separate the k-mers
that have a low frequency (bad k-mers) and are tentatively erroneous from those that have a
higher frequency and are tentatively correct (good k-mers). The second step is then to correct
the erroneous k-mers. Note that the set of good k-mers can contain erroneous k-mers (and vice
versa for the bad k-mers), but they tend to contain mostly correct k-mers (respectively erroneous
k-mers for the set of bad k-mers).

This first step is often solved by using prior knowledge of a sequencing platform’s error profile.
For example, QUAKE (Kelley et al., 2010) and EcHo (Kao et al., 2011) fit distributions to the k-mer
spectrum of the input read data set. These distributions are selected based on knowledge about
Mlumina data which they focus on. Other methods such as BLUE (Greenfield et al., 2014) write
out a histogram for the k-mer coverage similar to the one in Figure 3.2b and let the user select
the threshold manually.

25

Chapter 3 Data Preprocessing

.106)
10° 106 |
— 1.5F 7
9l | -
5t © bad k-mers
=) Q 1 |
= =
e)
s} =]
S 1 = g
e}
< < 05 s
good k-mers
0 “\; ‘ ‘ ‘ 0 IMWWH_WTW\

0 2 4 6 8 10 0 10 20 30 40 50
frequency frequency
(a) genome k-mer spectrum (b) 30x read set k-mer spectrum

Figure 3.2: The k-mer coverage of (a) the E. coli genome and (b) a 30x coverage Illumina read data
set for E. coli. In both cases, k was set to 15. For both (a) and (b), there exist k-mers with higher
frequencies than 10/50 but the = axes were limited to interesting intervals since the abundance of
the number k-mers was very small.

The spectral alignment approach obtained its name from the idea for performing the second step:
by modeling the read error correction problem as a spectral alignment problem. The following
definition follows the one by Pevzner et al. (2001).

Definition 3.1 (Spectrum, T-string). Given an alphabet A and an integer k. A set'I" of k-mers over
A is called a spectrum. A string S is a T-string if all of its k-mers belong to T

Definition 3.2 (Spectral Alignment Problem). Given a string S and a spectrumT', find the minimal
number of substitutions for S such that S becomes a T'-string.

In the setting of error correction, the set of good k-mers is used as 1" and the aim is to update all
reads containing bad k-mers such that each of these reads becomes a T-string. A naive solution
is to enumerate the Hamming neighborhood for each bad k-mer until a good k-mer is found.
However, most modern methods just use the spectral alignment problem as an inspiration and
implement more sophisticated means than a simple Hamming neighborhood enumeration. For
example, QUAKE uses base quality values to guide the correction by base substitution and Ecao
even includes platform specific substitution error biases in its internal statistical models.

Further, practical spectral alignment-based methods often include other heuristics for removing
errors or include additional features that attempt to make the method more suitable for biological
data. For example, QUAKE also trims reads using base qualities and EcHo tries to recognize
heterozygous SNVs from diploid genomes so that they are not treated as sequencing errors.

Note that it is crucial to select an appropriate value for k. Too small values lead to high frequen-
cies just by chance and thus a high noise-to-signal ratio while too large values would make too
many (or even all) k-mers unique. Also, errors in repeat regions are harder to detect. A substitu-
tion error in a k-mer with high frequency might change it to another k-mer with high frequency.

26

3.2 Read Error Correction Approaches

This is more probable for k-mers from repeat regions than from regions with relatively unique
sequence (Kelley et al, 2010).

3.2.2 The Substring Tree Approach

The most recent approach for read error correction is based on substring trees and was pioneered
by Schroder et al. (2009). The tree is built from the reads and their reverse-complements. This
approach is based on the following observation when considering the generalized suffix tree (see
(Gusfield, 1997, p. 116) and Section 2.2.4) of HTS read data sets.

Let each edge of the tree be weighted with the number of leaves below it. Below a certain level,
the tree becomes sparser and the methods following the substring tree approach consider this
sparser region. In the spectral alignment approach, substitution errors lead to k-mers with a low
frequency. In the substring tree approach, there is a similar correspondence: substitution errors
lead to sparse branches while having siblings with a high density. This can be used to detect
substitution errors and there are similar motifs in the tree for indel errors in the reads. Figure 3.3
shows an example. Similarly to the spectral alignment approach, corrections in unique regions
show a stronger signal than those in repeat regions.

After identifying a branch as potentially erroneous, methods following the substring tree ap-
proach perform a local search in the branches of the tree around the error. In the case of
SHREC (Schroder et al, 2009), the read sequence and the neighboring nodes are considered to
select a correction. This correction is then applied to the read sequence and the tree is updated
accordingly.

SHREC (Schréder et al., 2009) introduced the substring tree approach for correcting substitution
errors on [llumina data. Salmela (2010) published an improved version of SHREC, called HYBRID-
SHREC, that works on reads of different length, can correct ABI SOLiD reads, and can also correct
indel errors. This makes the method suitable for 454 and IonTorrent data as well.

Both SurEC and HYBRID-SHREC use the suffix trie data structure. To lower the memory require-
ment, HiTec (Ilie et al., 2011) improves on SHREC by using the suffix array data structure (Gusfield,
1997, p. 149) and also determines more parameters automatically.

FioNA (Schulz et al., 2014) is another recent method for read error correction based on substring
trees. We introduced a criterion for optimal error correction and a statistical framework for
detecting errors. Further, the tool features auto-tuning of parameters which make it easier to
use, an efficient parallel tree traversal to save running time, and uses partial suffix arrays for
saving memory. FIONA is applicable to both Illumina and indel-prone data such as generated by
454 and IonTorrent technology.

3.2.3 The Multiple Sequence Alignment Approach

The multiple sequence alignment approach was originally conceived for Sanger reads. The un-
derlying idea is to compute multiple sequence alignments for similar reads and use them for

27

Chapter 3 Data Preprocessing

frequency = 1 frequency = 4
read with error reads without errors
sequenced reads
y
— N

reference A
v//4
7/
A

Figure 3.3: Example of a substitution error and its effect on the substring tree (shown above) and
the actual read alignment against the reference (shown below, reference in green). The substring
tree is shown schematically as a triangle, the paths through the tree are shown as lines.

Adapted from (Schréder et al., 2009, Fig. 3).

detecting and correcting errors. Recently, it has been scaled to the data volumes of HTS in the
CoraL method (Salmela and Schréder, 2011).

CoraL uses k-mers for rapidly identifying similar reads. The reads are then aligned to each other
and an approximate MSA is obtained by iteratively building the consensus of the reads selected
as similar. Errors are then detected by looking at deviations in alignment columns and also at
the base quality values. The detected errors are corrected using a column’s consensus character.
CoraL supports the correction of both substitution and indel errors and its authors claim that the
method is very flexible and can be applied to future sequencing platforms by “parameter choice
on the command line” (Salmela and Schréder, 2011).

3.3 Read Error Correction Evaluation

Originally, read correction was considered as a preprocessing step for whole genome assemblers.
Similar to the setting of assembly, the evaluation of read error correction is complicated by not
having a perfect ground truth for real data. Each publication describing a read error correction
method contains an experimental evaluation, often using different metrics for the evaluation.
In this section, I give an overview of the evaluation methods found in the literature and an
assessment of the metrics themselves.

28

3.3 Read Error Correction Evaluation

3.3.1 Evaluation Approaches

Simulated vs. Real Data. Earlier studies used simulated data to evaluate the performance of
the read error correction (Kelley et al., 2010; Salmela, 2010; Schréder et al., 2009). The advantage of
simulated data is that the ground truth is known. As in many areas of bioinformatics, simulated
data can be used to complement the evaluation of error correction tools with real data but it
cannot replace it. The error profiles and biases of HTS platforms are complex, as also described
by Dohm et al. (2008) and Quail et al. (2012). Thus, it is disputable how much the performance of
a read error correction method on simulated data correlates with its performance on real world
data.

Downstream Analysis Result Evaluation. One way to circumvent this issue is to subject the
corrected and uncorrected data set to downstream analysis where the result comparison might
be more straightforward.

The studies by Schrader et al. (2009), Kelley et al. (2010), Salmela (2010), and Salmela and Schroder
(2011), pass the corrected and uncorrected read data set to a de novo assembler. The number of
errors in a read data set has an influence on the resource requirements of assemblers and their
quality (Kelley et al, 2010). To measure the influence of the correction on these values, the
authors measure the running time and memory usage of the assembler on the data sets before
and after read correction. Further, they consider common assembly evaluation metrics such as
the N50 score and the number of contigs. The N50 score for an assembly that consists of a set of
contigs is similar to a median and computed as follows. Sort the contigs descendingly by length
and pick the longest contig C' such that the sum of the length of all contigs longer than C'is at
least half the sum of all contigs in the assembly.

Another application of read error correction is before the read mapping step in a variant calling
pipeline. The studies by Salmela (2010) and Kelley et al. (2010) subject the read set before and
after correction to read mapping and (in the second case) the mapped reads to SNV calling. The
authors could show that the read mapper could align more reads and that SNV calling improved
after error correction.

The evaluation of assemblers is a non-trivial task itself (Salzberg et al., 2012). Read mapping
is a simpler problem than de novo assembly but counting alignable reads itself is not an ideal
metric (Holtgrewe et al,, 2011). Thus, the evaluation depends on the quality of the assembly, read
mapping, and SNV calling software. Each of these methods also has means implemented to deal
with sequencing errors itself that might cause further biases in the evaluation (see also (Ilie and
Molnar, 2013)).

Kelley et al. (2010) use two well-known bacterial genomes and reads from one of the bacteria for
the evaluation using SNV calling. While such an evaluation is very useful and interesting, it is
limited to the cases where high-quality genomes are available for two closely related organisms.

Obtaining a Gold Standard by Read Mapping. In the evaluation of their error correction
method RepPTILE, Yang et al. (2010) introduced the gain metric that is explained below in Sec-
tion 3.3.2. This metric requires some ground truth and obtains an approximation thereof by first

29

Chapter 3 Data Preprocessing

aligning the reads from the evaluation to the genome of the same organism or a closely related
one. The reference sequence at the read alignment location is then used as the ground truth for
each read.

On the one hand, this has the disadvantage that the sequenced individual has at least some small
variation with the reference. Thus, the read mapping locations might not be completely correct
and variation will be called as errors remaining in the data in the evaluation. Also, reads that
could not be aligned before correction are subsequently ignored in the evaluation.

On the other hand, a good reference is known for many important organisms. Thus, ground truth
(or gold standard) is easy to obtain. At the time of writing, the gain metric has been established
as the de facto standard metric for the evaluation in read error correction and used in studies by
Yang et al. (2013, 2010), Salmela and Schroder (2011), Schulz et al. (2014), and Greenfield et al.
(2014).

Exact Search of Corrected Read in Reference. Ilie and Molnar (2013) introduced an al-
ternative approach. After correction, the reads are searched for in the used reference genome
without allowing any errors. The authors then report the percentage of reads that could be found
in this search.

While this approach circumvents possible ambiguity problems by read mapping before correc-
tion, it also has its limitations. One limitation is that the reference is taken as an absolute gold
standard and no genomic variation is allowed. This requires a reference genome that is very
close to the sequenced organism. Secondly, only corrections that lead to reads identical to the
gold standard are counted.

Because of these limitations, I do not consider this evaluation approach further below. Instead, I
build the gold standard from the read mapping results as described above.

3.3.2 Evaluation Metrics

In this section, I will first introduce the common metrics from the literature in the case that
only substitution errors are corrected. Then, I extend the definitions to edit distance and discuss
limitations.

Note that the study by Schrdder et al. (2009) counts correct and incorrect reads before and after
correction. While a possibly useful measure for short 36 bp Illumina reads that rarely have more
than two errors, it is of less use for present longer > 100 bp Illumina reads. Thus, I will not
consider it further in this exposition.

Substitution Error Metrics. In read error correction, the ground truth for a read is the true
sequence of nucleotides. This ground truth is used to compute error metrics by computing the
distance between the read and its ground truth. A gold standard for the ground truth can be
obtained by aligning reads against the reference of the organism as explained above. When only

30

3.3 Read Error Correction Evaluation

before correction before correction

referenc: ACGATCTGTACG reference: ACGATCTGTACG
[A O I [T I I I 1|

read: ACGCTCTTTATG read ACGCTOT—--ACG

after correction after correction

reference: ACGATCTGTACG reference: ACGATCTGTACG
[I I O I e |1 S

read: ATGCTCTGTACG read: ACG——CT@TACG

(a) correction of substitution errors (b) correction of indel errors

Figure 3.4: Example of read alignments before and after correction, (a) only in the presence of
substitution errors and (b) also in the presence of indel errors. In (b), the corrected base is circled.

considering substitution errors, Hamming distance is used to compute the errors of the read
before and after correction.

Figure 3.4a shows an example for this. The columns of the alignment after correction have been
assigned a background color based on one of four cases: (1) white for unchanged bases that are
correct before and after correction, (2) gray for uncorrected bases that are incorrect before and
after correction, (3) green for corrected bases that were erroneous before correction but have
been corrected afterwards, and (4) red for introduced errors on bases that were correct before
correction but are erroneous afterwards.

Read error correction methods can be interpreted as classifiers. A changed base is interpreted as
being classified as erroneous, an unchanged base as being classified as correct. Using the gold
standard, one then counts (1) unchanged bases as true negatives (TN), (2) uncorrected bases as
false negatives (FN), (3) corrected bases as true positives (TP), and (4) introduced errors as false
positives (FP). From this, the common statistical metrics sensitivity, specificity, and false discovery
rate (FDR) are derived:

sensitivity = TP /(TP + FN),
specificity = TN/(FP + TN),
FDR = FP/(TP + FP).

Also based on these values, Yang et al. (2010) introduced the gain metric as:

gain = (TP — FP) /(TP + EN).

The counts for TP, FP, and FN are determined over all reads. That is, the gain is the net number
of errors removed, normalized by the sum of the errors before correction.

31

Chapter 3 Data Preprocessing

It can first be observed that (TP — FP) is equal to the sum of the differences of the Hamming
distance between all reads and their gold standard after and before correction. Further, the sum
(TP+FN) can be computed as the sum of the Hamming distance between all reads and their gold
standard after correction. Thus, the gain can be computed from the Hamming distance before
and after correction alone.

Two further useful metrics are the base-wise error rate before and after correction. These metrics
can be computed by dividing the sum of the Hamming distances between reads and their gold
standard by the total number of bases in the read set. It can be secondly observed that the (base-
wise) error rate before correction is (TP + FN)/n where n is the total number of read bases
and the error rate after correction is (FN + FP)/n. Since the difference in error rate before and
after correction is (TP — FP) /n, the gain metric is a summary of the error rates before and after
correction.

Error Metrics in the Presence of Indels. The first observation also holds for edit distance,
i.e., with indel errors present. That is, the gain can be computed from the difference of the edit
distance between reads before and after correction to a gold standard. However, the computation
of the other metrics is not straightforward when indels are present.

Yang et al. (2010) originally used the gain metric in the context of Hamming distance only and
extended it to edit distance in (Yang et al, 2013). Their approach for this is as follows. They
consider the alignment of the read before correction against the reference. For each erroneous
base, they collect a quadruple (p, o, ¢, w) where p is the position in the genome, o is an offset
in gaps in the reference, c is the correct base (the reference base, can be “—” for gaps in the
reference), and w is the wrong base in the read. Algorithm 3.1 computes these quadruple sets.

The sets B and A contain the quadruples for the errors before and after correction. The true
positive count is then computed as | B \ A|, the false positive count as | A \ B|, and the number
of false negatives as |A N B|. The number of true negatives is the number of reference positions
before correction that are neither in A nor in B.

This approach works for the majority of cases. In manual inspection of random alignments before
and after correction, I observed only very few cases where the counting in Algorithm 3.1 yields
incorrect results and correct results otherwise. I found that these cases stem from the following
shortcomings of the counting approach.

First, the error correction method might choose to correct a substitution error towards the ends
of the read by an indel operation. In this case, the true alignment would need to be extended to
the left or to the right in the reference to get an optimal semi-global alignment against the gold
standard mapping location. This problem could be alleviated by aligning the read semi-globally
within an environment of the original mapping location. This in turn would introduce a problem
with the counting described in Algorithm 3.1 in the case that the alignment shifts to either side,
leading to incorrect counts.

Second, even when ignoring such problems of changing begin and end positions of the best
alignment in the reference using edit distance there are ambiguities that can lead to errors. Con-
sider Figure 3.4b. The edit distance before correction is 3 and it is 2 afterwards, yielding a gain

32

3.3 Read Error Correction Evaluation

of 1. Also, only one correction is made (the base is circled before and after correction) but Al-
gorithm 3.1 counts two corrected bases and two introduced errors. This is caused by ambiguity
of alignments with gaps as explained in Section 2.2.1. In this case, it is caused by the alignment
algorithm placing gaps in the second sequence at the rightmost position in case of ambiguities.
For this read and reference, the problem would not appear if the gaps were placed at the leftmost
position. It is easy to verify that reversing both read and reference would lead to a corresponding
case for an alignment algorithm that places gaps at their leftmost position.

The base-wise error rate can be used in the presence of indels without problems. The computation
remains the same, but instead of Hamming distance, the edit distance metric is used.

Assessment of Metrics. Despite its shortcomings, the gain metric is probably the most useful
metric in my judgement since it is simple and thus robust to compute with real data. A number of
high-quality reference sequences for model organisms of various genome length is available to-
gether with real read sets in databases such as the European Nucleotide Archive (ENA) (Leinonen
et al., 2011a). Thus, it is possible to perform a comprehensive benchmark on realistic data using
a robust metric. The base-wise error rates before and after correction give a good impression of
the quality of the raw data and the improvement after correction.

I also find the metrics based on TP, FP, etc. to be useful for estimating whether a method cor-
rects too few errors (undercorrection) or introduces too many errors (overcorrection). As I outlined
above, there are some issues in pathological cases but overall, these metrics should give another
perspective on the performance of a read correction method. The sensitivity describes the per-
centage of corrected errors of all errors and thus is a measure of how well errors are recognized.

Algorithm 3.1: Error counting for alignments of a read R against its gold standard G.

Input : R, G // alignment row for read and gold standard
Output: F < () // error quadruple set

p<0 // position in reference
0+ 0 // offset counter

fori< 0...|R|—1do

if R[i] # GJi] then // include error tuple in result
| E <+ EU(p,o,Rli,G[i])
end
if R[i] = “-” A\ GJi] # “-”then
‘ o—o+1
else // assume that there is no all-gap column in the alignment
pp+1
0+ 0
end
end
return £

33

Chapter 3 Data Preprocessing

The specificity describes the percentage of non-erroneous bases that are left uncorrected of all
non-erroneous bases. Thus, it is a measure for how well non-erroneous bases are not falsely cor-
rected. Since the number of non-erroneous bases is much larger than the number of erroneous
bases, the sensitivity will be very close to 100% in most cases. Two methods will thus only have
a small absolute difference specificity. For read error correction, I thus found the FDR to be a
better substitute for sensitivity. The FDR describes the percentage of non-erroneuos bases in all
modified bases. Thus, it is the percentage of bad corrections.

In recent studies, the metrics based on the downstream analysis are of lower importance. While
giving a more application-driven perspective, they rely on one or more further downstream anal-
ysis steps that make them more indirect. I see their main purpose in showing that read error cor-
rection is important since it improves downstream analysis and the earlier studies cited above
have already established this.

The Program CompuTe-GAIN

Included in the distribution of Fiona (Schulz et al., 2014) is my program ComPUTE-GAIN that
allows to perform the metric computation. As input, it uses a reference FASTA file, the aligned
reads before correction as a SAM/BAM (Li et al., 2009a) file, and the corrected reads as a FASTA
or FASTQ file. Depending on the parameters, the program performs an evaluation employing
multi-core parallelism. CoMPUTE-GAIN supports both Hamming and edit distance using banded
DP alignment.

We implemented the program in C++ using SeqAn (Doring et al., 2008) for aligning reads and
OPENMP (Dagum and Menon, 1998) for the parallelization. By using common file format, it
facilitates experimental studies on read error correction such as the one we performed for (Schulz
et al., 2014) and the one I present in Section 3.4.

3.4 Read Error Correction Results

In this section, I describe the results of an experimental study regarding read correction. This
study extends the one I performed in (Schulz et al., 2014) together with my coauthors. Appendix F
contains additional tables supporting this section.

Evaluation Methods. For the study, I obtained various read data sets for different organisms.
I then mapped the Illumina reads with BWA (Li and Durbin, 2009) and BWA-SW (Li and Durbin,
2010) to the reference genome to obtain a gold standard for gain computation as described in
Section 3.3. I aligned the Illumina reads semi-globally using BWA and then considered semi-
global alignments. For 454 and IonTorrent data, I obtained local alignments with BWA-SW.

I used CoMmpUTE-GAIN for computing the gain and FDR for each corrected read set. The error
rate is not shown in these results since the difference of the base-wise error rate before and after
correction is a linear function of the gain. I used a match filtration schema similar to the one

34

3.4 Read Error Correction Results

in (Yang et al, 2013): I ignore reads where fewer than 30 bases are aligned by the mapper, as well
as alignments with more than 10 edit distance errors or with an error rate of more than 20%.

I ran most the experiments presented here on a server with an 8-core Intel Xeon X5550 2.67 Ghz
processor, having 72 GB of RAM and on Debian Linux 6.0.6. For the largest data set of human
data, I used a machine with 16 physical and 32 virtual cores having 370 GB of RAM.

Used Data Sets. Table F.1 (p. 208) shows details on the genomes used for the evaluation and
Table F.2 (p. 208) shows details of the read sets used in the evaluation. In total, I used 10 references,
their length ranging from 4 Mbp to 2.8 Gbp, including those of bacteria, insects, and human:
B. pertussis (abbreviated as B. pert.), C. elegans (C. el.), D. melanogaster (D. mel.), E. coli (E. col.),
H. sapiens (H. .sap.), P. falciparum (P.falc.), P. syrigae (P. syr), S. aureus (S. aur.), and S. cerevisae
(S. cer). Iused a total of 19 read sets, including short and long Illumina, 454, and IonTorrent data,
their coverages range from 5x to 490x.

Evaluated Read Error Correction Methods. Most tools for read error correction focus on
Illumina data since the prevalent substitution errors are easier to correct. Thus, I chose a subset
of applicable methods for the evaluation of these data sets. QUAKE (Kelley et al., 2010) is a popular
method based on spectral alignment that is fast and has low resource requirements. Ecro (Kao
et al, 2011) is a recent method also using spectral alignment that includes a sophisticated error
model for lllumina data. ALLPATHS-LG (Gnerre et al, 2011) is a popular whole genome assem-
bler that allows the assembly of mammalian genomes with moderate resource consumption. It
includes an error correction module that is efficient and yields good results. The module is also
available as a standalone program and I used it as a representative for a modern read error cor-
rection module from an assembler program. I evaluated CoraL (Salmela and Schréder, 2011) as a
representantive of the multiple alignment approach. I used Hitec (Ilie et al,, 2011) in the evalua-
tion as a representantive of the substring tree approach, just as I used Fiona (Schulz et al., 2014)
here in its mode for Illumina data FioNa-H. Other recent tools are BLUE (Greenfield et al., 2014)
and RackRr (Ilie and Molnar, 2013) that promise fast and efficient error correction.

For indel prone 454 and IonTorrent data, fewer tools are available. I evaluated FioNA in its mode
for 454 and IonTorrent data. I evaluated HYBRIDSHREC (Salmela, 2010) as another representantive
of the substring tree approach. ALLPATHS-LG, BLUE, and CorAL are also applicable to indel prone
454 and IonTorrent data.

Parameter Choice. One of the main problems when applying read error correction tools is
the choice of parameters. I tried to run the evaluated tools with default parameters or to select
parameters guided by the tool authors, i.e, as a practitioner would choose them. This yielded
good results for most tools, with the exception of CoraL and HyBrIDSHREC. Thus, I performed
a search for good parameters for these tools. CoraL yields good results with default parameters
on Illumina so only the results with default settings for this kind of data are reported. For indel
data, I tried several parameters and report the best results as Corar*. For HyBRIDSHREC, the
default parameters did not yield good results, so I report the results tha I obtained when varying
the parameters as HYBRIDSHREC™. Further, I tried to set the from and to level in HYBRIDSHREC as

35

Chapter 3 Data Preprocessing

they were chosen automatically by FioNa and report the results as HyBRIDSHREC!". Tables F.5
(p- 211) and F.6 (p. 212) show the performance of the CorAL and HYBRIDSHREC parameterizations
used for the selection of best parameters. For BLUE, I used the instructions in the manual. I chose
the value for the threshold to be at the first local minimum in the histogram generated by the
TESSEL subprogram. I describe the exact program version and program calls in Appendix D.

3.4.1 Results on lllumina Data

Correction Performance. Table 3.1 shows the gain and FDR value of the corrected reads on
Mllumina data for ArLpaTHs-LG, BLUE, CorAL, EcHo, Fiona, HiTEC, QUAKE, and RACERr. I will
first consider the results in terms of gain value and then consider the FDR.

Overall, ALLPATHS-LG, BLUE, FioNA, and QUAKE achieve the best results and FioNa has a slight
edge on the three other methods. The results of ALLPATHS-LG are most competitive when the
coverage is = 30x. The result quality of QUAKE varies somewhat. Both BLUE and FionA are
competitive on all data sets. CORAL has problems on the C. elegans data set and yields a negative
result. EcHo is competitive on the smaller data sets but has problems with the larger ones and
crashes or runs longer than 24 hours. HiTEc also has problems with larger data sets and requires
more than 75 GB of memory, as does EcHo. RACER yields good results for the E. coli data sets but
creates inferior (even negative) gains on five of seven data sets.

The methods achieve the best results on the E. coli data sets with gain values of up to 99.29%.
There are two possible explanations for this. First, the genome of E. coli is the shortest and sim-
plest considered in these experiments and the lack of many repeats makes correction relatively
easy. Second, the reads used for the evaluation were sampled from the same strain of E. coli
which leads to a relatively low variance between the reference genome and the genome of the
sample organisms.

In terms of FDR, ALLPATHS-LG, and QUAKE are the best methods. BLUE and EcHo also achieve
low FDR values, followed by Fiona. HiTEc and RACER are worst in terms of FDR rates. Again,
the tools achieve the lowest FDR rates on the E. coli data sets which can be explained with the

ALG BLUE CoraL EcHo Fiona HrTeC QUAKE RACER
data set gain FDR gain FDR gain FDR gain FDR gain FDR gain FDR gain FDR gain FDR
C. el (30x) 28.4 4.4 2569 89 —3.752.5 =1 25.2 13.9 -2 17.0 6.0 —88.6 80.4
D. mel. (5x) 32.8 3.7 451 6.3 47.0 9.7 422 4.4 50.3 54 239 29.1 470 1.5 —1.350.8
D. mel. (30x) 32.1 4.2 315 4.0 23.0 23.7 1 314 78 -2 68.0 1.3 18.7 31.6
E. col. (30x) 99.3 0.1 97.7 0.8 914 7.2 91.1 1.9 97.8 1.1 93.2 1.3 95.6 0.1 945 29
E. col. (490x) 98.2 0.1 92.2 0.5 96.0 1.3 -2 98.6 06 938 1.0 88.1 0.1 96.1 2.0

P. syr. (21x) 744 1.2 86.5 1.8 79.6 5.7 91.1 1.2 91.0 46 774 15.3 79.7 1.8 13.1 46.3
S. cer. (22x) 56.0 3.4 66.7 3.6 44.8 209 323 75 58.6 19.9 —23.0 56.9 52.1 3.0 —201.6 79.0

Table 3.1: Read error correction results on Illumina data. Both gain and FDR are shown in percent. The best
metric values (£ 0.1% points) for each data set are highlighted in bold. ALLpATHS-LG is abbreviated as ALG.
! The program ran too long. * The program crashed.

36

3.4 Read Error Correction Results

ALG BLUE CoRAL CORAL* Frona HyBRIDSHREC HYBRIDSHREC!

data set gain FDR gain FDR gain FDR gain FDR gain FDR gain FDR gain FDR

D. mel. (18x) 8.9 58 458 10.6 38.8 12.4 53.3 17.7 65.2 4.6 —279.5 87.2 38.2 7.5
E. col. (13x) 54.5 3.0 77T 2.6 46.9 17.5 51.9 24.3 90.7 2.4 418 224 403 6.0
S. aur. (34x) 23.8 11.0 59.0 10.6 0.0100.0 74.9 16.2 70.3 4.8 9.6 43.3 20.5 7.0
S. cer. (16x) 184 6.9 30.8 5.8 0.6 15.6 3.0 42.2 36.1 9.1 5.5 44.7 23.1 7.3

B.pert. (85x) 40.1 3.1 683 44 0.0128 306 244 73.0 6.0 —235.5 89.8 —9.7 70.1
E. col. (8x) 30.7 3.2 671 62 494171 63.8 183 76.8 81 40.1 252 343 8.6
E.col. (153x) 32.0 184 67.2 41 61.1 254 74.7 197 742 3.4 -241 86.1 0.0 100.0
E.col. (160x) 16.0 11.2 69.9 50 59.716.0 73.7 20.1 81.4 4.0 —18.9 84.7 0.0 100.0
H.sap. (11x)! 11.5 18.0 29.7 29.2 2 -2 63.0 9.2 -2 -2

P.falc. (12x) 21.4 4.6 54.017.0 0.0 157 249 31.7 54.2 182 —51.3 72.5 8.5 30.7
S.aur. (109x) 14.9 7.0 55.5 9.2 02178 56.9 186 65.8 4.0 —134 833 0.3 44.2

Table 3.2: Read error correction results on 454 (top) and IonTorrent (bottom) data. Both gain and FDR are shown
in percent. The best metric values for each data set are highlighted in bold. This table shows the same metrics as
Table 3.1.

! The programs were run on machine with 16 physical and 32 virtual cores and 370 GB of RAM. % Out of memory.

same arguments as the good gain results on such data sets.

Running Time and Memory Consumption. Table F.3 (p. 209) shows the running time and
memory consumption during the experiments from Table 3.1. Remarkably, there is no single
fastest method. BLUE, QUAKE, and RACER each achieve the lowest running time for two or three
data sets. Notably, RACER needs more than six times the running time for the C. elegans data set
than the next slowest method on this data set. ALLPATHS-LG achieves fairly low running time,
without being fastest anywhere. F1oNA is faster than CoraL on more data sets than it is slower
on. Both Frona and CoraL are faster than HiTec and EcHo.

BLUE and QUAKE have the lowest memory requirements, followed by RACER and then by ALLPATHS-
LG. Afterwards, FIonA and HITEC are tied, the CORAL variants require the most memory. The
memory requirements of EcHo and HITEC are moderate for the smaller data sets but the programs
fail to execute on larger data sets because they try to allocate more memory than available.

3.4.2 454 and lonTorrent data

Correction Performance. Table 3.2 shows the results of read error correction on 454 and
IonTorrent data. The results are first considered in terms of gain and then in terms of FDR.

Overall, FiIoNA has the best correction results, only beaten twice by CoraL*. CorAL* always
outperforms Corar. CoraL* and BLUE are the second best methods, each beating the other
on some data sets. ALLPATHS-LG beats CORAL" in two cases, but BLUE is consistently better
than ALLPATHS-LG, the third best tool. HYBRIDSHREC™ only yields good gains for low-coverage
data sets of E. coli. Generally, HyBRIDSHREC! yields better results than HyBRIDSHREC*. Notably,

37

Chapter 3 Data Preprocessing

ALLPATHS-LG, BLUE, and FioNA are the only methods able to process the human data set within
370 GB of RAM, where FioNA shows the best results.

Frona is the tool with the lowest FDR in most cases. However, on P. falciparum, the FDR is four
times higher than the lowest FDR for this data set. ALLPATHS-LG is the next best method in terms
of FDR, followed by BLUE and then by CoraL*. Remarkably, CoraL" is always worse in terms of
FDR than CoraL. The HyBRIDSHREC variants have very high FDR values on some data sets and
competitive ones on other data sets.

Running Time and Memory Consumption. Table F.4 (p. 210) shows the running time and
memory consumption of the experiments from Table 3.2. Overall, ALLPATHS-LG and BLUE have
the lowest memory requirements and are fastest. The next best method in terms of memory
usage is Fiona, followed by the CoraL and HYBRIDSHREC variants. Remarkably, FioNa is faster
than BLUE on the largest H. sapiens data sets.

Discussion

In the experiments described in this section, I used a large number of reference organisms and
read data sets with diverse properties. For the interpretation, I consider the Illumina and the
indel data sets separately. Many methods focusing on substitution errors are not applicable to
indel data sets or the results are different. It is to be noted that a gain of 100% is generally not
possible because of variations between the donor and the reference genome.

For Illumina data, I found that ALLpATHS-LG and FioNa are the best tools in terms of gain. The
spectral alignment based methods BLUE, QUAKE, and RACER have the lowest running time and
memory requirements. ALLPATHS-LG has moderate to low running times and memory require-
ments. BLUE has good results in terms of gain. CoRAL yields relatively good results at a higher
running time than the two fastest methods and competes with Fiona for being the third fastest
tool. EcHo, the tool with the most advanced model of Illumina errors achieves good but not the
best results. Its running time prohibits its use with larger data sets. HITEc also achieves good
results but has problems with three larger data sets. RACER is a fast tool (except on the largest
[lumina data set) but does not achieve particularly competitive results in terms of gain. The FDR
values are lowest for ALLPATHS-LG and QUAKE, followed by BLUE and FIONA.

When low running time and memory usage are most important for a user, ALLPATHS-LG and
QUAKE are good choices for an Illumina error correction tool. Both achieve good running times
and do not need tuning of parameters. BLUE is also a good choice in terms of running time and
quality but requires manual interaction for the choice of the threshold value. In a setting where
more memory is available and running time is not a first priority, FIoNA can be good alternative.

The tools ALLPATHS-LG, BLUE, and QUAKE have a consistently low FDR on [llumina data. Thus,
they can be seen as being very conservative in their corrections. On the other hand, FroNna
achieves very good results with slightly higher FDR values, thus it is a more aggressive correction
tool.

38

3.4 Read Error Correction Results

For 454 and IonTorrent data, I found that Frona is the best choice, yielding consistently good or
best results in terms of gain with consistently low FDR values. When running time is a first pri-
ority, I recommend BLUE for its error correction performance but it requires manual interaction
in setting the value of the parameter k. Another recommendation is ALLPATHS-LG for correcting
some errors in short time and with lower memory usage, but it is not competitive with the best
error correction tools for indel data. CoraL does also achieve good results but high memory
usage and running time together with the problem of parameter choice make it hard to use in
practice and on large data sets.

It remains as future work to improve the specificity of FioNa on Illumina data. This should be
possible and could also make Fiona the single best tool on such data.

39

Chapter 3 Data Preprocessing

3.5 Chapter Conclusion

In this chapter, I described

general sources and properties of errors and biases in sequencing,

base quality values and their application to metrics and quality control,

the basic idea behind read error correction,

the three approaches to error correction (spectral alignment, substring tree, and multiple
alignment based),

different evaluation approaches and metrics,

a benchmark that I used for the comparison of various read error correction methods on a
large and varying input data set, and

the results of the benchmark.

In this chapter, I discussed

different properties of the read correction evaluation approaches as well as their advan-
tages and disadvantages,

properties and shortcomings of counting true positives, false negatives, etc. in the presence
of indels, and

the advantages and disadvantages of the evaluated read error correction methods.

I observed that

counting true positives, false negatives etc. correctly is not possible in some corner cases
because of ambiguities in edit distance alignments,

ArLLPATHS-LG and F1oNA are the best available methods for Illumina read correction, where
A1LrATHS-LG has the lowest resource consumptions,

FI0NA is the best available method for 454 and IonTorrent read correction, with ALLPATHS-
LG and BLUE being good alternatives when time and memory consumption is an issue, and

several methods are less suitable or unsuitable for practical use because it is infeasible to
pick optimal parameters in practice or they are too slow or they have too high memory
requirements.

I conclude that

40

the metric gain is a robust metric that correlates with good correction quality,

the false discovery rate is a good metric for judging whether a method overcorrects or un-
dercorrects and it might be good to prefer more conservative (i.e., undercorrecting) meth-
ods,

3.5 Chapter Conclusion

» Frona and ALLPATHS-LG are the currently best available overall error correction tools.
My main contributions in the area of read preprocessing are

« the discussion regarding corner cases when counting true positives, false negatives etc.,

the comprehensive assessment of current read error correction methods, which enabled

the data-driven development and and tuning of Fiona, and

« devising and implementing the benchmark tool CompPUTE-GAIN that can be of use for fu-
ture benchmarks.

41

Chapter 4

Read Mapping

I developed the read mapping benchmark RABEMA in collaboration with Anne-Katrin Emde, David
Weese, and Knut Reinert and we published it in BMC Bioinformatics (Holtgrewe et al., 2011):

Holtgrewe, M., Emde, A.-K., Weese, D., and Reinert, K. (2011). A novel and well-defined bench-
marking method for second generation read mapping. BMC Bioinformatics, 12(1):210.

The read mapping method RAZERS 3 was developed in collaboration with David Weese and Knut
Reinert and we published it in Bioinformatics (Weese et al., 2012):

Weese, D., Holtgrewe, M., and Reinert, K. (2012). RazerS 3: faster, fully sensitive read mapping.
Bioinformatics, 28(20):2592-2599.

In resequencing pipelines, the step following the read preprocessing is read mapping. Roughly
speaking, given a reference genome sequence for an organism and a set of HTS reads, the aim
of read mapping is finding the sample location in the reference for each read. I give a precise
definition and a discussion of the topic of read mapping later in this chapter.

Read mapping has many applications. These range from variant detection in resequencing projects
of whole genomes (Bentley, 2006) or exomes (Ng et al., 2009) to variant detection in whole popula-
tions (Abecasis et al., 2010; Mills et al, 2011). Other applications include the analysis of metage-
nomic samples (Qin et al, 2010) and interactions of proteins with DNA in ChIP-seq (Valouev
et al., 2008), methylation analyses in epigenetics (Deng et al., 2009), and cancer genome analy-
ses (Campbell et al., 2008).

I limit my considerations in this chapter to reads generated by the HTS platforms described in
the introduction of Chapter 3 and I put the focus on Illumina reads. Generally, these platforms

43

Chapter 4 Read Mapping

generate shorter reads than previous Sanger-based sequencing machines at comparatively higher
error and much higher throughput rates. Because of these different properties and the large
number of possible applications, there has recently been a large interest in the development of
efficient and accurate read alignment software.

Structure of This Chapter. The topic of this chapter is the read mapping problem and its so-
lution. First, in Section 4.1 I give a formal definition of read mapping and discuss the differences
between the problem in the biological application and the formal definition. Then, in Section 4.2
I describe my method RABEMA benchmark for read mapping based on this formal definition.
Third, in Section 4.3 I give an overview of read mapping approaches and some technical prop-
erties of sequencing as it relates to read mapping. This is followed by the detailed description
of RAzERS 3, a fully sensitive yet practically usable read mapper, in Section 4.4. In Section 4.5
I present an experimental evaluation of read mapping software (including RAZERS 3) in which I
also use RABEMA for evaluating the read mapping programs in its formal framework. Finally, in
Section 4.6 I give a conclusion to this chapter.

4.1 A Formal Definition of Read Mapping

The read mapping problem arises for different applications and for different sequencing plat-
forms. Figure 4.1 shows examples for three different cases. Figure 4.1a shows a semi-global
alignment as is usually performed for Illumina reads when aligning them to a reference sequence.
Because of the high error rates towards the 3’ end of 454 reads, they are often aligned locally to
the reference as shown in Figure 4.1b. However, using read trimming, the ends with higher error
rates in 454 reads could be removed before mapping, reducing them to the first case. In the case
of deletions in the donor with respect to the reference or when aligning RNA-seq reads to the
reference, spliced mapping is performed as shown in Figure 4.1c.

I do not mean the list above to be exhaustive but to give an impression about the different variants
and to differentiate semi-global read mapping from other variants. Arguably, the case of semi-
global alignment is the most important one since Illumina reads are most predominantly used in
practice. Also, 454 and IonTorrent reads could be trimmed in the precomputation step such that
their semi-global alignment is possible.

My aim in this section is to give a formal definition for semi-global read mapping. Since I limit the
considerations in this chapter to the semi-global case, I use the term read mapping to exlusively
refer to this case. First, in Section 4.1.2 I will give an intuition of what I consider one match
in read mapping and when I consider two alignments to belong to the same match. Then, in
Section 4.1.3 I will introduce a formal definition for matches in read mapping which allows a
formal definition of the single-end read mapping problem in Section 4.1.3.

Note that in this section I will give a formal definition for and focus on single-end read mapping.
I will give a discussion on an extension of this to paired-end read mapping in Section 4.1.5.

44

4.1 A Formal Definition of Read Mapping

>
>

(a) semi-global read alignment

\ 4

(b) local read alignment

>
---- >

(c) spliced read alignment

Figure 4.1: Three examples of different kinds of read alignments: (a) semi-global read alignment
as in the case of Illumina reads against a reference sequence, (b) local read alignment as in the case
of unprocessed 454 reads, and (c) spliced read alignment as is the case of aligning RNA reads to a
reference, for example. The sequence is shown in green while the aligned parts reads are shown
in blue and the unaligned parts in gray. Unaligned sequence is shown in gray while gaps between
splicing points are shown as dashed lines.

4.1.1 Differences to Solving the Biological Problem

Before describing the formal definition for read mapping, a discussion regarding solving the
biological problem is in order. Actually, it is desired to find the corresponding sample location in
the reference for each read. However, solving this problem is challenging and it is not possible
to find the correct solution in every case.

First, many genomes contain repetitive sequence, i.e., DNA stretches that occur a second time
with few errors or even perfectly (recent estimates as the one by de Koning et al. (2011) give
50-69% of the human genome as repetitive content). Thus, a read may align equally well to more
than one position leading to ambiguity in read mapping. Such repeat regions cannot be simply
ignored. For example, the simple repeat region 6,534,027-6,534,174 on chr. 19 of the human
genome (build hg19) overlaps with gene TNFSF9, and Sokol and Atagun (2010) state that “there
are known disease genes in this range”.

Second, there are differences between the donor and the reference (in resequencing, these vari-
ants are what biological practitioners are after) and the sequencing process itself introduces er-
rors and thus differences to the reference genome. This requires read mappers to search reads
approximately in the genome, which can lead to finding many more alignments for a read. Some
read mappers such as Bowtie (Langmead et al., 2009) and BWA (Li and Durbin, 2010) try to in-
corporate base quality values into their mapping considerations and prefer mismatches of low-
quality bases over those in high-quality bases. However, David et al. (2011) found that this can
mislead such read mappers in the presence of SNVs and indels since they are mistaken for se-
quencing errors. Here, quality-aware read mappers can be misled by high-quality bases. Such
read mappers often do not align a reads at locations overlapping with SNVs but with those ex-
plainig mismatches with lower qualities.

Thus, all authors of read mappers make some assumptions about the underlying chemistry and

45

Chapter 4 Read Mapping

biology. These assumptions are then (at least) implicitely formalized by writing a program and
optimizing for some criterion. To the best of my knowledge, the formal definition for single-end
read mapping that I give below is the only formal definition of the read mapping problem at the
time of writing. In particular, my definition provides a formal criterion for a read mapper being
fully sensitive or not. I published it together with my coauthors in (Holtgrewe et al., 2011).

The biological problem cannot be solved directly. Thus, such formal models are only useful if
they closely model the relevant parts of the biological problems, especially if it is then possible
to check for the quality and possibly optimality of a solution.

4.1.2 An Intuition for Read Mapping Matches

A possible definition of read mapping is as follows. Note that I will replace some of the definitions
given in continuous text further down in highlighted Definition sections. Given a reference se-
quence G, a read sequence R, a distance function ¢, and a maximal distance d. The term 6(g, R)
assigns a numeric distance value to an infix g of G and the read R. The domain of ¢ defines
whether its two arguments must have the same length (as in the case of Hamming distance) or
whether indels are allowed in the alignment of R to G. Note that ¢ could also be the score of a
general alignment (e.g., using a SMITH-WATERMAN score) but I do not explore this case further
and limit my considerations to Hamming and edit distance.

For each read R, the task in read mapping is to find a set of matches of R in G. The precise
definition of the term match is surprisingly involved and I will give it in Section 4.1.3. For now,
let a match be a location in the reference where the read was aligned. A feasible match is a match
where the read aligns with distance < k. The task could then be to find all feasible matches for
a read in the reference genome.

The difficulties for defining the term match arise when trying to decide when two close align-
ments belong to distinct matches and when they should be considered to belong to the same
match. The taken approach for this decision will fundamentally influence the definition of the
term match.

Alignments Beginning or Ending in Reference Gaps. First of all, I exclude alignments
beginning or ending in reference gaps in their semi-global alignment from all subsequent con-
siderations. Such alignments can always be replaced by ones with the same or a smaller distance
by aligning the first or last base to the reference. Figure 4.2 shows an example. Aligning the last
base of the read against the reference base after the gap would preserve the edit distance of 1. If
the next base was C instead of A, the distance would decrease from 1 to 0.

When Do Two Alignments Belong to Different Matches? Figure 4.3 shows possible align-
ments of a read against a reference. Consider the case where the best two matches of the read
against the reference are to be found with a distance of up to 3. The row alignments shows two
alignments of the read to the reference sequence that somehow “naturally” belong to two dis-
tinct matches. The alignments in the rows x and %x have a lower edit distance than the right

46

4.1 A Formal Definition of Read Mapping

referencee CCAGCG-AGAT

| | |
read: GCGZC

Figure 4.2: A semi-global alignment of a read to the genome ending in a gap.

reference CAGACTCCCAACTGTCA ...CAGACTCCCCCCAACTCCA
alignments TCCCAAC TCCC—-—-——-—AAC

* T-CCCAAC

ok TCCCAA-C

Figure 4.3: Alignments of the read TCCCAAC against two locations in the reference sequence.

match from the row alignments. Common sense tells that the alignments in the left column are
not “significantly different”, though: each alignment with distance k& induces alignments with
distance of < k + 2 by aligning the leftmost/rightmost base one more position to the left/right
and introducing a gap. Note that for the sake of simplicity, the figures in this section use reads
that are shorter and a higher error rate is allowed than usually found in practice (where reads
are mostly > 36 bp and a base-wise error rate of < 2% is observed for Illumina reads).

Repeats are another issue. Figure 4.4 shows two tandem repeats (with long period in Figure 4.4a
and with short period in Figure 4.4b). In the case of the long period, intuition identifies the two
distinct alignments shown in Figure 4.4a. In the case of the short tandem repeat, enumerating
repeats as for the long repeat would lead to the six distinct alignments shown in Figure 4.4b.

However, using such a counting scheme for matches would require a read mapper to find many
alignments in repeat regions. This is not desirable for two reasons. First, a lot of time and mem-
ory would be spent for finding many very similar alignments. Second, when counting matches
in benchmarks, reads from short tandem repeat regions would get a higher weight with this
counting scheme than reads from long tandem repeat regions or from non-repetitive regions.
Weighting each found match with 1/n (where n is the number of positions the read aligns at) is
deficient as well. It is preferable to find a way to naturally merge similar alignments into matches
(e.g., the one from the left column of Figure 4.3) and merge matches that are very close to each
other (see also Figure 4.4b) as well as to create separate matches for alignments that are sufficiently
distinct (see also Figure 4.4a).

The Definition of Trace Trees. Consider a dynamic programming (DP) matrix for semi-
global alignment (see also Section 2.2.1). Each such alignment corresponds to a path from the top
row to the bottom row. Horizontal and vertical movements between cells correspond to indels,
diagonal movements to matches and mismatches. Standard DP alignment algorithms yield the

47

Chapter 4 Read Mapping

CGACCCACCACGACCCACCACGACCcACCA

CGACCCACCACGACCCACCA
CGACCCACCACGACCCACCA

(a) longer period
CAACAACAACAACAACAACAACAACAA

CAACAACAACAA
CAACAACAACAA
CAACAACAACAA
CAACAACAACAA
CAACAACAACAA
CAACAACAACAA

(b) shorter period

Figure 4.4: Examples for alignments of reads from tandem repeats with (a) longer period and (b)
shorter period. In the reference, the repeated copies are highlighted in alternating shades of gray.

smallest distance for each alignment end position. From an end position, the start position(s)
can be found by performing a traceback search backwards and upwards in the matrix as outlined
in Section 2.2.1. Given a value for k£ and an end position, all start positions yielding a feasible
alignment can be computed by enumerating the traces.

In these considerations, only deterministic DP algorithms are of interest, i.e., those that always
perform the same choice in case of ambiguities. For example, having the choice between moving
vertically, diagonally, and/or horizontally, such an algorithm could always take the rightmost
choice. In this case, the preference in movements is (in descending order) vertical, diagonal, and
horizontal. The NEEDLEMAN-WUNSCH algorithm is an example of a deterministic DP alignment
algorithm. When plotting the traces for all feasible alignments, this yields a picture as shown in
Figure 4.5.

The Simpler Case of Hamming Distance Alignments. A simple observation when consid-
ering the alignments in the case of Hamming distance is that each alignment unambiguously
corresponds to exactly one diagonal in the alighment matrix. Thus, using the Hamming distance
model, the term match for R in read mapping can be defined as an interval of G of length |R).
Since the length is fixed, Hamming distance match can be identified with either begin or end
position. For consistency with the match definition for edit distance below, I identify Hamming
distance matches with their end position.

Identifying Matches With Alignment end Positions. Considering all combinations of start
and end positions is not desirable for edit distance. In Figure 4.5, there are 5 X 6 = 30 such
alignments in the green tree alone, possibly many feasible ones. Other means have to be used
for counting matches in the case of edit distance.

48

4.1 A Formal Definition of Read Mapping

TCCCCTTTCCTTCCTTCTCTCCCTTCTCCTCCCCC

\% reference

0000000003994

read

86 767605646386
*

Figure 4.5: Two neighboring trace trees for R = TTTTCGTTCTCTCCCCTCT in the reference G =
TCCCCTTTCCTTCCTTCTCTCCCTTCTCCTCCCCCCATCTCCA. The numbers below the cells at the bottom
show the edit distance of the alignment.

I observe that for alignments with a relatively low distance, the shared trace is often longer than
the branching parts. This means that large parts of the alignment are the same and differing
alignments can have the same distance. To avoid counting these as separated matches, I proceed
as follows. Each match is identified with its end position e. The leftmost start position s that
leads to an alignment of minimal distance is chosen as the canonical start position. The choice
of s as the canonical start position is arbitrary. Picking the leftmost such position, however, has
the advantage that the interval between s and e contains the start positions of all alignments of
minimal score ending in e. In the example from Figure 4.5, this reduces the possible number of
matches for the green tree from 30 to 6.

Error Landscapes. Using the definitions above, I now introduce the term error landscapes to
capture the intuition of the definition of a match that I will formalize further in Section 4.1.3.
Given a read R and a reference sequence G. I define the function d to assign a distance value
to each genomic position p, such that d(p) is the distance of the best alignment of R ending in
p. Plotting and connecting the points (p, d(p)) for each position in G, yields a curve that can be
interpreted as a two-dimensional height profile of a landscape as shown in Figure 4.6a.

Now, imaginary ground water rises in the landscape to a level of k£ + 0.5. This is shown in
Figure 4.6b. In this example, this yields four lakes. Each lake represents a class of alignments
with sufficiently low distance. The metaphor of the landscape with lakes corresponds to the
natural merging of similar alignments.

49

Chapter 4 Read Mapping

s
=
p
(a) before smoothing, without water
=
=
p

(b) after smoothing, with water

Figure 4.6: Example of the error landscape (a) before smoothing, without water and (b) after smooth-
ing, with water. The end position is plotted on the horixontal axis, the distance is plotted on the ver-
tical axis. In (b), the raised ground water is shown and the separating alignment has been smoothed.
The point between the lines marked in red is a separating position as described in Definition 4.4.
The read and reference used is the same as for Figure 4.5 but with a larger portion of the repeat from

this figure.

Each lake corresponds to a possible match and its lowest point corresponds to the distance of
this match. Each match corresponds to an interval on the genome and all alignments ending
in this interval are counted as belonging to the match. When building a gold standard for read
mapping, these intervals are the matches that are to be found and a read mapper is expected to

find one alignment ending in each match interval.

Landscape Smoothing. In the description of error landscapes above, I left out the detail of
landscape smoothing. When using k = 6, the marked (%) position from Figure 4.5 separates two
lakes left and right of it. However, I wrote above that alignments sharing a part of their trace
should belong to the same match. Thus, this position has to be smoothed away to the larger

neighboring lake level as shown in Figure 4.6b.

50

4.1 A Formal Definition of Read Mapping

4.1.3 A Formal Match Definition

Let GG be a reference sequence of DNA5 characters and R be a read sequence over the same alpha-
bet. Further, let a and b be positions on the reference representing semi-global read alignments,
that is they are end positions of read alignments, w.l.o.g., a < b. As described above, the longest
alignment is considered for each end position, i.e., the alignment with the leftmost start position
and best score for the given end position. These alignments are identified with their end posi-
tions and the two terms are used interchangeably. Let k be the largest allowed distance and §(a)
the edit distance of an alignment a.

In the following section, I will define the neighbor, trace, and k-trace equivalence relations. To-
gether, they allow to define match equivalence. 1 will give proofs that each of the equivalence
relations is well-defined. Because of the assumption that a < b, I do not prove symmetry below
but this can easily be derived by the exchange of roles between a and b.

Definition 4.1 (feasible alignments). An alignment a is feasible if §(a) < k.

Definition 4.2 (neighbor equivalence). Two feasible alignmentsa, b are neighbor equivalent (¢ Nb)

if0(x) < k holds for all x witha < z < b.

Proof that N is a well-formed equivalence relation. The reflexivity of N follows directly from the
definition. Let a, b, ¢ be alignments, w.l.o.g. a < b < ¢. Now, let a/Nb and bN c. Since b is feasible
as well, 0(z) < k holds for all a < z < cand N is an equivalence relation. O

Definition 4.3 (trace equivalence). Two alignments a, b are trace equivalent (aT'b) if their traces
share a part. It is easily observed that a and b are trace equivalent if their canonical start position is
the same.

For example, for & = 6, the second and fourth alignment in Figure 4.5 from the blue tree are
trace equivalent but not neighbor equivalent. In the same figure, the last alignment of the blue
tree and the first match of the green tree are neighbor equivalent but not trace equivalent.

Observation 4.1. When two positions a, b are trace equivalent then they are also trace equivalent
toallz witha <z <b.

Any canonical trace from & must cross the canonical traces from a or b. Therefore, the canonical
alignment for x must have the same canonical start position s.

Proof that T' is a well-formed equivalence relation. Reflexivity and transitivity follow directly from
the definition of the trace. O

Definition 4.4 (separating position). Given two alignments a,b. A separating position (or sepa-
rating alignment) (is a position with §(¢) > k and there exists a, § with « < (< [such that
§(a) < kand§(B) < k.

51

Chapter 4 Read Mapping

Definition 4.5 (k-trace equivalence). Two alignments a,b are k-trace equivalent (a Kb) if one of
the following holds: (1) the alignments are feasible, neighbor equivalent, and trace equivalent, or
(2) there exist feasible, trace-equivalent alignments o, 3, and a separating position (, such that
a<a<(<b<p

Proof that K is a well-formed equivalence relation. Reflexivity is easy to see in both cases (1) and
().

For transitivity, a case distinction is performed. Given a71'b and bK c. There are now four cases,
depending which case (1 or 2) holds for the left and right relation.

Case (1, 1). The transitivity follows since a/Nb and bN ¢ holds.

Cases (1, 2) and (2, 1). 1 show the proof for case (1, 2), case (2, 1) follows analogously. a, b are
feasible, neighbor equivalent, and trace equivalent. For b, ¢, there exist feasible, trace equivalent
matches «, 8 and a separating match ¢ such that « < b < (< ¢ < 3. Because of Observation 4.1
and o < b and aT'b, a and « have to be trace equivalent. Transitively, a and 3 have to be trace
equivalent. « is feasible and can take the role of « from before: a« < a < (< b < [and thus
transitivity is shown.

Case (2, 2). For a, b, c exist feasible matches «, 3, @/, 8’ and separating matches ¢, ¢/, such that
a<a<({(<b<B,andd/ <b< (' <c<pf.Itfollowsthata <a<(<b< (' <c<f
and thus @ < a < ¢ < ¢ < . a and 3 are trace equivalent; the same holds for o/ and f'.
Because of Observation 4.1 and o/ < f3 it follows that « and 3’ have to be trace equivalent, too.
Thus, of k-trace equivalency holds for ¢ and c in the case of (2). O

Definition 4.6 (match equivalence). Two matches a,b are equivalent (a = b) if there exist { > 0
feasible connecting matchesa < m; < ... < my < b such that:

(aTmy VaNmy) A ... A (mi—1Tm; Vimi_1Nm;) A... A\ (mgTh A\ mygNb).
For ¢ = 0, two matches are equivalent if aTb V aNb.

The motivation for the disjunction in the definition of match equivalence is to join neighboring
k-trace equivalence classes/intervals when being directly adjacent to other k-trace equivalence
classes or overlapping with neighbor equivalence classes. Such intervals/classes I, J (w.l.o.g.
I left of J) are (in some sense) minimally joined by the rightmost match of I being neighbor
equivalent to J or by the overlap.

Proof that = is a well-formed equivalence relation. Reflexivity follows from the case where k = 0.
Transitivity for a = b, b = c follows from using b as a connecting match if it is feasible. If b is
not feasible then there exist feasible matches, «, § that are trace-equivalent to b and they can be
used as connecting matches. O

52

4.1 A Formal Definition of Read Mapping

Definition 4.7 (read mapping match). The match equivalence relation creates a partition on the set
of all positions of G. Each of these partition entries is a distinct read mapping match consisting of
match equivalent alignments. The distance 6(m) of a match m is defined as 6 (m) = mingep, d(a).
A match is feasible if it contains a position with a feasible alignment.

4.1.4 A Formal Definition of Single-End Read Mapping

In the previous section, I gave a formal definition of a match in single-end semi-global read
mapping. Using this definition, I can now give formal definition of several variants of the single-
end read mapping problem.

