Chapter 3

Numerical modeling of the SBRC
approach

3.1 The approach

The SBRC approach has been successfully applied to real data several times. Because
equations (2.6) and (2.28) were derived in a quasi-heuristical way, a quantitative approach
is required to verify the SBRC inversion algorithms based on them. Numerical simulations
of seismicity triggered by fluid-injections in boreholes are performed as follows.

To model the triggering of microseismicity numerically, the process of pore pressure pertur-
bation in a medium with (statistically) distributed criticality is simulated. For the modeling,

a Finite Element Method (FEM) is used to solve the time-dependent parabolic equation of
diffusion for a 2D and 3D medium. The modeling softwaFEMLAB) is implemented

into theMATLAB ® computing environment. It forms an interactive tool for modeling and
solving scientific and engineering problems based on partial differential equations (PDE).
Here, the parabolic differential equation of diffusion is represented in general form, in-
tended especially for nonlinear an non-stationary problems as required in this case. For
solving the PDE, the Finite Element Method (FEM) is applied. The program runs that
method in conjunction with adaptive meshing and error control as well as with a variety of
numerical solvers. In the case of convection and diffusion, it can be distinguished between
convection-dominated and diffusion-dominated problems. As a rule of thumb, diffusion-
dominated problems, such as the heat or diffusion equation required here, yield very stiff
systems. These can be integrated efficiently by specialized implicit stiff solvers provided
by the software. These solvers turn out to be efficient in our cases where the solution is
smooth. A more detailed description of the mathematical and numerical foundation can be
found in the reference manual of the software.

The modeling and analysis scheme is basically separated into five parts schematically
shown in figure 3.1. For simplification, the modeling scheme is explained in 2D here.
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The realization of the approach proposed is performed in 2D as well as in a 3D space. The
single parts in detail are:

solution
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Figure 3.1: Scheme of numerical modeling. Based on FEM algorithms, the time-dependent equation of
diffusion is solved for an arbitrary hydraulic model with simulated pressure perturbation. Comparing the
solution with a statistically computed criticality, synthetic clouds of events can be obtained and analyzed
using the SBRC inversion algorithms. In step 1, the set-up of the hydraulic model is shown. Colors denote
hydraulic diffusivities used in the model. In step 2 the model is divided into a FEM grid where the solution of
the diffusion equation is solved on (colors correspond to the pressure amplitudes). In step 3, the distribution
of criticality is shown spatially uncorrelated and correlated using Gaussian autocorrelation functions. Colors
correspond to the criticality value, blue colors denote unstable zones, red colors denote stable zones in the
medium, respectively. Comparing steps 2 and 3, numerical microseismicity clouds are obtained when the
pressure exceeds the criticality in a point of the medium (shown in step 4, colors correspond to the event
occurrence time). In step 5, the analysis of the event clouds is performed in terms of the SBRC approach.
Hydraulic diffusivity of the medium is estimated and reconstructed in 2D and 3D space (color correspond to
the reconstructed diffusivities).

1. A hydraulic model with a pore pressure source located in the center is defined. As
an input signal, a step-function-like pressure perturbation with amplRydeused.
Generally, the position as well as the source function can be arbitrary and will be
discussed later. The hydraulic diffusiviB(x,y,z) of the medium can be distributed
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homogeneously, heterogeneously (shown in figure 3.1), isotropic or anisotropic. Be-
cause the SBRC-method assumes a point source of pore pressure perturbation, the
source in the modeling scheme is realized as a circle (in 2D) or sphere (in 3D) with

a small radius compared to the size of the model. As it is shown later in the accu-
racy discussion, the source size is defined small enough to avoid boundary or source
geometry effects. The overall size of the modeRB0m x200m (x200m). The
boundary conditions at the borders of the model are of Dirichlet type, i.e., fixing the
pressure to zero there. The pore pressure amplitude at the source is also defined as a
boundary condition in order to control the amplitulat the source.

2. The time-dependent parabolic equation of diffusion is solved using FEM algorithms.
The spatio-temporal pressure distribution within the médgh(x,y,zt) is obtained
on the irregularly spaced nodes of the finite element grid. In order to avoid boundary
effects, only a part of siz€00m x100m (x100m) is used for the analysis in the fol-
lowing. The pressure perturbation is modeled within the medium for a tirtel®0
seconds with time increment & = 0.1 or At = 0.3s. After obtaining the solution
of the pressure perturbation the medium is divided into small regularly spaced cells.
The solutionP;en is interpolated on the regular grid without accuracy loss and the
pore pressure distributio®(x,y,zt) is obtained. The size of the elementary cell is
0.46m? in 2D and0.67m? in 3D, resulting in approximately 46000 and 3.3 millions
cells, respectively.

3. Criticality (triggering criterion)C(x, Y, z) is defined. It is randomly distributed in the
medium within a given range of pressure amplitude. This procedure directly follows
the concept of the SBRC approach, that real rocks are in a critical state of stress in
some places. By correlating the criterion spatially by using exponential or Gaussian
autocorrelation functions, the influence of different types of criticality statistics can
also be studied.

4. Synthetic clouds of events can be created by comp&i(sgep 2) andC (step 3) for
each cell in the medium and time step: Triggering occurs at cells where the amplitude
of pore pressure perturbatiét{x,y,zt) exceeds the failure criterio@(x,y,z). The
so defined event is characterized by its posikglye, Z and occurrence timg. This
procedure allows one to obtain synthetic clouds of events.

5. The event clouds are analyzed in terms of their spatio-temporal evolution character.
By applying the SBRC algorithms as described in chapter (2), the hydraulic diffu-
sivity is calculated. Scalar estimates of effective hydraulic diffusivity are obtained as
well as the distribution of diffusivities in 2D/3D. They are compared with the input
values of the model in step (1) to verify the SBRC algorithms.

Before illustrating the basic assumptions of the SBRC approach and the modeling in detail,

some accuracy studies are performed in the following. Such an analysis is necessary for
the verification of accuracy of the numerical solution. Also, this helps to examine the area

of validity of the SBRC algorithms.
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3.2 Accuracy study

In this thesis, the emphasis is placed on the analysis of signatures of the spatio-temporal
evolution of fluid-induced microseismicity. In order to interpret the numerically simulated
process of pore-pressure perturbation due to a fluid injection and the triggering of micro-
seismicity, one has to verify the accuracy of the numerical method used here. Despite the
insignificance of the absolute value of pore pressure for the purpose of this thesis, such an
analysis is of importance for further developments of the method. In this chapter there-
fore a comparison of an analytical solution with the numerical solution of the modeling is
shown. The analytical solution found is valid for the pressure perturbation due to a point
source in a infinite 2D and 3D medium. The solution describes the pore pressure distribu-
tion after a certain time of the fluid injection at constant rate. A study is performed in order
to find parameters for the finite-element grid size and source size. With this it is possible to
guarantee minimal deviances between analytically calculated and modeled pore pressures.

In the following, analytical solutions for the heat distribution in a 2D and 3D, homogeneous
isotropic medium as derived by Carslaw and Jaeger [1973] (chapter 10.2) are used. Pressure
perturbation as well as heat transfer are described by the same diffusional kind of parabolic
equation as described above. They similarly describe the heat and pressure distribution
in a given medium. Here, only the main equations and results are shown. For a detailed
derivation of the equations in 3D refer to Rentsch [2003].

3.2.1 Solution of the diffusion equation in 2D

The equation of diffusion for a homogeneous case in 2D reads
op _ [0°p 9%p
E_D(WJra_y? , (3.1)

whereD is the scalar hydraulic diffusivity of the mediunp, the pore pressure,y the
spatial coordinates aridhe time.

Let us assume a homogeneous, isotropic, infinite medium. Pressure is released at constant
rate®d(t) = q starting at = 0 at a point(x,y'). Then, the solution at the timen a pointr
becomes (compare Carslaw and Jaeger [1973], 10.4.1I, page 261, eq. 5)

q .. r?
p(l’,D,t) - _EEI (_4_[)1‘_) y (32)

where

_Ei(—x) = /eTudu. (3.3)
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For the accuracy study presented here, results obtained by routines of the Numerical
Recipes (Press et al. [2002]) are used. For a detailed description of the algorithm refer
to chapter 6.3 of the afore mentioned book.

