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Preface

The research described in the first part of the thesis (Chapter 4) was pub-

lished in the journal PLOS ONE in 2014, under the title “Outlier-based

identification of copy number variations using targeted resequencing in

a small cohort of patients with Tetralogy of Fallot” [1]. The research

comprising the second part (Chapter 5), about epigenetic changes during

myogenic di↵erentiation, has not yet been published, but a manuscript

describing an important regulatory mechanism to promote myogenic dif-

ferentiation is in preparation. The last part of the thesis (Chapter 6) de-

scribes a pipeline to identify di↵erential exon usage from RNA-seq data,

and requires further investigation.

The full study in Chapter 4 describes a novel copy number variation call-

ing method to identify individual disease-relevant copy number variations

using exome or targeted resequencing data of small sets of samples. I

contributed to this paper by developing the method, writing the code and

testing the performance of the method. I evaluated the method using

publicly available data of eight HapMap samples and subsequently ap-

plied it to a small number of Tetralogy of Fallot patients. Furthermore,

I compared the method with tools published by others and was involved

in writing the manuscript. For the study described in Chapter 5, I car-

ried out the complete computational analysis of RNA-seq and ChIP-seq

data. Moreover, I proposed a regulatory mechanism that might promote

myogenic di↵erentiation and furthermore, was involved in preparing the

manuscript. For the last study (Chapter 6), I created a pipeline to identify

di↵erential exon usage from RNA-seq data meaning to identify the exons

that are either excluded or included. Furthermore, I compared the results

from our pipeline with a published method, Alternative Splicing Detector

(ASD).
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Chapter 1

Introduction

1.1 DNA and Gene Expression

Deoxyribonucleic acid (DNA) is a complex molecule that contains all of the genetic

information necessary to build and maintain an organism. Nucleotide units attached

to each other form a long stretch of DNA arranged in a double helix. Each nucleotide

consists of three components: a nitrogenous base, a five-carbon sugar molecule (de-

oxyribose in the case of DNA) and a phosphate molecule. The backbone of the DNA is

a chain of sugar and phosphate molecules. Each of the sugar groups are linked to one

of the four nitrogenous bases i.e. cytosine (C), guanine (G), adenine (A) or thymine

(T). In double-stranded DNA, A pairs with T and G pairs with C. In general, the

genome size is defined as the total number of DNA base pairs in the haploid genome.

For example, in humans there are about 3 billion base pairs per haploid genome.

Eukaryotic cells package their genomic DNA into chromatin and arrange it in the cell

nucleus as chromosomes. In humans, each somatic cell normally contains 23 pairs of

chromosomes (22 pairs of autosomes and one pair of sex chromosomes). One set of

23 chromosomes is inherited from the father and the other from the mother.

Genes are the working subunits of DNA that are transcribed into RNA molecules,

some of which (messenger RNA or mRNA) are translated into proteins [2]. Unlike

double-stranded DNA, most RNA molecules are single-stranded and contain the un-

methylated form of the base thymine called uracil (U). The synthesis of RNA from

DNA, known as transcription, begins with the opening and unwinding of a small por-

tion of the DNA double helix to expose the bases on each DNA strand. In eukaryotes,

transcription of protein-coding genes is carried out by RNA polymerase II (Pol II). To

initiate transcription, Pol II requires several initiation factors (general transcription

factors), which escort and localize it to transcription start sites (TSS). For example,
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1.2. Epigenetic Regulation of Gene Expression

general transcription factors like TFIIB or TFIID (complexes consisting of the TATA-

binding protein and other associated factors) recruits Pol II to TSS, which is escorted

by TFIIF [3]. In addition to the general transcription factors, sequence-specific DNA

binding transcription factors (TFs) can govern gene transcription. These TFs bind

to regulatory elements, which are generally found within several hundred or thousand

bases of the start site of the gene. In general, regulatory elements like promoters and

enhancers contain a fairly short DNA sequence (5 to 20 bp long), which is a specific

binding site for one or more TFs [4]. TFs recognize these short sequences and bind

to them to regulate the gene expression.

In eukaryotic cells, most genes are transcribed into precursor mRNA (pre-mRNA),

which is processed to mature mRNA (or simply mRNA) and exported to the cyto-

plasm for translation [5]. This processing of pre-mRNA includes three major events:

5’ capping, 3’ polyadenylation, and RNA splicing. 5’ capping involves the addition

of 7-methylguanosine to the 5’ end of the mRNA; 3’ polyadenylation, on the other

hand, involves the addition of adenine bases to the 3’ end to form a poly(A) tail.

RNA splicing is the process by which introns (non-protein-coding regions) are re-

moved from the pre-mRNA, resulting in the joining of exons (mostly coding regions)

to form mature mRNA [5]. The inclusion of di↵erent combinations of exons normally

leads to the production of multiple distinct functional isoforms from a single gene.

1.2 Epigenetic Regulation of Gene Expression

“Epigenetic” literally means “on the top” of genetic and epigenetic regulation is a

mechanism that provides regulatory information to a genome without altering its

primary DNA sequence. Two major epigenetic modifications, which tightly regulate

gene activity, are the modification of the histone proteins associated with DNA (hi-

stone modifications) and the addition of a methyl group to the cytosine residues of

DNA (DNA methylation) [6, 7]. The nucleosome, the basic unit of chromatin, con-

tains two copies of each of the histone core proteins H2A, H2B, H3 and H4, which

together form a histone octamer, and about 147 base pair (bp) of DNA wrapped

around it [8]. Post-translational modification of these histones plays a key role in the

regulation of gene activity and expression during development and di↵erentiation. Hi-

stones can be modified by many di↵erent post-translationally added chemical groups

like methylation, phosphorylation, acetylation, ubiquitination and sumoylation [8].

These modifications can influence chromatin structure and protein binding and thus,

gene transcription.

2



Chapter 1. Introduction

Di↵erent histone modifications are broadly associated with activation or repres-

sion of gene expression. Acetylation and methylation of lysines at histone tails are

the two most extensively studied modifications, with distinct distributions along both

euchromatin and heterochromatin. For example, di- and tri-methylation of lysine 4

on histone 3 (H3K4me2 and H3K4me3, respectively) are generally associated with eu-

chromatin and ongoing gene expression. On the other hand, tri-methylation of lysine

9 on histone 3 (H3K9me3) and tri-methylation of lysine 27 on histone 3 (H3K27me3)

are mainly associated with heterochromatin and gene silencing [9]. Acetylation leads

to a reduction of positive charges on the histone tails and loosens DNA-histone in-

teractions leading to an open chromatin state, and is, therefore, generally found at

actively transcribed promoters [10]. These histone modifications are established or

removed by di↵erent families of enzymes. For example, histone methyltransferases

(HMTs) catalyze the addition of methyl groups, and mainly contains the evolutionary

conserved SET domain [11, 12]. On the other hand, histone demethylases (HDMs)

can remove the methyl groups. The cross-talk between di↵erent histone modifications

(or histone-modifying enzymes) can bring about distinct chromatin states, which,

therefore, tightly regulates spatiotemporal gene expression [10, 13, 14].

The second extensively studied epigenetic modification is DNA methylation. Un-

like histone modifications, which involves modification of the histone proteins, DNA

methylation involves the addition of a methyl group at the 5’ position of the cytosine

ring to create a 5-methylcytosine (m5C). In mammalian cells, the majority of DNA

methylation occurs on cytosines that precede a guanine nucleotide known as CpG

dinucleotide sites [15, 16]. DNA sequences of several hundred to approximately two

thousand base pairs with high frequency of CpG sites are commonly known as CpG

islands [16]. Interestingly, in humans more than 50% of gene promoters harbor CpG

islands [16]. DNA methylation is distributed throughout the genome and is linked

to transcriptional silencing [17]. Normally, in mammals, many housekeeping or de-

velopmentally regulated genes have hypomethylated CpG islands in their promoters

[16]. DNA methylation is catalyzed by DNA methyltransferases (DNMTs), includ-

ing DNMT1, DNMT3a, and DNMT3b, which are responsible for its deposition and

maintenance and are essential for normal development [16].

In addition to aforementioned histone modifications and DNAmethylation, several

other epigenetic mechanisms play an important role in regulating the gene expression

(Figure 1.1). These include non-coding RNA (transcripts that are not translated),

chromatin-remodeling complexes, and histone variants, for example [18, 19]. In recent

3



1.3. Human Heart and Skeletal Muscle Development

Figure 1.1: Di↵erent epigenetic mechanisms. The interplay of these di↵erent mech-
anisms play a critical role in gene regulation. Ac, acetylation; Me, methylation; P,
phosphorylation; ncRNA, non-coding RNA.

years, it has become clearer that di↵erent epigenetic mechanisms work together to

regulate gene expression. This epigenetic interplay is critical for normal development.

1.3 Human Heart and Skeletal Muscle Develop-
ment

The heart is one of the most important organs and is, in fact, the first organ to form

and function during development of vertebrates [20]. In humans, the heart starts

beating in the fourth week after fertilization [21]. It is the pumping organ of the

body, which circulates the blood. It has four chambers: the right atrium, left atrium,

right ventricle, and left ventricle. The right atrium act as receiving chamber for

deoxygenated blood from the body transported through the venae cavae (Figure 1.2).

It pumps the deoxygenated blood to right ventricle and finally into the lungs. The

left atrium receives the oxygenated blood from lungs and pump it to the left ventricle

and finally back into the body through the aorta.

The development of the embryonic heart, also known as cardiogenesis, is a pre-

cisely controlled process, which includes a series of events including the formation of

the heart tube, looping or bending events, chamber formation, septation and devel-

opment of the valves [22–24]. The mature four-chambered heart consists of di↵erent

cell types (Figure 1.2), including atrial cardiomyocytes, ventricular cardiomyocytes,

smooth muscle cells, endothelial cells, epicardium cells, fibroblasts and pacemaker
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Chapter 1. Introduction

cells [22, 24]. These di↵erent cell types are derived from multipotent cardiac pro-

genitor cells, which can be divided into two main categories: the first population of

cells to migrate to the heart-forming region, known as the primary heart field (or first

heart field; FHF), and the second population of cells, which contributes progressively

to the poles of the elongating heart tube, known as the secondary heart field (SHF)

[24, 25]. The FHF gives rise to the left ventricle as well as the right and left atria,

whereas the SHF contributes to a major part of the heart, forming the right ventricle,

outflow tract, and the right and left atria. The formation of the vertebrate heart is

controlled by crosstalk between multiple inter/intracellular signaling pathways and

transcriptional regulatory networks in the FHF and SHF [24, 25].

Figure 1.2: Schematic representation of the four-chambered human heart. Regions
indicated in blue and red contain deoxygenated and oxygenated blood, respectively.
The mature heart consists of di↵erent cell types, some of which are labelled. Figure
taken from M. Ruiz [26] and modified.

A core set of crucial and evolutionarily conserved cardiac transcription factors,

including the Nkx2-5, GATA family, Mef2 factors, Srf, Tbx-factors, Hand2 and Isl1,

all play a central role in cardiac development [24, 27]. Numerous groups have gen-

erated various knockout mice, which are useful scientific tools to understand the

roles of genes during development. For example, Gata4 homozygous knockout mice

die at E8.5 with failure of ventral morphogenesis and heart tube formation [28, 29].

Targeted disruption of Nkx2-5 leads to abnormal heart morphogenesis and growth

5



1.3. Human Heart and Skeletal Muscle Development

retardation, with lethality at E9.5 [30]. Mice deficient in Mef2a die within the first

postnatal week and exhibit myofibril fragmentation, pronounced dilation of the right

ventricle, and impaired myocyte di↵erentiation [31]. Cardiac-specific ablation of Srf

in mice resulted in embryonic lethality due to cardiac insu�ciency during chamber

maturation [32]. Tbx5 deficiency in homozygous mice leads to the arrest of heart de-

velopment at E9.5, resulting in lethality at E10.5 [33, 34]. Hearts of Isl1 homozygous

knockout mice do not develop the outflow tract, right ventricle, and much of the atria

[35]. Moreover, Vincentz et al. have shown a functional role for genetic Nkx2-5 and

Mef2c interactions using Nkx2-5/Mef2c double null mice embryos that resulted in

ventricular hypoplasia, a more severe cardiac phenotype than those associated with

either single mutant [36].

Recently it has become clear that these core transcription factors interact with

one another and provide cooperative regulation of individual target genes to control

heart development [27]. A systems biology study published by the Sperling lab showed

combinatorial regulation by Gata4, Mef2a, Nkx2-5, and Srf and demonstrated that

they can partially compensate each other’s function [37]. In addition to these cardiac

transcription factors, the study integrated the mRNA profiles, microRNA profiles,

and four activating histone modification marks (H3K9K14ac, H4K5K8K12K16ac,

H3K4me2 and H3K4me3) in mouse HL-1 cardiomyocytes. They found several tar-

get genes associated with these TFs; specifically, 345 target genes for Gata4, 701 for

Mef2a, 276 for Nkx2-5 and 1,150 for Srf. It was immediately evident that many of

the target genes were shared by these factors; for example, Gata4 and Nkx2.5 shared

143 targets and Mef2a and Srf shared 320 target genes. Using RNA interference

(RNAi) knockdown of one respective factor, they demonstrated that genes regulated

by multiple transcription factors were significantly less likely to be di↵erentially ex-

pressed. This suggests that these TFs can interact cooperatively to synergistically

activate transcription of target genes. The misexpression of cardiac transcription fac-

tors or their cofactors can disrupt the gene regulatory networks, which may lead to

cardiovascular disease.

Congenital heart diseases (CHDs) are the most common birth defect in humans,

with an incidence of around 1% of all live births [38, 39]. Although, the exact eti-

ology of CHD remains unclear, it is becoming clearer that genetic factors play an

important role. Numerous studies have demonstrated the role of single gene defects

in non-syndromic CHD. For example, mutations in GATA4, MYH6 or NKX2.5 have

been associated with atrial septal defects [40–43]. In addition to genetic factors, en-

vironmental factors have been suggested to play a role. Almost five decades ago, Dr.
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Chapter 1. Introduction

James Nora proposed that both genetic and environmental factors participate in the

etiology of CHDs [44]. Despite the importance of environmental factors in CHD, most

studies to date mainly focus on genetic factors because of the complexity of environ-

mental factors, which makes it complicated to study and link them to the disease.

Therefore, environmental factors often are viewed as noncontributory or secondary

[45]. Nevertheless, factors like smoking during early pregnancy have been associated

with an increased risk of CHD [45, 46]. Moreover, it has been suggested that envi-

ronmental factors increase the risk of having a disease if genetic abnormalities are

present [45]. Despite these links, it remains di�cult to clearly associate di↵erent

genetic and/or environmental factors with di↵erent types of CHD.

CHDs comprise a heterogeneous group of cardiac malformations and can be classi-

fied into three broad categories: cyanotic heart disease, left-sided obstruction defects,

and septation defects [47]. The most common cyanotic form (blue skin color caused

by a lack of oxygen) of CHD is Tetralogy of Fallot (TOF), which accounts for up

to 10% of all heart malformations [48]. TOF (Figure 1.3) is characterized by four

cardiac features: ventricular septal defect, overriding aorta, right ventricular outflow

tract obstruction and right ventricular hypertrophy [49]. It is a well-recognized sub-

feature of syndromic disorders such as DiGeorge syndrome (22q11 deletion), Down

syndrome, Holt-Oram syndrome and Williams-Beuren syndrome [50]. Deletions at

the 22q11 locus account for up to 16% of TOF cases [51].

Figure 1.3: Heart with the ‘Tetralogy of Fallot’ phenotype, depicting the four clinical
features. Figure taken from Grunert et al. [52].
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1.3. Human Heart and Skeletal Muscle Development

It has been suggested that di↵erent genes with multiple mutations can result in

a common phenotypic expression, which could be explained by the disruption of a

common molecular network [52–54]. A recent study showed that isolated TOF is

caused by a combination of deleterious private and rare mutations in neural crest

(NC), apoptotic and sarcomeric genes [52]. These significantly a↵ected genes (called

TOF genes) coincide in an interaction network, which suggests that disturbances to a

common network can lead to the phenotypic consequence of TOF. Moreover, recent

studies demonstrated the role of copy number variations (CNVs) in the etiology of

TOF cases [55–58]. Silversides et al. performed a large scale CNV analysis on 340

TOF cases and found that a significantly greater proportion of cases harbored large

rare CNVs compared to controls [56]. They found CNVs in some of the interesting

candidate genes; for example, copy number gain of GJA5 (Gap Junction Alpha-5

Protein) and a copy number loss of PLXNA2 (Plexin A2). In the future, it would be

interesting to perform a multilevel study on a large cohort of isolated TOF cases to

dissect the multifactorial etiology of the disease.

Unlike cardiac muscle, which is found in the heart, skeletal muscle is attached

to the bone and is under voluntary control. Skeletal muscles play an important

role in supporting and moving our body through contraction and relaxation. As in

cardiac muscle, the sarcomere is the basic functional unit in skeletal muscle tissue

that slide past each other when the muscle contract and relax [59]. The myofibril

contains the repeating units of sarcomeres that are separated from one other by Z

discs. Each individual sarcomere consists of many parallel actin (thin) and myosin

(thick) filaments (Figure 1.4). These filaments slide in and out between each other

during muscle contractions [59]. In 1954, two research teams independently describe

the molecular basis of muscle contractions, which is known as the sliding filament

theory [60, 61]. They observed that the length of the thick filaments of myosin

remained relatively constant during contraction, whereas the thinner filaments made

of actin change their length. Based on these observations, they proposed the model

of muscle contraction (sliding filament theory), which states that the sliding of actin

past myosin generates muscle tension. During the contraction, the length of the actin

filament shortens, which results in a shortening of the sarcomere and thus, the muscle.

Currently, this theory is the widely accepted model of muscle contraction.

The process of generating skeletal muscle is known as myogenesis. Progenitor

cells originating in the somites give rise to skeletal muscle during embryogenesis [62].

Once these somites establish polarity they subsequently develop distinct dorsoventral

compartments. The major dorsal part of the somite remains epithelial and turns into
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Chapter 1. Introduction

Figure 1.4: Basic structure of muscle fibre (sarcomere) sub-region. Actin (thin) and
myosin (thick) filaments are shown in purple and red, respectively. During contrac-
tion, the length of H zone and I band shortens, whereas the length of the A band
remains constant.

the dermomyotome [62]. The cells of the dermomyotome mature into the myotome,

which leads to the development of all skeletal muscles of the body, with the excep-

tion of some head muscles [62]. This sequential development of the skeletal muscle

involves the expression of di↵erent transcription factors at di↵erent stages. For ex-

ample, the cells of the dermomyotome are marked by the expression of the paired box

transcription factors Pax3 and Pax7; whereas, the cells of the myotome are marked

by high expression of the basic helix-loop-helix myogenic regulatory factors (MRFs)

Myf5 and MyoD [62–67]. MyoD and Myf5 are both considered to be markers of ter-

minal specification and early di↵erentiation, whereas another two MRFs, myogenin

and Myf6, are considered to be markers of late di↵erentiation [62, 68]. These four

highly conserved transcription factors are together known as the myogenic regulatory

factors and are collectively expressed in the skeletal muscle lineage [62, 69].

Almost three decades ago, MyoD was demonstrated to induce the conversion of

fibroblasts into muscle cells [70], and was subsequently considered to be a master

regulator of myogenesis. MyoD is expressed at the time of myogenic specification

and binds to DNA via a consensus E-box motif (CANNTG). Upon the induction

of di↵erentiation, MyoD forms heterodimers with members of the E-protein family,

with an increased a�nity at many regulatory elements of skeletal muscle-specific

genes [71, 72]. In undi↵erentiated myoblasts, MyoD and Baf60C, a subunit of the

ATPase-containing SWI/SNF remodeling complex, form a complex on MyoD target

promoters and mark genes prior to the activation of transcription, which play a role

in myogenic di↵erentiation [73]. During myogenesis, the binding of MyoD is primarily

associated with gene activation [74], but its repressive function in myogenesis has also

been shown on single genes [75–77]. In addition to promoters, genome-wide analysis

has indicated MyoD binding events in intergenic regions in myoblasts and myotubes
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1.4. High-Throughput Sequencing

[78, 79]. Moreover, the presence of MyoD is also highly associated with muscle-related

enhancers [80].

In the past decade, number of di↵erent research teams has performed genome-

wide epigenetic analysis during myogenic di↵erentiation. It was shown that the over-

all content of histone methylations such as H3K4me2, H3K4me3, H3K36me3 and

H3K27me3 remains stable during myogenic di↵erentiation [81]. The repressive his-

tone mark H3K27me3 was found to be widely distributed throughout the genome and

regulates myogenic di↵erentiation via silencing of muscle-specific and cell cycle genes

[81–83]. However, histone 3 acetylations like H3K9ac and H3K18ac are reduced in a

di↵erentiation-dependent manner [81]. Interestingly, the regions of increased histone

4 acetylation have been associated with the genome-wide binding of the transcription

factor MyoD [79].

1.4 High-Throughput Sequencing

In 1977, Frederick Sanger and colleagues published a groundbreaking method, known

as Sanger sequencing, for determining nucleotide sequences within a DNA molecule

[84]. This method requires modified di-deoxynucleotidetriphosphates (ddNTPs),

which terminate elongation of the DNA strand elongation; thus, the method is

also referred to as the chain termination sequencing method. For more than two

decades, it remained the most widely used sequencing method and it underwent

many technological improvements. These advances led to the development of the

semi-automated Sanger method (also known as first-generation technology), which

had higher throughput, enabling the completion of the first human genome sequence

[85, 86]. The Human Genome Project (HGP), which began in 1990, aimed to deter-

mine the highly accurate sequence of the vast majority of the euchromatic portion

of the human genome and was completed in 2004 at the cost of about US$3 billion

[86–88]. As the HGP took 14 years to complete, it soon became clear that faster and

cheaper technologies, with higher throughput, needed to be developed. Therefore,

in the same year (2004) the National Human Genome Research Institute (NHGRI)

aimed to reduce the cost of human genome sequencing to US$1000 in 10 years [86,

89]. This triggered the development and commercialization of second-generation or,

more commonly, next-generation sequencing (NGS) technologies. Indeed, this goal

was achieved through collective e↵orts, and the cost of sequencing has been reduced

tremendously using NGS [86].
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Over the past decade, the NGS market has been dominated by three major plat-

forms or companies: Roche 454, Illumina, and Sequencing by Oligonucleotide Ligation

Detection (SOLiD). All of these platforms depend on the preparation of NGS libraries

(fragments of DNA or RNA) in a cell free system; subsequently, thousands-to-many-

millions of sequencing reactions are produced and directly detected in parallel [86].

There are di↵erent sequencing mechanisms used by these platforms, all of which have

advantages and disadvantages. For example, Roche 454, released in 2005, uses a

pyrosequencing method based on the detection of light emitted by the release of py-

rophosphate when a nucleotide is incorporated. This platform takes relatively less

time to run and gives long reads of up to 1 kb, which makes it easier to map the

reads to the reference genome [86, 90, 91]. On the other hand, it has relatively low

throughput and a high error rates in homopolymer repeats [86, 92]. In 2006, Illumi-

na/Solexa released its sequencing platform based on sequencing-by-synthesis method

in which four di↵erently labelled, reversible terminator-bound dNTPs are used. When

nucleotides are incorporated, they are identified by color and, subsequently, the ter-

minator is removed. As compared to other platforms, Illumina o↵ers the highest

throughput and the lowest per-base cost [86, 93] but can take long time (27 hrs to

11 days) to run. One year later, in 2007, the third technology, SOLiD, was released

by Applied Biosystems (now Life Technologies). This platform uses fluorescently la-

beled octamers and color detection; each base is read twice and therefore claimed

to have high accuracy (99.94%) [86, 93]. Despite this advantage, it has a relatively

higher cost than the others. Among these platforms, Illumina remains the leader in

the NGS industry because of its high-throughput and lower cost. It is worth noting

that Roche decided to shut down 454 by mid-2016 [86] but a similar technology was

released by Ion Torrent (now Life Technologies) based on the detection of proton

instead of pyrophosphate, which does not require optical scanning. A comparison of

these platforms, along with an automated Sanger sequencing machine, is depicted in

the Table 1.1.

With the advancement of sequencing methods, from first-generation (automated

Sanger sequencing) to second-generation, the term next-generation sequencing has

become more common and widely used by researchers and companies [85, 92, 94–

97], instead of high-throughput sequencing. Considering the pace of technological

development, this term itself may soon be outdated. One example is the PacBio

RS instrument released by Pacific Biosciences in 2010, which allows the detection

of single molecule and is therefore considered to be the third-generation sequencing

technology [86, 98]. In contrast to previous sequencing technologies, which require
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Table 1.1: Overview of the di↵erent sequencing platforms. The information is col-
lected from Liu et al. and Dorn et al. [90, 91]. B, billion; M, million; bp, base pairs;
hrs, hours; mins, minutes; SE, single-end reads; PE, paired-end reads.

multiple identical copies of a DNA molecule, researchers from Pacific Biosciences

demonstrated the Single Molecule, Real-Time (SMRT) technology that can sequence

a single molecule of DNA. This technology utilizes the zero-mode waveguide (ZMW),

which reduces the volume of observation to the point where it is su�cient enough to

observe only a single nucleotide of DNA being incorporated by DNA polymerase [86,

98]. A major advantage of this method is the extremely long reads of 4-40 kb, which

could potentially help to improve the existing draft genomes [86]. On the other hand,

it has high overall error rates and is relatively expensive [86].