Definition 4.8 (ALL-MAPPING). Given a reference GG, a read R, and a maximal distance k, the ALL-
MAPPING problem is defined to find at least one alignment for each match from the set of all feasible
matches M.

Definition 4.9 (match stratum). Foreachd =0, ...k, the stratum S, of matches for R in G is the
subset of matches in M that have distance d. Formally:

Sq := {m € M such that §(m) = d}.

This definition of a match stratum is similar to the one introduced in the manual of Bowtie (Lang-
mead et al., 2009).

Definition 4.10 (ALL-BEST-MAPPING). Given a reference G, a read R, and a maximal distance k,
the ALL-BEST-MAPPING problem is defined to find at least one alignment for each match from the
stratum with the smallest distance.

Definition 4.11 (ANY-BEST-MAPPING). Given a reference GG, a read R, and a maximal distance k,
the ANY-BEST-MAPPING problem is defined to find at least one alignment for one match from the
stratum with the smallest distance.

4.1.5 Single-End Versus Paired-End Mapping

Above, I limited the considerations to single-end mapping. Another important variant of read
mapping is paired-end mapping. Paired reads are generated by a different protocol when se-
quencing.

The general approach underlying most sequencing protocols is to first isolate the DNA from the
sample that is to be sequenced. The DNA is then sheared, i.e., split into smaller fragments (also
called templates). For example, in the popular paired-end protocol by lllumina, these fragments
have a size of 200-500 bp (in the popular mate-pair protocol by lllumina, the fragment size ranges
from 2000 to 3000 bp).

Depending on the protocol used, the templates are then sequenced from one end or from both
ends. In the case of single-end sequencing this yields a single read and in the case of paired-end

53

Chapter 4 Read Mapping

sequencing this yields two reads whose relative orientation is known. In the case of the lllumina
paired-end protocol the reads are inwards-facing (in lllumina’s mate-pair protocol the reads are
outwards-facing).

The fragments generated prior to sequencing are not generated to all have the same length.
Instead, the used biochemical technique leads to random sizes. The fragments are then size-
selected. Often, the technique gel electrophoresis is used to distribute the fragments spatially
depending on their mass (and thus size). Afterwards, the person preparing the sample selects
an area from the gel that presumably contains fragments of desired size. Often, this makes the
template lengths roughly follow a normal distribution with approximately known parameters.

Paired reads have interesting and important properties for variant detection that I will explore
further in Chapter 5. Here, however, I will only consider them in the context of read mapping.

Thus, an expected template size range can be part of the input when performing read mapping.
Consequently, a read mapping program could be limited to only return pairs of matches for pairs
of reads such that their template inferred from the alignment lies within the expected range.

However, such a read mapper could not possibly map all paired reads spanning breakpoints of
structural variation. For example, consider the case of a read pair with template size of 500 bp
that is expected to have a template size between 400 and 600 bp but spans a deletion in the donor
of 200 bp. In this case, the template size when mapping is 700 bp and the read mapper would
ignore it.

Also, consider the following case where the expected template size is between 400 and 600 bp
as well. Let one read align uniquely with distance 0 to the reference. The other read has two
alignments, one leading to an inferred template size of 400 bp with distance 0 and one to an
inferred template size of 500 bp with distance 2. It is unclear which alignment of the second read
is to be preferred.

Thus, mapping pairs of reads leads to a two- or even multi-dimensional optimization problem.
There is no clear objective function for combining the inferred template length and alignment
distances of two read alignments. It follows that it is infeasible to create a generally useful defi-
nition of paired-end matches and paired-end read mapping.

However, my formal definitions above allow for the evaluation of a read mapper’s capability to
solve the core read mapping problem: finding alignments for single reads. Paired-end mapping
can be interpreted as finding and combining single-end alignments into paired alignments. Thus,
I argue that the formal definition is also useful for paired-end mapping to combine the definition
of matches with other criteria for specific formal definitions of paired mapping. Also, when a read
mapper’s performance for single-end mapping is bad, this is a good indicator that its performance
for paired-end mapping is not optimal either.

4.2 RABEMA — A Method for Benchmarking Read Mappers

The formal definition of read mapping matches in Section 4.1.3 and the formal definition of read
mapping in Section 4.1.4 originally appeared in (Holtgrewe et al., 2011). I developed the for-

54

4.2 RABEMA — A Method for Benchmarking Read Mappers

mal framework for the method RABEMA, the Read Alignment BEnchMATrk, together with my
coauthors, and wrote the software package implementing the method. This method allows the
comparison of read mapping methods based on the well-defined definition of read mapping. We
developed it to solve problems with the common approaches of read mapping benchmarks.

Many authors of read mapping software count aligned reads when comparing their mapper with
existing approaches and call the fraction of mappable read the mapping efficiency. This only
allows for a rough estimation of the quality of a read mapper since some read mappers such as
BowrTik (Langmead et al., 2009) treat non-called characters (N in the read) as wildcards. Such read
mappers will align more reads with N characters than read mappers always counting N characters
as mismatches such as BWA (Li and Durbin, 2009).

Additional care has to be taken when counting uniquely matching reads. If a read mapper does
not have full sensitivity then it could miss a possible second match and report a non-unique
match as a unique one. Another read mapper could find both matches and discard the read
as non-uniquely mapping. In such an evaluation, a less sensitive read mapper gets a higher
rating when not controlling for this. To solve this problem, the set of reads reported as uniquely
mapping has to be compared to the reads discarded since they are not aligning uniquely. One can
then compute a set of false positives and report this number as well. This comparison is rarely,
if ever done. Also, when no read mapper with full sensitivity is used, this set of false positives
can only be seen as an approximation since the ground truth is not available.

Further, a definition of “full sensitivity” requires a formal definition of the read mapping problem
as first given in the paper introducing RABEMA.

4.2.1 Gold-Standard Generation

The first step when using RABEMA is to build a gold standard, consisting of the equivalence
classes resulting from the match equivalence relation. RABEMA uses error rates instead of error
counts to make the method also applicable in the case of using reads with varying length (e.g.,
for IonTorrent or 454 reads or when using trimmed Illumina reads). Consequently, RABEMA also
defines the term strata and read mapping in terms of error rates and not error counts. I only
consider Hamming and edit distance for RABEMA. The error rate percentage of a read alignment
is computed as [100 - ¢/¢| where ¢ is the length of the read and & is the number of errors in
(distance of) the alignment. For each read, the gold standard consists of a set of intervals on the
genome sequence for each stratum Sy, . . . , S, where e is the largest allowed error rate in percent.

For each read, the gold standard is generated from a set of alignments for this read given as
the input and a maximal error rate e. The generator then takes each alignment and performs
an online string search around the position to first build the error landscape and then create
the intervals representing the matches. The maximal error rate e is used for limiting the string
search. The search to the right can be stopped if a position is reached where the corresponding
alignment has an error rate greater than e and the alignment’s start position is different from
the start position of the previous alignment with an error rate <e. In this case, the interval is
trimmed to the rightmost point with error rate < e. The search to the left is handled accordingly.
The online string search uses the bit-vector algorithm by Myers (1999b).

55

Chapter 4 Read Mapping

The program building the gold standard expects the read alignments to be sorted by coordinate.
This allows an optimization in the computation for redundant matches. By keeping the last
found interval in memory for each read, alignments of a read are ignored if they end within the
interval or left of it. In this case, the gold standard builder has already generated an interval for
corresponding match. The resulting file contains the gold standard intervals (GSI) ordered by
read name. For each read and error rate stratum, the file contains entries with the begin and end
position of the intervals for all matches of the read in the stratum.

There are two modes of operation when generating a gold standard:

oracle mode In the case that the one true alignment is known for each read, as is the case
when simulating reads, the user can provide a gold standard alignment file (in SAM or
BAM format (Li et al., 2009a)) for the read set. The gold standard will then be built as one
match interval for each read. The interval will be extended by setting e to the error rate of
the alignment in the gold standard alignment file.

real-world mode For real world data, the user can provide a gold standard alignment file (again
in SAM or BAM format) generated by a fully sensitive read mapper. The maximal allowed
error rate e is another input parameter to gold standard generation. The gold standard will
then be generated by extending each alignment with the given e and any duplicate match
caused by redundant alignments will be removed.

Our read mapper RAZERS 3 (Weese et al., 2012) is an example of a practical, fully sensitive read
mapper for edit distance and is used in the evaluation presented in this thesis. In addition to the
parameters mentioned above, the user can also specify whether to build the gold standard for
edit or Hamming distance.

4.2.2 Read Mapper Result Comparison

Of course, RABEMA also provides a program to compare the GSI file with the result of a read map-
per. The read mapper result is given to the comparison program as a SAM or BAM file, sorted by
read name. The program then compares the read mapper result according to its parameterization.

Besides the used metric (edit or Hamming distance) and the maximal error rate e, the user can
configure whether to compare in the oracle or the real-world mode, the maximal error rate the
gold standard was built for, and select one of the read mapping problem variants to perform the
evaluation for.

In the real world mode, the user can compare between benchmarking for the ALL-MAPPING, ALL-
BEST-MAPPING, or ANY-BEST-MAPPING problem. The program will generate a report that also
breaks down how many of the required matches in each stratum are found by a read mapper.
This allows to see how well a read mapper performs for reads that align with a low error rate in
comparison to those that align with a high error rate.

It is important to choose the same error rate in the evaluation and when mapping reads as the one
the gold standard was built for. If a lower error rate is chosen when building the gold standard
than in the evaluation, this can lead to problems. In this case, error landscape lakes that appear

56

4.2 RABEMA — A Method for Benchmarking Read Mappers

distinct at lower error rate when building the gold standard might be joined with the higher error
rate in the read mapper. Consequently, a read mapper might only return one match in such a
case where the evaluation would expect one match for each of the two lakes that it sees.

In the oracle mode, the evaluation program simply counts the number of reads in each stratum
for which the alignment was found. A read is assigned to the stratum of its GSI entry.

4.2.3 A Peculiarity with Reverse-Strand Matches

I observed that there is a peculiarity with this definition when searching for reverse-complemented
reads or reads on the reverse strand of the reference sequence. An example for this is shown in
Figure 4.7 for k = 5. Because of the asymmetry of the search (forcing the alignment to end at
each position while choosing the best begin position), there are two lakes in the first case but
only one lake in the second case. Note that there is a truly separating alignment in Figure 4.7a,
the alignment with distance 6 (x). The alignments in the lake left and right of it are equivalent.

When building the gold standard, one can search for the reverse-complemented reads in the orig-
inal reference sequence or search for the original reads in the reverse-complemented reference
sequence. Depending on this choice, there might be more or less equivalence classes. In practice,
I observed very few differences, mainly in low-complexity repeat regions and with very long
(e.g., 454) reads only.

For RABEMA, the gold standard is built using RAZERS or RAZERS 3. Both RAZERS versions reverse-
complement the reference sequence because this is computationally more efficient for its ap-
proach. The situation from Figure 4.7a might occur at some place. A read mapper that reverse-
complements the reads (index-based read mappers such as BowTie and BWA do so) will only see
one lake, as depicted in Figure 4.7b.

However, since this almost only occurs in low-complexity regions and the number of occurrences
is small, the arising difference of results will be neglegible. Furthermore, such read mappers can
easily implement a special benchmark mode that reverse-complements the reference sequence
instead of the reads. This might come at a higher computational cost but can then be used to
assess the sensitivity and verify that the bias against the approach of reverse-complementing the
contigs is small. For measuring computational costs, the normal mode can be used.

Note that one has to choose whether to reverse-complement the reads or the reference sequence.
Each decision would slightly bias towards the chosen approach. I chose to reverse-complement
the reads since this is the approach in RazerS and RAZERS 3. These tools were used for generating
the gold standard read alignments since they were the first fully sensitive read mappers.

4.2.4 Possible Extensions to RABEMA

While RaBema offers comprehensive benchmarking for the read mapping problem as formalized
in this Section 4.1.4, there are various possible extension in the future.

57

Chapter 4 Read Mapping

NNNAGTAGTNNNAGTCGTNNN

\ reference

HOoOrPrHOP>HOX

read

6 6 5333345356444 4
*

distance T T e

(a) forward strand

NNNACGACTNNNACTACTNNN

NCrCHCC

77 6 4444535553333
*

distance w

(b) reverse strand

HOPHOPA30 >

read

Figure 4.7: This figure shows a peculiarity with matches on the reverse strand. (a) shows the align-
ment of a read on the forward strand and (b) shows the alignment of the reverse-complemented
read sequence on the reverse-complement of the reference. Depending on whether the reference
sequence or the reads are complemented, there might be an infeasible alignment that separates two
match classes. Thick lines correspond to matches whereas thin lines correspond to mismatches or
indels.

First, one could consider to include different scoring schemes for matches. Read mappers such as
BWA use NEEDLEMAN-WUNscCH alignments for weighting matches, mismatches, and gaps differ-
ently in the alignment and also incorporate quality values in the alignment. Read mappers such
as BOwTIE separate their alignments into strata depending on the edit distance and then use
base quality values on matching and mismatching bases to select a best alignment. Such scores
could be supported by RaBEMA as well: using a sufficiently large e for creating a gold standard

58

4.3 Read Mapping Approaches and Methods

mapping will find all biologically sensible alignments. When building the gold standard, the gen-
erated matches could be weighted using scoring schemes from the literature. However, at this
point it becomes unclear what a good scoring scheme is, as can be seen by the various schemes
used in the different read mappers.

Another possible extension is for paired reads. Currently, verification of paired-end performance
can only be done using simulated reads in the oracle mode where the original sample location
is known. One reason for paired-end sequencing is to lower the ambiguity in read mapping by
requiring concordant (alinging to the genome in linear order, in the expected orientation, and
within the expected template size) mappings. Thus, applying the oracle mode makes sense for
such data.

A further extension of RABEMA to paired data would lead to similar problems as using a non-edit
distance scoring scheme. What comprises a “true” paired-end match? Does it make sense to
enumerate all combinations of paired matches in the case of ambiguity? The answers to these
questions remain unclear while using the oracle mode for evaluating paired-end mapping is a
good alternative.

An alternative approach to the benchmarking of read mappers was considered by Hatem et al.
(2013). These authors “define a read to be correctly mapped if it is mapped while not violating
the mapping criteria,” and consider multiple different mapping criteria. Their approach is more
flexible than my formal definition but it lacks an important property of my formal definition.

Namely, the lack of a formal match definition and the consequent lack of a method for enumer-
ating all formal matches does not allow the method to control for false negatives. First, a read
might have a valid match but no read mapper is able to find this match. Second, their approach
does not allow to estimate whether a read mapper is able to find all mapping locations. These
are major drawbacks stemming from the fact that this definition depends on the performance of
the used read mappers, leading to a catch 22.

4.3 Read Mapping Approaches and Methods

Obtaining the full genome sequence of organisms such as the fruit fly (Myers et al., 2000) and
humans (Lander et al., 2001; Venter et al., 2001) has unlocked the full potential of read mapping.
The original full sequence of the human genome was published in 2001 and at this time, Sanger
sequencing (first generation sequencing) was the prevalent sequencing technology. Since then,
different technologies have been developed. These technologies include the technologies by 454,
Mlumina, and IonTorrent (often termed second generation sequencing (2GS)) and the recent tech-
nology by Pacific Biosciences (often termed single-molecule or third generation sequencing (3GS)).
2GS and 3GS machines are also often called high-throughput sequencing (HTS) machines. These
technologies have different properties and Table 4.1 shows the most relevant ones for read map-
ping. Appendix B contains a more detailed description of the sequencing platforms.

Note that the properties of each technology have changed over time, that is read length and
throughput have increased while the error rate has decreased. To summarize, the advantage of

59

Chapter 4 Read Mapping

second generation sequencing is the high throughput (at dramatically lower cost, not shown in
table) with the drawback of shorter reads and higher error rate. The main innovation of third-
generation sequencing is to perform single-molecule sequencing, i.e., the sequence is not read
out from multiple cloned templates but from one molecule only. In the case of current Pacific
Biosciences (PacBio) sequencing technology, this allows very long reads at the cost of a high
error rate.

At the time of writing, the dominant technology in many areas is Illumina sequencing since it
offers high throughput at a low cost. IonTorrent and 454 are used when long read lengths are
important, for example in metagenomic sequencing. Sanger sequencing is still used for valida-
tion, where very long reads with very low error rate are required, that is when the trade-off of
higher coverage depth with shorter read length of second generation technology does not pay
off. Also, Sanger sequencing still is the gold standard for verifying mutations found by HTS in
clinical contexts. The current main application of long PacBio reads is for de novo assembly.

4.3.1 The Practical Setting of Read Mapping

As described earlier in this chapter, read mapping is the process of approximately searching
relatively short reads in long reference sequences. The differences in read length, error rate, and
throughput led to the development of specialized tools for the different kinds of reads. Reads
from Illumina machines are usually aligned semi-globally while 454 and IonTorrent reads are
either trimmed or aligned locally. With the advent of second generation sequencing, there has
been a large increase in available read mapping software. Reinert et al. (2015) give an overview
of the area of read mapping, in particular the algorithmic ideas and Fonseca et al. (2012) maintain
an updated list of alignment software.

Read mapping software has to deal with long genomes and large sets of reads. At the same time,
the sensitive and specific alignment of reads to the reference is important such that the quality
of downstream analyses does not degrade because of missing or incorrect mappings.

1% gen. 2" gen. 3" gen,
Sanger 454 llumina IonTorrent PacBio
read length 400-900bp 200-800bp 20-150bp ~ 200bp up to 10kbp
error rate per base 0.001% 0.01% 1% 2% 13%
throughput per day 0.7 Mbp 0.7 Gbp 600 Gbp 12 Gbp 2.4Gbp
paired reads yes! yes yes yes no

Table 4.1: Overview of sequencing technologies, the throughput is given for one machine. Sources:
(Liu et al, 2012) and (Quail et al, 2012).

! Not directly supported by sequencers such as 3730x] DNA Analyzer by Applied Biosystems, but available
through wet lab techniques.

60

4.3 Read Mapping Approaches and Methods

Varying Length and Complexity of Genomes. Genomes of different organisms have dif-
ferent complexities. Bacterial genomes such as the one of E. coli (with a length of ~ 5Mbp)
are usually quite short and have a low content of repetitive sequence. The genomes of the eu-
karyotic model organisms S. cerevisae (= 12 Mbp), D. melanogaster (~ 120 Mbp), and C. elegans
(= 100 Mbp) are longer and have a varying degree of repeat content. The human genome has a
length of ~ 3 Gbp and a repeat content of ~ 50-69%.

Sequencing Errors. The early Illumina sequencing machines generated reads with a length
of 20-36 bp, a substitution error rates of about 1%, and very few indel errors (Dohm et al., 2008).
It is a reasonable assumption to only allow one or two substitution errors when mapping such
reads to genomes for SNV discovery. For discovering small indels and when mapping the recent
longer Illumina reads with 100-150 bp, however, indels have to be allowed in mapping as well.
For 454 and IonTorrent, the primary types of errors are indels and the error rate rises towards
the 3’ end of the read. For 454 reads, a higher frequence of errors can be seen at the beginning
of the read as well.

Paired-/Single-End Mapping Variations. Paired-end sequencing is an important technol-
ogy for resolving ambiguities due to repetitive sequencing. The available protocols allow dif-
ferent insert sizes. For example, the [llumina paired-end protocol yields relatively short pairs
(template size means of ~ 200-500 bp), while the Illumina mate-pair protocol allows insert sizes
of ~ 3 kbp.

The insert size has various implications, for example a larger insert size increases the probability
of covering SV breakpoints and thus such reads are often produced for SV analysis. Read li-
braries with lower insert sizes are often generated at higher coverages and are used for resolving
ambiguities that are due to repetitive region and different small-scale variants.

4.3.2 Theoretical Insights

In this section, I present two classic, fundamental lemmas that are used in fully sensitive read
mapping approaches and allow to explain the motivation behind heuristics. These lemmas give
insight into the distribution of errors in reads but can also be applied to detecting other features
in sequences, of course.

Pigeonhole Principle and k-mer Counting. First, the pigeonhole principle is the name for
a simple counting argument. For example, when there are k pigeons in k + 1 holes then there
has to be at least one hole without any pigeon. A similar argument can be made for errors in
approximate string search (Navarro and Raffinot, 2002, p. 163), especially for read mapping as
explained by Weese et al. (2009).

Lemma 4.1 (pigeonhole principle). Given an alignment of two sequences g and R with edit distance
k. When splitting R into k + 1 parts, at least one of these parts will have no error in the alignment
to the corresponding part in g.

61

Chapter 4 Read Mapping

| |>< x | x | | XX i

(a) pigeonhole lemma (b) k-mer lemma

Figure 4.8: A read with three errors in the context of the (a) pigeonhole and the (b) k-mer counting
lemma. In both cases, a read with ten characters is shown at the top, and errors are shown as crosses.
The parts and k-mers affected by errors are colored red. In (a), the read was split into four parts of
size three and the three errors affect two of these parts (three errors could affect at most three of the
four parts). In (b), the ten k-mers are shown below the sequence.

An extension to this argument has been observed by Myers (1994):

Lemma 4.2 (generalized pigeonhole principle). Given an alignment of two sequences g and R with
edit distance k. When splitting R into j parts then at least one of these parts contains | k/j| or fewer
errors in the alignment to the corresponding part in g. Similarly, at least one of these parts will have
[k/j] or more errors in the alignment to the corresponding part in g.

Thus, when performing approximate search of read R with up to k errors, candidate regions for
the alignment of R can be obtained by searching for each of the k¥ + 1 infixes of R yielded by
partitioning R. Often, these infixes are called seeds. While the length of each seed in the read
is arbitrary, short seeds have the disadvantage of leading to many spurious occurrences in the
reference. Also, using the same seed length can have technical advantages. Figure 4.8a shows an
example.

A second fundamental insight is due to Jokinen and Ukkonen (1991):

Lemma 4.3 (k-mer lemma). Given two sequences g and R such that their edit distance is k andn =
max {|g|, | R|}. Then, the number of shared k-mers between g and R is at leastt = n+1—(k+1)-q.

Figure 4.8b shows an example. Such counting arguments can be used to design efficient algo-
rithms for candidate region identification in approximate string search (Rasmussen et al., 2006)
and read mapping software (Weese et al., 2009).

The candidate regions can then be verified by searching for a semi-global alignment of R to G
around the match, for example using a variant of the NEEDLEMAN-WUNSCH algorithm.

Practically Efficient Heuristics. As described in Chapter 3, the positional error probability
in NGS reads increases towards the 3’ end of the reads. The error distributions observed in
practice are in general not the worst cases assumed in the pigeonhole and k-mer lemma. This
observation can be used to improve the running time of read mapping methods while keeping a
good sensitivity.

62

4.3 Read Mapping Approaches and Methods

It can be seen as a good heuristic to search for seeds from the 5’ end of the reads where errors are
less frequent. Another heuristic is to use larger values for k£ when using the pigeonhole lemma
idea (e.g., as done by Weese et al. (2012)) or to require more shared k-mers when using the k-mer
lemma idea (e.g., as done by Weese et al. (2009)).

4.3.3 Filtration-Based Methods

String filter algorithms are algorithms for approximate string search that allow to efficiently
exclude parts of the database that cannot contain a match (see also Navarro and Raffinot, 2002,
p.- 162-170). They follow a general two-step approach. First, in the filtration step, candidate
regions that can contain a match are located. Depending on the chosen filtration method, both
false positives and negatives can be yielded. In the second, the verification step, the candidate
regions are verified with an exact algorithm.

The number of verifications in filtration-based methods depends on the specificity of the used
filter, that is the percentage of candidate regions that actually contain a match. Most such meth-
ods use the pigeonhole principle or the k-mer lemma for filtration. That is, they create seeds
from the reads that are then searched in the reference or use k-mer counting. In some cases,
the methods also create seeds from the reference and then search this in the set of reads. In the
following, a few examples for filtration-based read mappers are given.

RAZERS (Weese et al., 2009) is an example of a read mapping program based on k-mer count-
ing. It uses the SWIFT filter algorithm (Rasmussen et al., 2006) for identifying candidate regions
and Myers’ bit-vector algorithm for the verification (Myers, 1999b) of candidates. For Hamming
distance, it uses optimized gapped k-mers (some fixed positions in the k-mers are allowed to
mismatch). The successor RAZERS 3 (Weese et al., 2012) uses a filtration algorithm based on the
pigeonhole lemma and a banded version of Myers’ bit-vector algorithm (similar to the one by
Hyyro (2003)) for verification. Using a command line switch, the k-mer counting filter from the
previous program version can be used in RAZERS 3 as well. RAZERS 3 is described in more detail
in Section 4.4. Both versions allow Hamming and edit distance alignments of reads. SHrRIMP and
its successor SHRIMP 2 also employ a filter based on k-mer counting with spaced seeds following
a generalization of the k-mer lemma by Burkhardt and Kérkkdinen (2001) to such seeds. SHRIMP
also employs a bit-parallel verification of candidate regions and allows edit distance matches.

Soap (Li et al., 2008b) and MAQ (Li et al., 2008a) are early examples of read mappers using string
filtration based on the pigeonhole lemma. Soap and MAQ use the heuristic described above and
use the 5’ end of the read for the seed. In the filtration step, the first 28 bp at the 5’ end of each read
are used as the seed. Notably, MAQ introduced a statistical model for single-end read alignment
and formulas for computing read mapping qualities that were subsequently used in later read
mappers. Other examples for string-filtration-based read mappers are MrRSFAST (Alkan et al.,
2009) and MRFAST (Hach et al., 2010).

Lately, a number of methods have been proposed that use substring-tree-like indices for search-
ing for seeds in the filtration step. The most prominent one is BowTIE 2 (Langmead and Salzberg,
2012) that uses the Burrows-Wheeler-Transform (BWT) of the reference (Burrows and Wheeler,
1994) and ideas by Ferragina and Manzini (2001) for creating a substring-tree-like index of the

63

Chapter 4 Read Mapping

reference. It then creates slightly overlapping seeds from the reads and searches them exactly
in the reference. The candidate locations are then verified using the NEEDLEMAN-WUNscH algo-
rithm. Another example is MasaI (Siragusa et al., 2013) that uses approximate seeds (i.e., allowing
errors in the seeds). In contrast to many other substring tree-based methods, Masa1 indexes both
the genome and the read set and then uses backtracking to search for matches in both indices.
Another example of a string filtration-based read mapper is GEM (Marco-Sola et al, 2012).

While in theory string filtration—based read mapping algorithms allow the fully sensitive search
of reads in the reference, many read mapping methods sacrifice sensitivity for lower running
time. Notably, RAZERS and RAZERS 3 are examples of fully sensitive methods that also allow the
user to select a lower bound on the sensitivity. The algorithm implemented for MRFAST allows
full sensitivity for edit distance (and MRSFAST for Hamming distance), but as can be seen below in
Section 4.5, MRFAST is not fully sensitive in practice. Notably, almost all other string-filtration-
based alignment tools are heuristics with varying trade-offs regarding sensitivity.

4.3.4 Index-Based Methods

The earliest read mapping tools were based on string filtration and streaming k-mers of the ref-
erence against a k-mer index built for the reads (or vice versa). The reference is usually updated
rarely while many different read sets are to be mapped against it. This led to using substring
indices of the reference to speed up read mapping. An index is built in a precomputation step,
saved to the hard-drive, and reused for each program call. This development predates the sub-
string index—based methods with string filtration, however.

BowrTik (Langmead et al., 2009) is a tool based on the Burrows-Wheeler Transform (BWT, Bur-
rows and Wheeler, 1994), and ideas by Ferragina and Manzini (2001) (the FM index). Targeted at
short (e.g., 36 bp) lllumina reads, BOWTIE only allows mismatch errors and thus mimics the search
strategy used in MaQ. Instead of using different fixed patterns that are searched exactly, BowTIE
performs a search in the virtual substring tree represented by the index and uses backtracking
to allow a limited number of errors in the seed.

Bwa (Li and Durbin, 2009) is a popular read mapper for the alignment of short Illumina reads.
Bwa uses a similar approach as BowTik but also allows gapped alignments. Bwa-SW (Li and
Durbin, 2010) uses the BWT for the alignment of long reads with a speeded-up version of the
SMITH-WATERMAN algorithm. Soar 2 (Li et al, 2009c¢) is another BWT-based tool for read map-
ping that only supports Hamming distance.

4.4 RAzerS 3 — Parallel, Fully Sensitive Read Mapping

The read mapper program RAZERS 3 (Weese et al., 2012) is the successor of RAZERS (Weese et al.,
2009) and was developed by me together with my coauthors. The program RAZERS was the
first fully sensitive read mapper according to the formal definitions of read mapping in Sec-
tion 4.1.4. The original aim for RAZERS 3 was to parallelize the program RAZERS to adapt it to

64

4.4 RAZERS 3 — Parallel, Fully Sensitive Read Mapping

current multi-core architectures. However, during the development, it became clear to us that
further performance improvements were required to also adapt it to longer Illumina reads (e.g.,
100-150 bp) and unmasked large genomes. My contributions lie mostly in the parallelization, the
match processing, and the evaluation.

In this section, I will first describe the underlying algorithmic approach of both RAZERS variants
in Section 4.4.1. Then, I will outline the changes to the program for the parallelization in Sec-
tion 4.4.2 and in Section 4.4.3 I will describe further optimization steps taken in RAZErS 3. In
Section 4.4.6 I present the evaluation of the achieved speedup in the evaluation of RAZERS 3. 1
conclude this section by describing trade-offs of using different filtration and verification strate-
gies in Section 4.4.5.

4.4.1 Algorithmic Overview

Figure 4.9 shows the data flow and the algorithmic components in RAZERS and Algorithm 4.1
gives an overview of the RAZERS program. First, the reads are loaded and an appropriate value
for the k-mer length in the SWIFT filter is chosen and the SWIFT filter is configured with pre-
computed gapped shapes. The program then maps the reads to each contig and its reverse com-
plement (for simplicity, Algorithm 4.1 only shows mapping to one contig).

In the end, the matches are compacted in the function CompacTiry. This function is also used
during the mapping. The function first sorts the read alignment information (tuples of the read
ID, begin and end position, and the alignment score) lexicographically by read ID, end position,
and score. Then, depending on the configuration of the program, the sorted list of tuples is
processed. For example, when only the best matches for a read are to be returned, all suboptimal
alignments are removed and the filter is configured to be stricter for this read if possible. As
another example, when there is a limit on the number of alignments to return for each read and
this limit is reached with perfect alignments then the filter is configured to return no more hits
for this read. Further, duplicate alignments are always removed.

mask &
compact
Y regularly
 ——— —

filtration verification

Figure 4.9: Overview of the data flow in the RAZERS program.

65

Chapter 4 Read Mapping

Algorithm 4.1: The sequential RAZERS algorithm.

Program RAZERS (G, R)
Input :G, R // genome and set of read sequences
Output : A // list of all read matches

A < MapP-READS(G,R)
REVERSE-COMPLEMENT ((5)
A < A -MapP-READS(G,R)
COMPACTIFY (A)

return A

Function MapP-READS (GG, R)

Input :G, R // genome and set of read sequences
Output : A // list of all read matches

c + 1024 // A is filtered and compactified if it has more elements
A ()

// The filter hits m are intervals that candidate alignments’ end
// positions fall into.

foreach filter hit m = (r, b, €) do // (read id, begin pos, end pos)
// VERIFY returns one alignment for each match from Definition 4.7
// whose end position falls into m.
foreach m’ = (r,b,e,s) € VERIFY(m) do // (read id, begin, end, score)
A+ A-(m))
if |A| > c then // remove duplicate and superflous alignments
COMPACTIFY (A)
c+—c-1.5
end
end
end

The read mapping shown in the function MAP-READs in Algorithm 4.1 works as follows. The
function builds a list of alignments A. Each SWIFT filter hit is an interval on the reference G
that contains the end position of alignments for a read with identifier ». When configured for
full sensitivity, the SWIFT filter provides the guarantee that it returns at least one interval for
each match of a read. The filter hit is then verified in the function Veriry. This function yields
the begin and end position as well as the score for read alignments in the filter hit interval such
that one alignment is created for each match of a read. In the implementation, the intervals are
also annotated with whether they lie on the forward or reverse strand of the reference. This is
not shown in Algorithm 4.1 for simplicity.

To save memory, the alignment list A is compacted if its length grows over a threshold c. This
threshold grows by 50% after each compactification. This is a trade-off between allowing resizing
of the list (which is implemented as an array) and compactification in amortized time O(n -

66

4.4 RAZERS 3 — Parallel, Fully Sensitive Read Mapping

log n) and not wasting too much memory. This compaction is necessary since the filter can yield
multiple overlapping intervals for the alignment for a read. While the verification does not yield
duplicate alignments in one of them, the verification of two or more such intervals can lead to
duplicate alignments.

4.4.2 Parallelization Design

A naive parallelization of RAZERS with ¢ threads could split the read set into blocks of [|R|/t]
reads and let the algorithm run for each of these blocks independently. This, however, leads
to problems with load balancing since the amount of work for each thread can differ greatly.
The filter enumerates each k-mer of the genome and the necessary work at a genomic location
depends on the frequency of the k-mer in the genome and the read. In this section, I discuss the
constraints on the parallelization of RAzERS 3 and the taken design decisions.

Reusing the Existing Implementation. Our first requirement was to reuse the existing se-
quential implementation. RAZERS is a complex program and instead of rewriting the code from
scratch, our aim was to base the parallel code on the existing implementation.

Restriction to One Reference Copy. To save memory, only one copy of the reference is held
in memory. RAZERS loads the reference contig by contig and reverse-complements the contigs
instead of the reads. Reverse-complementing the reads would generate a larger overhead since
usually, the set of reads is larger than the reference contigs. This leads to an implicit barrier for
parallelism at the end of each contig and before reverse-complementing the current contig: all
threads have to wait for the last thread to finish its processing of the contig.

Load Balancing in Filtration. The filter has to build a hash table of all k-mers for its reads.
Moving reads from one hash table to another is expensive and either requires a complex imple-
mentation of the table (which lowers performance when reading) or rebuilding the table. Having
more than one table for each thread also introduces an overhead. For the original implementa-
tion of RAZERS 3, the number of tables for each thread was adjustable but assigning the reads
statically to threads and only having one hash table was faster. Thus, we decided that the load
balancing in the filtration was to be static.

Load Balancing in Verification. Conversely, we decided that the verification of the filter hits
was to be used for load balancing between the threads. We adjusted the filtration to process the
reference in windows of 500 kbp (by default) and to collect all filter hits. The collected filter hits
are then split into packages and put into a thread-safe global queue. The threads then pick these
packages and process them independently of each other. This allows the dynamic load balancing
in verification.

67

Chapter 4 Read Mapping

4.4.3 Further Optimizations in RAZERS 3

Besides the parallelization, we implemented the following optimizations in RAZERS 3.

Open-Addressing k-mer Filter. In RazgrS, a dense implementation of a k-mer index was
used. Each k-mer of the alphabet DNAS5 is assigned a number between 0 and 59. For small values
of g, it is possible to create a hash table that uses this direct correspondence without collisions or
probing. However, for larger values of g, such a hash table requires a large amount of memory.
For RAZERS 3, we implemented a k-mer index—based on an open addressing (Cormen et al., 2001,

p- 221 1f.) hash table.

A Banded Version of Myers’ Bit-Vector Algorithm. Myers’ bit-vector algorithm allows the
bit-parallel computation of edit distance matches for query sequences up to the machine’s word
width (i.e., 64 bit for modern machines). For 36 bp Illumina reads, which was the main target
for RAZERS, this worked very well. However, for modern 100-150 bp Illumina or even 454 reads,
more than one machine word is used and bits have to be carried over machine word boundaries.
For this, we developed a banded version of Myers’ bit-vector algorithm.

A Pigeonhole-Based Filter as an Alterative to the SWIFT Filter. As an alternative to the
SWIFT string filter, RAZERS 3 implements a string filter—based on the pigeonhole principle: when
finding a shared k-mer between a read an the reference, the filter hit is verified. As I describe
in Section 4.4.5 below, the SWIFT filter is a good choice for long reads and high error rates in
the case of Hamming distance. However, in the other cases (in particular for edit distance), the
pigeonhole filter showed a better performance (when used together with the banded version of
Myers’ bit-vector algorithm).

Local Match Masking and Histogram-Based Setting of Thresholds. Both the SWIFT and
the pigeonhole filter work by enumerating the k-mers in the reference sequentially from left to
right. Although the position of these k-mers is strongly monotonically increasing, the position
of the k-mer in the read can vary. Thus, neither the begin nor end position of the alignments
after verification are guaranteed to be monotonically increasing. For example, an alignment can
have a smaller begin position than the previous alignment for a read.

This non-monotonicity is limited, however, to some relatively small overlap. That is, after pro-
cessing a window, the leftmost begin position of an alignment that can possibly be generated
by the next window is limited by a bound that can be computed from the filter settings. Thus,
the sorting for the masking step does not have to be performed on all matches. It is sufficient to
perform the masking on a suffix of the list of found alignments:

First, all matches from the first window (the right border is shifted to the left by the overlap) are
sorted by start, then by end position (as described above) and masked after each sorting. Then,
all matches from the second window (the left border is shifted left by the overlap) are sorted

68

4.4 RAZERS 3 — Parallel, Fully Sensitive Read Mapping

]\ /B

A

shared

) . mask on compaction
filtration verification .
queue window Write back at the end

®®
@
)

N4

»®
@

matches

Figure 4.10: Overview of the data flow in the RAZERS 3 program for two threads. The filter module
and its hit packages are shown in green. The verification module and the packages of alignments
are shown in blue.

by start, then by end position and masked after each sorting. This is repeated for all following
windows.

This allows to manage the arrays in memory-mapped files and only access a relatively small part
at the end of the file. Only this active part has to be kept in memory and the operating system
will swap out the rest of the file if necessary. This strongly reduces the memory requirements of
the program and makes them independent of the total number of matches. Rather, the memory
required for matches is now bounded by the maximal number of matches of all reads that fall
into one window. Note that the operating system will buffer as much of the file as possible in
main memory for better performance. The sorting of the final compaction step can be done using
external sorting for large result sets.

In the previous version of RAZERS, the whole set of matches was sorted and masked for duplicates.
The method also allows to specify a maximal number of matches for each read. When this number
is reached for a read, the filter settings can be adjusted to return only matches that are better
than the worst match found so far. In the previous version, the distribution of the error rate for
each read could be computed during the masking step since all matches in A are available to
the algorithm adjusting the thresholds. For the local match masking, I use the simple trick of
storing a histogram of match distances for each read. The decision of adjusting the thresholds
can be made after considering only the entries of the histogram and without having access to all
matches.

69

Chapter 4 Read Mapping

Algorithm 4.2: The parallel RAZERS 3 algorithm.

Program RAZERS 3(G, R)
Input :G, R // genome and set of read sequences
Output : A // list of all read matches

A < MapP-READS(G,R)
REVERSE-COMPLEMENT ((5)
A < A -MapP-READS(G,R)
COMPACTIFY (A)

return A

Function MapP-READS (GG, R)

Input :G, R // genome and set of read sequences
Output: A // list of all read matches
Q<+ () // thread-safe global queue of filter hits

fork threads and do in parallel

A<+ () // each thread has its own copy of A
// window length and package size are configurable

foreach window W of length 50 kbp do

Q' « filter hits for W in packages of 10k hits

Q+Q-Q // append atomically
B+ 0 // mapping thread id — alignments

// While there is any work in () or any thread can insert into Q).
while (|@Q| > 0) V (NUM-FILTERING-THREADS () > 0) do
p < Porp(Q) // get next package atomically
foreach m € p do
m/ < VERIFY(m)
1 < GET-THREAD (m) // id of thread for read in match
Bli] + Bli]u{m'}
end

end

// match distribution

thread-barrier // wait for all threads
C < all matches from other thread’s B for this thread

thread-barrier // wait for all threads

// masking

A+ A-C

Mask-MATCHES (A)

thread-barrier // wait for all threads

end

end
merge thread-local As into a global A

return A

70

4.4 RAZERS 3 — Parallel, Fully Sensitive Read Mapping

Myers ave. ave. total
filter . threads filtration verification . candidates matches

variant . X time

time time

SWIFT unbanded 1 14:14:04 34:33 14:49:06 4839 M 29 M
SWIFT banded 1 13:42:41 10:08 13:53:19 489 M 24 M
pigeonhole unbanded 1 12:28 5:10:45 5:23:41 5490 M 24M
pigeonhole banded 1 12:25 56:41 1:09:34 5490 M 24M
SWIFT unbanded 8 1:01:13 4:27 1:05:47 489 M 29M
SWIFT banded 8 1:04:25 1:17 1:11:09 489 M 29M
pigeonhole unbanded 8 2:31 39:22 41:59 5490 M 24M
pigeonhole banded 8 2:36 6:41 9:24 5490 M 24M

Table 4.2: Running time of the RAZERS 3 mapping step in different variants, excluding I/O. The time
is given as [h:min:s]. Note that the column “total time” also includes the I/O of references as well as
the running time for match management.

4.4.4 The Parallelization in RAZERS 3

Figure 4.10 gives an overview of the program RAZERrS 3 and shows the data flow between the
threads, and Algorithm 4.2 gives pseudo code. Each thread is statically assigned approximately
the same number of reads and builds the filtration state (including the hash table) for them. Then,
each thread runs the filtration for its reads over the next window. The filter hits are collected in
packages of a few thousand and written to a thread-safe shared queue.

After finishing the filtration, each thread then performs the verifications, using the packages
from the shared queue. The resulting alignments are collected in local buckets, each of the ¢
threads has ¢ buckets, one for each other thread and itself. The read ID allows the mapping to
the thread that is responsible for a given read. The alignments are written to the bucket for the
responsible thread.

After the verification for the current window is complete, the locally collected alignments are
written to a thread-local queue for each thread. Before writing back, the alignments are masked,
i.e., duplicates are removed and the threshold for each read is adjusted depending on the number
of alignments. This is done in the local fashion described in Section 4.4.3.

When the whole genome has been processed, the alignments from all threads are collected and
compaction is performed, i.e., alignments that are not to be written out are removed. This can be
caused by reaching a limit on the number of alignments for a read or by having found a better
match in ALL-BEST mode, for example.

4.4.5 Filtration and Verification Performance Trade-Offs

The effects of the filter and verification algorithm choice are complex and also interact with
whether multi-thread is used or not. In this section, I describe and discuss these effects.

71

Chapter 4 Read Mapping

Influence of Banded Verification. Table 4.2 shows the total mapping time, average filtra-
tion time, and average verification time when running Razers 3 with one and eight threads with
different combinations of filter and verification variants. The number of verifications (candi-
dates) and successful verifications (matches) is also shown. The upper half of the table shows
the results when RAZERS 3 is run with one thread. I mapped ten million 100 bp reads from read
set ERR012100 to chr. 2 of the human genome on an 8-core machine. I ran RAZERS 3 with 99%
sensitivity (the default setting) and an error rate of 4%.

When using one thread, the verification time using SWIFT and unbanded Myers is 34.5 minutes
while it is 10.13 minutes when using banded Myers instead. When using the pigeonhole filter,
the time decreases from 310.75 minutes to 69.56 minutes. Thus, the speedup of using banded
Myers versus unbanded Myers is 3.4 for SWIFT and 4.47 for pigeonhole.

When using eight threads, the pigeonhole/unbanded variant uses 39.37 minutes for verification,
pigeonhole/banded uses 9.3 minutes, a speedup of 4.2. The SWIFT/unbanded variant uses 4.45
minutes, SWIFT/banded uses 1.28 minutes, a speedup of 3.47.

Interestingly, the total mapping time does not decrease as greatly for SWIFT when changing from
banded to unbanded while there is pronounced a speedup for pigeonhole. Thus, the influence
of the pigeonhole filter has to be considered as well. I give a description of this in the next
paragraph.

Influence of the Pigeonhole Filter. Using the SWIFT filter identifies 489 M candidates while
the pigeonhole filter identifies 5490 M candidates, more than 11 times as many (see Table 4.2).
However, using the pigeonhole filter, RAZERS 3 is faster than when using the SWIFT filter. De-
pending on whether using one or eight threads and banded or unbanded verification, the differ-
ence in mapping time is a factor between 1.56 (eight threads, unbanded) and 11.98 (one thread,
banded). The factor is 2.75 for one thread, unbanded and 7.56 for eight threads, banded.

When changing the filter from SWIFT to pigeonhole, the filtration time decreases greatly at the
cost of more candidates and thus more time is spent in verification. The time spent in verification
can be greatly reduced by using the banded instead of the unbanded verification algorithm.

Another interesting effect of the faster verification phase is the impact on load balancing. I
instrumented the RAZERS 3 code to record the start and end time of each step and thus also the
times where a thread waits for others. Figure 4.11 shows excerpts from the time charts of the first
two threads from each run towards the end of the run. The z-axis indicates the time, where all
charts have the same time scale. Each green bar represents the time spent for filtering candidate
regions between an eighth of all reads and a reference window of length 500 kbp. The blue bars
represent the time spent for verification (which is load balanced in packages between the blocks).
Colored parts of the bar indicate that the thread was actively doing work whereas white parts
indicate waiting.

As can be seen, when using the SWIFT filter the running time is dominated by filtration. Since
filtration is not load balanced dynamically, multiple threads are idle when they have completed
their filtration. When running with the pigeonhole filter, the running time is dominated by
verification. Verification can be load balanced dynamically and consequently, the threads finish

72

4.4 RAZERS 3 — Parallel, Fully Sensitive Read Mapping

SWIFT, unbanded Myers

e R e e e A S S T
! 1 [[[[[[[]|
5 5 S 1 S 1
I o 1 2
({1 [[([[[||
1 [[[[[| ||
5 5 S e] e e
e e o e e e

Jll

pigeonhole, unbanded Myers

filtration M verification sorting M I/O

600

I O |
1] TRANN |
I
I
—

pigeonhole, banded Myers

Figure 4.11: Running time profiles for RazerS 3 with different variants for the filtration and verification phase.
The charts show the work performed by each of the 8 threads towards the end of the program run. In pigeonhole
mode, all threads finish almost simultaneously because the time spent for verification dominates the running time
and the verification can be load balanced dynamically. In SWIFT mode, many threads are idle from some point of
time since the filtration time dominates and filtration is load balanced only statically. Note that while the charts all
have the same scale and show an interval of the same length, they all show an interval starting at different points
of time. For the pigeonhole filter case, the times are taken around the end of the mapping phase. In the case of the
SWIFT filter this was not possible on this scale since the threads finish so irregularly.

almost simultaneously. This can be seen in the two charts on the bottom which show the last
25 s of the pigeonhole runs. Furthermore, it can be observed that the time spent on verification
is shorter when using banded verification but the remaining verification work still allows good

load balancing in terms of running time.

To summarize, both switching from unbanded to banded verification and from the SWIFT
to the pigeonhole filter improves the running time. When using the pigeonhole filter, the im-
provement from unbanded to banded verification is even more pronounced (5x instead of 3.5x)
because the lower specificity of the pigeonhole filter yields 10x more candidates. When using
multiple threads, the shift of time spent in filtration to time spent in verification improves the
overall running time by improved load balancing. The reason for this is that the verification can

be load balanced while the filtration cannot.

Comparing Pigeonhole and SWIFT Filter.

The only disadvantage of the banded verification

compared to the unbanded variant is that the band size is limited by the machine word width
in our implementation because of performance considerations. Thus, on a 64 bit machine, the
verification is limited to a bandwidth of 64 and can only guarantee to find alignments with 32
errors (for an error rate of 5%, this allows reads of up to 650 bp). The banded verification is faster
than the unbanded variant and also does not need the precomputation required for the unbanded

73

Chapter 4 Read Mapping

variant of Myers’ bit-vector algorithm. Thus, for lllumina reads, it is always preferable to use the
banded verification.

However, it is not clear for which cases the SWIFT or the pigeonhole filter is better. Thus, I
performed several benchmark runs. I used RAzZERS 3 to map ten million Illumina reads from the
organisms E. coli, C. elegans, and human to the organism’s reference sequence (for human, chr. 2
was used as the reference). I varied the error rate from 0-10%, for sensitivity, I used 99% and
100%, and I used both Hamming and edit distance for mapping. I ran the benchmarks on an
8-core machine and using 8 threads. Figure 4.12 shows the results and Table E.1 (p. 199) shows
the names and details of the read data sets.

Generally, SWIFT shows its largest advantage using gapless (Hamming) alignment for error rates
over 6%. For edit distance and error rates smaller than 6%, the pigeonhole filter is faster. It is
interesting to note that there are running time ratios of 1:32 or more for both variants, i.e., for
both filters there are settings in which one greatly outperforms the other.

It is also remarkable that in some cases the superiority of one method is not continuous. For ex-
ample, for edit distance on C. elegans with 100% sensitivity and a read length of 50 bp, the SWIFT
filter is slightly better than the pigeonhole filter for error rates of 4-5%. A possible explanation
for this is that the SWIFT filter uses precomputed gapped shapes and counter threshold values.
For some settings, good shapes can be found while for neighboring configurations, the found set-
tings might be worse. For Hamming distance the SWIFT filter uses gapped shapes, which gives it
an edge over the pigeonhole filter. Thus, the SWIFT filter tends to be better than the pigeonhole
filter for high error rates when mapping in Hamming distance.

Our general recommendation is to use the pigeonhole filter for edit distance for all error rates and
for Hamming distance for error rates up to 6%. The SWIFT filter is a good choice for Hamming
distance with error rates above 6%.

4.4.6 Evaluation of the Parallelization

In this section, I analyze the parallelization of RazerS 3 in detail.

Achieved Speedup. To evaluate how much the implementation benefits from widely avail-
able multi-core architectures, I used a relatively large dataset (10 M reads of set ERR012100) and
mapped it against chr. 2 of the human genome. I ran RAZERS 3 with 1, 2, 4, and 8 threads (dynamic
load balancing). I compared the results with the trivial parallelization (static load balancing) of
splitting the read set into ¢ parts of equal size and running ¢ separate RAZERS 3 processes in
parallel that use one thread each.

Both the runs with dynamic and static load balancing required about 89.5 min with one thread.
Mapping reads with dynamic load balancing scaled almost linearly with speedups of 1.95, 3.95,
and 7.46 for 2, 4, and 8 threads. Static load balancing scaled worse. The speedups were 1.90,
3.63, and 6.61. With 8 threads one effectively gains one more processor core with the dynamic
balancing scheme compared to the static load balancing.

74

E. coli, edit, 100%

1 1 1 1

error rate (%)

T T T
30 50 70

read length (bp)

T
100

C. elegans, edit, 100%

error rate (%)

read length (bp)

H. sapiens, edit, 100%

error rate (%)

30 50 70

100
read length (bp)

error rate (%)

error rate (%)

error rate (%)

E. coli, edit, 99%

1 1 1 1

T T T T
30 50 70 100

read length (bp)

44

E. coli, Hamming, 100%

1 1 1 1

error rate (%)

T T T

T
30 50 70 100

read length (bp)

(a) running time ratios for E. coli

C. elegans, edit, 99%

RN S N S E—
o]
N
.]
.
N
.]
° |
10 - -

T T T T
30 50 70 100

read length (bp)

C. elegans, Hamming, 100%

R I I E—
T T T T
30 50 70 100

error rate (%)

read length (bp)

(b) running time ratios for C. elegans

H. sapiens, edit, 99%

R S I I E—

10 r

T T T
30 50 70

T
100
read length (bp)

H. sapiens, Hamming, 100%

error rate (%)

T

T
100
read length (bp)

(c) running time ratios for human chr. 2

error rate (%)

error rate (%)

error rate (%)

RAZERS 3 — Parallel, Fully Sensitive Read Mapping

E. coli, Hamming, 99%

1 1 1 1

1:32
o4 L
1:16
14 L
1:8
2 4 L
34 L 1:4
4 - - 1:2
5 - + 11
6 1 r 2:1
I r 41
8 - L
81
94 L
16:1
T T T T 32:1
30 50 70 100
read length (bp) PH:SWIFT
C. elegans, Hamming, 99%
—l 111 1:32
o4
1:16
14
1:8
2
34 1:4
4 1:2
5 F 1:1
6 r 2:1
I r 41
8
81
9
16:1
10
T T T T 32:1
30 50 70 100
read length (bp) PH:SWIFT
H. sapiens, Hamming, 99%
111 1:32
0
1:16
1
1:8
2
3 1:4
4 1:2
5 F 1:1
6 r 21
77 r 41
8 L
8:1
9 L
16:1
B
T T T T 32:1
30 50 70 100
read length (bp) PH:SWIFT

Figure 4.12: Ratios of running time with pigeonhole (PH) and SWIFT filter. RAZERS 3 was run with 8 threads
using reads of different length and different genomes as well as different error rates and sensitivities.

75

Chapter 4 Read Mapping

Alternative Load-Balancing Methods. Above, I compared static and dynamic load balanc-
ing schemes. Another possible load balancing scheme would split the read set into many pack-
ages which are then distributed through a queue to a group of worker threads. Each thread
processes one package in a sequential fashion and the next package is given to the earliest idle
thread.

This approach has a major drawback. The filtration step of RAZERS 3 has to scan over the text for
each package. While the time for verification is linear in the number of matches and the number
of verifications does not change, this is not the case for the filtration: doubling the number of
packages, leads to an increase by a factor of 1.7-1.8 for the total CPU time spent in filtration in
the performed experiments.

I mapped ten million reads against the D. melanogaster genome. For this, I split the reads into
8, 16, 32, and 40 packages. I then mapped each package using a separate RAZERS 3 process. I
employed the work queue program 1s! for running the mapping processes such that 8 were run
in parallel. The CPU time spent for filtering was 216's, 388 s, 694 s, and 1025 s using a splitting
scheme of 8, 16, 32, and 40 packages. When using dynamic load balancing, the time for filtration
was 243 s (the difference to the time for 8 packages can be explained by the better isolation and
fewer synchronizations using separate processes).

When using 8 packages, the load balancing is the same as for the static scheme described above.
While there is no additional overhead for the filtration, the load balancing is inferior to the dy-
namic load balancing implemented in RazerS 3. Using more packages, the overhead for the
additional filtration makes this approach even worse than static load balancing.

In conclusion, Ifound the employed load balancing strategy to be superior to the more naive
approaches. Thus, the work invested in the fairly complex parallelization paid off.

4.5 RABEMA and RAZERS 3 Results

In this section, I present an experimental study comparing RAZerS 3 with other read mappers
and its results. Together with my coauthors, I previously published the study in (Weese et al.,
2012).

We chose BowTik 2 (Langmead and Salzberg, 2012) and BWA (Li and Durbin, 2009) as represen-
tative of recent BWT-based read mappers. Soap 2 (Li et al., 2009c) is another popular BWT-based
tool although it does not support indel errors. HoBBEs (Ahmadi et al, 2012), MRFAST (Alkan
et al., 2009), and SHRIMP 2 (David et al, 2011) are popular read mappers based on k-mer count-
ing or k-mer indices. We used RAZERS 3 (Weese et al., 2012) with its pigeonhole filter and the
banded verification. RAZERS 3 has a parameter for setting the estimated sensitivity and we used
the sensitivities 100% and 95% (R3-100 and R3-95).

For the read sets, I give the SRA/ENA identifiers. As reference sequences, we used the whole
genomes of E. coli (NCBI NC_000913.2), C. elegans (WormBase WS195), D. melanogaster (Fly-

'http://vicerveza.homeunix.net/~viric/soft/ts/

76

http://vicerveza.homeunix.net/~viric/soft/ts/

4.5 RABEMA and RAZERS 3 Results

Base release 5.42), and H. sapiens (GRCh37.p2). We measured the running times on a cluster of
nodes with 72 GB RAM and 2 Intel Xeon X5650 processors (each with 6 cores) per node running
Linux 3.2.0.

4.5.1 Evaluation Methods

Generally, one would expect the BWT-based tools to be best at locating one or a few matches
with a low number of errors and to perform well for solving the ANY-BEST-MAPPING and ALL-
BEST-MAPPING problems. At the same time, these methods are expected to be fast for this task.
On the other hand, k-mer-based methods can be expected to be very sensitive for all three map-
ping problems, and especially outperform the BWT-based tools for the ALL-MAPPING problem.
However, these methods are expected to be slower, given that they can generate large amounts
of data (depending on the parameters and input).

For this reason, we group the read mappers into best-mappers and all-mappers. That is, programs
designed and parameterized to either quickly find one best match for each read or to enumerate
all matches for a read up to a given error rate. The BWT-based tools are best-mappers while the
k-mer-based methods are all-mappers. RAZERS 3 is also considered as a best-mapper here (and
placed in both categories), using a parameterization that returns only one best alignment for
each read. The exact parameterizations can be found in Appendix D.

Benchmarking with RABEMA. We used Mason (Holtgrewe, 2010) for the simulation of 100k
reads of length 100 bp from the whole human genome. We chose a typical lllumina error profile
for simulating sequencing errors. As in the RABEMA (version 1.1) manual, we used the program
RAZERS 3 for generating a fully sensitive mapping. From this, we generated a gold standard
intervals file that we used for the subsequent evaluation. We generated the gold standard for up
to 5% errors.

Then, we used RABEMA to perform an evaluation in the categories ALL-MAPPING, ALL-BEST-
MaprpPING and ANY-BEST-MAPPING. We report the result of the evaluation in the oracle mode as
recall, i.e., the percentage of reads that could be aligned to the simulated sample location. We did
not consider running time and memory consumption in this benchmark, since it is only meant
to assess the sensitivity of the read mappers in terms of the RABEMA benchmark.

For the RABEMA benchmark, we also tried to configure BowTIE 2 and BWA as all-mappers. We did
this to see how well the BWT-based methods work for enumerating all matches (see Appendix D).

Variant Detection Benchmark. Similarly to the evaluation of SHRIMP 2 (David et al., 2011),
we subjected the read mappers to an analysis of their performance in the presence of small vari-
ants, i.e., SNVs and small indels. The BWT-based tools BowTiE 2 and BWA use quality values
for trying to discriminate tentative errors from correct bases. Small variants introduce alignment
errors but without lowering the base quality values. Thus, these read mappers could prefer align-
ments at wrong locations if mismatches at such locations can be explained by low base quality
values.