Results

For the accuracy study, steps 1 and 2 are realized as presented in section 3.1. For this
purpose, a hydraulically homogeneous and isotropic model is defined. Diffusivity is dis-
tributed homogeneously in the medium (defined as a scalar value). This value is used for
the calculation of the analytic solution in equation (3.2). After obtaining the numerical
solution of the diffusion equation, the results are analysed temporally and spatially. For the
temporal analysis of pressure evolution, the FEM solution is extracted at specific points in
the medium for all time steps. These points are characterized by their scalar disteglees

ative to the injection source point.is used also in equation (3.2) wherearies according

to the numerically defined time steps. For the spatial analysis, the pressure amplitudes are
extracted for specific times for all distances from the source to the model boundaries.

The result of the modeling of pressure perturbation for the 2D model is shown in figure
3.2(a). For distances=1, 2, 5, 10, 20 and 40m, the normalized time-dependent pressure
is shown together with the analytically calculated one. For each distance, the mean error
between numerical and analytical solution is calculated and given in table 3.1. The solu-
tion atr > 10m only differs by< 5% from the analytical one. In figure 3.2(b), results for

the spatial comparison is shown. Here, after timned.0, 20, 30, 40, 50 and 100 seconds,

the distance-dependent pressure amplitude is plotted together with the analytical predic-
tion. Figure 3.2 clearly indicates the accuracy between numerical and analytical solution.
Moreover, table 3.1 quantitatively shows the small deviations of the two solutions. The
deviations at =10s for distances larger than 35m give the numerical error.

Source size

In the numerical modeling scheme, a finite area (circle or sphere of specific radius) of
pressure perturbation is used. Atthe boundaries of this area, the initial pressure perturbation
is defined. The analytical solution (equation 3.2) is valid for a point source. The consistency
of analytical and numerical solution is better the smaller the source area is modeled. On
the other hand, modeling time drastically increases with decreasing source size because of
the mesh density at the origin. In order to find an optimal compromise between modeling
time and accuracy, different source diameters are studied. The analytical and numerical
solution are analysed and compared as described in the previous paragraph. For each model
(different source diameters), the mean error of the two solutions for different distances in
the medium are calculated. The results are shown in table 3.1. The error for all models
and distances is found to be smaller than 10%. The qualitative observation that the error
is larger for smaller distances is confirmed. Although, the quantitative difference is small.
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Figure 3.2: Deviation of numerical and analytical solution obtained for a 2D homogeneous model with scalar
hydraulic diffusivity of D = 1m?/s. For the finite element scheme, a circular shaped pressure perturbation
source of siz&gc = 0.00Im and amplitudéA = 10 was used. The mean errors are given in table 3.1. Left:
normalized amplitude of time-dependent pore pressure perturbation for different distances from the source.
Right: distance-dependent pore pressure for different solution times

The optimal compromise between modeling time and accuracy is found for a model with
source of sizesc =10"*m. This source size is used for all 2D models in the following.

| meanerror [%] r=Im|[r=2m[r=5m|r=10m|r=20m|r =40m |
rsre= 107°m 834 | 7.37 | 5.46 3.49 1.5 0.52
rsre= 107°m 5.29 | 4.65 3.4 2.1 0.8 0.52
rsre= 10-%m 385 | 337 | 2.44 1.47 0.58 0.54
rsie= 10°m 3.01 | 2.63 | 1.88 1.12 0.45 0.63

Table 3.1: Mean deviation between numerical and analytical solution of pore pressure perturbation for models
with varying source sizes. The errors are given in percent for different distances from the source location.

3.2.2 Solution of the diffusion equation in 3D

The equation of diffusion for a homogeneous case in 3D reads

°p 9%°p 0°p 1dp

02 9y2 ' 92 Dot (3.4)

whereD is the scalar hydraulic diffusivity of the mediumthe pore pressurg,y,z are the
spatial coordinates aridhe time.
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It is assumed that the fluid injection source (in a borehole in real experiments) can be ap-
proximated by point source of constant pore pressure perturbation. The solution of equation
(3.4) for the case of a infinite homogeneous isotropic 3D medium with a point source at

(X,y,Z) is (Carslaw and Jaeger [1973], chapter 10.2., page 257)

o(t) exp(—[<x—x'>2+<y—v>2+<z—f >2]> | (35)

p =
8(T[Dt)% 4Dt

If pressure is released with the ratgt’) per unit time fromt’ = 0 tot’ =t at the point
(X,y,Z), the pore pressure perturbatior(&ty, z) at timet is given by integrating equation
(3.9),

t

1 —r2 dt/
- o(t’ 3.6
P~ 5m)? O/ ‘ >eX'D(4D(t —t’)) (t—t)3’ (56

wherer? = (x—x)2 + (y—Yy)? + (z— Z)? (compare Carslaw and Jaeger [1973], 10.4.1,
page 261).

This distribution of pore pressure perturbation is assumed to be due to a point source of
the continuous strengti®(t’) from t’ = 0 onwards. If®(t') is constant there is no time
dependence an@t can be written equal tq. Using substitutions (see Rentsch [2003]), for

the solution of the pore pressure perturbatmthe final result is obtained

q r
——erfcl —— |,
4riDr (~/4Dt)

where the complementary Gaussian error function is defined as

p(r,.D,t) = (3.7)

erfc(x):=1—erf(x)

with

X—00

X
erf(x) = %{/exp(—uz)du, lim erf(x) = 1.
0
For infinite times equation (3.7) reducesyi(r,D) = 4.

Results

For the accuracy study in 3D, steps 1 and 2 are similarly realized as presented in section
3.1. A hydraulically homogeneous and isotropic model is defined. Equation (3.7) is used
to calculate the analytical solution of pressure perturbation. After obtaining the numerical
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solution of the diffusion equation, the results are analyzed in the same manner as explained
for the 2D accuracy study. The result for the 3D model is shown in figure 3.3. On the left,
for distances =10, 20, 30, 40, and 50m, the normalized time-dependent pressure behavior
is shown together with the analytically predicted one. For each distance, the deviation
between numerical and analytical solution is given in table 3.2. The largest deviation was
found to be smaller than 5%. The distance-dependent pressure perturbation at specific times
is shown in figure 3.3b and also indicates the match of analytical and numerical solution.
The optimal compromise between modeling time and accuracy is found for a model with
source of sizes,c =10-2m. This source size is used for all 3D models in the following.
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Figure 3.3: Deviation of numerical and analytical solution obtained for a 3D homogeneous model with scalar
hydraulic diffusivity of D = 50m?/s. For the finite element scheme, a circular shaped pressure perturbation
source of sizegc = 0.1m and amplitudeA = 10 was used. The mean errors are given in table 3.2. Left:
normalized amplitude of time-dependent pore pressure perturbation for different distances from the source.
Right: distance-dependent pore pressure for different solution times

| mean error [%] r =10m [ r=20m [ r =30m | r =40m | r = 50m |
| rsc=10°m | 074 [ 1.68 | 259 | 367 | 494 |

Table 3.2: Mean deviation between numerical and analytical solution of pore pressure perturbation for a
representative 3D model. The errors are given in percent for different distances from the source location.

3.3 \Verification of eikonal approach

To verify the assertion that it is possible to describe the diffusion process and the kinematics
of the evolution of the triggering front in a heterogeneous medium by the use of the eikonal
solution (2.28) as described in chapter 2.2.1, numerical tests are performed. As described
above, the parabolic differential equation of diffusion (2.1) in 2D is solved with the help
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of the Finite Element Method. The time-dependent pressure variation through a medium
where the diffusivityD varies smoothly irx direction with a Gaussian profile is calculated.

It changes from a value @ = 0.5n?/sto a minimal value oD = 0.1n?/s at the center
(compare figure 3.4b). The half-width of this heterogeneity is approximately 200 m. The
dimension of the computational mesh is 4000 m x 4000 m, and the source point is located
at its center. As input signal a time-harmonic sinusoidal signal with a period of 400 h and
800 h is used, respectively, multiplied with a boxcar function for the whole simulation time
of 2400 h. The time increment in the simulations ws> 3 h while the elementary cell

was of the order of 5 m x 5 m.

The pressure variation is observed in a one dimensional section along the x-axis through
the center of the model, where the source is located. In each point of observation the
arrival time of the fourth resp. sixth zero-crossing of our quasi-periodic pressure signal is
estimated. This was necessary to reduce the effects of the high-frequency components due
to the finite character of the source signal. This time is compared with the corresponding
theoretical eikonal solution o

t= / ar (3.8)

0

v(r)

Using the arrival time also the velocityof the phase front at a given distance from the
source point is calculated. Then the velocity is converted into the diffusivity and the result
is compared with the exact diffusivity of the model. The diffusivity is calculated from the
measured velocity of the phase front by

D(X) = -~ (3.9)

where f is the dominant frequency of the source function (see eq. 2.4 and the comment
below).

