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(a) Part of the 2D pre-stack migration of the proflEB8502, from Buske
[1999]. (b) 3D pre-stack Kirchhoff depth migration of profi089-3D .

The seismic reflection intensities are shown in grayscale on three slices:
one horizontal slice at 11 km depth and two vertical slices with an off-
set of 6.7 km. The left hand slice is passing through the location of the
main borehole. Light colors correspond to large reflection intensities and
darker colors with lower intensities. The SE1 reflector is clearly visible as
a steeply dipping event. The EB appears with strong reflectivity at a depth
of 10-14 km. The dimension of the whole migrated volume is21x 15

KM, 69

3D migration (view from NW) together with the microseismic hypocen-
ters (events 1994=red/dark tetrahedra, events 2000=yellow/light spheres,
Baisch et al. [2002]) and the tensor of permeability estimated from the
1994 data set (Rindschwentner [2001]). The volume of rock where the
sphere-shaped upper cloud occurred is characterized by comparatively low
reflectivity. The lower cloud of events seems to be preferentially orientated
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Stress tensor at the KTB with depth after Brudy et al. [1997]. Left: Stress
magnitudes estimated using hydraulic fracturing and a combined analy-
sis (compare figure 11 in Brudy et al. [1997] and the comments therin).
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an abrupt change in stress orientation at about 7200m, the orientagn of

IS quite constant over the entire depth interval (figure 8 after Brudy et al.
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Depth-dependent stress tensor after Brudy et al. [1997] at the KTB site
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dle: view from north-east, bottom: view from the top. Note the change in
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Cloud of events of the Cotton Valley injection experiment. Events ly-
ing above the fitting envelope correspondingXe0.36 nt/s in figure 5.3
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