Despite the limitations, high-throughput sequencing methods are extremely useful

for addressing a large range of biological questions. With rapid advances in the tech-

nology, the applications of these methods seem almost endless. Using this technology,

it is now possible to sequence an entire genome in less than one day. One of the most

widely used applications is the analysis of the genome to identify sequence variations

in genes and regulatory elements. These mutations can be of di↵erent types and can

a↵ect anywhere from a single nucleotide (base pair) to a large segment of a chro-

mosome; for example, change of a single nucleotide (also known as single nucleotide

variations or SNVs), deletion of a piece of DNA (copy number loss), duplication of a

12



Chapter 1. Introduction

piece of DNA (copy number gain), or insertions/deletions (indels). Most often, the

main goal is to identify these variations and what role, if any, they play in the disease.

Some of the other main applications of high-throughput sequencing are discussed in

the next chapter.

The field of Bioinformatics includes development and improvement of methods

for storing, retrieving, organizing and analyzing biological data generated using high-

throughput sequencing (HTS) technologies. The major focus is to generate useful

biological knowledge in an e�cient manner. Data storage and accuracy of data anal-

ysis are the major challenges in the field of Bioinformatics. From the very first step

of the data analysis meaning alignment of the reads, it is challenging to develop the

software which can be used for multiple projects using di↵erent HTS technologies.

Moreover, HTS technology is rapidly evolving that requires constant improvement of

existing methods. Furthermore, the gap between the mass generation of data and the

ability to analyze this data is growing. Therefore more e↵orts are required for the

comprehensive analysis of the data to answer precise biological questions.

1.5 Aims of the Thesis

High-throughput sequencing (HTS) technology is rapidly evolving and revolutionizing

research in the life sciences. Due to its low cost and high throughput, HTS is used

commonly by various laboratories to answer di↵erent biological questions. With the

advancement of sequencing platforms, there is an increase in demand on statistical

methods and computational approaches for analyzing HTS data, namely targeted

DNA resequencing data, RNA-seq data and ChIP-seq data. The goal of this thesis is

to establish computational approaches for analyzing HTS read count data, aimed at

answering concise biological questions.

Congenital heart diseases (CHD) are the most common birth defect in human, with

an incidence of around 1% of all live births. The most common cyanotic form of CHD

is Tetralogy of Fallot (TOF), which accounts for up to 10% of all heart malformations.

Previous studies have demonstrated the role of copy number variations (CNVs) in

the etiology of TOF. The first study in this thesis (Chapter 4) aimed to identify

copy number alterations in a small cohort of non-syndromic TOF patients based

on targeted resequencing data. Detecting CNVs from targeted resequencing data is

di�cult due to nonuniform read-depth between captured regions. Moreover, there

was no tool available to detect personalised CNVs from small cohort of patients

without using controls. Therefore, a novel copy number variation calling method
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was developed to identify individual disease-relevant copy number variations (CNVs)

using exome or targeted resequencing data of small sets of samples.

Myogenic di↵erentiation is an essential process of muscle development and de-

pends on the spatiotemporal regulation of gene expression patterns. The interplay of

transcription factors and the chromatin changes is an important attribute to govern

gene expression. Using ChIP-seq and RNA-seq data, systematic analysis was per-

formed (Chapter 5) to investigate a stable enrichment pattern of the histone marks

H3K4me2 and H3K4me3 in combination with muscle tissue-specific transcription fac-

tor MyoD during myogenic di↵erentiation. The final study in this thesis (Chapter 6)

aimed to develop a pipeline to identify di↵erential exon usage from RNA-seq data,

with the intention of identifying the exons either excluded or included. In previous

studies, Sperling lab identified a chromatin remodeling factor Dpf3, the expression

of which was significantly up-regulated in the right ventricle of TOF patients [99,

100]. Therefore, the final study in this thesis (Chapter 6) dissected the role of Dpf3

in splicing.

14



Chapter 2

High-Throughput Sequencing
Methods and Computational
Analysis

2.1 Methods

The advent of the high-throughput sequencing (HTS) technology has greatly accel-

erated research in life sciences. Due to its low cost and high throughput, HTS is

commonly used by many laboratories to answer biological questions. Moreover, it is

now possible to sequence the entire human genome in less than one day. Besides whole

genome sequencing, HTS has other applications like the identification of genome-wide

protein-DNA interactions and quantification of the gene expression. In general, HTS

is used to determine the sequence of millions of DNA fragments in parallel, and these

fragments can be generated using various methods. All used methods and computa-

tional analysis are described in this chapter.

2.1.1 Targeted Resequencing of Genomic DNA: DNA-seq

Although the cost of sequencing the entire genome has decreased tremendously over

the past ten years, whole genome sequencing is not the only method used. Researchers

often prefer to select specific regions of interest and enrich these regions for sequenc-

ing. For example, in whole exome sequencing (WES), the protein-coding regions are

targeted and sequenced. In humans, about 1% of the genome is coding (exome), and

sequencing only these regions makes it more cost-e↵ective [101, 102]. Moreover, it

has been suggested that the exome might contain ⇠85% of known disease-causing

variants, making this method more attractive for detecting causal variants [101, 102].
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Interestingly, a market research survey carried out in 2013 by Oxford Gene Technology

showed that the top preferred and used method is targeted resequencing, which in-

cludes WES and targeted panel sequencing [103]. In the latter, instead of selecting the

whole exome, a specific group of interesting genes are enriched and sequenced. There

are several approaches available for target enrichment such as PCR-based amplifica-

tion, molecular inversion probe-based amplification (MIPs), and hybridization-based

sequence capture (array-based and in-solution) [104–107]. One of the most widely

used approaches is array-based hybridization capture method [108–110], which is also

used in this study and is described below.

Targeted capture consists of the library preparation step, where fragments of ge-

nomic DNA are ligated with the adapters. This library is hybridized to the sequence

capture array (Figure 2.1). The capture array contains the immobilized probes, which

are single stranded DNA molecules attached to a solid surface. Di↵erent sequence

capture arrays can have di↵erent number and/or length of probes. For example,

Roche NimbleGen capture array can have 385,000 isothermal probes (385K array)

with a total capture size of up to 5 Mb or 2.1 million probes with a total capture size

of up to 34 Mb [104]. After the hybridization of DNA fragments with the probes,

unbound fragments are removed by washing and the enriched fragments are eluted

[104]. Amplification of these enriched fragments is performed using ligation-mediated

polymerase chain reaction (LM-PCR). Before sequencing of these amplified enriched

fragments, a quality control step is carried out using quantitative PCR (qPCR) at

control loci. Initially, the method was designed to be used with the Roche 454 se-

quencer but with modified and optimized protocols, the Illumina platform can also

be used [104].

Features like high sequencing accuracy, low cost, coverage depth, experimental fo-

cus, and sample number make targeted resequencing more and more popular. More-

over, the use of this method makes the downstream computational analysis more

feasible and gives a less complex outcome that is functionally interpretable. Targeted

panel sequencing, in which only a panel of interesting genes are targeted and coupled

with high-throughput sequencing, is revolutionizing the clinical research. One inter-

esting example is “TruSight Cardio Sequencing Kit” by Illumina, whic is useful for

the identification of variants in 174 genes at a cost of approximately $1 US per gene.

In the future, these customized gene panels can be used regularly as a diagnostic tools

[111].
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Figure 2.1: Roche NimbleGen capture array technology for the enrichment of genomic
target regions. Figure taken from NimbleGen [112] and modified.

2.1.2 Quantification of Gene Expression: RNA-seq

The transcriptome is the total set of transcripts in a cell, including mRNAs, long

and short non-coding RNAs and small RNAs like microRNAs [113]. Using high-

throughput sequencing, we can deduce and quantify the transcriptome of a popula-

tion of cells and even compare it across multiple samples [113, 114]. In the market

research survey carried out by Oxford Gene Technology [103], mentioned earlier, it

was shown that RNA sequencing (RNA-seq) is the second most used method (after

targeted resequencing) among researchers. RNA-seq involves direct sequencing of

complementary DNA (cDNA). In general, a library of cDNA fragments is prepared

from a population of RNA (total or fractionated, such as poly(A)+). More often,

polyadenylated RNAs (poly(A)+) are captured and converted to stable cDNA frag-

ments, which are then sheared, selected and amplified with adaptors attached to one

or both ends [113, 114]. Finally, this library is sequenced from one end (single-end

sequencing) or both ends (pair-end sequencing), using high-throughput sequencing

technology to obtain short sequences or reads [113, 114]. This protocol is also known

as PolyA-seq or mRNA-seq.

17



2.1. Methods

Although the standard protocol of RNA-seq library generation is commonly used,

it loses the strand of origin information for each transcript. It has been suggested

that the transcription of the DNA sense strand produces antisense transcripts, which

often results in the production of non-coding RNAs (ncRNAs) [115]. These ncRNAs

are complimentary to their associated sense transcripts, and it is therefore crucial

to keep the information of the strand from which transcript originated. In order

to overcome this issue, one can use a modified standard RNA-seq protocol, which is

commonly refered to as strand-specific RNA-seq [115, 116]. One of the strand-specific

or directional RNA-seq library preparation protocols is illustrated in Figure 2.2.

Figure 2.2: Illustration of directional RNA-seq library using ”ScriptSeq RNA-seq
library preparation kit” from Illumina. Figure drawn on the basis of [117].
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2.1.3 Genome-wide Identification of Protein-DNA Interac-
tions: ChIP-seq

Chromatin immunoprecipitation (ChIP) followed by high-throughput DNA sequenc-

ing allows genome-wide identification of protein-DNA interactions such as transcrip-

tion factor binding, transcriptional co-factor binding, RNA polymerase binding and

chemical modification of histone proteins [118–122]. In a typical ChIP experiment

(Figure 2.3), firstly the cells are treated with formaldehyde to cross-link the DNA-

binding proteins to DNA [123]. Afterwards, the cross-linked strands are exposed to

sonication, which fragments or shears the DNA using high-frequency sound waves.

These DNA fragments, which are bound by di↵erent proteins, are immunoprecipitated

using an antibody that recognizes a specific transcription factor or histone modifica-

tion [123]. This results in a collection of all DNA fragments bound by the protein

of interest, with non-specific fragments and proteins washed away. In the next step,

the collected fragments are reverse cross-linked to remove the bound proteins (ChIP

sample). More often, for comparison, an additional sample, known as “Input”, is pre-

pared in parallel, which is not immunoprecipitated [123]. Finally, using these samples,

genome-wide analysis can be performed by high-throughput sequencing (ChIP-Seq).

Firstly, the sequencing library is generated using the immunoprecipitated sample and

input sample, which can be analyzed using high-throughput sequencing machines.

The identification of protein binding sites (peaks) is carried out by comparing the

number of sequenced reads generated from the immunoprecipitated sample and input

sample [123].

In the past, ChIP followed by microarray hybridization (ChIP-chip) was commonly

used to perform genome-wide mapping of protein-DNA interactions. For ChIP-chip,

the immunoprecipitated sample and input DNA, are labeled with fluorescent dyes and

hybridized to microarrays [123]. The identification of protein binding sites is carried

out by comparing the intensity of signal of the ChIP samples to the signal of the input

sample at each probe on the microarray [123]. With the advancement of sequencing

technology, ChIP-seq has emerged as an attractive alternative to ChIP-chip due to its

higher resolution and reduced noise [125]. Moreover, for ChIP-seq, no prior knowledge

of the target DNA binding sites is required; however, despite these positives, ChIP-seq

su↵ers from high cost and requires a large amount of starting material as compared to

ChIP-chip [126]. Large scale projects like ENCODE (Encyclopedia of DNA Elements)

and modENCODE (Model Organism ENCyclopedia Of DNA Elements) have used

the ChIP-seq as the primary method and provide a set of standards and guidelines

for performing ChIP-seq [127].
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Figure 2.3: Schematic representation of a chromatin immunoprecipitation (ChIP)
experiment followed by microarray hybridization (ChIP-chip) or high-throughput se-
quencing (ChIP-seq). Figure drawn on the basis of Visel et al. [124] and modified.
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2.2 Computational Analysis of High-Throughput
Sequencing Data

2.2.1 Alignment to a Reference Sequence

High-throughput sequencing (HTS) technology is rapidly evolving and revolutionizing

research in the life sciences. HTS generates millions of short sequences (reads) that

need extensive computational analysis to fetch out the information from the data.

Usually, the first step in high-throughput sequencing data analysis is the alignment

(mapping) of the generated reads to a reference sequence. The aim of the mapping is

to find the location of reads from where they originated in the reference sequence. The

read mapping problem can be generally stated as follows: given a set of read sequences

Q, a reference sequence G and a possible set of constraints and a distance threshold k,

find all substrings m of G that respect the constraints and that are within a distance

k to a sequence q in Q. The occurrences m in G are called matches [128, 129].

The mapping process is complicated by several factors, including sequencing errors,

genetic variations, short read length, multi-mapped reads, and the huge amount of

reads to be mapped [129, 130]. Therefore, during the past decade, numerous software

tools have been developed to accomplish this task e�ciently (e.g. for DNA mappers:

SOAP [131], MAQ [132], Bowtie [133], BWA [134], SHRiMP [135], RazerS [128],

mrFAST [136]; and for RNA mappers: TopHat [137], SpliceMap [138], MapSplice

[139], SOAPsplice [140], STAR [141]). The most widely used DNA mappers are

Bowtie (6,117 citations) and BWA (6,009 citations), and the most popular RNA

mapper is TopHat (3,244 citations). The following is a brief description of these

software tools.

Both Bowtie and BWA, are full-text minute-space (FM) index based aligners.

They employ a Burrows-Wheeler index based on the FM-index. FM-index is a com-

pressed, yet searchable su�x array-like structure [142] from the Burrows-Wheeler

transform of the reference genome [143]. Burrows-Wheeler transformation (BWT) is

a reversible permutation of the characters in a text in such a way that characters from

repeated substrings would be clustered together [133]. For example, the BWT of a

text T or BWT (T ), is constructed by appending the character $ to T, where $ is not

in T and is lexicographically less than all characters in T [133]. The Burrows-Wheeler

matrix of T is constructed as the matrix whose rows comprise all cyclic rotations of

T$ and transform is done by sorting all rotations of the text into lexicographic order.

The sequence of characters in the last column of the Burrows-Wheeler matrix is the

BWT(T ) (Figure 2.4) [133].
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Figure 2.4: The Burrows-Wheeler matrix and transformation for ”googol”. Firstly,
the character $ is appended to the string and then cyclic rotations are carried out
(left). Next, all the rotations are sorted into lexicographic order and BWT is the
sequence of the characters in the last column (marked in orange). Figure taken from
Li et al. [134] and modified.

The common method for searching in an FM index is the exact-matching algo-

rithm, which search for only exact matches. Due to sequencing errors and genetic

variations, we may not find exact matches for all the reads. Therefore, BWA and

Bowtie uses the modified matching algorithms i.e. backtracking algorithm for BWA

and quality-aware backtracking algorithm for Bowtie. BWA searches for matches

between the read and the corresponding genomic position within a certain defined

distance whereas Bowtie uses a quality threshold [133, 134, 144, 145]. It is important

to note that these software tools are being updated regularly and new versions could

have modified algorithms. For example, Burrows-Wheeler Aligner’s Smith-Waterman

Alignment (BWA-SW) can align long reads up to 1 Mb against a reference genome

[146] and Bowtie 2 was mainly designed to map reads longer than 50 bps and supports

gapped alignments [147].

TopHat (or the latest version TopHat2) is a fast splice junction mapper for RNA-

seq reads [137, 148]. In general, TopHat is a pipeline to map RNA-seq reads to

transcriptome and/or genome using Bowtie (or Bowtie 2) and then analyzes the

mapping results to identify splice junctions between exons. The steps involved in the

TopHat2 pipeline are depicted in Figure 2.5.
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Figure 2.5: Illustration of steps involved in mapping RNA-seq reads using TopHat2.
TopHat2 pipeline uses Bowtie (or Bowtie 2) to align the reads to reference transcrip-
tome and unmapped reads are then aligned to the reference genome. Figure drawn
on the basis of Kim et al. [148] and modified.
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2.2.2 Analysis of DNA-seq Data

High-throughput sequencing technologies open a way to analyze millions of DNA se-

quences in parallel to detect genetic mutations. In general, after mapping the DNA

reads to a reference sequence, we can investigate the di↵erences between the sequenced

reads and the reference sequence. Genetic mutations can alter the single base (Single

Nucleotide Variations), can delete or duplicate a DNA sequence (Copy Number Vari-

ations) or can invert the DNA sequence (Inversion) or can insert or delete a small

sequence of 2 to 50bp (indels). These mutations may have no phenotypic e↵ect, ac-

count for adaptive traits or can cause disease. In this study, targeted resequencing

data from patients with Tetralogy of Fallot was analyzed to detect Copy Number

Variations (CNVs). CNVs are regions of a genome present in varying number in

reference to another genome or population. In the last years, several computational

strategies have been developed for detecting CNVs from DNA-seq data. For exome

sequencing or targeted resequencing, the read depth or depth of coverage approach is

widely used and described below.

2.2.2.1 Detection of Copy Number Variations

Copy Number Variations (CNVs) have been associated with a number of human

diseases such as Crohn’s disease, intellectual disability, cancer and congenital heart

disease [149–153]. Microarray-based comparative genomic hybridization (array-CGH)

allows analysis of the genome to identify CNVs without using high-throughput se-

quencing technologies (Figure 2.6). This method compares a patient DNA with a

reference DNA (normal control) which are di↵erentially labelled using fluorescent

dyes. Next, the patient DNA and the reference DNA are hybridised on a microarray

containing the oligo (oligonucleotide) probes [154]. Each probe represents a specific

locus in the genome. The DNAs will bind to probes with complementary sequence.

After hybridisation, the fluorescence of each dye for each probe is measured and the

relative intensity between the two fluorescent dyes is calculated for each probe. If the

intensities for the two dyes are equal for a given probe, it is considered as the normal

copy number. An altered intensity for the patient DNA represents a loss or a gain of

the patient DNA at that specific genomic region. Apart from array-CGH, DNA-seq

data is widely used for detecting CNVs which is described below.

With the advancement in high-throughput sequencing technologies, several com-

putational strategies have been developed for detecting CNVs from high-throughput
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Figure 2.6: Microarray-based comparative genomic hybridization. Figure taken from
Karampetsou et al. [154] and modified.

sequencing data. One of the widely used method is the read-depth approach (Fig-

ure 2.7) which is able to detect very large gains (duplications) or losses (deletions)

and works on single-end as well as paired-end data [155–157]. It assumes that the

mapped reads are randomly distributed across the reference genome or targeted re-

gions. Based on this assumption, the read-depth approach analyses di↵erences from

the expected read distribution to detect duplications (higher read depth) and dele-

tions (lower read depth) [157]. In simple terms, for example, we can divide the whole

reference sequence into 10 windows and count the number of reads in each window.

From this, we can calculate the average number of reads, which is an expected read

count. Then we can compare the expected read count with the observed read count in

each window and the windows with a higher and lower read depth are potentially du-

plicated and deleted regions, respectively. Depending on the sequencing method and

technology used, the di↵erences in the read depth might represent technical noise.

Therefore, some normalization steps are necessary before CNV calling, which are

described below.

Using the read-depth approach, several tools have been developed to identify
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Figure 2.7: Read-depth approach for detecting copy number variations from DNA-
seq data. The reference sequence (in blue) has been divided into three windows and
mapped reads in each window has been shown below (small black lines). Deleted
region (on left) has no reads or can have very few reads, whereas duplicated region
(on right) has a higher number of mapped reads.

CNVs from whole genome and/or exome sequencing data [136, 158–167]. As men-

tioned earlier, di↵erences in read depth in a genomic region can be related to several

biases such as local GC-content, as well as sequence complexity and sequence repeti-

tiveness in the genome [168]. For whole genome sequencing (WGS) it has been shown

that normalizing read depth against GC-content can be su�cient to predict CNVs

accurately [136, 149, 156, 164, 169]. One of the tool, which uses the read-depth ap-

proach along with the normalization against GC-content is mrCaNaVaR (micro-read

Copy Number Variant Regions) [136]. This tool works with the WGS data and can

predict the absolute copy number for all the genomic intervals. Briefly, as a first step,

this tool divides the reference sequence into windows and calculate GC-content for

each window. Next, it calculates the read depth (read count) for each window using

a mapped file. Reads spanning the border of two windows are assigned to the left

window that contains the 5’-end of the read. Finally, it performs the GC correction of

the read depth values and predict the absolute copy number over the windows [170].

GC correction is performed using the ”LOESS model”, which depends on the relation

between the read count and GC content of the windows. For a given window, GC is

the fraction of G and C bases in that window according to the reference genome. The

GC bias curve is determined by loess regression of count by GC-content of windows

[168].

Detecting CNVs from targeted resequencing data is di�cult due to nonuniform

read-depth between captured regions. The two well known exome sequencing based

CNV detection tools, which are also used in this study, are CoNIFER (Copy Number

Inference From Exome Reads) and ExomeDepth [161, 167]. CoNIFER uses singular
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value decomposition (SVD) to eliminate biases in exome data and detect CNVs and

genotype the copy-number of duplicated genes from exome sequencing data [167].

SVD is a method for data reduction and used for identifying the dimensions along

which data points exhibit the most variation. Therefore, it is possible to find the best

approximation of the original data points using fewer dimensions. Firstly, CoNIFER

calculates the RPKM (reads per thousand bases per million reads sequenced) for

each targeted region. Next, it transforms these RPKM values into the standardized

z-scores, which they termed as ZRPKM values and SVD normalization is performed

on these ZRPKM values. Using CoNIFER, the exome sequencing data from multiple

experimental runs can be used together to detect CNVs as it eliminates the batch

biases. CoNIFER can robustly detect rare CNVs and estimate the copy number of

duplicated genes up to approximately 8 copies with current exome capture kits [167].

The other widely used tool for CNV detection from exome sequencing data is

ExomeDepth [161]. It uses a robust beta-binomial distribution for the read count

data. Unlike CoNIFER, ExomeDepth build an optimized reference set using the

beta-binomial model in order to maximize the power to detect CNVs [161]. Briefly,

for each test sample, ExomeDepth ranks the remaining samples by order of correla-

tion with the test sample. Next, the reference set is generated by adding the samples

sequentially [161]. This is the main di↵erence between the approach used in CoN-

FIER and ExomeDepth. CoNFIER tries to eliminate biases in exome data whereas

ExomeDepth creates a reference sample and performs a comparison between reference

sample and the test sample. The power of ExomeDepth highly depends on how good

the samples are correlated. The high correlation among the samples can be generated

when samples are prepared in almost exactly the same way. In this study, a novel

method has been introduced, which was compared to ExomeDepth and CoNFIER

(see Chapter 4).

Hidden Markov models (HMMs) are useful natural framework in CNV detection

that can segment genomic data with a discrete number of states [171]. HMMs are

a statistical model that can be used to determine an unknown sequence of states

based upon a sequence of observations. In other words, in HMM, the sequence of

states is hidden and can only be inferred through a sequence of observed random

variables. HMMs have Markov property, which means that each new state of a

sequence is only dependent upon the previous state. A change from any one state

to another is described by a matrix of transition probabilities. In addition to a state

transition probability distribution, each state in a HMM has an emission probability

distribution modeling the observed variable as a function of a particular hidden state.
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Firstly, HMMs optimize the model parameters meaning the emission and transition

probability distributions, to best describe the observed sequence of variables. Next,

using a dynamic programming approach, HMMs can infer the most probable sequence

of hidden states. An example of HMM is shown in Figure 2.8, constructed by a random

process {X
m

, Y

n

}. Here, X
m

are the hidden states and the transition probability is

given by P (X
m+1|Xm

), which determines the probability of the state ofm+1 based on

the state of m. Another important component of a HMM is sequence of observations,

meaning Y

n

. Each hidden state generates an observation with specific probability,

P{Y
n

|X
m

}, which is called the emission probability. The use of HMMs in this study

is described in Chapter 4.

Figure 2.8: Example of a Hidden Markov Model specification. Here, X is a hidden
state and Y is a observed state. The transition probabilities are shown by curved
arrows and emission probabilities are shown by lines.

2.2.3 Analysis of ChIP-seq Data

Chromatin immunoprecipitation (ChIP) followed by high-throughput DNA sequenc-

ing allows genome-wide identification of protein-DNA interactions such as transcrip-

tion factor bindings, transcriptional co-factors binding, RNA polymerases binding

and chemical modifications of histone proteins [118–122]. In general, the first step in

the ChIP-seq analysis is read mapping (Chapter 2.2.1), followed by the peak calling

step, which aims to identify the genome-wide binding sites of a protein. In this study,

ChIP-seq data of histone marks and transcription factor has been used. For histone
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marks, in addition to the peak calling step, I performed an analysis to check the en-

richment pattern of histone marks around the transcription start sites (TSS). All the

steps used for ChIP-seq data analysis has been described in the following sections.