Reasonable agreement between both numerical experiments is found. In figure 3.4a the
traveltime is shown for the eikonal solution (equation 3.8) and the numerical results. Figure
3.4b shows the reconstructed diffusivilyat a given distance in the medium. The good
agreement between eikonal-predicted and numerically calculated travel times of the phase
front in figure 3.4a is obvious. The small differences between the eikonal solution and
numerical results at timés< 50 h can be explained with the relatively rough method used

to pick the phase front, i.e. the zero-crossing.

The reconstructed diffusivity at a given distance in the medium also agrees well with the ex-
act value (see. figure 3.4b). The differences at distaxce800min figure 3.4b are caused
mainly by influences of the prescribed boundary conditions, namely fixing the pressure to
zero there (Dirichlet type). Thus the influences become larger at greater times and disturb
the velocity of the triggering front measured during the numerical experiments. Differences
between eikonal and numerical results are smaller for higher frequencies. This is obviously
due to the fact, that the eikonal equation is a high frequency approximation, and therefore
provides better results for smaller periods of the perturbation. In particular, the increasing
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difference between theoretical curve and the models in figure 3.4b is due to the fact that the
region of inhomogeneity, i.e. increasing diffusivity, is smaller than the wavelengths used.
The small differences observed between estimated and exact diffusivities indicate that the
formal validity conditions of the SBRC approach (equations 2.38-2.39) are too restrictive
and the reconstruction algorithms are valid for a broader regime of frequencies.
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Figure 3.4: Comparison of eikonal equation and numerical diffusion models. (a) Traveltime of the phase
front of the sinusodial signal versus distance from the source point. (b) Reconstructed hydraulic diffusivities
from the traveltimes shown in (a) according to equation (3.9) for two different frequencies. The solid line
corresponds to the hydraulic diffusivity distribution in the model (Gaussian shaped).

3.4 2D modeling and event triggering

3.4.1 Homogeneous isotropic case

Let us now continue to illustrate the modeling procedure and the simulation of the trigger-
ing of microseismic events due to a diffusive pore pressure perturbation process. This will
be the subject of all further modeling considerations. Following the steps 1-5 explained
in section 3.1, the approach starts at step no. 1 by defining a hydraulic model in the FEM
scheme. The modeling dimension is 200200 m (200 mx 200 mx 200 m in three di-
mensions). A circular pressure perturbation source is centered in the model having a radius
of r =0.001 m ¢ =0.1 m in 3D). The amplitude of pressure perturbation is defined as a
boundary condition of the source circle/sphere in the FEM scheme. Therefore, the bound-
ary of the source is assigned a specific value of perturbation. Generally, the shape as well
as amplitude of the source signal can be arbitrary. In the following considerations, only
the physical signature of event triggering is analyzed. Hence, an absolute dimension of the
source amplitude is of no importance. In the first step, following the simplest assumption
of the SBRC that the injection signal is a step function of constant amplitude, the value of
initial pressure perturbation is chosen scalar and constant for all simulation times.
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In the second step, the outer borders of the model are assigned a boundary condition of
Dirichlet type, i.e., fixing the pressure solution to zero there. Because this procedure influ-
ences the pressure values near the borders, for further analyses only a subvolume of 100
m x 100 m (100 mx 100 mx 100 m in three dimensions) is extracted and studied. This
ensures that artificial effects due to the boundary conditions are excluded. Next, the mod-
eling area is assigned a diffusion coefficient as a subdomain condition. If we consider the
model dimension in meters and modeling time in seconds, the corresponding dimension of
the diffusion coefficient will be [rf¥s]. The value as well as distribution of the diffusion
coefficient also can be arbitrary in general. In the next step, adequate solver types and it-
eration parameters are chosen. The output times of the solution are set to equally spaced
time steps from zero to 100 (dimension is seconds here).

For the last step, the model is subdivided into small triangles (tetrahedra in 3D) which
form the FEM mesh. The mesh size is chosen in order to find a optimal compromise of
calculation time and accuracy. The set-up of the 2D hydraulic FEM model is shown in
figure 3.5 (left). By running the numerical solver, the time-dependent solution of pressure
within the model is obtained. In figure 3.5 (right) the solution is shown in the area of
interest after the modeling time of 100 seconds. The color corresponds to the amplitude
of pressure perturbation from zero to five. The source amplitude in this casA=48s
Additionally, isolines of constant pressure from 0.1 to 5 are shown here. The isolines form
concentric circles which is expected because of the homogeneous and isotropic diffusivity
model.
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Figure 3.5: Numerical modeling in 2D. Left: Set-up of the hydraulic model with pressure perturbation source
in the center. The medium is divided into triangular finite elements and the parabolic equation of diffusion
is solved. The blue rectangle gives the area of investigation during further analysis steps. Right: Pressure
perturbation after 100 seconds using a source amplitude-efLl0. The circles correspond to isolines of
constant amplitudes.

After obtaining the solution of the diffusion equation for all time steps, the pressure values
are interpolated on a rectangular grid. Despite the additional time consuming process,
this step is necessary, because the SBRC approach assumes statistically even distributed
zones of criticality in the medium. The grid size in 3D is optimized to fit a volume of
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4.7 Gigabytes (DVD) with binary data in single precision format for all time steps. Total
computing time for modeling the pressure perturbation and the interpolation for a 3D model
is approximately 24 hours on a stand-alone, single-processor 2GHz PC.

Criticality C is calculated which represents the model stabiitgorresponds to the stress
which must be exceeded by pore pressure to trigger a seismic event. A simple example for
statistically distributed criticality is shown in figure 3.6 (left). In this caSés distributed
equally (a) or normally (c) between zero and a maximum criticality value. Color corre-
sponds to the criticality of the medium. Blue colors denote small values, i.e. critical zones
in the medium, whereas red colors denote high values, i.e. stable zones in the medium, re-
spectively. The distribution function of the criticality criterion is shown on the right side of
figure 3.6. Here, the number of cells containing a specific value of criticality are displayed
in a bar diagram.

In the next step, the FEM solution of pressure perturbation, which was interpolated on the
same grid, is compared with the criticality value. Therefore, within each aelll for each

time steptj, pressured ;; is compared with failur€i ;. An event is defined in such a cell,
whereR t; > Ciy;, i.e. the pressure exceeds the state of stress of the medium which leeds to
failure and the triggering of a (seismic) event. Following this procedure, synthetic clouds
of events are obtained.

Figure 3.7 shows the result of the modeling. The synthetic cloud of events generated during
100s of numerically simulated fluid injection using the criticality distributions shown in fig-
ure 3.6a consists of 604 events. Using the criticality distribution shown in figure 3.6b, 1706
events are triggered. Colors correspond to event occurrence times. Evidently, the same
spatio-temporal growth observed for real data can be observed here regarding numerically
created data (compare figure 2.4).

In figure 3.8 the estimation of the scalar hydraulic diffusivity using equation (2.6) is shown
for the data set shown in figure 3.7. It is obvious, that the spatio-temporal distribution of
the events agrees well with the behavior predicted by this equation. The triggering front
corresponding to the value of diffusivity used in the homogeneous mbBdel 1 m?/s) is
indicated by the solid line according to equation (2.6). 95.19% (a) and 95.53% (b) of all
events triggered are located below this line.

It is interesting to note that in spite of the simplicity of this modeling approach the synthetic
cloud of events show the most important characteristic features of microseismic clouds
obtained in reality: it has a characteristic parabolic envelope (compare this with figure 2.4
in chapter 2, where real data have been plotted).

3.4.2 Trigger criterion statistics

The SBRC approach assumes a medium which is in some kind of critical state of stress.
The number of critical points are assumed to be distributed equally in space. Following
this idea, the criticalityC was calculated in the modeling approach shown in the previous
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Figure 3.6: (a) and (c) Two examples for criticality)(distributions in 2D. Random numbers are distributed

in rectangular cells within a definite range of amplitudes. For the two criticality fields, different distribution
types were used which are shown in (b) and (d). For (a) an even distribution was used, for (c) a normal
distribution, respectively.
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Figure 3.7: Clouds of events after triggering in a homogeneous, isotropic 2D medium. (a) Cloud triggered
using the criticality shown in figure 3.6a. (b) Cloud triggered using the criticality shown in figure 3.6c. Colors
correspond to the event occurrence times.
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Figure 3.8: Estimation of effective scalar hydraulic diffusivity using the hypocenter and time coordinates of
the event clouds shown in figure 3.7. The blue envelope is calculated according to equation (2.6) using the
hydraulic diffusivity of the model =1 né/s). (a) Estimation using the cloud of events shown in figure 3.7a,

(b) estimation using the cloud of events shown in figure 3.7b.

section. In order to study the influence of different distribution types, an equal distribution
(figure 3.6a) as well as a normal distribution function was successfully studied (figure 3.6c).
The normal or even distribution of critical points in real rocks is just a rough approxima-
tion. Real rocks mostly contain heterogeneities which can be expressed as a heterogeneous
distribution of the criticality field. In order to model the triggering of seismic events in such
media, the influence of different criticality statistics on the triggering of microseismicity is
analyzed here.