77

Chapter 4 Read Mapping

We simulated read pairs of length 2 x 100bp from the whole human genome. We simulated
SNVs and small indels into the genome and the reads also contain simulated sequencing errors
following a typical Illumina error profile. We used MasoN for simulating these reads as well. We
filtered the reads such that they aligned with up to 5 errors to the reference sequence and we
randomly selected 5 million from the filtered read set.

Then, we mapped read sets to the reference both in single-end and paired-end mode to assess
the performance of all read mappers and parameterizations in both modes. We count a read (or
pair) as aligned correctly if we find an alignment that falls within 10 bp of the sampled origin. We
count it as mapping uniquely if the mapper only reports one alignment. We group the reads (or
pairs) by the number of SNVs and indels spanned in the simulated donor genome. We label each
group with the pair (s, 7), having s SNVs and ¢ indels. For each group, we compute recall as the
percentage of all contained reads (or pairs) and precision is the percentage of uniquely mapped
reads (or pairs) that we found to be mapped correctly.

Performance Comparison Benchmark. Last, we compare the performance of the read map-
pers in terms of mapped reads as well as running time and memory consumption. For this, we
used four different sets of ten million real-world Illumina read pairs of length 2 x 100 bp for the
organisms E. coli, C. elegans, D. melanogaster, and H. sapiens. Further, to assess the read mappers’
performances on future long reads, we mapped six simulated datasets consisting of 1 million
simulated read pairs of lengths 2 x 200 bp, 2 x 400 bp, and 2 x 800 bp from D. melanogaster and
H. sapiens to the reference genomes. We simulated the reads with a typical Illumina error profile
using MasoN. We mapped all reads both in single-end and paired-end mode with an error rate
of 4%. We measured the running time and peak memory consumption as well as the number of
mapped reads (or pairs) and read (or pairs) with minimal edit distance.

For the evaluation, we used the common measures of percentage of mapped reads (or pairs),
i.e., the fraction of reads (or pairs) that are reported as aligned in the result file of the map-
per. However, as some mappers report alignments without constraints on the number of errors,
we determined the fraction of reads (or pairs) whose best match has an error rate of at most
0%, . ..,4%. We call a read (or pair) e-mappable if it can be aligned with an error rate of ¢ (by
any mapper). As a more stringent measure for edit distance mappers, we call an e-mappable
read (or pair) correctly mapped if at least one (paired) alignment has been found with an error
rate of €. For each mapper, we measured the percentage of correctly mapped reads (or pairs),
i.e., the fraction of e-mappable reads (or pairs) for € € [0,4%] that are correctly mapped. For a
more detailed analysis, we give the percentages for sets of ¢ = 0, € (0,1%],...,e € (3,4%]
separately.

When possible, we ran the read mappers with 12 threads. Since MRFAST does not support shared-
memory parallelization, we split the reads into packages of 500 k reads and then mapped them
with 12 concurrent processes using Ts®. Hobbes had a large memory consumption such that we
had to map the reads package-wise but otherwise used the built-in parallelism and 12 threads.

*http://vicerveza.homeunix.net/~viric/soft/ts/

78

http://vicerveza.homeunix.net/~viric/soft/ts/

4.5 RABEMA and RAZERS 3 Results

method all all-best any-best recall

Bowtie 2
BWA
Soap 2
R3-100
R3-95

best-mappers

Bowtie 2
BWA
Hobbes
mrFAST
SHRiMP 2
R3-100
R3-95

all-mappers

Table 4.3: RABEMA scores in percent (sum of the fractions of found matches for each read, normalized by the

number of reads). Large numbers are the total scores in each RABEMA category and small numbers show the

category scores separately for reads with (§ } 2) errors.

4.5.2 Results and Discussion

RABEMA Benchmark Results. Figure 4.3 shows our results of the RABEMA benchmark. The
first five rows of the table show the results for the best-mappers, the remaining rows show the
results for the all-mappers. The large numbers show the overall normalized found intervals score
and the small numbers show the score for alignments having 0, 1,...,5 errors. The results of
R3-100 can be seen as the gold standard since RAZERS 3 guarantees to find one best or all best
alignments, depending on its configuration.

The most relevant column for the best-mappers are the columns any-best and recall. First, con-
sider the column any-best. As expected, R3-100 is fully sensitive and yields a score of 100.0. R3-95
is the next best method, achieving an overall score of 99.8% and scores > 97.0% when considering
the scores by error. BWA and BowTIE 2 perform similarly, yielding an overall score of 98.81% and
98.08. Notably, BWA achieves better scores for alignments 0-3 errors while BOWTIE 2 is better
for alignments of 4 and 5 errors. SOAP 2 achieves the lowest score of all best-mappers and aligns
few reads with more than 2 errors. Second, consider the column recall. The RAZERS 3 variants
achieve the best scores in term of recall as well as in the case of the any-best category, BWA is
slightly better than BowTIE 2. SoAP 2 achieves the worst results.

The most relevant column for the all-mappers are the columns all, all-best and recall. Again, R3-
100 comes out with full sensitivity scores as is to be expected. In the category all, it is followed
by MRFAST which claims full sensitivity but loses some alignments presumably due to imple-
mentation bugs. The next best method is R3-100, followed by HoBBES and SHRIMP 2. Notably,

Chapter 4 Read Mapping

BowTik 2 and Bwa achieve quite good results in their all-mapper configuration, at the cost of
higher running times. All methods except R3-100 lose most significantly in the matches with
higher error rate. In the category all-best, the picture is quite similar but the achieved scores are
higher than in the category all. For the categories all-best, any-best, and recall, BOWTIE 2 is better
than Bwa (both in their all-mapper configuration).

To summarize, the sensitive all-mapper RAZERS 3 achieves good results in single-end best map-
ping and surprisingly also in terms of recall despite its lack of base quality support. Bwa is
slightly better than BowTiEk 2 in terms of any-best mapping and SoaP 2 is only a good choice
when alignments with more than two errors are not important. The category any-best mapping
is very important because almost all common tools for small variant detection expect their input
to be read alignments from an any-best mapper. For all-mapping, RAZERS 3 shows the highest
scores in all categories when configured with full sensitivity and it is still competitive or superior
to all-mappers such as HoBBES and SHRIMP 2 when configured with 95% sensitivity. MRFAST is
the second best all-mapper but does not show full sensitivity. Surprisingly, BowTIk 2 and Bwa
can be configured to outperform the all-mapper HOBBES in the category all-mapping.

Variant Detection Benchmark Results. Table 4.4 (p. 81) shows our results of the variant
detection benchmark. Extended results are given in Tables E.2 (p. 200) and E.3 (p. 201).

Considering the all-mapper results, R3-100 shows the highest recall and precision value, both
in single-end and paired-end mode. MRFAST is also fully sensitive on the single-end dataset but
shows a low recall value of 8% pairs with 5 bp indels. SHRIMP 2 shows full precision in all classes
and experiments but misses some non-unique alignments. HOBBEs appears to have problems
with indels and shows the lowest sensitivities in the all-mapper comparison.

Surprisingly, R3-100 is the most sensitive best-mapper even in the non-variant class (0, 0) where
the simulated qualities should give quality-based mappers an advantage. For paired-end reads
where matches are also ranked by their deviation from the template size, it is even more sensitive
than the all-mappers HoBBEs and MRFAST. As also observed by David et al. (2011), quality-based
mappers like BOwTIE 2, BWA, and SoAp 2 are not suited to reliably detect the origin of reads
with variants. Their recall values deteriorate with more variants as they prefer alignments where
mismatches can be explained by sequencing errors instead of natural sequence variants. The low
sensitivities of SOAP 2 are due to its limitation to at most 3 mismatches and no support for indels.

Performance Comparison Benchmark Results. Table 4.5 shows our results of the real-
world performance benchmark for the real-world D. melanogaster and H. sapiens data sets as well
as for the simulated 800 bp D. melanogaster data set. Extended results can be found in Tables E.4-
E.7 (p. 202-205).

For the single-end data, R3-100 achieves the best results in terms of correctly mapped reads of all
best-mappers, followed by R3-95. BowTIE 2 is the next best tool, followed by BWA. Remarkably,
the performance of BWA deteriorates for the long reads which can be explained by the fact
that BWA is not designed for such long reads. Soap 2 achieves the worst results, aligning few
reads with more than 2% errors. R3-100 also is the best tool of the all-mappers. MRFAST is the

80

4.5 RABEMA and RAZERS 3 Results

(0,0) (2,0) (4.0) (1,1) (1,2) (03)
method prec. recl. prec. recl. prec. recl. prec. recl. prec. recl. prec. recl

Bowtie 2
BWA
Soap 2
R3-100
R3-95

Hobbes
mrFAST
SHRIiMP 2
R3-100
R3-95

best-mappers

all-mappers

(a) single-end

(0,0) (4,0) (8,0) (2,2) (2,4) (0,5)
method prec. recl. prec. recl. prec. recl. prec. recl. prec. recl. prec. recl

Bowtie 2
BWA
Soap 2
R3-100
R3-95

Hobbes
mrFAST
SHRiMP 2
R3-100
R3-95

best-mappers

all-mappers

(b) paired-end

Table 4.4: Results of the variant calling benchmark. Shown are the percentages of found origins (recall) and the
fraction of unique reads mapped to their origin (precision), grouped by reads with s SNVs and ¢ indels, labeled as

(s,1).

81

Z8

dataset SRR497711 ERR012100 simulated, m = 800
D. melanogaster H. sapiens D. melanogaster
time correctly mapped mapped reads time correctly mapped mapped reads time correctly mapped mapped reads

method [min:s] reads [%) [%] [min:s] reads [%] [%] [min:s] reads [%) [%]
, Bowtie2 2:00 85.71 i e e 5:37 96.72 1o S o0st 13:48 99.99 99 a7 7398
g BWA 5:35 79.37 0 oo 1S 13:45 93.53 [5 0 5:38 68.09 003 wer oo
g Soap 2 1:55 72.49 248 07 748 2:34 89.73 D% S w7 0:54 38.14 00 2
+ R3-100 1:28 78.92 o o T 85:56 92.99 o S 209 1:17 90.43 0o o T
z 97 781 02 92 65 0.
S R3-95 1:26 78.82 R U3 B 4316 92.95 75 v 90s7 1:15 90.43 003 113 7ars
. Hobbes 4:51 76.16 32 o M0 265:48 89.24 1% S w02 - - -
‘g mrFAST 4:01 78.92 0 3 Y 413:40 92.99 1% S e 5:16 69.32 0 B o
g SHRIMP 2 23:40 89.91 7 ¢80 o0 1312:09 99.06 5% 74 0% 796:06 99.31 303 aos 707
= R3-100 1:51 78.92 0% 931 B9 118:26 92.99 75 w1 0 1:20 90.43 00 s a3
« & . .

R3-95 1:45 78.82 20 93 B 5813 92.95 7% ¥ 0 1:20 90.43 0% s a3

(a) single-end
dataset SRR497711 ERR012100 simulated, m = 800
atase
D. melanogaster H. sapiens D. melanogaster
time correctly mapped mapped pairs time correctly mapped mapped pairs time correctly mapped mapped pairs

method [min:s] pairs [%] [%] [min:s] pairs [%] [%] [min:s] pairs [%] [%]
, Bowtie2 6:32 81.94 0 0w om 1051 94.19 5% 7% w3907 99.70 01 215 591
g BWA 13:33 7341 25 @4 o0 3435 88.06 % 7 ms 1126 46.44 01 w0
g Soap 2 5:29 72.77 B w6 8:24 87.47 1201 73 side 12:36 28.23 000 1 wred
% R3100 9:01 72.95 2 @@ w0 17629 86.93 1501 7185 w5 2:22 7116 0w 2z s
S R3-95 6:56 72.80 B @@ on 3544 86.84 10 7is5 w5 2:19 7116 0w 2z s
. Hobbes 8:43 62.48 % b8 90 89:35 84.05 1% 7o 818 - - -
g miFAST 8:26 7316 2% 00 0n 779.1) 87.79 10 et wa 1047 49.69 000 2% 633
g SHRiIMP2 47:07 87.36 2% 92 9% 2762:32 97.51 B9 73 w15 1617:26 98.62 (00 212 373
= R3-100 7:59 72.95 R %@ 00 18497 86.93 120 714 w5 2:30 7116 0% 22 %3

R3-95 7:36 72.80 23 06 0% 16622 86.84 150 7143 v 2:29 7116 oW w2

(b) paired-end

Table 4.5: Mapping time and accuracy of single-end and paired-end mapping. Hobbes could not be run on reads longer than 100 bp. In large, the

percentage of totally mapped reads and in small the percentages of reads with up to (0o Lo 2%) errors are shown. In case there are no reads in a class,

«

this is denoted as “—”.

Suiddvyy ppay ¥ 121dvY>H

4.5 RABEMA and RAZERS 3 Results

second best method but has problems with long reads. R3-95 is the next best method, followed
by SHRIMP 2. HOBBES achieves the worst results of all all-mappers (caused by regular crashes)
and cannot handle long reads at all.

Surprisingly, RAZERS 3 achieves the best running time on the D. melanogaster data sets both for
the all-mappers and the best-mappers. Otherwise, RAZERS 3 always is the fastest all-mapper,
only using half the time of HoBBEs and a tenth of the time of SHRIMP 2 on the H. sapiens data
set, for example. Soap 2 is the fastest best-mapper (at the cost of achieving the worst quality
result), followed by BowTIE 2 and BWA. RAZERS 3 is the slowest best-mapper on the H. sapiens
data set since it uses an online search strategy and no reference index such as the other three
best-mapper tools.

For the paired-end data, the picture is similar. RAZERS 3 achieves the best results in terms of
correctly mapped reads, followed by MRFAST and SHRimP 2 for all-mapping and BowTIE 2 and
BWA for best-mapping. Again, RAzERS 3 is the fastest tool for all-mapping, except for HOBBEs
which, however, crashes regularly. The index-based tools benefit from the paired-end mapping
mode in terms of running time for the 100 bp reads and RAZERS 3 is again the fastest tool for
mapping the simulated long reads.

In all experiments, the specificity of R3-95 is much higher than the configured 95% in terms
of correctly mapped reads. However, RAZERS 3 benefits greatly in terms of running time from
less sensitive settings. In single-end mapping, R3-95 only takes half the time of R3-100. The
differences in paired-end mapping are less pronounced. Here, the verification is only performed
when two candidate matches occur within a window restricted by the expected concordant insert
size. Considering both mates of a pair probably increases the specificity of the filter.

Note that the order in terms of mapped reads differs from the order of correctly mapped reads.
For some read mappers, it is not possible to directly control the error rate and they can generate
discordant alignments. For example, SHRIMP 2 is able to align 99% of all reads for the single-end
H. sapiens data set whereas the results of the fully sensitive read mapper RAZERS 3 show that
only 93% of the reads have an alignment with up to 4% errors.

In all-mode (best-mode), RAZERS 3 requires 15 GB (9 GB) for mapping 10 M reads of length 100 bp
to hg18. The memory requirement is proportional to the number of reads and matches, about
10 GB are required for each additional 10 M x 100 bp reads. The input read set can be separated
into blocks that are mapped after each other to adapt to memory requirements. For the same
input set, BOWTIE 2 uses 3.3 GB, BWA uses 4.5 GB, SoAP 2 uses 5.4 GB, SHRIMP 2 uses 38 GB. Due
to the lack of parallelization or a high memory consumption MRFAST and HoBBES were run on
packages of 500 k reads where they required 11 GB and 70 GB of memory, respectively.

83

Chapter 4 Read Mapping

4.6 Chapter Conclusion

In this chapter, I described

the state of the art in general approaches to read mapping,

an intuitive interpretation of what a match in read mapping should be,
a formal definition of when two read alignments are equivalent,

a formal definition of read mapping matches,

a practical software package RABEMA for performing read mapping benchmarks based on
the formal definition,

a parallelization approach for the string filter-based read mapper RAZERS 3,

local match masking and histogram-based threshold setting as improvements to data flow
management in string filter—based read mappers, and

a comprehensive read mapper benchmark based on RABEMA, evaluating the capability to
align reads in the presence of genomic variation and using real-world data.

In this chapter, I discussed

drawbacks of using “number of aligned reads” as a measure for the quality of a read mapper,

trade-offs in the choice of filtration and verification algorithm for the string filter-based
read mapper RAZERS 3 that are applicable in future read mappers, and

the performances of various read mapping software packages in terms of the formally
defined benchmark, in the presence of genomic variation, and on real world data.

I observed that

using a formal definition of read alignments can give a different picture than merely count-
ing aligned reads,

the read mapper RAZERS 3 performs very well as a best-mapper in terms of correctly aligned
reads,

surprisingly, RAZERS 3 performs better in the presence of genomic variation than read
mappers interpreting base quality values,

the sensitivity parameter to RAZERS 3 is only a lower bound on the sensitivity of the pro-
gram and consistently better results are achieved, and

RAZERS 3 is the best available all-mapper in terms of sensitivity (since it has full sensitivity)
and overall running time.

I conclude that

84

having a formal benchmark for read mapping, especially on real-world data, allows an
objective evaluation of read mappers,

4.6 Chapter Conclusion

among the tested tools, RAZERS 3 is the best one for all-mapping, and

further investigation in base quality value interpretation is required such that it helps the
read mappers and does not lead them astray.

My main contributions in the area of read mapping are

the formal definition of an equivalence relation on read alignments,

the formal definition of matches in read mapping using this equivalence relation that has
also an intuitive representation,

the design and implementation of a read mapping benchmark based on these definitions,
the implementations of the RABEMA read mapping benchmark software package,

the parallelization of the fully sensitive read mapper RAZERS 3 and optimizations in the
data flow that allow practical, fully sensitive read mapping, and

a comprehensive study comparing state-of-the art read best- and all-mappers together with
my coauthors.

85

Chapter 5

Variant Detection

I developed the methods for locating insertion breakpoints and assembling inserted sequences, BASIL
and ANISE in collaboration with Leon Kuchenbecker and Knut Reinert. We published our work in
Bioinformatics (Holtgrewe et al., 2015):

Holtgrewe, M., Kuchebecker, L., and Reinert, K. (2015). Methods for the Detection and Assembly
of Novel Sequence in High-Throughput Sequencing Data. Bioinformatics, btv051.

While the genomes of different individuals of the same species are similar, there is a certain
amount of variation between them. For example, for humans, the base-wise variation is estimated
to be 0.2%-0.4% (Tishkoff and Kidd, 2004). The aim of variant detection in a personal genome
analysis pipeline is to determine the variants present in an individual genome. The variants of
an individual are computed with respect to a reference sequence. The result of this can then be
used in genome-wide association studies (GWAS) to determine which parts of a genotype cause
certain features in the phenotype (the properties of the individual).

Genomic variants can be roughly categorized into small variants and structural variants (SVs).
Small variants include single nucleotide variants (SNVs) as well as short insertions and deletions
(indels). Traditionally, variants with a size > 1kbp were called structural variants (Medvedev
et al., 2009). With advances in sequencing technologies, the resolution of SV detection has been
improved and thus a definition as variations that change the structure of the genome is more
appropriate today, at the time of writing. Structural changes means identifiably changing the
order, number of occurrence, and/or orientation of genomic sequence segments.

Variant detection could be performed by whole genome alignment if the whole genome of the
individual was available (e.g., see the exposition by Kehr et al. (2014)). However, assembling
complex whole genomes such as human ones reliably is still computationally challenging and

87

Chapter 5 Variant Detection

expensive. Thus, variants are often identified (called) from NGS read data (Medvedev et al., 2009).

An important distinction in variant calling methods is between de novo calling of variants and
using a database of known variants. In the latter case, the database can be used for facilitating
the detection of known variants. Of course, hybrid methods can combine both approaches.

Generally, most de novo variant calling methods work by first attempting to locate the sample
position of reads in the reference genome. Most do this by solving variants of the read mapping
problem. The difference between the genome sequence of the donor and the reference then gives
rise to certain read alignment patterns (signatures) in the read alignments. I will describe these
signatures in more detail in Sections 5.1 and 5.2. Identifying these signatures can be seen as signal
identification. From this point of view, incorrect realignments stemming from sequencing errors
and the previously discussed ambiguities can be seen as noise.

The topic of this chapter is the identification of genomic variants from NGS data. The focus lies
on genomic variants in individuals and not in populations. The 1000 Genomes Project (1KGP)
is an important example for a large-scale variant detection project. Aiming at sequencing and
analyzing 1000 genomes, the 1KGP performed a population-scale sequencing project and created
a large database of small and large variants (e.g., see Abecasis et al., 2010, 2012; Mills et al, 2011).

Mostly, variant calling in resequencing pipelines is performed after aligning the NGS reads to
the reference using read mapper programs as described in Chapter 4. The read alignment is
then often postprocessed by performing a realignment and then recalibrating the base qualities,
e.g., using GATK (DePristo et al., 2011). In recalibration, the reference bases (and possibly other
overlapping reads) are used to reestimate the base quality values of each based on observed
errors (Nielsen et al., 2011).

Structure of This Chapter. In this chapter, I give an introduction to variant calling in general
and then describe my contribution to structural variant calling. First, in Section 5.1 1 give a more
detailed introduction to small variants and then list and shortly discuss approaches and methods
for small variant calling. In Section 5.2 I do the same for structural variants. In Section 5.3 I de-
scribe BasiL, a method for the detection of SV and large insertion breakpoints, and in Section 5.4
I describe ANisE, a method for the assembly of large insertions. In Sections 5.5-5.7 I present the
evaluation of BAsIL and ANISE and the results thereof. Finally, I give a conclusion to this chapter
in Section 5.8.

5.1 Small Variants

Small variants consist of SNVs and small indels (sometimes called microindels). Figure 5.1 shows
a SNV, an insertion, and a deletion in a multi-read alignment (pileup). The top row shows the
reference sequence and the row below shows the coverage at each genomic base as a bar chart.
Below, the multi-read alignment is shown. Each gray box corresponds to a read and the triangles
indicate the alignment direction. Deviations from the reference are shown by colored letters in
the gray boxes. At the left side, there is a homozygous SNV from A to C. The violet vertical bars

88

5.1 Small Variants

aaagacagccctcgcaggttttgcatcctgcatttaattgaaaaaaaaaatccacttctaaaag

o Il
[TT1L1]] ®

e MM e e e e

[allolellolololiololollooolalollololollolalallola)

cCT
TCT
Figure 5.1: Example of a read alignment with a SNV, an insertion, and a deletion in the donor with respect to the
reference. The figure was created from an image export from the program IGV (Robinson et al., 2011). The main
text describes the figure in more detail.

in the center show a heterozygous insertion of a base. The black horizontal lines to the right
show a homozygous deletion of an A. Note that the incorrect alignments with TCT at the lower
right are most probably due to alignment errors.

A few SN'Vs or microindels (or even a single one) can cause pronounced phenotypes. For example,
Enattah et al. (2002) found single nucleotide variants in the MCM6 and LCT gene regions that
are responsible for lactose (in-)tolerance in adult life. More drastic examples are found in the
literature on Mendelian diseases, e.g., by Keupp et al. (2013). In their study, the authors found
small mutations in the WNT1 gene regions causing “autosomal-recessive osteogenesis imperfecta,
a congenital disorder characterized by reduced bone mass and recurrent fractures.” Most of the
affected individuals in their study had a bone fracture within days after birth.

Approaches and Methods for Small Variant Calling

Nielsen et al. (2011) give a review of small variant calling and genotyping. Further, the authors
give an introduction to approaches and methods for small variant calling from NGS data. After
read mapping and possibly recalibration, the multi-read alignment is considered in a column-
wise fashion. When columns with deviations from the reference occur, they can be subjected to
further analysis.

Early studies used fixed thresholds to determine whether there is a SNV at a certain location
in the read pileup and whether the SNV was heterozygous or homozygous in the individual.
Later method use probabilistic models to improve the variant calling. They generate candidate
genotypes at the individual positions and compute likelihoods for each genotype. The genotype

89

Chapter 5 Variant Detection

with the highest likelihood can then be chosen and a score expressing an error probability is
assigned to it. Thus, a measure of a call’s uncertainty is available and it is possible to judge
whether a variant call can be considered reliable or not.

Examples for small variant calling methods are Mag (Li et al, 2008a), the MPILEUP command of
SamTootis (Li and Durbin, 2009), SOAPsNP (Li et al, 2009b), and VarRScan (Koboldt et al., 2009,
2012). Mag is a software package including a read mapping software for early, short Illumina
reads and a small variant caller. SAMTOOLS is a versatile software package that can call small
variants from the result of any read mapper supporting the BAM file format. SOAPsNP and
VARScAN are other tools for calling small variants. Small variant calling is such an important
and elementary task in NGS analysis that most toolkits for the analysis of genomic NGS data
(e.g., GATK (DePristo et al, 2011)) include SNV and microindel detection methods.

Most small variant calling tools expect their input to be the result of read mapping in any-best
mode. An exception to this is SNIPER (Simola and Kim, 2011), that implements a Bayesian method
to incorporate the information of reads aligning at multiple locations.

Databases of known SNPs (e.g., the database dbSNP) and microindels can be used to obtain the
genotype at SNP positions in an organism where the donor has the same base as the reference.
Also, they can be used to confirm whether a called variant is already known, as done in SOAPs~p,
for example. When a read alignment column with a tentative substitution variant is close to a
possible indel variant, a refinement of the read alignment (e.g., using the methods by Anson and
Myers (1997) or Homer and Nelson (2010)) can help to improve the variant calling.

Another important problem related to variant calling is that of haplotype assembly, i.e., the assign-
ment of variants called from read data to haplotypes. It is known that most practically interesting
variants of this problem are N'P-hard (e.g., see Bonizzoni et al., 2003). However, efficient heuris-
tics have been developed that work well for practical inputs, e.g., the ones by Aguiar and Istrail
(2012), Mazrouee and Wang (2014), and Kuleshov (2014).

5.2 Structural Variants

In contrast to small variants, structural variants can change the linear order of the genome. Tradi-
tionally, the term structural variant was used for variants with a size larger than 1 kbp (Medvedev
et al., 2009). However, with advances in sequencing technology and computational methods,
structural variants can be identified for sizes starting at 50 bp (Alkan et al., 2011). Figure 5.2 shows
illustrations of the five basic SV types insertion, deletion, duplication, inversion, and transloca-
tion. Medvedev et al. (2009) and Alkan et al. (2009) each give an overview over approaches and
methods for structural variant calling from HTS data.

For insertions, one can differentiate between the insertion of novel sequence and the insertion
of mobile elements. Novel sequence is sequence that is present in the donor but not present any-
where in the reference. Mobile elements are genetic sequences present in the genome that can
copy themselves to other locations in the genome. A prominent example for mobile elements is
the Alu sequence in primates. Alu sequence and other mobile elements comprise a significant

90

5.2 Structural Variants

Ref y I Ref T > Ref T
mobile
element
(a) novel insertion (b) mobile element insertion (c) deletion
Ref — > Ref — T
(d) tandem duplication (e) interspersed duplication
Ref —

Ref — I

(f) inversion (g) translocation

Figure 5.2: Basic SV types insertion, deletion, duplication, inversion, and translocation. The segments that are
subjected to structural variants are shown in blue if they change their copy number, they are shown in gray if they
retain it, and mobile elements (that are contained in corresponding data bases) are shown in red. The segments
that are adjacent to the reference breakpoints are shown in green. The insertion is shown as the basic insertion
and mobile element insertion; and for duplication, the two cases tandem duplication and interspersed duplication
are shown.

Adapted from (Alkan et al., 2011)

part of the human genome (Lander et al, 2001). Even more pronounced, the maize genome
consists to 90% of transposable elements, a kind of mobile elements (SanMiguel et al., 1996).

Structural variants can be categorized by whether they change the copy number of a sequence
segment, i.e., the number of occurrences in the genome. Note that in this context, the term copy
of a segment in this context means a genomic segment that has high identity to the original one
but does not have to be an exact copy. Insertions, deletions, and duplications change the copy
number while the inversion and translocation of segments does not.

For duplications, one can differentiate between tandem duplication, where one copy follows the
other, and interspersed duplication, where both copies are separated by a segment of different
sequence. In contrast to mobile elements (that generally have a high number of occurrences),
duplication events occur for unique segments or segments with a low number of occurrences.

91

Chapter 5 Variant Detection

5.2.1 Approaches and Methods for Structural Variant Calling

The relatively short read lengths of NGS reads make the detection of structural variants challeng-
ing. However, the high coverage and low cost provided by NGS platforms allow SV detection at
a larger scale than was possible with previous technology, e.g., as done in the 1KGP (Abecasis
et al., 2010, 2012).

The remainder of this section describes approaches and methods used for the detection of struc-
tural variation in NGS data. The enumeration of the approaches follows the expositions by
Medvedev et al. (2009) and Alkan et al. (2011). Figure 5.3 contains an illustration of the detection
approaches to the six types of structural variants described above. Table 5.1 (p. 94) lists some
methods for the detection of structural variants.

Note that the methods listed for each of the approaches below use the same approach but might
differ greatly in the details, depending on the kind of data they are designed for. Consider the fol-
lowing examples. The methods might be designed for the analysis of individual donor genomes
or variations in pedigrees or populations. The strategies for dealing with ambiguous read map-
pings differ greatly, from ignoring multi-reads over probabilistic sampling from such mapping
positions to explicitly attempting to resolve the ambiguities. A method might be designed for
explicitly genotyping individuals, ie., determining whether variants are homozygous or het-
erozygous or just detect the fact that a variation exists. The generation of many false positives
should be prevented and the approaches implement different means to increase the specificity.
One such mean for increasing specificity is to combine (cluster) the signals of multiple reads and
read pairs supporting the same variant.

5.2.2 The Paired Read Approach

The paired read (PR) approach uses the information of read pairs for the detection of structural
variants. The underlying idea is that SVs in the donor lead to discordantly mapping pairs from
the donor read set. These discordant pair alignments can then be analyzed for characteristic sig-
natures (see Figure 5.3 for examples). Complex rearrangements might make it difficult to identify
the SVs and some tools only detect and write out locations of breakpoints without attempting to
classify the underling variant.

Methods following this approach include PEMER (Korbel et al., 2007), the first PR-based method
using NGS data, and the popular methods BREAKDANCER (Chen et al, 2009) and VARIATION-
HunTeRr (Hormozdiari et al, 2009, 2010). HYyprA (Quinlan et al, 2010) is an example for a PR-
based method that only attempts to detect breakpoints. Most PR methods focus on deletions,
novel insertions, and inversions. Note that using the PR approach alone, base-level resolution
breakpoints cannot be identified.

92

5.2 Structural Variants

SV classes Read pair Read depth Split read Assembly
Deletion = gc(:géglé :
Assemble
Novel . Contig/
sequence Not applicable scaffold ———mmmm——
insertion Assembleé@
Annotated Annotated
transposon transposon
—_— - -~
Mobile- ; ._.
element Not applicable : Contig/ | R i Align to
insertion — = scaffold ———@=——— Repbase
MEl Assemble
. : L Contig/ Inversion
Iversion Not applicable — = scaffold —— Te====1—1
Inversion Assemble
Interspersed L :
duplication E=:=;|
Assemble Contig/
@ scaffold
—
Tandem
duplication —

i J i \
Assemble Contig/
@ scaffold

Figure 5.3: Overview of structural variants and their detection from NGS data with the four detection approaches
read pair, read depth, split read, and assembly.

From (Alkan et al., 2011), used with permission

5.2.3 The Split Read Approach

The split read (SR) approach, however, allows the detection of breakpoints at base pair resolution.
In this approach, reads that could not be aligned semi-globally to the genome are considered. One
possible reason for failing to find such an alignment is that the read spans a breakpoint of an SV
in the donor with respect to the reference. In this case, the prefix and the suffix (left and right of

93

76

variant type approach
name D NI MEI INV TDP DP TR CNV PR SR RD AS other reference comment
BREAKDANCER v 7/ v v v Chen et al. (2009)
CLEVER v v/ v Marschall et al. (2012, 2013)
GASV v 7/ v 4 Sindi et al. (2009)
~ GENOMESTRIP v 4 Handsaker et al. (2011)
® Hypra v Quinlan et al. (2010) only breakpoint detection
PEMER v v/ v 4 Korbel et al. (2009, 2007) pioneering PEM approach for NGS data
SVDETECT v 7/ v v v 7/ v Zeitouni et al. (2010)
VariaTioNHUNTER v vV / v v Hormozdiari et al. (2009, 2010) MEI in second version
BREAKPOINTER v Sun et al. (2012) only breakpoint detection, SVs by other tools
CripCroP v / v v v v Suzuki et al. (2011) not evaluated on real-world data
o CREST v 7/ v v v Wang et al. (2011)
? GusTaF v 7/ v v v /7 v Trappe et al. (2014) approach uses multi-split mapping
PINDEL v 7/ v Ye et al. (2009)
SPLAZERS v / v Emde et al. (2012)
CNV-sEQ v v Xie and Tammi (2009)
@ CNVNATOR v v Abyzov et al. (2011)
RDXPLORER v v Yoon et al. (2009)
TZ“ CORTEX_VAR v v/ v v Igbal et al. (2012) allows multi-way comparison; from reads or genomes
£ Ticra v Chen et al. (2014) assembly of previously detected breakpoints
% SOAPSV v v Lietal (2011) de novo assembly followed by an analysis
ANISE/BAsIL 4 o/ v Holtgrewe et al. (2015) assembly of long novel insertions, repeat resolution
DELLY v v v v Rausch et al. (2012) low false discovery rate
ERDS v v v v Zhu et al. (2012) uses HMM to improve copy number inference
GASVPrO v 7/ 4 4 v Sindi et al. (2012) can incorporate multi-read alignments
E NOVELSEQ v v Hajirasouliha et al. (2010) assembly of long novel insertions
E\ REPREVER v v Kim et al. (2013) detection and separation of duplicated copies
SOAPINDEL Li et al. (2013) assembly of short and medium insertions
SVMINER v 7/ v v /7 Pyon et al. (2011)
SVsEQ v v Zhang and Wu (2011)
(Parrish et al, 2011) v v v v 7/ Parrish et al. (2011) assembly of long (also) non-novel insertions
.. BREAKSEQ v Lam et al. (2010) uses library of breakpoint sequence
%30 FORESTSV v v/ v Michaelson and Sebat (2012) pre-trained machine learning approach
® SVMERGER v Wong et al. (2010) merging of de novo SV caller results
TAKEABREAK v v Lemaitre et al. (2014) calls from reads, no mapping or assembly

Table 5.1: A subset of the methods available for the detection of SVs from NGS data

. The variant types are (D/deletion, NI/novel insertion, MEI/mobile element

insertion, INV/inversion, TDP/tandem duplication, DP/interspersed duplication, TR/translocation, CNV/copy number variation. The field MEI is only checked when
mobile element insertions are specifically targeted.

10139312(] JUDLIDA G 491dDYD

5.2 Structural Variants

the breakpoint) of the read were adjacent in the donor but they correspond to different locations
in the reference.

Consider the case of detecting deletions with SR in Figure 5.3. The prefix and suffix of the right
read align with a distance in the reference that corresponds to the length of sequence deleted in
the donor. This way, SR allows for the base-resolution detection of breakpoints.

The SR approach is most often used in conjunction with paired reads since this decreases the
ambiguity and thus increases precision. In the case where one read aligns semi-globally against
the genome, this read can be used as an anchor and the second read can be aligned locally (i.e.,
partially) in the direction implied by the alignment of the anchor. Further, using paired reads
decreases the search space for the local alignment since the method can limit this search by
using the approximately known insert size of the read library.

Some split mapping methods are integrated into read mapping programs such as PINDEL (Ye et al.,
2009) and SpLAZERS (Emde et al.,, 2012). Others methods, such as CLipCrop (Wang et al., 2011),
CREST (Wang et al, 2011), and GusTAF (Trappe et al., 2014) use local alignments generated by
read mappers (e.g., BWA (Li and Durbin, 2009)) or local alignment tools (e.g., BLAT (Kent, 2002)
or STELLAR (Kehr et al., 2011)) and work as a postprocessing step of these aligners.

5.2.4 The Read Depth Approach

The read depth (RD) approach considers the depth of the read coverage after mapping. This allows
the detection of structural variants that change the copy number of a genomic segment present
in the reference. For example, if the coverage is significantly lower in a region than expected from
the deviation of coverage then this indicates a deletion.

However, the RD approach cannot be used to identify novel insertions or insertions of mobile
elements: reads with novel sequence do not align to the reference at all and mobile elements occur
too often in the reference to give a strong signal. Methods following the RD approach include
CNV-sEQ (Xie and Tammi, 2009), RDExPLORER (Yoon et al., 2009), and CNVNATOR (Abyzov et al.,
2011).

5.2.5 The Assembly Approach

A fourth approach is the assembly of genomic sequence that can then be used for a direct com-
parison to the reference. There are two options for this. First, the global de novo assembly of the
whole donor genome and second, the local assembly around breakpoints detected in an earlier
step.

The de novo assembly of the whole genome is computationally challenging itself, as is the com-
parison of whole genomes. Nevertheless, it is a viable method and might become more popu-
lar when longer NGS reads have become widely available at low costs. An example for this is
SOAPSV (Li and Durbin, 2009). In the study presenting this approach, the authors used the as-
sembler SOAPDENOVO (Li et al,, 2010) and then performed a comparison of the assembly with a
reference genome.

95

Chapter 5 Variant Detection

The method CorTEX_VAR (Igbal et al,, 2012) builds de Bruijn graphs for multiple genomes, one
for each, either from read sets or from a previously assembled reference genome. De Bruijn
graphs are a common data structure used in the assembly of genomes from short read data. The
graph construction is followed by an analysis and a comparison of the structures of the graphs.
CORTEX_VAR is then able to call variants from these graphs.

An example for a method performing the targeted assembly around previously detected break-
points is TiGrA (Chen et al,, 2014).

5.2.6 Hybrid Methods and Others

Considering the drawbacks of the approaches described above, it appears natural to combine
them. Thus, recent methods often use hybrids of these approaches to improve their performance.

NovEeLSEQ (Hajirasouliha et al, 2010) uses PR signals for the detection of tentative large novel in-
sertion breakpoints and then uses assembly methods for obtaining the inserted sequence. MINDTHE-
Gar (Rizk et al.,, 2014) is a recent method for the detection and assembly of inserted sequence,
directly from the read sequence without a reference sequence and read mapping. DeLLY (Rausch
et al., 2012) combines the PR and SR approach for calling structural variations at base-level reso-
lution with high specificity. SVMINER (Pyon et al., 2011) is a method for detecting inversions and
deletions that combines the PR, SR, and RD approaches. SOAPINDEL (Li et al, 2013) combines
split read mapping with assembly for the detection and assembly of deletions and small inser-
tions. My methods ANISE and Bas1L (Holtgrewe et al., 2015) combine the PR and SR approaches
for the detection of tentative large insertion breakpoints and then use an assembly method for as-
sembling large breakpoints. Further, ANISE includes means for the explicit handling of repetitive
sequence in the assembly step.

Other methods use the calls generated by existing SV calling tools and merge these results (e.g.,
SVMERGER by Wong et al., 2010) or use machine learning to learn patterns indicating SVs (e.g.,
FORESTSV by Michaelson and Sebat, 2012). The method BREAKSEQ (Lam et al, 2010) uses a
database of breakpoint sequences to quickly identify known breakpoints in samples. The method
TAKEABREAK (Lemaitre et al., 2014) attempts to call inversion breakpoints directly from the read
set without read mapping or assembly.

In the remainder of this chapter, I describe the methods BasiL and ANISE for the detection and
assembly of large novel insertions and their evaluation. At the time of writing, there is only
the MINDTHEGAP method available, which is explicitely aimed at detecting and assembling large
novel insertions (Section 5.5.1 goes into detail of problems with other methods). AsI will show in
the experimental evaluation in Sections 5.5- 5.7, ANISE and BasIL are successful in locating and
assembling large insertions, even in the presence of repeats. ANISE shows superior performance
to MINDTHEGAP and is competitive to state-of-the art general purpose assemblers for assembly
in the presence of repeats.

96

5.3 BasiL — Insertion Breakpoint Detection
5.3 BAsiL — Insertion Breakpoint Detection

BasiL (Holtgrewe et al, 2015) is a method for the detection of breakpoints from paired NGS data
combining the PR and the SR approach. I developed it in conjunction with ANISE, my method for
the assembly of large novel insertions that is described in Section 5.4. BASIL is meant to predict
breakpoint locations for which ANISE can then attempt an assembly.

Figure 5.4 shows an overview of the BasiL program. As the input, BAsiL takes the reference
genome sequence as a FASTA file and a BAM file with the paired read alignments, sorted by
their genomic coordinates. The method consists of three steps. First, it preprocesses the read
alignments so as to be able to efficiently and easily analyze them later using PR and SR signals.
This preprocessing includes the removal of invalid pairs, performing local alignments of previ-
ously unaligned reads, and ensuring the correct order after all other processing steps. Second,
Basit searches for PR and SR signals and generates candidate breakpoints from them. Finally,
it attempts to combine the two kinds of signals. The aim of this third step is to use the base
pair-resolution of the SR signals to refine the positions of the more reliable PR signals.

In this section, I describe BasiL and give some background information on the PR and SR sig-
natures that BAsIL uses. In Section 5.3.1 I first identify and discuss three types of insertions and
their signatures. In Section 5.3.2 I describe the filter pipeline steps in BasiL that are used for
filtering and processing the read alignments. This is followed by the description of the signature
detection steps in Section 5.3.3 and Section 5.3.4. Finally, I describe the combination of the PR
and SR signals in Section 5.3.5.

5.3.1 Insertions Types and their Signatures

In the context of detecting and assembling insertions, I define three kinds of insertions: small,
medium, and large insertions. The definition depends on the properties of the available sequenc-
ing technology.

In my design of BasiL, I focus on the usage of Illumina paired-end read pairs since they allow
for obtaining a cost-efficient coverage of large (e.g., human) genomes. Of course, reads with
different lengths and libraries with larger template size can be used. However, BasiL does not
exploit PR signatures specific to read pairs with large insert size, such as deviations from the

OEA

BAM {1 cluster OEAs clusters
=
] =)
filtration T merging [—— VCF
= .
FASTA cluster clippings clipping

clusters

Figure 5.4: Overview of the steps in the BasiL method.

97

Chapter 5 Variant Detection

(a) small insertion

74—
—»?

Ref — 1 >

. : : .

(b) medium insertion

?<—
—?

Ref '_Ai | :-4,,

A\ 4

(c) large insertion

Figure 5.5: Examples of paired read signatures of (a) small, (b) medium and (c) large insertions.
The inserted sequence in the donor is shown in blue, flanking segments are shown in green. The
sample position of the read pairs is shown below the donor and the mapping locations are shown
above the reference. In (a), the location of each read breakpoint after split alignment is indicated by
an orange star. The question marks in (b) and (c) indicate that the mate of the aligned read could not
be aligned to the reference since it stems from the inserted sequence. In (c), the part of the inserted
sequence that cannot be reconstructed from assembling shadow sequence is shown in darker color.

expected inferred insert size of pairs spanning large insertions.

Figure 5.5 shows examples for the three kinds of insertions. In each case, the corresponding
subfigure shows two paired reads that can be used for detecting the inserted sequence. For
medium and large insertions, the case of pairs spanning into the insertion is important. Here,
one read is sampled from the inserted sequence while the other is sampled from sequence that
is also present in the reference. This gives rise to the particular kind of PR signatures, one-end
anchored mapping signatures (this term was coined by Kidd et al. (2008)).

Definition 5.1 (One-end anchored (OEA) read pairs). The read pairs for which one read can be
aligned semi-globally and the other cannot are called one-end-anchored (OEA) pairs. The alignable
read is called anchor and the other read is called shadow. Shadow reads are anchored by the other
read in the pair.

98

5.3 BasiL — Insertion Breakpoint Detection

Small Insertions are short enough such that they are spanned by single reads. SR methods,
such as PINDEL (Ye et al., 2009) or SPLAZERS (Emde et al, 2012), can efficiently compute their
location and sequence. Figure 5.5a shows an example of a small insertion and two reads that span
over the insertion in so-called split alignments. For small insertions, the read prefix and suffix
are aligned in such split alignments and an infix in the center remains unaligned. Specialized DP
alignment algorithms are used for obtaining split alignments. These alignments are then used
for locating the insertion breakpoint in the sequence and the unaligned part of the read is used
for determining the insert sequence.

The maximal insert sequence length for which such methods are applicable depends on the avail-
able read length. For example, under the assumption of a read length of 100 bp and that a suffix
and a prefix with a length of each 25 bp has to be aligned to the reference to detect the insertion,
the maximal detectable insert size is 50 bp.

Note that small insertions can be detected by single-end reads but that using paired reads de-
creases the mapping ambiguity of the suffix and the prefix (as also explained by Emde et al.
(2012)). Further, having a second pair can be used to decrease the search space and thus the
running time.

Medium Insertions are those that cannot be covered reliably from one read with sufficient
suffix and prefix alignment size (see Figure 5.5b). Given the assumptions above, their size is
>50bp.

However, the length of the inserted sequence must be short enough, such that they are com-
pletely covered by anchored shadow reads. That is, the coverage of the inserted sequence has
to be of sufficient depth, such that the insertion can be assembled from the anchored shadows
alone. When considering reads of the same length, this is the case when the length of the inserted
sequence is less than approximately 2 - (¢ — r) where ¢ is the maximal expected template size and
r is the read length. Under the assumption that the read length is 100 bp and the insert size fol-
lows the normal distribution N/ (400, 40), medium insertions are not longer than approximately
2- (400 + 3 - 40 — 100) = 840bp (99.7% of all template sizes will fall into three standard devia-
tions around the mean). However, this bound is only a rough approximation and will depend on
sequencing depth in practice.

SOAPinDEL (Li et al., 2013) is an example of a method designed for the detection and assembly
of medium insertions. Li et al. (2013) give a (relatively conservative) bound of approximately
(t - 1.2 — r) for the maximal detectable insertion length. For the values in the example above,
this yields a bound of approximately 380 bp.

Large Insertions are those that are greater than medium insertions (see Figure 5.5¢). The PR
signature is the same for medium and large insertions. Both insertion types only differ in the fact
that medium insertions can be covered using shadows alone while large insertions cannot. In
Figure 5.5¢, the shaded area in the inserted sequence shows the part of this sequence that cannot
be covered by shadow reads because of limitations due to the template size.

99

Chapter 5 Variant Detection

— T
Ref —| 1 —

Figure 5.6: PR signature for an insertion breakpoint position. The inserted sequence in the donor
is shown in blue, the flanking segments are shown in green in both the donor and the reference. The
sampled read pairs are shown below the donor and the anchors are shown aligned to the reference.
The question marks beside a read indicate that no alignment could be found for their mate. Here, the
flanking sequence also corresponds to the left and right window around the true breakpoint. The
orange rectangle above the reference indicates the range for the possible insert breakpoint, as can
be called from the PR signal.

Large and Medium Insertion PR Signals. BasiL searches for the same type of signatures
as the program MRCAR from the NoveELSEQ method (Hajirasouliha et al, 2010). A breakpoint
at a genomic position p with sufficient coverage generally leads to a signature as shown in Fig-
ure 5.6. Left of p, there are OEA anchors on the forward strand and right of p, there are OEA
anchors on the reverse strand. More formally, I define the support of these alignments as below,
in consistency with Hajirasouliha et al. (2010).

Definition 5.2 (OEA forward and reverse support for a position). Given a genomic position p
and reads with an insert size that approximately follows a normal distribution N' (11, o). The OEA
forward support is the number of OEA alignments on the forward strand in a window of length
i + 3o left of p. Accordingly, the OEA reverse support is the number of OEA alignments on the
reverse strand in a window of the same length right of p.

The PR signature for large and medium insertions at a position p is a high OEA forward and
reverse support (OEA signature). In general, the generated PR signals will not have base pair
resolution. Instead, there will be an interval of positions with the same supporting OEA forward
and reverse alignments. It is sufficient to report the center of the interval.

Figure 5.6 shows an example for this. Here, the insertion breakpoint in the reference could be
anywhere between the innermost anchors on the forward and reverse strand. The orange rect-
angle above the breakpoint indicates this interval and its center position can be used as an ap-
proximation for the breakpoint.

Ambiguities in PR Signals. Depending on the strategy employed by the read mapper used
for generating the input, SVs of a different type than insertions can yield the same PR signature
in the read mapper’s result. For example, for the Illumina paired-end protocol, the read mapper
BWA (Li and Durbin, 2009) only attempts to find concordant read alignments as described below.

100

5.3 BasiL — Insertion Breakpoint Detection

breakpoint (1) (2) 3)
74— 74— 74—
Ref — i B —— = B
| | 5 i i : :
I ST e

Figure 5.7: An example for ambiguous PR signatures of breakpoints. The donor sequence has a
large insertion and an inversion with respect to the reference. The sampled reads are shown below
the donor and the mapped reads are shown above the reference. The read alignments are depicted
as a read mapper such as BWA could generate them. From the OEA signature alone, the type of the
SV for each breakpoint is unclear.

The paired-end protocol yields template sizes of 200-400 bp and is often used in resequencing
project because of its lower cost per base pair, when compared to the mate-pair protocol that
yields template sizes of 2—5 kbp.

Figure 5.7 shows an example. For paired-end reads, BWA first tries to find a semi-global align-
ment of one read in each pair and then attempts to find a concordant alignment for the read’s
mate. It does not consider alignments at higher distances or on other chromosomes. If no such
concordant alignment can be found, the program then attempts to find a local alignment for the
still unaligned read. When this fails, the read mapper generates an OEA alignment with a shadow
read. Thus, other kinds of SVs (e.g., the inversion shown in Figure 5.7) can yield the same OEA
and clipping signatures and BasIL will generate candidate breakpoint locations for them as well.

However, as I will describe in Section 5.7.3, this does not lead to problems downstream in the
insert assembly. These non-insertion breakpoints can be filtered out in a postprocesing step after
running ANIsE. Roughly, ANISE attempts to fill an insertion from each breakpoint side towards
the other one simultaneously. It does so by repetitively assembling the shadow reads and then
mapping the orphan (unmapped) reads against the newly assembled sequence. In the case of
breakpoint (2) and (3) in Figure 5.7, the iterative assembly processes from the left and right side
will not meet. This means that the assembly attempt will stop without succeeding and such
partial assembly results can be easily removed in a postprocessing step.

Clipping Signatures. Some read mappers such as BWA can also generate local alignments.
BWA does this when it cannot find a concordant pair alignment with both reads aligning semi-
globally. As explained above, BWA will first try to find a good semi-global alignment of one read
(the anchor) in this case. Then, it attempts to perform a local alignment of sufficient size and
score in the direction indicated by the anchor. The unaligned prefix and suffix of a read is called
clipped sequence. The positions in the read where the clipping starts and the corresponding
positions in the genome are called clipping positions. The clipping support of a position is defined
as follows.

101

Chapter 5 Variant Detection

Figure 5.8: Clipping signature for an insertion breakpoint. The reads spanning into the insertion
are aligned locally to the reference. The clipping position is shown as a red circle in the clipped
alignment.

Definition 5.3 (clipping support of a window). Given a genomic position p and a radius r, the
clipping support of p is the number of clipping positions that fall into the window of length ¢ = 2r
around p.

Figure 5.8 shows an example of such clipped alignments around a breakpoint. The locally aligned
reads are treated as shadows in the PR signature detection and clusters of clipping signatures can
be treated as a second type of signal. The clipping positions can also be used to get a base pair
resolution position for the breakpoints detected by the PR signal.

BasiL only considers clipped alignments when a read prefix or suffix can be aligned that has a
minimal length (defaults to 15bp). Thus, true infixes or too short prefix and suffix alignments
are ignored. I classify using such clipped alignments as following the SR approach, even though
only one partial alignment is performed instead of attempting to align the remainder of the read.

Note that using such clipped alignments differs from using the SR approach in that only one part
of the read is aligned to the reference. The original SR approach (e.g., as used by SPLAZERS) is not
possible in the case of medium and large insertions. Because of their length, reads cannot span
over such insertions and have a prefix and suffix of sufficient length aligning to the reference.
Also, in the case of novel insertion, the clipped-away part of the read sequence does not have a
corresponding location in the reference.

5.3.2 Filter Pipeline Steps

I implemented BasiL as a pipeline with several steps as also shown in Figure 5.4 (p. 97). Each
pipeline step is executed in a separate thread, allowing parallel insert site prediction. The input
is a file with alignments in BAM format, sorted by coordinate. That is, the read alignments are
sorted lexicographically by (¢, p) where c is the number of the chromosome (in an arbitrary but
fixed numbering scheme) and p is the begin position of the alignment. Further, the reference is
given as the input in FASTA format.

102

5.3 BasiL — Insertion Breakpoint Detection

Each record from the BAM file includes the name and sequence of the read as well as the position
and orientation of the read mate’s alignment. Each record also describes the pairwise alignment
of the read to the reference as well as information about the clipping of a record. Thus, the
records can be read sequentially, one by one, and the distance to the other mate’s alignment is
known. Note that the BAM record does not contain information on whether the other mate’s
alignment is clipped or not.

In a step before the preprocessing, the first few thousand records are read from the BAM file.
These records are used to guess the read orientation and to estimate the mean and standard
deviation of the normal distribution NV(u, o) that the template size follows. The records are then
read sequentially from the beginning and subjected to the following pipeline.

Remove High Coverage Reads. In the first step, reads from regions with too high coverage
are removed. Excessive coverage is an indicator for mobile elements in these regions. Mobile
elements are not targeted by the downstream method ANIsE for the assembly of novel sequence.
Regions with too high coverage are detected using a simple incremental linear scanning algo-
rithm (see Section 2.2.3).

Here, incremental means that records with alignments that do not overlap with high-coverage
regions are written out as soon as possible and subjected to the next pipeline step. All subsequent
pipeline steps also process the alignments in such an incremental fashion to keep the memory
requirements low.

Remove Discordant Pairs. In this step, reads aligning with an unexpected relative orientation
or with a too large inferred template size are removed. This removes alignment artifacts and
allows for optimizations in the downstream pipeline steps. By default, the maximally allowed
inferred template size is i + 80. Consequently, downstream pipeline steps only have to buffer a
certain range of BAM records to have all records in memory whose read pairs can overlap with
the currently processed position.

Remove Invalid Pairs. In this step, records with missing mates are removed. This removes
artifacts either caused by the removal of records in the previous two steps or erroneous read
mapper output. I occasionally observed such erroneous output with older versions of BWA.

Treat Clipped Alignments as Non-Aligned. In this step, records with clipped alignments
are updated such that they appear as shadows. In the BAM format, shadows are marked as being
unaligned by a flag in the record and the shadows are assigned the same position as their mate.
This step performs such an update of the flags and the alignment position for the clipped records.
In the case that both reads of a pair contain clipping, the pair is removed. A permanent mark is
then added as a BAM tag to the anchoring reads, such that they can be later identified as anchors
after the local alignment step.

This step is quite technical but allows treating clipped and shadow record uniformly in the OEA
clustering step described in Section 5.3.3 below. Further, it ensures that the same local alignment

103

Chapter 5 Variant Detection

algorithm is performed for the shadow reads (that the read mapper could not align) and the
clipped reads.

Attempt Local Alighment of Shadow Reads. This step attempts to perform local alignments
of the shadow reads against a window of the reference sequence. The local alignment of the
reads gives rise to clipping positions that are used in the clipping clustering step described in
Section 5.3.4 below.

The local alignment computation is similar to the way that BWA performs its local alignment of
anchored reads as described in Section 5.3.1.

For each anchor, a window in the reference is computed, depending on the alignment direction
of the anchor and the estimated template size distribution. The alignment position information
is subsequently updated in the case that such a local alignment was found. As described above,
read alignments where both ends of a read are clipped away or when there are too few bases in
the local alignment are ignored and these reads are kept as shadows.

Reorder Alignment Records. In this step, the records are reordered again, such that those
with clipped alignments from the previous step are moved to the correct position in the list of
records.

Processing of the Filter Pipeline Result. The output of the filter pipeline is a coordinate-
sorted list of BAM records. These records are passed into concurrently running pipeline modules
that perform the OFEA signature and clipping signature clustering described in Sections 5.3.3
and 5.3.4.

5.3.3 OEA Clustering Algorithm

The OEA signal detection is performed after the record preprocessing. This step first enumerates
positions with sufficient OEA forward and reverse support. An example for such a signal is shown
in Figure 5.6 (p. 100). When a range of possible breakpoint positions is identified, the center of
this range is reported.

For efficiency, the enumeration is done using the linear scanning approach (see Section 2.2.3).
This way, the records can be processed on the fly and only few records have to be kept in memory.

Besides returning a range of possible insertion positions, there can be another kind of ambigui-
ties. Figure 5.9a shows an example of this. This figure shows two breakpoints with corresponding
OEA and clipping signatures. In the OEA cluster step, reads with a clipped alignment are treated
as shadow reads. The braces at the bottom show windows that have a non-zero total OEA sup-
port. Thus, a OEA cluster could be reported for each of these windows.

Figure 5.9b shows a set model of this situation. Each anchor is represented by a circle, in the same
order as their alignment against the reference. Further, each OEA cluster window is represented
by a rectangle containing the circles whose corresponding reads are spanned by this window.

104

5.3 BasiL — Insertion Breakpoint Detection

Ref — r——
1_; """ . -— o —> o> e
— 7 7 —»?
74— 3 74— 8

0 —»? 2 5

a — £ -

b g
C d hl

(a) example for ambiguity in OEA signatures

[@|o [@\ @ @9

/
\

a b c d e f g h i

(b) corresponding set model of the OEA clusters

Figure 5.9: Example for the ambiguity of OEA signals. (a) shows OEA and clipping alignments
for two breakpoints. Reads with clipped alignments are counted as shadow reads. The braces at the
bottom show windows for the OEA clustering, centered at the tip of a OEA alignment on the forward
strand. The OEA reads are numbered 0-9 and the windows are labeled a-i. (b) shows this situation
as a set model. Each anchor read is shown as a circle and the rectangles represent the windows and
contain the circles for the reads spanned by each window. Each set contains the forward alignments
in the left half of its corresponding window and the reverse alignments in the right half of its window.
According to Definition 5.2, the forward alignments in the left half of the window support the center
of the window as the insertion position and vice versa for the reverse alignments in the right half of
the window. The labels in (b) are the same as in (a). The main text explains how the two different
OEA cluster selection strategies yield different sets of explaining windows.