2.2.3.1 Identification of Genome-wide Binding Events

After mapping, the most common step is the peak calling to identify the genome-

wide binding sites of a protein. In the past, various tools have been developed to find

peaks from the ChIP-seq data [172–176]. In general, binding sites or peaks are the

regions of a genome where sequence reads are significantly enriched as compared to

the control. Before defining a region as a peak, distinct steps are carried out such as

read shifting and background estimation. During the mapping step, ChIP-seq reads

can align to either the sense or antisense strand and therefore, location of mapped

reads form two peaks. Next, the reads are shifted towards the centre to determine

the most likely location involved in protein binding (Figure 2.9). The shift parameter

is determined by the fragment size generated in the ChIP-seq library preparation.

Interestingly, Model-based analysis of ChIP-seq (MACS) can empirically model the

shift size of ChIP-seq reads without any prior knowledge [177].
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Figure 2.9: Shifting size model is generated by MACS using MyoD ChIP-seq data
from undi↵erentiated C2C12 cells. Here d is the estimated fragment size and reads
(tags) are shifted by d/2.

A peak in treated sample is identified by comparing to the control sample (input

control or IgG control). Both the samples are processed in the same way for the
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Figure 2.10: Example of an enriched region as compare to the background. The
purple line shows the read enrichment in the treatment sample and the brown line
shows the read enrichment in the control sample. Figure taken from Pepke et al.
[178] and modified.

comparison. The reference genome is divided into the windows and read enrichment

is compared between the treatment and control sample (Figure 2.10). More often, a

p-value is calculated to identify a peak using a statistical model. Other strategy is

to use the read enrichment and fold change over the background, but these do not

provide statistical significance values. Thus, the Poisson distribution has frequently

been used to derive significantly enriched windows. The most widely used tool MACS

uses a dynamic parameter, �
local

, to compensate the local fluctuations and is defined

as

�

local

= max(�
BG

, �1k, �5k, �10k)

where �

BG

is a uniform estimation for the whole genome, �1k, �5k, �10k are �

estimated from the 1 kb, 5 kb or 10 kb window centered at the peak location in the

control sample [175]. MACS uses Poisson distribution which defines the probability

of finding a number of k reads mapped to the window as

Pr(X = k) =
�

k

local

e

�

local

k!

In general, peaks are classified into the point source, broad source and mixed

source depending on the protein immunoprecipitated [179] (Figure 2.11). As the

name suggests, point sources are the narrow peaks generated from sequence-specific

transcription factors whereas broad peaks are generated from chromatin marks and

cover larger regions [179]. Mixed source peaks are the enriched regions of a range of

30



Chapter 2. High-Throughput Sequencing Methods and Computational Analysis

Figure 2.11: Di↵erent types of peaks in ChIP-seq experiment. Figure drawn on the
basis of Sims et al. [179].

sizes which are generated by proteins such as RNA polymerase II and transcriptional

repressor CTCF [179]. It remains di�cult to call peaks for broad source and mixed

source factors since the length of the enriched region is several kilobase (kb). Nev-

ertheless, new methods are emerging to identify such regions. For example, MACS2

(an updated version of MACS) is specifically designed to process mixed signal types

[127, 175, 180].

2.2.3.2 Annotation of ChIP-seq Peaks

One of the important step after peak calling is to summarize the location of the peaks

in the genome. This step can be used as a validation criterion for certain chromatin-

associated modifications and proteins [127]. For example, using prior knowledge, we

can confirm if a particular sequence-specific transcription factor preferentially binds

near transcription start site (TSS). In this study, I used several definitions to annotate

the peaks (Figure 2.12). If a peak overlaps two regions, it was annotated for both

of them. More often, researchers are interested in associating peaks with the genes,

therefore in this study peaks were assigned to the genes according to the criterion

suggested by Schlesinger et al [37]. Peaks were assigned to the genes if they are

located within 10 kb upstream of the TSS or in the transcribed region.
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Figure 2.12: Defined regions for annotating ChIP-seq peaks.

2.2.3.3 Discovery of Sequence Binding Motifs

Sequence-specific transcription factors preferentially binds to a short DNA sequence,

which is expected to be enriched in ChIP-seq peaks. Therefore, when a motif of

the protein is already known, this step can be used as a proof of principle of a

successful experiment. Moreover, if the motif is not known, discovery of a centrally

located motif can lead to the identification of DNA-binding motifs of other proteins

that bind in complex, which highlights the mechanism of transcriptional regulation

[181]. A commercially available database ”TRANSFAC” provides the experimentally-

proven binding sites of eukaryotic transcription factors [182]. These motifs are stored

as position weight matrices (PWMs), also called as position-specific weight matrix

(PSWM) or position-specific scoring matrix (PSSM), and is the most common way

to represent the motifs. In the past, various tools have been introduced to identify

over-represented motifs in the ChIP-seq peaks [183–185]. For example, MATCH tool

uses the matrix library collected in TRANSFAC database and calculates two score

values: the matrix similarity score (MSS) and the core similarity score (CSS). These

two scores measure the quality of a match between the sequence and the matrix,

which ranges from 0.0 to 1.0, where 1.0 denotes an exact match [182, 185]. The core

of each matrix is defined as the first five most conserved consecutive positions of a

matrix and CSS is calculated for all pentanucleotides and prolonged at both ends, so

that it fits the matrix length [182, 185]. Both scores, MSS and CSS, are calculated

in the following way

MSS or CSS =
Current�Min

Max�Min
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where, Current is the frequency of nucleotide B to occur at the position i of the

matrix (B 2 {A, T,G,C}), Min is the frequency of the nucleotide which is rarest

in position i in the matrix and Max is the highest frequency in position i. Next,

over-represented transcription factor binding sites that are statistically significant are

identified assuming a binomial distribution. In the output, these tools give a sequence

logo, which is a common graphical representation for a matrix [186]. An example of

a frequency matrix and its sequence logo is shown in Figure 2.13.

Figure 2.13: Example of a frequency matrix (left) and its sequence logo (right). Data
randomly taken from open-source JASPAR database [187].

Discovery of binding motifs using MATCH, will return only the known motifs

collected in TRANSFAC database and therefore in this study, I also used Regulatory

Sequence Analysis Tools (RSAT) for the detection of novel motifs, known as de novo

motif discovery [188, 189]. Using RSAT, oligo-analysis was performed for detecting

over-represented oligonucleotides. Additionally, RSAT can also compare the discov-

ered motifs with databases like JASPAR [187]. The advantage of using two tools is

that we can focus on high confident motifs, which are discovered by both of them.

2.2.3.4 Gene Ontology Enrichment Analysis

One of the most common analysis of a gene set is Gene Ontology (GO) Enrichment

Analysis. It provides core biological knowledge representation of a gene list. The

Gene Ontology project provides an ontology which covers three domains - ”Molecular

Function”, ”Biological Process”, and ”Cellular Component” [190, 191]. GO analysis

was conducted using the DAVID functional annotation tool [192]. The tool calculates

an EASE Score using a modified Fisher’s exact p-value. Here is an example of how

functional annotation tool of DAVID calculates a p-value. Consider a human genome

as background with 30,000 genes. Out of these, 40 genes are involved in vasculature

development. On the other hand, a gene list provided by the user has 3 out of

300 genes involved in vasculature development. Using a Fisher’s exact test, we can

test the hypothesis if 3/300 is more than random chance comparing to the human
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Table 2.1: A 2x2 contingency table built for Fisher’s exact test.

background of 40/30000 (Table 2.1). Using 3 for the test, we get a p-value of 0.008,

which is significant (p-value  0.01) suggesting that user’s gene list is enriched for

vasculature development. Functional annotation tool of DAVID uses 3-1 (instead of

3) to make the test more stringent and conservative. Therefore, p-value or EASE

Score is 0.06 which is not significant. However, it is worthy to note that annotations

in the DAVID database are not regularly updated. Therefore, I used Mouse Genome

Informatics (MGI) database to validate the results of DAVID database [193]. Specific

GO terms were downloaded from MGI database and using two-sided Fisher’s exact

test, I confirmed if these terms are indeed significantly enriched or not.

2.2.3.5 Enrichment Profile Around the Transcription Start Sites

In the past, several studies have shown the importance of plotting the ChIP-seq signal

or enrichment around transcription start site (TSS), specially for histone marks [194–

196]. Therefore, in addition to peak calling approach, I used the enrichment profile

of histone marks around the TSS. ChIP-seq signal can be calculated around the

TSS, for example, 2 kb upstream and 4 kb downstream of TSS. The resulting region

of 6 kb length can be divided in 100 bp long non-overlapping windows. For each

window, the total signal is calculated on the basis of mapped reads (see Chapter

5). Moreover, based on the ChIP-seq signal, previous studies have suggested to

cluster the genes into subgroups using k -means clustering [194, 195]. Genes in the

same cluster have the similar pattern or profile of histone signal around the TSS

and each cluster has a unique enrichment profile, which is di↵erent from the rest.

K -means is a non-hierarchical clustering method that is used to classify data into

groups of genes without specifying relationships between genes in a cluster. This

method requires predetermined number of clusters, which can be defined based on

the visual inspection. The first step is the initialization, in which an average (centroid)

is calculated for each cluster and then, genes are reassigned to the di↵erent clusters

depending on which centroid it is closer. Calculation of centroid and re-grouping is
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performed in an iterative manner. In this study, k -means clustering was performed

in R (v3.0.2) using the ”kmeans” function and 100,000 iterations.

2.2.4 Analysis of RNA-seq Data

RNA-seq is commonly used to deduce and quantify the gene expression. Moreover,

di↵erent samples can be compared to each other to find di↵erentially expressed genes

or isoforms. Apart from this, RNA-seq is used to identify di↵erential alternative

splicing events. In this study, all three applications have been used, meaning the

quantification of gene expression, the identification of di↵erentially expressed genes

and the detection of di↵erential exon usage. Analysis of RNA-seq data for above

mentioned applications need sophisticated tools with advanced statistical models to

reduce the false positives. Some of these tools have been discussed in the following

sections.

2.2.4.1 Quantification of Gene Expression

After mapping RNA-seq reads to a reference sequence, expressed genes can be identi-

fied using the mapped reads. In general, more reads will be mapped to long genes and

less reads will be mapped to short genes. Therefore, to quantify and compare gene

expression within the sample needs a normalisation step according to the gene length.

Moreover, before comparing genes in di↵erent samples, data needs to be normalise

for di↵erences in library size or sequencing depth [197]. The most common normali-

sation method is to calculate RPKM (reads per kilobase per million mapped reads)

for single-end reads or FPKM (fragments per kilobase per million mapped fragments)

for paired-end reads. This approach facilitates the comparison between genes within

a sample and between the samples as it normalises the data for library size and also

for the gene length [114, 197]. RPKM of a particular gene is defined as

RPKM = 109
C

NL

,

where C is the number of mappable reads that fell onto the gene exons, N is the

total number of mappable reads in the experiment and L is the sum of the exon length

in base pairs [114, 197]. In contrast to quantifying gene expression, estimation of

isoform expression remains di�cult because more often reads are mapped to multiple

isoforms. To solve this issue, Trapnell et al. developed an algorithm, Cu✏inks, that

can estimate the abundance of isoforms or transcripts by probabilistically assigning

reads to the isoforms [198]. The probability that a fragment originates from transcript
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t and the probability of selecting a fragment from transcript t are denoted by �

g

and

�

t

respectively. These parameters are estimated from a likelihood function and the

abundance of a transcript t 2 gene g is given in FPKM units

Cufflinks FPKM =
109 �

g

�

t

l(t)
,

where l(t) is an adjusted length of transcript t [198]. Cu✏inks is a part of Tuxedo

tools and is widely used for assembling and quantifying the gene and/or isoform

expression [199].

Genes or transcripts, even with only one mapped read will produce a signal and

the FPKM or RPKM value will be greater than zero. The major challenge after

calculating FPKM values is to determine whether the transcript is functional in a

cell/tissue or not. Hebenstreit et al. showed (Figure 2.14) that the distribution of

RPKM (or FPKM) values divides the expression level in two groups of genes, meaning

lowly expressed (LE) and highly expressed (HE) genes [200]. The study suggested

that the RPKM value of at least one seems a fair cuto↵ to define putatively functional

genes and moreover, they found that one RPKM corresponds to an average of roughly

one transcript per cell [200]. Therefore, in the present study, I have used this cuto↵

to define putatively functional genes in our data.

Figure 2.14: Expectation-maximization-based curve fitting of RNA-seq data shows
the two groups of genes i.e. lowly expressed (LE) and highly expressed (HE) genes.
Figure taken from Hebenstreit et al. [200].
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2.2.4.2 Identification of Di↵erentially Expressed Genes

After transcriptome profiling, one major interesting question is the discovery of dif-

ferentially expressed genes across di↵erent conditions (e.g., patients versus healthy

individuals, right ventricle tissue versus left ventricle tissue, undi↵erentiated cells

versus di↵erentiated cells). In general, to define a gene as di↵erentially expressed,

the variation between the groups (e.g., patients versus healthy individuals) should be

significantly large as compared to the within each group (e.g. within patient cohort).

To estimate the better variation, we need biological replicates for each condition but

it remains di�cult to define a standard number of replicates. In general, more repli-

cates will lead to better estimation of variation but it increases the overall cost of

the experiment. One simple way for the discovery of di↵erentially expressed genes

without replicates is to use the fold change between two conditions. For example, if

a gene A in condition X has a FPKM value of 10 and in condition Y has a FPKM

value of 5, the fold change will be 2 and depending on the cuto↵, we can define if

gene A is di↵erentially expressed or not. On the other hand, it is always better to

use a statistical model for replicates to identify di↵erentially expressed genes. The

statistical computation becomes more complex at transcript resolution. To address

this issue, Trapnell et al. introduced a tool, Cu↵di↵ 2, by modeling variability in the

number of fragments generated by each transcript across replicates [201].

It remains di�cult to choose a model that controls for variability in technical and

biological noise [202]. One natural choice and commonly used model for fragment

count is the Poisson model, in which the variability is estimated by calculating the

mean count across replicates but it does not provide enough flexibility, meaning more

variability exists than can be explained by the model (overdispersion) and does not ad-

dress the issue of count uncertainty (reads map ambiguously to di↵erent transcripts)

[203–205]. Previously, it has been observed that overdispersion in RNA-seq experi-

ments increases with expression and therefore, the negative binomial distribution has

been proposed as a means of controlling for it but the issue of count uncertainty is

not addressed [203, 206]. Cu↵di↵ 2 algorithm captures uncertainty in a transcript’s

fragment count as a beta distribution and the overdispersion in this count with a

negative binomial, and mixes the distributions together (i.e. beta negative binomial

distribution) [201].

In contrast to FPKM based strategy, Love et al. presented a method, DESeq2, for

di↵erential analysis of count data [207]. They use shrinkage estimation for dispersions

and fold changes to improve stability and interpretability of estimates [207]. Read

counts in a matrix K

ij

are modeled using a negative binomial distribution with mean
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µ

ij

and dispersion �

i

. DESeq2 deals with the experiments with small number of

replicates (two or three) that leads to highly variable dispersion estimates for each

gene and therefore, assume that genes of similar average expression level have similar

dispersion [207]. The shrinkage of maximum a posteriori dispersion estimates toward

the fitted values is shown in Figure 2.15.

Figure 2.15: Shrinkage estimation of dispersion using DESeq2. Figure taken from
Love et al. [207]. MAP, maximum a posteriori; MLE, maximum-likelihood estimate.

To make the explanation easier to understand, the aforementioned strategies have

been described with an example of a single gene. But more often, we test thousands

of gene for the di↵erential expression. In other words, thousands of p-values are

calculated using the same test for di↵erent genes. This leads to the multiplicity

problem, in which thousands of hypothesis are tested simultaneously and the chance

of false positives significantly increases. For example, performing the same test 10,000

times, one would expect 10,000 * 0.01 = 100 of them to have a p-value  0.01, even

in a completely random situation. Therefore, in order to reduce the false positives, an

adjustment to the p-values is needed. Over the past several years di↵erent methods

have been introduced to address this issue. For example, Bonferroni adjustment is

commonly used but this method is too conservative [208, 209]. Therefore, Cu↵di↵ 2

and DESeq2 implements a FDR (false discovery rate) adjusted p-value method using

Benjamini and Hochberg procedure [210].
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2.2.4.3 Detection of Di↵erential Exon Usage

It is known that more than 90% of multiexon genes in human, undergo alternative

splicing [211, 212]. The inclusion or exclusion of di↵erent exons in a mature RNA

leads to the translation of di↵erent proteins. Therefore, one gene could give rise

to multiple proteins and potentially, with di↵erent function. Altered RNA splicing

is implicated in many human diseases [213–215], therefore it is important to study

this process. RNA-seq provides the opportunity to study alternative splicing but

requires sophisticated computational methods to analyze the data. More often, we

are interested in comparing di↵erent conditions (e.g. knockout mice versus wildtype

mice) and ask, if a exon is di↵erentially used between the conditions. As in the

analysis of di↵erentially expressed genes, it is di�cult to choose a model that controls

for variability in biological noise for detection of di↵erential exon usage. Wang et

al. used the 2 x 2 contingency tables of read counts and applied Fisher’s exact test

to identify di↵erentially used exons [211]. Recently, this method was extended by

considering the read coverage for the alternative exon and its corresponding gene

[216]. Firstly, a p-value is calculated between the two conditions using junction read

counts by Fisher’s exact test. Next, using the read coverage for the alternative exon

and its corresponding gene, a second p-value is calculated by Fisher’s exact test. The

two p-values are combined to get an adjusted p-value using a weighted arithmetic

equation [216]

Pvalue

adjusted

= w ⇤ Pvalue

first

+ (1� w) ⇤ Pvalue

second

,

where w is the weight of the Pvalue

first

, whose value depends on the size of an

alternative exon and read length [216]. This method has been implemented in Java

and called as Alternative splicing detector (ASD). The advantage of ASD is that it

can compare the two conditions without using replicates. To address the issue of

biological variation, Anders et al. presented a method, DEXSeq, which models the

read count using negative binomial (NB) distribution [217]

K

ijl

⇠ NB (mean = s

j

µ

ijl

, dispersion = ↵

il

),

where K
ijl

is the number of reads overlapping counting bin l of gene i in sample j.

µ

ijl

is the predicted mean, s
j

is the size factor, which accounts for the sequencing depth

of sample j, and ↵

il

is a measure of the distribution’s spread [217]. The advantage of

DEXSeq is that it includes the information from biological variation using replicates.
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Over the past few years, it has been suggested that estimation of percent-spliced-

in (PSI,  ) captures more accurately the local information related to splicing of each

particular exon [218–220]. Moreover, Guo et al. showed the use of di↵erence in PSI

value of exons between two conditions (i.e. 4PSI), without using replicates [221].

PSI metric takes the advantage of junction reads, which supports the inclusion or

exclusion of an exon under consideration.  is defined as

 =
a+ b

a+ b+ 2c
,

where a+ b is the number of reads supporting the inclusion of an exon and c is

the number of reads supporting the exclusion of an exon. The factor of two in the

denominator accounts for the fact that there are twice as many mappable positions

for reads supporting exon inclusion as exon exclusion [221]. In general, PSI value of 1

means that the exon is fully included (100%). Figure 2.16 shows the junction reads,

which support the inclusion (a and b) and exclusion (c) of an exon.

Figure 2.16: Illustration of percent-spliced-in (PSI) metric. The exon filled in grey
is assumed to be under consideration. a+ b is the number of reads supporting the
inclusion of the exon and c is the number of reads supporting the exclusion of the
exon.

During the comparison between the two conditions, PSI values are calculated for

each exon in both the conditions. Therefore, each exon will have two PSI values and

di↵erence between them can be calculated. In this study, based on PSI values, a

pipeline has been generated to detect di↵erential exon usage by comparing the two

conditions (see Chapter 6).
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Chapter 3

Project-Related Datasets

Using the aforementioned methods (i.e. targeted resequencing, ChIP-seq and RNA-

seq), multiple experimental datasets were generated by the Sperling group (Cardio-

vascular Genetics at the ECRC, Charité Campus Berlin-Buch) to investigate various

components during heart and skeletal muscle development and disease. All the de-

scribed datasets are computationally analyzed within this thesis. Unless stated oth-

erwise, high-throughput sequencing was performed by Bernd Timmermann’s (Next

Generation Sequencing Service) at the Max Planck Institute for Molecular Genetics,

Wei Chen’ group (Scientific Genomics Platform) at the Berlin Institute for Medical

Systems Biology, and ATLAS Biolabs GmbH.

3.1 DNA-seq Data From Patients with Tetralogy
of Fallot

Targeted resequencing was performed for eight patients with Tetralogy of Fallot

(TOF), all of which are unrelated sporadic cases with a well-defined coherent phe-

notype and no further anomalies. Genomic DNA (gDNA) was extracted from whole

blood of five TOF patients and from right ventricle of three TOF patients (Table

3.1). These patient samples were collected in collaboration with the German Heart

Center Berlin and the National Registry of Congenital Heart Disease in Berlin. The

quality of gDNA was assessed on agarose gel and spectrophotometer. Three to five

mg of gDNA were used for Roche NimbleGen sequence capturing using 365K arrays.

For array design, 867 genes and 167 microRNAs (12,910 exonic targets representing

4,616,651 target bases) were selected based on knowledge gained in various projects

[37, 99, 222, 223]. DNA enriched after NimbleGen sequence capturing was sequenced
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3.2. DNA-seq Data From HapMap Samples

using the Illumina Genome Analyzer (GA) IIx (36 bp paired-end reads). Sequencing

was performed by ATLAS Biolabs (Berlin) according to the manufacturer’s protocols.

Table 3.1: Sample information, number and quality of 36 bp paired-end reads obtained
from targeted resequencing in TOF patients using Illumina’s Genome Analyzer IIx
platform.

3.2 DNA-seq Data From HapMap Samples

Exome sequencing data from eight HapMap individuals (NA18507, NA18555,

NA18956, NA19240, NA12878, NA15510, NA18517, NA19129) were analyzed [224].

The exomes were captured using Roche NimbleGen EZ Exome SeqCap Version 1

and sequencing was performed using an Illumina HiSeq 2000 platform with 50 bp

paired-end reads (Table 3.2). The exome sequence data was downloaded from the

Sequence Read Archive (SRA) at the NCBI (SRA039053).

Table 3.2: Sample information and number of 50 bp paired-end reads from HapMap
project.
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3.3 ChIP-seq Data of Transcription Factor MyoD
and Histone Modifications From C2C12 Skele-
tal Muscle Cells

C2C12 cells are murine myoblasts, which were originally derived from adult dystrophic

mouse muscle [225] and are a useful model to study myogenic di↵erentiation. We per-

formed ChIP-seq for H3K4me2, H3K4me3 and MyoD in undi↵erentiated (Undi↵) and

di↵erentiated (Di↵) C2C12 cells. To induce di↵erentiation, cells were cultured with

Dulbecco’s modified Eagle’s medium and 2% horse serum (Biochrom) and maintained

for 48 hours, when more than 90% of the cells had fused into myotubes (Di↵ C2C12

cells). ChIP was performed with the MAGnify Chromatin Immunoprecipitation Sys-

tem (Life Technologies, 49-2024) following the manufacturers instructions with mod-

ifications. Sonication was performed using the Biorupter UCD300 (Diagenode) to

obtain chromatin fragments of approximately 100-300 bp. The following antibodies

were used for ChIP: anti-H3K4me2 (Abcam ab7766), anti-H3K4me3 (Abcam ab8580),

and anti-MyoD (Santa Cruz, sc-760). Sequencing libraries were prepared using the

NEXTflex ChIP-Seq Kit (Bio Scientific, 5143) according to an in-house (Sperling

lab) modified protocol. The libraries were 51 bp single-end sequenced on an Illumina

HiSeq 2000 platform. Base calling was performed with the Illumina Casava pipeline

version 1.8.0. Initial sequencing quality assessment was based on data passing the

Illumina Chastity filter. Sequencing of DNA libraries resulted in approximately 29-66

million reads per sample (Table 3.3).

Table 3.3: Overview of total number of reads generated per sample in ChIP-seq during
myogenic di↵erentiation. Sequence reads are single-end 51 bp long and some DNA
libraries were sequenced on multiple lanes.
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3.4 RNA-seq Data From C2C12 Skeletal Muscle
Cells

RNA-seq data were used from the ENCODE project [127] for undi↵erentiated C2C12

cells and di↵erentiated C2C12 cells (60 h timepoint). To induce di↵erentiation, cells

were cultured with Dulbecco’s modified Eagle’s medium and 2% donor equine serum

(HyClone) and maintained for 60 hours. The libraries were 75 bp paired-end se-

quenced on an Illumina Genome Analyzer II platform (204 and 185 million paired-

end reads in undi↵erentiated and di↵erentiated C2C12 cells, respectively). The data

were downloaded from the Sequence Read Archive (SRA) at NCBI with accession

numbers SRR496442 (undi↵erentiated C2C12 cells) and SRR496443 (di↵erentiated

C2C12 cells).
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3.5 RNA-seq Data From Dpf3 Knockout Mice

In previous studies, the Sperling laboratory identified the chromatin remodeling fac-

tor Dpf3, the expression of which was significantly up-regulated in the right ventricle

of TOF patients [99, 100]. Moreover, in-house (Sperling lab) experiments showed

that Dpf3 interacts with splicing factors, which suggests its potential role in splicing.