In geophysics, real rock-like media and the distribution of heterogeneities can be described
using mathematical methods like spatial autocorrelation functions. Here, such media are
simulated by calculating spatially correlated random fields of the criticality. We consider
random media that are characterized by the second-order statistics concerning the distribu-
tion of critical points. The realizations of the random medium have a certain mean value
and a spatial correlation function defined by the correlation leagtid the variance.

A random medium realization can be generated by taking the inverse Fourier transform
of the spectrum of normally distributed fluctuations (with Gaussian probability density
function with zero mean and unit variance) multiplied with the sgare root of the fluctuation
spectrum (the random numbers of criticality in our case)

Ceorr = 771 [T c - ®D/30 (ACF)], (3.10)

where ¥ denotes the Fourier transfori@,the original field of uncorrelated random criti-
cality numbers an@?P/3P the power spectral density function (PSDF, Fourier transform

of the autocorrelation function)®2P/3P represents the spectrum of fluctuations in the
medium. We use two types of autocorrelation functions: exponential and Gaussian, respec-
tively. Below, the correlation functions of Gaussian and exponential type and their 2-D and
3-D Fourier transforms are shown {\er [2001]).
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Type ACF(r) ¢ (k) ¢ (k)

i 2~—T/a o?a? o%a’
Exponential| o“e IIRER2 | RAHCER

—12/a? | o%a® —k2a2/4 | o%ad n—K?a?/4
e 2T e e

i 2
Gaussian | o 8o/

Table 3.3: Exponential and Gaussian autocorrelation functions and their Fourier tran®f¢pseudo spec-
tral density functions) in 2D and 3D.

ais the correlation length of the heterogeneiti@sthe variance of criticality; the coordi-
nate vector andt the frequency vector.

By using different probability-density types for the criticality as well as correlating it spa-
tially (e.g., with Gaussian or exponential autocorrelation functions) the influence of differ-
ent types of criticality statistics on the triggering process can be studied. For example, a
structure of critical zones can be included in the models. In figure 3.9 an exponentially
correlated distribution of the criticality is shown. The synthetic event clouds obtained after
triggering are shown in figure 3.10. In figure 3.11, a Gaussian-correlated distribution of
the criticality is shown. The synthetic event clouds obtained after modeling/triggering are
shown in figure 3.12.

Amplitude
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Figure 3.9: Distribution of criticalityC using a spatial autocorrelation function of exponential type according
to equation (3.10). From left to right: increasing correlation lereg(hm, 5m, 10m and 15m). The colorbar
gives the criticality value.

All clouds of events shown in figure 3.10 and 3.12 are analyzed in terms of the SBRC
method using equation (2.6). The results are shown in figure 3.13. Percentage of events
below the envelope function for all models are given in table 3.4. Here, another physical
feature often observed in reality is obvious: a parabolic zone of low event density (see all
figures in 3.13. A strip of low event density for distances smaller thariLOm) looking

like a "back triggering front“ can be also usually observed in reality (compare again with
figure 2.4 in chapter 2). The main result of this modeling is the fact, that the spatial corre-
lation of the criticality (i.e. the second statistical moment) does not seem to influence the
estimation of effective scalar hydraulic diffusivity strongly. The first statistical moment,
i.e., the distribution type of the criticality itself (normally or equally), however seems to
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Time [s]

50 50 50 50
: 920
80
70
5] 3] 8 8 60
8 o § o & o g o N
@ R R 2
o = = °
40
30
20
= 0 o0 8o 0 o0 %o 0 50 %o 0 so "
distance distance distance distance

Figure 3.10: Event clouds triggered in a hydraulically homogeneous, isotropic mediunDwith né/s
using the criticality distributions shown in figure 3.9.
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Figure 3.11: Distribution of the criticalit using a spatial autocorrelation function of Gaussian type ac-

cording to equation (3.10). From left to right: increasing correlation leagttm, 5m, 10m and 15m). The
colorbar gives the criticality values.
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Figure 3.12: Event clouds triggered in a hydraulically homogeneous, isotropic mediunDwitd mé/s
using the criticality distributions shown in figure 3.11.
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model 1 2 3 4 5 6 7 8
events below envelope [%6]95.2 | 94.3| 93.5| 95.8| 94.6| 96.2| 96.4| 90.9

Table 3.4: Percentages of events below the parabolic envelope according to equation (2.6) for models con-
taining spatially correlated criticality.

have a stronger effect on the results. The variation of the first statistical moment results in
the change of number/density of events and therefore effects the estimation of the fitting
envelope.

distance
distance

0 50 100
time [s]

time [s] time [s]

Figure 3.13: Estimation of effective scalar hydraulic diffusivity using the hypocenter and time coordinates of
the event clouds shown in figures 3.10 (1-4) and 3.12 (5-8). The envelope is calculated according to equation
(2.6) using the hydraulic diffusivity of the moddD (=1 n¥/s).

Another important observation obtained using this modeling approach is that there are
at least two physically different quantities whose heterogeneous distributions in space
strongly influence the appearance of microseismicity clouds. The first one is the triggering
critical pressure which was studied so far. The second one is the hydraulic diffusivity. Mod-
els with heterogeneously distributed diffusivity in 2D will be considered in the following
section.

3.4.3 Heterogeneous case

The numerical modeling procedure demonstrated above does not only allow to study the
triggering phenomenon within hydraulically homogeneous and isotropic media. It also
provides the possibility to include any desired type of hydraulic model. Media with hetero-
geneously distributed hydraulic diffusivity can be treated as well as anisotropic ones (see
section 3.5.3). In figure 3.14a, an example for a simple heterogeneous model is shown.
Two values of scalar diffusivity are used. The cross-shape structure is characterized by
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an increased value of diffusivitydg = 50m?/s), whereas its value in the surrounding re-
gions is chosen 10 times small&x= 5m?/s). As an input signal a step-function pressure
perturbation with constant amplitude in the center of the model is used.

Time [s]
100

distance [m]
distance [m]

5050 -40-30-20-10 0 10 20 30 40 50

distance [m] distance [m]
(a (b)

Figure 3.14: Left: Hydraulically heterogeneous model consisting of a cross structure shaped area of high and
borders of low hydraulic diffusivities. Right: Event cloud triggered after 100 seconds of modeling. Colors
correspond to event occurrence times.

The result of the modeling is shown in figure 3.14b. A total of 20337 events were triggered.
The estimation of scalar hydraulic diffusivity from this data set is shown in figure 3.15a.
The coordinates of the events in the space-time domain are shown as blue dots, the curves
represent the two values of hydraulic diffusivity used in the model according to equation
(2.6). It is obvious, that even for this model the spatio-temporal structure of the events
fulfill the behavior predicted by equation (2.6). 99.91% of all events are located below the
envelope withD = 50m?/s. Thus, the SBRC-algorithm based on equation (2.6) for esti-
mation of maximum scalar hydraulic diffusivity works quite well even for heterogeneous
media.
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Figure 3.15: Reconstruction of effective hydraulic diffusivity and diffusivity distributions in 2D for the hy-
draulic heterogeneous medium shown in figure 3.14 according to equations (2.6) and (2.34). Left: The two
envelope functions were computed using the two different hydraulic diffusivities of the heterogeneous model.

Let us now test the SBRC eikonal-equation based inversion algorithm for the reconstruction
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of diffusivity distributions in space. The distribution of hydraulic diffusivity in the model
shown in figure 3.14a is reconstructed by applying the SBRC-algorithm on the basis of
equation (2.28). The model is subdivided into2@A0 cells each containing 475 events in
average. Triggering time is then defined in each cell and equation (2.28) is used directly
for estimatingD (see Shapiro et al., 2002 and Shapiro, 2000). The result of the inversion
procedure is shown in figure 3.15b. The overall structure (cross-shape) of the medium
is reconstructed. The inversion approach was also tested on other synthetic models and
usually a well reconstructed distribution of hydraulic diffusivity was received. A second
example of hydraulically heterogeneous structure is shown in the following.