I considered two strategies for solving this. (i) Select a minimal cardinality subset of the enumer-
ated positions such that all OEA alignments are explained as MRCAR from NovEeLSEQ (Hajira-
souliha et al., 2010) does, for example. (ii) Select a subset of the enumerated positions such that
no two positions are supported by the same OEA alignment.

For strategy (i), a solution can be found by modeling it as a SET-COVER problem and solving this
using a greedy heuristic that runs in polynomial time (Cormen et al., 2001, p. 1034). While the
heuristic only gives a logarithmic guarantee on the result quality, it works well in practice (Ha-
jirasouliha et al, 2010). Strategy (ii) is equivalent to one-dimensional chaining (Gusfield, 1997,
p. 325) and can be solved in time O(n logn) since the coverage has an upper bound because of
the first filter step. For the example of Figure 5.9, strategy (i) yields all four colored sets. Strategy
(ii) yields the green and the blue set.

Since it is not obvious which selection strategy is best, BAsiL implements both, defaulting to one-
dimensional chaining. Section 5.6.2 contains a comparison of both strategies using simulated
data, justifying the choice for the default method.

105

Chapter 5 Variant Detection

5.3.4 Clipping Clustering Algorithm

In parallel to the OFA cluster detection, BasiL clusters the clipping signals. This step is also
implemented using linear scanning.

Here, BasiL searches for windows of a length /¢ that contain at least ¢ clipping positions. Redun-
dant windows are removed, i.e., those where another window exists with a superset of positions.
In the case of overlapping windows, chaining is used for selecting a set of non-overlapping ones.
The values of ¢ and c are configurable, the defaults are ¢/ = 20 and ¢ = 5.

The center of each window is reported as a possible breakpoint position. Since the positions in a
clipping position cluster are typically very close, the reported position has base pair resolution.

5.3.5 Combining OEA and Clipping Signals

In a final step, BAsIL attempts to refine the positions of the OEA clusters with the clipping cluster
positions using maximum weight matching in bipartite graphs. Towards this end, a bipartite
graph is created.

The algorithm inserts one vertex for each generated OEA and clipping cluster. An edge is inserted
for each clipping cluster that lies within the interval of possible breakpoint positions of an OEA
cluster. The algorithm weighs each with the sum of the OEA forward and reverse support of the
OEA cluster and the clipping support of the clipping cluster. BASIL computes a maximum weight
matching using the LEMoN library (Dezs6 et al., 2011). For each selected edge, the OEA cluster’s
breakpoint position is set to the breakpoint position of the clipping cluster.

Figure 5.10 gives an example. The selected OEA and clipping cluster signatures are shown in
Figure 5.10a. Here, the OEA cluster step yielded the three OEA clusters o1, 02, and 03 and the
clipping cluster step yielded c; and cy. Figure 5.10b shows the bipartite graph that is built in the
matching step. The maximum weight matching is highlighted, thus the position of ¢; is assigned
to oz and the position of ¢y is assigned to os.

BasiL then writes out a list of candidate breakpoint positions for each OEA cluster. If the position
of the OFEA cluster could be refined with a clipping cluster in the mapping step, this position is
used. Otherwise, the center of the position interval associated with the OEA cluster is written
out and the position is flagged as being inexact in the resulting VCF record.

106

5.3 BasiL — Insertion Breakpoint Detection

clipping clusters

C1 Cc2
— —
Ref — [— [f—
> :’-—» ~~~~~~ -— B o —
—»7? —
—>2 ki ’ 7+
‘ [—
- -
o1 o3
OEA clusters
02

(a) OEA and clipping clusters

(b) cluster combination

Figure 5.10: Example for the combination of OEA and clipping signals. Figure (a) shows read
alignments for three OEA signals 0; and two clipping signals c;. Reads with a clipped mate count
as OEA anchors. 0; contains all but the two rightmost OEA anchors it overlaps with, 02 contains
all but the leftmost OEA anchor, and o3 contains all OEA anchors it overlaps with. From this, the
bibartite graph in Figure (b) is built as described in the main text.

107

Chapter 5 Variant Detection
5.4 ANISE — Insert Sequence Assembly

ANISE is a method for the targeted assembly of medium and large novel insertions. That is, given
a reference sequence, the alignments of a read set against the reference, and a set of (predicted)
insert breakpoint positions, ANISE attempts to assemble the inserted sequence at each such po-
sition. Practically, the reference sequence is given as a FASTA file, the alignments are given as
a BAM file (sorted by coordinate and indexed, such that alignments from specific regions of the
genome can be retrieved efficiently), and the list of candidate breakpoint positions is given as a
VCF (Danecek et al.,, 2011) file (e.g., as written out by Basiv).

There are two main causes for medium and large insertions in the donor with respect to the
reference. First, the inserted sequence might be truly novel in the donor, i.e., the sequence is not
included in the reference since it was not observed with sufficient prevalence in the sequenced
genomes that were used for building the reference genome. The sequence was not observed
in the majority of the considered individuals or not observed at all and thus is not included
in the reference. Second, the inserted sequence might be missing in the reference because the
used assembler was not able to assemble this sequence correctly. One major cause for problems
during the assembly is repeated sequence, i.e., sequence that has multiple highly similar copies in
the genome.

To be able to deal with such insertions that contain repeated sequence, ANISE includes features
for repeat separation. That is, if parts or all of the inserted sequence have multiple copies in the
genomes, then ANISE attempts to determine the correct copy to assemble. The result of ANISEis a
FASTA file with the assembled sequence, annotated with the position of the candidate breakpoint
that was used for starting the assembly.

In this section, I describe ANISE and its components. In Section 5.4.1 I give an overview of the
method. In Section 5.4.2 I describe the used overlap-layout consensus (OLC) approach for the
assembly. In Section 5.4.3 I describe the copy separation step used for resolving assembly issues
in the presence of repeats, and in Section 5.4.4 I give a description of the scaffolding step that is
used for resolving issues in the case of ambiguities during the assembly.

5.4.1 Overview

The following overview of the program ANISE is also illustrated in Figures 5.11 and 5.12. Fig-
ure 5.11 shows a high-level flow diagram of the individual steps performed and Figure 5.12 gives
an illustration of these steps with the reads in the assembly and the contiguously assembled
sequence (contigs) resulting from the assembly.

ANISE considers each (candidate) insertion site from the input VCF file independently. In the
initial step, ANISE extracts the supporting OEA alignment pairs (anchors and shadows) for the
current site.

It then performs the initial assembly step. The extracted read sequences are subjected to assembly
using the overlap-layout-consensus (OLC) approach (see Section 5.4.2). To deal with reads from
multiple copies, a repeat separation substep is performed (see Section 5.4.3). This is then followed

108

5.4 ANISE — Insert Sequence Assembly

by a scaffolding substep (see Section 5.4.4) where the contigs are ordered, overlaps are resolved,
and a scaffold sequence is generated.

The assembly step is followed by the read mapping step. In this step, the pairs for which no
alignment could be found (the orphans) are aligned to the scaffold sequence in an all-best-mapper
fashion using the same algorithm as in RAZERS 3 (see Section 4.4). The sites for which no new
read alignments could be found are marked as inactive and they are not considered further.

At this point, each site has a set of reads associated with it either from the input BAM file or
from a previous read mapping step. The sites for which new read alignments could be found are
subjected to another iteration of this loop and each iteration attempts to assemble the inserted
sequence further from the outer borders towards the center. This is repeated until all sites are
marked as inactive. To prevent a too long running time, all sites are marked as inactive after
reaching a maximal number of iterations (defaulting to 50).

Assembly Failure. There are many cases in which there are problems in the assembly around
predicted insertion sites. One possible reason is that there are spurious OEA alignments around
an actual insertion site or that the predicted insertion site is not an insertion breakpoint. I ob-
served that such cases lead to assembly artifacts, e.g., short contigs consisting of very few reads.

For dealing with such assembly problems, ANISE considers contigs that are shorter than 150% of
the average read length as artifacts and removes them from the assembly result. If all contigs
created by an assembly step are discarded in the initial step then this site is disabled and not
considered in the subsequent steps. I call this failure of the insert assembly at this site. ANISE
does not write out any sequence for the sites at which the insert assembly failed.

Usage of External Memory. One of my aims for ANISE was that it could be run for full human
HTS data sets, e.g., llumina HiSeq 2000 runs with a coverage of 30x. For such settings, the
resulting BAM file with the aligned reads usually has a size of approximately 150 GB and contains
a total of approximately 450 million read pairs. Running ANISE should be possible on common
compute servers without the need for dedicated high-memory machines as are often required
for de novo assembly.

This implies that main memory usage should be kept relatively low and that only the active

active sites no

start ——— extraction ——— initial assembly ——— read mapping —— left? ———— done

yes J
assembly

Figure 5.11: A high-level diagram of the program steps in ANISE.

109

Chapter 5 Variant Detection

reference

(a) reference and donor sequence with OEA and orphan read pairs

breakpoint
1
- -—
p— P a—

(b) anchor read alignments around breakpoint

-

-

(c) shadow reads from insertion

<
&

(d) contigs assembled from the shadow reads

(e) orphan reads mapping to assembled insertion

(f) assemble shadow reads into contigs

(g) the steps above are repeated until the insertion is closed

Figure 5.12: An overview of the work flow of ANISE. ANISE independently considers each tentative insertion site
from the input. First, it extracts the OEA pairs from the input BAM file. This is followed by the assembly step for
obtaining contigs, repeat separation, and scaffolding of the resulting contigs and contig copies. Then, it performs
the read mapping step. The assembly step is repeated using the reads for an input.

110

5.4 ANISE — Insert Sequence Assembly

working set of the input data should be kept in memory. This in turn means that the data has
to be stored on the computer’s hard drive, i.e., on external memory. I decided on the following
design that allows for practical usage of main memory while needing no complicated external
libraries for data storage.

The orphan reads are extracted from the input BAM file and written to a temporary compressed
FASTQ file that is kept during the whole program run. In the extraction step, the program loads
the OEA read pairs from the BAM file for each candidate insertion site in the VCF file. The initial
assembly step then performs an assembly of these reads for each site. The result of the assembly
step is are multiple sequence alignment (MSA) of the reads for which the consensus sequence is
computed and used as the contig sequence. The contig sequence and read MSA are written to a
FASTA/SAM file for each site.

The read mapping step first reads the previously assembled contigs for all sites into main memory.
It then sequentially reads through the orphans FASTOQ file, aligns the reads to the contigs using
the read mapping algorithm of RazEeRrS 3, and appends the read alignments to the SAM file for the
corresponding sites. The read information for each site is stored on the disk in the uncompressed
SAM format, such that the read mapping step can simply append new lines. This is not easily
possible with the compressed BAM files.

For each site, the assembly step reads in the aligned read pairs, ignoring any duplicate read
alignments. Then, the program performs the sequence assembly as described in the sections
below. This is followed by writing out the assembled sequence as a FASTA file and the read
MSA as a SAM file to the disk. These files are then used as the input of the iteration of the read
mapping/assembly loop.

Parallelization. The fact that each site is considered independently in the assembly step is
used for performing the assembly in parallel. ANISE starts a configurable number of threads and
each atomically obtains a site to perform assembly for from a shared work queue.

Read mapping is parallelized in a similar fashion. The reads are read in chunks of several thou-
sand reads and each chunk is then processed in parallel. The mapping results are distributed to
the sites using a global lock for writing. In my experiments, I found that this global lock does
not create a bottleneck for the thread/core counts (up to 64) that I could test. In the future, this
locking strategy can easily be changed in the case that it creates scalability problems for servers
with more cores.

5.4.2 Overlap-Layout-Consensus Contig Computation

ANISE uses a variant of the classic OLC approach for the assembly of contigs.

Overlap Computation. Similar to the Celera assembler (Myers et al., 2000), ANISE uses a k-
mer filter for identifying candidates for overlapping reads. For this, the pigeonhole string filter
algorithm from the SeqAn library is used. The filter yields pairs of contigs that are candidates for

111

Chapter 5 Variant Detection

overlaps and are verified using a banded DP algorithm. For each pair of contigs, only the longest
overlap is stored.

The k-mer index is also used to filter out k-mers with too high abundance (by default, k-mers
with an abundance of more than 200 are ignored). Further, the overlaps are filtered such that
too short overlaps are removed (by default, the overlap has to be at least 40% of the longer read,
which is appropriate for 100 bp reads). Overlaps with more than 5% of errors are filtered out as
well.

Layout Computation. The next step is the computation of an approximate read layout. For
this, ANISE combines ideas previously used in the MIRA assembler (Chevreux, 2005) and the
CABOG (Celera Assembler with Best Overlap Graph) (Miller et al., 2008) and builds a best overlap
graph (BOG).

In the initial step, all contained reads (reads for which a containing overlap exists, see Sec-
tion 2.2.2) are removed. That is, the reads that overlap completely with another read or are
an (approximate) substring of another read are removed. These reads will be considered again
in the consensus step (see below).

In a BOG, each read is represented by a vertex. Each vertex can have two outgoing arcs: one for
the best overlap to the left and one for the best overlap to the right. In CABOG, the length of
the overlaps is used for scoring them. This works well for the 454 and Sanger reads that CABOG
is designed for but in my experience, this strategy is less suited for the shorter read length and
higher coverage in lllumina data. Instead, I dediced to use the same strategy for scoring in ANISE
that is used in MIRA.

In this strategy, all overlaps to the left and right for each read are collected and sorted descend-
ingly by the overlap length. For each read ry, ANISE considers the n reads R; to the left side
with the longest overlaps and stores the overlap length as the score. For each of these reads r;
from Ry, it computes the n best neighbors to the left and adds the overlap length to the score of
r1. This recursion is repeated up to a depth of m. In each recursion step, the best score for all
successors is returned. The same recursion is also performed to the right. The best-scoring read
for the left and the right is then selected. The values n = m = 4 yield good results in practice.

After computing the best overlaps to the left and right for each read, ANISE then computes the
lengths of the longest paths to the left and the right for each vertex. As is done in MIRA, ANISE
considers the vertices in random order and starts a breadth-first search (BFS) traversal to the
left and right from each vertex. While performing the BFS, the program computes the length
of the longest path reachable towards the left and right outgoing arc. The resulting path length
towards the left and right is stored for each vertex. Once a vertex with known path length (for the
currently computed side) is reached, the stored count is used instead of continuing the recursion.

After computing the path lengths, ANISE selects long paths as in CABOG, marking all vertices
on the selected paths as covered. In the beginning, no path is selected and all vertices are marked
as uncovered. The program greedily selects vertices by the previously determined path length
in descending order and traverses the longest path up to the first covered vertex, if any. Such
intersections can arise in the presence of repeats or from spurious alignments. The path extension

112

5.4 ANISE — Insert Sequence Assembly

Cofals)—{a]o[sk—Ae]e]e)—{a]a]t)—{s]c]0]
nfej—e]if1)—{s]i]0]

(a) best overlap graph

a b c d e
b is part of
both paths

b h i j

(b) path selection result

path 1 - C d e

e & /overlap edges,
path 2 a<e——) < not part of
s~ split paths

~
~

N

path 3 ~h i J

(c) paths after splitting

Figure 5.13: Example of a best overlap graph, path selection, and path splitting. (a) shows a best
overlap graph. The label of each node shows the length of the longest path towards the left, the
name of the node, and the length of the longest path towards the right. The arc towards the left
points to the node with the best overlap towards the left and vice versa for the arc pointing towards
the right. (b) shows the result of the path selection and (c) shows the result of the path splitting.

stops at such intersections and they are stored for later.

In the example of Figure 5.13 the selection first starts at node b and the result from the selection
is the upper path in Figure 5.13b. Then, the algorithm starts the selection at node h. This path is
first extended towards the left and immediately stops at b since it has been previously marked as
covered already. Note that b is included in this path and the information of the two paths sharing
b is stored for the subsequent splitting step. The path is then extended towards the right from h
to j and the result is the lower path in Figure 5.13b.

After the extension, the previously selected paths are split at these intersection positions by a
criteria similar to the one in CABOG. If the shorter path describes a sequence of > 200 bp and
contains > 3 reads then the longer path is split and the program stores the two overlaps at the
splitting site as contig overlaps for the scaffolding step described below.

The result of this splitting step is shown in Figure 5.13c. Here, three paths are generated and the
upper path from Figure 5.13b is split into two new paths (paths 1 and 2).

113

Chapter 5 Variant Detection

Each of the path segments yields an approximate layout for one contig. The overlap alignments
indicate the offset of the right read with respect to the start position of the left read. From this,
the approximate position of each read in the contig can be computed. The approximate layout
is a list of positioned reads, where each positioned read is described by a numeric ID and the
position in the approximate read layout.

Consensus Computation. Finally, the consensus sequence of the approximate read layout is
computed. For this, the same method as in SEQCons (Rausch et al,, 2009) is used. For each pair
of overlapping reads in the approximate layout, a banded overlap alignment is computed. These
overlap alignments are then used to compute a MSA of the reads. Then, the MSA is refined using
the realignment algorithm of Anson and Myers (1997) that I reimplemented and the consensus
sequence is computed from the refined MSA.

The MSA algorithm that I used is based on the segment-wise computation of consensus-based
multiple sequence alignment algorithm by Rausch et al. (2008). The number of segments tends to
increase with the number of sequences to be aligned and with the number of gaps in the pairwise
alignments. Further, the running time of the consensus step is cubic in the number of depth in
the MSA. Thus, the running time of the consensus step rises with the number of gaps in the reads
and it rises sharply with the highest coverage in the read MSA. When the assembled sequence
is repetitive (e.g., contains the sequence of a mobile element), the read coverage tends to be high
and the small differences in the distinct copies can lead to indels in the pairwise alignments. This
leads to high running times in the consensus computation.

To resolve this issue, a simple trick is employed. The main idea is to select a subset of the reads
such that the consensus computation is performed on a MSA with a limited coverage.

Towards this end, ANISE infers the approximate length of each contig from the read begin po-
sitions and the read lengths. An integer array with an entry for each position is created and
initialized with zeroes. Then, the reads in the layout are considered in random order and the
coverage at the spanned position with already picked reads is computed. If this is below a given
threshold (the default is 50), then the read is used in the MSA. Otherwise, it is marked as deferred.

After computing the MSA and before refining it, the deferred reads are aligned against the con-
sensus sequence and this alignment is used for integrating it in the MSA. Thus, the deferred
reads are also considered in the final MSA refinement. The overlap alignments removed earlier
are integrated in the same fashion.

This heuristic approximates the read alignment by ignoring gaps in the multi-read alignment. For
most genomic sequence that can be assembled well, the read MSA contains few gaps, such that
the heuristic works surprisingly well in practice. In the case of read MSAs with a large number of
gaps, the reads are not very similar and the resulting assembly would be of low quality anyway:.

5.4.3 Copy Separation

Contigs computed by the previous step might contain reads from multiple locations on the se-
quence that have high similarity. Despite these similarities, there will usually be columns in

114

5.4 ANISE — Insert Sequence Assembly

the corresponding read MSA with non-spurious deviations from the consensus character that
look similar to SNVs in the variant analysis step on resequencing. These deviations are small
enough such that the OLC step assembles the reads into the same contigs but large enough such
that the assembled contigs contain errors. I implemented routines in ANISE, based on the work
by Kuchenbecker (2011), to use such signals for resolving problems. In turn, the methods by
Kuchenbecker build on prior work by Tammi et al. (2002).

The copy separation step in ANISE has three aims. The first aim is to identify the aforementioned
differences of the reads from the consensus character in the sequence assembly. This allows
to perform local predictions of which reads were sequenced from the same and which from
different regions in the genome. The second aim is to combine multiple local predictions to more
global ones, using multiple deviations in the same read sequence and read pairing information.
The third and final aim is to use the larger clusters to infer the actual sequence of the inserted
sequence.

Identifying Separating Columns. The method by Kuchenbecker (2011) first uses a method
for identifying statistical significant pairs of columns with co-occuring differences that was devel-
oped by Tammi et al. (2002). For this, Kuchenbecker first identifies columns with deviations in
the multi-read layout, then enumerates pairs of columns that have deviations (deviating columns)
from the consensus character, and then uses the statistical test by Tammi et al. to check for sta-
tistical significance. For ANISE, I reimplemented this method (Kuchenbecker, 2011, Algorithm 3)
for identifying such separating columns that can be used for predicting which reads stem from
different genomic locations.

Kuchenbecker then combines this with a method for clustering multiple columns by Kececioglu
and Ju (2001) but I found this to be problematic with the relatively short reads from NGS sequenc-
ing. For this clustering, one has to identify a set of reads that all cover the same set of deviating
columns and either the number of covering reads is too small or only few (mostly one) deviating
columns are covered.

In ANI1sE, each separating column creates a local partition, or local clustering, where reads are
partitioned based on their character in the column (one of the five characters C, G, A, T or -;
occurrences of N are ignored). Thus, each column can only be used to separate at most five
copies. Figure 5.14a shows the situation after identifying a total of four deviating columns in a
read MSA from two pairs of deviating columns.

Combining Local Separation Information. The second aim in copy separation is to use the
previously identified features to cluster the reads such that there is one cluster for each original
sample location. For this, I reimplemented parts of Kuchenbecker’s approach and extended this
method for the separation of copies in the context of insert assembly. An overview of the general
idea is given in Figure 5.14 and I also shortly describe this cluster linking in this section. I explain
the overall method and the technical details in Appendix I. In summary, I used Algorithms 5-8
from Kuchenbecker (2011) for combining local separation information into more global ones.
Everything from the copy reconstruction step on is my extension of Kuchenbecker’s method to
the case of copy separation for insert assembly.

115

Chapter 5 Variant Detection

\4

(a) reads with deviations and separating columns

\ 4

e o o .
“ - e
“- o o —
° o °

Y

Y

(b) clustering of reads using separating columns

\4

]

W

(c) extension of clusters

Figure 5.14: The general idea behind the copy separation step in an ideal case. The reference is
given in black at the top, reads are shown as black arrows, and read pairs are connected by dotted
lines. Differences to the consensus are shown as red dots and separating columns are shown as
gray rectangles. (a) First, co-occurring differences to the consensus are used to identify separating
columns (differences not passing the statistical test are subsequently ignored). (b) Reads with co-
occuring differences are clustered together and clusters are propagated by mate-pair information.
(c) Scanning from left to right, it is attempted to separate the copies globally.

For the local read separation, ANISE creates a set of clusters of the overlapping reads for each sep-
arating column in the read MSA. For each such column, one cluster is created for each character
in the alignment column. The first fundamental idea for combining the local separation infor-
mation is that when multiple reads show the same characters in more than one column then this
is evidence for the reads potentially stemming from the same genomic location. On the other
hand, differences in these columns are evidence for the reads coming from different locations. Of
course, such predictions are potentially incorrect due to sequencing errors. The second funda-
mental idea is that the two reads from one pair were sampled from the same genomic location.

Using these two ideas, information about local clustering can be propagated along contigs and
scaffolds in the cluster linking algorithm. The algorithm manages a set of global clusters G and
of conflicts C'. The set of global clusters G contain sets of reads that are predicted to belong
together by having the same character in a separating column. The set of conflicts C' stores
information about pairwise conflicts between elements of GG. The conflicts are initially derived
from reads in the clusters of G having different characters in a separating column. The algorithm
iterates over all local clusterings from the separating columns (sorted by coordinate) and updates

116

column c¢o c1 co c3

To

p={{0,2,4},{6}},C = {(0,1)}, nextID = 2
G={0:{0,1,2,3,4,5}),(1: {6,7})}

(a) after step 1

column cq c1 c2 c3

To

p={{3,5},{7},{9}}.C = {(3,4)},nextID = 5
G =1{(0:{0,1,2,3,4,5}),(2: {8,9}),
(3:{6,7}),(4:{8,9H}

(c) after step 3

5.4 ANISE — Insert Sequence Assembly

column c¢g c1 co c3

To

p={{2,4},{6,8}},C = {(0,1)}, nextID = 3
G=1{(0:40,1,2,3,4,5}),(1: {6,7}),
(2:{6,7,8,9})}

(b) after step 2

column cq c1 co C3

To

p={{3,5},{7,9}},C = 0,nextID = 6
G={(0:{0,1,2,3,4,5}),
3:{6,7}),(5:{6,7,8,9}1)}

(d) after the final step 4

Figure 5.15: Example for the cluster linking algorithm. Each sub figure showsreads ry, . . . , 9 and four separating

columns ¢y, . . ., c3 and the characters of the current partition p, global cluster set G, conflict set C, and value of
nextID. The currently processed column label is underlined. Each entry of G shows the cluster ID, followed by
a colon and the set of the contained reads. The variable nextID stores the numeric identifier of the next global
cluster that is added to G.

G and C using the local clusterings. The cluster linking algorithm is described in more detail in
Appendix L

Figure 5.15 shows an example of the cluster linking algorithm by Kuchenbecker (2011) with ten
reads 1y, . . . , g in five read pairs having four separating columns. In each step, the current local
partition p of reads is used for updating GG and C'. Note that the local partition only includes one
read of a pair but that the other mate is included in the entries of . The algorithm is heuristic
and provides no guarantees on the final result. This is also shown in the given example where
conflicts are erroneously removed from C' in the global class merging (Algorithm I.3). Also note
that reads can be shared by multiple entries in G.

Reconstruction of Explaining Copies. The aim remains to perform the copy reconstruction,
i.e., constructing a set of explaining copies from the global clusters G. In most cases, each cluster
in G provides a partial explanation of a haplotype by the characters the set’s reads show in the

117

Chapter 5 Variant Detection

Algorithm 5.1: Copy Reconstruction Heuristic

input : set of global read clusters G
returns : list of merged read clusters L
G’ + select-read-cover(G);

L < merge-read-sets(G’);

return L;

/* Select and return a covering subset of G. */

Procedure select-read-cover(G)

R« 0;

(Q < priority queue of G, the g € GG with the highest number of reads not yet in R is on top;

while pg.size() > 0 do

g < pq.popTop();

if g contains at least 5% of the reads for a separating column that are not yet in R then
update () according to reads in g that are not in R;

R+ RU{g};
end

end

return R;

/* Merge read sets in (G that have few conflicts and return a list of read
sets, sorted by number of reads from the initial read alignment. */
Procedure merge-read-sets(G)
L < G sorted by number of reads from initial read alignment;
fori < 1to|L| —1do
forj < Otoi— 1do
if L[j] not marked for removal and conflict count for L[i] and L[j] < 2 then
Glj] + Gl U Glil;
mark G[j] for removal;

end

end

end

remove previously marked entries from L;

sort L by number of reads from initial read alignment;
return L;

separating column. The approach done by ANISE for constructing explaing haplotypes is shown
in Algorithm 5.1.

In the first step (procedure select-read-cover), ANISE selects a subset G’ of G that covers most of
the reads but has a lower redundancy. For this, the entries of GG are considered ordered by the
number of contained reads that are not yet in the result R of this procedure. An entry g from G
is selected only if there is a separating column for which it contains 5% of the reads that are not
yet in a set in R. The rationale behind this is to select read sets from G that contain a sufficient

118

5.4 ANISE — Insert Sequence Assembly

additional signal in a separating column.

In the second step (procedure merge-read-sets), ANISE merges clusters of G’ that have few pair-
wise conflicts, starting with the clusters that have the most reads that were already aligned in
the input BAM file. The resulting list of merged clusters L is then sorted descendingly by the
number of contained reads that had an alignment in the input BAM file.

This second step performs the actual copy reconstruction. Here, ANISE considers the read sets
from the G’ (that has a lower redundancy than G) and puts together local haplotype explanations
to global ones. Note that, by their construction, the locally explaining read sets combined here are
not linked by the clustering linking algorithm. Thus, the algorithm generates a set of explaining
copies but in general it will not be able to generate the correct one. Although the algorithms
for the copy reconstruction are only heuristics, they work well in practice as I will show in
Sections 5.5-5.7.

Read Correction. The copy reconstruction step is followed by a read correction step similar to
the one described by Eriksson et al. (2008). For each read in the MSA, the positions differing from
the consensus that are not part of a separating column are updated to the consensus character.

5.4.4 Scaffolding

The copy separation step created explaining copies for each contig (one contig copy for each
cluster). The aim is now to select and order a correct subset of these into an assembly. This is
similar to the scaffolding step in general purpose de novo assemblers. In ANISE, the scaffolding
step is performed using a graph-based approach.

For the scaffolding, AN1sE builds a directed graph G that contains one vertex for each contig
copy. Two vertices are connected if the corresponding contig copies have an overlap indicated
by the OLC step or are linked by mate pair information. Two vertices are not connected if they
correspond to two copies of the same contig. Also, the algorithm adds a special source vertex s
and a target vertex ¢ to G.

For the scaffolding step, I call those reads that have an alignment in the input BAM file anchors.
Of these, I call the ones aligning on the forward strand left anchors and the ones aligning on
the reverse strand right anchors. For each vertex u whose corresponding contig contains a left
anchor, ANISE adds an arc (s, u) and it adds an arc (u, t) if the corresponding contig contains a
right anchor. Each path from s to ¢ (s-t-path) corresponds to an assembly of the insert sequence.

ANISE labels each arc with the number of supporting mate pairs. In the case of multiple assign-
ments from read to contig, each mate pair is weighted by 1/c¢ where c is the number of copies.
Each arc is also labeled with an estimation of the distance (mean and standard deviation) from
overlap or mate information. The information of multiple mate pairs between the same contig
is combined using the approach described by Huson et al. (2002). Also, the scaffolding step in
ANISE uses the transitive edge reduction step by Huson et al. (2002). Links are verified using
banded DP alignment containment and overlap alignments are removed.

119

Chapter 5 Variant Detection

The graph resulting from these steps can still contain directed cycles that have to be broken. A
common approach for breaking undirected cycles when computing an initial layout in general
purpose de novo assemblers is as follows. A maximum spanning tree (MST) is computed and the
non-MST edges are removed from G. Originally, I attempted to use this approach in ANISE by
converting the arcs to undirected edges.

In practice, I found that this approach removed too many arcs (even a DAG can contain many
undirected cycles when interpreting the arcs as undirected edges). Instead, my algorithm uses a
variant of the topological sorting algorithm (Cormen et al., 2001, Section 22.4), which removes
arcs that would introduce directed cycles (violating arcs). The order of vertices used for start-
ing the topological sorting are chosen randomly, leading to the removal of violating arcs in an
arbitrary order.

Artifact Removal. If all pairs recruited for the assembly of a site were correctly assigned and
the insert sequence was unique then G' would either consist of one or two contig vertices. In
the first case, the assembly of the insert would have been successfully completed and G would
consist of one vertex u as well as the arcs (s, u) and (u, t). In the second case, the assembly would
have not been completed yet, or stopped since no new read pairs could be recruited in the read
mapping step. In this case, only the two ends of the insert sequence have been assembled and the
center would still be missing. Here, G would consist of two contig vertices u and v and the arcs
(s,u) and (v,t). However, more complex sequence and incorrectly assigned reads complicate
the procedure in general.

Figure 5.16 shows an example of scaffold graphs, certain artifacts, and their removal. Each node
corresponds to a contig or contig copy and the length of each node corresponds to the length
of the represented contig or contig copy. Figures 5.16a and 5.16b show the scaffold graph of the
example after the first and second round of assembly. After the first step, there are contigs a, b,
¢, and d and a has two copies a; and az. The second step adds contigs ¢ and f. Thus, the first
step creates four contigs (with five contig copies in total) and contigs a, ¢, and d are extended in
the second step. In this example, no new reads map after the second assembly step.

This example shows two kinds of artifacts: (1) No new reads map on the corresponding contigs for
vertices on a path while they do for vertices on alternative paths. (2) A vertex u is not reachable
from s although w is in the same connected component as s; or ¢ is not reachable from w although
t and u are in the same connected component.

Contig b is an example for artifact (1). No new reads mapped to it in the second alignment round
and thus its length does not increase from Figures 5.16a to Figures 5.16b. However, the paths
s — a1 and s — ag are parallel to s — b in that they do not use b. I consider this as an indication
that b is likely to be an artifact and is to be removed. Contig f is an example for artifact (2). There
is no path from f to ¢ using the arcs. However, when considering the arcs as undirected edges,
f and t lie in the same connected component.

I propose two simple heuristics to remove such artifacs. The first heuristic, called dead-branch
removal, attempts to remove the first kind of artifact. While running the insert assembly algo-
rithm, each read is labeled with the step number in which it was recruited into the assembly. Each

120

5.4 ANISE — Insert Sequence Assembly

(b) second assembly round result

N
\\\
NN
NEEN
()
W

(&
~

~
\ \\\

(c) artifact removal result (d) completing arcs insertion result

\

Figure 5.16: Example of the scaffolding DAG G in the ANISE scaffolding step. (a) shows the DAG after the first
and (b) shows the DAG after the second assembly round that is the final one in this example. The contig a has
two copies a1 and as. (c) shows the result after the artifact removal step on the graph in (b). Removed arcs and
vertices are shown using dotted lines. Finally, (d) shows G after adding completing arcs (drawn in dashed lines).
The length of a vertex corresponds to the length of the corresponding contig copy.

contig is labeled with the highest step number n of all reads that were used to build the contig.
Then, a depth-first traversal is performed, starting at s and using arcs in the forward direction.
After traversing all outgoing arcs of a vertex v, the label of v is updated to max{z,y} where
x is the initial label of v and y is the maximum of the labels of the vertices reachable over all
outgoing arcs (forward graph traversal). The same is done starting at ¢, but the arcs are traversed
in their reverse direction (reverse graph traversal). The step labels can now be used to remove all
vertices whose corresponding contig copy only contains reads that were aligned s = 2 or more
steps before the current.

The second heuristic, called directional tree-growing, attempts to remove the second kind of ar-
tifacts. Again, a forward graph traversal is performed from s and a reverse graph traversal is
performed from ¢. The vertices that could not be reached are removed.

Figure 5.16c shows the situation after the artifact removal. In this example, s was set to 0, mean-
ing that only contigs with reads from the current round remain after the dead branch removal
heuristic. Contig b only consists of reads from the first round while a; and ay also contain reads
from the second round. Contig f is not reachable by a reverse traversal from ¢. Thus, the dead-
branch removal deletes b and the directional tree growing removes f.

121

Chapter 5 Variant Detection

Adding Completing Arcs. After removing vertices, the scaffolding step adds completing arcs
to G for creating one or more s-t-paths, without creating cycles, as follows. First, connected
components are computed and a topological sorting of all vertices is performed. Then, all vertices
in the component of s with an out-degree of zero are connected to the vertices in ¢ with an in-
degree of zero. In the case of connecting two vertices u and v in the same connected component
with the arc (u, v), this is only done if u is topologically smaller than v. Figure 5.16d shows G
after vertex removal and adding completing arcs.

Selecting the Heaviest Path. Each s-t-path corresponds to an assembly of the insert. The
final aim is to reconstruct the actual insert sequence for the current site. When the sequence
left and right of the insertion breakpoint is sufficiently unique, the scaffolding step attempts to
resolve this using anchoring reads from the initial mapping.

Towards this end, the scaffolding step labels each contig with the number of reads from the initial
mapping step. Each arc is labeled with the number of supporting paired links. Reads assigned to
more than one contig copy are weighted with 1/c where c is the number of copies. I define the
weight of a path as the sum of all vertex and contig weights. ANISE then obtains a heaviest path
using dynamic programming.

This assembly corresponding to this heaviest path is returned as the result of the assembly step.
The scaffolding step builds the assembly sequence by iterating over the contigs along the path and
placing them accordingly to the overlap length or inferred distance from mate-pair information.
Completing arcs are represented by stretches of Ns.

Enumerating Explaining Paths. Another approach for obtaining paths is to enumerate all
explaining paths using Dilworth’s theorem (Dilworth, 1950), previously applied for viral quasi-
species haplotyping by Eriksson et al. (2008). ANISE also includes an option to perform such a
computation but by default only writes out the heaviest path.

5.5 Evaluation Using Synthetic Sequence

I split up my description of the evaluation of the insertion site prediction and the insert assembly
into three sections. In this section, I describe the results of evaluation of the insert sequence
assembly for synthetic sequences. In Section 5.6 I present the evaluation and results for predicting
and assembling simulated insertions using real biological sequence. Finally, in Section 5.7 I show
the evaluation and results for insert site prediction and assembly using real-world data. For each
of these benchmarks I describe the experimental setting, the methods and metrics used for the
evaluation, and the results. These evaluations are an extension of the ones previously published
in Holtgrewe et al. (2015).

For the synthetic sequence benchmark that I consider in this Section, I describe and shortly discuss
the insertion site prediction and assembly methods in Section 5.5.1. I then describe the metrics
recovery and error rates in Section 5.5.2 and the program LBA for computing these metrics in

122

5.5 Ewvaluation Using Synthetic Sequence

Section 5.5.3. In Section 5.5.4 I describe the generation of the synthetic sequence benchmark.
Finally, I report the results of this benchmark and discuss them in Sections 5.5.5 and 5.5.6.

5.5.1 Evaluated Pipelines

Below, I describe how I used the methods AN1SE/BAsiL and MINDTHEGAP (Rizk et al., 2014, MTG)
that are directly aimed at the detection and assembly of medium and long insertions. As outlined
below, there are no published working methods for directly solving this problem at the time of
writing. Thus, I also briefly discuss how I evaluated the performance of the de novo assemblers

ABYSS and SGA when the actually inserted sequence is known and can serve as the gold stan-
dard.

My attempts in finding and using other methods for the targeted assembly of long insertions
failed. I was unable to assemble longer insertions using CORTEX_VAR (Igbal et al, 2012), even
after contacting its authors for help. From its approach, this tool could in theory be able to
assemble long insertions but is not advertised for this task and has not been evaluated for it yet
either. SOAPINDEL (Li et al., 2013) is only able to assemble insertions of up to 600 bp reliably and
is thus not included in this evaluation. Results for SOAPINDEL can be found in the supplemental
material of Holtgrewe et al. (2015). There is no code or executable available for the method by
Parrish et al. (2011) and I thus exclude it from the evaluation. I could not get the pioneering
insert site detection and assembly method NoveLSEQ (Hajirasouliha et al, 2010) to run, even
after contacting the authors. Problems with NovELSEQ were also previously reported by Rizk
et al. (2014).

For all my evaluations, I used a server with Intel Xeon E5-2667 3.30 GHz CPUs having a total of
16 physical cores with 2x hyperthreading (thus featuring 32 virtual cores in total). Further, the
RAM size is 340 GB and the server has a fast storage disk array with 2 TB in total.

BasiL and ANiSe. I ran Basit and ANISE (both in version 1.0) as in a standard NGS variant
calling pipeline. The read pairs were aligned against the reference using BWA Li and Durbin
(2009) with default parameters.

I passed this file to BAsIL as the input for insert site prediction using up to eight threads for the
local alignment step. Subsequently, I filtered the resulting VCF file with raw insert site predictions
to the subset of sites having at least ten supporting OEA alignments on each side. I then used
this filtered VCF file as the input to ANIsE, which I ran using default parameters and up to 32
threads.

ANIsE has the practical advantage of yielding one best contig for each site, which makes the
evaluation straightforward.

MINDTHEGAP. 1 ran MINDTHEGAP (version 6417) as explained in its manual and using the
parameters used by Rizk et al. (2014). For the simulated data, I ran the MTG INDEx module with
k = 51 (as also done by its authors on their simulated data sets) and otherwise used default

123

Chapter 5 Variant Detection

parameters. For the real-world data set, I ran the MTG 1NDEx module with £ = 63 and ¢t = 5.
Then, I used mrep = 15 in the MTG FIND module.

MTG returns multiple candidate sequences for each predicted insertion site; some of these se-
quences are highly similar, or even identical. Thus, the evaluation of the MTG results is not
straightforward.

When using simulated data, the actual inserted sequence is known and I compute the evaluation
metrics for each of them. I then use the results of the best assembled sequence for an optimistic
evaluation of MTG’s performance. I describe the chosen approach for evaluating the result of
MTG on real-world data in Section 5.7.

ABYSS and SGA. I ran ABYSS (version 1.5.1) with £ = 64. Otherwise, I used default pa-
rameters for ABYss-PE with the UNITIGS command. I used SGA in version 0.10.13 with the same
parameters as for the C. elegans configuration example that ships with the tool’.

The general purpose de novo assemblers ABYSS and SGA are included in the evaluation as a
proxy for evaluating the NovelSeq method (Hajirasouliha et al, 2010) for which no working
implementation is available. In the following, I describe the evaluation process for ABYSS when
the inserted sequence is known (in simulations); it is the same for SGA.

First, I extracted the OEA and shadow reads from the read alignment BAM file and performed
a de novo assembly of these read pairs. I then passed the OEA and orphan pairs (after mapping
with BWA, extracted using Samtools) as pairs to ABYSS yielding ABYSS contigs. The NovelSeq
approach then matches the ABYSS contigs to contigs assembled from the anchor/shadow pairs
(border contigs) using overlap alignments. Since this step is not available, I emulate it by com-
puting approximate local matches (using NCBI Nucleotide BLAST (Altschul et al.,, 1990)) of the
ABYSS contigs to the actual simulated insertion sequence. I used BLAST for generating local
matches because of its high sensitivity.

For each simulated inserted sequence, I picked the best ABYSS contig by its BLAST bit score. This
contig was then compared to the actual simulated insert sequence using a custom tool called LBA
(Local Block Aligner, explained further in Sections 5.5.2 and 5.5.3). Note that the same orphan
contig might be assigned to multiple insertion sequences. Matches with less than 95% identity
were filtered out. I expect that this is an optimistic approximation of the NovelSeq matching
approach since the orphan contig does not have to overlap with both or any NovelSeq border
contig (cmp. (Hajirasouliha et al., 2010)).

More details on the command lines are given in Appendix D.

5.5.2 Recovery and Error Rate

Since the actual inserted sequence S is known in this benchmark, the assembled sequence A can
be compared to it directly. Because of repeated sequence and assembly errors, parts of S can be
missing in A and A might also contain other assembly errors.

'https://github.com/jts/sga/blob/master/src/examples/sga-celegans.sh

124

https://github.com/jts/sga/blob/master/src/examples/sga-celegans.sh

5.5 Ewvaluation Using Synthetic Sequence

I compute a pairwise alignment of S and A with affine gap scores and free end gaps in both
sequences using LBA. I call longer segments (> 5 bp) in S that align against gaps uncovered while
I call the remainder of S recovered. The ratio of the length of the recovered part of S with the total
length of S yields the recovery rate. For the recovered sequence, the error rate of the alignment
(recovery error rate) is also computed.

I describe LBA in detail in Section 5.5.3. An example alignment is given in Figure 5.17. LBA is
distributed together with ANISE.

5.5.3 Evaluation Program LBA

The program LBA takes two sequences (subsequently called (actual) insert and assembly), per-
forms an alignment, computes statistics of the alignment, and then writes out the resulting statis-
tics and the alignment to a text file. I used the sequences S and A from Section 5.5.2 as the input
to LBA.

LBA computes a pairwise alignment of the sequences using the standard global alignment algo-
rithm in SeqAn (Doring et al., 2008) with affine gap costs (match = 8, mismatch = -8, gap open =
-20, gap extension = -1). The program then analyzes the alignment as shown in Figure 5.17.

Leading and trailing gaps in the inserted sequence (the insert) are ignored. Gaps longer than 5 bp
in the assembly are counted as uncovered, regardless of their position. Mismatches and shorter
gaps are counted as errors, non-trailing gaps in the insert are always counted as errors. Since
assemblers often insert Ns for gaps in the assembly, whose size is not known, Ns at the border of
longer gaps are not counted as errors.

The program reports the length of both sequences, the alignment length, the number of gaps,
matches, and mismatches (their sum is the number of errors), as well as the number of covered
characters in the assembly. The error rate is then computed from the alignment length and the
number of errors while the covered sequence is computed from the length of the insert and the
number of covered insert bases.

insert ~ -——-——-—-— TGGAGCAGTGAAACGTCTGATCACAGGTTE === AAGTCGCAATCAAA=CAAGAGCAACAACATGAATGAAAATAAAAACAAGACTGG
assembly GTAAAATATGGAGCAG-—-——-—- CTGATCACAGGTTAAACGTTAGAAGTCGGAATCAAAGCAAGA=CAACAACATGAATGAAAATAAAAACA-—————-
1gr-10red missing errors missing

trailing gap sequence sequence

Figure 5.17: Example for scores in an LBA alignment (see Sections 5.5.2 and 5.5.3). The known insert sequence
is shown at the top and the assembled sequence at the bottom.

125

Chapter 5 Variant Detection

5.5.4 Synthetic Sequence Benchmark Setting

The aim of this benchmark is to evaluate the performance of assembling inserted sequence in
the case of these sequences being highly similar. This case occurs when an assembler fails to
assemble regions of the genome because of such high similarities or repeats.

For each benchmark repetition I insert multiple simulated copies of the same sequence into the
reference as explained below. The task is the complete and correct assembly of the inserted
sequences. I did not evaluate the detection of the insert location since it is trivial when using
uniformly random sequence as done here.

Figure 5.18 shows the process of generating the benchmark settings. First, I simulated a reference
sequence by picking each nucleotide uniformly at random. Then, I simulated an insert sequence
R of length n, also uniformly at random. For a given polymorphism rate p, I generated k copies
Ry, ..., Ry of R, each with Hamming distance d = |p - n] to R (i.e, a pairwise difference of
~ 2d). This was done by changing d characters of R, picked uniformly at random.

I simulated the reference of sufficient length such that the repeats can be inserted with at least
5000 bp unique reference sequence adjacent to each copy location at both ends. I used the ref-
erence with inserted repeat copies as the donor sequence. I simulated Illumina-like reads of
length 100 bp from the donor sequence with a coverage of 30x using the read simulator Ma-
soN 2 (Holtgrewe, 2010). For the simulation, I used a typical Illumina error profile, each read
having an average error rate of 1%. I simulated the template length following the normal dis-
tribution A\ (400,40). For each combination of p, k, and n, I performed ten repetitions of the
simulation (with different random seeds) and the assembly.

5.5.5 Insert Assembly Results

The performance results for the insert site assembly are shown in Table 5.2. This table shows
the percentage of recovered sequence and the error rate of the assembly for the four considered

insert
[I —
reference copies DI
~ =
donor N I T e

Figure 5.18: Overview of the synthetic copy benchmark generation. Reference and insert sequence
are both simulated by picking nucleotides uniformly at random nucleotides. The to-be inserted
sequences are then generated by placing errors on each copy, independently of each other. The
errors are shown as red bars in the insert copies.

126

5.5 Ewvaluation Using Synthetic Sequence

ANISE MTG ABYSS SGA

p k n r-rate e-rate r-rate e-rate r-rate e-rate r-rate e-rate

0.5 2 1000 100.00 0.04 69.67 1.50 93.78 0.44 86.98 0.42
0.5 2 5000 100.00 0.28 55.35 1.35 9354 0.50 99.25 0.50
0.5 4 1000 100.00 0.06 85.50 1.42 3548 0.29 44.47 0.50
0.5 4 5000 100.00 0.45 99.99 0.85 18.49 0.26 23.44 0.44
1.0 2 1000 100.00 0.01 79.13 0.78 83.03 0.88 62.59 0.69
1.0 2 5000 100.00 0.03 99.99 0.96 86.90 0.96 89.17 0.97
1.0 4 1000 100.00 0.01 99.97 1.40 2543 1.64 43.92 1.76
1.0 4 5000 100.00 0.21 - - 7.13 1.28 11.09 1.66

Table 5.2: Synthetic copy benchmark results. The recovery rate (r-rate) and error rate (e-rate) are
reported in percent for different synthetic copy benchmark data sets with varying polymorphism
rate p (also given in percent), number of copies k, and insert length n. The best entries in terms of
recovery and error rate are underlined. The table shows the mean results of ten repetitions.

methods and different values of p, k, and n. An extend version of this table can be found in the
supplemental material of (Holtgrewe et al., 2015).

ANISE achieves the best recovery rate overall while keeping the error small. For a polymorphism
rate of 1%, the copy separation works better than for a polymorphism rate of 0.5%.

MTG is only competitive in terms of recovery rate for few configurations and achieves overall
worse results in terms of error rate. MTG is unable to assemble any insertions in the case of
p = 1%,k = 4,n = 5000. ABYSS and SGA achieve worse results than ANISE in terms of the
evaluated metrics.

5.5.6 Discussion

The assembly of similar copies is hard for general purpose de novo assemblers and ANISE con-
sistently achieves results that are superior to general purpose assemblers. Higher error rates
in ABYSS and SGA are most probably caused by assembling reads from different locations. On
the other hand, the lower recovery rates are most probably caused by contigs stopping at regions
with higher number of differences (e.g., > 3 errors withing 10 bp). This leads to shorter assembled
contigs with a high identity, since the assembler stops at problematic sequence parts.

For example, for p = 0.5%, n = 5000, k& = 4, SGA yielded an average of 29 contigs with
an average N50 score of 345 (data not shown in table). ABYSS yielded 77 contigs on average
with an average N50 score of 145 and MTG failed in assembling the contigs. My method ANISE
consistently yielded 4 contigs and an average N50 score of 5800 — optimal results in terms of
contig counts and lengths.

ANISE is consistently better than MTG for the assembly of these synthetic data sets since MTG

127

Chapter 5 Variant Detection

does not implement any measures for handling repeated sequence. The performance of ANISE
improves with higher difference between copies (i.e., larger p) since the differences are used for
separating the copies. Of course, there will be a point from which on the regions will differ greatly
enough for the general purpose assemblers to assemble the sequence properly. MTG profits from
a higher polymorphism rate p in terms of recovery and error rate. However, it does not succeed
in assembling any sequence for long insertions for the higher error rate of p = 1.0%.

5.6 Evaluation Using Simulated Insertions in Real
Biological Sequence

In this section, I present my evaluation in the simulated insertions benchmark. In Section 5.6.1 I
describe the benchmark setup. I then compare the two OEA cluster selection options in BasiL
in Section 5.6.2 and compare the results of Basiw for insert site prediction to the performance
of MINDTHEGAP in Section 5.6.3. In Section 5.6.4 I describe the results of the insert sequence
assembly. Finally, I discuss all these results in Section 5.6.5.

5.6.1 Simulated Insertions Benchmark Setting

The aim of this benchmark is to evaluate the performance of the considered methods on real bio-
logical sequence. Using this real sequence, I used simulated insertions and reads to have a ground
truth in the evaluation. I simulated one data set with and one without repeated insert sequence

input — > reads™

reference — reads™

(a) without repeated insertions

input

{1} reference — reads™

——m—> donor —— readst

(b) with repeated insertions

Figure 5.19: Visualization of the data generation for the simulated insertions benchmark (a) without
and (b) with repeats. The figures also indicate which sequence is used as the donor for simulating
the reads with (reads™) and without insertions (reads™). The labels for the reads and reference used
for the evaluation are shaded in light gray.

128

5.6 Evaluation Using Simulated Insertions in Real Biological Sequence

as shown in Figure 5.19. I generated input data for the benchmark from the sequences of the
human chr. 22 (from the hg18/GRCh36 assembly), the genome of D. melanogaster (flybase r5.29),
and the genome of C. elegans (ENSEMBL release 60). For each setting, I obtained a heterozygous
and a homozygous data set as described below.

For obtaining a data set without repeated insertions from an input sequence, I simulated 1000
deletions into the input sequence, yielding the reference sequence for the subsequently variant
detection pipelines (see Figure 5.19a). I picked the size of the deletions uniformly at random be-
tween 50 and 5000 bp and their positions are picked uniformly at random in the whole genome.
I simulated reads from the input sequence that contains the insertions with respect to the refer-
ence sequence, yielding the read set reads™. I simulated reads from the reference that contains
no insertions, yielding the read set reads™. For obtaining a heterozygous data set I generated
readst and reads™ to a coverage of 30x each and merged them, and for obtaining a homozygous
data set I generated reads™ to a coverage of 60x.

The generation of the homozygous data set is more involved (see Figure 5.19b). I first simulated
the reference for the later variant analysis by again deleting 1000 segments in the same fashion
as for the data set without repeated insertions. Again, the reads simulated from this sequence
comprise the set reads™. I then simulated the donor sequence by inserting three copies of each
deleted segment at random positions in the genome. I introduced small variants into these copies
as I did previously for the synthetic benchmark using p = 0.5%. Simulating reads from the donor
yields reads™. Again, I obtained a heterozygous and a homozygous data set from the reference
and the donor as for the case without repeated insertions. I used Mason 2 (Holtgrewe, 2010) for
the simulation of the variants and the repeats using the same settings as described in Section 5.5.4.

The inserted sequence can contain low complexity regions and insertion sites might fall into
non-unique parts of the reference. In such cases, assemblers make large-scale assembly errors.
The assembly results are subjected to an analysis using LBA. Large-scale assembly errors lead to
a high number of errors that skew the insert assembly evaluation results. To accommodate for
this, I trim outliners. I differentiate between cases where the recovery error rate is above and
below 1% and only report the results for the cases where the error rate is < 1%.

5.6.2 BAsIL Cluster Selection Evaluation

In this section, I present a comparison of the two OEA cluster selection strategies in BasiL de-
scribed in Section 5.3.3. The first one is solving the problem through the chaining algorithm and
the second one is using the set cover heuristic. Without any experimental evaluation it is unclear
which method yields the better results in terms of insert site prediction.

Results. Figure 5.20 shows the results of BAsiL using the two OEA cluster selection strategies.
The results are shown in terms of insert site prediction sensitivity and specificity on the bench-
mark with simulated insertions into real biological sequence on the heterozygous data sets. I
include the results of BasiL before and after filtration such that a comparison of the recall values

129

Chapter 5 Variant Detection

00 = g —w om 100 |]
x —
= 80| - = 90| |
S =
()
£ 60 -7 80| |
40 | | | | | | 70 | | | | | |
1 2 3 4 5 6 1 2 3 4 5 6
experimental setting experimental setting
a) precision, no repeats b) recall, no repeats
P P P
T T T T T T
wor . e 100 | y
® . R e S ¢ S
= 80| - = | ® Q |
8 =
2 [- < H |
S w0 w0
a, —e— BasiL —= BasiL*
I 1 I --0--Basir’ BasiL’* |
4 | | | | | | 70 | | | | | |
0 1 2 3 4 5 6 1 2 3 4 5 6
experimental setting experimental setting
c) precision, with repeats d) recall, with repeats
P P P

Figure 5.20: Comparison of the two OEA cluster selection strategies in BAsIL in terms of insert
site prediction sensitivity and specificity. The experimental settings are denoted on the horizontal
axes. For the heterozygous variants, they are numbered (1) human chr. 22, (2) D. melanogaster,
(3) C. elegans and (4-6) for the homozygous variants using the same reference sequences. Note that
the vertical axes have different lower bounds. The legend for all plots is shown in (d), the meaning
of the variant names is given in the main text.

is possible without any bias of the post-filtration step. The lines labeled BasiL are for the unfil-
tered results of BAsIL using chaining for OEA cluster selection. BAsir* is the label for the filtered
results using the same selection strategy. The lines labeled BasiL’ are for the unfiltered results of
BasiL using the set cover heuristic for OEA cluster selection. BAsiL’* is the label for the filtered
results using this selection strategy.

The chaining algorithm is better than the set cover heuristic in all considered cases with respect
to both sensitivity and specificity. In particular, the results are better in terms of precision.

Discussion. The set chaining algorithm consistently achieves better results than using the
simple set cover heuristic. The most likely explanation is that the simple heuristic for solving
the set cover model makes a notable number of suboptimal decisions by selecting too many false
positives and too few true positives. Also, the chaining algorithm is much easier to implement.
This makes it clearly the better choice for selecting OEA clusters and I used it for the OEA cluster

130

5.6 Evaluation Using Simulated Insertions in Real Biological Sequence

T T T T
100 - B 100 - *
S
o &
80 |- 4 = 80 *
2 E
Q
60 * 60 |- 8
| | | | | | l l l l | |
1 2 3 4 5 6 1 2 3 4 5 6
experimental setting experimental setting
(a) precision, no repeats (b) recall, no repeats
T T T T T T T
100 |- - e * 100 |- 5
X —
S
5 80l /\‘\/\‘ B ; 80 - B
Z 5
[=9
60 | 00 o Basi = Basi* MINDTHEGAP |
| | | | | | | | | | | |
1 2 3 4 5 6 1 2 3 4 5 6
experimental setting experimental setting
(c) precision, with repeats (d) recall, with repeats

Figure 5.21: Comparison of the insert site prediction performance of BasiL with and without fil-
tration and MINDTHEGAP FIND. The experimental settings are the same as in Figure 5.20. Note that
the y axes have a lower bound of 50%. The legend for all plots is shown in (d).

selection in all subsequent experiments. Further, it can be seen that the filtration gives a boost in
precision (up to ~ 15 percent points) with a small trade off in terms of recall (below ~ 5 percent

points).
Using chaining for the selection of OEA clusters is a novel idea in BAsIL over the previous NOVEL-
SEQ method that uses the set-cover model that improves the paired read driven results for insert

site prediction.

5.6.3 Insert Site Prediction Results

Results. Figure 5.21 shows the performance of insert site prediction for BasiL. and MINDTHE-
GAP in terms of precision and recall on the heterozygous data set. Again, I include both BasiL

and BAsiL*.