Therefore, to study the role of Dpf3 in splicing, Dpf3 knockout mice were gener-

ated and mRNA sequencing (mRNA-seq) was performed. Using knockout (KO) and

wildtype (WT) mice, we extracted mRNA from three tissues; namely, right ventricle

(RV), left ventricle (LV) and skeletal muscle (SM). The strand-specific libraries were

prepared using the “ScriptSeq RNA-seq library preparation kit” from Illumina and

paired-end sequencing was performed on an Illumina HiSeq 2000 platform with a read

length of 50 bp. The libraries were sequenced on multiple lanes (Table 3.4).

Table 3.4: Overview of total number of reads generated per sample in Dpf3 knock-
out (KO) and wildtype (WT) mice. Sequence reads are paired-end 50 bp long and
strand-specific libraries were sequenced on multiple lanes. RV, right ventricle; LV,
left ventricle; SM, skeletal muscle.
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Chapter 4

Outlier-Based Identification of
Copy Number Variations Using
Targeted Resequencing in a Small
Cohort of Patients with Tetralogy
of Fallot

4.1 General Purpose

Copy number variations (CNVs) are one of the main sources of variability in the

human genome. Many CNVs are associated with various diseases including cardio-

vascular disease. These copy number changes are usually defined to be longer than

500 bases, including large variations with more than 50 kilobases [226, 227]. Previous

studies have identified CNVs in large cohorts of non-syndromic patients with Tetral-

ogy of Fallot (TOF). All three studies used SNP arrays to identify CNVs [55–57].

Observing the overlap between these studies with hundreds of cases revealed only

one locus (1q21.1) a↵ected in 11 patients (Figure 4.1), which underlines the heteroge-

neous genetic background of non-syndromic TOF. In this study, we aimed to identify

copy number alterations in a small cohort of non-syndromic TOF patients based on

targeted resequencing data. We developed a novel CNV calling method to identify

individual/personalised disease-relevant CNVs. The method is based on outlier de-

tection using Dixon’s Q test and assessment of outliers using a Hidden Markov Model

(HMM). For evaluation, we applied our method to a small cohort of HapMap samples

and compared it to results obtained by ExomeDepth and CoNIFER. Subsequently,

our method and CoNIFER were used to detect CNVs in the TOF patients. For this

project, we analyzed targeted resequencing data from 8 patients with TOF and exome
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4.2. Novel Outlier-Based Copy Number Variation Calling Method

Figure 4.1: All three studies are based on SNP arrays. Loci with detected CNVs are
depicted according to their respective cytoband. For 1q21.1, which was identified in
all three studies, the RefSeq genes that are a↵ected in at least one patient in each of
the publications are listed in the order of their genomic position.

sequencing data from 8 HapMap individuals (Chapter 3.1 and 3.2).

4.2 Novel Outlier-Based Copy Number Variation
Calling Method

Our CNV calling method was developed for exome or targeted resequencing data of

small sets of samples (at least 3 and at most 30) assuming that the bias in the captured

regions is similar in all samples enriched and sequenced with the same technology.

Based on a heterogeneous genetic background in the cohort, it was further assumed

that a unique disease-related copy number change is only present in very few samples.

4.2.1 Calculation of Copy Number

In the first step, we calculated the copy number values for each sample separately. The

sequenced reads were mapped to the targeted regions of the reference genome using

BWA (v0.5.9) in paired-end mode (’sampe’) with default parameters. During targeted

resequencing, often up- and downstream of the targeted regions (usually exons) are

also captured. Therefore, the regions were extended by 35 bp (read length minus one
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Chapter 4. Outlier-Based Copy Number Variation Calling Method

base pair) to correctly capture the coverage at the start and end of a region. After

mapping, the extended regions with their mapped reads were joined chromosome-

wise and the tool mrCaNaVaR (v0.34) was used to split the joined regions into non-

overlapping windows of 100 bp in length. The copy number value C for each window

W 2 {1, ..., n} of a sample S 2 {1, ..., n} was then calculated by mrCaNaVaR using

the following formula

C

S

W

=
Number of reads mapped to W

Average number of reads mapped over all windows

⇤ 2.

4.2.2 Identification of Outliers Using Dixon’s Q Test

Dixon’s Q Test was introduced in 1950 for the analysis of extreme values and for the

rejection of outlying values [228]. We used the formulas for r10 and r20, also known

as type10 and type20 in the R package ’outliers’ (v0.14) [229]. For this test, firstly

we have to arrange the values in ascending order x1 < x2 < ... < x

n

. Then, the

experimental Q-value (Q
exp

) is calculated. The equations for calculating Q-values for

r10 and r20 are given below

r10 =
x2 � x1

x

n

� x1
, for a single outlier x1,

r20 =
x3 � x1

x

n

� x1
, for outlier x1 avoiding x2,

The equations above are shown for the outlier detection of the lower values but

can also be used for the higher values, meaning x

n

and/or x
n�1 [229]. Type10 (rec-

ommended for 3-7 samples) can only detect a single outlying window at the same

genomic position over all samples, while type20 (recommended for 8-30 samples) can

identify exactly two outlying windows, meaning the Q test will not detect outliers if

more than 2 outliers are present. An example is illustrated in Figure 4.2. Depending

on the sample size, our method can be applied using type10 and type20 indepen-

dently. For type20, the method first identify if one outlier can be detected. If not,

it assumes that it is masked by a second deviant value. Therefore, it detects both

the outliers. Dixon’s Q test was applied for each window at the same position over

all samples to identify gains or losses considered as outliers (Figure 4.4). Outliers

were regarded as significant with a p-value of less than or equal to 0.01. In general,

the higher the p-value cuto↵, the higher the number of detected outliers but also the

number of false positives, meaning the p-value is a tuning parameter for sensitivity

of our method.
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Figure 4.2: Di↵erent cases for Dixon’s Q test when comparing Copy Number Values
between di↵erent individuals. Here, three di↵erent windows are shown. Each dot
represents the Copy Number Value for di↵erent individual. A purple dot represents
the Copy Number Value of an individual considered as significant outlier (Loss or
Gain). In W1, the outlier is considered as loss because the value is less than all other
individuals (red dots). In W2, two outliers considered as gain and in W3, there is no
significant outlier.

4.2.3 Assessment of Outliers Using Hidden Markov Model

In the third and final step, the samples were again considered separately. For each

sample, a Hidden Markov Model (HMM) was applied to get the most likely state of

each window (i.e., gain, loss or normal). In general, HMM can be used to generate a

sequence, that means to recover a series of states from a series of observation [230].

The parameters of a HMM are of two types, transition probabilities and emission

probabilities. The transition probability is the probability of transitioning to a next

state whereas emission probability is the probability of the observed variable emit-

ted from a specific state (see Chapter 2.2.2.1). The initial transition and emission

probabilities of the HMM are given in Figure 4.3. HMM is implemented to assess the

outliers for each window. For example, if a given window is assigned as normal copy

number and the previous windows shows copy number gain, it is likely that outlier

was not detected in the second step. It is important to note that our method does

not give the absolute copy number for a given region. This is due to the fact that

targeted resequencing technology su↵ers with several biases such as local GC-content,

as well as sequence complexity and sequence repetitiveness in the genome. Therefore,

instead of absolute copy number, HMM is applied on the copy number state meaning
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gain, loss or normal.

Figure 4.3: Initial transition and emission probabilities of the Hidden Markov Model.
The transition probabilities are shown by curved arrows and emission probabilities
are shown by lines.

The initial transition and emission probabilities of the HMM were recomputed

using the Baum-Welch algorithm implemented in the R package ’HMM’ (v1.0) [231].

The most likely sequence of the hidden states was then found by the Viterbi algorithm

also implemented in the R package ’HMM’ [232]. Finally, a region was called as copy

number gain or loss if at least five continuous windows were considered as a gain or

loss, respectively (Figure 4.4). This results in a minimum size of 500 bp for detectable

CNVs.
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Figure 4.4: Outlier-based CNV calling method. (A) Read mapping and calculation
of copy number value per window. Reads are mapped to extended targeted regions,
which are then joined chromosome-wise. mrCaNaVaR is used to split the joined
regions into windows. For each window, its copy number value is calculated by
mrCaNaVaR, where CS

W

represents the value for window W in sample S. (B) Dixon’s
Q test is applied for each window over all samples to identify outliers. Here, sample
1 represents an outlier (loss, L) for the first, second, third and fifth window, while
sample 2 represents an outlier (gain, G) for the fourth window. (C) Assessment of
outliers using a Hidden Markov Model (HMM). In the given example, the fourth
window of sample 1 is considered as normal (N). After applying the HMM, it will
also be considered as a loss. Similarly, the fourth window of sample 2 is considered
as normal after applying the HMM. A region is called as a copy number alteration,
if at least five continuous windows show the same kind of change, i.e. either gain or
loss.
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4.3 Comparison of Outlier-Based Method

We applied our outlier-based CNV calling method to eight HapMap control samples

and intersected our exome-based calls from five of the samples with previously gener-

ated calls from high-resolution microarray-based comparative genomic hybridization

(array-CGH). In addition to our method, we used the two publicly available tools

ExomeDepth and CoNIFER. Applying our method with type10 Dixon’s Q test (as-

suming at most one outlier), we found 40 CNVs over the five HapMap controls (Table

A.1), out of which 37 regions were also identified in the array-CGH data, showing a

high positive predictive value of 93%. With type20 (assuming at most two outliers),

we found 65 copy number changes (Appendix Table A.2), out of which 55 regions

are present in the array-CGH data, resulting in a positive predictive value of 85%.

Using CoNIFER, 32 CNVs were identified in the five HapMap exome controls and

only 26 of these regions are also present in the array-CGH data [167], which corre-

sponds to a positive predictive value of 81% (Appendix Table 4.1). Comparing our

results to those obtained from CoNIFER, we found that with type10, 16 out of 40

regions (40%) are overlapping with regions called by CoNIFER by at least one base

pair. Vice versa, 11 out of 32 regions (34%) overlap with our calls. With type20, 24

out of our 65 called regions (37%) overlap with those from CoNIFER and oppositely,

47% of the regions (15 out of 32) overlap with our calls. In addition to CoNIFER,

we applied ExomeDepth with default parameters to the eight HapMap samples and

intersected the found CNVs from five of the samples with previously generated calls

from array-CGH. In summary, ExomeDepth found 1,555 CNVs in the five samples

(median number of 286 CNVs per sample). Out of these, only 253 CNVs overlapped

with 3,330 array-CGH calls, which suggest a positive predictive value of 16% and

sensitivity of 7.6% (Table 4.1). Moreover, ExomeDepth identified more CNVs as

compared to CoNIFER and to our method; however the positive predictive value is

very low. Therefore, we decided not to use ExomeDepth for detecting CNVs in the

TOF patients. To identify copy number alterations in TOF patients, we applied our

outlier-based method as well as CoNIFER to targeted resequencing data of our eight

cases. Using our method, we found four copy number gains in three genes, namely

ISL1, NOTCH1 and PRODH. CoNIFER only identified two gains in PRODH, which

overlap with the two regions found by our method (Table 4.2).
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Table 4.1: Exome sequencing-based CNV calls in HapMap samples.

Table 4.2: Targeted resequencing-based CNV calls in TOF patients.

4.4 Validation of Copy Number Variations

We further validated all four regions identified by our method using quantitative real-

time PCR (Figure 4.5). Genomic DNA was extracted from whole blood or cardiac

biopsies using standard procedures. Quantitative real-time PCR was carried out using

GoTag qPCR Master Mix (Promega) on an ABI PRISM 7900HT Sequence Detection

System (Applied Biosystems) according to the manufacturers instructions and with

normalization to the RPPH1 gene. As a reference, genomic DNA from the HapMap

individual NA10851 was obtained from the Coriell Cell Repositories (New Jersey,

USA).
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Figure 4.5: CNVs in TOF patients. (A) CNVs detected in PRODH by CoNIFER
and our outlier-based CNV calling method. The duplications are depicted in the
UCSC Genome Browser as blue bars. The positions of the two quantitative real-
time PCR products selected for validation are shown as light and dark grey bars,
respectively. (B) Quantitative real-time PCR validation of PRODH copy number
gains. Measurement was performed at two di↵erent positions (light and dark grey
bars, respectively) and normalized to the RPPH1 gene. The HapMap individual
NA10851 was used as a reference. The plot shows a representative of two independent
measurements, which were each performed in triplicates. (C-D) Validation of copy
number gains in ISL1 and NOTCH1, respectively, that were only identified by our
outlier-based CNV calling method.
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4.5 Summary

In summary, we developed an outlier-based CNV calling method for a small cohort size

of up to 30 individuals. Copy number variations (CNVs) are associated with a variety

of diseases such as congenital heart defects and can be identified by high-throughput

sequencing technologies. Our method is based on the assumption that individual

CNVs (outliers) are disease-relevant and can be applied to exome as well as targeted

resequencing data. Both sequencing techniques achieve a high read coverage over

the targeted regions. Moreover, we assumed that the bias in the captured regions is

similar in all samples enriched and sequenced with the same technology. We evaluated

our method using publicly available data of eight HapMap samples and subsequently

applied it to a small number of TOF patients. Compared to CoNIFER we identified

more CNVs in both the HapMap samples as well as in our TOF cohort. In our TOF

cohort comprising eight cases, we found four copy number gains in three patients,

while CoNIFER only detected two of the gains in one patient. All four gains could

be validated and in addition, the three genes a↵ected by the CNVs are important

regulators of heart development (NOTCH1, ISL1 ) or are located in a region associated

with cardiac malformations (PRODH ). Taken together, this illustrates the advantage

of using an outlier-based detecting method in a small cohort with a heterogeneous

genetic background. Thus, our method is of special interest for small cohorts of

specific phenotypes like rare diseases. The method was implemented in R (v2.15.1)

(Appendix Listing A.1).
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Chapter 5

Analysis of Epigenetic Changes
During Myogenic Di↵erentiation of
C2C12 Skeletal Muscle Cells

5.1 General Purpose

Myogenic di↵erentiation is an essential process of muscle development and depends

on the spatiotemporal regulation of gene expression patterns. Understanding myo-

genic di↵erentiation is important to investigate muscular disease such as mucular

dystrophies, which are regulated by epigenetic mechanisms [233, 234]. During myo-

genic di↵erentiation, the overall content of histone methylations such as H3K4me2,

H3K4me3, H3K36me3 and H3K27me3 were shown to be stable [81]. The basic helix-

loop-helix (bHLH) transcription factor MyoD is a key player in myogenic specification

and binds to DNA via a consensus E-box motif (CANNTG) [71, 72, 79]. During myo-

genesis, the binding of MyoD is primarily associated with gene activation [74], but

its repressive function in myogenesis has also been shown on single genes [75–77].

Most previous studies focused on the dynamic regulation of histone modifications

and transcription factors; however, it is still an open question how stable enrichment

patterns of histone modifications in combinations with tissue specific transcription

factors (TFs) regulate myogenic di↵erentiation. Here, we investigated a stable en-

richment pattern of the histone marks H3K4me2 and H3K4me3 in combinations with

muscle tissue-specific transcription factor MyoD during myogenic di↵erentiation. For

this project, we analyzed ChIP-seq data of MyoD, H3K4me2 and H3K4me3 in undif-

ferentiated (Undi↵) and di↵erentiated (Di↵) C2C12 cells (Chapter 3.3). Furthermore,

to compare the genome-wide gene expression profile in the two stages, we analyzed

the RNA-seq data (Chapter 3.4).
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5.2 H3K4me2 Located Over Gene Body of Muscle
Specific Genes

To analyze the distribution of histone modifications around transcriptional start sites

(TSS), we filtered RefSeq (mm9) annotation file, for a defined set of gene transcripts

longer than 4 kb, resulting in 24,051 transcripts with 19,904 unique TSS (Figure 5.1).

We further analyzed regions from -2 kb to +4 kb around TSS, which enables the

direct comparison of epigenetic profiles independent from the gene length [194]. For

each C2C12 ChIP-seq sample, the transcripts with a lower signal around the TSS

as compared to the input sample were discarded, which resulted in approximately

18,000 to 20,000 transcripts per sample (Figure 5.1). For each TSS, we generated the

average ChIP-seq profile based on the normalized signal.

Figure 5.1: Flow chart shows the filtering criteria and results for RefSeq genes (mm9).
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In undi↵erentiated C2C12 cells, the average profile of H3K4me2 showed a bimodal

distribution and revealed the highest enrichment downstream of the TSS (Appendix

Figure B.1). To check whether any specific set of genes show distinct enrichment

within the gene body, we performed k-means clustering with six clusters using the

filtered set of TSS (Figure 5.2A). The first five clusters are characterized by specific

distributions of H3K4me2 around the TSS. Here, cluster 1 (representing 632 genes)

and cluster 4 (representing 1,361 genes) are the most distinct groups. Cluster 1 is

characterized by H3K4me2 positioned over the gene body, while cluster 4 shows a

higher prevalence upstream of the TSS. In contrast, cluster 6 includes all TSS with

a very low H3K4me2 signal (4,942 genes). Finally, we verified the results of k-means

clustering by discriminant analysis and found that the observed clusters can indeed

be clearly distinguished from each other (Figure 5.2B).

When we combined the ChIP-seq data with gene expression profiles obtained by

RNA-seq from ENCODE (Chapter 3.4), we found that genes located in cluster 1 are

significantly higher expressed compared to all other clusters (P-value < 0.001). The

lowest expression was found for genes detected in cluster 6 (Figure 5.2C). Further, we

performed a GO enrichment analysis within each cluster using the DAVID functional

annotation tool [192]. In contrast to all other clusters, cluster 1 genes are significantly

enriched for GO terms related to muscle development (Figure 5.2D).

Next, we performed the same analysis of H3K4me2 profiles and related gene ex-

pression for di↵erentiated C2C12 cells and obtained results comparable to the un-

di↵erentiated cells (Appendix Figure B.2). Again, significant GO terms related to

muscle development were observed for cluster 1 genes. Then, we compared the clus-

ters between undi↵erentiated and di↵erentiated C2C12 cells and found that a high

proportion of genes remained in the same cluster after di↵erentiation (Appendix Fig-

ure B.2). For example, 83% of cluster 1 genes show a stable profile, with the same

H3K4me2 distribution in both undi↵erentiated and di↵erentiated C2C12 cells. Most

interestingly, GO analysis of the stable (overlap between Undi↵ and Di↵) and dy-

namic (specific for Undi↵ or Di↵) gene sets in cluster 1 revealed that only the stable

gene set is significantly enriched for muscle-related GO terms.

5.3 H3K4me3 Located Towards the Gene Body of
Muscle-specific Genes

Compared to H3K4me2, we observed a higher mean enrichment of H3K4me3 di-

rectly downstream of the TSS in both undi↵erentiated and di↵erentiated C2C12 cells
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Figure 5.2: Clustering analysis of H3K4me2 profiles in undi↵erentiated C2C12 cells.
(A) H3K4me2 profiles identified by k-means clustering. The clustering is based on
TSS and the corresponding number of genes is given for each cluster. Genes with
multiple TSS can be present in more than one cluster. (B) Discriminant analysis
shows a clear distinction of the six clusters identified by k-means clustering. (C) The
box plot (25% to 75% quartile) shows the levels of gene expression from the di↵erent
H3K4me2 clusters in Undi↵ C2C12 cells. The expression of cluster 1 and cluster 2
genes was compared using the Mann-Whitney U test. (D) GO enrichment analysis
of cluster 1 genes using the DAVID functional annotation tool. Top ten biological
process terms with an adjusted (Benjamini-Hochberg) P-value  0.01 are indicated.
GO terms related to muscle development are highlighted in red.
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(Appendix Figure B.1). Moreover, clustering identified distinct profiles for both my-

oblasts and myotubes, with cluster 1 genes showing H3K4me3 enrichment towards

the gene body (Figure 5.3A and Appendix Figure B.3). In addition, cluster 1 genes

are significantly higher expressed as compared to the remaining clusters (P-value <

0.001, Figure 5.3B and Appendix Figure B.3) and show a significant enrichment of

GO terms related to muscle development. As for H3K4me2, we also compared the

H3K4me3 clusters between both di↵erentiation stages. Again, we found a high pro-

portion of genes remaining in the same cluster. However, H3K4me3 profiles are in

general more dynamic, meaning that more genes change their clusters during di↵er-

entiation (Appendix Figure B.3). For example, only 71% of cluster 1 genes have a

stable H3K4me3 profile, while 83% of cluster 1 genes have a stable H3K4me2 profile.

As for H3K4me2, genes in cluster 1 with a stable H3K4me3 profile are significantly

enriched for GO terms related to muscle development. Finally, the GO terms ”muscle

organ development” and ”muscle tissue development” were further confirmed for clus-

ter 1 in H3K4me2 as well as H3K4me3 in undi↵erentiated and di↵erentiated C2C12

cells (P-values < 10�7) using the MGI database. Moreover, we found a significant

overlap of genes (P-value < 2.2⇥ 10�16, Figure 5.3C) and a significant enrichment of

GO terms related to muscle development for these 347 common cluster 1 genes (Fig-

ure 5.3D). Comparable results were obtained in di↵erentiated C2C12 cells (Appendix

Figure B.4).

Figure 5.3E shows the H3K4me2/3 profiles for a subset of common cluster 1 genes.

The transcription factor Six4 (SIX Homeobox 4) directly activates MyoD expression

in gene regulatory networks [235, 236]. Mef2d (Myocyte Enhancer Factor 2D) is an

early marker of the myogenic lineage and is required for skeletal muscle regeneration

[237, 238]. Klf3 (Kruppel-Like Factor 3) synergizes with serum response factor on

KLF binding sites to regulate muscle-specific gene expression [239]. The myogenic

factor Tpm1 (Tropomyosin 1) is essential for myotube formation [240]. Acta2 (Actin,

Alpha 2, Smooth Muscle, Aorta) and Myh9 (Myosin, Heavy Chain 9, Non-Muscle)

belong to the actin and the myosin family of proteins, respectively, which are essential

for muscle cell structure and mobility [241].

5.4 Genome-wide DNA Binding of MyoD

We performed ChIP-seq analysis in both C2C12 di↵erentiation stages to identify

genome-wide binding sites of the basic helix-loop-helix (bHLH) transcription factor

MyoD, a known key factor for muscle development. For ChIP-seq data, we performed
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Figure 5.3: Clustering analysis of H3K4me3 profile in undi↵erentiated C2C12 cells
and comparison to H3K4me2 profiles. (A) H3K4me3 profiles identified by k-means
clustering. The clustering is based on TSS and the corresponding number of genes
is given for each cluster. Genes with multiple TSS can be present in more than one
cluster. (B) The box plot (25% to 75% quartile) shows the levels of gene expression
from the di↵erent H3K4me3 clusters in Undi↵ C2C12 cells. The expression of cluster
1 and cluster 2 genes was compared using the Mann-Whitney U test. (C) Overlap of
H3K4me2 and H3K4me3 cluster 1 genes in Undi↵ C2C12 cells. The P-value is based
on a hypergeometric test. (D) GO enrichment analysis of common cluster 1 genes
using the DAVID functional annotation tool. Top ten biological process terms with
an adjusted (Benjamini-Hochberg) P-value  0.01 are indicated. GO terms related to
muscle development are highlighted in red. (E) H3K4me2 and H3K4me3 enrichment
profiles of selected muscle-relevant cluster 1 genes. The TSS is marked by an arrow.
The y-axis indicates the ChIP-seq signal.
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peak calling using MACS (v1.4.2) and assigned peaks to the genes if they are located

within 10 kb upstream of the TSS or in the transcribed region. There were totally

6,069 and 22,934 ChIP-seq peaks, in undi↵erentiated and di↵erentiated C2C12 cells,

respectively. Genomic distribution of the peaks are shown in Figure 5.4. To confirm

if the peaks are enriched for E-box motif, we used RSAT for the detection of novel

motifs [188, 189]. Indeed the peaks were enriched for the expected motif (Figure 5.5).

Furthermore, in-house (Sperling lab) script was generated to use TRANSFAC data

and to confirm the enrichment of E-box motif (Appendix Listing B.1 and B.2). The

in-house script uses the MATCH tool (Chapter 2.2.3.3), provided by TRANSFAC,

for predicting transcription factor binding sites (TFBS) and consequently, identify

statistically over-represented TFBS, assuming a binomial distribution. Using verte-

brate non redundant profiles, we found the over-representation of ”V$EBOX” matrix

in both the stages.

Figure 5.4: Genomic distribution of MyoD peaks in undi↵erentiated and di↵erenti-
ated C2C12 cells. P Promoter, proximal promoter (Chapter 2.2.3.2).

Figure 5.5: De novo motif analysis for MyoD peaks in undi↵erentiated and di↵eren-
tiated C2C12 cells.
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MyoD ChIP-seq peaks were assigned to 2,813 and 7,477 genes in undi↵erentiated

and di↵erentiated C2C12 cells, respectively. To validate the success of our ChIP-seq

experiment, we compared the data from ENCODE project with accession numbers

ENCSR000AIG (undi↵erentiated C2C12 cells) and ENCSR000AIH (di↵erentiated

C2C12 cells). The significant overlap confirms that our data is comparable to the

data provided by ENCODE (Figure 5.6).

Figure 5.6: Comparison of our MyoD ChIP-seq data with ENCODE. Here numbers
indicate the number of genes assigned.