In the second example of heterogeneous modeling and reconstruction, the model shown in
figure 3.16a was used. Here, a circular shaped heterogeneity of increased diffusivity was
embedded into a homogeneous background. The hydraulic heterogeneity was shifted from
the source location (at y=0) by x=-25m. Therefore, no 'hydraulic’ connection between
pressure source and the heterogeneity exists. The radius of the circle was =20

In figure 3.16b the solution of the diffusion equation after modeling tini®0s is shown.
Additionally, isolines of constant amplitudes are shown in order to clarify the increased
diffusivity regime within the circular area.

Contour5 Amplitude

50 = 5
4.5
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35
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@) (b)

Figure 3.16: Second example for a hydraulic heterogeneous model. (a) Schematical sketch of the numerical
model. Within a homogeneous backgroundaf= 5m?/s, a circle of increased hydraulic diffusivitp{ =

50m?/s) is embedded. The heterogeneity has a radius2®m centered at=-25m,y=0m. (b) Solution of

the pressure perturbation afterl00s. The color denotes the pressure amplitude. Isosurfaces are shown as
solid lines.

For modeling, the criticality shown in figure 3.17 (left) was used. It was distributed nor-
mally between 0 and 2. On the right side of figure 3.17 the cloud of events triggered after
the modeling procedure is shown. The hypocenters and times of the events are used for
the reconstruction of hydraulic diffusivity. The distribution of hydraulic diffusivity for the
model shown in figure 3.16a is reconstruced by applying the SBRC-algorithm on the basis
of equation (2.28) for the data set shown in figure 3.17 (right). The model is subdivided
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Figure 3.17: Left: Distribution of the criticality. It was distributed between 0 and 2 with a normal distribution
function. Right: Cloud of events after numerical triggering. The color denotes the event occurence times. A
total amount of 41908 events were triggered.

from 10x10 up to 2020 cells, iteratively. Triggering time is then defined in each cell
and equation (2.28) is used directly for estimatihgThe result of the inversion procedure

is shown in figure 3.18. In subfigure (a), 100% of all events induced were used for the
triggering time computation. In figure 3.18b, the earliest 5% of the events were removed,
which corresponds to a 95% fitting criterion as it will be explained later in chapter 3.5.2.

The results clearly shows that the structure (circular-shaped region of increased hydraulic
diffusivity) in the medium is reconstructed quite well for all refinement steps. This once
more supports the applicability of the eikonal-equation based inversion (equation 2.28) of
microseismic data.

3.5 3D modeling and event triggering

3.5.1 Homogeneous isotropic case

The modeling of the triggering phenomenon of induced microseismicity in 3D is performed
analogous to the approach presented in chapter 3.4. Now, the three-dimensional parabolic
equation of diffusion (3.2.2) is solved by the FEM solver for a model of 100m side length.
After interpolating the solution onto a rectangular grid, the criticality (trigger criterion) is
similarly computed and distributed within space. An uncorrelated normal or even distribu-
tion of the trigger criterion can be simulated as well as correlating it spatially following the
approach of section 3.4.2. Examples of uncorrelated and correlated criticalities are shown
in figure 3.19. An equal distribution of random numbers within a given range of amplitude

is shown (3.19a) beneath a exponentially (3.19b) or Gaussian correlated criterion (3.19c).

The result of the triggering process is shown in figure 3.20. A total amount of 7506, 12738
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Figure 3.18: Reconstruction of hydraulic diffusivity in 2D for different cell sizes. (a) 100% of the events
were used, (b) the first 5% of the earliest events were removed for the analysis. The red circle denotes the
heterogeneity used in the hydraulic model.



44 CHAPTER 3. NUMERICAL MODELING OF THE SBRC APPROACH
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Figure 3.19: Distribution of the criticality in 3D using no correlation function (a), an exponential ACF with
a=10m (b) and a Gaussian ACF witx10m (c). (b) and (c) are computed according to to equation (3.10).
The color corresponds to the criticality value.

and 6561 events were triggered during the simulated injection, respectively. The estima-
tion of scalar hydraulic diffusivityr(-t-plot) from the data sets is shown in figure 3.21. The
coordinates of the events in the space-time domain are shown as blue dots, the curve rep-
resents the value of hydraulic diffusivity used in the model according to equation (2.6). It

is obvious, that even for these models the spatio-temporal structure of the events fulfill the
behavior predicted by equation (2.6). 95.1% (3.21a), 95.2% (3.21b) and 94.7% (3.21c) of
all events are located below the envelope-function Bite 5m?/s, respectively.

For this model, a maximum pressure perturbaRomas reached at the borders of the model
after a simulation time af=100 s large enough to trigger events. The maximum scalar dis-
tance of these outer events relative to the source poiffis= v/50m2 +50m?2 +50m?2 =

86.6m. The theoretical distance of the triggering front for this model according to equation
(2.6) fort =100 s isr front = 79.3m. Nevertheless, the amplitudes of maximum pressure at
the borders are small compared to the criticality values (distributed between 0 and 10 in this
case). The probability, that events are triggered near the borders of the model therefore is
low. A higher probability would have been achieved by decreasing the maximum criticality
value resulting in a larger number of triggered events at the borders. The low probability
for triggering and therefore small event number in this case explains the apparent satura-
tion of event density at approximately 70m in figure 3.20. Thus, the estimation of effective
scalar hydraulic diffusivity shows, that the SBRC-algorithm based on equation (2.6) for
estimation of maximum scalar hydraulic diffusivity works quite well for 3D media, too.
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(a) (b) (c)

Figure 3.20: Event clouds triggered in a 3D hydraulically homogeneous, isotropic medium with mé/s
using the criticality distributions shown in figure 3.19. Color corresponds to the event occurence times.
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Figure 3.21: Estimation of effective scalar hydraulic diffusivity using the hypocenter and time coordinates of
the 3D event clouds shown in figure 3.20. The envelope is calculated according to equation (2.6) using the
hydraulic diffusivity of the model =5 n¥/s).
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3.5.2 Envelope fitting criterion

For real data, the estimation of the parabolic envelope in a distance-versus-tijrai-(
agram is a fundamental step. Despite the importance only of dimensions of magnitudes
of hydraulic diffusivity, a criterion for fitting must be defined. So far, a percentage crite-
rion was used, e.g., 92% to 95% of all events must be located below the envelope function
calculated according to equation (2.6). The question arises if a more quantitative criterion
can be defined. The numerical modeling approach proposed in this thesis may help finding
such a criterion as well as modifications of the SBRC algorithms in order to yield more
precise estimates of diffusivity.

In the FEM modeling scheme, only the parabolic equation of diffusion is solved. Therefore,
the only process simulated so far is the process of pore pressure perturbation. This is done
in accordance to the main assumption of the SBRC approach, that a diffusional process
of this kind is the dominant one for triggering microseismic events at least in most cases.
Within the SBRC approach, equation (2.6) was derived describing the spatial position of
the triggering-front as explained in chapter 2. This front corresponds to the time-dependent
boundary between unperturbated and perturbated regimes in the medium. The equation
describing the front’s position was derived in a quasi-heuristical way. Moreover, it denotes
a 'sharp’ position for the triggering-front due to pore pressure perturbation. E.g., the factor
4rtis just an approximation in the equation for the position of the triggering front. However,
the process of pressure perturbation is of diffusional kind and therefore does not provide
sharp boundaries. In fact, the position of the front triggering microseismic events can be

r=./(4n+¢)Dt.

In order to derive a criterion for envelope fitting or modification of equation (2.6), the events
induced using 3D modeling are statistically analysed: Following equation (2.6), each event
of a given cloud (submodel) is assigned its theoretical diffusivity calculated by

2

levent
3.11
ATtevent ( )

Devent:

Given that the true value of hydraulic diffusivity of the model is known, one can count the
percentage of events that fulfill the criteriByent< D. By varying the value oD, a sta-

tistical analysis shown in figure 3.22 is obtained. Here, for the mo@é2 (see appendix,

table of models), this percentage-curve is plotted versus the diffusivity for submodels 1-16,
17-30 and 100-150, respectively. The red dashed line corresponds to the input value of
D used in the model. For all models, regardless criticality variations or correlation, about
95% of the events are located below the theoretical envelope according to equation (2.6).
About 100% of events underlie an envelope calculated with an increased hydraulic diffu-
sivity of D = 7m?/s. Therefore, by fitting the clouds of events with a 100%-criterion would
overestimate the effective hydraulic diffusivity by 40% for this model.