BasiL* shows recall results of around 90%. MTG shows worse results when simulating no re-
peated copies in the case of heterozygous simulated insertions but better results in the case of
homozygous simulated insertions. In the case of simulating repeated copies, both variants of

131

Chapter 5 Variant Detection

ANISE MINDTHEGAP
repeats data set ins. Mbp rec. Mbp r.-rate e.-rate ins. Mbp rec. Mbp r.-rate e.-rate
chr. 22 2.1 2.0 92.6 0.03 0.9 0.8 96.3 0.03
no C. elegans 2.0 1.9 93.5 0.02 1.5 1.5 97.5 0.03
D. melanogaster 2.4 2.3 98.8 0.01 2.0 2.0 99.2 0.02
chr. 22 6.1 5.8 95.7 0.24 2.1 1.8 86.3 0.65
yes C. elegans 6.3 5.8 92.5 0.25 4.1 3.8 90.7 0.66
D. melanogaster 6.9 6.7 97.4 0.24 5.8 5.3 91.1 0.66

ABYSS SGA

repeats data set ins. Mbp rec. Mbp r.-rate e.rate ins. Mbp rec. Mbp r.-rate e.-rate
chr. 22 2.5 2.1 84.7 0.01 2.4 23 93.6 0.01
no C. elegans 2.4 2.1 86.8 0.01 2.4 2.2 92.1 0.01
D. melanogaster 2.5 2.3 93.8 0.01 2.5 2.4 97.4 0.01
chr. 22 7.3 2.7 37.0 0.38 7.1 4.1 57.9 0.49
yes C. elegans 7.3 2.7 37.3 0.38 7.2 4.1 57.0 0.50
D. melanogaster 7.5 2.9 38.8 0.38 7.4 4.4 59.2 0.50

Table 5.3: Insert assembly results on simulated insertions into real biological sequence for heterozy-
gous insertions. The table shows the number of inserted Mbp (ins. Mbp), recovered Mbp (rec. Mbp),
recovery rate (r.-rate, in %), and error rate (e.-rate, in %) of the assembled sequence. The values for
ins. Mbp and r.-rate are given for the sites that the methods attempted to assemble. The table shows
results for the homozygous data sets without (first three rows) and with (last three rows) repeated
insertions. The best values for recovered sequence and error rate in each row are underlined.

BasiL achieve the consistently best results in terms of recall. Both BasiL and MTG achieve pre-
cision rates between 90 and 100%. Basit is slightly better when simulating no repeated copies
and slightly worse when simulating such repeated copies.

Discussion. In terms of recall, BAsiL* outperformed MTG in three quarters of all cases and in
terms of precision, both tools are competitive. Thus, both BAsiL* and MTG are competitive state
of the art methods for accurate insert site prediction.

Remarkably, MTG shows better recall results when simulating repeated copies. This could be
caused by the inserted sequence having a higher coverage than the rest of the reference. This
fact could give a stronger signal in the read k-mer analysis of the MTG rFIND module.

5.6.4 Insert Assembly Results

Sequence Assembly Results. Table 5.3 shows the results of the insert assembly in the het-
erozygous case. Table G.1 (p. 213) shows the results for the homozygous case. The difference
between the results on homozygous and heterozyous insertions is small for all but MINDTHE-
Gar that recovers up to 20 percent points more sequence of the homozygous insertions. For all

132

5.6 Evaluation Using Simulated Insertions in Real Biological Sequence

methods, the results for D. melanogaster are better than for the other reference genomes.

It is important to keep the difference between recovered bases (rec. Mbp) and the recovery rate
(rec.-rate) in mind. The first is the absolute number of bases that were recovered (in the case
of ANISE and MTG) or contigs for which a BLAST match was found (in the case of ABYSS and
SGA). The second is the number of recovered bases, relative to the number of bases of insertions
for which assembly was attempted (in the case of ANISE and MTG) or for insertions for which
at least one BLAST match was found (in the case of the ABYSS and SGA).

Overall, the general purpose assemblers achieve better results in terms of recovered bases than
the targeted assemblers in terms of recovered bases and error rate on the data sets without re-
peats. Here, SGA is slightly better than ABYSS. When only considering the targeted assemblers,
ANISE consistently yields better results than MTG.

On the data sets with repeats, the relative order of the tools in terms of the considered metrics
changes. While ANISE continues to yield good results in terms of recovery rate and error rate, the
performance of the other methods decreases. ANISE achieves the highest number of recovered
bases and the lowest error rate. MTG continues to have a high recovery rate but has a relatively
low number of recovered bases and a relatively high error rate. Overall, MTG is better than
ABYSS but worse than SGA.

Sequence Assembly Results, Depending on Insert Length. The numbers presented in the
paragraph before already give a good evaluation of the success in insert assembly. However,
they do not allow to estimate success in assembling inserted sequence depending on the length
of the inserted sequence. Figure 5.22 shows the percentage of recovered sequence for each con-
sidered assembly method on the heterozygous data set, broken down by the length of the inserted
sequence. Figure G.1 (p. 214) shows the results on the homozygous data sets.

To obtain these figures, I computed the percent of recovered bases for each inserted sequence
for each method. This yielded a list of pairs (¢,) where ¢ is the length of the insert and r is the
percentage of recovered sequence. For plotting, I partitioned the insertion lengths into window
of lengths 200 and computed the average recovery rate.

Generally, there is a downward trend of recovered sequence percentage with growing insert size,
except for MTG on the sequence of D. melanogaster. The general purpose assemblers show the
best results on the non-repeat data sets. ANISE shows robust results on all data sets. Of the two
targeted assembly methods, ANISE is consistently better than MTG in assembling the inserted
sequence.

5.6.5 Discussion

ANISE robustly achieves competitive results in comparison to all other methods or is superior to
them in terms of recovered sequence, both on the data sets with and without repeated insertions.
Also, ANISE shows a consistently low error rate.

The general-purpose de novo assemblers SGA and ABYSS are quite successful in the considered

133

Chapter 5 Variant Detection

100 ——— — T L
X 1= i
= =
8 a 8 i
[1
z 2
3 3
g 40 12]
E E
2 20 - S 20 -
0 l L l L l L l L l 0 l L l L l L l L l
1000 2000 3000 4000 5000 1000 2000 3000 4000 5000
average insert length average insert length
(a) C. elegans, no repeats (b) C. elegans, repeats
100 — 7 T T T T T T T 100 T T T T T
X 801 NA\/_/ A 1 =80 M :
=0 o E
5 60 | 5 60 i
z 2
o o
S 40 B 4240 . .
2 20 1 220 ' e
l L l L l L l L l l L l L l L l L l
1000 2000 3000 4000 5000 1000 2000 3000 4000 5000
average insert length average insert length
(c) human, chr. 22, no repeats (d) human, chr. 22, repeats
100 — T w T N ‘ T T 100 — T w T ‘ T ‘ T T T
FRAAAARSAS
% 60 |- N Vo % N
z [
o o
g 40| 1 8 i
s —e— ANISE —e— MindTheGap s
2 20 ABYSS —e—SGA 1220 7
0 l L l L l L l L l O l L l L l L l L l
1000 2000 3000 4000 5000 1000 2000 3000 4000 5000

average insert length

(e) D. melanogaster, no repeats

average insert length

(f) D. melanogaster, repeats

Figure 5.22: Percentage of recovered sequence data for the heterozygous data sets with and without
repeats. The windows are shown on the x axis and a point (x,y) describes the average y of all
insertions with lengths (x — 200, z|. The legend for all figures is given in (e).

metrics when no repeats are present. However, they have problems achieving good results in the
presence of repeats.

This is further evidence that the good results come from “jigsawing together” the results with
BLAST matches, which however fails in the presence of repeats (also compare Section 5.6.5).
In the case of having no repeats, the local alignments generate segments that align with few
errors against the true inserted sequence. When repeated copies are present, these assemblers
fail in correctly separating these copies and a large portion of the inserted sequences remains
uncovered.

134

5.7 Ewvaluation using Real-World Data

MTG is more successful in assembling the homozygous cases than the heterozygous cases. This
can be explained by the higher coverage of the inserted sequence (60x instead of 30x) which is
an easier input for the memory-optimized (instead of quality-optimized) assembly module. MTG
is more robust in terms of recovery rate than the general purpose assemblers but not as robust
as ANISE.

When considering the success in assembly dependent on the insertion length, MTG shows prob-
lems with growing insertion length. It is more successful on the simpler D. melanogaster data set
than on the human and the C. elegans data sets. Remarkably, MTG is more robust in assembling
long sequences in the presence of repeats, presumably because the insertions have three times
higher coverage than in the case of having no repeats. However, the resulting error rate is much
higher in the case of simulating repeats and it is not competitive to ANISE.

5.7 Evaluation using Real-World Data

In this section, I describe the evaluation of insert site prediction and sequence assembly using
real-world data. After a short description of the data set, I give alist of experiments and the results
of ANISE/BAsIL and MINDTHEGAP in Sections 5.7.1-5.7.10. For each experiment, I describe the
performed computations, report the results, and shortly discuss them. Finally, I give an overall
discussion of these results in Section 5.7.11.

This evaluation is a greatly extended and refined version of the previously published one from
(Holtgrewe et al, 2015). The main differences are filtering the ANISE contigs to having at least 10
supporting OEA pairs on each side instead of requiring a count of 30 as in the original publication.
Further, I made the definition of novel bases (given below) more clear and stringent.

Data Set. In this third benchmark, I use an Illumina HiSeq 2000 paired-end whole-genome
sequencing data set. The reads have a length of 101bp and cover the genome to 64x. From
the read alignments I estimated the template size to be approximately normally distributed with
i = 422 and 0 = 56. The reads were sequenced from the individual NA12878 that has been used
extensively in previous studies, e.g., the original GATK publication by DePristo et al. (2011). For
short, I call this benchmark the real-world benchmark. The aim of this benchmark is to evaluate
the performance of the insert site detection and the targeted assembly of inserted sequence on
real-world data.

I use the BAM file? provided on the NCBI servers as the input for Basir and ANISE and convert
it into a FASTA file to use it with MINDTHEGAP. The creators of the BAM file used the human
reference sequence hg18/GRCh36 for their analysis.

Since the ground truth is not known for my data set and this evaluation aims at targeted assembly,
I do not attempt to run any general purpose de novo assemblers on this data set. The lack of

*ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/technical/working/20101201_cg_NA12878/
NA12878.hiseq.wgs.bwa.raw.bam

135

ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/technical/working/20101201_cg_NA12878/NA12878.hiseq.wgs.bwa.raw.bam
ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/technical/working/20101201_cg_NA12878/NA12878.hiseq.wgs.bwa.raw.bam

Chapter 5 Variant Detection

BasiL MTG FIND

508 863 sites 611732 sites

filtration > 10 OEA

7 463 sites
ANISE MTG FI1LL
4095 contigs 148 003 contigs

spanning,

anchored, < 5Ns filtration length > 200bp

filtration

2094 contigs 15218 contigs
. BLAT anchor in hg18 . > 10 anchors
B > 200 bp novel G in BAM file
343 contigs 126 contigs
long anchored unique anchored
254.7 kbp 105.5 kbp

Figure 5.23: Overview of the filtration of predicted sites and the filtration and anchoring of assem-
bled contigs. This overview corresponds to Sections 5.7.1- 5.7.3.

ground truth makes it hard to gauge the quality of the assembly results. Thus, I use several
complementing approaches for obtaining quality metrics.

Resource Consumption. Iran BasiL allowing up to 8 threads, it took 2h 22min to finish and
used up to 8.4 GB of RAM. ANISE ran with 32 threads, took 30h 34min to complete, and had a
peak memory consumption of 130 GB of RAM (4 GB per core). MTG offers no parallelization
and was run on a single core. It took 40h 15min for the k-mer indexing step, 5h 7min for the
breakpoint detection step, and 16h 28min for the assembly. The three MTG steps had a peak
memory consumption of 6, 14, and 6 GB of RAM.

5.7.1 Filtration of Predicted Sites

Methods. For Basii, I filtered the resulting sites to those having at least 10 supporting OEA
pairs on each site. The result of the MINDTHEGAP FIND module does not have to be filtered before
being passed to the FiLL module.

Results. BasiL yields a total of 508 863 tentative insert sites and 7 463 remain after filtration.
The MTG riND module detects 611 732 tentative insert sites. Figure 5.23 gives an overview of

136

5.7 Ewvaluation using Real-World Data

the structure of this and the following two steps and their results. I will discuss these results
together with the results of Section 5.7.2.

5.7.2 Filtration of Assembled Contigs

Methods. With default settings, ANISE yields one sequence for each BasiL site when the as-
sembly succeeds. Each such ANISE contig is annotated with the following information: (1) the
genomic location of the site as predicted by Basiy, (2) whether it was anchored on the left and/or
right side, and (3) whether ANISE was able to span the insertion using overlaps and read pairing
information. I call contigs fulfilling these conditions spanning contigs. I call an ANISE contig
anchored on the left side if its assembly incorporated a read on the forward strand of the genome
in the input BAM file and vice versa for right anchoring of contigs.

I filter the ANISE contigs to those marked as spanning and anchored on both sides and have no
stretch of 5 Ns or more. This yields prefiltered ANISE contigs.

Since MINDTHEGAP is based on the analysis of k-mers and does not use read pairing information,
there is no obvious way of filtering the result of its FIND module. As described in its manual, I
directly pass the FIND result to the FILL module. For filtration, I limit the resulting MTG contigs
to those with a length of at least 200 bp.

Results. Figure 5.23 gives an overview of the structure of this, the previous, and the next sec-
tion.

ANise yielded 4 059 contigs in total, thus the assembly fails to produce contigs for 3 404 insertion
site candidates. Of these contigs, 2 094 prefiltered ANISE contigs remained.

MTG The FiLL module generated candidate insert sequences for a lot of the candidate insert
sites, including a large number of very short contigs and up to 62 candidate insert sequences
for an insertion site. The generated inserted sequences for one site were often very similar. A
quick inspection revealed that a lot of the longer assembled insert sequence contains sequence
from low-complexity repeat regions. MTG FILL generated 148 003 contigs in total, of these 15518
remain after filtering to a minimal size of 200 bp.

Discussion. Of the approximately 7.5k predicted breakpoints, ANISE only yielded approxi-
mately 4k contigs. For the remaining approximately 3.5 k contigs, the assembly failed. The most
likely reason is that the majority of these predicted locations are false positives generated by
BaAsiL.

The two main reasons for false positives in BAsIL are spurious alignments and ambiguities in
the paired-end signals. For spurious alignments, the shadow reads of the OEA pairs cannot be
assembled into contigs of sufficient length. In this case, the assembly process stops after failing
in the first step. In the case of ambiguous paired-end signals, the shadow reads can be assembled
into contigs but the assembly cannot continue in the next step (also see Section 5.3.2).

137

Chapter 5 Variant Detection

Another reason for failures to create spanning contigs is that ANISE fails to assemble the whole
insertion because of repeats or a lack of coverage. However, judging by the results of the success
in sequence assembly depending on insert length in Section 5.6.4, I expect this to be the reason
only for a small percentage.

The high numbers of contigs per site yielded by MTG makes the results of this method cumber-
some to interpret. Also, about nine tenth of the contigs yielded by MTG are shorter than 200 bp
and are not of further interest in this evaluation.

5.7.3 Re-Anchoring of the Assembled Contigs

Methods.

Anise For ANISE, the generated contigs are generated from the anchors of the OEA read pairs
as well. Thus, the assembled contigs contain parts of the reference sequence at their ends. I used
the local aligner BLAT (Kent, 2002) for aligning the ANISE contigs to hg18.

I chose BLAT for this task since it is much faster than BLAST, allows large gaps in its generated
alignments, and creates alignments similar to those generated by LBA. This allows the alignment
of the borders of the ANISE contigs while keeping the insertion itself unaligned. In this exper-
iment and in all other experiments below where I use BLAT, I use the terms identity, error rate
and score to mean BLAT identity, BLAT error rate and BLAT score (also see Appendix H).

In more detail, I discarded all BLAT matches that align less than 300 bp of the ANISE contigs
and have an identity of less than 90%. I chose to allow a BLAT error rate of 10% since BLAT
identity includes a (scaled-down) penalty for gaps in the case of insertions and there might be
small variants (so-called micro-indels) around the insertion site (Yalcin et al, 2012). Also, the
BLAT matches were filtered to those that align within 400 bp of the insertion site prediction for
which assembly was attempted.

I call all such ANISE contigs anchored. Of these contigs, I call the ones that have at least 200 bp
that are not covered by the anchor alignments long anchored. I do not consider contigs that are
not long anchored further in this evaluation. For the ANISE contigs, I estimated the number of
novel bases in an assembled contig by counting the bases between the anchoring alignments at
the border.

MTG The MINDTHEGAP contigs only consist of the actual insert and the genomic context itself
is not available. Thus, I counted all bases in the assembled contigs as novel. Further, there are
still multiple MTG contigs for many insertion sites. I attempted to anchor the MTG contigs using
paired-end information in the following approach.

For each insert site call with at least one filtered MTG contig, I extracted the OEA pairs from the
original BAM file where the anchors mapped within 800 bp of the predicted site. I then attempted
to anchor the MTG contigs to the reference using these read pairs by mapping the shadow reads
to the contig with BWA (Li and Durbin, 2009).

138

5.7 Ewvaluation using Real-World Data

For each aligning shadow read, I counted the OEA read pair as anchoring for the contig that it
aligns to. If the anchor aligned to the forward strand in the input BAM file, I counted the OEA pair
as left anchoring and I counted it as right anchoring if the anchor aligned to the reverse strand. I
discarded all contigs with less than 10 anchors on either side. If there were multiple contigs for a
predicted site, I picked the one with the highest anchor count for the further analysis (ties were
broken randomly).

In summary, an ANISE contig is anchored if its borders align to the reference with sufficient
quality. A MTG contig is anchored if there are at least 10 OEA pairs on each side of the insertion
site where one read (the anchor from the BAM file) aligns on the reference and the other read
(the shadow from the BAM file) aligns to the contig. Both kinds of anchoring are evidence that
the contig is part of the donor’s genome at the given position.

Results. Figure 5.23 (p. 136) shows the structure of the evaluation process and the results up
to this point.

ANise For ANISE, of the 2 094 prefiltered contigs, 2 093 could be anchored in hg18 using BLAT.
Of the anchored contigs, 343 are long anchored contigs, containing a total of 254.7 kbp of esti-
mated inserted sequence. I manually inspected the single unanchorable contig and the predicted
corresponding site was directly next to an ALU repeat.

MTG For MTG, of the 15 218 filtered contigs, 127 can be anchored using the aligned reads in
the BAM file (one is a duplicate of another contig). These 126 unique contigs have a total of
105.5 kbp of sequence.

Discussion. All but one prefiltered contig created by ANISE can be anchored to hg18, thus
passing this sanity check. Of the filtered MTG contigs, only 126 unique contigs can be anchored
to the reference sequence using the aligned reads.

Thus, ANISE creates 2.7 times as many contigs that pass the simple sanity check of anchoring
contigs and have at least 200 bp. The ANISE contigs consist of 2.4 times more novel sequence
than the MTG contigs.

5.7.4 Validation Using Fosmid Sequence

In this experiment, I attempt to validate the assembled contigs with the known sequence of
previously published fosmids. Figure 5.25a (p. 141) gives an overview of the situation in this
evaluation.

Methods. In a previous study of structural variants, Kidd et al. (2008) published the full se-
quence of 454 fosmids from the same individual NA12878 (fosmid contigs). The sequences were
assembled from traditional capillary sequencing, have lengths of approximately 40 kbp, and are
annotated to be of high quality.

139

Chapter 5 Variant Detection

20

10| B

\\\\“\

number of contigs
oo
novel sequence [kbp]

0L | | | \\ [| | | | | |
90 92 94 96 98 100 90 92 94 96 98 100

minimal identity [%] minimal identity [%]

(a) contig count (b) novel base pairs

Figure 5.24: Results for the validation of the insert sequence assembly using fosmid sequences in terms of
(a) aligned contigs for which BLAT matches with the given or better identity exist. (b) shows the number of
novel base pairs for these contigs. The legend for both figures is shown in (b).

These fosmid contigs were generated for the validation of SV breakpoints in general and do not
exclusively contain insert sequence. Thus, it cannot be expected that all AN1SE and MINDTHEGAP
contigs can be found within the 17.5 Mbp of these fosmids. Nevertheless, they can be used as
ground truth for parts of the genome sequence of the considered individual.

High-quality alignments of ANIsE and MTG contigs to the fosmid sequence are evidence that
these contigs are of high quality. I compute BLAT alignments using the ANIse and MTG contigs
as the query and using the fosmid contigs as the reference. I filtered these BLAT matches to
those covering at least 90% of the query and the BLAT alignment with the highest score (cmp.
Appendix H) was picked for each query for the further evaluation.

Results. Figure 5.24 shows the results of the verification using fosmid sequence in terms of
contig and novel base pair count for AN1sE and MTG.

Anise Intotal, I could align 15 ANISE contigs to the fosmids using the approach described above.
Of these, 8 have an identity of 100%, 14 have an identity of 99% or better, and all have an identity
of 93% or better. The contigs in these classes correspond to approximately 12 kbp, 23 kbp, and
23 kbp of novel sequence.

MTG Two of the aligned MTG contigs align to the same fosmid at the same location with the
same identity and I ignore the second contig in this evaluation. After this filtration, I could align
4 MTG contigs using the approach described above. Of these, 1 has an identity of 100%, 2 have an
identity of 97% or better, and all 4 have an identity of 93% or better. The contigs in these classes
consist of 4 kbp, 5kbp, 5kbp, and 6 kbp of novel sequence.

I also compared the matches for both methods and found that half of the MTG matches are
contained in ANISE matches.

140

5.7 Ewvaluation using Real-World Data

fosmid contig assembled contig
A A
7 7

/ . / . .
, ——> assembled contig ,, ———> capillary contig
/ /

best BLAT match of assembled contig best BLAT match of capillary contig
(a) validation using fosmid sequence (b) validation using capillary sequence

Figure 5.25: The situation for validating assembled contigs using (a) fosmid and (b) capillary sequence. In (a),
the fosmid contigs are used as the reference and the assembled contigs are used as the query in a BLAT search.
In (b), the assembled contigs are used as the reference and the capillary contigs are used as the query. The best
BLAT match (passing the quality filters described in Sections 5.7.4 and 5.7.5) is picked as the location to compare
with, if any.

Discussion. ANISE yielded almost four times as many contigs that can be aligned with high
identity against the fosmid contigs than MTG. Also, the ANISE contigs can be aligned with higher
identity to the fosmid contigs (14 of 15 align with an identity of > 99%). Only 2 of the 4 alignable
contigs generated by MTG are exclusive to MTG.

5.7.5 Validation Using Capillary Sequenced Contigs

In this experiment, I attempt to validate the assembled contigs with contigs obtained from pre-
viously published shorter sequence obtained from capillary sequencing. Figure 5.25b gives an
overview of the situation in this evaluation.

Methods. Kidd et al. (2010) published the sequence of 1736 fosmid ends assembled from cap-
illary sequenced reads (capillary contigs). This data set contains sequence from NA12878 and
other human individuals. The contigs have lengths between 310bp and 2 683 bp and they are
annotated as having a potentially lower quality towards the ends. Although they have a shorter
length and lower quality than the fosmid contigs and are from different individuals, these contigs
can be used for the validation of the results of AN1SE and MTG.

I computed BLAT alignments using the ANIseE and MTG contigs as the reference and the capil-
lary contigs as the query. High-quality local alignments between the capillary contigs and the
assembled contigs support that the assembled sequence is correct. I filtered the BLAT matches
to those having at least 100 matching base pairs in the local alignments.

Results. Figure 5.26 shows the results of the verification using capillary sequence in terms of
contig count and novel base pairs for ANISE and MTG.

ANIse 230 capillary contigs can be aligned to the long anchored ANISE contigs with at least 100
matching base pairs. Of these, 122 align with a minimal query coverage of 80%, 99 align with

141

Chapter 5 Variant Detection

T T
" 200 + 1
20100 | 1 B
g :
S S
o ° 1 - |
g 50 I | E 00
0 | O | | | | | 1 \ |
90 92 94 96 98 100
minimal coverage [%] minimal identity [%]
(a) minimal coverage (b) minimal identity

Figure 5.26: Results for the validation of the insert sequence assembly using capillary contigs. (a) shows the
number of capillary contigs that could be aligned to an assembled contig with a certain minimal coverage. (b)
shows the counts for matches with a given minimal identity. For both ANise and MTG, there is one capillary
contig that aligns with 100% coverage and minimal identity. The legend for both figures is shown in (b).

90%, 41 with 98%, and 1 with a query coverage of at least 100%. Of the 53 original contigs, 37
align with a minimal identity of 90%, 104 with 98% and 1 with a minimal identity of 100%.

MTG 53 capillary contigs can be aligned to the anchored MTG contigs with at least 100 match-
ing base pairs. Of these, 37 align with a minimal query coverage of 80%, 23 align with 90%, 8
with 98%, and 1 with a query coverage of at least 100%. Of the 53 original contigs, 50 align with
a minimal identity of 90%, 33 with 98% and 1 with a minimal identity of 100%.

Discussion. The results of this experiment also show a higher support for ANISEg, both when
considering the capillary sequences aligning with minimal coverage and when considering them
aligning with minimal identity.

5.7.6 Validation Using the hg38/GRCh38 Reference Sequence

Methods. At the time of writing, the reference in release hg18/GRCh36 that was used for the
alignment and insert site prediction is two releases behind the current release hg38/GRCh38. In
the case that sequence present in NA12878 and missing in hg18 and is now included in hg38, I
can use these parts of hg38 for the validation of the AN1SE and MINDTHEGAP contigs. Since hg38
does not contain the exact sequence of NA12878, it is no full ground truth but can still serve as
a good sanity check.

Iused BLAT to align the ANISE and MTG contigs to hg38. I call the Anise and MTG contigs that
align against hg38 with less than 10 uncovered reference bases reanchored contigs. Assembled
contigs with high sequence recovery and low error rate, with respect to the segments of hg38,
are evidence for a high quality of the assembled sequence. The overall situation is the same as

142

5.7 Ewvaluation using Real-World Data

T T T T T T 50 1 T T T T —
oo o o o o o o o o o
« N =y
& 30| 31 =2 ol 480 |
g I
O % —e— ANISE
5 20| 4 2 30| —e MTG .
[P (]
£ k
= 4 16.6
= 10 - N N 8 20 *—9 0 90 0 0 0 0 0 0 |
1 o
| | | | | | | | | | | |
90 92 94 96 98 100 90 92 94 96 98 100
minimal identity [%] minimal identity [%]
(a) number of contigs (b) novel base count

Figure 5.27: Results for the validation of the insert sequence assembly using the sequence of hg38. (a) shows
the number of capillary contigs that could be aligned to hg38 with the given minimal identity and (b) shows the
amount of novel sequence for this. The legend is the same for both figures but only shown in (b).

the one shown in Figure 5.25a, with the hg38 sequence taking the role of the fosmid sequence.
Possible sources for missing sequence and errors are assembly errors and differences between
NA12878 and the reference sequence.

Results. Figure 5.27 shows the results of the validation of the insert assembly result using the

sequence of hg38.

ANise 1 could reanchor 34 ANISE contigs in hg38, each with an identity of 99.7% and a coverage
of 99.8% or better. These contigs correspond to a total of 47.2 kb novel sequence.

MTG T could reanchor 10 of the anchored MTG contigs in hg38. Of the anchoring BLAT
matches, 4 had an identity of 99% or better and 8 had an identity of 95% or better. The 10 contigs
had a total of 13.7 kbp of sequence.

Discussion. By the results of this experiment, ANISE achieves better results than MTG. The
results can be interpreted as ANISE predicting the sequence of 3.4 more updates from hg18 to
hg38 than MTG. Further, these updates are predicted with a higher accuracy in terms of sequence
identity.

5.7.7 Validation Using the NCBI BLAST nt Database

The nt database of NCBI Nucleotide BLAST is another valuable resource for validating ANISE
and MTG contigs. This database contains many high-quality fosmid and BAC sequences which
can serve for the validation of the assembled insert sequence, in the case that the nt sequences
overlap with the ANise and MTG contigs. As is also the case for hg38, the sequences from this

143

Chapter 5 Variant Detection

" =, 200 +
e 200 - 1 2
= f
g 2
) o
5 100 | | g 10p
= 2 24.3
a . é e00000000,,,, oo .
0L | | 7 | .7.\ ‘\ i oL | | \8'24\?
80 85 90 95 100 80 85 90 95 100
minimal coverage [%] minimal coverage [%]
(a) count, minimal coverage (b) novel base pairs, minimal coverage
T T T T T T T T T T
— 200 1
ED 200 |- | §
=}
g 2
) 9]
£ 100 |- | & 1001 i
]]
£ :
:
a
o ! ! ! ! ! L (U |

92 94 96
minimal identity [%]

minimal identity [%)]

(c) count, minimal identity (d) novel base pairs, minimal identity

Figure 5.28: Validation results using the NCBI BLAST nt Database. (a) and (b) show the number of ANISE and
MTG contigs for which BLAST matches could be found with a given minimal coverage and the corresponding
novel base pairs for (c) and (d) show these metrics for contigs for which matches with a given minimal identity
exist. The legend for all figures is shown in (a).

database were not obtained from the individual NA12878 and there might be variants between
the donor genome and the assembled sequence. However, finding long high identity matches
between the assembled contigs and the nt database is a good sanity check.

Methods. I uploaded the anchored ANIsE and MTG contigs to the NCBI BLAST website and
aligned them to the nt database with default settings. I filtered the resulting matches to those
aligning to reference sequences of human origin. For each pair of query and subject sequence, I
greedily selected the best bit-scoring, non-overlapping alignments similar to the way the BLAST
website does for graphic display. I assigned each Anise and MTG contig to the subject with the
highest sum of bit-scores for the selected matches.

Results. Figure 5.28 shows the results of this experiment.

144

5.7 Ewvaluation using Real-World Data

Anise The BLAST search of the 343 anchored ANISE contigs yielded 239 matches with minimal
length 1000 bp. Of these, 18 had a minimal identity of 100% in the BLAST match, 141 had a
minimal identity of 99%, and 200 had a minimal identity of 95%. For these contigs, the number of
novel base estimate is 24.3 kbp, 141.5 kbp, and 189.0 kbp, respectively. For 18, 141, and 226 ANISE
contigs, I found best matches covering at least 100%, 99%, and 95% of the ANISE contig. This
corresponds to 24.3 kbp, 141.5 kbp, and 207.4 kbp of novel sequence.

MTG Of the 126 unique long anchored contigs, the BLAST search yields 20 matches with sizes
of at least 1000 bp, of these 3, 12, and 134 had an identity of 100%, 99%, and 95% or better, re-
spectively, which corresponds to 8.2 kbp, 36.1 kbp, and 83.1 kbp of novel sequence. For 3, 12, and
13 contigs, I found best matches covering at least 100%, 99%, and 95% of the MTG contig. This
corresponds to 8.2 kpb, 36.1 kbp, and 43.5 kbp of novel sequence.

Discussion. The results of the validation using the BLAST nt database are consistent with
the other evaluation results. ANISE creates more than 10 times more contigs with high-quality
BLAST matches, containing more than 4 times more novel sequence than MTG. Overall, BLAST
matches could be found for 70% of the long anchored ANISE contigs but only for 16% of the long
anchored MTG contigs, although there are 2.7 times fewer of the latter.

5.7.8 Validation Using Paired-Read Data

A common method for the validation of assembly results is to map the original input read pairs
against the assembled sequence. The resulting read alignment can be analyzed similar to call-
ing variations of a donor to the reference. In this case, the assembled sequence takes the role
of the reference and there should be few, if any, variants. When analyzed for SNVs and small
indels, such variants indicate possible small-scale assembly errors. Discordantly aligning reads
are signals for possible larger-scale assembly errors.

Methods. ANIsE allows to write out the reads used for the assembly of each contig. For each
long anchored contig, I mapped the reads back to their contig using BWA and used the MPILEUP
command of SamTOOLSs for calling SNVs and small indels. Further, I counted pairs showing more
than six standard deviations from the mean template size as discordant.

Since MINDTHEGAP is not capable of writing out the reads used for the assembly, I only performed
this experiment for ANISE.

Results. Figure 5.29 shows the results of the evaluation using paired-end mapping of the orig-
inal reads to the assembled contigs. I aligned the reads of the 343 long anchored contigs to their
corresponding assembled contigs. For almost all (334 of 343) contigs, the minimal mapping iden-
tity of the aligned read is > 99%. When considering the percentage of concordantly aligning read
pairs, 324 of 343 contigs > 99% concordantly aligning reads.

145

Chapter 5 Variant Detection

w
o
o

number of contigs
DO
o
S

142

90

92 94 96 98
minimal mapping identity [%]

(a) by mapping identity

|
100

number of contigs

340

w
DO
[an}

w
o
e}

290

90 92 94 96 98

minimal concordant mappings [%]

(b) by concordant mappings

|
100

Figure 5.29: Results for the validation of the insert sequence assembly by mapping the original paired reads to
the assembled sequences. (a) shows the number of contigs for which the average identity rate of the aligned read
had a minimal given value. (b) shows the same but requires a minimal reate of concordantly aligning read pairs.

Discussion. The high number of contigs for which the reads align with high identity show
that the assembled contigs strongly agree with the reads on the sequence level. An error rate of
1% is approximately what one expects from Illumina HiSeq 2000 reads. Considering the minimal
percentage of concordantly aligning reads shows agreement with the read pairing information.
The discordantly aligning read pairs can be explained by outliers in terms of pair template size
or artifacts caused by the read pair belonging to a different genomic location.

5.7.9 Overlap of Predicted Breakpoints

I computed the concordance of the insert site breakpoint detection of BasiL and MINDTHEGAP.
Using concordance is a good sanity check since alow concordance means that at least one method
is missing many insert sites. However, a high concordance alone is only weak evidence that a
method works correctly since all methods could show the same bias.

Nevertheless, when complemented with results from simulated data, concordance is a meaning-
ful validation method. I presented results for simulated data in Section 5.6.3, thus enabling a
meaningful evaluation using concordance of breakpoint prediction.

Methods. For this evaluation, I compared the breakpoints from BasiL* and the MTG FIND
module using BEnToots (Quinlan et al, 2010). I computed the breakpoint overlap when allowing
a maximal distance of 20 bp and 600 bp. The shorter allowed distance of 20 bp allows to account
for ambiguities in the base-pair resolution insert site detection. For some predicted insertion sites,
BasiL* was not able to refine the position to base-pair resolution. For this case, I also consider
the larger allowed distance of 600 bp.

146

5.7 Ewvaluation using Real-World Data

MTG
FIND

305 340

(a) max. distance 20 bp (b) max. distance 600 bp
shared shared
36 41
(c) max. distance 20 bp (d) max. distance 600 bp

Figure 5.30: Venn diagrams of the breakpoint-wise overlap, allowing for a maximal distance of
20 bp and 600 bp. (a) and (b) show the overlap between BasiL* and MTG rFIND whereas (c) and (d)
show the overlap between breakpoints of anchored ANise and MTG FILL contigs.

Results. The breakpoint candidate overlap size of BasiL* and the MTG find module is 289/526
when allowing a maximal distance of 20/600 bp. 1041/865 breakpoints are exclusive to BAsiL*
and 305 577/305 340 are exclusive to MTG. The lack of read pair information usage in MTG FIND
does not allow for a more specific filtering of the breakpoints.

When comparing the breakpoints of the anchored AnisE and MTG contigs, 36/41 bp are shared
(with a maximal distance of 20/600 bp). 307/302 are exclusive to ANISE and 90/85 are exclusive
to MTG.

Discussion. The large number of breakpoints yielded by MTG FIND stems from the fact that it
uses a k-mer—based approach and is not particularly focused on long insertions. The overlap of
anchored contigs is thus more interesting, since it includes the filtration steps in terms of contig
sequence length and evidence of anchoring in the reference sequence.

Here, only 10% of the anchor breakpoints of ANISE contigs overlap with the ones of MTG and for
MTG this is true for 25-33%. Increasing the allowed distance only slightly improves this overlap.
I will discuss these results further in Section 5.7.10.

147

Chapter 5 Variant Detection

shared shared
36 39
(a) min. overlap 100% (b) min. overlap 95%

Figure 5.31: Venn diagrams of the sequence-wise overlap requiring a minimal overlap of (a) 100%
and (b) 95% of overlap (in the MTG contig).

5.7.10 Sequence-Based Overlap of Assembled Contigs

Methods. Icomputed the overlaps of contigs using local alignments between ANISE and MINDTHE-

Gap. For this, I computed the sequence-wise overlap of the contigs assembled by ANISE and MTG
using BLAT. Since ANISE yields inserts with neighboring reference sequence and MTG yields the
predicted insertions only, I proceeded as follows.

I performed a BLAT search using the MTG contigs as the query and the ANISE contigs as the
reference. I then counted the number of MTG contigs that are covered to at least 95 and 100%
and have a BLAT identity of over 95%. This yields the sequence-wise overlap of the anchored
contigs.

Results. The overlap by sequence yields similar results to the overlap by breakpoint position.
When requiring a minimal overlap of 100%, 36 assembled contigs are shared, 307 are exclusive
to ANISE, and 90 are exclusive to MTG. The number of shared contigs increases by 3 when only
requiring a minimal overlap of 95%.

Additionally, I considered the contigs exlusive to ANISE and MTG (i.e., those without an overlap).
For each set, I computed how many are supported by fosmid matches, capillary matches, hg38
matches, and BLAST nt matches (requiring a minimal identity of 95%).

Of the 342 exclusive ANISE contigs, I could find fosmid matches for 14, capillary matches for 91,
hg38 matches for 35, and BLAST nt matches for 200. This corresponds to 4%, 27%, 10,%, and 59%
of the contigs exclusive to ANISE.

For the 87 MTG matches, I found fosmid matches for 1, capillary matches for 16, hg38 matches for
7, and BLAST nt matches for 8. This corresponds to 1%, 18%, 8,%, and 9% of the contigs exclusive
to MTG.

Table 5.4 shows these numbers in tabular format for easier comparison.

148

5.7 Ewvaluation using Real-World Data

total supported by
method €XClUsive foqnids capillary =~ hg38 BLAST nt
ANISE 342 14 (4%) 91 (27%) 35(10%) 200 (59%)
MTG 87 1(1%) 16 (18%) 7 (8%) 8 (9%)

Table 5.4: Statistics about verification of contigs exclusive to one method. This table shows the
number of total exclusive contigs, and the number (and percentage) of exclusive contigs that are
supported by matches to fosmid contigs, capillary contigs, the hg38 reference sequence, and the
BLAST nt database.

Discussion. The number of shared contigs between ANISE and MTG is relatively low. More
contigs are exclusive to ANISE and also a higher percentage of these contigs are supported using
the validation experiments. This evidence shows that ANISE is not only able to assemble more
long insertions than MTG but also that a higher percentage of these contigs can be verified given
existing sequence databases.

Nevertheless, MTG yielded a number of contigs that was almost one third of the number of
contigs exclusive to ANISE. The support (from the available databases) for this contigs is not as
good as the support for the exclusive ANISE contigs. However, there is still a (small) number of
contigs assembled by MTG that are well-supported but that were not found using ANISE.

5.7.11 Discussion

In this section, I presented a comprehensive evaluation of the insert assembly (and to a lesser
extend) of the insert site prediction using a real-world data set. The filtration of the contigs
to the long anchoring ones allows a good comparison of the MINDTHEGAP and BASIL/ANISE
results. For both methods, the anchored sequences show evidence using sequence information
(BLAT alignments for ANISE and the k-mer analysis in MTG rIND) and paired read information
(directly in BAsIL and through the anchoring in the evaluation for MTG). ANISE yields 2.7 times
as many long anchored contigs as does MTG and 2.4 times as many novel bases.

In the evaluation using the fosmid sequences from the same donor, I found evindence for 3 times
as many ANISE contigs than for MTG contigs and for almost 4 times as many base pairs. The
evaluation using capillary contigs (that included sequence from the same individual), the up-
dated reference sequence hg38, and the BLAST nt database also support that ANISE yields more
sequence of higher quality than MTG.

The evaluation of the predicted breakpoints and assembled sequence is relatively low. The num-
ber of contigs exclusive to ANISE is more than three times higher than those exclusive to MTG.
Also, the rate of contigs supported by my experiments is higher in the exclusive ANISE contigs
than in the exclusive MTG contigs.

Given that the wall-clock running time of BasiL and ANIsE is lower than the one of MTG, my

149

Chapter 5 Variant Detection

recommendation for future studies of large insertion is to start the analysis with BAsIL and ANISE.
The results of my methods are more comprehensive and reliable than the ones of MTG. Also, for
the practitioner, the interpretation of one best contig for each site is easier than the interpretation
of many (up to 60) candidates as MTG yields.

Nevertheless, MTG can be used for complementing the results of ANISE in a second step. A
parallelization of the MTG method would greatly improve the practicability of this method. In
particular, the MTG INDEX step could benefit from a parallelization similar to the one in JELLY-
FISH (Marcais and Kingsford, 2011). While the authors of MTG propose to exchange JELLYFISH
for their own k-mer counting method in low-memory situations (Rizk et al., 2013), my recom-
mendation is to prefer a parallelizable method over a particularly memory-saving one.

150

5.8 Chapter Conclusion
5.8 Chapter Conclusion

In this chapter, I described

« the tasks of variant calling and genotyping of small and structural variants,

« the general approach to small variant calling by considering the read alignments and meth-
ods for performing small variant calling and genotyping,

« the basic types of structural variants (SVs) and
« the approaches for SV calling,
« alist of SV calling methods and the approaches they use,

« the method Basit for the detection and location of breakpoints, including insert break-
points,

« the method ANisE for the targeted assembly around breakpoints that is able to assemble
large insertions, and

« an extensive experimental evaluation of insert site prediction and insert sequence assembly
using synthetic, simulated, and real-world data.

I observed that

« using chaining for the OEA cluster selection works better than the previously considered
method of an approximate solution of a SET-COVER model,

» BasiL shows competitive performance for detecting insertion breakpoints on simulated
insertions in real biological sequence,

« filtering of the BAsiL results is required such that spurious read alignments are ignored
and do not greatly lower specificity,

« ANISE is superior to the popular general purpose assemblers ABYSS and SGA and the
targeted insert assembler MTG on synthetic data with repeats,

+ ANISE is competitive with ABYSS and SGA for the assembly of simulated insertions into
real biological sequence and superior to MTG without the presence of repeats,

 ANISE robustly assembles inserted sequence, also in the presence of repeats, and that

+ ANISE proved to be superior to MTG for the assembly of insertions in real-world sequence.
I conclude that

« BasIL is a competitive method for the detection of breakpoints from short read pairs in
base resolution,

« ANISE is the best and most robust available method (at the time of writing) for the assembly
of novel sequence in resequencing projects for personal genomes.

151

Chapter 5 Variant Detection

My main contributions in the area of variant analysis are

152

the development of the method Basit for the effective and efficient location of breakpoints
using the paired read and split read approach,

the development of the method ANI1sk for the targeted assembly around breakpoints, ca-
pable of assembling long insertions,

the implementation and integration of repeat separation into the insert assembly method,

the development of a comprehensive benchmark for insert site detection and insert se-
quence assembly and an evaluation of state-of-the-art tools, and

using the chaining algorithm for the OEA cluster selection in BAsIL and showing that this
method’s performance is superior to the previously used approximate solution of a SET-
CovER model.

Chapter 6

Discussion and Conclusion

In my thesis, I described my contributions to the field of variant analysis for resequencing. First,
I gave a brief introduction to the background in biology, mathematics, and computer science. In
the rest of the thesis, I presented the different steps in a typical resequencing pipeline and my
contributions to these steps: preprocessing, read mapping, and variant analysis.

In this section, I give a short summary of my contributions, discuss recent developments in the
different subfields, and give an outlook on future work and upcoming challenges.

Contribution Summary

For the quality control and preprocessing step (Chapter 3), I contributed to the Fiona method for
HTS read correction. I discussed different approaches for evaluating read error correction tools
and the trade-offs of each. Further, I presented an extensive benchmark of state-of-the art read
correction tools as well as an efficient tool for supporting such benchmarks.

For the read mapping step (Chapter 4), my first contribution is a formal definition for edit distance—
based read mapping. I derived this definition from practical observations of read alignments and
ambiguities therein. In this framework, matches are defined as classes of a well-defined equiva-
lence relation. To support benchmarks using my formal framework, I implemented the program
suite RABEMA that allows for the practical evaluation of read mapping software, both on simu-
lated and on real-world data.

My second contribution in the read mapping step is to the parallel, fully sensitive read mapper
RAZERS 3. Besides others improvements, this program uses multi-core parallelism for improv-
ing the performance over the previous version. Finally, I presented the results of a benchmark
comparing different read mappers using RABEMA, both on simulated and real-world data.

For the variant analysis step (Chapter 5), my main contributions are the methods BasiL and

153

Chapter 6 Discussion and Conclusion

ANIsE for the prediction of insertion sites and the targeted assembly of insertions. Overall, these
methods are my largest contribution to the area of resequencing.

BasiL combines the previous ideas of clustering paired-read and clipping signals for improving
the precision of insert site prediction. Further, using the chaining algorithm for the paired-read
cluster selection is a novel idea that improves both the recall and sensitivity in BasiL. Moreover,
I engineered the used approaches to yield better performance than a previous implementation.

My tool ANISE combines approaches from read mapping, assembly, and read separation into a
novel method for the targeted assembly of inserted sequence. For this, I reused the algorithmic
core of our read mapper RAZERS 3: pigeonhole-based filtering and bit-parallel verification. Dur-
ing my work, I engineered and reimplemented methods for the separation and repeats and the
refining of multi-sequence alignments.

The evaluation of bioinformatics methods is not trivial in general because of the lack of ground
truth for large-scale, real-world data and biases therein that are hard to predict. Thus, the chapter
closed with an extensive evaluation of BasiL and ANISE. Here, I showed that BAsIL is competitive
with a recent method for insert site prediction. Further, I found that the repeat separation features
of ANISE make it superior to widely-used state of the art general purpose assemblers on data with
simulated repeats. Finally, ANISE was shown to be superior to the (at the time of writing) only
other published method for insert assembly. In this benchmark, I performed comprehensive tests
using different, orthogonal methods and many different data sources.

An important, recurring topic of this thesis is the benchmarking of methods. Here, a last (al-
beit secondary) general contribution is the development of the MasonN software suite for the
simulation of HTS reads and sequence variants (Appendix A).

Recent Developments

The area of quality control and preprocessing is intrinsically tied to sequencing technology used
for generating the input and the read mapping methods in the subsequent step. With their most
recent sequencing machines, lllumina improved on the read length and quality, making reads
with lengths of 150-300 bp of high qualities readily available. This makes quality-based trimming
less important, but there continues to be work in the area of efficient and precise adapter removal,
e.g., by O’Connell et al. (2015) and Jiang et al. (2014).

In the area of read error correction, current work focuses on lowering resource consumption and
processing time for scaling up to rising throughput rates, using the spectral alignment approach.
One promising idea is to replace counting by Bloom filters which leads to using only a few bits
per k-mer, thus lower memory usage and running time, e.g., as implemented by Li (2015) and
Song et al. (2014).

The area of read mapping continues to be very active, e.g., the work by Kerpedjiev et al. (2014) or
Butterfield et al. (2014), and today, most users use best-mapping when aligning reads. Notably,
methods such as the one by Siragusa et al. allow the controlled, separate enumeration of different
match strata, enabling a good estimate on a read alignment’s ambiguity. However, there are also

154

some advances in the field of all-mapping, e.g., by Koster and Rahmann (2014) and Hieu Tran
and Chen (2015).

The field of variant analysis also remains active, mostly in the area of structural variant call-
ing. For example, Bickhart et al. (2015) recently published a new method for the detection of
structural variants using aligned reads and Weisenfeld et al. (2014) published a method for SV
detection using de novo assembly. Also recently, Kehr et al. (2015) have published a manuscript on
their population-scale insert novel insert detection method that internally uses a general purpose
assembler.

Future Work and Challenges

In read preprocessing and quality control the main future work is the adaption to the properties
of upcoming sequencing machines and improving the scalability of the method while keeping
the resource consumption low.

Future read mapping methods will continue to show performance improvements, adapting to
new hardware developments, such as wider SIMD registers and many-core (co-)processors, such
as AVX and the Xeon Phi Processor. Also, being able to get a good estimate on the ambiguity
by a read by counting or enumerating suboptimal matches can serve as important information
for downstream analysis methods. General purpose read mappers that have decent split read
alignment support are already available, e.g., by Li (2013).

The integration of such methods into variant detection tools could further improve the latter.
For example, a read mapper could pass non-concordant and split aligned reads on the fly to a
SV or CNV analysis tool for processing, bypassing the need to store all of them in the alignment
file. These specialized tools would then have access to the full information and also perform
additional queries, as necessary. All of this should then be integrated with repeat copy separation
for further improving the result quality.

Another future question concerns the reference sequence. While having one common reference
coordinate system enabled huge advances in the life sciences, certain regions show a strong vari-
ability between populations. In their recent release GRCh38, the Genome Reference Consortium
(GRC) have accounted for this by including the sequence of 58 alternative loci.

Another approach, that was, e.g., performed by Besenbacher et al. (2015), is to build a pan-genome
for the considered population. This way, most common variants of a population to the reference
sequences are not considered during the resequencing. This decreasing ambiguity in the read
mapping and variant analysis step and Besenbacher et al. used this for decreasing the false dis-
covery rate of variant discovery.

While having some advantages, using different reference sequences also has several drawbacks.
These include problems with comparing two analysis results using different reference genomes
and also the challenge of building a new reference assembly. The GRC reference sequence was
built with a huge amount of work and resources. Achieving similar quality for the whole genome
sequence (e.g., using de novo assembly) in individual projects is virtually impossible. However,

155

Chapter 6 Discussion and Conclusion

for certain applications and projects with sufficient resources, it will be possible to achieve a suffi-
cient quality. This leaves another problem, that of obtaining a rich and high-quality of annotation.
Projecting such annotation from one reference sequence to another is hard, as made evident by
the only slowly growing number of tracks in the UCSC genome browser for the GRCh38 when
compared to the previous release GRCh37 (at the time of writing).

Finally, one must not forget that a hard set of challenges remain, even if a resequencing pipeline
yields good results: the interpretation of the variants. While good methods for the priotization of
small variants in coding regions exist, e.g., by Robinson et al. (2014), the problem of interpretating
structural variants and variants in non-coding regions on a large scale remains largely unsolved.

Thus, HTS has not led to an “end of history” situation in bioinformatics by far. Rather, each
solved problem opens up the opportunity to solve several new ones, as usual in the sciences.
New aims either come up as new questions initiated by the just answered one or they get into
one’s reach by using recent advances in the field. Further, bioinformatics is also highly influenced
by new and improved wet-lab protocols and devices. This leads to dynamics that are reached
by few computer science-related fields. A curious mind can only look forward to working in
bioinformatics in the future.

156

Bibliography

Abecasis, G. R,, Altshuler, D., Auton, A., Brooks, L. D., Durbin, R. M., Gibbs, R. A., Hurles, M. E.,
McVean, G. A, Bentley, D. R., Chakravarti, A., Clark, A. G., Collins, F. S., De La Vega, F. M.,
Donnelly, P., Egholm, M., Flicek, P., Gabriel, S. B., Knoppers, B. M., Lander, E. S., Lehrach, H.,
Mardis, E. R., Nickerson, D. A, Peltonen, L., Schafer, A. J., Sherry, S. T., Wang, J., Wilson, R,,
Deiros, D., Metzker, M., Muzny, D., Reid, J., Wheeler, D., Li, J., Jian, M., Li, G., Li, R., Liang,
H., Tian, G., Wang, B., Wang, W., Yang, H., Zhang, X., Zheng, H., Altshuler, D. L., Ambro-
gio, L., Bloom, T., Cibulskis, K., Fennell, T. J., Jaffe, D. B., Shefler, E., Sougnez, C. L., Gormley,
N., Humphray, S., Kingsbury, Z., Kokko-Gonzales, P., Stone, J., McKernan, K. J., Costa, G. L.,
Ichikawa, J. K., Lee, C. C., Sudbrak, R., Borodina, T. A., Dahl, A., Davydov, A. N., Marquardt,
P., Mertes, F., Nietfeld, W., Rosenstiel, P., Schreiber, S., Soldatov, A. V., Timmermann, B., Tolz-
mann, M., Affourtit, J., Ashworth, D., Attiya, S., Bachorski, M., Buglione, E., Burke, A., Caprio,
A., Celone, C., Clark, S., Conners, D., Desany, B., Gu, L., Guccione, L., Kao, K., Kebbler, J.,
Knowlton, J., Labrecque, M., McDade, L., Mealmaker, C., Minderman, M., Nawrocki, A., Niazi,
F., Pareja, K., Ramenani, R., Riches, D., Song, W., Turcotte, C., Wang, S., Wilson, R. K., Dooling,
D., Fulton, L., Fulton, R., Weinstock, G., Burton, J., Carter, D. M., Churcher, C., Coffey, A., Cox,
A., Palotie, A., Quail, M., Skelly, T., Stalker, J., Swerdlow, H. P., Turner, D., De Witte, A., Giles,
S., Bainbridge, M., Challis, D., Sabo, A., Yu, F., Yu, J., Fang, X., Guo, X, Li, Y., Luo, R., Tai, S., Wu,
H., Zheng, X., Zhou, Y., Marth, G. T., Garrison, E. P., Huang, W., Indap, A., Kural, D., Lee, W. P.,
Leong, W. F.,, Quinlan, A. R, Stewart, C., Stromberg, M. P., Ward, A. N., Wu,], Lee, C., Mills,
R. E,, Shi, X,, Daly, M. J., DePristo, M. A,, Ball, A. D., Banks, E., Browning, B. L., Garimella,
K. V,, Grossman, S. R., Handsaker, R. E., Hanna, M., Hartl, C., Kernytsky, A. M., Korn, J. M., Li,
H., Maguire, J. R., McCarroll, S. A., McKenna, A., Nemesh, J. C., Philippakis, A. A, Poplin, R. E.,
Price, A., Rivas, M. A, Sabeti, P. C., Schaftner, S. F., Shlyakhter, I. A., Cooper, D. N., Ball, E. V.,
Mort, M., Phillips, A. D., Stenson, P. D., Sebat,]J., Makarov, V., Ye, K., Yoon, S. C., Bustamante,
C. D, Boyko, A., Degenhardt, J., Gravel, S., Gutenkunst, R. N., Kaganovich, M., Keinan, A.,
Lacroute, P., Ma, X, Reynolds, A., Clarke, L., Cunningham, F., Herrero, J., Keenen, S., Kulesha,
E., Leinonen, R., McLaren, W. M., Radhakrishnan, R., Smith, R. E., Zalunin, V., Zheng-Bradley,
X., Korbel, J. O., Stutz, A. M., Bauer, M., Cheetham, R. K, Cox, T., Eberle, M., James, T., Kahn,
S., Murray, L., Fu, Y., Hyland, F. C., Manning, J. M., McLaughlin, S. F., Peckham, H. E., Sakarya,

157

Bibliography

O., Sun, Y. A, Tsung, E. F,, Batzer, M. A., Konkel, M. K., Walker, J. A., Albrecht, M. W., Am-
stislavskiy, V. S., Herwig, R., Parkhomchuk, D. V., Agarwala, R., Khouri, H. M., Morgulis, A. O.,
Paschall, J. E., Phan, L. D., Rotmistrovsky, K. E., Sanders, R. D., Shumway, M. F., Xiao, C., Igbal,
Z., Lunter, G., Marchini, J. L., Moutsianas, L., Myers, S., Tumian, A., Knight, J., Winer, R., Craig,
D. W,, Beckstrom-Sternberg, S. M., Christoforides, A., Kurdoglu, A. A., Pearson, J. V., Sinari,
S. A., Tembe, W. D., Haussler, D., Hinrichs, A. S., Katzman, S. J., Kern, A., Kuhn, R. M., Prze-
worski, M., Hernandez, R. D., Howie, B., Kelley, J. L., Melton, S. C., Anderson, P., Blackwell, T.,
Chen, W., Cookson, W. O,, Ding, J., Kang, H. M., Lathrop, M., Liang, L., Moffatt, M. F., Scheet,
P., Sidore, C., Snyder, M., Zhan, X., Zollner, S., Awadalla, P., Casals, F., Idaghdour, Y., Keebler, J.,
Stone, E. A., Zilversmit, M., Jorde, L., Xing, J., Eichler, E. E., Aksay, G., Alkan, C., Hajirasouliha,
L, Hormozdiari, F., Kidd, J. M., Sahinalp, S. C., Sudmant, P. H., Chen, K., Chinwalla, A., Ding,
L., Koboldt, D. C., McLellan, M. D., Wallis, J. W., Wendl, M. C,, Zhang, Q., Albers, C. A., Ayub,
Q., Balasubramaniam, S., Barrett, J. C., Chen, Y., Conrad, D. F., Danecek, P., Dermitzakis, E. T.,
Hu, M., Huang, N., Jin, H,, Jostins, L., Keane, T. M., Le, S. Q., Lindsay, S., Long, Q., MacArthur,
D. G, Montgomery, S. B., Parts, L., Tyler-Smith, C., Walter, K., Zhang, Y., Gerstein, M. B., Aby-
zov, A., Balasubramanian, S., Bjornson, R., Du, J., Grubert, F., Habegger, L., Haraksingh, R.,
Jee, J., Khurana, E., Lam, H. Y., Leng, J., Mu, X. J,, Urban, A. E., Zhang, Z., Coafra, C., Dinh,
H., Kovar, C., Lee, S., Nazareth, L., Wilkinson, J., Scott, C., Gharani, N., Kaye, J. S., Kent, A., Li,
T., McGuire, A. L., Ossorio, P. N., Rotimi, C. N., Su, Y., Toji, L. H., Felsenfeld, A. L., McEwen,
J. E., Abdallah, A., Juenger, C. R, Clemm, N. C,, Duncanson, A., Green, E. D., Guyer, M. S.,
Peterson, J. L., Xue, Y., and Cartwright, R. A. (2010). A map of human genome variation from
population-scale sequencing. Nature, 467(7319):1061-1073.