5.5 Gene Expression During Myogenic Di↵erenti-
ation

RNA-seq data was used from the ENCODE project for undi↵erentiated C2C12 cells

and di↵erentiated C2C12 cells (60h timepoint). The data was downloaded from the

Sequence Read Archive (SRA) at NCBI with accession numbers SRR496442 (undif-

ferentiated C2C12 cells) and SRR496443 (di↵erentiated C2C12 cells). RNA-seq reads

were mapped to the mouse reference genome (mm9) using TopHat (v2.0.8) with de-

fault parameters. Furthermore, FPKM values were calculated using the Cu✏inks

(v2.0.2) with default parameters. To compare the genome-wide gene expression pro-

file in the two stages, we plotted a scatter plot and found a very high correlation

(Figure 5.7). This suggests that the gene expression of most of the genes is highly

stable during C2C12 di↵erentiation.
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Figure 5.7: Comparison of the gene expression profile in undi↵erentiated and di↵er-
entiated C2C12 cells. r is the Pearson’s correlation.

We found that there are 10,584 genes with at least 1 FPKM in undi↵erentiated

C2C12 cells and 11,015 genes with at least 1 FPKM in undi↵erentiated C2C12 cells.

Genes with at least 1 FPKM in undi↵erentiated or di↵erentiated C2C12 cells (11,381

genes) and with FC � 2 were defined as di↵erentially expressed genes. There were

1,698 genes up-regulated and 1,234 genes down-regulated during C2C12 di↵erentia-

tion. To confirm if the number of di↵erentially expressed genes we found is comparable

to the previous studies, we performed a literature search. Indeed, our results are in

line with the previous studies (Table 5.1).

Table 5.1: Number of di↵erentially expressed genes reported in the previous studies
[81, 242, 243]. CAGE, Cap analysis gene expression; SAGE, Serial analysis of gene
expression.
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5.6 Expression of Cluster 1 Genes and Binding of
MyoD

To identify muscle-relevant genes with a stable H3K4 di- and tri-methylation profile,

we overlapped the 347 common cluster 1 genes from undi↵erentiated C2C12 cells

with the 362 common cluster 1 genes from the di↵erentiated stage. This resulted in

a total of 267 genes with stable H3K4me2 and H3K4me3 profiles over or towards the

gene body, respectively (Figure 5.8A). As expected, these 267 genes are significantly

enriched for GO terms related to muscle development. Using RNA-seq data from

ENCODE, 58 (22%) out of these genes are di↵erentially expressed upon di↵erentiation

of C2C12 cells (fold change � 2).

The percentage of genes bound by MyoD for each common H3K4me2/3 cluster is

given in Figure 5.8B for both di↵erentiation stages. Interestingly, cluster 1 harbors a

significantly higher percentage of genes bound by MyoD compared to all other clusters

(P-value < 0.01 in Undi↵ and P-value < 0.001 in Di↵). We found approximately

30% of genes bound by MyoD in undi↵erentiated and 67% in di↵erentiated C2C12

cells (Appendix Table B.1). Focusing again on the common stable cluster 1, out

of the 267 genes, 95 gain MyoD during di↵erentiation with 23% (22 genes) being

di↵erentially expressed (Figure 5.8A). As previous studies have mainly shown the

activating role of MyoD [244, 245], we were expecting most of these genes to be up-

regulated. Interestingly, we found 64% of this specific set of genes (14 out of 22) to

be down-regulated, suggesting a repressive role of MyoD (Figure 5.8C).

In these 22 di↵erentially expressed genes, we further searched for the MyoD bind-

ing E-box motif (CANNTG) within a 30bp region centered on the peak summit and

found 14 genes harboring this motif (Figure 5.8C), of which 11 contain a particular

E-box motif (CAGCTG) that has been shown to be preferred by MyoD during myo-

genic di↵erentiation [79]. Among the down-regulated genes, five show the preferred

E-box motif in their respective MyoD peaks (Figure 5.8C), including Dusp6 (dual

specificity phosphatase 6), Frmd6 (FERM domain containing 6), Patz1 (POZ (BTB)

and AT hook containing zinc finger 1), Ptbp1 (polypyrimidine tract binding protein

1) and Tmpo (thymopoietin). Most interestingly, the zinc finger transcription factor

Patz1 was previously shown to have an important role in maintenance of the embry-

onic stem cell (ESC) phenotype and its knockdown leads to di↵erentiation of murine

ESCs into endoderm and mesoderm lineages at di↵erent time points [246].
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Figure 5.8: Cluster 1 genes bound by MyoD. (A) Overlap of common H3K4me2/3
cluster 1 genes in Undi↵ and Di↵ C2C12 cells. The number of genes, which gain, loose
or have constitutive MyoD binding are indicated, including their respective number of
di↵erentially expressed genes (fold change (FC) � 2). (B) Percentage of genes in the
common H3K4me2/3 clusters bound by MyoD in Undi↵ and Di↵ C2C12 cells. Highest
enrichment in Undi↵ and Di↵ (each in cluster 1) is indicated by the two red lines.
The P-values are based on two-sided Fisher’s exact test. (C) Heatmap of di↵erentially
expressed genes in H3K4me2/3 cluster1, which gain MyoD during di↵erentiation (22
genes with fold change � 2 out of 95 genes). The numbers in the heatmap represent
the FPKM (fragments per kilo bases of exons for per million mapped) values. Gene
names in blue indicate the genes with the E-box motif (CANNTG) within a 30 bp
region centered on the peak summit. Gene names underlined in blue are genes with
the MyoD preferred E-box motif (CAGCTG) within a 30 bp region centered on the
peak summit.
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5.7 Down regulation of Patz1 by MyoD During
Myogenic Di↵erentiation

As shown before, Patz1 shows a stable H3K4me2/3 profile and is bound by MyoD

only in di↵erentiated C2C12 cells (Figure 5.9A). Moreover, it is significantly down-

regulated in the di↵erentiated stage (Figure 5.9A). Both ChIP-seq and RNA-seq

results were confirmed by real-time PCR (Figure 5.9B and Figure 5.9C, respectively).

These results suggest that the binding of MyoD is related to the down-regulation of

Patz1 during di↵erentiation of C2C12 cells.

To further investigate if the repression of Patz1 is directly depending on MyoD

expression during myogenic di↵erentiation, IMR-90 human fibroblasts were converted

to skeletal muscle cells by induction of MYOD. The expression of MYOD was induced

⇠400-fold in growth medium (GM) and ⇠800-fold in the di↵erentiation medium

(DM). Based on the ChIP-seq data, we found MYOD binding at the PATZ1 pro-

moter in both induced stages of converting fibroblasts to skeletal muscle cells (Figure

5.10A). Moreover, MYOD binding in the DM stage was higher compared to GM

treated IMR-90 cells. Upon induction of MYOD, the expression of PATZ1 was sig-

nificantly down-regulated in both stages (Figure 5.10A, B). This finding could be

confirmed by the induction of MYOD expression in BJ fibroblasts (Figure 5.10C).

Finally, we performed luciferase reporter gene assays to study the binding of MyoD

at the Patz1 promoter in vitro. Assays were performed by co-transfection of a MyoD

expression vector together with a Patz1 promoter reporter vector in HEK293 cells.

The 400 bp core promoter of Patz1 was e�ciently repressed by co-transfection of

MyoD in a dosage dependent manner.
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Figure 5.9: Patz1 expression and MyoD binding during myogenic di↵erentiation. (A)
RNA expression profile of Patz1, H3K4me2 enrichment profile, H3K4me3 enrichment
profile and MyoD binding profile at the Patz1 promoter in Undi↵ and Di↵ C2C12
cells. All profiles are based on raw mapped reads. Position of the MyoD preferred
E-box motif (CAGCTG) in the peak region is indicated. (B) ChIP analysis of MyoD
occupancy levels at the Patz1 promoter. Error bars indicate the standard deviation
from at least three independent experiments. The statistical significance of enrich-
ment versus the IgG control was calculated using Student’s t-test. (C) Expression
levels (mRNA) of Patz1 in Undi↵ and Di↵ C2C12 cells were measured by real-time
PCR in at least three independent experiments. The statistical significance of the dif-
ference in expression between Undi↵ and Di↵ C2C12 was calculated using Student’s
t-test.
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Figure 5.10: PATZ1 down-regulation by MyoD. (A) RNA expression profile of PATZ1
and MYOD binding profile at the PATZ1 promoter in IMR-90 cells cultured with
growth medium (GM) and di↵erentiation medium (DM). All profiles are based on
raw mapped reads. Position of the MyoD E-box motif (CANNTG) in the peak region
is indicated. (B) Expression levels (mRNA) of PATZ1 in IMR-90 fibroblasts. (C)
Expression levels (mRNA) of PATZ1 in BJ fibroblasts. P-value was calculated using
Student’s t-test based on at least three independent experiments.
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5.8 Summary

In this study, we analyzed H3K4me2/3 signatures in myogenic di↵erentiation and

found specific profiles on muscle-relevant genes. In general, the average profile of

H3K4me3 is enriched directly downstream of the TSS, whereas H3K4me2 is further

located over the gene body, which has already demonstrated in hematopoietic cells

[120, 247]. To identify specific H3K4me2/3 profiles, we used k-means clustering to

define six groups of genes, showing distinct H3K4me2 and H3K4me3 patterns, re-

spectively. We identified one cluster (cluster 1) with a H3K4 methylation profile over

the gene body (di-methylation) or towards the gene body (tri-methylation), respec-

tively. Moreover, the genes in cluster 1 are significantly higher expressed than all

other clusters and are significantly enriched for GO terms related to muscle develop-

ment. Furthermore, our study reveals a significantly higher binding of MyoD to this

particular subset of genes and a predominantly repressive role of MyoD. It is impor-

tant to note that MyoD is primarily associated with gene activation [74]. Our data

also supports the activating role as most of genes that gain MyoD are up-regulated.

Moreover, similar percentage of cluster 1 genes are di↵erentially expressed, irrespec-

tive of gain of MyoD or constitutive MyoD binding during di↵erentiation. Di↵erential

expression of the genes with constitutive MyoD binding could be explained by the

regulation by other transcription factors. Interestingly most of the di↵erentially ex-

pressed genes in the common stable cluster 1 that gain MyoD are down-regulated.

Previously, repressive function of MyoD in myogenesis has also been shown on single

genes [75–77]. Interestingly, further analysis and experiments revealed that MyoD

binds and down-regulates Patz1 during myogenic di↵erentiation. This observation

was further confirmed in MyoD driven di↵erentiation of fibroblasts to muscle cells.

These findings might provide an important regulatory mechanism to promote myo-

genic di↵erentiation.
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Chapter 6

Detection of Di↵erential Exon
Usage in Dpf3 Knockout Mice

6.1 General Purpose

In previous studies, Sperling lab identified a chromatin remodeling factor Dpf3, whose

expression was significantly up-regulated in the right ventricle of TOF patients [99,

100]. It was shown that the Dpf3 is specifically expressed in heart and somites and

binds methylated and acetylated lysine residues of histone 3 and 4 [100]. Moreover, it

is known that several histone modification-binding chromatin proteins interact with

splicing factors [248]. Interestingly, experiments performed in Sperling lab showed

that Dpf3 interacts with splicing factors which suggests its potential role in splicing.

Therefore, to study the role of Dpf3 in splicing, Dpf3 knockout mice was generated.

Using knockout (KO) and wildtype (WT) mice, we performed mRNA sequencing

from 3 tissues, meaning right ventricle (RV), left ventricle (LV) and skeletal muscle

(SM). In this study, we compared KO and WT mice to identify di↵erential exon usage,

meaning to identify the exons which are excluded or included due to Dpf3 knockout.

We have generated a pipeline to analyse RNA-seq data for identifying di↵erential

exon usage without using replicates. For this project, we analyzed RNA-seq data

from the right ventricle (RV), the left ventricle (LV) and the skeletal muscle (SM) of

knockout (KO) and wildtype (WT) mice (Chapter 3.5).

6.2 Alignment of Reads to the Reference Sequence

The strand-specific libraries were prepared using ”ScriptSeq RNA-seq library prepa-

ration kit” from Illumina and paired-end sequencing was performed on an Illumina

HiSeq 2000 platform with the read length of 50 bp. The libraries were sequenced on
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multiple lanes. RNA-seq reads were mapped to the mouse reference genome (mm9)

using TopHat (v2.0.8) with the mate inner distance of 250 bp. The read realign edit

distance was set to 0 for reporting the best possible alignment for the reads span-

ning multiple exons. Furthermore, coverage search and microexon search parameters

were enabled to search for junctions and to find alignments incident to micro-exons,

respectively. On average, 67% of the reads were mapped for right ventricle and left

ventricle whereas 78% of the reads were mapped for skeletal muscle. Distribution of

the reads is shown in Figure 6.1.

Figure 6.1: Distribution of RNA-seq reads. Mostly, reads are mapped to the middle
exons. Numbers inside bars represents the percentage of reads. RV; right ventricle,
LV; left ventricle, SM; skeletal muscle, KO; knockout, WT; wildtype.
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In knockout mice, the second exon of the Dpf3 was deleted. Therefore, we checked

the reads mapped on the second exon in WT and KO. As expected, there were no

reads mapped to the second exon of Dpf3 in KO mice (Figure 6.2).

Figure 6.2: Reads mapped to the second exon of Dpf3. No reads were mapped in KO
mice. RV; right ventricle, LV; left ventricle, SM; skeletal muscle, KO; knockout, WT;
wildtype.

6.3 Computational Pipeline for Di↵erential Exon
Usage

The pipeline for the identification of the di↵erential exon usage is based on the estima-

tion of percent-spliced-in (PSI,  ) [218–220]. PSI values are calculated for each exon

in both the conditions. Therefore, each exon will have two PSI values and di↵erence

between them (i.e. 4PSI) can be calculated. Before calculating 4PSI, we filtered for

high confidence exons based on the minimum number of exonic and junction reads.

Figure 6.3 illustrates the pipeline using the mapped files from right ventricle. In the

first step, we calculate the fold change (FC) for all the mm9 exons. Next, we fil-

tered out exons based on junction reads and exonic reads using the cuto↵ suggested

by AltAnalyze [249]. In the last step, 4PSI is caluclated for each exon. Exclusion

or inclusion of an exon is considered if 4PSI � 10%. Results for all the samples

are summarised in Table 6.1. One of the interesting example for right ventricle has

been shown in Figure 6.4. Myh7 encodes the beta heavy chain subunit of cardiac

myosin and mutations in this gene are associated with hypertrophic cardiomyopathy

and dilated cardiomyopathy [250, 251].
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Figure 6.3: Pipeline for the identification of di↵erential exon usage. The results are
shown for the right ventricle. PSI; percent-spliced-in, KO; knockout, WT; wildtype.

Table 6.1: Number of exons excluded or included in KO mice. RV; right ventricle,
LV; left ventricle, SM; skeletal muscle, KO; knockout, WT; wildtype, FC; fold change,
JR; junction reads, ER; exonic reads, PSI; percent-spliced-in.
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Figure 6.4: Exons of Myh7 excluded in Dpf3 KO mice. Excluded exons are indicated
by red arrows. KO; knockout, WT; wildtype, PSI; percent-spliced-in.

6.4 Comparison to Alternative Splicing Detector

When we were generating the aforementioned pipeline, a tool was published to identify

di↵erential exon usage (DEU) without using replicates [216]. Therefore, we decided to

apply this tool, ASD (Alternative Splicing Detector), on our dataset to compare the

results to those from our pipeline. We used the same mapped files and the annotation

files as we used in our pipeline. There were 43, 32 and 79 cassette exons found to be

di↵erentially used in right ventricle, left ventricle and skeletal muscle, respectively.

Figure 6.5: Comparison of Sperling lab pipeline and ASD for DEU in right ventricle.
KO; knockout, ASD; Alternative Splicing Detector.
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We found a very low overlap between the list generated by the Sperling lab pipeline

and ASD. An example for right ventricle has been shown in Figure 6.5. The low

overlap between the two pipelines suggests that the exons found are false positives

or in other words, background. It is also evident in Figure 6.4 as most of the exons

have very low PSI di↵erence. Moreover, further lab experiments confirmed the same

(data not shown).

6.5 Summary

In summary, we created a pipeline to identify di↵erential exon usage from RNA-seq

data without using replicates. To dissect the role of Dpf3 in splicing, knockout (KO)

mice was generated and mRNA sequencing was performed from the right ventricle

(RV), left ventricle (LV) and skeletal muscle (SM). We compared KO and WT mice to

identify the exons which are excluded or included due to Dpf3 knockout. Moreover,

our pipeline was compared with the published tool (i.e. ASD).

78



Chapter 7

Discussion

In this study, multiple high-throughput sequencing data have been analysed, namely

targeted resequencing data from Tetralogy of Fallot (TOF) patients (Chapter 4),

ChIP-seq and RNA-seq data during myogenic di↵erentiation (Chapter 5) and RNA-

seq data from Dpf3 knockout and wildtype mice (Chapter 6). The focus was on three

di↵erent levels of gene regulation meaning genetic variations (Chapter 4), epigenetic

regulation (Chapter 5) and splicing (Chapter 6).

In the first project (Chapter 4), we developed an outlier-based CNV calling method

for a small cohort size of up to 30 individuals using targeted resequencing data. Copy

number variations (CNVs) are associated with a variety of diseases such as congenital

heart defects and can be identified by high-throughput sequencing technologies. In the

past, microarray-based comparative genomic hybridization (array-CGH) and single

nucleotide polymorphism (SNP) genotyping have been used commonly to resolve

genomic changes. SNP arrays can be used to obtain the information of genotype as

well as copy number changes but have limited ability to detect single-exon CNVs.

On the other hand, features like high sequencing accuracy, low cost, coverage depth,

experimental focus, and sample number make targeted resequencing more and more

popular. Our CNV calling method is based on outlier detection using Dixon’s Q test

and outlier assessment using a Hidden Markov Model (HMM). We applied our outlier-

based CNV calling method to eight HapMap control samples and intersected our

exome-based calls from five of the samples with previously generated calls from high-

resolution array-CGH. In addition to our method, we used the two publicly available

tools ExomeDepth and CoNIFER [161, 167]. In comparison to CoNIFER, our method

is able to detect more copy number alterations in small samples cohorts, demonstrated

using exome data of eight HapMap samples as well as targeted resequencing data of

eight Tetralogy of Fallot (TOF) samples. Furthermore, we applied ExomeDepth

with default parameters to the eight HapMap samples and intersected the found
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CNVs from five of the samples with previously generated calls from array-CGH.

ExomeDepth identified more CNVs as compared to CoNIFER and to our method,

however; the positive predictive value is very low. Therefore, we decided not to use

ExomeDepth for detecting CNVs in the TOF patients.

As mentioned before, our method uses Dixon’s Q test to identify outliers and

subsequently, HMM to assess the outliers. In this study, Dixon’s Q test is implemented

in a way that it can detect outliers only in one direction for a particular window

meaning either gain or loss. This makes sure that for a particular window, we do

not consider many samples as outliers. For example, if we search for 2 outliers on

each side when comparing a window between 8 samples, 50% of the samples will be

considered as outliers. On the other hand, this decreases the true positive rate of our

method. Nevertheless, our method can be extended to implement di↵erent types of

Dixon’s Q test. In addition to this, it is important to note that our method does not

give the absolute copy number for a given region. This is due to the fact that targeted

resequencing technology su↵ers with several biases such as local GC-content, as well

as sequence complexity and sequence repetitiveness in the genome [168]. Therefore,

instead of calculating absolute copy number, we can compare the same region across

the samples to find out the copy number state meaning gain, loss or normal.

To identify copy number alterations in TOF patients, we applied our outlier-based

method as well as CoNIFER to targeted resequencing data of our eight cases. Using

our method, we found four copy number gains in three genes, namely ISL1, NOTCH1

and PRODH. CoNIFER only identified two gains in PRODH, which overlap with the

two regions found by our method. We further validated all four regions identified by

our method using quantitative real-time PCR. ISL1 is a homeobox transcription fac-

tor that marks cardiovascular progenitors and is known to be associated with human

congenital heart disease [252, 253]. Interestingly, Isl1 is required for the survival and

migration of secondary heart field derived cells [254]. Moreover, it is known that the

secondary heart field contributes to the development of right ventricle and the outflow

tract (see Chapter 1). Considering the two phenotypes of TOF (i.e., right ventricular

outflow tract obstruction and right ventricular hypertrophy), it highly suggests that

the copy number gain of ISL1 can lead to these phenotypes of TOF. NOTCH1 is a

transmembrane receptor involved in the NOTCH signaling pathway, which plays a

crucial role in heart development [255]. Mutations in NOTCH1 are associated with a

spectrum of congenital aortic valve anomalies [256, 257] and a copy number loss was

identified in a patient with TOF [55]. The mitochondrial protein PRODH catalyzes

the first step in proline degradation and is located in the 22q11.2 locus. Deletions
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in this region are associated with the DiGeorge syndrome and 80% of cases harbor

cardiovascular anomalies [258]. A copy number gain and two losses in the 22q11.2

locus overlapping PRODH were also identified in sporadic TOF patients [55, 56].

The exploration of the human phenotype and its genetic and molecular back-

ground is the challenge of the next century and it is already clear that more precise

phenotyping will lead to smaller cohort sizes. Moreover, analyzing small patient co-

horts (3-30) is of special interest for rare diseases with only few available patient

samples, for example trios. Approximately 7,000 rare diseases are currently known

and together a↵ect about 6% of the population [259]. Therefore, novel approaches

like our CNV calling method, will be of exceptional relevance. Our method is based

on the assumption that individual CNVs (outliers) are disease-relevant and can be

applied to exome as well as targeted resequencing data.

In the second project (Chapter 5), we analyzed H3K4me2/3 signatures in myogenic

di↵erentiation and found specific profiles on muscle-relevant genes. In general, the

average profile of H3K4me3 is enriched directly downstream of the TSS, whereas

H3K4me2 is further located over the gene body, which has already demonstrated

in hematopoietic cells [120, 247]. To identify specific H3K4me2/3 profiles, we used

k-means clustering to define six groups of genes, showing distinct H3K4me2 and

H3K4me3 patterns, respectively. K-means clustering has been shown to be useful in

partitioning the distinct enrichment patterns of histone modifications [194, 195]. We

identified one cluster (cluster 1) with a H3K4 methylation profile over the gene body

(di-methylation) or towards the gene body (tri-methylation), respectively. Cluster

1 genes are significantly higher expressed than all other clusters and moreover, are

significantly enriched for GO terms related to muscle development. This is in line

with a previous study, showing a similar H3K4me2 profile of tissue-specific genes in

CD4+ cells and brain tissue [194]. In addition, we could show that a unique profile

(cluster 1) of H3K4me3 also marks muscle-specific genes.

Next, we overlapped the clusters identified in undi↵erentiated and di↵erentiated

C2C12 cells and found a high proportion of genes remaining in the same cluster

for both methylation profiles, with H3K4me2 profiles being even more stable than

H3K4me3 profiles. For acetylation of H3K9, H3K18 and H4K12, a striking reduction

have previously described during myogenic di↵erentiation, while di-methylation of

H3K4 as well as tri-methylation of H3K4, H3K36 and H3K27 show more stable profiles

[81]. We could further demonstrate that only the cluster 1 genes with stable profiles

are enriched for GO terms related to muscle development. Moreover, we overlapped

the common cluster 1 genes of H3K4me2/3 from undi↵erentiated C2C12 cells with the
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common cluster 1 genes of H3K4me2/3 from the di↵erentiated stage, which resulted

in 267 genes with stable H3K4me2 and H3K4me3 profiles. Although methylation

profiles are stable, we identified a considerable number of genes (58 out of 267 genes)

di↵erentially expressed upon di↵erentiation of C2C12 cells, indicating an additional

regulation by other factors. To further analyze the expression regulation of these

common stable cluster 1 genes, we determined genome-wide binding of MyoD, which

plays an essential role in activation of muscle-related genes [78–80].

MyoD typically binds promoters and enhancers of muscle-relevant genes to re-

model the chromatin and activate transcription [74, 78, 260]. However, MyoD bind-

ing is not always associated with transcriptional activation [79]. For example, its

repressive role was shown for the genes Ccnb1 [75], c-Fos [76], and Sp1 [77]. In

our study, MyoD binding is significantly enriched in cluster 1 genes in undi↵erenti-

ated and di↵erentiated C2C12 cells. Interestingly, most of the di↵erentially expressed

genes with stable H3K4me2 and H3K4me3 profiles that gain MyoD in the myotubes

are down-regulated, suggesting a repressive potential of MyoD. Five of the down-

regulated genes harbor the preferred E-box motif in their MyoD peaks. The latter

include Dusp6, which is a negative regulator of the MAP kinase superfamily and

thus, plays a role in the regulation of proliferation and di↵erentiation [261]. More-

over, Dusp6 expression is also negatively regulated by the MyoD cofactor Mef2a in

skeletal and cardiac muscle [262, 263]. Another down-regulated gene is Ptbp1, an

antagonist of RBM4, which in turn activates the selection of skeletal muscle-specific

exons in alpha-tropomyosin mRNA [264]. Finally, the zinc finger TF Patz1 is an

important regulator of pluripotency by maintaining embryonic stem cells in an un-

di↵erentiated state [246], suggesting that Patz1 plays a similar role in C2C12 cells.