Another statistical analysis is shown in figure 3.23. Here, for maaé@$1, m012, m013
andmO014 for each model the percentage of events that fulfill equation (3.11) is plotted.
For the different models, criticality as well as first and second statistical moment is varying
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Figure 3.22: Modem002: Statistical analysis of the percentages of events below the parabolic envelope
according to equation (2.6). Left: Models 1-16 without correlation of criticality. Middle and right: different
models with varying criticality and Kaiser effect (see below, chapter 3.5.6).

according to table A.2. The horizontal red line corresponds to the input value of hydraulic
diffusivity. The results clearly show the overestimationDoby 30-40% when fitting all
events below an envelope. This overestimation leads to the suggestion to modify the heuris-
tic factor in equation (2.6) towards larger values. Assuming a 100%-criterion for fitting,
this factor would change frodirtto approximatelyért

ro|d =V 4T[[)t = rneW: GTDt (312)
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Figure 3.23: Estimation of effective scalar hydraulic diffusivity according to equation (2.6) for models (a)
mO011, (b) m012, (c) m013 and (d)m014 and each submodel. Colors correspond to different percentage
criteria for the number of events that satisfy equation (2.6). Note, that the group of outliers in figure (a) is an
effect of the submodels 23-28 pf011, where the Kaiser effect has been modeled (see chapter 3.5.6). This
effect resulted in a very small number of events triggered. The statistical analysis of the event clouds failed
because of insufficient data.

Another important analysis is the dependence of event numbers triggered with medium
criticality. Let us assume a given pore pressure perturbation in the medium. Then, the
probability for events triggered is larger the smaller the critical pore pressure in the model
is. In other words, the smaller the range of criticality values the higher is the number
of triggered events. One assumption is, that the number of events in dependence of the
medium criticality fulfill the following equation

N2 (3.13)

’
Cinax
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whereN corresponds to the number of events triggeredGsng is the maximum criticality
(Shapiro, pers. comm.). In figure 3.24 such an analysis is shown for nm@f3. The blue

stars denote the total amount of triggered events for different submodels in dependence
of the maximum medium criticality (compare appendix, table of models). The red solid
line was calculated using equation (3.13) normalized on the maximum event number. The
results clearly show the excellent correlation between medium criticality and number of
events released. This confirmation of equation (3.13) leaves room for further potential
developments of the SBRC approach analysing event rates (see chapter 6.2).
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Figure 3.24: Numerically computed event numbers and analytically predicted event numbers versus criticality
maximum for modeim002. Numbers at the stars denote the 'submodel’ number where statistical model
parameters like distribution type and spatial correlation of criticalify,() changed (compare table A.2).

3.5.3 Anisotropic case

In reality, rocks are often characterized by anisotropy in respect of their seismic or hydraulic
properties. In order to simulate the process of pore pressure diffusion in such a case, one has
to extend the numerical modeling procedure presented above. Anisotropy is assumed to be
of hydraulic nature, i.e., the medium is characterized by an anisotropic tensor of hydraulic
diffusivity. Besides modeling hydraulically homogeneous or heterogeneous media, it is
also possible to simulate hydraulic anisotropy with the scheme proposed in section 3.1
by the following approach: A simple way to model anisotropy is to define the principal
component®q1, D2y, and D33 of the diffusivity tensoD. However, in this case the axis

of the tensor are still parallel to the axis of the Cartesian coordinate system. In order
to simulate an arbitrarily rotated tensor, all components of the symmetric tEnkave

to be specified. Given the principal components of the tensor and the angles of rotation
around thex,y andzdirection @, 3, andd, respectively), the computation of the symmetric
diffusivity tensor with no entries equal ™

D11 O 0 D11 D12 Dais
Djj = 0 Dy O — Di?ew = | D21 Dy D23 (3.14)
0 O Dss D31 D32 Dss

is done by the following transformation (in matrix notation using summation over repeating
indices):
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Di" = Ajj - A - Dy (i,j,k=1,2,3). (3.15)

Here,A is the matrix consisting of the unit vectorsxry, andz direction of the new coor-
dinate systemA is obtained by matrix multiplication of the unit vectors of the Cartesian
coordinate systersy =[100, 8 = [010, & = [00 1] and the rotation matriR (Grof3-
mann [1993])

cog¢)cogB) sin(dp)coqa)—sin(B)cogd)sin(a) —sin(d)sin(a) —sin(B)cog¢p)coga)
R= ( —sin(¢)coqPB) cog¢d)coga)+sin(dp)sin(B)sin(a) —cog¢d)sin(a)+sin(¢p)sin(B)coga) )
sin(B) cogB)sin(a) cogB)coqa)

Note, that the unit vectors & must be orthogonal andkt=+1 . Parameters for different
hydraulically anisotropic models are given in table A.1. The new hydraulic diffusivity
tensor is implemented into the FEM modeling scheme as subdomain diffusion coefficient.

Results of the numerical modeling of anisotropic diffusion are shown in figure 3.25. Here,
the pressure perturbation is shown in 3D from different directions after a modeling time of
t =100 s on three orthogonal slices parallel to the Cartesiandz axis, respectively. The
color corresponds to the pressure perturbation. Additionally, in figure 3.25(b-d) isosurfaces
of pressure® = 0.05andP = 0.01are shown in order to point out the anisotropic diffusion.

(@) (b) (© (d)

Figure 3.25: Pore pressure perturbation afted 00s for 3D diffusivity modem007. Here, hydraulic diffu-
sivity was distributed anisotropically with the diagonal elements of the tdbgor: 1m?/s, Dyy = 2m?/s and
D,, = 5m?/s, respectively. Additionally, the tensor is rotated by,680° and 0 around thex-, y- andz-axis
according to equation (3.15). In (b)-(d) two isosurfaces of pressure were added.

The cloud of events triggered after the anisotropic modeling together with the pressure per-
turbation is shown in figure 3.26(a-b). By applying equation (2.6) the result shown in figure
3.26¢ is obtained. Also here, the reconstruction of effective scalar hydraulic diffusivity is
successfully performed. As already pointed out by Shapiro et al. [1999a], in the case of
3D anisotropy, equation (2.6) yields the estimation of the arithmetic average valde of
Therefore, for the calculation of the fitting envelope in figure 3.26c¢, a vaItEb:ef"c%

was used.
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Figure 3.26: (a) and (b): Anisotropic pressure perturbation for mo@€l7 together with the cloud of events
triggered after numerical modeling. (c) Estimation of effective scalar hydraulic diffusivity frert-plot.

The envelopes were computed using the mean value of the diagonal tensor of hydraulic difidsivity
%. The red (lower) envelope was calculated using equation (2.6), the magenta (upper) envelope
using a corrected factor there &f;, respectively.

By modeling anisotropic pressure perturbation, it is possible to verify the tensor reconstruc-
tion approach as proposed by Rindschwentner [2001] and Shapiro et al. [2003]. Therefore,
here the approach proposed and explained in detail by Rindschwentner [2001] is applied.
By transferring the coordinates of the events from the original into a scaled coordinate sys-
tem (scaling with equation 2.9), the fitting of the cloud of events with an envelope ellipsoid
in 3D can be performed. Then, the half axes of this envelope ellipsoid correspond to the
square roots of the principal diffusivities. Also, the orientations of the principal axes are
obtained.

(@) (b)

Figure 3.27: Data for modeh007 in the a) unscaled and b) scaled coordinate system.

The result of this analysis is shown in figure 3.27. Here, a data set created after numerical
triggering is shown in the unscaled (3.27a) and in the scaled (3.27b) coordinate system.
The ellipsoidal envelope estimated by using equation (2.10) is shown in figure 3.28 from
the south, east and top. The tensor of hydraulic diffusivity used for modeling and the
reconstructed tensor components are given in the table below. According to equations
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Figure 3.28: Reconstructed tensor of hydraulic diffusivity for the event cloud shown in figure 3.27 in the
scaled coordinate system. a) View from the south, b) from the east and c) from the top. The original tensor
components used for modeling wdde= diag(1,2,10). The reconstructed hydraulic diffusivity tensor after
‘unscaling’ wasD = diag(1.12, 2.10, 8.64

(3.40-3.43c) of Rindschwentner [2001], the latitude and longitudes (strike and dip) of the
principal tensor axeg,y andZ are given in table 3.5 for the tensor orientation. The strike
of the vector is counted up clockwise from north (gtdirection) and positively from the
horizontal upwards and negatively downwards.