Abecasis, G. R., Auton, A., Brooks, L. D., DePristo, M. A., Durbin, R. M., Handsaker, R. E., Kang,
H. M., Marth, G. T., McVean, G. A., Altshuler, D. M., Bentley, D. R., Chakravarti, A., Clark, A. G,,
Donnelly, P., Eichler, E. E., Flicek, P., Gabriel, S. B., Gibbs, R. A., Green, E. D., Hurles, M. E,,
Knoppers, B. M., Korbel, J. O,, Lander, E. S., Lee, C., Lehrach, H., Mardis, E. R., Nickerson, D. A,
Schmidt, J. P., Sherry, S. T., Wang, J., Wilson, R. K., Dinh, H., Kovar, C., Lee, S., Lewis, L., Muzny,
D., Reid, J., Wang, M., Fang, X., Guo, X,, Jian, M., Jiang, H., Jin, X., Li, G., Li, J., Li, Y., Li, Z., Liu,
X, Lu, Y., Ma, X, Su, Z,, Tai, S., Tang, M., Wang, B., Wang, G., Wu, H., Wu, R,, Yin, Y., Zhang,
W., Zhao, J., Zhao, M., Zheng, X., Zhou, Y., Gupta, N., Clarke, L., Leinonen, R., Smith, R. E.,
Zheng-Bradley, X., Grocock, R., Humphray, S., James, T., Kingsbury, Z., Sudbrak, R., Albrecht,
M. W,, Amstislavskiy, V. S., Borodina, T. A., Lienhard, M., Mertes, F., Sultan, M., Timmermann,
B., Yaspo, M. L., Fulton, L., Fulton, R., Weinstock, G. M., Balasubramaniam, S., Burton, J.,
Danecek, P., Keane, T. M., Kolb-Kokocinski, A., McCarthy, S., Stalker, J., Quail, M., Davies, C.J.,
Gollub, J., Webster, T., Wong, B., Zhan, Y., Yu, F.,, Bainbridge, M., Challis, D., Evani, U. S., Lu, J.,
Nagaswamy, U., Sabo, A., Wang, Y., Yu,J., Coin, L.], Fang, L., Li, Q., Lin, H., Liu, B., Luo, R., Qin,
N,, Shao, H., Xie, Y., Ye, C., Yu, C., Zhang, F., Zheng, H., Zhu, H., Garrison, E. P., Kural, D., Lee,
W. P, Leong, W. F., Ward, A. N., Wu, J., Zhang, M., Griffin, L., Hsieh, C. H., Mills, R. E., Shi, X.,
von Grotthuss, M., Zhang, C., Daly, M. J., Banks, E., Bhatia, G., Carneiro, M. O., del Angel, G.,
Genovese, G., Hartl, C., McCarroll, S. A., Nemesh, J. C., Poplin, R. E., Schaffner, S. F., Shakir, K.,
Yoon, S. C,, Lihm, J., Makarov, V., Jin, H., Kim, W., Kim, K. C., Rausch, T., Beal, K., Cunningham,
F., Herrero, J., McLaren, W. M., Ritchie, G. R., Gottipati, S., Keinan, A., Rodriguez-Flores, J. L.,
Sabeti, P. C., Grossman, S. R, Tabrizi, S., Tariyal, R., Cooper, D. N., Ball, E. V., Stenson, P. D,,
Barnes, B., Bauer, M., Cheetham, R., Cox, T., Eberle, M., Kahn, S., Murray, L., Peden, J., Shaw,

158

Bibliography

R, Ye, K, Batzer, M. A, Konkel, M. K., Walker, J. A., MacArthur, D. G., Lek, M., Herwig, R,,
Shriver, M. D., Bustamante, C. D, Byrnes, J. K., De La Vega, F. M., Gravel, S., Kenny, E. E.,
Kidd, J. M., Lacroute, P., Maples, B. K., Moreno-Estrada, A., Zakharia, F., Halperin, E., Baran,
Y., Craig, D. W., Christoforides, A., Homer, N., Izatt, T., Kurdoglu, A. A., Sinari, S. A., Squire,
K., Xiao, C., Sebat,]J., Bafna, V., Burchard, E. G., Hernandez, R. D., Gignoux, C. R., Haussler,
D., Katzman, S. J., Kent, W. J., Howie, B., Ruiz-Linares, A., Dermitzakis, E. T., Lappalainen, T.,
Devine, S. E., Maroo, A., Tallon, L. J., Rosenfeld, J. A., Michelson, L. P., Anderson, P., Angius, A.,
Bigham, A., Blackwell, T., Busonero, F., Cucca, F., Fuchsberger, C., Jones, C., Jun, G., Lyons, R.,
Maschio, A., Porcu, E., Reinier, F., Sanna, S., Schlessinger, D., Sidore, C., Tan, A., Trost, M. K.,
Awadalla, P., Hodgkinson, A., Lunter, G., Marchini, J. L., Myers, S., Churchhouse, C., Delaneau,
O., Gupta-Hinch, A, Igbal, Z., Mathieson, I, Rimmer, A., Xifara, D. K., Oleksyk, T. K, Fu, Y.,
Xiong, M., Jorde, L., Witherspoon, D., Xing, J., Browning, B. L., Alkan, C., Hajirasouliha, I,
Hormozdiari, F., Ko, A., Sudmant, P. H., Chen, K., Chinwalla, A., Ding, L., Dooling, D., Koboldt,
D. C., McLellan, M. D., Wallis, J. W., Wendl, M. C., Zhang, Q., Tyler-Smith, C., Albers, C. A.,
Ayub, Q., Chen, Y., Coffey, A. J., Colonna, V., Huang, N., Jostins, L., Li, H., Scally, A., Walter,
K., Xue, Y., Zhang, Y., Gerstein, M. B., Abyzov, A., Balasubramanian, S., Chen, J., Clarke, D.,
Habegger, L., Harmanci, A. O., Jin, M., Khurana, E., Mu, X. J., Sisu, C., Degenhardt, J., Stutz,
A.M., Church, D., Michaelson, J. J., Blackburne, B., Lindsay, S. J., Ning, Z., Frankish, A., Harrow,
J., Fowler, G., Hale, W,, Kalra, D., Barker, J., Kelman, G., Kulesha, E., Radhakrishnan, R., Roa,
A., Smirnov, D., Streeter, I, Toneva, I, Vaughan, B., Ananiev, V., Belaia, Z., Beloslyudtsev, D.,
Bouk, N., Chen, C., Cohen, R., Cook, C., Garner, J., Hefferon, T., Kimelman, M., Liu, C., Lopez,
J., Meric, P., O’Sullivan, C., Ostapchuk, Y., Phan, L., Ponomarov, S., Schneider, V., Shekhtman,
E., Sirotkin, K., Slotta, D., Zhang, H., Barnes, K. C., Beiswanger, C., Cai, H., Cao, H., Gharani,
N., Henn, B., Jones, D., Kaye, J. S., Kent, A., Kerasidou, A., Mathias, R., Ossorio, P. N., Parker,
M, Reich, D., Rotimi, C. N., Royal, C. D., Sandoval, K., Su, Y., Tian, Z., Tishkoff, S., Toji, L. H,,
Via, M., Yang, H., Yang, L., Zhu, J., Bodmer, W., Bedoya, G., Ming, C. Z., Yang, G., You, C.J,,
Peltonen, L., Garcia-Montero, A., Orfao, A., Dutil, J., Martinez-Cruzado, J. C., Felsenfeld, A. L.,
McEwen, J. E., Clemm, N. C., Duncanson, A., Dunn, M., Guyer, M. S., and Peterson, J. L. (2012).
An integrated map of genetic variation from 1,092 human genomes. Nature, 491(7422):56-65.

Abyzov, A., Urban, A. E., Snyder, M., and Gerstein, M. (2011). CNVnator: an approach to discover,
genotype, and characterize typical and atypical CNVs from family and population genome
sequencing. Genome Research, 21(6):974-984.

Aguiar, D. and Istrail, S. (2012). HapCompass: a fast cycle basis algorithm for accurate haplotype
assembly of sequence data. Journal of Computational Biology, 19(6):577-590.

Ahmadi, A., Behm, A., Honnalli, N, Li, C., Weng, L., and Xie, X. (2012). Hobbes: optimized
gram-based methods for efficient read alignment. Nucleic acids research, 40(6):e41.

Ajay, S. S., Parker, S. C., Abaan, H. O., Fajardo, K. V,, and Margulies, E. H. (2011). Accurate and
comprehensive sequencing of personal genomes. Genome Res., 21(9):1498-1505.

Alkan, C., Coe, B. P, and Eichler, E. E. (2011). Genome structural variation discovery and geno-
typing. Nature Reviews Genetics, 12(5):363-376.

Alkan, C, Kidd, J. M., Marques-Bonet, T., Aksay, G., Antonacci, F., Hormozdiari, F., Kitzman,

159

Bibliography

J. O., Baker, C., Malig, M., Mutlu, O, et al. (2009). Personalized copy number and segmental
duplication maps using next-generation sequencing. Nature genetics, 41(10):1061-1067.

Altschul, S. F., Gish, W., Miller, W., Myers, E. W, and Lipman, D. J. (1990). Basic local alignment
search tool. Journal of Molecular Biology, 215(3):403-410.

Andrews, S. (2010). FastQC: A quality control tool for high throughput sequence data. http:
//www.bioinformatics.babraham.ac.uk/projects/fastqc/.

Anson, E. L. and Myers, E. W. (1997). ReAligner: a program for refining DNA sequence multi-
alignments. Journal of Computational Biology, 4(3):369—-383.

Batzoglou, S., Jaffe, D. B., Stanley, K., Butler, J., Gnerre, S., Mauceli, E., Berger, B., Mesirov, J. P.,
and Lander, E. S. (2002). ARACHNE: a whole-genome shotgun assembler. Genome Research,
12(1):177-189.

Benson, D. A., Karsch-Mizrachi, I, Lipman, D. J., Ostell, J., Rapp, B. A., and Wheeler, D. L. (2000).
GenBank. Nucleic acids research, 28(1):15-18.

Bentley, D. R. (2006). Whole-genome re-sequencing. Current Opinion in Genetics Development,
16(6):545-552.

Bentley, D. R., Balasubramanian, S., Swerdlow, H. P., Smith, G. P., Milton, J., Brown, C. G,
Hall, K. P, Evers, D. J., Barnes, C. L., Bignell, H. R., Boutell, J. M., Bryant, J., Carter, R. J.,
Keira Cheetham, R., Cox, A. J., Ellis, D. J., Flatbush, M. R., Gormley, N. A., Humphray, S. J.,
Irving, L. J., Karbelashvili, M. S., Kirk, S. M., Li, H., Liu, X., Maisinger, K. S., Murray, L. J.,
Obradovic, B., Ost, T., Parkinson, M. L., Pratt, M. R,, Rasolonjatovo, I. M., Reed, M. T., Rigatti,
R, Rodighiero, C., Ross, M. T., Sabot, A., Sankar, S. V., Scally, A., Schroth, G. P., Smith, M. E.,
Smith, V. P, Spiridou, A., Torrance, P. E., Tzoneyv, S. S., Vermaas, E. H., Walter, K., Wu, X,
Zhang, L., Alam, M. D., Anastasi, C., Aniebo, I. C., Bailey, D. M., Bancarz, I. R,, Banerjee, S.,
Barbour, S. G., Baybayan, P. A, Benoit, V. A., Benson, K. F., Bevis, C., Black, P. J., Boodhun,
A., Brennan, J. S., Bridgham, J. A., Brown, R. C., Brown, A. A, Buermann, D. H., Bundu, A. A,,
Burrows, J. C., Carter, N. P., Castillo, N., Chiara E Catenazzi, M., Chang, S., Neil Cooley, R.,
Crake, N. R., Dada, O. O., Diakoumakos, K. D., Dominguez-Fernandez, B., Earnshaw, D. J., Eg-
bujor, U. C., Elmore, D. W., Etchin, S. S., Ewan, M. R, Fedurco, M., Fraser, L. J., Fuentes Fajardo,
K. V., Scott Furey, W., George, D., Gietzen, K. J., Goddard, C. P., Golda, G. S., Granieri, P. A.,
Green, D. E., Gustafson, D. L., Hansen, N. F., Harnish, K., Haudenschild, C. D., Heyer, N. L,
Hims, M. M., Ho, J. T,, Horgan, A. M., Hoschler, K., Hurwitz, S., Ivanov, D. V., Johnson, M. Q.,
James, T., Huw Jones, T. A., Kang, G. D., Kerelska, T. H., Kersey, A. D., Khrebtukova, I, Kind-
wall, A. P., Kingsbury, Z., Kokko-Gonzales, P. ., Kumar, A., Laurent, M. A., Lawley, C. T,, Lee,
S.E., Lee, X,, Liao, A. K., Loch, J. A., Lok, M., Luo, S., Mammen, R. M., Martin, J. W., McCauley,
P. G., McNitt, P., Mehta, P., Moon, K. W.,, Mullens, J. W., Newington, T., Ning, Z., Ling Ng, B.,
Novo, S. M., O’Neill, M. J., Osborne, M. A., Osnowski, A., Ostadan, O., Paraschos, L. L., Picker-
ing, L., Pike, A. C., Chris Pinkard, D., Pliskin, D. P., Podhasky, J., Quijano, V. J., Raczy, C., Rae,
V. H., Rawlings, S. R., Chiva Rodriguez, A., Roe, P. M, Rogers, J., Rogert Bacigalupo, M. C., Ro-
manov, N., Romieu, A., Roth, R. K, Rourke, N. J., Ruediger, S. T., Rusman, E., Sanches-Kuiper,
R. M., Schenker, M. R., Seoane, J. M., Shaw, R.]., Shiver, M. K., Short, S. W., Sizto, N. L., Sluis,
J. P., Smith, M. A., Ernest Sohna Sohna,]., Spence, E.]J., Stevens, K., Sutton, N., Szajkowski,

160

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Bibliography

L., Tregidgo, C. L., Turcatti, G., Vandevondele, S., Verhovsky, Y., Virk, S. M., Wakelin, S., Wal-
cott, G. C., Wang, J., Worsley, G.], Yan, J., Yau, L., Zuerlein, M., Mullikin, J. C., Hurles, M. E.,
McCooke, N. J., West, J. S., Oaks, F. L., Lundberg, P. L., Klenerman, D., Durbin, R., and Smith,
A.]J.(2008). Accurate whole human genome sequencing using reversible terminator chemistry.
Nature, 456(7218):53-59.

Berg, J. M., Tymoczko, J. L., and Stryer, L. (2002). Biochemistry. Freeman and Company: New
York, 5th edition.

Besenbacher, S., Liu, S., Izarzugaza, J. M., Grove,]., Belling, K., Bork-Jensen, J., Huang, S., Als,
T. D, Li, S., Yadav, R., Rubio-Garcia, A., Lescai, F., Demontis, D., Rao, J., Ye, W., Mailund, T,
Friborg, R. M., Pedersen, C.N., Xu, R., Sun, J., Liu, H., Wang, O., Cheng, X., Flores, D., Rydza, E.,
Rapacki, K., Damm S?rensen,]J., Chmura, P., Westergaard, D., Dworzynski, P., S?rensen, T. I,
Lund, O., Hansen, T., Xu, X., Li, N,, Bolund, L., Pedersen, O., Eiberg, H., Krogh, A., B?rglum,
A. D, Brunak, S., Kristiansen, K., Schierup, M. H., Wang, J., Gupta, R., Villesen, P., and Ras-
mussen, S. (2015). Novel variation and de novo mutation rates in population-wide de novo
assembled Danish trios. Nature Communications, 6:5969.

Bickhart, D. M., Hutchison, J. L., Xu, L., Schnabel, R. D., Taylor, J. F., Reecy, J. M., Schroeder, S.,
Van Tassell, C. P., Sonstegard, T. S., and Liu, G. E. (2015). RAPTR-SV: a hybrid method for the
detection of structural variants. Bioinformatics.

Bolger, A. M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina
sequence data. Bioinformatics, 30(15):2114-2120.

Bonizzoni, P., Della Vedova, G., Dondji, R., and Li, J. (2003). The haplotyping problem: an overview
of computational models and solutions. Journal of Computer Science and Technology, 18(6):675—
688.

Bragg, L. M., Stone, G., Butler, M. K., Hugenholtz, P., and Tyson, G. W. (2013). Shining a light on
dark sequencing: characterising errors in Ion Torrent PGM data. PLoS Computational Biolology,
9(4):1003031.

Burkhardt, S. and Kérkkiinen, J. (2001). Better filtering with gapped q-grams. In Combinatorial
Pattern Matching, pages 73-85.

Burrows, M. and Wheeler, D. J. (1994). A block-sorting lossless data compression algorithm.
Technical Report 124, Digital Equipment Corporation.

Butterfield, Y. S., Kreitzman, M., Thiessen, N., Corbett, R. D,, Li, Y., Pang, J., Ma, Y. P., Jones, S. J.,
and Birol, . (2014). JAGuaR: junction alignments to genome for RNA-seq reads. PLoS ONE,
9(7):¢102398.

Campbell, P. J., Stephens, P. J., Pleasance, E. D., O’Meara, S., Li, H., Santarius, T., Stebbings, L. A.,
Leroy, C., Edkins, S., Hardy, C., Teague, J. W., Menzies, A., Goodhead, I., Turner, D. J., Clee,
C. M,, Quail, M. A., Cox, A., Brown, C., Durbin, R., Hurles, M. E., Edwards, P. A., Bignell,
G. R, Stratton, M. R., and Futreal, P. A. (2008). Identification of somatically acquired rear-
rangements in cancer using genome-wide massively parallel paired-end sequencing. Nature
Genetics, 40(6):722-729.

161

Bibliography

Chaisson, M., Pevzner, P., and Tang, H. (2004). Fragment assembly with short reads. Bioinfor-
matics, 20(13):2067-2074.

Chen, K., Chen, L., Fan, X., Wallis, J., Ding, L., and Weinstock, G. (2014). TIGRA: A targeted
iterative graph routing assembler for breakpoint assembly. Genome Research, 24(2):310-317.

Chen, K., Wallis, J. W., McLellan, M. D,, Larson, D. E., Kalicki, J. M., Pohl, C. S., McGrath, S. D.,
Wendl, M. C., Zhang, Q., Locke, D. P, et al. (2009). BreakDancer: an algorithm for high-
resolution mapping of genomic structural variation. Nature Methods, 6(9):677-681.

Chevreux, B. (2005). MIRA: An Automated Genome and EST Assembler. PhD thesis, Ruprechts-
Karls-University Heidelberg.

Cock, P. J., Fields, C. J., Goto, N., Heuer, M. L., and Rice, P. M. (2010). The Sanger FASTQ file
format for sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucleic
acids research, 38(6):1767-1771.

Collins, F. S. and Hamburg, M. A. (2013). First FDA authorization for next-generation sequencer.
New England Journal of Medicine, 369(25):2369-2371.

Cormen, T. H., Stein, C., Rivest, R. L., and Leiserson, C. E. (2001). Introduction to Algorithms.
McGraw-Hill Higher Education, 2nd edition.

Dagum, L. and Menon, R. (1998). OpenMP: an industry standard API for shared-memory pro-
gramming. Computational Science & Engineering, IEEE, 5(1):46-55.

Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A., Handsaker, R. E.,
Lunter, G., Marth, G. T., and Sherry, S. T. (2011). The variant call format and VCFtools. Bioin-
formatics, 27(15):2156-2158.

David, M., Dzamba, M., Lister, D., Ilie, L., and Brudno, M. (2011). SHRiIMP2: sensitive yet practical
short read mapping. Bioinformatics, 27(7):1011-1012.

de Koning, A.J., Gu, W,, Castoe, T. A., Batzer, M. A., and Pollock, D. D. (2011). Repetitive elements
may comprise over two-thirds of the human genome. PLoS Genetics, 7(12):e1002384.

Dementiev, R., Kettner, L., and Sanders, P. (2008). STXXL: standard template library for XXL data
sets. Software: Practice and Experience, 38(6):589—-637.

Deng, J., Shoemaker, R., Xie, B., Gore, A., LeProust, E. M., Antosiewicz-Bourget, J., Egli, D., Ma-
herali, N., Park, I. H., Yu, J., Daley, G. Q., Eggan, K., Hochedlinger, K., Thomson, J., Wang, W.,
Gao, Y., and Zhang, K. (2009). Targeted bisulfite sequencing reveals changes in DNA methy-
lation associated with nuclear reprogramming. Nature Biotechnology, 27(4):353-360.

DePristo, M. A., Banks, E., Poplin, R., Garimella, K. V., Maguire, J. R, Hartl, C., Philippakis, A. A.,
del Angel, G., Rivas, M. A., and Hanna, M. (2011). A framework for variation discovery and
genotyping using next-generation DNA sequencing data. Nature Genetics, 43(5):491-498.

Dezsé, B., Juttner, A., and Kovécs, P. (2011). LEMON-an open source C++ graph template library.
Electronic Notes in Theoretical Computer Science, 264(5):23-45.

Dilworth, R. P. (1950). A decomposition theorem for partially ordered sets. Annals of Mathematics,
pages 161-166.

162

Bibliography

Dodt, M., Roehr, J. T., Ahmed, R., and Dieterich, C. (2012). FLEXBAR—flexible barcode and
adapter processing for next-generation sequencing platforms. Biology, 1(3):895-905.

Dohm, J. C., Lottaz, C., Borodina, T., and Himmelbauer, H. (2008). Substantial biases in ultra-short
read data sets from high-throughput DNA sequencing. Nucleic acids research, 36(16):e105.

Doring, A., Weese, D., Rausch, T., and Reinert, K. (2008). SeqAn an efficient, generic C++ library
for sequence analysis. BMC Bioinformatics, 9(1):11.

Eid,]J., Fehr, A., Gray, J., Luong, K., Lyle, J., Otto, G., Peluso, P., Rank, D., Baybayan, P., Bettman, B.,
Bibillo, A., Bjornson, K., Chaudhuri, B., Christians, F., Cicero, R., Clark, S., Dalal, R., Dewinter,
A., Dixon, J., Foquet, M., Gaertner, A., Hardenbol, P., Heiner, C., Hester, K., Holden, D., Kearns,
G.,Kong, X.,Kuse, R, Lacroix, Y., Lin, S., Lundquist, P., Ma, C., Marks, P., Maxham, M., Murphy,
D., Park, I, Pham, T., Phillips, M., Roy, J., Sebra, R., Shen, G., Sorenson, J., Tomaney, A., Travers,
K., Trulson, M., Vieceli, J., Wegener, J., Wu, D., Yang, A., Zaccarin, D., Zhao, P., Zhong, F., Ko-
rlach, J., and Turner, S. (2009). Real-time DNA sequencing from single polymerase molecules.
Science, 323(5910):133-138.

Emde, A.-K., Schulz, M. H., Weese, D., Sun, R., Vingron, M., Kalscheuer, V. M., Haas, S. A., and
Reinert, K. (2012). Detecting genomic indel variants with exact breakpoints in single-and
paired-end sequencing data using SplazerS. Bioinformatics, 28(5):619-627.

Enattah, N. S., Sahi, T., Savilahti, E., Terwilliger, J. D., Peltonen, L., and Jarvela, I. (2002). Identi-
fication of a variant associated with adult-type hypolactasia. Nature Genetics, 30(2):233-237.

Eriksson, N., Pachter, L., Mitsuya, Y., Rhee, S.-Y., Wang, C., Gharizadeh, B., Ronaghi, M., Shafer,
R. W,, and Beerenwinkel, N. (2008). Viral population estimation using pyrosequencing. PLoS
Computational Biology, 4(5):e1000074.

Ewing, B. and Green, P. (1998). Base-calling of automated sequencer traces using phred. II. Error
probabilities. Genome Research, 8(3):186—194.

Ferragina, P. and Manzini, G. (2001). An experimental study of an opportunistic index. In Pro-
ceedings of the twelfth annual ACM-SIAM symposium on Discrete algorithms, pages 269-278.

Fonseca, N. A., Rung, J., Brazma, A., and Marioni,]. C. (2012). Tools for mapping high-throughput
sequencing data. Bioinformatics, 28(24):3169-3177.

Gnerre, S., Maccallum, I, Przybylski, D., Ribeiro, F. J., Burton, J. N., Walker, B. J., Sharpe, T., Hall,
G, Shea, T. P., Sykes, S., Berlin, A. M., Aird, D., Costello, M., Daza, R., Williams, L., Nicol, R.,
Gnirke, A., Nusbaum, C., Lander, E. S., and Jaffe, D. B. (2011). High-quality draft assemblies
of mammalian genomes from massively parallel sequence data. Proceedings of the National
Academy of Sciences, 108(4):1513-1518.

Gomez-Alvarez, V., Teal, T. K., and Schmidt, T. M. (2009). Systematic artifacts in metagenomes
from complex microbial communities. The ISME journal, 3(11):1314-1317.

Gordon, A. and Hannon, G. J. (2010). Fastx Toolkit. http://hannonlab.cshl.edu/fastx_
toolkit.

Gotoh, O. (1982). An improved algorithm for matching biological sequences. Journal of Molecular
Biology, 162(3):705-708.

163

http://hannonlab.cshl.edu/fastx_toolkit
http://hannonlab.cshl.edu/fastx_toolkit

Bibliography

Green, P. (1997). Against a whole-genome shotgun. Genome Research, 7(5):410-417.

Greenfield, P., Duesing, K., Papanicolaou, A., and Bauer, D. C. (2014). Blue: correcting sequencing
errors using consensus and context. Bioinformatics, 30(19):2723-2732.

Gusfield, D. (1997). Algorithms on strings, trees and sequences: computer science and computational
biology. Cambridge University Press.

Hach, F., Hormozdiari, F., Alkan, C., Hormozdiari, F., Birol, I, Eichler, E. E., and Sahinalp,
S. C. (2010). mrsFAST: a cache-oblivious algorithm for short-read mapping. Nature Methods,
7(8):576-577.

Hajirasouliha, 1., Hormozdiari, F., Alkan, C., Kidd, J. M., Birol, L, Eichler, E. E., and Sahinalp,
S. C. (2010). Detection and characterization of novel sequence insertions using paired-end
next-generation sequencing. Bioinformatics, 26(10):1277-1283.

Hamming, R. W. (1950). Error detecting and error correcting codes. Bell System technical journal,
29(2):147-160.

Handsaker, R. E., Korn, J. M., Nemesh, J., and McCarroll, S. A. (2011). Discovery and genotyping
of genome structural polymorphism by sequencing on a population scale. Nature Genetics,
43(3):269-276.

Hatem, A., Bozda, D., Toland, A. E., and Catalyurek, U. V. (2013). Benchmarking short sequence
mapping tools. BMC Bioinformatics, 14:184.

Hayden, E. C. (2014). Is the $1,000 genome for real? Nature News.

Hieu Tran, N. and Chen, X. (2015). AMAS: optimizing the partition and filtration of adaptive
seeds to speed up read mapping. arXiv preprint.

Holtgrewe, M. (2010). Mason-a read simulator for second generation sequencing data. Technical
report, Freie Universitét Berlin.

Holtgrewe, M., Emde, A.-K., Weese, D., and Reinert, K. (2011). A novel and well-defined bench-
marking method for second generation read mapping. BMC Bioinformatics, 12(1):210.

Holtgrewe, M., Kuchenbecker, L., and Reinert, K. (2015). Methods for the Detection and Assembly
of Novel Sequence in High-Throughput Sequencing Data. Bioinformatics, page btv051.

Homer, N. and Nelson, S. F. (2010). Improved variant discovery through local re-alignment of
short-read next-generation sequencing data using SRMA. Genome Biology, 11(10):R99.

Hormozdiari, F., Alkan, C., Eichler, E. E., and Sahinalp, S. C. (2009). Combinatorial algorithms
for structural variation detection in high-throughput sequenced genomes. Genome Research,
19(7):1270-1278.

Hormozdiari, F., Hajirasouliha, I., Dao, P., Hach, F., Yorukoglu, D., Alkan, C., Eichler, E. E., and
Sahinalp, S. C. (2010). Next-generation VariationHunter: combinatorial algorithms for trans-
poson insertion discovery. Bioinformatics, 26(12):1350-357.

Huson, D. H., Reinert, K., and Myers, E. W. (2002). The greedy path-merging algorithm for contig
scaffolding. Journal of the ACM, 49(5):603-615.

164

Bibliography

Hyyro, H. (2003). A bit-vector algorithm for computing Levenshtein and Damerau edit distances.
Nordic Journal of Computing, 10(1):29-39.

Ilie, L., Fazayeli, F., and Ilie, S. (2011). HiTEC: accurate error correction in high-throughput
sequencing data. Bioinformatics, 27(3):295-302.

Ilie, L. and Molnar, M. (2013). RACER: Rapid and accurate correction of errors in reads. Bioinfor-
matics, 29(19):2490—2493.

Igbal, Z., Caccamo, M., Turner, I, Flicek, P., and McVean, G. (2012). De novo assembly and
genotyping of variants using colored de Bruijn graphs. Nature Genetics, 44(2):226-232.

Izutsu, M., Zhou, J., Sugiyama, Y., Nishimura, O., Aizu, T., Toyoda, A., Fujiyama, A., Agata, K.,
and Fuse, N. (2012). Genome features of "Dark-fly", a Drosophila line reared long-term in a
dark environment. PLoS ONE, 7(3):e33288.

Jiang, H., Lei, R., Ding, S. W., and Zhu, S. (2014). Skewer: a fast and accurate adapter trimmer for
next-generation sequencing paired-end reads. BMC Bioinformatics, 15:182.

Jokinen, P. and Ukkonen, E. (1991). Two algorithms for approxmate string matching in static
texts. In Mathematical Foundations of Computer Science 1991, pages 240-248. Springer.

Kao, W.-C., Chan, A. H., and Song, Y. S. (2011). ECHO: a reference-free short-read error correction
algorithm. Genome Research, 21(7):1181-1192.

Kececioglu, J. and Ju, J. (2001). Separating repeats in DNA sequence assembly. In Proceedings of
the fifth annual international conference on Computational biology, pages 176-183.

Kehr, B., Melsted, P., and Halldérsson, B. V. (2015). Poplns: population-scale detection of novel
sequence insertions. arXiv preprint. submitted.

Kehr, B., Trappe, K., Holtgrewe, M., and Reinert, K. (2014). Genome alignment with graph data
structures: a comparison. BMC Bioinformatics, 15:99.

Kehr, B., Weese, D., and Reinert, K. (2011). STELLAR: fast and exact local alignments. BMC
Bioinformatics, 12 Suppl 9:S15.

Kelley, D. R., Schatz, M. C., and Salzberg, S. L. (2010). Quake: quality-aware detection and cor-
rection of sequencing errors. Genome Biology, 11(11):R116.

Kent, W. J. (2002). BLAT - the BLAST-like alignment tool. Genome Research, 12(4):656—664.

Kerpedjiev, P., Frellsen, J., Lindgreen, S., and Krogh, A. (2014). Adaptable probabilistic mapping
of short reads using position specific scoring matrices. BMC Bioinformatics, 15:100.

Keupp, K., Beleggia, F., Kayserili, H., Barnes, A. M., Steiner, M., Semler, O., Fischer, B., Yigit, G.,
Janda, C. Y., Becker, J., Breer, S., Altunoglu, U., Grunhagen, J., Krawitz, P., Hecht, J., Schinke,
T., Makareeva, E., Lausch, E., Cankaya, T., Caparros-Martin, J. A., Lapunzina, P., Temtamy, S.,
Aglan, M., Zabel, B., Eysel, P., Koerber, F., Leikin, S., Garcia, K. C., Netzer, C., Schonau, E., Ruiz-
Perez, V. L., Mundlos, S., Amling, M., Kornak, U., Marini,]J., and Wollnik, B. (2013). Mutations
in WNT1 cause different forms of bone fragility. Am. J. Hum. Genet., 92(4):565-574.

165

Bibliography

Kidd, J. M., Cooper, G. M., Donahue, W. F., Hayden, H. S., Sampas, N., Graves, T., Hansen, N.,
Teague, B., Alkan, C., and Antonacci, F. (2008). Mapping and sequencing of structural variation
from eight human genomes. Nature, 453(7191):56—64.

Kidd, J. M., Sampas, N., Antonacci, F., Graves, T., Fulton, R., Hayden, H. S., Alkan, C., Malig, M.,
Ventura, M., Giannuzzi, G., Kallicki, J., Anderson, P., Tsalenko, A., Yamada, N. A., Tsang, P.,
Kaul, R., Wilson, R. K., Bruhn, L., and Eichler, E. E. (2010). Characterization of missing human
genome sequences and copy-number polymorphic insertions. Nature Methods, 7(5):365-U47.

Kim, S., Medvedev, P., Paton, T. A., and Bafna, V. (2013). Reprever: resolving low-copy duplicated
sequences using template driven assembly. Nucleic acids research, 41(12):e128.

Kitts, P., Madden, T., Sicotte, H., Black, L., and Ostell, J. The UniVec Database. http://www.
ncbi.nlm.nih.gov/VecScreen/UniVec.html.

Koboldt, D. C., Chen, K., Wylie, T, Larson, D. E., McLellan, M. D., Mardis, E. R., Weinstock, G. M.,
Wilson, R. K., and Ding, L. (2009). VarScan: variant detection in massively parallel sequencing
of individual and pooled samples. Bioinformatics, 25(17):2283-2285.

Koboldt, D. C.,, Zhang, Q., Larson, D. E., Shen, D., McLellan, M. D, Lin, L., Miller, C. A., Mardis,
E. R, Ding, L., and Wilson, R. K. (2012). VarScan 2: somatic mutation and copy number alter-
ation discovery in cancer by exome sequencing. Genome Research, 22(3):568—-576.

Korbel, J. O., Abyzov, A., Mu, X.]J., Carriero, N., Cayting, P., Zhang, Z., Snyder, M., and Ger-
stein, M. B. (2009). PEMer: a computational framework with simulation-based error models
for inferring genomic structural variants from massive paired-end sequencing data. Genome
Biology, 10(2):R23.

Korbel, J. O., Urban, A. E., Affourtit, J. P., Godwin, B., Grubert, F., Simons, J. F., Kim, P. M., Palejev,
D., Carriero, N. J., Du, L., Taillon, B. E., Chen, Z., Tanzer, A., Saunders, A. C., Chi,], Yang, F.,
Carter, N. P, Hurles, M. E., Weissman, S. M., Harkins, T. T., Gerstein, M. B., Egholm, M., and
Snyder, M. (2007). Paired-end mapping reveals extensive structural variation in the human
genome. Science, 318(5849):420-426.

Koster, J. and Rahmann, S. (2014). Massively parallel read mapping on GPUs with the g-group
index and PEANUT. Peer7, 2:€606.

Kuchenbecker, S.-L. (2011). Handling ambiguity in read mapping applications. Master’s thesis,
Freie Universitat Berlin.

Kuleshov, V. (2014). Probabilistic single-individual haplotyping. Bioinformatics, 30(17):i379-38.

Lam, H. Y., Mu, X. J,, Statz, A. M., Tanzer, A., Cayting, P. D., Snyder, M., Kim, P. M., Korbel,
J. O, and Gerstein, M. B. (2010). Nucleotide-resolution analysis of structural variants using
BreakSeq and a breakpoint library. Nature Biotechnology, 28(1):47-55.

Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., Devon, K., Dewar,
K., Doyle, M., FitzHugh, W., Funke, R., Gage, D., Harris, K., Heaford, A., Howland, J., Kann,
L., Lehoczky, J., LeVine, R., McEwan, P., McKernan, K., Meldrim,]J., Mesirov, J. P., Miranda, C.,
Morris, W., Naylor, J., Raymond, C., Rosetti, M., Santos, R., Sheridan, A., Sougnez, C., Stange-
Thomann, N., Stojanovic, N., Subramanian, A., Wyman, D., Rogers, J., Sulston, J., Ainscough,

166

http://www.ncbi.nlm.nih.gov/VecScreen/UniVec.html
http://www.ncbi.nlm.nih.gov/VecScreen/UniVec.html

Bibliography

R, Beck, S., Bentley, D., Burton, J., Clee, C., Carter, N., Coulson, A., Deadman, R., Deloukas,
P., Dunham, A., Dunham, I, Durbin, R., French, L., Gratham, D., Gregory, S., Hubbard, T.,
Humphray, S., Hunt, A., Jones, M., Lloyd, C., McMurray, A., Matthews, L., Mercer, S., Milne,
S., Mullikin, J. C., Mungall, A., Plumb, R., Ross, M., Shownkeen, R., Sims, S., Waterston, R. H.,
Wilson, R. K., Hillier, L. W., McPherson, J. D., Marra, M. A., Mardis, E. R., Fulton, L. A., Chin-
walla, A. T., Pepin, K. H., Gish, W. R,, Chissoe, S. L., Wendl, M. C., Delehaunty, K. D., Miner,
T. L., Delehaunty, A., Kramer, J. B., Cook, L. L., Fulton, R. S., Johnson, D. L., Minx, P. J., Clifton,
S. W.,, Hawkins, T., Branscomb, E., Predki, P., Richardson, P., Wenning, S., Slezak, T., Doggett,
N., Cheng, J. F,, Olsen, A., Lucas, S., Elkin, C., Uberbacher, E., Frazier, M., Gibbs, R. A., Muzny,
D. M., Scherer, S. E., Bouck, J. B,, Sodergren, E. J., Worley, K. C., Rives, C. M., Gorrell, J. H.,
Metzker, M. L., Naylor, S. L., Kucherlapati, R. S., Nelson, D. L., Weinstock, G. M., Sakaki, Y.,
Fujiyama, A., Hattori, M., Yada, T., Toyoda, A., Itoh, T., Kawagoe, C., Watanabe, H., Totoki,
Y., Taylor, T., Weissenbach, J., Heilig, R., Saurin, W., Artiguenave, F., Brottier, P., Bruls, T,
Pelletier, E., Robert, C., Wincker, P., Smith, D. R., Doucette-Stamm, L., Rubenfield, M., Wein-
stock, K., Lee, H. M., Dubois, J., Rosenthal, A., Platzer, M., Nyakatura, G., Taudien, S., Rump,
A., Yang, H., Yu, J., Wang, J., Huang, G, Gu, J., Hood, L., Rowen, L., Madan, A., Qin, S., Davis,
R. W, Federspiel, N. A., Abola, A. P., Proctor, M. J., Myers, R. M., Schmutz,]., Dickson, M.,
Grimwood, J., Cox, D. R, Olson, M. V., Kaul, R, Shimizu, N., Kawasaki, K., Minoshima, S.,
Evans, G. A., Athanasiou, M., Schultz, R, Roe, B. A., Chen, F., Pan, H., Ramser, J., Lehrach,
H., Reinhardt, R., McCombie, W. R., de la Bastide, M., Dedhia, N., Blocker, H., Hornischer, K.,
Nordsiek, G., Agarwala, R., Aravind, L., Bailey, J. A., Bateman, A., Batzoglou, S., Birney, E.,
Bork, P., Brown, D. G, Burge, C. B., Cerutti, L., Chen, H. C.,, Church, D., Clamp, M., Copley,
R. R, Doerks, T, Eddy, S. R., Eichler, E. E., Furey, T. S., Galagan, J., Gilbert, J. G., Harmon, C.,
Hayashizaki, Y., Haussler, D., Hermjakob, H., Hokamp, K., Jang, W., Johnson, L. S., Jones, T. A.,
Kasif, S., Kaspryzk, A., Kennedy, S., Kent, W.], Kitts, P., Koonin, E. V., Korf, I, Kulp, D., Lancet,
D, Lowe, T. M., McLysaght, A., Mikkelsen, T., Moran, J. V., Mulder, N., Pollara, V. J., Ponting,
C. P., Schuler, G., Schultz, J., Slater, G., Smit, A. F., Stupka, E., Szustakowski, J., Thierry-Mieg,
D., Thierry-Mieg, J., Wagner, L., Wallis, J., Wheeler, R., Williams, A., Wolf, Y. I., Wolfe, K. H.,
Yang, S. P., Yeh, R. F., Collins, F., Guyer, M. S., Peterson, J., Felsenfeld, A., Wetterstrand, K. A.,
Patrinos, A., Morgan, M. J., de Jong, P., Catanese,]J. J., Osoegawa, K., Shizuya, H., Choi, S.,
Chen, Y. J., and Szustakowki, J. (2001). Initial sequencing and analysis of the human genome.
Nature, 409(6822):860-921.

Lander, E. S. and Waterman, M. S. (1988). Genomic mapping by fingerprinting random clones: a
mathematical analysis. Genomics, 2(3):231-239.

Langmead, B. and Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature
Methods, 9(4):357-359.

Langmead, B., Trapnell, C., Pop, M., and Salzberg, S. L. (2009). Ultrafast and memory-efficient
alignment of short DNA sequences to the human genome. Genome Biology, 10(3):R25.

Laurence, M., Hatzis, C., and Brash, D. E. (2014). Common Contaminants in Next-Generation

Sequencing That Hinder Discovery of Low-Abundance Microbes. PLoS ONE, 9(5).

Leinonen, R., Akhtar, R., Birney, E., Bower, L., Cerdeno-Tarraga, A., Cheng, Y., Cleland, I,

Faruque, N., Goodgame, N., Gibson, R., Hoad, G., Jang, M., Pakseresht, N., Plaister, S., Radhakr-

167

Bibliography

ishnan, R., Reddy, K., Sobhany, S., Ten Hoopen, P., Vaughan, R., Zalunin, V., and Cochrane, G.
(2011a). The European Nucleotide Archive. Nucleic Acids Research, 39(Database issue):28-31.

Leinonen, R., Sugawara, H., and Shumway, M. (2011b). The sequence read archive. Nucleic Acids
Research, 39(Database issue):19-21.

Lemaitre, C., Ciortuz, L., and Peterlongo, P. (2014). Mapping-Free and Assembly-Free Discov-
ery of Inversion Breakpoints from Raw NGS Reads. In Dediu, A.-H., Martin-Vide, C., and
Truthe, B., editors, Algorithms for Computational Biology, volume 8542, chapter Lecture Notes
in Computer Science, pages 119-130. Springer International Publishing.

Levenshtein, V. (1965). Binary codes capable of correcting spurious insertions and deletions of
ones. Problems of Information Transmission, 1:8-17.

Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.
arXiv preprint.
Li, H. (2015). Correcting Illumina sequencing errors for human data. arXiv preprint.

Li, H. and Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler
transform. Bioinformatics, 25(14):1754-1760.

Li, H. and Durbin, R. (2010). Fast and accurate long-read alignment with Burrows—Wheeler
transform. Bioinformatics, 26(5):589-595.

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G.,
and Durbin, R. (2009a). The sequence alignment/map format and SAMtools. Bioinformatics,
25(16):2078-2079.

Li, H., Ruan, J., and Durbin, R. (2008a). Mapping short DNA sequencing reads and calling variants
using mapping quality scores. Genome Research, 18(11):1851-1858.

Li, R, Li, Y, Fang, X., Yang, H., Wang, J., Kristiansen, K., and Wang, J. (2009b). SNP detection for
massively parallel whole-genome resequencing. Genome Research, 19(6):1124-1132.

Li, R, Li, Y., Kristiansen, K., and Wang, J. (2008b). SOAP: short oligonucleotide alignment pro-
gram. Bioinformatics, 24(5):713-714.

Li, R, Yu, C, Li, Y, Lam, T.-W,, Yiu, S.-M,, Kristiansen, K., and Wang, J. (2009¢c). SOAP2: an
improved ultrafast tool for short read alignment. Bioinformatics, 25(15):1966—1967.

Li, R., Zhu, H., Ruan, J., Qian, W., Fang, X., Shi, Z., Li, Y., Li, S., Shan, G., Kristiansen, K., et al.
(2010). De novo assembly of human genomes with massively parallel short read sequencing.
Genome Research, 20(2):265-272.

Li, S, Li, R, Li, H,, Lu, J,, Li, Y., Bolund, L., Schierup, M. H., and Wang, J. (2013). SOAPindel:
Efficient identification of indels from short paired reads. Genome Research, 23(1):195-200.

Li, Y., Zheng, H., Luo, R., Wu, H,, Zhu, H, Li, R., Cao, H., Wu, B., Huang, S., Shao, H., et al. (2011).
Structural variation in two human genomes mapped at single-nucleotide resolution by whole
genome de novo assembly. Nature Biotechnology, 29(8):723-730.

168

Bibliography

Liu, L., Li, Y, Li, S., Hu, N, He, Y., Pong, R,, Lin, D,, Lu, L., and Law, M. (2012). Comparison of
next-generation sequencing systems. journal of Biomedicine and Biotechnology, 2012:251364.

Marcais, G. and Kingsford, C. (2011). A fast, lock-free approach for efficient parallel counting of
occurrences of k-mers. Bioinformatics, 27(6):764-770.

Marco-Sola, S., Sammeth, M., Guigd, R., and Ribeca, P. (2012). The GEM mapper: fast, accurate
and versatile alignment by filtration. Nature Methods, 9(12):1185-1188.

Mardis, E. R. (2006). Anticipating the $1,000 genome. Genome Biology, 7(7):12.

Mardis, E. R. (2008). Next-generation DNA sequencing methods. Annual Review of Genomics and
Human Genetics, 9:387-402.

Mardis, E. R. (2013). Next-generation sequencing platforms. Annual Review of Analytical Chem-
istry, 6:287-303.

Margulies, M., Egholm, M., Altman, W. E., Attiya, S., Bader, J. S., Bemben, L. A., Berka,]., Braver-
man, M. S, Chen, Y. J,, Chen, Z., Dewell, S. B., Du, L., Fierro, J. M., Gomes, X. V., Godwin,
B. C., He, W,, Helgesen, S., Ho, C. H,, Irzyk, G. P., Jando, S. C., Alenquer, M. L., Jarvie, T. P.,
Jirage, K. B., Kim, J. B., Knight, J. R, Lanza, J. R.,, Leamon,]J. H., Lefkowitz, S. M., Lei, M.,
Li, J., Lohman, K. L., Lu, H., Makhijani, V. B., McDade, K. E., McKenna, M. P., Myers, E. W,,
Nickerson, E., Nobile, J. R, Plant, R., Puc, B. P., Ronan, M. T., Roth, G. T,, Sarkis, G. J., Simons,
J. F., Simpson, J. W,, Srinivasan, M., Tartaro, K. R., Tomasz, A., Vogt, K. A, Volkmer, G. A,,
Wang, S. H., Wang, Y., Weiner, M. P., Yu, P., Begley, R. F., and Rothberg, J. M. (2005). Genome
sequencing in microfabricated high-density picolitre reactors. Nature, 437(7057):376—-380.

Marschall, T., Costa, I. G, Canzar, S., Bauer, M., Klau, G. W,, Schliep, A., and Schénhuth, A. (2012).
CLEVER: clique-enumerating variant finder. Bioinformatics, 28(22):2875-2882.

Marschall, T., Hajirasouliha, I, and Schonhuth, A. (2013). MATE-CLEVER: Mendelian-
inheritance-aware discovery and genotyping of midsize and long indels. Bioinformatics,
29(24):3143-3150.

Mazrouee, S. and Wang, W. (2014). FastHap: fast and accurate single individual haplotype recon-
struction using fuzzy conflict graphs. Bioinformatics, 30(17):1371-378.

Medvedev, P., Stanciu, M., and Brudno, M. (2009). Computational methods for discovering struc-
tural variation with next-generation sequencing. Nature Methods, 6(11 Suppl):13-20.

Michaelson, J. J. and Sebat, J. (2012). forestSV: structural variant discovery through statistical
learning. Nature Methods, 9(8):819-821.

Miller, J. R, Delcher, A. L., Koren, S., Venter, E., Walenz, B. P., Brownley, A., Johnson, J., Li, K.,
Mobarry, C., and Sutton, G. (2008). Aggressive assembly of pyrosequencing reads with mates.
Bioinformatics, 24(24):2818-2824.

Mills, R. E., Walter, K., Stewart, C., Handsaker, R. E., Chen, K., Alkan, C., Abyzov, A., Yoon,
S. C., Ye, K., Cheetham, R. K., Chinwalla, A., Conrad, D. F., Fu, Y., Grubert, F., Hajirasouliha,
L, Hormozdiari, F., Iakoucheva, L. M., Igbal, Z., Kang, S., Kidd, J. M., Konkel, M. K., Korn, J.,
Khurana, E., Kural, D., Lam, H. Y., Leng, J., Li, R, Li, Y., Lin, C. Y., Luo, R., Mu, X. J., Nemesh,

169

Bibliography

J., Peckham, H. E., Rausch, T., Scally, A., Shi, X., Stromberg, M. P., Stutz, A. M., Urban, A. E.,
Walker, J. A., Wu, J., Zhang, Y., Zhang, Z. D., Batzer, M. A., Ding, L., Marth, G. T.,, McVean, G.,
Sebat, J., Snyder, M., Wang, J., Eichler, E. E., Gerstein, M. B., Hurles, M. E., Lee, C., McCarroll,
S. A., Korbel, J. O., Altshuler, D. L., Durbin, R. M., Abecasis, G. R., Bentley, D. R., Chakravarti,
A., Clark, A. G,, Collins, F. S., De La Vega, F. M., Donnelly, P., Egholm, M., Flicek, P., Gabriel,
S. B, Gibbs, R. A., Knoppers, B. M., Lander, E. S., Lehrach, H., Mardis, E. R., McVean, G. A,,
Nickerson, D. A., Peltonen, L., Schafer, A.]J., Sherry, S. T., Wilson, R. K., Deiros, D., Metzker,
M., Muzny, D., Reid, J., Wheeler, D, Li, J., Jian, M., Li, G., Liang, H., Tian, G., Wang, B., Wang,
W., Yang, H., Zhang, X., Zheng, H., Ambrogio, L., Bloom, T., Cibulskis, K., Fennell, T. J., Jaffe,
D. B., Shefler, E., Sougnez, C. L., Gormley, N., Humphray, S., Kingsbury, Z., Koko-Gonzales,
P., Stone, J., McKernan, K. J., Costa, G. L., Ichikawa, J. K, Lee, C. C., Sudbrak, R., Borodina,
T. A, Dahl, A, Davydov, A. N., Marquardt, P., Mertes, F., Nietfeld, W., Rosenstiel, P., Schreiber,
S., Soldatov, A. V., Timmermann, B., Tolzmann, M., Affourtit, J., Ashworth, D., Attiya, S., Ba-
chorski, M., Buglione, E., Burke, A., Caprio, A., Celone, C., Clark, S., Conners, D., Desany, B.,
Gu, L., Guccione, L., Kao, K., Kebbel, A., Knowlton, J., Labrecque, M., McDade, L., Mealmaker,
C., Minderman, M., Nawrocki, A., Niazi, F., Pareja, K., Ramenani, R., Riches, D., Song, W., Tur-
cotte, C., Wang, S., Dooling, D., Fulton, L., Fulton, R., Weinstock, G., Burton, J., Carter, D. M.,
Churcher, C., Coffey, A., Cox, A., Palotie, A., Quail, M., Skelly, T., Stalker,]J., Swerdlow, H. P.,
Turner, D., De Witte, A., Giles, S., Bainbridge, M., Challis, D., Sabo, A., Yu, F., Yu, J., Fang, X.,
Guo, X, Tai, S., Wu, H., Zheng, X., Zhou, Y., Garrison, E. P., Huang, W., Indap, A., Lee, W. P.,
Leong, W. F., Quinlan, A. R,, Ward, A. N., Daly, M. J., DePristo, M. A, Ball, A. D, Banks, E.,
Browning, B. L., Garimella, K. V., Grossman, S. R., Hanna, M., Hartl, C., Kernytsky, A. M., Korn,
J. M., Li, H., Maguire, J. R, McKenna, A., Nemesh, J. C., Philippakis, A. A., Poplin, R. E., Price,
A, Rivas, M. A, Sabeti, P. C., Schaffner, S. F., Shlyakhter, I. A., Cooper, D. N., Ball, E. V., Mort,
M., Phillips, A. D., Stenson, P. D., Makarov, V., Bustamante, C. D., Boyko, A., Degenhardt, J.,
Gravel, S., Gutenkunst, R. N., Kaganovich, M., Keinan, A., Lacroute, P., Ma, X., Reynolds, A.,
Clarke, L., Cunningham, F., Herrero,]., Keenen, S., Kulesha, E., Leinonen, R., McLaren, W. M.,
Radhakrishnan, R., Smith, R. E., Zalunin, V., Zheng-Bradley, X., Bauer, M., Cox, T., Eberle, M.,
James, T., Kahn, S., Murray, L., Hyland, F. C., Manning, J. M., McLaughlin, S. F., Sakarya, O.,
Sun, Y. A, Tsung, E. F., Albrecht, M. W., Amstislavskiy, V. S., Herwig, R., Parkhomchuk, D. V.,
Agarwala, R., Khouri, H., Morgulis, A. O., Paschall, J. E., Phan, L. D., Rotmistrovsky, K. E.,
Sanders, R. D., Shumway, M. F., Xiao, C., Auton, A., Lunter, G., Marchini, J. L., Moutsianas, L.,
Myers, S., Tumian, A., Knight, J., Winer, R., Craig, D. W., Beckstrom-Sternberg, S. M., Christo-
forides, A., Kurdoglu, A. A., Pearson, J. V., Sinari, S. A., Tembe, W. D., Haussler, D., Hinrichs,
A.S., Katzman, S. J., Kern, A., Kuhn, R. M., Przeworski, M., Hernandez, R. D., Howie, B., Kelley,
J. L., Melton, S. C., Anderson, P., Blackwell, T., Chen, W., Cookson, W. O., Ding, J., Kang, H. M.,
Lathrop, M., Liang, L., Moffatt, M. F., Scheet, P., Sidore, C., Zhan, X., Zollner, S., Awadalla, P.,
Casals, F., Idaghdour, Y., Keebler, J., Stone, E. A., Zilversmit, M., Jorde, L., Xing, J., Aksay, G.,
Sahinalp, S. C., Sudmant, P. H., Koboldt, D. C., McLellan, M. D., Wallis, J. W., Wendl, M. C,,
Zhang, Q., Albers, C. A., Ayub, Q., Balasubramaniam, S., Barrett, J. C., Chen, Y., Danecek, P.,
Dermitzakis, E. T., Hu, M., Huang, N., Jin, H., Jostins, L., Keane, T. M., Le, S. Q., Lindsay, S.,
Long, Q., MacArthur, D. G., Montgomery, S. B., Parts, L., Tyler-Smith, C., Balasubramanian,
S., Bjornson, R., Du, J., Habegger, L., Haraksingh, R., Jee, J., Jeng, J., Zhang, Z., Bank, E., Yoon,
S., Kidd, J., Coafra, C., Dinh, H., Kovar, C., Lee, S., Nazareth, L., Wilkinson, J., Khouri, H. M.,

170

Bibliography

Scott, C., Gharani, N., Kaye, J. S., Kent, A., Li, T., McGuire, A. L., Ossorio, P. N., Rotimi, C. N,
Su, Y., Toji, L. H., Brooks, L. D., Felsenfeld, A. L., McEwen, J. E., Abdallah, A., Juenger, C. R,,
Clemm, N. C,, Duncanson, A., Green, E. D., Guyer, M. S., and Peterson, J. L. (2011). Mapping
copy number variation by population-scale genome sequencing. Nature, 470(7332):59-65.

Myers, E. W. (1994). Algorithmic advances for searching biosequence databases. In Computational
Methods in Genome Research, pages 121-135. Springer.

Myers, E. W,, Sutton, G. G., Delcher, A. L., Dew, I. M., Fasulo, D. P, Flanigan, M. J., Kravitz, S. A.,
Mobarry, C. M., Reinert, K. H., and Remington, K. A. (2000). A whole-genome assembly of
Drosophila. Science, 287(5461):2196-2204.

Myers, G. (1999a). A Dataset Generator for Whole Genome Shotgun Sequencing. ISMB 1999,
pages 202-210.

Myers, G. (1999Db). A fast bit-vector algorithm for approximate string matching based on dynamic
programming. Journal of the ACM, 46(3):395-415.

Navarro, G. and Raffinot, M. (2002). Flexible pattern matching in strings: practical on-line search
algorithms for texts and biological sequences. Cambridge University Press.

Needleman, S. B. and Wunsch, C. D. (1970). A general method applicable to the search for similar-
ities in the amino acid sequence of two proteins. Journal of Molecular Biology, 48(3):443-453.

Ng, S. B, Turner, E. H., Robertson, P. D,, Flygare, S. D, Bigham, A. W, Lee, C., Shaffer, T., Wong,
M., Bhattacharjee, A., Eichler, E. E., Bamshad, M., Nickerson, D. A., and Shendure, J. (2009). Tar-
geted capture and massively parallel sequencing of 12 human exomes. Nature, 461(7261):272—
276.

Nielsen, R., Paul, J. S., Albrechtsen, A., and Song, Y. S. (2011). Genotype and SNP calling from
next-generation sequencing data. Nature Reviews Genetics, 12(6):443-451.

O’Connell, J., Schulz-Trieglaff, O., Carlson, E., Hims, M. M., Gormley, N. A., and Cox, A. J. (2015).
NxTrim: optimized trimming of Illumina mate pair reads. Bioinformatics.

Parrish, N., Hormozdiari, F., and Eskin, E. (2011). Assembly of non-unique insertion content
using next-generation sequencing. BMC Bioinformatics, 12(Suppl 6):-3.

Pevzner, P. A., Tang, H., and Waterman, M. S. (2001). An Eulerian path approach to DNA fragment
assembly. Proceedings of the National Academy of Sciences, 98(17):9748—-9753.

Popper, K. (1934). Karl Popper: Logik der Forschung. Springer.

Pyon, Y. S., Hayes, M., and Li, J. (2011). Model based clustering approach for identifying structural
variation using next generation sequencing data. In Computational Advances in Bio and Medical
Sciences (ICCABS), 2011 IEEE 1st International Conference on, pages 153-158.