Moreover, Patz1 interacts with p53 to target genes that are associated with cell dif-

ferentiation and apoptosis [265]. It is located in the DiGeorge syndrome region on

chromosome 22q12 and plays a critical role in the control of cell growth and embry-

onic development, which has been demonstrated by neural tube and cardiac outflow

tract defects in Patz1 knockout mice [266].

Patz1 is ubiquitously expressed at early stages of embryonic development and be-

comes more restricted at later stages with almost no detectable expression in somites

[266]. In contrast, MyoD shows an increased expression pattern in somites during

embryonic development [267], indicating that Patz1 may represent a target which

can be negatively regulated by MyoD during skeletal muscle development. Indeed,

we show that Patz1 expression is strongly reduced, associated with MyoD binding at

the Patz1 promoter upon myogenic di↵erentiation. However, it remains unclear how
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Patz1 regulates myogenic di↵erentiation and further studies are needed to investigate

the underlying mechanisms.

Out of the di↵erentially expressed common stable cluster 1 genes, 40% (23 genes)

show a di↵erential MyoD binding, while 36% (21 genes) show a constitutive MyoD

binding. The di↵erential expression of the latter could possibly be explained by other

cofactors necessary for transcriptional regulation. For example, several studies have

shown that MyoD can activate gene transcription in cooperation with other factors

such as E-proteins and the chromatin remodeling factor Baf60c [71–73]. Neverthe-

less, most of the di↵erentially expressed genes with stable H3K4me2 and H3K4me3

profiles that gain MyoD in the myotubes are down-regulated, which highly suggests

a predominant repressive role of MyoD. Taken together, these findings might provide

an important regulatory mechanism to promote myogenic di↵erentiation.

In the third project (Chapter 6), we developed a pipeline to detect di↵erential

exon usage from RNA-seq data without using replicates. To study the role of Dpf3

in splicing, Dpf3 knockout mice was generated. Using knockout (KO) and wildtype

(WT) mice, we performed mRNA sequencing from the right ventricle (RV), the left

ventricle (LV) and the skeletal muscle (SM). In this project, we compared KO and

WT mice to identify di↵erential exon usage, meaning to identify the exons which

are excluded or included due to Dpf3 knockout. The pipeline for the identification

of the di↵erential exon usage is based on the estimation of percent-spliced-in (PSI,

 ). We focused on exon skipping alternative splicing (AS) event, which accounts

for nearly 40% of AS events in higher eukaryotes [268–270]. In exon skipping event,

an exon known as a cassette exon is spliced out of the transcript. When comparing

the two conditions, for example wildtype and knockout mice, the skipped exon in

the wildtype is considered as included exon in the knockout. We also compared

the results from our pipeline with a tool, ASD, which is superior to our pipeline in

a way that it also focus on other types of AS events such as alternative 3’ splice

site, alternative 5’ splice site, alternative first exon, alternative last exon, mutually

exclusive exons and intron retention [216]. The alternative splice site events meaning

alternative 3’ splice site and 5’ splice site events occur when multiple splice sites are

present at one end of the exon and accounts for 18.4% and 7.9% of all AS events in

higher eukaryotes, respectively [268–270]. One of the rarest AS event in vertebrates

and invertebrates is intron retention, in which specific introns remain unspliced in

polyadenylated transcripts [268, 271, 272]. The remaining three complex AS events

meaning alternative first exon, alternative last exon and mutually exclusive exons,

are less frequent [268, 271, 273, 274]. Considering that exon skipping event is the
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most frequent type of AS, we focus only on this event initially. In the future, it would

be of great interest to perform the comprehensive analysis for di↵erent AS events.

As mentioned before, our pipeline does not consider the biological variability

among the RNA-seq data. It has been shown that biological replicates are crucial for

analyzing RNA-seq data [275]. Liu et al. showed that increasing the number of biolog-

ical replicates consistently increases the power significantly, regardless of sequencing

depth [275]. Interestingly, a recently published tool, rMATS (replicates multivariate

analysis of transcript splicing), suggested the importance of biological replicates to

detect alternative splicing changes from RNA-seq data [276]. rMATS uses a hierarchi-

cal framework to model percent-spliced-in (PSI,  ), which simultaneously accounts

for estimation uncertainty in individual replicates and variability among replicates

[276]. One of the commonly used tool which handle replicates is DEXSeq, that uses

generalized linear models and test for the deviation of read counts on individual exons

from the counts of the whole gene [217]. Given the importance of taking biological

variation into account, it would be highly beneficial to use rMATS and/or DEXSeq

whenever the replicates are available.

In this thesis high-throughput sequencing experiments have been extensively used,

namely targeted resequencing, ChIP-seq and RNA-seq. Continuous e↵orts are being

made by scientific community to update these experiments and consequently, the

data analysis. For instance, ChIP-exonuclease (ChIP-exo) is a modified ChIP-seq ap-

proach, which involves chromatin immunoprecipitation (ChIP) combined with lambda

exonuclease digestion followed by high-throughput sequencing [277–279]. ChIP-exo

methodology allows for high resolution mapping of transcription factor DNA sites at

nearly single nucleotide resolution. Subsequently, novel computational pipelines, for

example ExoProfiler and GEM, were generated to analyze ChIP-exo data [280, 281].

Moreover, a recent study by Starick et al. showed the advantage of using ChIP-exo,

which led them to explain the binding of glucocorticoid receptor on the regions devoid

of its classical DNA recognition sequence [281]. Furthermore, Serandour et al. showed

that ChIP-exo is also feasible in primary tissue such as mouse liver [282]. Although,

ChIP-exo has been extensively used for mapping of transcription factor DNA sites,

it would be of great interest to resolve the organization of individual histones on a

genomic scale as shown by Rhee et al. [283].

The gene expression from RNA-seq data is calculated in the units of FPKM (frag-

ments per kilobase per million mapped fragments). FPKM (or RPKM for single-end

reads) is the most common normalisation method as it facilitates the comparison

between genes within a sample and between the samples. However, Wagner et al.
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showed that RPKM measure is inconsistent among samples and suggested a new unit

of expression, TPM (transcripts per million), which is a slight modification of RPKM

[284]. Given the FPKM/RPKM values, we can easily compute TPM [285]

TPM

i

= (
FPKM

iP
j

FPKM

j

)106.

However, it remains di�cult to state clearly the benefits of TPM over FPKM

or vice versa, specially when the RNA is extracted from a mixture of cells. Interest-

ingly, single-cell sequencing-based technologies are becoming more common [286]. For

example, single-cell RNA sequencing (scRNA-seq) can be used to perform accurate

quantitative transcriptome measurement in individual cells [287]. A recently pub-

lished strategy, Drop-seq, enables the transcriptional profiling of thousands of indi-

vidual cells by encapsulating cells in tiny droplets for parallel analysis [288]. Drop-seq

is a cost-e↵ective strategy (preparation cost is around 2 to 5 cents per cell) for the

analysis of heterogeneous mixture of cells from a tissue. Subsequently, an R package,

Seurat, was designed for the analysis and visualization of scRNA-seq data. In future,

it would be of great interest to apply this strategy on a tissue, like heart, to identify

sub cell populations. However, it is important to note that it remains di�cult to

extract single cells from heart.

Data storage and accuracy of data analysis are the major challenges in the field

of Bioinformatics. Although the price of storage devices is decreasing, the amount

of data generated is increasing rapidly, which makes the data storage di�cult even

for large sequencing centers [289]. Furthermore, comparing and sharing this large

amount of data is a challenging task. For example, the size of single sequenced human

genome is approximately 140 gigabytes and comparing multiple genomes takes more

than a personal computer [290]. It is di�cult to share even a single sequenced genome

using online file-sharing applications. The European Bioinformatics Institute (EBI)

is one of the world’s largest biology-data repositories, currently stores more than 20

petabytes of data [290]. Moreover, accurate analysis of this mass quantity of data

poses an even larger challenge. Taken together, it is quiet evident that the current

high-throughput technologies will be updated or might be replaced in future with

more e↵ective solutions. Therefore, with the advancement in the technology, more

e↵orts will be required for the storage, sharing and comprehensive analysis of the

data.
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[272] Noboru Jo Sakabe and Sandro José de Souza. “Sequence features responsible
for intron retention in human.” eng. In: BMC Genomics 8 (2007), p. 59. doi:
10.1186/1471-2164-8-59. url: http://dx.doi.org/10.1186/1471-2164-
8-59.

[273] Gil Ast. “How did alternative splicing evolve?” eng. In: Nat Rev Genet 5.10
(Oct. 2004), pp. 773–782. doi: 10.1038/nrg1451. url: http://dx.doi.org/
10.1038/nrg1451.

[274] Douglas L. Black. “Mechanisms of alternative pre-messenger RNA splicing.”
eng. In: Annu Rev Biochem 72 (2003), pp. 291–336. doi: 10.1146/annurev.
biochem.72.121801.161720. url: http://dx.doi.org/10.1146/annurev.
biochem.72.121801.161720.

[275] Yuwen Liu, Jie Zhou, and Kevin P. White. “RNA-seq di↵erential expression
studies: more sequence or more replication?” eng. In: Bioinformatics 30.3 (Feb.
2014), pp. 301–304. doi: 10.1093/bioinformatics/btt688. url: http:
//dx.doi.org/10.1093/bioinformatics/btt688.

[276] Shihao Shen et al. “rMATS: robust and flexible detection of di↵erential alter-
native splicing from replicate RNA-Seq data.” eng. In: Proc Natl Acad Sci U
S A 111.51 (Dec. 2014), E5593–E5601. doi: 10.1073/pnas.1419161111. url:
http://dx.doi.org/10.1073/pnas.1419161111.

[277] Ho Sung Rhee and B Franklin Pugh. “Comprehensive genome-wide protein-
DNA interactions detected at single-nucleotide resolution.” eng. In: Cell 147.6
(Dec. 2011), pp. 1408–1419. doi: 10 . 1016 / j . cell . 2011 . 11 . 013. url:
http://dx.doi.org/10.1016/j.cell.2011.11.013.

[278] Ho Sung Rhee and B Franklin Pugh. “ChIP-exo method for identifying ge-
nomic location of DNA-binding proteins with near-single-nucleotide accuracy.”
eng. In: Curr Protoc Mol Biol Chapter 21 (Oct. 2012), Unit 21.24. doi:
10.1002/0471142727.mb2124s100. url: http://dx.doi.org/10.1002/
0471142727.mb2124s100.

[279] Ho Sung Rhee and B Franklin Pugh. “Genome-wide structure and organization
of eukaryotic pre-initiation complexes.” eng. In: Nature 483.7389 (Mar. 2012),
pp. 295–301. doi: 10.1038/nature10799. url: http://dx.doi.org/10.
1038/nature10799.

[280] Yuchun Guo, Shaun Mahony, and David K. Gi↵ord. “High resolution genome
wide binding event finding and motif discovery reveals transcription factor
spatial binding constraints.” eng. In: PLoS Comput Biol 8.8 (2012), e1002638.
doi: 10.1371/journal.pcbi.1002638. url: http://dx.doi.org/10.1371/
journal.pcbi.1002638.

[281] Stephan R. Starick et al. “ChIP-exo signal associated with DNA-binding motifs
provides insight into the genomic binding of the glucocorticoid receptor and
cooperating transcription factors.” eng. In: Genome Res 25.6 (June 2015),
pp. 825–835. doi: 10.1101/gr.185157.114. url: http://dx.doi.org/10.
1101/gr.185157.114.

111

http://dx.doi.org/10.1186/1471-2164-8-59
http://dx.doi.org/10.1186/1471-2164-8-59
http://dx.doi.org/10.1186/1471-2164-8-59
http://dx.doi.org/10.1038/nrg1451
http://dx.doi.org/10.1038/nrg1451
http://dx.doi.org/10.1038/nrg1451
http://dx.doi.org/10.1146/annurev.biochem.72.121801.161720
http://dx.doi.org/10.1146/annurev.biochem.72.121801.161720
http://dx.doi.org/10.1146/annurev.biochem.72.121801.161720
http://dx.doi.org/10.1146/annurev.biochem.72.121801.161720
http://dx.doi.org/10.1093/bioinformatics/btt688
http://dx.doi.org/10.1093/bioinformatics/btt688
http://dx.doi.org/10.1093/bioinformatics/btt688
http://dx.doi.org/10.1073/pnas.1419161111
http://dx.doi.org/10.1073/pnas.1419161111
http://dx.doi.org/10.1016/j.cell.2011.11.013
http://dx.doi.org/10.1016/j.cell.2011.11.013
http://dx.doi.org/10.1002/0471142727.mb2124s100
http://dx.doi.org/10.1002/0471142727.mb2124s100
http://dx.doi.org/10.1002/0471142727.mb2124s100
http://dx.doi.org/10.1038/nature10799
http://dx.doi.org/10.1038/nature10799
http://dx.doi.org/10.1038/nature10799
http://dx.doi.org/10.1371/journal.pcbi.1002638
http://dx.doi.org/10.1371/journal.pcbi.1002638
http://dx.doi.org/10.1371/journal.pcbi.1002638
http://dx.doi.org/10.1101/gr.185157.114
http://dx.doi.org/10.1101/gr.185157.114
http://dx.doi.org/10.1101/gr.185157.114


Bibliography

[282] Aurelien A. Serandour et al. “Development of an Illumina-based ChIP-
exonuclease method provides insight into FoxA1-DNA binding properties.”
eng. In: Genome Biol 14.12 (2013), R147. doi: 10.1186/gb-2013-14-12-
r147. url: http://dx.doi.org/10.1186/gb-2013-14-12-r147.

[283] Ho Sung Rhee et al. “Subnucleosomal structures and nucleosome asymmetry
across a genome.” eng. In: Cell 159.6 (Dec. 2014), pp. 1377–1388. doi: 10.
1016/j.cell.2014.10.054. url: http://dx.doi.org/10.1016/j.cell.
2014.10.054.

[284] Günter P. Wagner, Koryu Kin, and Vincent J. Lynch. “Measurement of mRNA
abundance using RNA-seq data: RPKM measure is inconsistent among sam-
ples.” eng. In: Theory Biosci 131.4 (Dec. 2012), pp. 281–285. doi: 10.1007/
s12064-012-0162-3. url: http://dx.doi.org/10.1007/s12064-012-
0162-3.

[285] What the FPKM? A review of RNA-Seq expression units. url: https://
haroldpimentel.wordpress.com/2014/05/08/what-the-fpkm-a-review-

rna-seq-expression-units/.

[286] Ehud Shapiro, Tamir Biezuner, and Sten Linnarsson. “Single-cell sequencing-
based technologies will revolutionize whole-organism science.” eng. In: Nat Rev
Genet 14.9 (Sept. 2013), pp. 618–630. doi: 10.1038/nrg3542. url: http:
//dx.doi.org/10.1038/nrg3542.

[287] Angela R. Wu et al. “Quantitative assessment of single-cell RNA-sequencing
methods.” eng. In: Nat Methods 11.1 (Jan. 2014), pp. 41–46. doi: 10.1038/
nmeth.2694. url: http://dx.doi.org/10.1038/nmeth.2694.

[288] Evan Z. Macosko et al. “Highly Parallel Genome-wide Expression Profiling of
Individual Cells Using Nanoliter Droplets.” eng. In: Cell 161.5 (May 2015),
pp. 1202–1214. doi: 10.1016/j.cell.2015.05.002. url: http://dx.doi.
org/10.1016/j.cell.2015.05.002.

[289] New Challenges in the Fast Changing Landscape of Bioinformatics. http :
//www.biotech- now.org/health/2013/04/new-challenges- in-the-

fast-changing-landscape-of-bioinformatics/.

[290] Vivien Marx. “Biology: The big challenges of big data”. In: Nature 498.7453
(2013), pp. 255–260.

112

http://dx.doi.org/10.1186/gb-2013-14-12-r147
http://dx.doi.org/10.1186/gb-2013-14-12-r147
http://dx.doi.org/10.1186/gb-2013-14-12-r147
http://dx.doi.org/10.1016/j.cell.2014.10.054
http://dx.doi.org/10.1016/j.cell.2014.10.054
http://dx.doi.org/10.1016/j.cell.2014.10.054
http://dx.doi.org/10.1016/j.cell.2014.10.054
http://dx.doi.org/10.1007/s12064-012-0162-3
http://dx.doi.org/10.1007/s12064-012-0162-3
http://dx.doi.org/10.1007/s12064-012-0162-3
http://dx.doi.org/10.1007/s12064-012-0162-3
https://haroldpimentel.wordpress.com/2014/05/08/what-the-fpkm-a-review-rna-seq-expression-units/
https://haroldpimentel.wordpress.com/2014/05/08/what-the-fpkm-a-review-rna-seq-expression-units/
https://haroldpimentel.wordpress.com/2014/05/08/what-the-fpkm-a-review-rna-seq-expression-units/
http://dx.doi.org/10.1038/nrg3542
http://dx.doi.org/10.1038/nrg3542
http://dx.doi.org/10.1038/nrg3542
http://dx.doi.org/10.1038/nmeth.2694
http://dx.doi.org/10.1038/nmeth.2694
http://dx.doi.org/10.1038/nmeth.2694
http://dx.doi.org/10.1016/j.cell.2015.05.002
http://dx.doi.org/10.1016/j.cell.2015.05.002
http://dx.doi.org/10.1016/j.cell.2015.05.002
http://www.biotech-now.org/health/2013/04/new-challenges-in-the-fast-changing-landscape-of-bioinformatics/
http://www.biotech-now.org/health/2013/04/new-challenges-in-the-fast-changing-landscape-of-bioinformatics/
http://www.biotech-now.org/health/2013/04/new-challenges-in-the-fast-changing-landscape-of-bioinformatics/


Zusammenfassung
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Mit der Technologie der Hochdurchsatzsequenzierung (HTS) hat sich die Forschung in den Lebenswissenschaften 
in den letzten Jahren stark beschleunigt. Aufgrund der niedrigen Kosten und der hohen Effizienz wird diese 
Technologie heutzutage häufig zur Beantwortung verschiedenster biologischer Fragestellungen verwendet. Im 
Allgemeinen wird bei der HTS die Sequenz von Millionen von DNA-Fragmenten parallel bestimmt wobei diese 
Fragmente wiederum unter Verwendung unterschiedlicher Sequenzierungsverfahren erzeugt werden können. Mit 
den schnellen Fortschritten in dieser Technologie scheinen deren Anwendungen fast unbegrenzt. Beispielsweise 
ist es nun möglich, ein ganzes Genom in weniger als einem Tag komplett zu sequenzieren. Neben der 
Sequenzierung ganzer Genome gibt es noch verschiedene andere Anwendungen, wie die gezielte 
Resequenzierung von DNA, die Quantifizierung von Genexpressionsprofilen (RNA-seq) und die genomweite 
Identifikation von Protein-DNA-Wechselwirkungen, wie beispielsweise Transkriptionsfaktor-Bindungsstellen oder 
Chromatin-Histon-Modifikationen (ChIP-seq). Die Analyse der durch HTS erzeugten massiven Datenmengen 
erfordert allerdings auch ausgefeilte bioinformatorische Methoden. In dieser Dissertation präsentiere ich 
computerbasierte Ansätze zur Analyse von gezielten DNA-Resequenzierungsdaten sowie von RNA-seq- und ChIP-
seq-Daten, um biologische Fragen hinsichtlich Herzerkrankungen und Skelettmuskelentwicklung zu beantworten. 

Im ersten Teil der Arbeit wurde eine neue Methode zur Identifizierung von individuellen, 
krankheitsrelevanten Kopienzahlvariationen (engl. copy number variations, kurz CNVs) unter Verwendung von 
gezielten Resequenzierungs- oder Exomdaten mit kleinem Probenumfang entwickelt. Das Auffinden von CNVs in 
gezielten Resequenzierungsdaten ist aufgrund ungleichmäßiger Lesetiefen zwischen den erfassten Regionen 
schwierig. Darüber hinaus wurde eine Methode gebraucht, um individuelle CNVs von einer kleinen 
Patientenkohorte zu erfassen, ohne entsprechende Kontrollen zu verwenden. Wir haben daher eine solche 
Methode entwickelt, die wir basierend auf den verfügbaren Daten von acht Proben aus dem HapMap Projekt sowie 
auf einer kleinen Anzahl von Patienten mit Fallot’scher Tetralogie (TOF) untersucht haben. Zusätzlich zu unserer 
Methode haben wir bei der Evaluierung die beiden frei zugänglichen Programme ExomeDepth und CoNIFER 
verwendet. Dabei zeigte sich, dass ExomeDepth im Vergleich zu CoNIFER und unserer Methode mehr CNVs für 
die HapMap-Proben identifiziert, aber der positive Vorhersagewert sehr niedrig ist. Aufgrund dieser Tatsache haben 
wir ExomeDepth nicht zum Erfassen von CNVs in den TOF-Patienten verwendet. Im Vergleich zu CoNIFER, haben 
wir mit unserer Methode mehr CNVs sowohl in den HapMap-Proben als auch in unser TOF-Kohorte gefunden. In 
der TOF-Kohorte, die acht Fälle umfasst, fanden wir in vier Regionen eine Erhöhung der Kopienzahl in drei 
Patienten. Alle vier Variationen konnten validiert werden. Darüber hinaus sind darunter drei Gene betroffen, die 
wichtige Regulatoren in der Herzentwicklung sind (NOTCH1, ISL1) oder sich in einer Region befinden, die bereits 
mit Herzfehlern assoziiert ist (PRODH).  

Der zweite Teil der Dissertation fokussiert sich auf die stabilen Anreicherungsmuster von 
Histonmodifikationen (H3K4me2 und H3K4me3) in Kombination mit einem gewebespezifischen 
Transkriptionsfaktor (ChIP-seq von MyoD), der die Muskeldifferenzierung reguliert. Dabei fanden wir spezifische 
H3K4me2/3 Profile bei muskelrelevanten Genen. Das durchschnittliche H3K4me3-Profil ist im Allgemeinen 
unmittelbar hinter dem Transkriptionsstart angereichet, während sich H3K4me2 mehr über das ganze Gen verteilt. 
Darüber hinaus zeigte unsere Studie eine deutlich stärkere Bindung von MyoD an einer besonderen Untergruppe 
von Genen, die mit einer vorwiegend repressiven Rolle von MyoD einhergeht. Interessanterweise deuten die 
Ergebnisse daraufhin, dass MyoD während der Muskeldifferenzierung an Patz1 bindet und dieses herunterreguliert, 
was möglicherweise einen wichtigen Regulationsmechanismus bei der Muskeldifferenzierung aufzeigt.  

Schließlich wurde drittens eine Pipeline zur Identifizierung von unterschiedlich verwendeten Exons 
(ausgeschlossen oder enthaltenen) in RNA-seq Daten entwickelt. Vor mehr als zehn Jahren wurde Dpf3 (auch 
bekannt als Baf45c) in der AG Sperling als Chomatin-Remodeling-Faktor identifiziert, dessen Expression im rechten 
Ventrikel von TOF-Patienten signifikant hochreguliert ist. Es wurde gezeigt, dass Dpf3 speziell im Herzen und in 
den Somiten exprimiert wird und methylierte und acetylierte Lysinreste der Histone 3 und 4 bindet. Darüber hinaus 
ist bekannt, dass mehrere Proteine, die Chromatin-Histon-Modifikationen binden, mit Spleißfaktoren interagieren. 
Um die Rolle von Dpf3 beim Spleißen zu analysieren, haben wir die Genexpressionsprofile (mRNA-seq) aus der 
rechten und linken Herzkammer sowie aus dem Skelettmuskel von Dpf3 Knockout- und Wildtyp-Mäusen 
miteinander verglichen. Die dabei etablierte Pipeline für die Identifizierung der unterschiedliche Verwendung von 
Exons basiert grundsätzlich auf der Schätzung des PSI (engl. percent-spliced-in). Die Ergebisse zeigten, dass Dpf3 
wahrscheinlich keine bedeutende Rolle beim Spleißen spielt; allerdings sind hierzu weitere Untersuchungen 
erforderlich.  

Zusammenfassend habe ich in dieser Dissertation verschiedene computerbasierte Methoden zur Analyse 
von CNVs in kleinen Patientenkohorten, Mustern von Histonmodifikationen und hinsichtlich der unterschiedlichen 
Verwendung von Exons entwickelt und angewendet.  
 
 
 



Summary

The advent of the high-throughput sequencing (HTS) technology has greatly accel-

erated research in life sciences. Due to its low cost and high e�ciency, it is nowadays

commonly used to answer various biological questions. In general, in HTS, the se-

quence of millions of DNA fragments is determined in parallel and these fragments

can in turn be generated using di↵erent sequencing methods. With the rapid ad-

vancement of HTS technologies, their applications seem almost endless, for example

it is now possible to sequence an entire genome in less than one day. Besides whole

genome sequencing, HTS has various other applications like targeted resequencing,

quantification of gene expression profiles (RNA-seq) and genome-wide identification

of protein-DNA interactions such as transcription factor binding sites or chromatin

histone marks (ChIP-seq). However, the analysis of the massive datasets generated

by HTS is only possible with sophisticated bioinformatics methods. In this thesis,

I have presented computational approaches for analyzing data obtained by targeted

DNA resequencing, RNA-seq and ChIP-seq, aimed at answering biological questions

regarding cardiac disease and skeletal muscle development.