D11 | D22 | D33 | latz [°] | laty [°] | latz [] | long [°] | long [°] | long [°]
model 1 2 10 30 25.66 | 48.59 90 343.90| 22.89
reconstructed 1.12| 2.10| 8.64| 30.75 | 26.62 | 47.17 | 92.31 | 344.96| 222.24

| error[%] | 12 | 5 [186] 25 [ 37 | 29 [ 26 | 03 | 06 |

Table 3.5: Modeled and reconstructed components of the diffusivity tensor and its orientation.

The latitude and longitude of the diffusivity axes given in the table 3.5 for the numerical
modeling correspond to rotation angles= 30°,3 = 30°, and$ = Q°, respectively. The
results support the practicability of the 3D tensor reconstruction algorithms proposed in the
SBRC approach.

3.5.4 Source functions

The SBRC approach assumes triggering of microseismicity due to a step function like pro-
cess of pore pressure perturbation. In most cases of real injection experiments, the source
function can be approximated by such a step function. However, in some cases this as-
sumption and such an approximation is not valid. Therefore, in order to extensively study
the effects of different source type functions on the triggering, the modeling approach is
adapted accordingly. In figure 3.29 four different types of source signals are shown and



52 CHAPTER 3. NUMERICAL MODELING OF THE SBRC APPROACH

used for modeling. In figure 3.29a, a 'normal’ step function source of constant amplitude
for all time steps (100 seconds) is shown. In figure 3.29b, the injection signal is switched
off, i.e. exponentially damped to zero, after 40s (red) and aftet = 20s (blue), re-
spectively. Figure 3.29c shows the characteristics of a real hydraulic injection experiment
performed in 1994 at the German Continental Deep Drilling site (KTB). For more details
refer to chapter 4.

— KTB injection function
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Figure 3.29: Different source functions used for modeling. a) Step function of constant amplitude for all time
steps, b) constant pressure perturbation exponentially turned toff d0s andt = 20s, ¢) source function
interpolated from a real hydraulic injection experiment (KTB 1994, see chapter 4).

For all different source signals modeling was successfully conducted. Despite the necessity
of enhanced solver parameters and increased computation time, numerical triggering of
events was performed. In figure 3.30, the event rates (number of events within a discrete
time interval) for every modeled source function are shown. As assumed for the case of the
constant step function, the event rate also remains constant as far as the model boundaries
are not reached. In the case of the damped injection signals, also the event rates decrease
after the pressure perturbation was stopped (figure 3.30b). It is an interesting result to
observe, that despite the turning-off of the pressure perturbation triggering continues for all
further time steps. Only the number of events decrease, in dependence on the cut-off shape
and/or hydraulic diffusivity of the model. Also for the case of the simulated real injection
signal (figure 3.30c), the event rate is strongly correlated with the injection signal. At times
where the pressure perturbation reached a maximum, also a maximum in the number of
events is obtained. This opens the idea for possible correlation studies of injection signal
and event rate. This point will be discussed again later on and in further sections (e.g
chapter 4). A detailed study of this aspect of the triggering phenomenon and the extension
of the SBRC approach is not subject of this thesis. For more details refer to Parotidis and
Shapiro [2004].

All data created with different types of injection signals are analysed in terms of the SBRC
method and equation (2.6). The results are shown in figure 3.31. For all numerically
created event clouds, the estimation of effective scalar hydraulic diffusivity is successfully
performed. The envelopes shown were computed using the scalar, homogeneous value of
hydraulic diffusivity of the model. Even in the case of the real injection signal (3.31c),
the estimation of maximum scalar diffusivity is possible, despite of the very complex event
rate and spatio-temporal distribution of the events.

An interesting result of this modeling step is the so-called 'back triggering front’ which also
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Figure 3.30: Event rates for the source functions shown in figure 3.29. In all cases a strong correlation of the
source shape function and event rate can be observed.
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Figure 3.31: Estimation of effective scalar hydraulic diffusivities for models created by using the source
functions shown in figure 3.29. The blue and red dots correspond to the events. The two solid envelopes were

calculated using the scalar diffusivity of the hydraulic model with and without corrected heuristic factor (see
equation 3.12).
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can be observed in real data very often. This front is clearly observable in figures 3.31b and
3.31c. As already mentioned before, triggering of events still continues, when the source
perturbation is switched off. However, triggering occurs at distances far away and stops
near the pressure perturbation source just immediately after shutoff. Then, a front of low
event density is formed. First analyses show that the shape of this 'back triggering front’

also depends on the hydraulic diffusivity used in the model. The idea arises to further study
the correlation of the back front and the injection signal. A possible extension of the SBRC

method towards the analysis of event rates or back fronts is promising but not subject of
this thesis. For more details refer to Parotidis et al. [2004].

3.5.5 Source geometry

In most cases real injection experiments can be approximated by a point source of constant
pressure perturbation. This is the main assumption of the SBRC method as described in
chapter 2. However, in some cases the fluid loss and therefore pressure perturbation can
occur within a extended interval, e.g. open hole section or perforated borehole casing
interval. In such a case, the SBRC approach has to be modified. An example for the analysis
of data created during such a type of experiment was proposed by Audigane [2000]. Here, a
modification of the SBRC algorithms for estimation of effective scalar hydraulic diffusivity
substantiated by numerical experiments is proposed.

In figure 3.32 the geometry of the model used for this analysis is shown. The 3D model is
designed in the same way as explained in chapter 3.5. Diffusivity is defined homogeneous
and isotropic withD =1m?/s. Now, instead of a sphere approximating the point source of
pressure perturbation, a cylinder of length 30m and radius 0.5m is centered in the model.
As boundary condition, a constant value of pressure perturbation is defined in the FEM
model.

50

z[m]

-50.
50 cylinder source
1=30m, r=0.5m

50

50 -50
y [m] x [m]

Figure 3.32: 3D model for an extended pressure perturbation source. In the center of the model, a cylinder of
length 30m and radius 0.5m is located. A constant pressure perturbation is defined as boundary condition.

The FEM solution of the diffusion equation for this model is shown in figure 3.33 after
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different modeling times. The amplitude of pressure is shown ory#@ane atx = 0.

The results clearly indicate the cylindrical region of pressure perturbation at small times.
For times larger than approximately 40 seconds, the isosurfaces of pressure become nearly
spherical again, at least large distances from the source line.
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Figure 3.33: Solution of the diffusion equation for different time steps of modeling. As source, a cylindrical
pressure perturbation of constant amplitude was used.

After numerical triggering, the cloud of events shown in figure 3.34 containing 41004
events is obtained. The hypocenters are shown at the same time steps as in figure 3.33.
For small times, the cylindrical extension of the cloud is clearly observable. The result of
the estimation of effective scalar hydraulic diffusivity using equation (2.6) is shown in the

r —t plot in figure 3.35 (left). At small times the extension of the cloud of events up to 30m
can be observed. For all times, a large amount of events is located above the theoretical
envelope. Therefore, hydraulic diffusivity will be overestimated by fitting the unmodified
cloud in ther —t plot.

Now, the following modification is proposed in order to correct the cloud of events for
the line/cylinder source: In this case, the length of the injection line wa30m. The

line source was centered»aly, z= 0 in the model with its main axis parallel to theaxis.

Now, all events induced after modeling time having-@oordinate{z| > 15m will remain
unchanged. The scalar distance relative to the injection interval is the minimal distance to
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Figure 3.34: Cloud of events induced for the cylindrical pressure perturbation source model. The locations
of the events are shown for the same times as in figure 3.33.

the top or bottom of the line source

ro1sm = \D@+Y2+ 2~ Zop

lz<—15m = \/X2 + Y2 + 22 — Zpottom

with zop =15 andzyotom=-15. The scalar distance of events having coordinates of -15m
< z< +15m are calculated according to

r_15<z<15m = V X2+ Y2,

which means the calculation of the minimum distance of these events relative to the line
source.

The result of this simple modification of the event coordinates is shown in figure 3.35
(right). Here, events witkh > 15m are shown in red, those with< -15m in blue and events

in between in green, respectively. The result clearly shows that the scalar estimation and
fitting with the ’correct’ envelope now is straightforward. For the unmodified coordinates,
only 66.1% of all events are located below the envelope calculated according to equation
(2.6) in ther —t plot (figure 3.35 left). For the modified hypocenters, 91.0% are located
below the theoretical curve (right). Moreover, 97.5% of the events are located below the
modified envelope as proposed in chapter 3.5.2 (equation 3.12) with and 81.2% without a
correction, respectively.
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Figure 3.35: Estimation of effective scalar hydraulic diffusivity from the cloud shown in figure 3.34. At the
left: original form of the algorithms without a correction for the cylindrical source. Right: modified algorithm
with source correction (equation 3.12).