Qin, J., Li, R, Raes, J., Arumugam, M., Burgdorf, K. S., Manichanh, C., Nielsen, T., Pons, N.,
Levenez, F., Yamada, T., Mende, D. R, Li, J., Xu, J., Li, S., Li, D., Cao, J., Wang, B., Liang, H.,
Zheng, H., Xie, Y., Tap, J., Lepage, P., Bertalan, M., Batto, J. M., Hansen, T., Le Paslier, D.,
Linneberg, A., Nielsen, H. B., Pelletier, E., Renault, P., Sicheritz-Ponten, T., Turner, K., Zhu, H.,
Yu, C, Jian, M., Zhou, Y., Li, Y., Zhang, X., Qin, N., Yang, H., Wang, J., Brunak, S., Dore, J.,

171

Bibliography

Guarner, F., Kristiansen, K., Pedersen, O., Parkhill, J., Weissenbach, J., Bork, P., Ehrlich, S. D.,
Antolin, M., Artiguenave, F., Blottiere, H., Borruel, N., Bruls, T., Casellas, F., Chervaux, C.,
Cultrone, A., Delorme, C., Denariaz, G., Dervyn, R., Forte, M., Friss, C., van de Guchte, M.,
Guedon, E., Haimet, F., Jamet, A., Juste, C., Kaci, G., Kleerebezem, M., Knol, J., Kristensen,
M, Layec, S., Le Roux, K., Leclerc, M., Maguin, E., Minardi, R. M., Oozeer, R., Rescigno, M.,
Sanchez, N., Tims, S., Torrejon, T., Varela, E., de Vos, W., Winogradsky, Y., and Zoetendal,
E. (2010). A human gut microbial gene catalogue established by metagenomic sequencing.
Nature, 464(7285):59-65.

Quail, M. A., Smith, M., Coupland, P., Otto, T. D., Harris, S. R., Connor, T. R., Bertoni, A., Swerd-
low, H. P., and Gu, Y. (2012). A tale of three next generation sequencing platforms: comparison
of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC genomics, 13(1):341.

Quinlan, A. R, Clark, R. A, Sokolova, S., Leibowitz, M. L., Zhang, Y., Hurles, M. E., Mell, J. C,,
and Hall, I. M. (2010). Genome-wide mapping and assembly of structural variant breakpoints
in the mouse genome. Genome Research, 20(5):623-635.

Rahn, R., Weese, D., and Reinert, K. (2014). Journaled string tree-a scalable data structure for
analyzing thousands of similar genomes on your laptop. Bioinformatics, 30(24):3499-3505.

Rasmussen, K. R, Stoye, J., and Myers, E. W. (2006). Efficient q-gram filters for finding all -
matches over a given length. Journal of Computational Biology, 13(2):296-308.

Rausch, T, Emde, A. K., Weese, D., Doring, A., Notredame, C., and Reinert, K. (2008). Segment-
based multiple sequence alignment. Bioinformatics, 24(16):—187.

Rausch, T., Koren, S., Denisov, G., Weese, D., Emde, A.-K., Doring, A., and Reinert, K. (2009). A
consistency-based consensus algorithm for de novo and reference-guided sequence assembly
of short reads. Bioinformatics, 25(9):1118-1124.

Rausch, T., Zichner, T., Schlattl, A., Stiitz, A. M., Benes, V., and Korbel, J. O. (2012). DELLY:
structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics,
28(18):i333-i339.

Reinert, K., Langmead, B., Weese, D., and Evers, D. J. (2015). Alignment of Next-Generation
Sequencing Reads. Annual Review of Genomics and Human Genetics.

Rice, P., Longden, I, and Bleasby, A. (2000). EMBOSS: the European molecular biology open
software suite. Trends in Genetics, 16(6):276—277.

Richter, D. C,, Ott, F., Auch, A. F,, Schmid, R., and Huson, D. H. (2008). MetaSim—A sequencing
simulator for genomics and metagenomics. PLoS ONE, 3(10):e3373.

Rizk, G., Gouin, A., Chikhi, R., and Lemaitre, C. (2014). MindTheGap: integrated detection and
assembly of short and long insertions. Bioinformatics, 30(24):3451-3457.

Rizk, G., Lavenier, D., and Chikhi, R. (2013). DSK: k-mer counting with very low memory usage.
Bioinformatics, 29(5):652-653.

Roach, J. C., Boysen, C., Wang, K., and Hood, L. (1995). Pairwise end sequencing: a unified
approach to genomic mapping and sequencing. Genomics, 26(2):345-353.

172

Bibliography

Robinson, J. T., Thorvaldsdéttir, H., Winckler, W., Guttman, M., Lander, E. S., Getz, G., and
Mesirov, J. P. (2011). Integrative genomics viewer. Nature Biotechnology, 29(1):24-26.

Robinson, P. N., Kohler, S., Oellrich, A., Wang, K., Mungall, C. J., Lewis, S. E., Washington, N.,
Bauer, S., Seelow, D., Krawitz, P., Gilissen, C., Haendel, M., and Smedley, D. (2014). Improved
exome prioritization of disease genes through cross-species phenotype comparison. Genome
Research, 24(2):340-3438.

Ross, M. G., Russ, C., Costello, M., Hollinger, A., Lennon, N. J., Hegarty, R., Nusbaum, C., and Jaffe,
D. B. (2013). Characterizing and measuring bias in sequence data. Genome Biology, 14(5):R51.

Rothberg, J. M., Hinz, W., Rearick, T. M., Schultz,]J., Mileski, W., Davey, M., Leamon, J. H., John-
son, K., Milgrew, M. J., Edwards, M., Hoon, J., Simons, J. F., Marran, D., Myers, J. W., Davidson,
J. F., Branting, A., Nobile, J. R,, Puc, B. P, Light, D., Clark, T. A., Huber, M., Branciforte,]J. T.,
Stoner, I. B, Cawley, S. E., Lyons, M., Fu, Y., Homer, N., Sedova, M., Miao, X., Reed, B., Sabina,
J., Feierstein, E., Schorn, M., Alanjary, M., Dimalanta, E., Dressman, D., Kasinskas, R., Sokol-
sky, T., Fidanza, J. A., Namsaraev, E., McKernan, K. J., Williams, A., Roth, G. T., and Bustillo, J.
(2011). An integrated semiconductor device enabling non-optical genome sequencing. Nature,
475(7356):348-352.

Salmela, L. (2010). Correction of sequencing errors in a mixed set of reads. Bioinformatics,
26(10):1284-1290.

Salmela, L. and Schréder, J. (2011). Correcting errors in short reads by multiple alignments.
Bioinformatics, 27(11):1455-1461.
Salzberg, S. L., Phillippy, A. M., Zimin, A., Puiu, D., Magoc, T., Koren, S., Treangen, T. J., Schatz,

M. C., Delcher, A. L., Roberts, M., Marcais, G., Pop, M., and Yorke, J. A. (2012). GAGE: A critical
evaluation of genome assemblies and assembly algorithms. Genome Research, 22(3):557-567.

Sanders, P. (2009). Algorithm engineering—an attempt at a definition. In Efficient Algorithms,
pages 321-340. Springer.

Sanger, F., Nicklen, S., and Coulson, A. R. (1977). DNA sequencing with chain-terminating in-
hibitors. Proceedings of the National Academy of Sciences, 74(12):5463—-5467.

SanMiguel, P., Tikhonov, A., Jin, Y. K., Motchoulskaia, N., Zakharov, D., Melake-Berhan, A,
Springer, P. S., Edwards, K. J., Lee, M., Avramova, Z., and Bennetzen, J. L. (1996). Nested
retrotransposons in the intergenic regions of the maize genome. Science, 274(5288):765-768.

Schréder, J., Schroder, H., Puglisi, S. J., Sinha, R., and Schmidt, B. (2009). SHREC: a short-read
error correction method. Bioinformatics, 25(17):2157-2163.

Schulz, M. H., Weese, D., Holtgrewe, M., Dimitrova, V., Niu, S., Reinert, K., and Richard, H. (2014).
Fiona: a parallel and automatic strategy for read error correction. Bioinformatics, 30(17):i356—
363.

Shamos, M. I. and Hoey, D. (1976). Geometric intersection problems. In Foundations of Computer
Science, 1976., 17th Annual Symposium on, pages 208-215.

Shen, S., Lin, L., Cai, J. J., Jiang, P., Kenkel, E. J., Stroik, M. R., Sato, S., Davidson, B. L., and Xing,

173

Bibliography

Y. (2011). Widespread establishment and regulatory impact of Alu exons in human genes.
Proceedings of the National Academy of Sciences, 108(7):2837-2842.

Sherry, S. T., Ward, M. H., Kholodov, M., Baker, J., Phan, L., Smigielski, E. M., and Sirotkin, K.
(2001). dbSNP: the NCBI database of genetic variation. Nucleic Acids Research, 29(1):308-311.

Simola, D. F. and Kim, J. (2011). Sniper: improved SNP discovery by multiply mapping deep
sequenced reads. Genome Biology, 12(6):R55.

Sindi, S., Helman, E., Bashir, A., and Raphael, B. J. (2009). A geometric approach for classification
and comparison of structural variants. Bioinformatics, 25(12):1222-23.

Sindi, S. S., Onal, S., Peng, L., Wu, H.-T., and Raphael, B. J. (2012). An integrative probabilistic
model for identification of structural variation in sequencing data. Genome Biology, 13(3):i222-
230.

Singler, J., Sanders, P., and Putze, F. (2007). MCSTL: The multi-core standard template library. In
Euro-Par 2007 Parallel Processing, pages 682—694. Springer.

Siragusa, E., Weese, D., and Reinert, K. Yara: well-defined alignment of high-throughput se-
quencing reads. to appear.

Siragusa, E., Weese, D., and Reinert, K. (2013). Fast and accurate read mapping with approximate
seeds and multiple backtracking. Nucleic acids research, 41(7):€78.

Sokol, D. and Atagun, F. (2010). TRedD-a database for tandem repeats over the edit distance.
Database (Oxford), 2010:baq003.

Song, L., Florea, L., and Langmead, B. (2014). Lighter: fast and memory-efficient sequencing error
correction without counting. Genome Biology, 15(11):509.

Sun, R., Love, M. L, Zemojtel, T., Emde, A.-K., Chung, H.-R., Vingron, M., and Haas, S. A. (2012).
Breakpointer: using local mapping artifacts to support sequence breakpoint discovery from
single-end reads. Bioinformatics, 28(7):1024-1025.

Suzuki, S., Yasuda, T., Shiraishi, Y., Miyano, S., and Nagasaki, M. (2011). ClipCrop: a tool for de-
tecting structural variations with single-base resolution using soft-clipping information. BMC
Bioinformatics, 12(Suppl 14):S7.

Tammi, M. T., Arner, E., Britton, T., and Andersson, B. (2002). Separation of nearly identi-
cal repeats in shotgun assemblies using defined nucleotide positions, DNPs. Bioinformatics,
18(3):379-388.

Thompson, J. F. and Steinmann, K. E. (2010). Single molecule sequencing with a HeliScope genetic
analysis system. Current Protocols in Molecular Biology, pages 7-10.

Tishkoff, S. A. and Kidd, K. K. (2004). Implications of biogeography of human populations for
‘race’ and medicine. Nature Genetics, 36(11 Suppl):S21-27.

Trappe, K., Emde, A.-K., Ehrlich, H.-C., and Reinert, K. (2014). Gustaf: Detecting and correctly
classifying SVs in the NGS twilight zone. Bioinformatics, 30(24):3484-3490.

174

Bibliography

Valouev, A., Johnson, D. S., Sundquist, A., Medina, C., Anton, E., Batzoglou, S., Myers, R. M.,
and Sidow, A. (2008). Genome-wide analysis of transcription factor binding sites based on
ChIP-Seq data. Nature Methods, 5(9):829-834.

Venter, J. C., Adams, M. D., Myers, E. W,, Li, P. W,, Mural, R. J., Sutton, G. G., Smith, H. O., Yan-
dell, M., Evans, C. A, Holt, R. A., Gocayne, J. D., Amanatides, P., Ballew, R. M., Huson, D. H,,
Wortman, J. R., Zhang, Q., Kodira, C. D., Zheng, X. H., Chen, L., Skupski, M., Subramanian, G.,
Thomas, P. D., Zhang, J., Gabor Miklos, G. L., Nelson, C., Broder, S., Clark, A. G., Nadeau, J.,
McKusick, V. A., Zinder, N., Levine, A.], Roberts, R. J., Simon, M., Slayman, C., Hunkapiller,
M, Bolanos, R., Delcher, A., Dew, 1., Fasulo, D., Flanigan, M., Florea, L., Halpern, A., Han-
nenhalli, S., Kravitz, S., Levy, S., Mobarry, C., Reinert, K., Remington, K., Abu-Threideh, J.,
Beasley, E., Biddick, K., Bonazzi, V., Brandon, R., Cargill, M., Chandramouliswaran, I., Charlab,
R., Chaturvedi, K., Deng, Z., Di Francesco, V., Dunn, P., Eilbeck, K., Evangelista, C., Gabrielian,
A.E., Gan, W, Ge, W,, Gong, F., Gu, Z., Guan, P., Heiman, T. J., Higgins, M. E., Ji, R. R., Ke, Z.,
Ketchum, K. A, Lai, Z., Lei, Y., Li, Z., Li, J., Liang, Y., Lin, X., Lu, F., Merkulov, G. V., Milshina,
N., Moore, H. M., Naik, A. K., Narayan, V. A., Neelam, B., Nusskern, D., Rusch, D. B, Salzberg,
S., Shao, W,, Shue, B., Sun, J., Wang, Z., Wang, A., Wang, X., Wang, J., Wei, M., Wides, R,,
Xiao, C., Yan, C., Yao, A, Ye, J., Zhan, M., Zhang, W., Zhang, H., Zhao, Q., Zheng, L., Zhong,
F., Zhong, W., Zhu, S., Zhao, S., Gilbert, D., Baumhueter, S., Spier, G., Carter, C., Cravchik,
A., Woodage, T., Ali, F., An, H., Awe, A, Baldwin, D., Baden, H., Barnstead, M., Barrow, I,
Beeson, K., Busam, D., Carver, A., Center, A., Cheng, M. L., Curry, L., Danaher, S., Davenport,
L., Desilets, R., Dietz, S., Dodson, K., Doup, L., Ferriera, S., Garg, N., Gluecksmann, A., Hart,
B., Haynes, J., Haynes, C., Heiner, C., Hladun, S., Hostin, D., Houck, J., Howland, T., Ibegwam,
C., Johnson, J., Kalush, F., Kline, L., Koduru, S., Love, A., Mann, F., May, D., McCawley, S.,
Mclntosh, T., McMullen, L., Moy, M., Moy, L., Murphy, B., Nelson, K., Pfannkoch, C., Pratts, E.,
Puri, V., Qureshi, H., Reardon, M., Rodriguez, R., Rogers, Y. H., Romblad, D., Ruhfel, B., Scott,
R, Sitter, C., Smallwood, M., Stewart, E., Strong, R., Suh, E., Thomas, R., Tint, N. N, Tse, S.,
Vech, C., Wang, G., Wetter, J., Williams, S., Williams, M., Windsor, S., Winn-Deen, E., Wolfe,
K., Zaveri,]., Zaveri, K., Abril, J. F., Guigo, R., Campbell, M. J., Sjolander, K. V., Karlak, B., Ke-
jariwal, A., Mi, H., Lazareva, B., Hatton, T., Narechania, A., Diemer, K., Muruganujan, A., Guo,
N., Sato, S., Bafna, V., Istrail, S., Lippert, R., Schwartz, R., Walenz, B., Yooseph, S., Allen, D.,
Basu, A., Baxendale, J., Blick, L., Caminha, M., Carnes-Stine, J., Caulk, P., Chiang, Y. H., Coyne,
M., Dahlke, C., Mays, A., Dombroski, M., Donnelly, M., Ely, D., Esparham, S., Fosler, C., Gire,
H., Glanowski, S., Glasser, K., Glodek, A., Gorokhov, M., Graham, K., Gropman, B., Harris, M.,
Heil, J., Henderson, S., Hoover, J., Jennings, D., Jordan, C., Jordan, J., Kasha, J., Kagan, L., Kraft,
C., Levitsky, A., Lewis, M., Liu, X., Lopez, J., Ma, D., Majoros, W., McDaniel, J., Murphy, S.,
Newman, M., Nguyen, T., Nguyen, N., Nodell, M., Pan, S., Peck, J., Peterson, M., Rowe, W.,
Sanders, R., Scott, J., Simpson, M., Smith, T., Sprague, A., Stockwell, T., Turner, R., Venter, E.,
Wang, M., Wen, M., Wu, D., Wu, M,, Xia, A., Zandieh, A., and Zhu, X. (2001). The sequence of
the human genome. Science, 291(5507):1304-1351.

Wang, J., Mullighan, C. G, Easton, J., Roberts, S., Heatley, S. L., Ma, J., Rusch, M. C., Chen, K.,
Harris, C. C,, Ding, L., et al. (2011). CREST maps somatic structural variation in cancer genomes
with base-pair resolution. Nature Methods, 8(8):652—654.

Watson, J. D. and Crick, F. H. C. (1953). A structure for deoxyribose nucleic acid. Nature,

175

Bibliography

421(6921):397-3988.

Weber, J. L. and Myers, E. W. (1997). Human whole-genome shotgun sequencing. Genome Re-
search, 7(5):401-409.

Weese, D., Emde, A.-K., Rausch, T., Déring, A., and Reinert, K. (2009). RazerS—fast read mapping
with sensitivity control. Genome Research, 19(9):1646-1654.

Weese, D., Holtgrewe, M., and Reinert, K. (2012). RazerS 3: faster, fully sensitive read mapping.
Bioinformatics, 28(20):2592-2599.

Weisenfeld, N. I, Yin, S., Sharpe, T., Lau, B., Hegarty, R., Holmes, L., Sogoloff, B., Tabbaa, D.,
Williams, L., Russ, C., Nusbaum, C., Lander, E. S., MacCallum, I, and Jaffe, D. B. (2014). Com-
prehensive variation discovery in single human genomes. Nature Genetics, 46(12):1350-1355.

Wong, K., Keane, T. M., Stalker, J., and Adams, D. J. (2010). Enhanced structural variant and
breakpoint detection using SVMerge by integration of multiple detection methods and local
assembly. Genome Biology, 11(12):R128.

Xie, C. and Tammi, M. T. (2009). CNV-seq, a new method to detect copy number variation using
high-throughput sequencing. BMC Bioinformatics, 10(1):80.

Yalcin, B., Wong, K., Bhomra, A., Goodson, M., Keane, T. M., Adams, D.]., and Flint, J. (2012). The
fine-scale architecture of structural variants in 17 mouse genomes. Genome Biology, 13(3):R18.

Yang, X., Chockalingam, S. P., and Aluru, S. (2013). A survey of error-correction methods for
next-generation sequencing. Briefings in bioinformatics, 14(1):56-66.

Yang, X., Dorman, K. S., and Aluru, S. (2010). Reptile: representative tiling for short read error
correction. Bioinformatics, 26(20):2526-2533.

Ye, K., Schulz, M. H., Long, Q., Apweiler, R., and Ning, Z. (2009). Pindel: a pattern growth
approach to detect break points of large deletions and medium sized insertions from paired-
end short reads. Bioinformatics, 25(21):2865-2871.

Yoon, S., Xuan, Z., Makarov, V., Ye, K., and Sebat, J. (2009). Sensitive and accurate detection of
copy number variants using read depth of coverage. Genome Research, 19(9):1586-1592.

Zeitouni, B., Boeva, V., Janoueix-Lerosey, L, Loeillet, S., Legoix-Né, P., Nicolas, A., Delattre, O.,
and Barillot, E. (2010). SVDetect: a tool to identify genomic structural variations from paired-
end and mate-pair sequencing data. Bioinformatics, 26(15):1895-1896.

Zhang,]. and Wu, Y. (2011). SVseq: an approach for detecting exact breakpoints of deletions with
low-coverage sequence data. Bioinformatics, 27(23):3228-3234.

Zhu, M., Need, A. C, Han, Y., Ge, D., Maia, J. M., Zhu, Q., Heinzen, E. L., Cirulli, E. T., Pelak, K.,
He, M., et al. (2012). Using ERDS to infer copy-number variants in high-coverage genomes.
The American Journal of Human Genetics, 91(3):408-421.

176

Appendix A

MAsoN - Simulation of Nucleic Sequence

All models are wrong but some are
useful.

(George E. P. Box)

MaAsoN is a versatile software package for the simulation of nucleic sequence with a focus on
read simulation of whole genome sequencing. Such simulated data is very useful as test inputs
since one has a tight grip on the properties of such data through simulation. Simulated data also
allows to observe the behaviour of algorithms (and their implementation) when certain proper-
ties vary. When simulating NGS reads, for example, it is possible to increase the error rate in
a controlled fashion or to simulate reads that are longer than the current technology permits.
Further, benchmarks with simulated reads can complement the evaluation with real-world data
since the ground truth is known. A simulator can write out the sample location of the read and,
for example, how many SNV bases are covered by the read or information about sequencing
errors.

Originally, MasoN was conceived and implemented as a simulator for the read mapping bench-
mark in (Holtgrewe et al.,, 2011). However, in the current second version, it is a software package
for the simulation of small and structural variants as well as the simulation of reads. Also, the
package allows to simulate methylation levels and bisulphite-treated reads. MasoN 2 allows to
integrate the tools into a coherent pipeline for the simulation of genomic variants and reads. For
example, this allows to simulate variants and store the results in a VCF file and then simulate
paired-end reads generating the donor genome from the VCF file on the fly. For a second ex-
ample, this allows to simulate methylation levels for the genome and store the resulting levels
as a FASTA file, and then load the methylation levels and a VCF file with variants and simulate
bisulphite-treated reads generating the donor genome on the fly.

177

Appendix A MAason - Simulation of Nucleic Sequence
Genomic Variants

The program MAsoN-VARIATOR allows the simulation of small and large variants. The input
is a reference FASTA file and the output is a VCF file with the simulated variants. Optionally,
MASON-VARIATOR can also apply the variants from all simulated haplotypes to the input FASTA
file and write out a FASTA file with all variation applied to it.

MASsON-VARIATOR processes each contig individually. First, it simulates non-overlapping struc-
tural variants. These are either also simulated with per-base probabilities or a TSV file with
structural variant types and sizes can be read and according SVs are randomly distributed into
the genome. This file can also contain explicit sequence for SV insertions. Second, it simulates
small variants (SNVs and small indels) into the contig using per-base probabilities.

The simulated variants are subject to some constraints:

« small variants have a distance of at least one base to SV breakpoints,
« SVs are non-overlapping and intra-chromosomal, and

« SV breakpoints do not span gaps (Ns in the reference) and have a distance of at least one
base to the gap.

The program MASON-VARIATOR is implemented in a memory-efficient manner; treating each
contig separately allows to only load one sequence (e.g., chromosome) from the reference at a
time.

MAsSON-MATERIALIZER can read in a FASTA file and a VCF file with variants (e.g., generated
by MASON-VARIATOR) and generate the haplotypes of the individual encoded in the VCF file.
The resulting FASTA file contains one sequence for each sequence in the input FASTA file and
each haplotype in the VCF file. Both, MASON-MATERIALIZER and MASON-VARIATOR can also read
in a methylation level FASTA file and also write out the methylation level FASTA file for the
materialized variants.

The program MasoN-GENOME allows to simulate DNA sequences from random nucleotides and
store them as a FASTA file.

Read Simulation

The program MASON-SIMULATOR allows the simulation of reads. In the current version, it pro-
vides the functionality to simulate Sanger reads (using the model described by Myers (1999a)),
454 pyrosequencing reads (using the model described by Richter et al. (2008)), and Illumina reads
(using a simple custom error model).

MASON-SIMULATOR gets as the input a genome FASTA file and optionally a variant VCF file. For
each read (or pair) that is to be simulated, the program picks a chromsome (sequence in the input
FASTA file) and a haplotype from the VCF file and stores this information in a files on the disk.
There is a file for each chromosome haplotype, containing the integer IDs of the reads that are

178

to be simulated. The program then generates the haplotypes from the VCF file chromosome by
chromosome and samples segments (templates) from these haplotype sequences. These template
are not allowed to span gaps (Ns) in the haplotypes and their length is chosen randomly either
following a normal distribution or uniformly selected from an interval of length values, given
in the program’s configuration. Then, sequencing is simulated from one or both ends of the
template, using the selected read simulation model. The resulting reads and base pair qualities are
then written to a SAM file together with their sample position and some meta information (e.g.,
how many SNV bases are spanned by the read). There is one such SAM file for each haplotype.

After the simulation of all reads, the read alignments from all files are read mimicking multi-way
merging and a FASTQ file for the left reads (and one for the right reads, if applicable) is generated.
Optionally, a SAM or BAM file with the alignments of the reads against the reference sequence
(without variants) can be generated. This alignment file also contains meta information about
the read’s alignment (e.g., the number of sequencing errors, spanned SNV and small indel bases,
original sample position in the haplotype, etc.).

MASON-SIMULATOR can also simulate bisulphite-treated reads. The per-base methylation levels
can be read from a methylation FASTA file or be simulated on the fly.

Internally, the same code for the materialization is used as in MASON-VARIATOR, MASON-MATERI-
ALIZER, and MASON-METHYLATION. This means that using the same seeds, the same haplotypes
and methylation levels are generated.

The program MAsoN-FRAG-SEQUENCING provides access to the read simulation code. Instead of
genomic sequence, the program expects a FASTA file with generated templates. It then simulates
single-end or paired-end sequencing of these templates. The user can generate this template
FASTA file from arbitrary data, e.g., simulate the ligation of barcodes or adapters or any other
protocol.

Nucleic Simulation Utilies

Besides the program described above, the MasoN 2 software package also contains the following
programs.

Methylation Rate Simulation. MAsoN-METHYLATION allows the simulation of methylation
level based on the cysteine context. In a cell’s DNA macromolecules, the cysteine might be
methylated and the methylation of either strand (called top and bottom strand here) might be
different.

A methylation FASTA file describes the methylation levels of the top and bottom strand with
one sequence for each sequence in the reference. The methylation level for each base is given
and set to 0% for non-cysteine bases. The levels are encoded in printable ASCII characters in
steps of 1.25% from “?1°” (0%) to “’p’” (100%). The character “>>” is skipped to circumvent
any ambiguity problems with the FASTA format.

179

Appendix A MAason - Simulation of Nucleic Sequence

As mentioned above, the methylation levels are simulated in a context-dependent fashion fol-
lowing a beta distribution. For each of the contexts CpG (C followed by a G), CHG (C followed
by non-G, followed by a G), and CHH (C followed by two non-G characters), the beta distribution
can be selected by specifying a mean and standard deviation value.

The methylation simulation has its own seed for random number generation in the materializa-
tion and read simulation programs, such that different levels can be generated for each individual
and also multiple read sets can be generated for the same methylation levels.

Transcriptome Computation. The program MAsoN-SPLICING allows the generation of tran-
scriptomes from a reference FASTA file and a GFF or GTF file describing the transcripts.

180

Appendix B

Sequencing Technology Overview

The aim of sequencing is to determine the genomic sequence in a sample. This appendix describes
a selection of relevant sequencing technologies as outlined by Mardis (2008, 2013).

Sanger Sequencing

Sanger et al. (1977) developed a method for sequencing based on chain-termination. The general
idea is to force the DNA polymerase to include modified nucleotides (ddNTPs) into the DNA
molecule synthesis that can be later used to read out DNA sequence.

As afirst step, the part (template) of the DNA that is to be sequenced is amplified using polymerase
chain reaction (PCR). Then, another PCR step is performed for the actual sequencing process. The
amplified sample from the first step is divided into four separate parts and the second PCR step
is prepared for each part with normal nucleotides. Additionally, a different kind of ddNTP is
added to each part (one for each A, C, G, and T). The incorporation of ddNTPs into the elongated
molecule occurs randomly and stops the elongation of this molecule.

After the elgongation, the fragments are heat-denatured and then separated by size, e.g., using
gel electrophoresis. The ddNTPs include a radioactive label for the subsequent detection step.
This way, an X-ray photograph of the gel can be taken from which the sequence of the DNA
molecule can be read.

This general idea was used for more than 25 years, and also for the first whole human genome se-
quences. During this time, the method was refined, e.g., by using flouroscenctly labeled ddNTPs
and automatizing the process in complex sequencing machines, e.g., capillary sequencing ma-
chines. At the time of writing, a current sequencing machine based on Sanger sequencing is able
to yield reads with a length of 400-900 base pairs (bps) at very high accuracy.

181

Appendix B Sequencing Technology Overview

Sequencing methods based on the Sanger approach with chain-terminating ddNTPs are com-
monly called first-generation sequencing methods.

454 Pyrosequencing

The first commercially available second-generation sequencing (2GS) method, called pyrosequenc-
ing was developed by 454 Life Sciences (Margulies et al., 2005). The main innovation in 2GS is to
reuse the sequencing templates during sequencing.

In the 454 method, the single-stranded DNA molecule templates are captured by beads of chem-
icals in which they are enriched by emulsion PCR. These beads are then placed in small (44 pm)
wells on a plate.

During sequencing, the plate is flooded with solutions in cycles of the same modified nucleotide.
In each cycle, the missing strand is elongated and the incorporated modified nucleotide lead to
light being emitted that can be recorded by a camera. The intensity of the light depends on the
number of incorporated nucleotides. This intensity is then converted into a nucleotide count
and together with the information of which nucleotides are currently used for flooding, the next
stretch of homopolymers can be determined for each read.

[llumina (Solexa) Sequencing

The second commercially available 2GS method was developed by Solexa (Bentley et al., 2008).
The main difference between Illumina and 454 sequencing is that Illumina uses so-called re-
versible terminator chemistry: Similar to 454 sequencing, in lllumina sequencing, the single-ended
DNA molecules are attached to a plate (flow cell). This attachment occurs directly and not using
wells and beads and the templates are amplified using bridge amplification (another type of PCR).
This creates clusters on the flow cell of the same sequence.

Then, solutions with modified nucleotides are flooded over the plate and elongate the templates.
However, with Illumina chemistry, only one additional nucleotide can be incorporated by the
polymerase for the elongation. A laser is then used to stimulate a light flash of the modified
nucleotides in each cluster and this is recorded by a camera. Then, another solution is flooded
over the plate such that the elongation by one nucleotide can continue in the next cycle.

lonTorrent Sequencing

Another recent 2GS method, called IonTorrent sequencing, was developed by Life Technol-
ogy (Rothberg et al.,, 2011). Similar to pyrosequencing, the templates are captured in beads which
are placed in wells on a CMOS chip. Instead of measuring light, however, the chemistry used in
IonTorrent sequencing generates changes in the pH level which are directly detected by the
CMOS chip with the wells.

182

Single Molecule Sequencing

Single-molecule sequencing (or third-generation sequencing (3GS) is another recent innovation in
sequencing technology. All 2GS methods described above use PCR for amplifying the signal of
individual reads. In contrast, 3GS methods do not need such a PCR step and thus circumvent

certain problems associated with its usage.

Examples are the Single Molecule Real-Time Sequencing by Pacific Biosciences (PacBio) (Eid
et al., 2009), which is a currently available commercial system and Helicos Single Molecule Flu-
orescent Sequencing (Thompson and Steinmann, 2010) which was a commercially available sys-

tem.

The main advantage of 2GS and 3GS methods is the high throughput when compared to Sanger
sequencing. Thus, both 2GS and 3GS methods are often called high-throughput sequencing (HTS)
methods.

183

Appendix C

Contributions to Software Engineering and
Usability

As outlined in Section 1.3, the design, analysis, implementation, and experiments of algorithms
are at the core of algorithm engineering. The aim of algorithm engineering is to improve appli-
cations with algorithm implementations yielded by this cycle. This means that at least a driver
program should be made available such that the algorithm can be run by users or it should be
integrated as a component in larger applications. Ideally, the developed algorithmic components
are also made available to a broader public by including them in a library, such that they can
be easily reused. Of course, the algorithmic components (as well as the programs) should be
well-tested and well-documented such that they can be used by a larger public.

The result of my work towards this thesis includes practical, tested, and documented programs
as well as contributions of components as SeqAn (Doring et al., 2008) library modules. Further, I
performed work on the tools and frameworks for writing and building documentation and writ-
ing and running tests. In this appendix, I describe these software engineering contributions. I
describe the implemented programs and algorithmic SeqAn modules, my contributions to SeqAn
that facilitate writing self-documenting programs, my contributions to the library’s documenta-
tion. Finally, I describe contributions to the testing framework in SeqAn.

Implemented Programs

All programs described below use standard bioinformatics file formats where possible. Thus, they
allow for the easy integration into standard software pipelines. Automated tests are available for
all programs.

185

Appendix C Contributions to Software Engineering and Usability

RAZERS 3 is a parallel, string-filtration based read mapper that achieves high sensitivity in
all-mapping mode. Section 4.4.

RABEMA is a software package for the evaluation of read mappers. It is based on the formal
definition of read mapping described Section 4.1. The software package consists of the programs
RaBEMA-BUILD-GOLD-STANDARD and RABEMA-EVALUATE and is described in detail in Section 4.2.

MasoN is a software package for the simulation of nucleic sequence. I give a detailed de-
scription in Appendix A The software package contains the programs MAsoN-GENOME, MASON-
VARIATOR, MASON-MATERIALIZER, MASON-METHYLATION, and MASON-SPLICING for the simu-
lation and processing of genomic sequence and the programs MASON-SIMULATOR and MASON-
FRAG-SEQUENCING for the simulation of sequencing data.

BasiL and ANISE are programs for the detection of insertion breakpoints and the subsequent
assembly of inserted data. I describe them in detail in Chapter 5. Both programs feature an
efficient implementation and employ multi-core parallelism. Further, the consensus module from
ANIsE is used in the second version of the SeqAn tool SEQCons. The previous version of SEQCONS
did not work reliably any more since there were no tests for this program and the library changed
greatly after the program’s initial development.

FiloNA is a parallel tool for the correction of NGS read and I developed and benchmarked in
collaboration with my coauthors in (Schulz et al, 2014). My main contribution lie in the experi-
mental evaluation and testing.

SeqAn Module Contributions

For all modules, API documentation is provided together with demo programs. For most modules,
tutorials are available on the SeqAn website.

REALIGN is a module implementing the realignment algorithm by Anson and Myers (1997). It
is a reimplementation of the algorithm; a previous implementation in the SeqAn library showed
various bugs, presumably since the behaviour of the used library functionality changed subtly.
The original implementation was not tested and thus these bugs were not detected.

ALIGN is the SeqAn alignment module. I restructured the module and improved the public data
structures such as Gaps and Align as well as the algorithm interfaces.

CONSENsSUs is a module for consensus computation. I made the consensus module from ANISE
available in this module which now supersedes the previous version of the module.

186

SEQUENCE_JOURNALED is a module providing a String class specialization that allows to store
changes to a string in a lightweight implementation. Originally implemented for the first version
of Mason, the module has now been greatly extended by René Rahn for his journaled string tree
project (Rahn et al., 2014).

STREAM is a module providing low-level file I/O functionality that I implemented an earlier
version of. Later, David Weese and Enrico Siragusa further improved the I/O functionality in
SeqAn and rewrote the module.

BAM_I10, BED_IO, GFF_IO, SEQ_IO, VCF_I0 are modules providing the data structures and rou-
tines for read and write access to the SAM/BAM, BED, GFF/GTF, FASTA/FASTQ, and VCF file
formats. The modules have subsequently been updated to the Weese’s and Siragusa’s new /O
layer. Thus, most important bioinformatics file formats are now available to SeqAn users and in
SeqAn applications.

Further work includes the modules ALIGN_spLIT for the split alignment with the updated
ALIGN module by René Rahn, refactorization and documentation to the modules BasIc, improve-
ments and test to the GRAPH_ALGORITHMS module, and together with David Weese and Enrico
Siragusa the development of a basic framework for parallel algorithms in PARALLEL.

Self-Documenting Programs

It can be considered best practice that command line programs are self-documenting when being
passed a --help (or similarly named) flag. The program should then print a textual help and
perform no other action. In SeqAn, the ArgumentParser class in the ARG_PARSE module provides
the functionality for describing a program’s parameters programatically and then parsing the
command line. This class allows the annotation of positional arguments and named options
with a description and to provide additional information.

During the work for this thesis, the basic functionality was greatly extended by the SeqAn team
and I contributed code for the documentation of the programs. The representation of a program’s
documentation is built in an object of class ToolDoc when the ArgumentParser class’ interface
is used to describe the command line interface of a program. Figure C.1 shows an example usage
of the ArgumentParser class.

The documentation of the program can then be generated in several formats. Textual output is
meant for the console and the output is wrapped to the user’s terminal dimensions. The doc-
umentation can also be generated in HTML format for publishing on the web or in Unix man
format such that a program’s man page can be generated automatically. Figure C.2 shows the
automatically generated man page by RABEMA-BUILD-GOLD-STANDARD.

187

Appendix C Contributions to Software Engineering and Usability

#include <segan/arg_parse.h>
/]

seqan: :ArgumentParser parser ("rabema_build_gold_standard");
setShortDescription(parser, "RABEMA Gold Standard Builder");
setVersion(parser, "1.2.0");

setDate(parser, "March 14, 2013");

setCategory(parser, "Benchmarking");

addUsageLine(parser,
"[\\£IOPTIONS\\fP] \\fB--out-gsi\\fP \\fIOUT.gsi\\fP \\fB--reference\\fP "
"\\£fIREF.fa\\fP \\fB--in-sam\\fP \\fIPERFECT.sam\\fP");

//

Figure C.1: Example usage of the seqan: : ArgumentParser class for defining the program documen-
tation in the program.

RABEMA_BUILD_GOLD_STANDARD(1) RABEMA_BUILD_GOLD_STANDARD(1)

NAME
rabema_build_gold_standard - RABEMA Gold Standard Builder

SYNOPSIS
rabema_build_gold_standard [OPTIONS] --out-gsi O0UT.gsi --reference
REF.fa --in-sam PERFECT.sam
rabema_build_gold_standard [OPTIONS] --out-gsi O0UT.gsi --reference
REF.fa --in-bam PERFECT.bam

DESCRIPTION
This program allows to build a RABEMA gold standard. The input is a
reference FASTA file and a perfect SAM/BAM map (e.g. created using Raz-
erS 3 in full-sensitivity mode).

The input SAM/BAM file must be sorted by coordinate. The program will
create a FASTA index file REF.fa.fai for fast random access to the ref-
erence.

Figure C.2: Top of the output of the argument parser, displayed as Linux man page.

188

/%%

.Function.globalAlignment:

. .summary:Computes the best global alignment of the two sequences.

..cat:Alignments

..signature:globalAlignment (align, score [, align_config], tag)

. .signature:globalAlignment (result, strings, score [, align_config], tag)

. .signature:globalAlignment (result, strings, score [, align_configl], diaglow, diagHigh, tag)
..param.align:An alignment data structure containing two sequences.

...type:Spec.Alignment Graph

...type:Class.Align

..param.result:A data structure that gets the result of the alignment procedure,

e.g., a file stream, or std::cout for a textual alignment, or a FragmentString for storing
all the matches.

..param.strings:A string set with that contains two sequences.

Figure C.3: Beginning of C++ comment with DDDoc comment for the globalAlignment () function.

APl Documentation

The usability of a library (how easy or hard it is to use a library) highly depends on the quality of
the library’s API documentation. Most of today’s API documentation is written together with the
source code and embedded in comments following a special format. The documentation is then
extracted from the comments by tools that build a human-readable document, often a HTML
website or a PDF file. Prominent examples of such systems are Doxygen for C++ and Javadoc for
Java.

During the conception of SeqAn, the original library author introduced his own system Dot-
DotDoc. The reason for this is that SeqAn uses programming entities such as concepts, template
inheritance, and global interface functions. These elements are not part of the C++ language and
thus the support for them does not exist in Doxygen. The emulation of these features in Doxy-
gen was not satisfactory. DotDotDoc has explicit support for these features. Figure C.3 shows
an example of DotDotDoc documentation for the globalAlignment () function and Figure C.4
shows the generated HTML documentation for this function.

However, this system was found to be lacking. For one, the format for defining the documenta-
tion was idiosyncratic to the DDDoc system. Also, a single page was generated for each global
interface function, such as length() whereas functions such as length() should occur on the
documentation for the ContainerConcept concept.

Thus, a new system based on the syntax from Doxygen was written from scratch: dox. Dox is
implemented in Python and allows users to use similar documentation markup as in Javadoc and
Doxygen. The resulting HTML document was also improved, allowing for a much better search.
Figure C.5 shows the dox documentation of the function globalAlignment () and Figure C.6
shows the resulting HTML page.

189

Appendix C Contributions to Software Engineering and Usability

2| globalalignment

< & | [docs.seqan.de/seqanidev/FUNCTION global_Alignment.ntm v =
Classes Function y
g:“,::;‘: globalAlignment
S Computes the best global painwise alignment.
Functions
» Alignment Free g ig| i(align, sCori , [alignConfig] lowerDiag, upperDiag] [algorithmTag])
~ Alignments globalAlignment(gapsH, gapsV, smrmgscneme [alignConfig | [lowerDiag, upperDiag,] [algorithmTag])
g ignment(frags, strings, lignConfig] [lowerDiag, upperDiag] [algorithmTag]
addToProfile
assignSource (Gaps) g ig aph, [ahgnl:onﬁg] [lowerDiag, upperDiag,] [algorithmTag])
bandedChainAlignment
clearclipping (Gaps) Include Headers
C‘E‘ETBEDS (Gaps) seqan/align.h
col
cols Parameters
coumGans (Gaps) align ‘An Align object that stores the alignment. The number of rows must be 2 and the sequences must have already been set
gefpmim&upowm row(align, 8)isthe horizontal ane in the alignment malrix alignment, row(align, 1) is the vertical one.
getScore (LocalAlignmentEny Types: Align
globalAlignment ~peh
QlobalAlignmentScors aap :;Iglezs-n:—:\ag:ppeu sequence in alignment matrix.
globalMsaAlignment -
heaviestCommonSubsequen{ | gapsy Vertical gapped sequence in alignment matrix.
heaviestincreasingSubsequel Types: Gaps
host (C: q .
inserGap frags String of Fragment objects. The sequence with id @ is the horizontal one, the sequence with id 1is the vertical one
}gfg‘}:;ﬁgn alignmentGraph | Alignment Graph object to store the alignment in
isGap (Gaps) Types: Alignment Graph
JSRE\-;‘N?: Remarks: The underlying StringSet must be an Owner StringSet.
i
\ggglAI\[ganZ)n[strings A StringSet containing two sequences
longestCommeonSubsequency Types: StringSet
€N’ ['scoringScheme | The scoring scheme to use for the alignment. Note that the user is responsible for ensuring that the scoring scheme is
maichRefinement compatible with algorithnTag
nexiLocalAlignment
position (Conser Types: Score
removeGap alignConfig The AlignConfig to use for the alignment.
removeGaps .
row Types: AlignConfig
ows lowerDiag Optional lower diagonal
scoreGap Types: int
scoreGapExtend ypes: n -
scoreGapOpen upperDiag Optional upper diagonal
scoreMatch Types: int
scoreMismatch
sequenceEntryForScore (Sco algorithmTag The Tag for picking the alignment algorithm.
selScoreBap Types: Gotoh, Hirschberg, MyersHirschberg, NeedlemanWunsch
ype 9, Mye 9
setScoreGapOpen
...seqan.de/.../FUNCTION_| Local Allgnment Enumerator_23g... uinction with four configuration dimensions. I~

Figure C.4: HTML documentation generated for function globalAlignment () from DDDoc source in
Figure C.3.

¥R K K K X X X K K X X X X X XK X X X X X ¥

@fn globalAlignment
@headerfile seqan/align.h
@brief Computes the best global pairwise alignment.

@signature TScoreVal globalAlignment(align, scoringScheme, [alignConfig,]
[lowerDiag, upperDiag,] [algorithmTag]l);
@signature TScoreVal globalAlignment (gapsH, gapsV, scoringScheme, [alignConfig,]
[lowerDiag, upperDiag,] [algorithmTag]);
@signature TScoreVal globalAlignment(frags, strings, scoringScheme, [alignConfig,]
[lowerDiag, upperDiag,] [algorithmTag]);
@signature TScoreVal globalAlignment(alignGraph, scoringScheme, [alignConfig,]
[lowerDiag, upperDiag,] [algorithmTag]l);

@param align The @link Align @endlink object to use for storing the
pairwise alignment.

@param gapsH The Q@link Gaps @endlink object for the first row (horizontal
in the DP matrix).

O@param gapsV The @link Gaps @endlink object for the second row (vertical in

the DP matrix).

Figure C.5: Beginning of the C++ comment with dox documentation for globalAlignment ().

190

|2/ globalAlignment - Seqs x

<8 B> & | D docs.seqandesseqanidevy

globalAlignment

» GlobalChain Computes the best global pairwise alignment.
* GlobalAlign
* SwiftSemiGlobalFinder Defined - sqan/align.h> ©T0P # HOME

in
» PARAMETERS
& S ki TScoreVal globalAlignment(align, scoringScheme, [alignConfig,] [lowerDiag, upperDiag,]

[algorithmTag]); » RETURN VALUES
globalAlignment Tscoreval globalAlignment(gapsH, gapsV, scoringScheme, [alignConfig,] [lowerDiag, 3 DETAILED
» globalMsaAlignment upperDiag,] [algorithmTag]); DESCRIPTION

Signature TScoreVal globalAlignment(frags, strings, scoringScheme, [alignCenfig,] [lowerDiag,
upperDiag,] [algorithmTag]);

* chainSeedsGlobally TscoreVal globalAlignment(alignGraph, scoringScheme, [alignConfig,] [lowerDiag, » REFERENCES

upperdiag,] [algorithmTag]);

* globalAlignmentScore » EXAMPLES

% SEQAN_GLOBAL » SEEALSO
* Segment Match Generation Tags
matches:
|
GlobalPairwiseLibrary [PARAMETERS
align The [C1ass | Align object to use for storing the painvise alignment.
*» MyersUkkonenGlobal & o oo o e 9
gapsH The Gaps object for the first row (horizontal in the DP matrix).
4 r‘“P'SUkkE"E”G"’a'Ba”['E[‘ gapsV The Gaps object for the second row (vertical in the DP matrix).
oncept
Pa— N frags String of [C1ass | Fragment objects to store alignment in.
extConcepl
matches: : strings StringSet of length two with the strings to align
posGlobalize alignGraph Alignment Graph for the resulting alignment. Must be initialized with two strings
scoringScheme The scoring scherme to use for the alignment. Note that the user Is responsible for ensuring that the scoring scheme is
L4 EQ‘EJC“‘_:;';[S“"? compatible with algorithmTag
convertMatches ToGlobalAlignment alignConfig [CIass | AlignConfig instance to use for the alignment configuration
convertPailWiseToGlobalAlignment lowerDiag Optional lower diagonal (1nt).
upperDiag Optional upper diagonal (int).
algorithmTag .
Tag to select the alignment algorithm (see AlignmentAlgorithmTags)
I RETURN VA LU E S
docs.segan. 3/specialization_GlobalAlign.htmi |1 Score value of the resulting alignment (Metafunction: [FFi<>] Score#Value of the type of scoringScheme). =

Figure C.6: HTML documentation generated for function globalAlignment () from dox source in Fig-
ure C.5.

Testing

Testing is a very important aspect of software engineering. At the beginning of the work of
this thesis, there were few tests for the SeqAn library and no tests for the SeqAn applications.
During the work for this thesis, I rewrote the test framework for the SeqAn library and also
provided a framework for application tests. Together with the rest of the SeqAn team, I extended
the framework and wrote many tests for the library functionality and also for the applications.
At the time of writing, there are more than 2500 individual tests for the SeqAn library and
appplication tests for almost all applications. This allows to easily detect whether a change in
the library breaks another part or an application.

The tests are run each night and the results are submitted to CDAsH dashboard, a web applica-
tion for collecting information about project builds and tests contained in the CMAKE software
package!. Figure C.7 shows an example of SeqAn’s CDash Dashboard.

"http://www.cmake.org/

191

http://www.cmake.org/

Appendix C Contributions to Software Engineering and Usability

&) CDash - Segan

a & ||j cdash seqan.defindex php?project=SegAn

A3

DASHBOARD CALENDAR PREVIOUS CURRENT PROJECT

No update data as of Wednesday, August 13 2014 01:00:00 CEST

Show Filters]
No Nightly Builds

Continuous

travis-667-seqanseqan-
travis-ci-build-server develop-456-g++-4..

Totals 1 Builds
No Experimental Builds

BranchMaster

lariximp.fu-berlin.de g2 6_gdh:
clang++-3.1-3; @A

lariximp.fu-berlin.de linux-2.6_Gabit:
clang++-3.1

linux-2.6_64bi
clang++-3.2-3;

larix.imp.fu-berlin.de

- - linux-2.6_64bit-
larix.imp.fu-berlin.de B

I 298
cdash.segan.defindex.php?project=SeqAn# r

Figure C.7: Example of the CDasH dashboard showing information about compiler warnings, errors,

and test failures.

192

71

2014-08-13T02:26:49 CEST

2014-08-13T03:05:29 CEST

2014-08-13T02:56:39 CEST

2014-08-13T03:36:55 CEST

Appendix D

Program Versions and Calls Used in the
Evaluation

Evaluation of Read Error Correction

This section gives the versions and command lines of the read error correction programs used in
the evaluation in Section 3.4.

For all programs the gain analysis was done on the complete read set, even if some programs
discarded reads from their output. Below, the placeholders IN.fq and IN.fa are used for the
path to the input FASTQ/FASTA file, OUT.fq and OUT.fa are used for the path to the output
FASTQ/FASTA file, and GLEN is used for the genome length.

ALLPATHS-LG was used inrelease 44994. The read correction program ErrorCorrectReads.pl
was run with the settings shown in the example below. The output was postprocessed to add back
the reads that were removed by the read correction routine although REMOVE_DODGY_READS=0
was set. Example:

ErrorCorrectReads.pl THREADS=8 PHRED_ENCODING=33 REMOVE_DODGY_READS=0 \
UNPAIRED_READS_IN=IN.fq READS_OUT=0UT.fq

CorAL was used in version 1.4. It was run with default parameters, i.e. -£q for the input FASTQ
files, -o for the output file, and -454 for both 454 and IonTorrend data. For some 454 and Ion
Torrent data, Coral’s parameters had to be adjusted to allow higher error rates to yield better
gain (as instructed by the Coral authors).

Coral was run with default parameters (an error rate of 7% or -e 0.07). It was also tried to
increase the error rate in Coral to 10%, 15%, 20%, and 25%. The best variant for each data set is

193

Appendix D Program Versions and Calls Used in the Evaluation

given as Coral”. Coral was stopped after 24 hours on the 18x D. melanogaster data set with -e
0.20 and -e 0.25.

Coral uses 8 threads by default. Example:

coral -fq IN.fq -o OUT.fa -454 -e 0.10.

FioNA was used in version 0.2. The values chosen automatically by Fiona for ki, were 14 for
the E. coli data sets, 15 for S. cerevisae, 16 for RAL399-2L, and 17 for C. elegans and D. melanogaster.
The parameter -t 8 was used for eight threads, and pass the genome length using -g GLEN.
A k-mer of length 9 was hard-coded into Fiona for benchmarking (and can be changed after
recompiling), and the default error rate of 0.01 was used. The sequencing technology was selected
using --sequencing-technology with the values 454 and iontorrent. Example:

fiona --sequencing-technology 454 -nt 8 -g 1000 IN.fq OUT.fa.

HITEC was used in version 1.0 (BaseSpaceShrec). An error rate of 1% was used by default as
adviced by the HITEC authors. Example:

hitec IN.fq 0OUT.fq GLEN 1

HYBRIDSHREC was used in version 1.0 (BaseSpaceShrec). HybridShrec was run in two ver-
sions. The variant HybridShrec was run with default parameters as instructed by the authors.
For most data sets, the program did not run through but exited with the suggestion to lower
the strictness parameter -s. Because the achieved gain did not correlate with the strictness pa-
rameter value, it was run with strictness values set from 2 to 7 and reported the best achieved
gain.

The default setting for levels to use is 14 to 17. The variant HybridShrec!” used the same levels
as fiona. This variant was run with strictness values 2 to 7 as well. Example:

java -Xmx40960m Shrec -n 5348428 -s 7 IN.fa

QuAakE was used in version 1.0 (BaseSpaceShrec). It was run with default parameters as given
in the manual. The value for K was chosen as log(200 - GLEN)/log 4 as given by the Quake
manual. Example:

quake.py -f IN.fq -k K -p 8
RACER was used in the version from the 25th of June, 2014, as sent to the author by Lucian Ilie.

Here is an example for a program call:

RACER IN.fq OUT.fq GLEN

194

Evaluation of Read Mapping

This section describes the parameters used in the comparison of read mappers in Section 4.5.
Also, this section gives the versions of the used read mapping programs.

MIN and MAX are placeholders for minimal and maximal insert size, INS is the mean insert size,
and IERR the allowed deviation (INS = (MIN + MAX) / 2, IERR = (MAX - MIN) / 2). For
the tools using indices, the index was built using default options.

BowTiE 2. Version 2.0.0-beta6 was used. The number of threads was selected using the param-
eter (-p). The parameter --end-to-end was used to enforce semi-global read alignments. The
parameter -k 100 was used for the Rabema experiment, otherwise -k 1 was used. In paired-end
mode, the parameters --minins MIN --maxins MAX were used.

BWA. Version 0.6.1-r104 was used. The parameter -t was used to select the number of reads
in the aln step. The sampe and samse steps were performed using one thread since BWA does
not offer a parallelization here. When mapping for the Rabema experiment, the parameter -N
was passed to aln and -n 100 to samse. Otherwise, the parameter -n 1 was passed to samse.
The insert size was not passed to BWA, however the insert size and allowed error from BWA’s
output was passed to the other read mappers.

HoBBES. Version 1.3 was used. Since the focus lies on edit distance, the 16 bit bit-vector version
was used as described in (Ahmadi et al., 2012). The index was built using the recommended k-
mer length 11. Indels were enabled using --indels. Maximal edit distance was set using -v.
Multi-threading was enabled using -p. For resource measurement, the output without CIGAR
was used. For analyzing the results, the CIGAR output was enabled using --cigar. In paired-end
mode, the parameters --pe --min MIN --max MAX were used.

MRFAST. Version 2.1.0.6 was used. It was used as explained in the manual?. MRFAST does not
support multithreading. The input was divided into blocks of 500k reads and processed each
chunk in a separate process using the program Ts®. Long reads were split into packages of 100 k
reads. This way, always 8 processes were executed in parallel. The edit distance error rate was
set to 4% of the read length.

RAZERS 3. Version 3.0 was used. RAZERS 3 was parameterized as follows: The native or SAM
output format was selected with -of 0 or -of 4. Indel support was disabled with --no-gaps
when required. The number of threads was set with the -tc parameter. The percent recognition
rate was set using the -rr parameter, e.g., -rr 100 or -rr 99. The error rate was set through
the -i parameter, e.g. -i 96 to map with 4% errors*. The pigeonhole or SWIFT filter was se-

'http://hobbes.ics.uci.edu/manual. jsp
*http://mrfast.sourceforge.net/manual.html
*http://vicerveza.homeunix.net/~viric/soft/ts/

*RAZERS uses the percent identity, which is 100 minus error rate in percents.

195

http://hobbes.ics.uci.edu/manual.jsp
http://mrfast.sourceforge.net/manual.html
http://vicerveza.homeunix.net/~viric/soft/ts/

Appendix D Program Versions and Calls Used in the Evaluation

lected using -f1 pigeonhole or -fl swift. As an all-mapper, the parameter -m 1000000
was used and as a best-mapper -m 1 was used. In paired-end mode, the parameters used were
--library-length INS --library-error IERR.

SHRIMP 2. Version 2.2.2 was used. The number of threads was selected with --threads. In
paired-end mode, the options used are --pair-mode opp-in --isize MIN,MAX.

Soap 2. Version 2.1 was used. The number of threads was selected with -p. In paired-end
mode, the options used are -m MIN -x MAX.

Evaluation of Insert Assembly

This section gives the program calls for the insert assembly evaluation from Sections 5.5-5.7.

ABYSS. ABYSS was run in version 1.5.1 using k = 64. Otherwise, I used default parameters
for abyss-pe with the unitigs command.

BWA. BWA (Liand Durbin, 2009) was used in version 0.6.1-r104. I used the commands aln and
sampe for aligning the paired-end reads using default options. I used the program as described
in its documentation.

BLAT. BLAT (Kent, 2002) was used in version 35x1 with default options as used in the docu-
mentation.

BAsiL and ANISE. BasiL and ANISE were used in version 1.0. The used command lines were
for BAsIL:

basil --input-reference REF.fa \
--input-mapping MAPPING.bam \
--out-vcf OUT.vcE

and for ANISE:

anise --num-threads THREADS \
--input-reference REF.fa \
--input-vcf IN.vcf \
--input-mapping IN.bam \
--output-fasta OUT.fa \
--output-mapping 0OUT.bam

196

MINDTHEGAP was used in version 6417. On the non-real-world data, I ran MINDTHEGAP with
k = 51 (as is the case in (Rizk et al, 2014) for the simpler data sets):

mindthegap index READS.fa -p whole_human \
-g 2870630962 -k 51

mindthegap find REF.fa -p whole_human

mindthegap fill data.breakpoints -p data

On the real-world data, it was run the same parameters as in (Rizk et al.,, 2014):

mindthegap index READS.fa -p whole_human \
-g 2870630962 -k 63 -t 5

mindthegap find REF.fa \
-p whole_human -mrep 15

mindthegap fill whole_human.breakpoints \
-p whole_human

SGA was used in version 0.10.13. I used the same parameters as in the C. elegans configuration
example that ships with the program: https://github.com/jts/sga/blob/master/src/examples/sga-
celegans.sh.

197

https://github.com/jts/sga/blob/master/src/examples/sga-celegans.sh
https://github.com/jts/sga/blob/master/src/examples/sga-celegans.sh

Appendix E

Full Read Mapping Tables

This appendix contains further tables for the read mapping evaluation presented in Section 4.5.

reference read length read set ID original length
E. coli 100bp ERR022075 100 bp
E. coli 70bp ERR022075 100 bp
E. coli 50bp ERR022075 100 bp
E. coli 30bp ERR032371 36 bp
C. elegans 100bp SRR065390 100 bp
C. elegans 70bp SRR065390 100 bp
C. elegans 50bp SRR065390 100 bp
C. elegans 30bp SRR107574 34 bp
human chr. 2 100bp ERR012100 101bp
human chr. 2 70bp SRR029194 88 bp
human chr. 2 50bp SRR029194 88 bp
human chr. 2 30bp ERR003244 37 bp

Table E.1: This table gives information which datasets were used when creating the experimental
maps. If original length and read length m are not equal then the first m bases were used.