First, a novel copy number variation (CNV) calling method was developed to

identify individual disease-relevant CNVs using exome or targeted resequencing data

of small sets of samples. Detecting CNVs from targeted resequencing data is di�-

cult due to non-uniform read-depth between captured regions. Moreover, a method

was needed to detect personalized CNVs from small cohort of patients without using

controls. Thus, we developed such a method and evaluated it using publicly avail-

able data of eight HapMap samples, and subsequently applied it to a small number

of Tetralogy of Fallot (TOF) patients. In addition to our method, we used the two

publicly available tools, namely ExomeDepth and CoNIFER. ExomeDepth identified

more CNVs for HapMap samples as compared to CoNIFER and our method; how-

ever, the positive predictive value was very low. Therefore, we decided not to use

ExomeDepth for detecting CNVs in the TOF patients. Compared to CoNIFER, we

identified more CNVs in both the HapMap samples as well as in our TOF cohort. In
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the TOF cohort (comprising eight cases), we found four copy number gains in three

patients. All four gains could be validated and, in addition, the three genes a↵ected by

CNVs were found to be important regulators of heart development (NOTCH1, ISL1 )

or were located in a region already associated with cardiac malformations (PRODH ).

The second study presented in this thesis was focused on the stable enrichment

patterns of histone modifications (H3K4me2 and H3K4me3) in combination with

a tissue-specific transcription factor (MyoD) that regulate myogenic di↵erentiation.

Here, we found specific H3K4me2/3 profiles on muscle-relevant genes. In general,

the average profile of H3K4me3 was enriched directly downstream of transcription

start sites, whereas H3K4me2 was located further over the gene body. Furthermore,

our study revealed a significant stronger binding of MyoD to this particular subset

of genes, with a predominantly repressive role of MyoD. Interestingly, the results

suggested that MyoD binds and down-regulates Patz1 during myogenic di↵erentia-

tion, which might provide an important regulatory mechanism to promote myogenic

di↵erentiation.

Finally, a pipeline was developed to identify di↵erential exon usage from RNA-

seq data, with the intention of identifying the exons that are excluded or included.

Almost a decade ago, the Sperling lab identified Dpf3 (also known as Baf45c) as

chromatin remodeling factor, whose expression was significantly up-regulated in the

right ventricle of TOF patients. It was shown that Dpf3 is specifically expressed in

heart and somites and binds methylated and acetylated lysine residues of histone 3

and 4. Moreover, it is known that several proteins, which bind chromatin histone

modifications, interact with splicing factors. Thus, to dissect the role of Dpf3 in

splicing, we compared gene expression profiles (mRNA-seq) generated from the right

and left ventricle as well as skeletal muscle of Dpf3 knockout and wild-type mice.

Basically, the established pipeline for the identification of the di↵erential exon usage

is based on the estimation of percent-spliced-in (PSI,  ). The results suggested that

Dpf3 might not play a significant role in splicing; however, further investigations are

required.

In summary, within this thesis, I have developed and applied di↵erent computa-

tional methods for analyzing CNVs in small cohorts of patients, patterns of histone

modifications and di↵erential exon usage.
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Appendix A

Outlier-Based CNV Calling
Method
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Table A.1: CNVs found in the five HapMap samples using type10 Dixon’s Q test in
the outlier-based CNV calling method
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Table A.2: CNVs found in the five HapMap samples using type20 Dixon’s Q test in
the outlier-based CNV calling method
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Listing A.1: R script for our CNV calling method

1 #### Author � Vikas Bansal
2 #### Email � v i k a s . bansa l@char i t e . de
3 #### Created � October 2013
4 #### R 2.15 .1
5 #### Scr i p t S1
6
7 l ibrary ( ” o u t l i e r s ” )
8 l ibrary ( ”HMM”)
9
10 ##�������������������������
11 ## modi f ied code f o r Dixon ’ s Q t e s t from ” o u t l i e r s ” package ,

which re turns sample names , p�va l u e s and o u t l i e r type (
gain , l o s s or normal )

12 ##
13
14
15 my. dixon . t e s t <� function (x , type = 0 , oppos i t e = FALSE,

two . s ided = TRUE) {
16 DNAME<� deparse ( substitute ( x ) )
17 x <� sort ( x [ complete . c a s e s ( x ) ] )
18 n <� length ( x )
19 i f ( ( type == 10 | | type == 0) & (n < 3 | | n > 30) )
20 stop ( ”Sample s i z e must be in range 3�30 f o r type10” )
21 i f ( type == 20 & (n < 4 | | n > 30) )
22 stop ( ”Sample s i z e must be in range 4�30 f o r type20” )
23 i f (xor ( ( ( x [ n ] � mean( x ) ) < (mean( x ) � x [ 1 ] ) ) , oppos i t e ) ) {
24 a l t = paste ( ” lowest va lue ” , x [ 1 ] , ” i s an o u t l i e r ” )
25 number=”Loss ”
26 i f ( type == 10) {
27 Q = (x [ 2 ] � x [ 1 ] ) / ( x [ n ] � x [ 1 ] )
28 out . pa t i en t=names( x [ 1 ] )
29 }
30 else {
31 Q = (x [ 3 ] � x [ 1 ] ) / ( x [ n ] � x [ 1 ] )
32 out . pa t i en t=paste (names( x [ 1 ] ) ,names( x [ 2 ] ) , sep=” ; ” )
33 }
34 }
35 else {
36 a l t = paste ( ” h i ghe s t va lue ” , x [ n ] , ” i s an o u t l i e r ” )
37 number=”Gain”
38 i f ( type == 10) {
39 Q = (x [ n ] � x [ n � 1 ] ) / ( x [ n ] � x [ 1 ] )
40 out . pa t i en t=names( x [ n ] )
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41 }
42 else {
43 Q = (x [ n ] � x [ n � 2 ] ) / ( x [ n ] � x [ 1 ] )
44 out . pa t i en t=paste (names( x [ n ] ) ,names( x [ n�1]) , sep=” ; ” )
45 }
46 }
47 pval <� pdixon (Q, n , type )
48 i f ( two . s ided ) {
49 pval <� 2 ⇤ pval
50 i f ( pval > 1)
51 pval <� 2 � pval
52 }
53 RVAL <� l i s t ( s t a t i s t i c = c (Q = Q) , a l t e r n a t i v e = a l t , p .

va lue = pval ,
54 method = ”Dixon t e s t f o r o u t l i e r s ” , data . name = DNAME , x

=out . pat i ent , num=number )
55 class (RVAL) <� ” h t e s t ”
56 return (RVAL)
57 }
58
59 ##�������������
60 ## main func t i on � c a l l i n g CNVs
61 ## input data frame conta ins f i r s t 4 columns � CHROM, START,

END, GC% and 5 th , 6 th , 7 th , . . . 34 th column conta ins copy
number va lue f o r each sample

62 ## above input data frame can be crea t ed from the output o f
mrCaNaVar ”out p r e f i x . copynumber . bed” output f i l e ( f i r s t
s t ep o f the method )

63 ##
64
65 exomeCNA <� function (df . var , type = 0 , w. s i z e = 100 , p . c u t o f f

= 0 .01 , two . s ided = FALSE, con t i . win = 5 ) {
66 col <� ncol (df . var )
67 i f ( type == 0) {
68 i f ( col < 12 & col >6) {
69 type <� 10
70 }
71 else i f ( col < 35 & col >11){
72 type <� 20
73 }
74 else {
75 stop ( ”Sample s i z e must be in range 3�30” )
76 }
77 }
78 else i f ( type != 10 && type != 20) {
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79 stop ( ”Type should be 10 or 20” )
80 }
81
82 ## read in the data frame
83 a l l <� df . var
84 colnames ( a l l ) [ 1 : 3 ] <� c ( ”CHROM” , ”START” , ”END” )
85 end . a l l <� df . var [ apply (df . var [ , 5 : col ] , 1 , function ( v )sum( v !=

0 ,na .rm=TRUE)>=((col�4)/2) ) , ]
86 colnames (end . a l l ) [ 1 : 3 ] <� c ( ”CHROM” , ”START” , ”END” )
87 not . same <� apply (end . a l l [ , 5 : col ] , 1 , function ( i ) length (

unique ( i ) ) > 1 )
88 end . a l l <� end . a l l [ not . same , ]
89 one <� col+1
90 two <� col+2
91 three <� col+3
92
93 ## app ly type20 Dixon t e s t i f t ype i s equa l to 20 ( second

s t ep o f the method )
94 i f ( type == 20) {
95 for ( chak in c (10 ,20) ) {
96 ko <� apply (end . a l l [ , 5 : col ] , 1 , function ( t e s t ){
97 to <� my. dixon . t e s t ( t e s t , type=chak , two . s ided= two .

s ided )
98 })
99 end . a l l [ , one ] <� sapply ( ko , function ( l a ){ l a$p . va lue })
100 end . a l l [ , two ] <� sapply ( ko , function ( l a ){ l a$x})
101 end . a l l [ , th r ee ] <� sapply ( ko , function ( l a ){ l a$num})
102 colnames (end . a l l ) [ one : th ree ] <� c (paste ( ”p . value , type ” ,

chak , sep=”” ) , paste ( ” pa t i e n t s . type ” , chak , sep=”” ) ,
paste ( ”copynum . type” , chak , sep=”” ) )

103 one <� one+3
104 two <� two+3
105 three <� th ree+3
106 }
107
108 ## return the ou t l y i n g windows which has p�va lue l e s s

than p . c u t o f f
109 f i l t e r e d <� (end . a l l [which(end . a l l [ , col+1] <= p . c u t o f f |

end . a l l [ , col+4] <= p . c u t o f f ) , ] )
110 i f ( length ( f i l t e r e d )==0 | | nrow( f i l t e r e d ) == 0 ){
111 stop ( ”No s i g n i f i c a n t r e g i on s found” )
112 }
113 else {
114 f i l t e r e d [which( f i l t e r e d [ , col+1] <= p . c u t o f f ) ,ncol (

f i l t e r e d )+1] <� ” type10”
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115 f i l t e r e d [ i s .na( f i l t e r e d ) ]<� ” type20”
116 colnames ( f i l t e r e d ) [ ncol ( f i l t e r e d ) ] <� ”No . o f pa t i e n t s ”
117 f i l t e r e d <� ( f i l t e r e d [which( f i l t e r e d [ ,3 ]� f i l t e r e d [ , 2 ]

== w. s i z e ) , ] )
118 i f ( length (unique ( f i l t e r e d [ , col+3]) ) > 1){
119 f i l t e r g a i n <� ( f i l t e r e d [which( f i l t e r e d [ , col+3]== ”

Gain” ) , ] )
120 f i l t e r l o s s <� ( f i l t e r e d [which( f i l t e r e d [ , col+3] != ”

Gain” ) , ] )
121 Pat ient1 <� vector ( )
122 Pat ient2 <� vector ( )
123 for ( chak in 1 :nrow( f i l t e r g a i n ) ){
124 i f ( f i l t e r g a i n [ chak , ncol ( f i l t e r g a i n ) ] == ” type10” ){
125 Pat ient1 [ chak ] <� f i l t e r g a i n [ chak , col+2]
126 Pat ient2 [ chak ] <� ”NA”
127 }
128 else i f ( f i l t e r g a i n [ chak , ncol ( f i l t e r g a i n ) ] == ”

type20” ){
129 t e s t <� unlist ( s t r sp l i t ( f i l t e r g a i n [ chak , col+5] , ” ;

” ) )
130 Pat ient1 [ chak ] <� t e s t [ 1 ]
131 Pat ient2 [ chak ] <� t e s t [ 2 ]
132 }
133 }
134 gain <� f i l t e r g a i n [ , c ( 1 , 2 , 3 ) ]
135 gain [ , 4 : 5 ] <� c ( Patient1 , Pat ient2 )
136 colnames ( ga in ) [ 4 : 5 ] <� c ( ” Pat ient1 ” , ” Pat ient2 ” )
137 Pat ient1 <� vector ( )
138 Pat ient2 <� vector ( )
139 for ( chak in 1 :nrow( f i l t e r l o s s ) ) {
140 i f ( f i l t e r l o s s [ chak , ncol ( f i l t e r l o s s ) ] == ” type10” ){
141 Pat ient1 [ chak ] <� f i l t e r l o s s [ chak , col+2]
142 Pat ient2 [ chak ] <� ”NA”
143 }
144 else i f ( f i l t e r l o s s [ chak , ncol ( f i l t e r l o s s ) ] == ”

type20” ){
145 t e s t <� unlist ( s t r sp l i t ( f i l t e r l o s s [ chak , col+5] , ” ;

” ) )
146 Pat ient1 [ chak ] <� t e s t [ 1 ]
147 Pat ient2 [ chak ] <� t e s t [ 2 ]
148 }
149 }
150 l o s s <� f i l t e r l o s s [ , c ( 1 , 2 , 3 ) ]
151 l o s s [ , 4 : 5 ] <� c ( Patient1 , Pat ient2 )
152 colnames ( l o s s ) [ 4 : 5 ] <� c ( ” Pat ient1 ” , ” Pat ient2 ” )
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153 }
154 else i f (unique ( f i l t e r e d [ , col+3]) [ 1 ] == ”Gain” ) {
155 f i l t e r g a i n <� ( f i l t e r e d [which( f i l t e r e d [ , col+3]== ”

Gain” ) , ] )
156 Pat ient1 <� vector ( )
157 Pat ient2 <� vector ( )
158 for ( chak in 1 :nrow( f i l t e r g a i n ) ){
159 i f ( f i l t e r g a i n [ chak , ncol ( f i l t e r g a i n ) ] == ” type10” ){
160 Pat ient1 [ chak ] <� f i l t e r g a i n [ chak , col+2]
161 Pat ient2 [ chak ] <� ”NA”
162 }
163 else i f ( f i l t e r g a i n [ chak , ncol ( f i l t e r g a i n ) ] == ”

type20” ){
164 t e s t <� unlist ( s t r sp l i t ( f i l t e r g a i n [ chak , col+5] , ” ;

” ) )
165 Pat ient1 [ chak ] <� t e s t [ 1 ]
166 Pat ient2 [ chak ] <� t e s t [ 2 ]
167 }
168 }
169 gain <� f i l t e r g a i n [ , c ( 1 , 2 , 3 ) ]
170 gain [ , 4 : 5 ] <� c ( Patient1 , Pat ient2 )
171 colnames ( ga in ) [ 4 : 5 ] <� c ( ” Pat ient1 ” , ” Pat ient2 ” )
172 }
173 else {
174 f i l t e r l o s s <� ( f i l t e r e d [which( f i l t e r e d [ , col+3] != ”

Gain” ) , ] )
175 Pat ient1 <� vector ( )
176 Pat ient2 <� vector ( )
177 for ( chak in 1 :nrow( f i l t e r l o s s ) ) {
178 i f ( f i l t e r l o s s [ chak , ncol ( f i l t e r l o s s ) ] == ” type10” ){
179 Pat ient1 [ chak ] <� f i l t e r l o s s [ chak , col+2]
180 Pat ient2 [ chak ] <� ”NA”
181 }
182 else i f ( f i l t e r l o s s [ chak , ncol ( f i l t e r l o s s ) ] == ”

type20” ){
183 t e s t <� unlist ( s t r sp l i t ( f i l t e r l o s s [ chak , col+5] , ” ;

” ) )
184 Pat ient1 [ chak ] <� t e s t [ 1 ]
185 Pat ient2 [ chak ] <� t e s t [ 2 ]
186 }
187 }
188 l o s s <� f i l t e r l o s s [ , c ( 1 , 2 , 3 ) ]
189 l o s s [ , 4 : 5 ] <� c ( Patient1 , Pat ient2 )
190 colnames ( l o s s ) [ 4 : 5 ] <� c ( ” Pat ient1 ” , ” Pat ient2 ” )
191 }
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192 }
193 }
194
195 ## app ly type10 Dixon t e s t i f t ype i s equa l to 10 ( second

s t ep o f the method )
196 else {
197 chak=10
198 ko <� apply (end . a l l [ , 5 : col ] , 1 , function ( t e s t ){
199 to <� my. dixon . t e s t ( t e s t , type=chak , two . s ided= two .

s ided )
200 })
201 end . a l l [ , one ] <� sapply ( ko , function ( l a ){ l a$p . va lue })
202 end . a l l [ , two ] <� sapply ( ko , function ( l a ){ l a$x})
203 end . a l l [ , th r ee ] <� sapply ( ko , function ( l a ){ l a$num})
204 colnames (end . a l l ) [ one : th ree ] <� c (paste ( ”p . value , type ” ,

chak , sep=”” ) , paste ( ” pa t i e n t s . type ” , chak , sep=”” ) ,
paste ( ”copynum . type” , chak , sep=”” ) )

205 f i l t e r e d <� (end . a l l [which(end . a l l [ , col+1] <= p . c u t o f f )
, ] )

206 i f ( length ( f i l t e r e d )==0 | | nrow( f i l t e r e d ) == 0 ){
207 stop ( ”No s i g n i f i c a n t r e g i on s found” )
208 }
209 else {
210 f i l t e r e d [ , ncol ( f i l t e r e d )+1] <� ” type10”
211 colnames ( f i l t e r e d ) [ ncol ( f i l t e r e d ) ] <� ”No . o f pa t i e n t s ”
212 f i l t e r e d <� ( f i l t e r e d [which( f i l t e r e d [ ,3 ]� f i l t e r e d [ , 2 ]

== w. s i z e ) , ] )
213 i f ( length (unique ( f i l t e r e d [ , col+3]) ) > 1){
214 f i l t e r g a i n <� ( f i l t e r e d [which( f i l t e r e d [ , col+3]== ”

Gain” ) , ] )
215 f i l t e r l o s s <� ( f i l t e r e d [which( f i l t e r e d [ , col+3] != ”

Gain” ) , ] )
216 gain <� f i l t e r g a i n [ , c ( 1 , 2 , 3 , col+2, 4) ]
217 l o s s <� f i l t e r l o s s [ , c ( 1 , 2 , 3 , col+2, 4) ]
218 colnames ( ga in ) [ 4 : 5 ] <� c ( ” Pat ient1 ” , ” Pat ient2 ” )
219 colnames ( l o s s ) [ 4 : 5 ] <� c ( ” Pat ient1 ” , ” Pat ient2 ” )
220 }
221 else i f (unique ( f i l t e r e d [ , col+3]) [ 1 ] == ”Gain” ) {
222 f i l t e r g a i n <� ( f i l t e r e d [which( f i l t e r e d [ , col+3]== ”

Gain” ) , ] )
223 gain <� f i l t e r g a i n [ , c ( 1 , 2 , 3 , col+2, 4) ]
224 colnames ( ga in ) [ 4 : 5 ] <� c ( ” Pat ient1 ” , ” Pat ient2 ” )
225 }
226 else {
227 f i l t e r l o s s <� ( f i l t e r e d [which( f i l t e r e d [ , col+3] != ”
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Gain” ) , ] )
228 l o s s <� f i l t e r l o s s [ , c ( 1 , 2 , 3 , col+2, 4) ]
229 colnames ( l o s s ) [ 4 : 5 ] <� c ( ” Pat ient1 ” , ” Pat ient2 ” )
230 }
231 }
232 }
233
234 ## app ly HMM for each sample s e p a r a t e l y ( t h i r d s t ep o f the

method )
235 pat . id <� colnames (end . a l l ) [ 5 : col ]
236 for ( f i l e in pat . id ){
237 i f ( exists ( ” gain ” ) ){
238 gain . s f f <� gain [which( ga in [ , 4 ] == f i l e | gain [ , 5 ] ==

f i l e ) , 1 : 5 ]
239 }
240 else {
241 gain . s f f <� data . frame ( a=character (0 ) )
242 }
243 i f ( exists ( ” l o s s ” ) ){
244 l o s s . s f f <� l o s s [which( l o s s [ , 4 ] == f i l e | l o s s [ , 5 ] ==

f i l e ) , 1 : 5 ]
245 }
246 else {
247 l o s s . s f f <� data . frame ( a=character (0 ) )
248 }
249 a l l . win <� a l l [ , 1 : 4 ]
250 i f ( length ( ga in . s f f )==0 | | nrow( ga in . s f f ) == 0 ){
251 i f ( length ( l o s s . s f f )==0 | | nrow( l o s s . s f f ) == 0 ){
252 next
253 }
254 else {
255 l o s s . s f f [ , 6 ] <� ” l o s s ”
256 l o s s g a i n 78 <� l o s s . s f f
257 }
258 }
259 else i f ( length ( l o s s . s f f )==0 | | nrow( l o s s . s f f ) == 0 ) {
260 gain . s f f [ , 6 ] <� ” gain ”
261 l o s s g a i n 78 <� gain . s f f
262 }
263 else {
264 l o s s . s f f [ , 6 ] <� ” l o s s ”
265 gain . s f f [ , 6 ] <� ” gain ”
266 l o s s g a i n 78 <� ( rbind ( ga in . s f f , l o s s . s f f ) )
267 }
268 merge78 <� (merge( a l l . win , l o s sga in78 ,by = c ( ”CHROM” , ”
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START” , ”END” ) , a l l . x=TRUE) )
269 merge78 [ i s .na(merge78 ) ] <� ”normal”
270 forhmm78 <� merge78 [ , c ( 1 : 3 , 7 ) ]
271 forhmm78 [ , 5 ] <� ”wait ”
272 colnames ( forhmm78 ) [ 5 ] <� ”After .HMM”
273
274 ## i n i t i a l t r a n s i t i o n and emiss ion p r o b a b i l i t i e s
275 hmm <� initHMM(c ( ” gain ” , ” l o s s ” , ”normal” ) , c ( ” gain ” , ” l o s s

” , ”normal” ) , t ransProbs=matrix (c
( . 6 , . 2 , . 2 , . 2 , . 6 , . 2 , . 2 , . 2 , . 6 ) , 3 ) , emiss ionProbs=matrix (c
( . 6 , . 2 , . 2 , . 2 , . 6 , . 2 , . 2 , . 2 , . 6 ) , 3 ) )

276
277 ## recomputing t r a n s i t i o n and emiss ion p r o b a b i l i t i e s

us ing the Baum�Welch a l gor i thm
278 ## f ind i n g most l i k e l y sequence o f the hidden s t a t e s by

the V i t e r b i a l gor i thm
279 for ( j o in unique ( forhmm78 [ , 1 ] ) ){
280 cat ( ”\ r ” , paste ( jo , ”�” , f i l e ) , ”\n” )
281 obs e rva t i on s <� forhmm78 [ forhmm78 [ , 1 ] == jo , 4 ]
282 bw <� baumWelch(hmm, obse rvat ions , 1 0 )
283 v i t e r b i <� v i t e r b i (bw$hmm, obs e rva t i on s )
284 forhmm78 [ forhmm78 [ ,1]== jo , 5 ] <� v i t e r b i
285 colnames ( forhmm78 ) [ 4 ] <� ”Before .HMM”
286 }
287
288 ## c a l l i n g CNV i f 5 cont inuous windows ( d e f a u l t c on t i . win

= 5) are pre sen t wi th same copy number type
289 forhmm78=forhmm78 [ ,�4]
290 forhmm78$conseq <�cumsum(c (1 , forhmm78$After .HMM[�1] !=

forhmm78$After .HMM[� length ( forhmm78$After .HMM) ] ) )
291 f i n a l <� do . ca l l ( rbind ,
292 by( forhmm78 , l i s t ( forhmm78$CHROM, forhmm78$conseq ) ,
293 function (df )
294 i f ( NROW(df ) >= cont i . win & df$After .HMM[ 1 ] %in% c ( ”

gain ” , ” l o s s ” ) ) {
295 cbind (df [ 1 , c ( ”CHROM” , ”START” ) ] , df [NROW(df ) , c ( ”

END” , ”After .HMM”) ] )
296 } else {NULL} ) )
297
298 ## output CNVs fo r each sample i f p re sen t
299 i f ( length ( f i n a l )==0 | | nrow( f i n a l ) == 0) {
300 next
301 }
302 else {
303 colnames ( f i n a l ) [ 4 ] <� ”TYPE”

127



304 write . table ( f i n a l , f i l e=paste ( ”hmm. ” , f i l e , sep=”” ) , sep=
”\ t ” , quote=FALSE, row .names=FALSE)

305 }
306 }
307 }
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Analysis of Epigenetic Changes
during Myogenic Di↵erentiation
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Figure B.1: Average profile of H3K4me2 and H3K4me3 in Undi↵ and Di↵ C2C12
cells. (A) Average profile of H3K4me2 and H3K4me3 in Undi↵ C2C12 and (B) Di↵
C2C12 cells around the transcription start site (TSS).