3.5.6 Kaiser effect

So far, numerical modeling of the SBRC approach supports the concept of triggering of
microseismicity due to a diffusive process of pore pressure perturbation. Reconstruction
of hydraulic diffusivity is successful for all models analyzed. However, the modeling ap-
proach was designed to trigger an event within a cell of the model just once. In reality,
often so-called 'seismic multiplets’ are observed, i.e. seismic events that show very sim-
ilar seismic signals. By analyzing the hypocenters of such events, one often observes the
occurence of these events very close to each other, even sometimes at the same location in
the medium. This is often interpreted as the cause of the so-called 'Kaiser effect’ (Kaiser
[1950]): It has been generally accepted that rocks, when stressed, emit acoustic emission
(AE), e.g., microseismicity. The Kaiser effect can be defined as the absence of AE at stress
levels below a previously applied maximum stress. The Kaiser effect for example has been
studied at the German Continental Deep Drilling site (KTB) by Baisch and Harjes [2003].

In the proposed interpretation there it reads:

In this case the fluid pressure on the fracture plane reaches a plateau value and
the ratio oft/oe¢¢ (T is the shear stress anak ¢ the effective normal stress)
gets 'frozen’ as indicated towards later times in figure 3.36. As soon as the fluid
pressure becomes stationary (time independent) on a fracture plane, seismicity
on this fracture plane will stop since the amount of overcritical shear-stress
(for the given fluid pressure) has already been released during previous seis-
mic activity. The fracture 'remembers’ the maximum fluid pressure it has previ-
ously experienced during the experiment. In material sciences such relaxation
phenomena are known as the 'Kaiser effect’ (Kaiser [1950]). Several observa-
tions made during KTB experiments indicate that relaxation phenomena play
an important role in the spatio-temporal distribution of induced seismicity.
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Figure 3.36: Simple sketch illustrating the repetition rate of a seismic multiplet. The ratio of shear to effective
normal stress resolved on two different fracture planes is plotted against time under the assumption that fluid
pressure on these fractures increases with time (bottom plot). If the coseismic strefsydsogmall the

same fracture will be ruptured several times while the other fracture plane remains inactive (from Baisch and
Harjes [2003]).
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The Kaiser effect influences the number of induced events and the spatio-temporal evo-
lution. In order to study the effects on the estimations of hydraulic diffusivity using the
SBRC approach, numerical modeling is extended to take into account the Kaiser effect.
Two different approaches are realized as follows:

After distributing the criticality statistically in the medium, the numerical triggering pro-
cess is started. For every time step and location, the amplitude of pressure perturbation is
compared with the criticality in the corresponding cell as already proposed in chapter 3.1.
Once the criticality value is exceeded, an event is triggered in the cell. Afterwards, so far
the criticality was set to infinity in order to ‘disable’ the corresponding cell. No event could
be triggered at this location for further time steps. In order to take into account the Kaiser
effect, the criticality is not set to infinity now. In fact, it is just increased using two different
criteria:

1. The first one is the possibility to increase the value according to the last criticality
value within the cell. A percentage criterion is used to increase the criticality value
e.g. by 10% of the last value. That means for example, a cell that previously con-
tained a criticality ofC =5 is set toCnen=5.5 after being cracked for the first time.

If a second event is triggered at this poi€tjs set toCnen2=6.05 and so on. This
procedure is called 'Kaiser effect based on cell value’ (compare table A.2).

2. The second approach is based on the maximum criticality value of the whole medium
Cmax If an elementary cell is triggered once, the previous value of criticality is
increased due to a percentage criterion with regar@qg. For example, if the
criticality field is distributed between 0 and 10, a cell previously contaiding5
is increased by 10% &@n5=10 and will be set t&€,e\~=6 for the second triggering
and after this t&€ewp=7 and so on. This procedure is called 'Kaiser effect based on
Cmax (compare with table A.2).

The result of numerical modeling of the Kaiser effect for one model is shown in figure
3.37. In figure 3.37a the simulation without Kaiser effect has been performed. The cloud
of events after numerical triggering constists of 3769 events. The envelope fitting yields
resonable agreement between numerical model and theoretical predictions. In figure 3.37b
the same model is analyzed but now with a 15% increase of the maximum model criticality
Cmax=5. The cloud of events after modeling contains 3807 events, which is an increase of
38 events (+ 1%). Also in this case, the theoretical envelope matches the data quite well.

In figure 3.37c the modeling of the Kaiser effect based on the old cell value is shown.
Here, the criticality of all cells once triggered is increased by 10% of the previous cell
values. The cloud of events after modeling contains 40994 events, which corresponds to an
increase of 37225 events or +987.7%. The seismic multiplets, i.e. events at different times
at the same location, are clearly visible as horizontal structures in figure 3.37c. However,
the theoretical envelope according to equation (2.6) fits 96% of all events. Therefore, one
can conclude that the Kaiser effect as modeled here does not influence the estimations of
the hydraulic parameters using the SBRC approach.
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Figure 3.37: Simulation of the Kaiser effect for one numerical moah€lq2). a) Submodel no. 10 without
kaiser effect. b) Submodel no. 25 with 15%@fax ) submodel 33 with 10% of previous cell values. For
all modelsCya=5 was used.

3.6 Conclusions of numerical modeling

Fluid injection induced microseismic activity is related to changes of pore pressure in pre-
stressed rocks. Seismic monitoring of this microseismicity can be used to characterize
rock hydraulic properties of geothermal or hydrocarbon reservoirs. Therefore, an approach
called SBRC was recently proposed. The main hypothesis of the SBRC approach is that
fluid-induced microseismicity is triggered due to a diffusive process of pore pressure relax-
ation in subcritically stressed rocks.

Using this hypothesis a simple numerical model is developed for simulating the space-time
distribution of injection-induced microseismicity. These distributions depend on hydraulic
properties and the statistics and spatial distributions of trigger criticality. The numerical
simulations are applied to test the inversion approaches based on phase properties of diffu-
sion waves of the pore pressure relaxation. The forward model results show time-distance
distributions similar to observed microseismic clouds. This similarity supports the idea
that the diffusive-like process of pore pressure relaxation is an important mechanism for
triggering microearthquakes. It was shown that if the hypothesis is valid, than the inver-
sion method based on equations (2.6) and (2.28 ) can be successfully used to reconstruct
hydraulic properties of rocks from spatio-temporal evolutions of clouds of microseismic
events on large spatial scales.

The numerical modeling approach presented here also yields the result, that triggering of
microseismicity in rocks mainly depends on two physical fields: At first the distribution
of hydraulic diffusivity in the medium and secondly the distribution of a criticality field of
failure in terms of critical stresses. For all models analyzed it turns out that the distribution
of these two fields influence the spatio-temporal distribution of microseismicity triggered
in rocks. However, the first statistical moment of the criticality (i.e. distribution type)
influences these distributions to a larger extend than the second statistical moment (i.e.
spatial correlation of the criterion).
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It was shown that the accuracy of the method presented to numerically solve the parabolic
equation of diffusion is adequate to analyse the results in two and three dimensions. The
eikonal-based equations of the SBRC algorithms were verified and it was shown, that the
formal validity conditions of the SBRC are too restrictive. The modeling approach was
illustrated in two dimensions from the model set-up, the distribution of criticality, the spa-
tial correlation to the numerical triggering of events. The analysis confirms the SBRC
algorithms even for the case of heterogeneous media.

The modeling in 3D was shown for homogeneous and anisotropic cases, accordingly. An
envelope fitting criterion was developed and a slight modification of the SBRC algorithms
was proposed. Different source functions as well as source geometries were studied ac-
cording to observations from real hydraulic experiments. At last, it was found that a Kaiser
effect, as it may be present in real rocks, does not influence the positive results of our esti-
mations. Therefore, the numerical modeling approach presented in this chapter completely
supports the SBRC approach. Main physical features of spatio-temporal distributions of
microseismicity are observed as it is observable for real data. Additional observations
permit the further development of the modeling and SBRC. Possibly, an extension of the
model approach towards hydraulic fracturing or the combination with reservoir simulation
software appears to be promising.
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