199

00¢

(0,0) (1,0) (2,0) (3,0) (4,0) (1.1)
method prec. recl. prec. recl. prec. recl. prec. recl. prec. recl. prec. recl

(1.2)

prec.

recl.

(03)
prec.

recl.

(0.4)
prec.

recl.

Bowtie 2
BWA
Soap 2
R3-100
R3-99
R3-95

best-mappers

Hobbes
mrFAST
SHRiMP 2
R3-100
R3-99
R3-95

all-mappers

Table E.2: Full results for the variation detection experiments from Table 4.4a with single-end reads.

sajquy Suiddvpy pvay pn g xipuaddy

102

(0,0 (1,0) (2,0) (3,0) (4,0) (1,1)
method prec. recl. prec. recl. prec. recl. prec. recl. prec. recl. prec. recl

(1,2)
prec.

recl.

(0.3)
prec.

recl.

(0.4)
prec.

recl.

Bowtie 2
BWA
Soap 2
R3-100
R3-99
R3-95

best-mappers

Hobbes
mrFAST
SHRiMP 2
R3-100
R3-99
R3-95

all-mappers

Table E.3: Full results for the variation detection experiments from Table 4.4b with paired-end reads.

c0¢

dataset ERR022075 SRR065390
E.coli C.elegans
time cputime memory correctly mapped mapped reads time cputime memory correctly mapped mapped reads
method [min:s] [min:s] [Mb] reads [%) [%] [min:s] [min:s] [Mb] reads [%] [%]

Bowtie 2 1:19 15:21 162 99,32 Bt s 9573 2:08 25:14 277 92,58 7501 B4 so
g bwa 34 BT s 9798 LanL T 521 %650 %S 8933 1 1 v
S Soap2 1:30 3:16 729 95.68 jioe 2 9367 1:32 5:26 813 85.95 ol wen 83
E R3-100 0:50 200 5705 97.59 Bt 547 9579 1:42 1142 5841 88.79 TS0l 0 s
2 R399 0:48 1:59 5705 97.59 Bt 47 9579 1:38 11:17 5841 88.78 7501 B0 o3
R3-95 0:47 1:57 5705 97.59 864 47 9579 1:30 9:52 5841 88.77 7501 B s
Hobbes 2:02 12:55 769 89.28 0 WO W& 646 287:26 3136 82.83 #9781t s0a0
g mrFAST 0:36 4:30 8269 97.59 Bt 47 9579 6:01 57:42 10497 88.79 7501 B s
& SHRIMP2 4:17 49:42 1553 99.28 M %t A 5344 608:58 3372 91,91 171 B2 w5
£ R3-100 0:50 2:10 5705 97.59 3ss 9347 957 2:20 16:57 9203 88.79 7501 B30 03
=T R3-99 0:49 2:09 5705 97.59 Bt 47 9579 2:16 16:07 9036 88.78 1501 0 s
R3-95 0:49 2:08 5705 97.59 Bt 947 957 2:11 14:24 8598 88.77 7501 B0 o3

dataset SRR497711 ERROI?lOO

D. melanogaster H. sapiens

time cputime memory correctly mapped mapped reads time cputime memory correctly mapped mapped reads
method [min:s] [min:s] [Mb] reads [%] [%] [min:s] [min:s] [Mb] reads [%] [%]

Bowtie 2 2:00 23:43 299 85.71 508 @21 a2 5:37 66:40 3374 96.72 7 B8 %034
é BWA 5:35 36:30 413 79.37 0 724 I 1345 98:30 4475 93.53 139 78 0
2 Soap2 1:55 8:37 900 72.49 508 w7 s 2:34 15:11 5481 89.73 7% W ws
E R3-100 1:28 9:45 5795 78.92 ®I8 93 B 8556 1001:18 9096 92.99 3% 1784 e
£ R3-99 1:26 9:14 5795 78.90 20 7% B 73,09 848:59 8679 92.98 5% W7t ner
R3-95 1:26 9:24 5795 78.82 B0 3 e 4316 493:42 7640 92.95 7590 118 %067
Hobbes 4:51 39:57 2141 76.16 02 @% e 96548 2851:00 70683 89.24 70 M0 w02
g miFAST 4:01 37:32 10844 78.92 B 9 O 41340 398749 11324 92.99 3% w184 e
;; SHRIiMP 2 23:40 255:09 3801 89.91 gzg; :;:g 7366 1312:09 14466:34 38188 99.06 SZ? f;;;; 9056
£ R3-100 1:51 11:59 7329 7892 %0 @ B 11826 1384:18 15298 92.99 7590 ¥184 9087
T R3-99 1:49 11:21 7302 7890 RS @3 B 100:19 1169:22 15238 92.98 7590 st s
R3-95 1:45 10:40 7270 78.82 ;:gi :;g; 7369 58:13 665:47 14384 92.95 ;;Zf §§j§§ 9067

Table E.4: Extended experimental results for real-world single-end data, extending Table 4.5a. The results are shown for the first 10M x 100 bp

single-end reads of Illumina datasets.

sajquy Suiddvpy pvay pn g xipuaddy

€0¢

simulated, m = 200 simulated, m = 400 simulated, m = 800
dataset

D. melanogaster D. melanogaster D. melanogaster
time cputime memory correctly mapped mapped reads time cputime memory correctly mapped mapped reads time cputime memory correctly mapped mapped reads

method [min:s] [min:s] [Mb] reads [%] (%] [min:s] [min:s] [Mb] reads [%] (%] [min:s] [min:s] [Mb] reads [%] [%]
_ Bowtiez 0:29 5:23 318 99.70 12 8 w0 1:35 18:15 355 e 99.94 1% w8 w1348 16445 628 99.99 01 w07 75
£ BWA 1:09 6:41 440 91.83 29 497 st 2:40 18:03 935 8457 1% wn w538 3644 1055 68.09 0 oo v
£ Soap2 0:21 1:40 1074 6120 2% s am 038 340 1554 5099 1% 48 w9 0:54 433 1546 3814 00 21
E R3-100 0:46 632 1529 92.87 2% 4% w0 0:56 705 2674 89.47 1 s w 1:17 810 4963 90.43 0 s
£ R399 0:46 659 1529 92.87 2% 4% w0 0:56 6:46 2674 89.47 1 s w 1:17 752 4963 90.43 0 s

R3-95 0:46 634 1529 92.86 2% 4% w9 055 651 2674 89.47 1 s v 115 752 4963 90.43 0 i1

mrFAST 111 1029 6909 9217 BSL Gt wT 947 2054 7972 85.02 1% s wm 596 4922 9115 6932 0wt o
@
g SHRiMP 2 7:25 64:30 3758 99.96 i oo s 42:53 484:02 3814 99.85 1% nat B 796:06 9442:21 4023 99.31 0 ntr e
g‘ R3-100 0:49 6:55 1529 92.87 o oy Y 0:58 6:57 2674 89.47 i s e 1:20 8:48 4963 90.43 o0 s T
% R3-99 0:48 6:19 1529 92.87 i oy Y 0:58 7:24 2674 89.47 i s w0 1:20 8:38 4963 90.43 o0 s T

R3-95 0:48 6:43 1529 92.86 o o Y 0:55 6:42 2674 89.47 i s s 1:20 8:35 4963 90.43 003 S T

simulated, m = 200 simulated, m = 400 simulated, m = 800
dataset . . .
H. sapiens H. sapiens H. sapiens
time cputime memory correctly mapped mapped reads time cputime memory correctly mapped mapped reads time cputime memory correctly mapped mapped reads

method [min:s] [min:s] [Mb] reads [%] [%]) [min:s] [min:s] [Mb] reads [%] [%] [min:s] [min:s] [Mb] reads [%] [%])
_ Bowiiez 119 1513 3372 99.57 1% an w45 5206 3413 = 99.94 19 mimu 6305 75612 3686 D 100.00 po 420 77
g Bwa 453 4430 6619 9182 1Y @ w2021 18524 11043 8433 19 mwan 2600 25732 10946 67.60 0 03 @00
& Soap2 0:49 5:08 5651 6115 1% @ as 137 1230 5938 5100 1% B0 ss 905 1504 6122 38.22 u ma wss
£ R3-100 2634 20917 3341 9288 07 4% w8 4421 51105 3532 8953 19 2 ws 10248 120531 4964 9049 0 nz
£ R399 1617 17900 3341 92.88 1 g% 2031 22647 3532 8953 ' wywn 3850 442:12 4964 90.49 0w iz

R3-95 1355 15313 3341 92.87 17 4w 2031 227:05 3532 8953 !9 =Y em 3721 42450 4964 9049 0w nz

mrFAST 103:02 1024:12 7395 92.18 1 017 w0 32150 4143:26 7926 5938 10 w07 111603 13750:58 9601 [AAHONGEEEHEN 4724 oo wn v
@
S SHRIMP2 54629 532353 38570 99.95 15t gt wn 170504 92111:02 45100 99.75 it st s - - - - -
g R0 2830 32307 3341 92.88 1 @ w485y 56457 3532 80.53 1% BV mn 10548 124335 4964 90.49 o 1 T
< R399 1722 19132 3341 92.88 17 4 ws 2146 24116 3532 8953 !9 Y em 4141 47703 4964 9049 0w oy

R3-95 1440 16048 3341 92.87 U7 4 w8 2103 236:06 3532 8953 !9 29 % 3957 45524 4964 9049 0w oy

Table E.5: Extended experimental results for long simulated single-end data, extending Table 4.5a. The results are shown for the first 10 M x 100 bp
single-end reads of Illumina datasets. Hobbes is not capable of mapping long reads and thus not shown here. Some mrFAST processes crashed for the
D. melanogaster and H. sapiens m = 400 and m = 800 datasets which explains the low number of mapped reads. SHRiMP 2 was not able to map the
800 bp human dataset within 96 hours.

02

ERR022075 SRR065390
dataset .
E.coli C.elegans
time cputime memory correctly mapped mapped pairs time cputime memory correctly mapped mapped pairs
method [min:s] [min:s] [Mb] pairs [%] [%] [min:s] [min:s] [Mb] pairs [%] [%]
Bowtie 2 4:09 49:15 195 98.69 1802 st s 6119 74:50 322 84,59 120 1642 1174
£ BWA 7:35 30:58 343 95.87 1% s s 137 75:47 479 81.20 13 10w w2
& Soap2 3:51 17:29 743 94.70 1833 75 w09 5:56 42:02 833 24.48 1 163 10
£ R3-100 1:53 7:33 11113 94.66 1892 758 w7 6:29 64:44 11230 2038 120 165 07
$ R399 1:45 6:08 11113 94.66 1892 758 w87 6:20 62:39 11230 2038 1320 165 07
R3-95 1:44 6:22 11113 94.62 [T 8T 6:07 60:22 11230 20.35 P2 e 1778
Hobbes 5:21 39:44 1196 86.15 118 T ws 1037 103:38 2852 18.66 1226 1509 1614
g mrFAST 1:21 10:22 52868 95.31 [7o 878 14:02 134:13 54510 79.37 P8 e 11T
& SHRIMP2 8:18 97:16 1612 97.74 182 Mm% 10530 1238:32 3468 53.92 133 1658 15
E R3-100 1:53 7:34 11113 94.66 12 1855 w7 7:49 78:35 11816 20.38 1320 1603 1078
T R399 1:48 6:40 11113 94.66 1892 758 w7 6:37 64:39 11588 2038 120 165 07
R3-95 1:45 613 11113 94,62 1802 855 w87 6:33 63:35 11230 2035 1320 108 07
SRR497711 ERR012100
dataset .
D. melanogaster H. sapiens
time cputime memory correctly mapped mapped pairs time cputime memory correctly mapped mapped pairs
method [min:s] [min:s] [Mb] pairs [%] [%] [min:s] [min:s] [Mb] pairs [%] [%]
Bowtie 2 6:32 77:40 349 81.94 2% 0w @ 1051 128:58 3555 94,19 1304 297 715
i BWA 13:33 77:14 503 73.41 25 07 @a 3435 241:41 4662 88.06 1304 297 730
2 Soap2 5:29 38:22 940 72.77 #5805 8:24 61:32 5463 87.47 507 @57 73
£ R3-100 9:01 93:39 11199 72.95 R0 07 0% 176:29 2077:35 18568 86.93 1304 62 763
8 R399 7:00 69:26 11199 72.93 B 07 @6 150,03 1872:33 16568 86.91 1504 B2 a3
R3-95 6:56 68:48 11199 72.80 #0507 @6 13544 1599:10 13678 86.84 301 w0z 7163
Hobbes 8:43 75:57 5870 62.48 % bl S 89:35 884:05 47270 84.05 1% o 7t
g miFAST 8:26 81:25 48032 73.16 R® 0 @8 779:12 7649:19 57625 87.79 3% o e
& SHRIMP2 47:07 537:29 3838 87.36 2% % @@ 2762:32 31710:26 38594 97.51 1503 29 73
2 30 69 66 85.
£ R3-100 7:59 76:28 13558 72.95 B0 S0 @6 18427 2167:14 27623 86.93 1304 w0z 7163
T R3-99 7:44 73:54 13485 72.93 R® 0 @8 177:56 2100:43 25866 86.91 1304 2 763
R3-95 7:36 72:22 13241 72.80 B M7 @ 166:22 1956:20 23026 86.84 1504 B2 763

Table E.6: Extended experimental results for real-world paired-end data, extending Table 4.5b. The results are shown for the first 10 M x 2 x 100 bp

pairs of Illumina datasets.

sajquy Suiddvpy pvay pn g xipuaddy

S0¢

simulated, m = 200 simulated, m = 400 simulated, m = 800

dataset D. melanogaster D. melanogaster D. melanogaster
time cpu time memory correctly mapped mapped pairs time cputime memory correctly mapped mapped pairs time cputime memory correctly mapped mapped pairs

method [min:s] [min:s] [Mb] pairs [%] [%] [min:s] [min:s] [Mb] pairs [%] [%] [min:s] [min:s] [Mb] pairs [%] (%]

Bowtie 2 125 1637 390 99.24 1% 0 s 545 6817 515 99.62 00 Glemm 30,07 46830 1418 99.70 o 10 s
g Bwa 213 1241 674 8430 18 Um0 e 613 3807 975 7L56 0 S w1126 7340 1569 644 00 0 o
& Soap2 1:55 1635 1092 71.96 [7w e 4:40 44:16 1377 49.55 0% souw o 12:36 12423 1561 28.23 [0 0%
E, R3-100 1:26 1221 3075 7491 1 7o o 1:45 1344 5364 69.68 0% o176 2:22 1605 9942 7116 20 100 #
£ R399 1:25 1244 3075 7491 1 7o o 1:48 1430 5364 69.68 0% 017w 2:19 1524 9942 7116 0 100 H

R3-95 1:23 1242 3075 7489 1% o 1:41 1331 5364 69.68 0% v w219 1527 9942 7116 0% o0
. mrFAST 216 2037 11104 8468 1 ST 451 4552 12493 7213 2% S omw 1047 10253 15392 49.69 0 a0
S SHRIMP2 1310 13322 3746 99.97 1 ¢siam g357 97935 3945 99.83 0w s mv 1617:26 1926414 4211 98.62 o 1o an
g R3-100 133 1402 3075 7491 13 s sn 154 1536 5364 69.68 00 67w 930 15:55 9942 7116 o 0w
é R3-99 1:30 13:23 3075 7491 3 e e 1:53 14:53 5364 69.68 07 o w 2:30 15:45 9942 7116 g% e

R3-95 1:26 12:32 3075 74.89 S e e 1:51 15:15 5364 69.68 0% o 2:29 15:47 9942 7116 g% St

dataset simulated, m = 200 simulated, m = 400 simulated, m = 800
H. sapiens H. sapiens H. sapiens
time cputime memory correctly mapped mapped pairs time cputime memory correctly mapped mapped pairs time cputime memory correctly mapped mapped pairs

method [min:s] [min:s] [Mb] pairs [%] (%] [min:s] [min:s] [Mb] pairs [%] (%] [min:s] [min:s] [Mb] pairs [%] [%]

Bowtie 2 2:05 24:14 3439 99.29 Mo v wa 743 90:09 3544 99.81 0 orme 7102 850:50 4380 99.90 00 o
g nwa 10:39 9033 6790 8424 M0 mwe s 35 37852 11137 7110 0% S16WO 6208 56837 10955 4578 (om0 moo
2 Soap2 2:05 1655 5667 7189 M v ew 446 4357 6385 4964 0% 2 EO Q116 11105 7385 28.27 [0 o
i R3-100 2839 327:39 3759 7491 MO0 U4 50 3407 390:25 5366 69.68 0 S wn o 47.09 539:22 9944 7111 S0 0% w0
2 R399 2503 285:08 3759 7491 Mo va se 9730 31219 5366 69.68 0 S w3857 44306 9944 TLA1 D o e

R3-95 2414 27523 3759 7490 M T 6o 9803 319:08 5366 69.68 I U 3330 366:04 9944 7111 2 0% um

mrFAST 217:29 216007 14319 8477 Mo U0 32845 1991:56 13630 1810 3% 1% 0 104359 9427:14 18019 [NBLOTEESEEN 2371 ov oo
i SHRIMPZ ~ 996:11 10678:56 39094 99.98 M0 7 60 334349 187639:34 48973 99.86 0 ol 9 - - - - -
é‘ R3-100 2959 34342 3759 7491 0 v e 331 378:50 5366 69.68 0 S 6% 4327 49553 9944 - 71T S0 0w
< R399 2631 30245 3759 7491 MO0 U9 650 2640 299:26 5366 69.68 0 S wn 3334 36536 9944 7111 S0 0% w0

R3-95 2521 28857 3759 7490 M0 vw 60 9634 30032 5366 69.68 0 S w337 366:30 9944 711 D o e

Table E.7: Extended experimental results for long simulated paired-end data, extending Table 4.5b. The results are shown for 1 M paired-end reads
of the given lengths simulated with Mason using the default Illumina error model. Some mrFAST processes crashed for the D. melanogaster m = 400
and H. sapiens m = 400 and m = 800 datasets which explains the low number of mapped reads. SHRiIMP 2 was not able to map the 800 bp human
dataset within 96 hours.

Appendix F

Full Error Correction Tables

This appendix contains further tables for the read error correction evaluation presented in Sec-
tion 3.4.

207

Appendix F Full Error Correction Tables

organism accession genome length
B. pertussis 18323 NC_018518.1 4043 846
C. elegans ENSEMBL release 60 100 286 070
D. melanogaster ~ flybase r5.29 120381 546
E. coli K-21 NC_000913.2 4639675
E. coli O104:H4 NC_018658.1 5273097
H. sapiens GRCh37 2861343787
P. falciparum 3D7 ASM276v1 23264338
P. syringae NC_007005.1 6093698
S. aureus LGA251 NC_017348, NC_017349 2799725
S. cerevisae NCBI release 54 12156 676

Table F.1: Identifiers and sources of the reference sequences used in the evaluation and their lengths.

organism accession avg. length read count coverage Gbp
B. pertussis ERR1615412 142 bp 2464690 85x 0.3
C. elegans SRR443373! 100 bp 29657035 30x 3
D. melanogaster SRR018294! 75bp 9463720 5z 0.7
D. melanogaster SRR492060° 76bp 51727822 28x 34
D. melanogaster SRX016210! 544 bp 4692 486 18x 2.2
E. coli K-12 ERR0220757 100 bp 22720100 490x 2.3
E. coli K-12 ERR0220757 100 bp 1378122 30x 0.14
E. coli K-12 SRR000868! 253 bp 230517 13x 0.06
E. coli K-12 ERR0394772 92bp 390976 8x 0.04
E. coli K-12 SRR6111402 162 bp 4669 065 163x 0.8
E. coli K-12 SRR6204257 170 bp 4237734 156x 0.7
E. coli 0104H4 SRR254209° 178 bp 977971 32x 0.2
H. sapiens SRR12385392 177bp 186 132 134 11x 315
P. falciparum ERR161543> 154 bp 1959564 13x 03
P. syringae ERR005143/ 36bp 14204532 42x 0.26
S. aureus ERR236069> 228 bp 1338 465 109x 0.31
S. aureus SRR070596! 514 bp 185384 34x 0.1
S. cerevisae SRR031259/ 36 bp 7485708 22x 0.27
S. cerevisae SRX039441" 274bp 690 237 16x 0.19

Table F.2: Information on the read sets used in the evaluation.

! 454. 2 Ton Torrent,’ Illumina.

208

60¢

ALG Blue Coral Echo Fiona Hitec Quake Racer

data set time mem time mem time mem time mem time mem time mem time mem time mem
C. el. (30x) 50.2 13.3 35.0 5.7 129.3 49.3 — 218.2 21.8 — 13.9 9.8 13514 10.2
D. mel. (30x) 68.2 15.5 20.2 6.1 143.5 53.5 — 113.6 33.9 — 24.8 2.7 31.5 8.1
D. mel. (5x) 8.2 3.2 11.7 4.7 174 175 279.1 11.3 28.5 6.2 106.2 13.7 21.1 10.6 6.7 6.6
E. col. (30x) 3.0 0.7 0.5 0.2 3.5 3.5 60.9 3.3 4.1 1.7 176 2.6 0.7 0.2 0.8 0.3
E.col. (490x) 41.2 9.1 84 0.7 1952 24.9 — 40.1 17.2 351.0 9.9 7.2 0.7 11.7 1.5
P. syr. (21x) 20 0.6 1.2 04 1.5 3.7 50.0 5.6 3.3 1.6 11.5 2.5 3.8 0.2 0.6 04
S. cer. (22x) 3.5 1.1 28 0.7 8.0 5.2 87.9 10.0 44 3.1 25.0 5.0 208 04 1.1 0.8

Table F.3: Running time (in minutes and fractions thereof) and memory consumption (in GB, rounded to the next GB) on lllumina data.
! The program crashed. The program ran too long. The problems were: Coral and HiTEC produced a segfault, requiring more than 72 GB of memory. ECHO was

killed after running more than 4 days in the case of C. elegans and D. melanogaster data sets and the subprogram NeighborJoin crashed on the full E. coli data set.

01¢

A-LG Blue Coral Coral* Fiona HybridShrec HybridShrec-F
data set time mem time mem time mem time mem time mem time mem time mem
D. mel. (18x) 145.0 10.7 61.6 6.1 496.1 59.1 1414.1 59.6 242.2 16.9 333.2 41.4 499.5 41.5
E. col. (13x) 26 0.3 0.5 0.2 3.4 29 4.4 2.9 27 1.0 7.1 4.8 9.2 8.1
S. aur. (34x) 3.0 0.6 2.2 0.8 5.5 4.7 1122 438 10.1 1.3 12.0 14.2 13.6 14.8
S. cer. (16x) 6.5 1.0 3.9 13 7.1 5.1 19.6 5.1 13.2 1.7 22.5 14.6 30.5 14.9
B. pert. (85x) 6.0 1.7 6.3 1.0 13.5 9.2 81.2 94 26.1 3.0 8.3 16.7 94.0 20.8
E. col. (8x) 1.0 0.2 0.5 0.5 0.8 2.6 09 26 22 1.0 4.8 5.0 5.0 11.8
E. col. (153x) 150 7.2 10.0 1.1 249.1 12.0 290.1 11.9 50.5 7.8 1114 17.5 111.0 6.0
E. col. (160x) 14.2 3.5 12.0 1.1 243.0 13.2 373.8 13.2 70.5 9.1 111.3 188 160.2 6.1
H.sap. (11x)! 565.3 126.9 1056.1 94.7 —2 —2 1118.5349.7 —2 —2
P. falc. (12x) 5.6 14 7.2 20 11.0 11.0 24.8 11.4 14.5 3.0 38.9 16.0 49.7 20.3
S. aur. (109x) 4.4 14 9.7 1.3 12.0 12.9 175.8 13.3 33.7 2.7 51.1 17.5 53.8 29.1

$2]qD] UO1192.4400) A0LIT [N] X1puaddy

Table F.4: Running time (in minutes and fractions thereof) and memory consumption (in GB, rounded to the next GB) on 454 (top) and IonTorrent
(bottom) data.
! The programs were run on machine with 16 physical and 32 virtual cores and 370 GB of RAM. ? Out of memory.

112

original Coral -e 0.07

Coral -€0.10

Coral -e0.15

Coral -€0.20 Coral -€0.25

data set e-rate e-rate gain e-rate gain e-rate gain e-rate gain e-rate gain
B. pertussis 85x 3.71 3.71 0.02 3.71 0.06 3.69 0.40 3.55 4.18 2.57 30.60
D. melanogaster 18x 1.17 0.72 38.81 0.58 50.68 0.55 53.30 -1 -t -t
E. coli K-12 13x 1.06 0.54 49.42 0.43 59.25 0.38 63.79 0.39 63.28 0.41 61.46
E. coli K-12 8x 0.62 0.33 46.86 0.30 51.86 0.32 48.07 0.36 42.47 0.40 35.72
E. coliK-12 162x 1.46 0.59 59.70 0.41 71.62 0.38 73.72 0.39 73.11 0.42 71.37
E. coliK-12 156x 1.11 0.43 61.07 0.32 71.37 0.28 74.70 0.29 73.60 0.32 70.59
E. coli O104:H4 32x 5.19 5.19 0.00 5.19 0.03 5.15 0.66 4.80 7.44 3.44 33.82
P. falciparum 3D7 13x 5.06 5.05 0.03 5.05 0.17 497 1.60 4.57 9.65 3.80 24.94
S. aureus 109x 3.32 3.32 0.24 3.29 1.08 3.03 8.90 1.92 42.38 1.44 56.91
S. aureus 34x 1.76 1.76 0.00 1.73 2.09 1.51 14.23 1.00 43.51 0.44 74.90
S. cerevisae 16x 0.95 0.95 0.56 0.94 1.06 093 2.41 0.92 2.99 1.01 -5.84

Table F.5: Complete list achieved for different parameterizations of CoraLr. The values selected for Coral” are highlighted in bold.

! Coral did not finish within 24 h.

original HS* HsF HS* HsF HS* HsF HS* HsF HS* Hs” HS* Hs”

-s 2 -s 2 -s3 -s3 -s 4 -s 4 -s5 -s5 -s 6 -s6 -s7 -s7
data set e-rate e-rate gain e-rate gain e-rate gain e-rate gain e-rate gain e-rate gain e-rate gain e-rate gain e-rate gain e-rate gain e-rate gain e-rate gain
B. pertussis 85x 3.71 -t -1 407 968 -1 -1 411 -1080 -t o415 -11.83 -t o417 1261 -1 -1 420 -13.22 12.44 -235.48 418 -12.78
D. melanogaster 18x 117 13.89 -1,086.21 1.15 1.89 1417 -1,109.80 108 7.94 10.72 -81356 -' -! 446 -27951 073 3817 -1 -1 1 1 1 e
E. coli K-12 8x 1.06 120 -12.98 0.81 2352 064 4005 0.70 3428 -! e R LR - R !
E. coli K-12 13x 0.62 120 -93.69 0551050 097 -56.04 046 2555 0.36 41.81 037 4026 -' . B
E. coli K-12 163x 146 173 -18.90 146 000 181 -2385 146 000 186 -27.80 146 000 190 -3045 146 000 194 -33.01 146 000 207 -41.73 146 0.00
E. coli K-12 156x 111 138 -2415 111 000 145 -3062 111 000 150 -3516 111 000 153 -3776 111 000 156 -40.71 111 000 168 -5148 111 0.00
E. coli 0104:H4 32x 5.19 540 -398 516 051 544 -482 516 061 556 -7.11 515 077 579 -1156 512 135 608 -17.35 483 687 439 1536 431 16.76
P. falciparum 3D7 13x 506 1327 -16226 5.14 -1.76 1138 -124.62 487 354 7.67 -51.29 463 850 -' -1 -t -t -t -1 - -t
S. aureus 109x 332 377 -13.44 331 032 3.89 -17.02 332 004 404 -21.57 333 -0.33 426 -2801 335 -0.88 455-3689 338 -164 500 -50.38 3.41 -2.79
S. aureus 34x 1.76 226 -2803 168 460 228 2971 170 377 264 -4979 170 335 311 -7657 172 251 250 -41.84 153 1339 159 9.62 1.40 20.50
S. cerevisae 16x 0.95 257 -169.97 092 3.67 317 -23371 088 7.09 206 -116.27 076 19.85 090 548 073 2311 -+ -t 1 11 S

Table F.6: Complete list achieved for different parameterizations of HyBRIDSHREC. The values selected for HYBRIDSHREC* and HyBRIDSHREC! are high-

lighted in bold.

1 Corat did not finish within 24 h.

Appendix G

Extended Variant Calling Results

ABYSS SGA

repeats data set ins. Mbp rec. Mbp r.-rate e.-rate ins. Mbp rec. Mbp r.-rate e.-rate
C. elegans 2.44 2.20 90.4 0.01 2.44 2.25 92.5 0.01
no chr. 22 2.45 2.14 87.5 .01 2.44 2.29 93.8 .01
D. melanogaster 2.51 2.42 96.4 .01 2.49 2.43 97.6 .01
C. elegans 7.34 2.75 37.5 0.38 7.15 4.01 56.0 0.49
yes chr. 22 7.28 2.72 37.3 0.38 7.12 4.11 57.8 0.49
D. melanogaster 7.50 2.84 37.9 0.39 7.35 4.37 59.4 0.50

ANISE MINDTHEGAP
repeats data set ins. Mbp rec. Mbp r.-rate e.-rate ins. Mbp rec. Mbp r.-rate e.-rate
C. elegans 2.04 1.91 93.6 0.02 1.76 1.71 97.1 0.03
no chr. 22 2.06 1.96 95.4 0.02 1.01 0.98 96.6 0.03
D. melanogaster 2.36 2.33 99.0 0.01 2.36 2.34 99.1 0.01
C. elegans 6.26 5.80 92.6 0.25 4.18 3.76 89.9 0.65
yes chr. 22 5.97 5.72 95.8 0.26 2.14 1.86 86.8 0.65
D. melanogaster 6.84 6.65 97.2 0.25 5.91 5.38 91.1 0.66

Table G.1: Insert assembly results on simulated insertions into real biological sequence for homozyous insertions.
The table shows the number of inserted Mbp (ins. Mbp), recovered Mbp (rec. Mbp), recovery rate r.-rate (in %), and error rate
e-rate (in %) of the assembled sequence. The values for inserted and r.-rate are given for the sites that the methods attempted to
assemble. The table shows results for the homozygous data sets without (first three rows) and with (last three rows) repeated
insertions. The best values for recovered sequence and error rate in each row are underlined.

213

Appendix G Extended Variant Calling Results

total recovered [%]

total recovered [%]

total recovered [%]

100
80
60
40 +
ANISE ——
MindTheGap —=—
20 - ABYSS —o—
SGA —o—
0 1 1 1 1 1 1 1 1 1 1
500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0 I I I I I I I I I I

window number

(a) C. elegans, no repeats

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
window number
(c) human, chr. 22, no repeats
100
80
60
40 -
20
0 Il Il Il Il Il Il Il Il Il Il
500 1000 1500 2000 2500 3000 3500 4000 4500 5000

window number

(e) D. melanogaster, no repeats

total recovered [%]

total recovered [%]

total recovered [%]

100

80

@
=1

N
o

20

100

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

window number

(b) C. elegans, repeats

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

window number

(d) human, chr. 22, repeats

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

window number

(f) D. melanogaster, repeats

Figure G.1: Percentage of recovered sequence data for the homozygous data sets with and without repeats.

214

Appendix H

BLAT Identities and Scores

While the BLAT (Kent, 2002) executable itself does not yield an identity or score in its output
files, the web front-end does. However, the BLAT FAQ! explains how to obtain these identities
and scores. The computation is reproduced here to make the description of the evaluation more
self-contained and precise.

Algorithm H.1 shows the computation of BLAT identity, adapted from the BLAT website. For
this, the algorithm computes the BLAT error rate, the number of errors per hundred nucleotides.
BLAT computes the following values for each of its match. The begin and end position in the
query and reference sequence, the number of matches of bases marked as non-repeats and the
number of matches marked as repeats, the number of gaps in each sequence, and the number of
bases in gaps in each sequence. The identity is computed from these values, giving gaps a lower

"http://genome.ucsc.edu/FAQ/FAQblat. html#blatd

215

http://genome.ucsc.edu/FAQ/FAQblat.html#blat4

Appendix H BLAT Identities and Scores

weight than in edit distance identity or even BLAST scores.

Algorithm H.1: BLAT Identity Computation
/* Get length of the match and return 100% in case of the match being

empty. */
qAliSize < qEnd - qStart; /* Length of match in query. */
tAliSize < tEnd - tStart; /* Length of match in reference. */

aliSize <— min(qAliSize, tAliSize);
if aliSize = 0 then
| return 100;

end
sizeDiff < max(0, qAliSize - tAliSize);
insertFactor <— qNumlInsert; /* number of query bases aligning to gaps */
total = (numMatches + numRepeatMatches + numMismatches);
if total = 0 then
‘ return 100;
else
errorRate <— (numMismatches + insertFactor + round(3 * log(1 + sizedDif)));
errorRate <— 100 - errorRate;
errorRate < errorRate / total;
return 100 - errorRate;

end

The BLAT score computation is shown in Algorithm H.2, again adapted from the BLAT website.
Basically, the score is the number of matches minus half the number of mismatches and gaps in
either sequence (but not number of bases aligned against gaps).

Algorithm H.2: BLAT Score Computation

score = (numMatches + numRepeatMatches / 2);
score = score - numMismatches - qNumlInsertions - tNumlInsertions;
return score;

216

Appendix |

Cluster Linking Algorithms

This appendix describes the ideas and algorithm behind the copy separation in ANISE in more
detail. The algorithms presented here are based on the algorithms by Kuchenbecker (2011), and
the corresponding algorithm from Kuchenbecker are given as appropriate. The algorithm listings
here are only a small improvement to the original work by Kuchenbecker in that I removed
some small bugs. Further, they are not presented using Kuchenbecker’s set-based notation but a
representation that is closer to my reimplementation and I find them easier to understand in this
form.

Introduction

When two or more different regions from the genome are very similar, reads sampled from these
partitions will be assembled into the same contig. However, one would expect small differences
in these two regions, i.e.,, SNVs or small indels.

Such differences in the MSA of the assembled reads can be detected using Tammi’s (Tammi et al.,
2002) test. The test considers pairs of columns that share reads and have characters deviating
from the column’s consensus. The number of coinciding deviations (i.e., occuring in the same
read) from the consensus are counted and then checked for statistical significance. A result of
this approach is that singular separating columns cannot be used for separating copies.

When reads span more than one of these local partitions, the idea is to try to combine this infor-
mation into larger clusters of the reads as outlined in Section 5.4.3.

The numbers 0, . . . , k—1 are assigned to the found k separating columns and also assign numeric
ids to each read. Let char(i, ¢) be the character of read i in column c.

One can now create partitions of the reads with id ¢ overlapping a column ¢ with the character
of char(4, c). Reads having a character N in ¢ are ignored. In the example, in column 0, the reads

217

Appendix I Cluster Linking Algorithms

0, 1, and 2 have the same value as do have 3 and 4 and it is known that the value in this column
for each from the first set is different from the second set. The first set conflicts with the second.
Similarly, in column 1, the partition entry {0, 1,2} conflicts with {3,4,5,6}. Thus, this would
yield the partition {{0, 1,2}, {3,4}} for column 0 and {{0, 1,2}, {3,4,5,6}} for column 1.

Further, the fact that some reads span more than one column is used to get to a separation of the
reads in larger regions. For example, given the information from the example, two read clusters
{0,1,2} and {3,4,5,6} can be obtained, each containing reads from one copy.

Note that the number of copies is not known in advance and might be larger than two. It is known
that a similar problem, the haplotyping of biallelic (similar to two copies in this case) from paired
reads is NP-hard (Bonizzoni et al., 2003). Thus, the method presented here does not attempt to
optimally solve this problem but uses a rather simple heuristic. Figure 5.15 in Section 5.4.3 of the
main text gives another example that includes mate pairs.

Algorithm Overview

The algorithm works in an iterative fashion. For each contig in the assembly, the algorithm
processes the columns from left to right, the contigs are processed in arbitrary order.

The algorithm maintains two data structures: first, a set of global clusters G and second a set of
conflicts C' between two global clusters. Each entry of G is a pair (4, .S) with a unique integer
identifier ¢ and a set of read ids S with the reads in this cluster. C simply stores unordered
pairs {i, j} of global clusters that were previously determined to be conflicting. Both are easily
implemented using binary search trees which also allows access to the members of G by cluster
id and membership queries of S from two read ids in logarithmic time. For a given global cluster
id 7, the corresponding set S read can be retrieved with G[i]. Note that a read might be a member
of multiple global clusters.

A top level view of the algorithm is shown in Algorithm I.1. The subroutines used are ex-
plained below in this section. For the initial local partition, multi-class-assignment-removal(p)
and refine-global-partition(p) do not do anything, thus global-class-assignment(p) is described
first.

Global Class Assignment

Algorithm 1.2 (p. 221) shows the code for the global class assignment. The input is a local read
partition, i.e., a partition of the ids of the reads that span a local feature such as a separating
column. The partition is given as a list of sets with read ids, thus each local partition entry has
an index. First, for each entry e of the local partition, the algorithm determines the ids of global
clusters that share a read with e. If none such cluster can be found, a new global cluster is created.
In the case that more than one such global cluster could be found, global classes are merged using
the routine global-class-merging as described below. After this merging, each read from e that
is not in any global cluster yet is assigned to all global clusters previously identified to overlap
with e. Finally, local conflicts from p are projected to the global conflict set C.

218

Algorithm I.1: Cluster Linking Overview

G+ 0; /* Initialize G and C */
C + 0
nextID + 0; /* next id to use for G */

for local partitions p do
/* globalize local partitions */
multi-class-assignment-removal(p);
global-partition-refinement(p);
global-class-assignment(p);
end
Remove duplicated classes ; /* Finalize */

Note that in the description above, the test for “sharing reads” is actually implemented as a test
for a minimal overlap in read ids with a threshold of 2 (a user-configurable parameter).

The routine global-class-merging() shown in Algorithm 1.3 (p. 222) takes as the input the set
of global cluster ids identified in Algorithm L2. First, the routine identifies a subset of non-
conflicting clusters of the set ids and also computes its complement. If this set of non-conflicting
clusters is not empty then a new cluster is created with the non-conflicting ids. The new clus-
ter inherits all conflicts of all merged clusters and the conflicts between all merged clusters are
removed.

The global class assignment algorithm and all other algorithms in this section describe the pro-
cessing of single-end reads only. The extension to handling read pairs is straightforward and
implemented as follows in ANISE. In each case where a read id is added to or removed from a
set, the id of its mate is also added to/removed from the set. The same is true for the conflict set.

Multi-Cluster Assignment Removal

The routine multi-cluster-assignment-removal() is first called in the cluster linking algorithm’s
main loop shown in Algorithm 1.1 (p. 219). The aim of this routine is to resolve assignments of
a read to multiple global clusters. Such assignments occur when a read is locally linked to two
or more reads that are assigned to different global clusters from a previously processed sites.
Algorithm 1.4 (p. 223) shows this routine.

For each entry e in the local partition p, the algorithm determines the unique aligned reads from
e and store them in w. The algorithm also builds a list of global clusters that each r € e is assigned
to. Then it removes r from global clusters that it has been assigned to, for each r € e that are
not uniquely assigned.

219

Appendix I Cluster Linking Algorithms

Global Cluster Refinement

A refinement of the global clusters is required if reads that have previously been assigned to the
same class are separated by the local partition p for the first time. If a global cluster is linked to
more than one entry in p, those reads that have been locally separated are reassigned to a new
global cluster. This is shown in Algorithm L5 (p. 224).

First, the algorithm collect the potentially refining local partition entries for each global cluster
with id 7 in refining[i]. Then, each global cluster that has more than one partition entry in
refining|[é], is split using the entries. After each splitting, the class split is recorded in C, the
new class inherits all conflicts from the previous class.

Final Duplicate Class Removal

After processing all local partitions, there might be two or more classes that pairwisely contain
the same reads. In the final duplicate class removal step, the method removes such duplicates.

220

Algorithm 1.2: global-class-assignment(ids), Algorithm 7 from (Kuchenbecker, 2011)

input : local partition p

side-effects: Updates GG and C' to reflect the information of ids.

/* Collecting mappings (i,S) from entry id in p to set of ids in G. For

each entry in p with ids ¢, record all entries in GG with ids j where a
read from ¢ was assigned to j. This is used for the projection in the

conflict projection at the bottom; */
assignments < (0;
/* Process all partition entries. x/

for each partition entry e with id idx in p do
/* Collect ids of global clusters that share a read with e or create a

new cluster if no such read is found */
ids« {i:(;,5) e Gst.IrecenreS}
if ids = () then /* no global cluster shares a read with e */
G < G U {(nextID, 0}); /* create a new empty cluster in G */

ids < {nextID};
nextID < nextID + 1;
end
/* Merge global clusters in (G with selected ids since they occured in
the same local partitionm. */
if |ids| > 1 then
‘ global-class-merging(ids);
end
/* Assign each read r (yet not seen in any global cluster) from e to all
clusters that e shares a read with */
for eachread r € e do
if not r € S for any (7, .5) € G then
for ¢ € ids do
Gli] « G[i]U {r};

assignments[idx] < assignments[idz] U {i};

end
end
end

end

/* Project conflicts from p to C. */
for each unordered pair of {(7, S), (j,7')} from assignments do

| C+Cu{ijk
end

221

Appendix I Cluster Linking Algorithms

Algorithm 1.3: global-class-merging(ids), Algorithm 8 from (Kuchenbecker, 2011)

input : set of global cluster ids
side-effects: Merges clusters in GG and updates global conflicts S accordingly
returns :updated ids after merging

/* collect entries of ids that are in conflict with another entry in ids
conflicting <— {i,j: i €ids Aj € ids A {i,j} € C};
non-conflicting <— ids \ conflicting;
/* no merging if there are no non-conflicting ids
if non-conflicting = () then
‘ return;
end
/* create new global cluster
newlD < nextID;
R« Ucenon-conﬂicting G
G <+ G U {(newlD, R)};
nextID < nextID + 1;
/* build list of conflicts to remove and to add
toRemove, toAdd <« 0, 0;
for {i,j} € C do
if ¢ € non-conflicting V j € non-conflicting then
toRemove « {i,5};
if ¢+ € non-conflicting then
| toAdd « {newID, j};
else
‘ toAdd «+ {newlD,i};
end

end

end

/* update conflicts in C

remove entries of toRemove from C;

add entries of toAdd to C;

/* update global clusters in G

G + {(i,5) € G : i & non-conflicting};

/* build result

result < {i € ids : ¢ & non-conflicting} U {newID};
return result;

/* Merge non-conflicting classes.

*/

*/

*/

*/

*/

222

Algorithm I.4: multi-class-assignment-removal(ids), Algorithm 5 from (Kuchenbecker, 2011)

input : local partition p
side-effects: Updates G to contain fewer multi-cluster assignments.
for each entry e € p do
u <+ 0; /* set of read ids that have an assignment to only one cluster
/* { is a mapping (i,5) from read id i to set of all global cluster ids
that contain read with id 4
0+ 0
/* collect uniquely assigned reads in u and build mapping /
for eachread r € e do
lr] < {i:re G} /* ids of global clusters containing r
if |¢[r]| = 1 then
u < ulUg;
end
end
/* remove multi-assigned reads that occur in p
for each read r € p do
for each global clusterid g € S, g & u with S = ¢[r] do
| Glgl + Glgl\ {r}:

end

end

end

*/
S
*/
*/

*/

*/

223

Appendix I Cluster Linking Algorithms

Algorithm L.5: global-cluster-refinement(ids), Algorithm 6 from (Kuchenbecker, 2011)
input : local partition p

side-effects: Updates G by splitting/refining global clusters by separating information from p.
/* collect refining entries for each global cluster */
refining «+ ();
for each entry e € p do
for eachread r € e do
foreachi € {i:r € G[i]} do
refining|i] < refining[i] U {e};

end
end
end
/* refine clusters */
G’ + 0; /* added global clusters */

for each global cluster (i,.5) € G do

if |refining[i]| > 1 then

for each local partion entry e € refining[i| do

newlD < nextID; /* create new cluster */
G’ + G' U {(newlD, 0});

nextID < nextID + 1;

for eachread r € e do /* Perform splitting */
if r € S then
S« S\{rk
G'[newID] <~ G’'[newID] U {r};
end
end
Record class split in C: The new class G'[newID] inherits all conflicts of G[i].
end
end
end
G+ GUG, /* add new global clusters */

224

Abbreviations

1KGP thousand genomes project
2GS second-generation sequencing
3GS third-generation sequencing

ABI Advanced Biotechnologies, a biotechnol-
ogy company
ANISE Assembly of Novel Inserted Sequence

ASCIl American Standard Code for Informa-
tion Interchange

BAM Binary Alignment and Mapping format
BASIL Base-level Insertion Locator

BFS breadth-first search

BOG best overlap graph

BWT Burrows-Wheeler Transform

CMOS Complementary Metal Oxide Semi-
conductor

CNV copy number variation

CPU central processing unit

ChIP chromatin immunoprecipitation
DAG directed acyclic graph

dbSNP a database of small polymorphisms

DNA Deoxyribonucleic acid

DP Dynamic Programming
EBI EMBL European Bioinformatics Institute

EMBL European Molecular Biology Labora-
tory

EMBOSS European Molecular Biology Open
Software Suite

ENA European Read Archive

FASTA text format for encoding biological se-
quences

FASTQ text format for encoding biological se-
quences with quality information

FDA Food and Drug Agency

FDR false discovery rate

FN false negative

FP false positive

GB gigabyte (23 bytes)

GHz gigahertz

GSI gold standard intervals

GWAS genome-wide association studies
HGP Human Genome Project

HTS High-Throughput Sequencing
ID identifier

225

Appendix I Cluster Linking Algorithms

LBA local block aligner
LINE Long Interspersed

MCSTL Multi-Core Standard Template Li-
brary

NP Nondeterministic-Polynomial
MSA Multiple Sequencing Alignment
MST Maximum Spanning Tree

NCBI National Center for Biotechnology In-
formation

NGS Next-Generation Sequencing
OEA One-End Anchored

OLC overlap-layout-consensus

PR paired read

QC quality control

RABEMA Read Alignment Benchmark
RAM random access memory

RD read depth

RNA Ribonucleic Acid

226

SAM Sequence Alignment and Mapping for-
mat

SIMD Single Instruction Multiple Data
SNP Single Nucleotide Polymorphism
SNV Single Nucleotide Variant

SOLiD Sequencing by Oligonucleotide Liga-
tion and Detection

SRA Sequence Read Archive

SR split-read

STXXL STL variant for “XXL” datasets
STL Standard Template Library

SV Structural Variant

SeqAn a C++ library for sequence analysis
TB terabyte (20 bytes)

TN true negative

TP true positive

VCF Variant Call Format

w.l.o.g. without loss of generality

Index

A
adapter removal 24
algorithm engineering 7
alignment
containment.................. 18, 117
global 14, 17
multiple sequence. 13, 24, 112
overlap 14, 18, 111, 117
pairwise 13, 15, 101, 112, 122
Y70 (S 13,63
semi-global 14, 18
spectral 24, 26
ANISE......ooviiiiiin... 106, 184, 215
approachol 15
approximate search.................... 15
assembly
denovo..................... 23, 29, 93
haplotype...............oo il 88
msert............... ... o 106
large insertion 86
metrics oo 29
OLC. . 106
step ... 106
targetedl 93, 106
assembly approach 93
B
base
calling.......... ...l 21

quality ... 22
BASIL ... 95, 184
BLAST.................. 122, 130, 141, 214
BLAT ..o 93, 136, 213

identity 136, 213

SCOTE . o vt ettt e 136, 213
breakpoint 5,59, 92, 95, 106
BWA ... 52, 93,98, 121, 136

C
chaining algorithm 103
clipping signature 99
clipping support.................. ..., 99
cluster

clipping see clipping signature

global 114, 216

globalization..................... 215

linking 113

local ... 113, 215

OEA............... see OEA signature

OEA selection.................... 126

signal ... oo 92
connected component 119
consensus computation 109
contig............. 6, 29, 106, 121, 133, 215

anchoring 134
coverage. .6, 19, 24, 34, 86, 89, 101, 107, 124,

127, 135
cycle

227

Index

directed oL 117
undirected, 117
D
deletion...............oooiiiiiiL 13
DNA . 2,12
DNAS . 12
dynamic programming............. 15,120
alignment matrix.................. 45
E
edit
distance 13, 54
transcript.......... ... oo ool 13
error landscape 47, 53
lakes ... 47
smoothing 48
errorrate........... o 120
F
false discoveryrate.................... 31
feasible alignment..................... 49
FMindex ..., 62
G
genotype il 5
genotyping ..., 87
gold standard
insert assembly 121
read error correction 29, 34
read mapping............... 48,53, 75
graph
bestoverlap...................... 110
bipartite 104
deBruijn................ ... 93
directed 117
scaffold....... ... L 117
H
Hamming
distance 12, 54
neighborhood..................... 13
haplotype................ il 5
heterozygous.............l 5
heuristic
dead-branch removal 119

228

directional tree-growing 119
read mapping 59
setcover............. ...l 127
homozygous 5
hybrid approach.................... ... 93

I
indel 13
Infix. ..o 12
mmsertioncveiiniinin.n. 13, 88
duplication 88
large ... 97
medium 96
mobile element.................... 88
novel............ il 88
small.......... 96

K
k-mer 62
-based methods 74
analysis..................... 130, 135
content.............. 23
counting................... 59
enumeration................. 66
filter i 109
frequency.......... ...l 25
index 62, 65,110
lemma..........................L 60
spectrum...................... 25,26
k-trace equivalence.................... 49

L
LBA 120, 123, 127
lexicographic sorting 19, 63, 100
linear scanning 18, 101

low-complexity regions. . . see repeat region

M
match
editdistance................... 15, 50
equivalence.............. 50
formal definition 48
Hamming distance 14
stratum........... .. . ool 51
1000110 | T 52

maximum spanning tree 117
maximum weight matching 104
method........... L. 15
metric......... ... 120, 131, 133
read error correction............... 28
readquality....................... 22
string distance 12
mismatch............. 12
mobile element 88,101, 112
N
neighbor equivalence 49
(o)
OEA
alignment 121
cluster selection.................. 126
readpair ...l 96, 106
signature 98
support (forward/reverse).......... 98
P
paired read approach 92
parallel
breakpoint prediction............. 100
insert assembly 109
read error correction. 28
read mappingoo.... 64
path
enumeration..................... 120
selection, 111
phred quality see base quality
pigeonhole principle................... 59
generalized 59
polymorphism 5
single nucleotide.............. 5,7, 88
prefix. 12
protein il 4
Q
quality control 22
R
RABEMA............. 52,184, 193
oraclemode.............. 53
real-world mode................... 54

Index

RAZERS3.............. 54, 62,107, 184, 193
read
anchor.................... 92, 96, 106
mate-pair................... 51, 59, 99
orphan................... 99, 107, 122
paired-end....... 42,59, 75, 95, 98, 175
shadow .. 96, 99, 102, 106, 122, 135, 136
single-end.............. 42,75, 96, 175
template size.52, 56, 59, 78, 99, 101, 133
trimming 24, 42
read depth approach................... 93
read error correction................... 24
read mapping 7, 23, 29, 41, 42, 57, 62, 86, 92,
107, 184
all ... 51, 54
all-best..................... 51, 54, 74
any-best 51, 54, 74, 88
paired.......... 51, 56, 75, 95, 133, 149
single-end.................. 42,50, 75
split.............o.l 92, 96, 100, 149
read simulation....... 75, 122, 127, 175, 184
realignment 86, 112, 184
recovery errorrate 127
recoveryrate 120
TECUrSion see recursion
relation............................... 12
equivalence.............., 12
TECUITENCE . . vt v vvee e eeeeaennn 15
reflexive............ 12
symmetric................ooo ... 12
transitive............. 12
repeatol 94
-edinsert........................ 126
-ed sequence................. 106, 122
Alu.o 5
COPIES ..\t 123
genomecontent................... 58
LINE-1 ... 5
region........... ..ol 43
regions. ..., 56, 135
separation....................... 106
tandem........................... 45
repeatregion.......................... 26
RNA. ... 4

229

Index

S
scaffolding................, 58, 117
seed ... 59

approximate 61
overlapping....................... 61
spaced. ... 61
sensitivity............... 31, 53, 60, 74, 127
full.oooo 63
separating column.................... 113
separating position.................... 49
SeqAn........... ...l 7,9,17, 183
sequencing 1, 5, 21, 57, 85, 113, 133, 175, 179
454 Ppyro- ... 180
high-throughput 6
Muminao..... 180
IonTorrent....................... 180
RNA-seqoooo .. 24,42
Sanger............ .o ool 6
SANEET ..ottt 179
single molecule................... 181
setcover............. il 103
heuristic..................... 103, 127
software engineering 183
specificity oL 31,78, 127
split read approach 92
STELLAR..... 93
SENG . 12
distanceol 12
string filter 60, 66, 109
substitution............ oL 13
suffix. ... 12
suffixtree.........o 19, 24
generalized 20
SWIFT filter........ ...t 62

T
T-stringoooee e 26
topological sorting 118,119
trace equivalence...................... 49
tracetree................l 45
traveral

traceback............l 17
traversal
BES ... 111

230

forward 119
TEVEISE o v vttt e e eeeeaenn 119
\'%
variant
analysis ... 7
calling......... 79, 86, 88, 121, 143, 148
copy number............ ...l 88
novel insertion 88, 100, 106
simulationof 127,175, 184

single nucleotide . 4, 6, 26, 29, 43, 58, 75,

85, 86, 112, 143, 175, 215
structural 4, 59, 85, 88, 98, 137, 148, 176
VCF 104, 106, 121, 175

Curriculum Vitae

For reasons of privacy, the curriculum vitae is not part of the online version.

231

Eigenstandigkeitserklarung

Hiermit erklére ich, dass ich die vorliegende Arbeit selbststindig verfasst und keine anderen als

die angegebenen Hilfsmittel und Quellen verwendet habe.

Berlin, den 10.5.2015 (Manuel Holtgrewe)

233

	Contents
	Introduction
	Biological Background
	Sequencing and Resequencing
	Algorithm Engineering
	Thesis Outline

	Preliminaries
	Mathematical Preliminaries
	Logic
	Sets and Relations
	Sequences, Strings and Alphabets
	String Distance Metrics
	Alignments
	String Search

	Algorithmic Background
	Alignment Algorithms
	Alignment Kinds
	Linear Scanning Algorithms
	Suffix Trees

	Data Preprocessing
	Quality Control Measures
	Read Error Correction Approaches
	The Spectral Alignment Approach
	The Substring Tree Approach
	The Multiple Sequence Alignment Approach

	Read Error Correction Evaluation
	Evaluation Approaches
	Evaluation Metrics

	Read Error Correction Results
	Results on Illumina Data
	454 and IonTorrent data

	Chapter Conclusion

	Read Mapping
	A Formal Definition of Read Mapping
	Differences to Solving the Biological Problem
	An Intuition for Read Mapping Matches
	A Formal Match Definition
	A Formal Definition of Single-End Read Mapping
	Single-End Versus Paired-End Mapping

	Rabema — A Method for Benchmarking Read Mappers
	Gold-Standard Generation
	Read Mapper Result Comparison
	A Peculiarity with Reverse-Strand Matches
	Possible Extensions to Rabema

	Read Mapping Approaches and Methods
	The Practical Setting of Read Mapping
	Theoretical Insights
	Filtration-Based Methods
	Index-Based Methods

	RazerS 3 — Parallel, Fully Sensitive Read Mapping
	Algorithmic Overview
	Parallelization Design
	Further Optimizations in RazerS 3
	The Parallelization in RazerS 3
	Filtration and Verification Performance Trade-Offs
	Evaluation of the Parallelization

	Rabema and RazerS 3 Results
	Evaluation Methods
	Results and Discussion

	Chapter Conclusion

	Variant Detection
	Small Variants
	Structural Variants
	Approaches and Methods for Structural Variant Calling
	The Paired Read Approach
	The Split Read Approach
	The Read Depth Approach
	The Assembly Approach
	Hybrid Methods and Others

	Basil — Insertion Breakpoint Detection
	Insertions Types and their Signatures
	Filter Pipeline Steps
	OEA Clustering Algorithm
	Clipping Clustering Algorithm
	Combining OEA and Clipping Signals

	Anise — Insert Sequence Assembly
	Overview
	Overlap-Layout-Consensus Contig Computation
	Copy Separation
	Scaffolding

	Evaluation Using Synthetic Sequence
	Evaluated Pipelines
	Recovery and Error Rate
	Evaluation Program LBA
	Synthetic Sequence Benchmark Setting
	Insert Assembly Results
	Discussion

	Evaluation Using Simulated Insertions in Real Biological Sequence
	Simulated Insertions Benchmark Setting
	Basil Cluster Selection Evaluation
	Insert Site Prediction Results
	Insert Assembly Results
	Discussion

	Evaluation using Real-World Data
	Filtration of Predicted Sites
	Filtration of Assembled Contigs
	Re-Anchoring of the Assembled Contigs
	Validation Using Fosmid Sequence
	Validation Using Capillary Sequenced Contigs
	Validation Using the hg38/GRCh38 Reference Sequence
	Validation Using the NCBI BLAST nt Database
	Validation Using Paired-Read Data
	Overlap of Predicted Breakpoints
	Sequence-Based Overlap of Assembled Contigs
	Discussion

	Chapter Conclusion

	Discussion and Conclusion
	Mason - Simulation of Nucleic Sequence
	Sequencing Technology Overview
	Contributions to Software Engineering and Usability
	Program Versions and Calls Used in the Evaluation
	Full Read Mapping Tables
	Full Error Correction Tables
	Extended Variant Calling Results
	BLAT Identities and Scores
	Cluster Linking Algorithms
	Abbreviations
	Index
	Curriculum Vitae