Table B.1: Number of genes in H3K4me2/3 clusters bound by MyoD.
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Figure B.2: Clustering analysis of H3K4me2 profiles in di↵erentiated C2C12 cells.
(A) H3K4me2 profiles identified by k-means clustering. The clustering is based on
the transcription start site (TSS) and the corresponding number of genes is given
for each cluster. Genes with multiple TSS can be present in more than one cluster.
(B) The box plot (25% to 75% quartile) shows the levels of gene expression (FPKM
values) of the di↵erent H3K4me2 clusters in Di↵ C2C12 cells. The expression of
cluster 1 and cluster 2 genes was compared using the Mann-Whitney U test. (C)
Overlap of genes between the clusters of H3K4me2 in Undi↵ and Di↵ C2C12 cells.
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Figure B.3: Clustering analysis of H3K4me3 profiles in di↵erentiated C2C12 cells.
(A) H3K4me3 profiles identified by k-means clustering. The clustering is based on
the transcription start site (TSS) and the corresponding number of genes is given
for each cluster. Genes with multiple TSS can be present in more than one cluster.
(B) The box plot (25% to 75% quartile) shows the levels of gene expression (FPKM
values) of the di↵erent H3K4me3 clusters in Di↵ C2C12 cells. The expression of
cluster 1 and cluster 2 genes was compared using the Mann-Whitney U test. (C)
Overlap of genes between the clusters of H3K4me3 in Undi↵ and Di↵ C2C12 cells.
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Figure B.4: Comparison of H3K4me2 and H3K4me3 cluster 1 in di↵erentiated C2C12
cells. (A) Overlap of H3K4me2 and H3K4me3 cluster 1 genes in Di↵ C2C12 cells. The
P-value is based on a hypergeometric test. (B) GO enrichment analysis of common
cluster 1 genes using the DAVID database. Top ten biological process terms with an
adjusted (Benjamini-Hochberg) P-value  0.01 are indicated. GO terms related to
muscle development are highlighted in red.
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Listing B.1: Perl script for identifying overrepresented motifs

1 #!/ usr / b in / p e r l
2
3 #################
4
5 #Usage : p e r l Ove r r ep re s en t ed mot i f s . p l input . f a s t a
6
7 #COMMENTS: This s c r i p t f i n d s the over rpre sen t ed mot i f s in

input sequences as compared to background con t r o l .
8
9 #Using Binomial t e s t to c a l c u l a t e Pvalues .
10
11
12 #################
13
14
15 use warnings ;
16 use s t r i c t ;
17
18 print ”
19 ####################
20
21 Over r ep r e s en t ed mot i f s . p l <� By Vikas Bansal
22
23 Usage : p e r l Ove r r ep r e s en t ed mot i f s . p l input . f a s t a
24
25 May 2015
26
27 This s c r i p t f i n d s the ove r rp r e s en ted mot i f s in input

sequences .
28
29 User can prov ide the c on t r o l f i l e or i t can be generated

randomly .
30
31 Make sure R i s i n s t a l l e d .
32
33 This s c r i p t uses MATCH too l provided by Transfac database

which i s i n s t a l l e d in / p r o j e c t / a r ch ive /Biobase /
TRANSFAC matrices/match

34
35 Please don ’ t d e l e t e that d i r e c t o r y : ) ! ! ! ! ! ! ! ! ! !
36 ###############################\n\n” ;
37
38
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39 print ”
40 #####################
41
42 Did you read the above comments and agree not to d e l e t e the

d i r e c t o r y ? Y/N
43
44 ##########################\n\n” ;
45
46 my $agree = <STDIN>;
47 chomp $agree ;
48 i f ( $agree eq ”Y” | | $agree eq ”y” ) {
49
50 } else {
51
52 print ”\n\nBYE BYE ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! \ n\n” ;
53 exit ;
54 }
55
56
57
58 my $Filename ;
59
60 # Check i f input f i l e e x i s t s or not
61 i f ($ARGV[ 0 ] ) {
62 $Filename = $ARGV[ 0 ] ;
63 }
64 else {
65 print ”Not enough arguments\n\n” ;
66 die ” !\n\n” ;
67 }
68
69 open (FILE , ”<$Filename” ) or die ”\n\nCannot open f i l e

$Filename ! ! ! ! ! ! ! ! BYE BYE ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! \ n\n” ;
70 close FILE ;
71
72 my $ c on t r o l f i l e n ame ;
73
74
75
76
77 ## Which p r o f i l e to use f o r ove r r epre s en t ed mot i f s
78 print ”
79 ##########################
80
81
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82 S e l e c t the matrix p r o f i l e you would l i k e to use . For example ,
i f you are working with v e r t eb r a t e s then s e l e c t

v e r t eb ra t e s p e c i f i c .
83
84 1 a d i p o c y t e s p e c i f i c . p r f 2

n e r v e s y s t em sp e c i f i c . p r f
85 3 ba c t e r i a . p r f 4

p a n c r e a t i c b e t a c e l l s p e c i f i c . p r f
86 5 c e l l c y c l e s p e c i f i c . p r f 6 p i t u i t a r y s p e c i f i c .

p r f
87 7 fung i . p r f 8 p lan t s . p r f
88 9 immune c e l l s p e c i f i c . p r f 10 r e d o x s p e c i f i c . p r f
89 11 i n s e c t s . p r f 12

vertebrate non redundant minFN . p r f
90 13 i n v e r t e b r a t e s . p r f 14

vertebrate non redundant minFP . p r f
91 15 l i v e r s p e c i f i c . p r f 16

vertebrate non redundant minSUM . pr f
92 17 l u n g s p e c i f i c . p r f 18

ver tebrate non redundant . p r f
93 19 mu s c l e s p e c i f i c . p r f 20 v e r t eb r a t e s . p r f
94 21 nematodes . p r f
95
96
97 ##Comments :
98
99 The search a lgor i thm uses two s co r e va lue s : the matrix

s im i l a r i t y s co r e (MSS) and the core s im i l a r i t y s co r e (CSS)
100
101 These two s c o r e s measure the qua l i t y o f a match between the

sequence and the matrix , which ranges from 0 .0 to 1 . 0 ,
where 1 . 0 denotes an exact match

102
103 The core o f each matrix i s de f i n ed as the f i r s t f i v e most

conserved cons e cu t i v e p o s i t i o n s o f a matrix . The core
s im i l a r i t y s co r e i s c a l c u l a t ed f o r a l l p en tanuc l e o t i d e s
and prolonged at both ends , so that i t f i t s the matrix
l ength .

104
105 MSS and CSS are p r e c a l c u l a t ed by TRANSFAC database to

minimize f a l s e nega t i v e s . In addi t ion , f o r v e r t eb r a t e s
they prov ide three d i f f e r e n t cut o f f s f o r non redundant i .
e .

106
107 � Cut�o f f to Minimize Fa l se Negat ive Matches (minFN)
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108 � Cut�o f f to Minimize Fa l se Po s i t i v e Matches (minFP)
109 � Cut�o f f to Minimize the Sum of Both Error Rates (minSUM)
110
111 ##########################\n\n” ;
112
113 my $ p r o f i l e = <STDIN>;
114 chomp $ p r o f i l e ;
115
116 i f ( $ p r o f i l e <1 | | $p r o f i l e >21 ) {
117 print ”\n\nNumber should be between 1 to 21 \n\nBYE BYE

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! \ n\n” ;
118 exit ;
119
120 }
121
122 my @prof i l e names=(”empty” , ” a d i p o c y t e s p e c i f i c . p r f ” , ”

n e r v e s y s t em sp e c i f i c . p r f ” , ” ba c t e r i a . p r f ” , ”
p a n c r e a t i c b e t a c e l l s p e c i f i c . p r f ” , ” c e l l c y c l e s p e c i f i c .
p r f ” , ” p i t u i t a r y s p e c i f i c . p r f ” , ” fung i . p r f ” , ” p l an t s . p r f ” ,
” immune c e l l s p e c i f i c . p r f ” , ” r e d o x s p e c i f i c . p r f ” , ”
i n s e c t s . p r f ” , ” vertebrate non redundant minFN . p r f ” , ”
i n v e r t e b r a t e s . p r f ” , ” vertebrate non redundant minFP . p r f ” ,
” l i v e r s p e c i f i c . p r f ” , ” vertebrate non redundant minSUM . pr f
” , ” l u n g s p e c i f i c . p r f ” , ” ver tebrate non redundant . p r f ” , ”
mu s c l e s p e c i f i c . p r f ” , ” v e r t eb r a t e s . p r f ” , ”nematodes . p r f ” ) ;

123
124
125
126
127 ##Ask user i f comntrol f i l e e x i s t s or would l i k e to c r ea t e
128 print ”
129 ###########################
130
131 Do you have your own con t r o l sequences ? Y/N
132
133 ######################\n\n” ;
134
135 my $con t r o l = <STDIN>;
136 chomp $con t r o l ;
137
138 i f ( $ con t r o l eq ”N” | | $con t r o l eq ”n” ) {
139 print ”\n\n\n Generat ing random con t r o l sequences \n\n\n” ;
140
141 $ c on t r o l f i l e n ame =random dna str ings ( ) ;
142
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143 chomp $ c on t r o l f i l e n ame ;
144 } e l s i f ( $ con t r o l eq ”Y” | | $con t r o l eq ”y” ) {
145
146 print ”\nPlease , type the name o f the c on t r o l f i l e \n\n” ;
147 $ c on t r o l f i l e n ame =<STDIN>;
148 chomp $ c on t r o l f i l e n ame ;
149 open (FILE , ”<$ c on t r o l f i l e n ame ” ) or die ”\n\nCannot

open f i l e $ c on t r o l f i l e n ame ! ! ! ! BYE BYE
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! \ n\n” ;

150 close FILE ;
151 } else {
152
153 print ”\n\nPlease wr i t e Y or N \n\nBYE BYE

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! \ n\n” ;
154 exit ;
155 }
156
157
158
159
160
161 print ”\n\nRunning MATCH and us ing p r o f i l e $p ro f i l e names [

$ p r o f i l e ]\n\n” ;
162
163
164 ##Running MATCH from TRANSFAC
165 my $match cmd= join ( ’ ’ , ’ / p r o j e c t / a r ch ive /Biobase /

TRANSFAC matrices/match/bin /match ’ , ’ / p r o j e c t / a r ch ive /
Biobase /TRANSFAC matrices/match/data/matrix . dat ’ ,
$ c on t r o l f i l e n ame , ’ random match out . txt ’ , ’ / p r o j e c t /
a r ch ive /Biobase /TRANSFAC matrices/match/data/ p r f s / ’ ,
$p ro f i l e names [ $ p r o f i l e ] ) ;

166
167 system ( $match cmd ) ;
168
169 print ”\n\nMATCH completed f o r $ c on t r o l f i l e n ame \n\n” ;
170
171 my $input match cmd= join ( ’ ’ , ’ / p r o j e c t / a r ch ive /Biobase /

TRANSFAC matrices/match/bin /match ’ , ’ / p r o j e c t / a r ch ive /
Biobase /TRANSFAC matrices/match/data/matrix . dat ’ ,
$Filename , ’ input match out . txt ’ , ’ / p r o j e c t / a r ch ive /
Biobase /TRANSFAC matrices/match/data/ p r f s / ’ , $p ro f i l e names
[ $ p r o f i l e ] ) ;

172
173 system ( $input match cmd ) ;
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174
175 print ”\n\nMATCH completed f o r $Filename\n\n” ;
176
177
178
179
180 ##COunt number o f sequences has p a r t i c u l a r mot i f
181 my $mot i f input temp=‘awk ’NR>5{pr i n t \$1 ,\ $4} ’

input match out . txt | awk ’NF>0 ’ > input unique temp . txt
‘ ;

182
183
184 my $motif random temp=‘awk ’NR>5{pr i n t \$1 ,\ $4} ’

random match out . txt | awk ’NF>0 ’ > random unique temp .
txt ‘ ;

185
186 system ( $mot i f input temp ) ;
187 system ( $motif random temp ) ;
188
189
190
191
192 my $ i npu t f i l e ma t ch = ” input unique temp . txt ” ;
193 my $ i npu t f i l e ma t ch ou t = ” i n p u t f i l e u n i q ” ;
194
195 open (FILE , ”<$ i npu t f i l e ma t ch ” ) or die ”Cannot open f i l e

$ i npu t f i l e ma t ch ! ! ! ! : $ ! ” ;
196 open (OUT1, ”>$ i npu t f i l e ma t ch ou t ” ) or die ”Cannot open

f i l e $ i npu t f i l e ma t ch ou t ! ! ! ! : $ ! ” ;
197 my ( $ps , $pe ) = sp l i t (/\ s/,<FILE>) ;
198
199 while (<FILE>) {
200 chomp ;
201 my ( $cs , $ce ) = sp l i t ;
202 i f ( $cs ne ” In spe c t i ng ” ) {
203 print OUT1 $cs , ”\ t ” , $pe , ”\n” ;
204 } else {( $ps , $pe )=($cs , $ce ) ;}
205
206
207 }
208 close FILE ;
209
210
211
212
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213 my $random f i l e match = ”random unique temp . txt ” ;
214 my $random f i l e match out = ” random f i l e un iq ” ;
215
216 open (FILE , ”<$random f i l e match ” ) or die ”Cannot open f i l e

$random f i l e match ! ! ! ! : $ ! ” ;
217 open (OUT2, ”>$random f i l e match out ” ) or die ”Cannot open

f i l e $random f i l e match out ! ! ! ! : $ ! ” ;
218 my ( $psr , $per ) = sp l i t (/\ s/,<FILE>) ;
219
220 while (<FILE>) {
221 chomp ;
222 my ( $cs , $ce ) = sp l i t ;
223 i f ( $cs ne ” In spe c t i ng ” ) {
224 print OUT2 $cs , ”\ t ” , $per , ”\n” ;
225 } else {( $psr , $per )=($cs , $ce ) ;}
226
227
228 }
229
230
231 close FILE ;
232 close OUT1;
233 close OUT2;
234
235
236
237
238
239 ##Use R fo r b inomia l t e s t
240 my $mot i f i nput=‘sort �u i n p u t f i l e u n i q | cut �f 1 | grep ’

\\\$ ’ | sort | uniq �c > i npu t mot i f s . txt ‘ ;
241
242
243 my $motif random=‘sort �u random f i l e un iq | cut �f 1 | grep ’

\\\$ ’ | sort | uniq �c > random motifs . txt ‘ ;
244
245 system ( $mot i f i nput ) ;
246 system ( $motif random ) ;
247
248
249 system ( ‘ grep ” In spec t ” input match out . txt | wc � l >

number o f input seq . txt ‘ ) ;
250 system ( ‘ grep ” In spec t ” random match out . txt | wc � l >

number of random seq . txt ‘ ) ;
251
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252 print ”\n\ nCa lcu la t ing P�va lues f o r ove r r ep r e s en t ed mot i f s \n\
n” ;

253
254 system ( ‘ Rsc r ip t Binomial .R‘ ) ;
255
256 print ”\n\nPutting r e s u l t s in ov e r r e p r e s e n t ed mo t i f s s o r t e d .

txt \n\n” ;
257
258 ##Remove temporary f i l e s
259 system ( ‘ rm inpu t mot i f s . txt ‘ ) ;
260
261 system ( ‘ rm random motifs . txt ‘ ) ;
262 system ( ‘ rm number o f input seq . txt ‘ ) ;
263
264 system ( ‘ rm number of random seq . txt ‘ ) ;
265 system ( ‘ rm i n pu t f i l e u n i q ‘ ) ;
266
267 system ( ‘ rm input unique temp . txt ‘ ) ;
268 system ( ‘ rm random f i l e un iq ‘ ) ;
269
270 system ( ‘ rm random unique temp . txt ‘ ) ;
271
272
273 ################################
274
275 #random dna str ings . p l <� PERL SCRIPT WRITTEN BY BENJAMIN

TOVAR
276
277 #COMMENTS: This s c r i p t t a k e s arguments g i ven by the user such

the nuc l e o t i d e f r e qu en c i e s o f each
278
279 #nuc l e o t i d e ( in a s c a l e from 0.0 to 1 .0 ) , g enera t e s a \”n\”

number o f sequences o f \”n\” l en g t h
280
281 #with a FASTA header a l s o g iven by the user and f i n a l l y

p r i n t s an output f i l e in FASTA format
282
283 ###############################\n\n” ;
284
285 ##### seed the random s t u f f #####
286 sub random dna str ings {
287 srand ( time | $$ ) ;
288
289 ###### Set the number o f i t e r a t i o n s (number o f random

sequences to genera te ) ######
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290
291 print ” 1) Please type the number o f i t e r a t i o n s (How many

random sequences do you want ) :
292
293 EXAMPLE: \”10\” \n\n” ;
294
295 my $ i t e r a t i o n s = <STDIN>;
296 chomp $ i t e r a t i o n s ;
297
298 ###### Set the l e n g t h o f the random DNA s t r i n g s (how many

nuc l e o t i d e s l e n g t h ) ######
299
300 print ”\n2 ) Please type the l ength o f the random DNA

s t r i n g s (how many nuc l e o t i d e s l ength ) :
301
302 EXAMPLE: \”50\” \n\n” ;
303
304 my $ length = <STDIN>;
305 chomp $ length ;
306
307 ######################### SET THE VALUE OF THE USER’S

ARGUMENTS ################
308
309 # How much A% content per s t r i n g :
310
311 print ”\n3 ) Please type the p r obab i l i t y d i s t r i b u t i o n o f A

content :
312
313 REMEMBER THAT THE SUM OF THE FOUR PROBABILITIES MUST BE

EQUAL TO \”1.00\”
314
315 EXAMPLE: \”0.25\” \n\n” ;
316
317 my $A content = <STDIN>;
318
319 print ”
320 ############################
321 # From a value o f \”1.00\” as t o t a l p robab i l i t y , the r e

are : ” , (1�( $A content ) ) , ” a v a i l a b l e
322 ##########################\n\n” ;
323
324 # How much T% content per s t r i n g :
325
326 print ”\n4 ) Please type the p r obab i l i t y d i s t r i b u t i o n o f T

content :
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327
328 REMEMBER THAT THE SUM OF THE FOUR PROBABILITIES MUST BE

EQUAL TO \”1.00\”
329
330 EXAMPLE: \”0.25\” \n\n” ;
331
332 my $T content = <STDIN>;
333
334 print ”
335 ###############################
336 # From a value o f \”1.00\” as t o t a l p robab i l i t y , the r e

are : ” , (1�( $A content+$T content ) ) , ” a v a i l a b l e
337 ###############################\n\n” ;
338
339 # How much G% content per s t r i n g :
340
341 print ”\n5 ) Please type the p r obab i l i t y d i s t r i b u t i o n o f G

content :
342
343 REMEMBER THAT THE SUM OF THE FOUR PROBABILITIES MUST BE

EQUAL TO \”1.00\”
344
345 EXAMPLE: \”0.25\” \n\n” ;
346
347 my $G content = <STDIN>;
348
349 print ”
350 ###############################
351 # From a value o f \”1.00\” as t o t a l p robab i l i t y , the r e

are : ” , my $C content = (1�( $A content+$T content+
$G content ) ) , ” a v a i l a b l e

352 ################################\n\n” ;
353
354 # How much C% content per s t r i n g :
355
356 print ”\n6 ) Se t t i ng the p r obab i l i t y d i s t r i b u t i o n o f C

content \n\n” ;
357
358 print $C content , ”\n” ;
359
360 #### Ask the user f o r the name o f the f a s t a header
361
362 print ”\n7 ) Please , type the name o f the f a s t a header f o r

each sequence ( i s not nece s sa ry to put the >) :
363
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364 EXAMPLE: \” random seq \”\n\n” ;
365
366 my $fasta header name =<STDIN>;
367
368 #### Ask the user f o r the name o f output f i l e
369
370 print ”\n8 ) Please , type the name o f the output f i l e :
371
372 EXAMPLE: \” random sequences set . f a \”\n\n” ;
373
374 my $output f i l e name =<STDIN>;
375
376 ####### ERASE WHITE SPACES OF THE <STDIN> INPUTS #######
377
378 chomp ( $A content , $T content , $G content , $C content ,

$ fasta header name , $output f i l e name ) ;
379
380 ##### Pass the va l u e s o f the s c a l a r v a r i a b l e s to an array

v a r i a b l e #####
381
382 my @di s t r i bu t i on = ( $A content , $T content , $G content ,

$C content ) ;
383
384 ################################ RESULTS SUMMARY

###############################
385
386 print ”
387������������������������������ RESULTS SUMMARY

������������������������������
388
389 SUCCESS: Here i s the $ i t e r a t i o n s i t e r a t i o n s o f $ l ength

nuc l e o t i d e s l ength o f
390 DNA s t r i n g s in FASTA format with p r o b a b i l i t i e s o f :
391
392 A = $A content
393 T = $T content
394 C = $G content
395 G = $C content
396
397 EXPORTED TO FHE FILE : \” $output f i l e name \”
398
399 �����������������������������������������\n\n” ;
400
401 ############ OUTPUT FILE SETTINGS #######
402
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403 # Name of the output f i l e
404
405 my $ o u t p u t f i l e = ” $output f i l e name ” ;
406 #return (” $ou t pu t f i l e name ”) ;
407 # Set the f i l e handle ”OUTPUT”.
408
409 open (OUTPUT SEQ, ”>$ o u t p u t f i l e ” ) ;
410
411 ############################## PROGRAM’S MAIN ENGINE

###########################
412
413
414 for (my $k=0;$k<$ i t e r a t i o n s ; $k++){
415 print OUTPUT SEQ ”>” , $ fasta header name , ” ” , ( $k+1) , ”\n” i f (

$k==0) ;
416 print OUTPUT SEQ ”\n>” , $ fasta header name , ” ” , ( $k+1) , ”\n”

i f ( $k>0) ;
417
418 for (my $ i =0; $i<$ length ; $ i++){
419
420 print OUTPUT SEQ d i s t r i b u t i o n ( @d i s t r i bu t i on ) ;
421 }
422 }
423 return ( ” $output f i l e name ” ) ;
424 }
425
426
427
428 #########################
429 # d i s t r i b u t i o n
430 # A subrou t ine to genera te random s t r i n g s depending on the

p r o b a b i l i t y d i s t r i b u t i o n
431 # of each nuc l e o t i d e taken from James T i s d a l l ’ s Beginning

Per l f o r Bio in format i c s
432 ############################
433
434 sub d i s t r i b u t i o n {
435
436 my @probab i l i ty = @ ;
437
438 unless ( $p r obab i l i t y [ 0 ] + $p r obab i l i t y [ 1 ] + $p r obab i l i t y [ 2 ]

+ $p r obab i l i t y [ 3 ] == 1){
439
440 print ”Sum of p r o b a b i l i t e s must be equal to \”1 .0\” !\n” ;
441 exit ;
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442 }
443 my $randnum = rand (1 ) ;
444
445 i f ( $randnum < $p r obab i l i t y [ 0 ] ) {
446 return ’A ’ ;
447 } e l s i f ( $randnum < $p r obab i l i t y [ 0 ] + $p r obab i l i t y [ 1 ] ) {
448 return ’T ’ ;
449 } e l s i f ( $randnum < $p r obab i l i t y [ 0 ] + $p r obab i l i t y [ 1 ] +

$p r obab i l i t y [ 2 ] ) {
450 return ’C ’ ;
451 } else {
452 return ’G ’ ;
453 }
454
455 }

Listing B.2: R script for Binomial test for overrepresented motifs

1 #R
2 mot i f our=(read . table ( ” input mot i f s . tx t ” , s t r i ng sAsFac to r s=F,

header=F) )
3 mot i f random=(read . table ( ”random mot i f s . tx t ” ,

s t r i ng sAsFac to r s=F, header=F) )
4 number o f seq=read . del im ( ”number o f input seq . txt ” ,

s t r i ng sAsFac to r s=F, header=F)
5 number o f random seq=read . del im ( ”number o f random seq . txt ” ,

s t r i ng sAsFac to r s=F, header=F)
6 merge moti f=(merge( mot i f our , mot i f random , by=”V2” , a l l=F) )
7
8 ##p r o b a b i l i t y o f succe s s from random sequences
9 merge moti f [ , 4 ]=(merge moti f [ , 3 ] /number o f random seq [ 1 , 1 ] )
10
11 merge moti f$V4 [ (merge moti f [ , 4 ] >1) ]=1
12
13
14
15 merge moti f [ , 5 ]=( apply (merge moti f [ , c ( 2 , 4 ) ] , 1 , function ( x )

binom . t e s t ( x [ 1 ] , number o f seq [ 1 , 1 ]
16 ,p=x [ 2 ] , a l t e r n a t i v e=” g r e a t e r ” )$p . va lue ) )
17
18
19
20
21 merge moti f [ , 6 ]=( p . ad jus t (merge moti f [ , 5 ] , method=” bon f e r r on i ”

) )
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22
23 f i n a l mot i f s s o r t ed=(merge moti f [ ( order (merge moti f [ , 6 ] ) ) , ] )
24
25
26 colnames ( f i n a l mot i f s s o r t ed ) [ 1 : 6 ]= c ( ”Matrix name” , ”Num Input

sequences ” , ”Num Control sequences ” , ”Binomial su c c e s s ” , ”P
value ” , ”P ad jus t bon f e r r on i ” )

27
28
29 agg t f name=read . del im ( ”/p r o j e c t/a r ch ive/Biobase/TRANSFAC

matr i ce s/match/data/matrix t f name v ikas f i n a l . tx t ” ,
s t r i ng sAsFac to r s=F, header=F)

30
31 f i n a l mot i f s s o r t ed [ , 7 ]= agg t f name [ (match( f i n a l mot i f s

s o r t ed [ , 1 ] , agg t f name [ , 1 ] ) ) , 2 ]
32 colnames ( f i n a l mot i f s s o r t ed ) [ 7 ]=( ”TF names” )
33
34 write . table ( f i n a l mot i f s sorted , f i l e=” ove r r ep r e s en t ed mot i f s

s o r t ed . txt ” , sep=”\ t ” ,quote=F, row .names=F)
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