
Chapter 2

Theory - SBRC fundamentals

The approach proposed to estimate hydraulic properties of rocks using microseismicity is
called “Seismicity Based Reservoir Characterization“ (SBRC). It uses a spatio-temporal
analysis of fluid-injection induced microseismicity to reconstruct the tensor of hydraulic
diffusivity and to estimate the tensor of permeability(see Shapiro et al. [1997, 1999a,
2000b] and the discussion of the method in Cornet [2000]). The approach assumes the
following main hypothesis: Fluid injections in boreholes cause perturbations of the pore
pressure in rocks. Such perturbations cause a change of the effective stress, which, if
large enough, can trigger earthquakes along pre-existing zones of weakness. The SBRC
approach considers that most of the seismicity is triggered along critically stressed, pre-
existing fractures.

Furthermore, the SBRC method assumes that the spatio-temporal evolution of the
hydraulically-induced microseismicity is completely defined by the diffusion-like process
of pore-pressure relaxation. The analysis of spatio-temporal features of the microseismicity
then provides a possibility to invert for hydraulic diffusivity distributions in fluid-saturated
rocks.

In the low-frequency limit of the Biot equations of poroelasticity (Biot [1962]) the pore-
pressure perturbationp can be approximately described by the differential equation of dif-
fusion. In this equation, the hydraulic diffusivity tensorDi j is thedominantparameter. The
tensor of hydraulic diffusivity is directly proportional to the tensor of permeability (see
Shapiro et al. [2002]).

2.1 The concept of triggering fronts

In the following a real configuration of a fluid injection in a borehole is approximated
by a point source of pore pressure perturbation in an infinite heterogeneous anisotropic
poroelastic fluid-saturated medium. In the low-frequency limit of the Biot equations (Biot
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[1962]) the pore-pressure perturbationp can be approximately described by the following
differential equation of diffusion:

∂p
∂t

=
∂

∂xi

[
Di j

∂
∂x j

p

]
, (2.1)

whereDi j are components of the tensor of the hydraulic diffusivity,x j ( j = 1,2,3) are the
components of the radius vector from the injection point to an observation point in the
medium andt is the time. This equation corresponds to the second-type Biot waves (the
slow P-waves) in the low frequency limit and describes linear relaxation of pore-pressure
perturbations. Note, that this equation is valid for a heterogeneous medium in respect of its
hydraulic properties. In other words, components of the tensor of the hydraulic diffusivity
can be heterogeneously distributed in the medium. The tensor of hydraulic diffusivity is
directly proportional to the tensor of permeability and this is discussed later (see eq. 2.21).

In some situations (e.g., some hydrofracturing experiments) the hydraulic diffusivity can
be changed considerably by the fluid injection. This means, that in the equation above
the diffusivity tensor must become pore-pressure dependent. Therefore, this equation be-
comes non-linear. Such changes of the diffusivity take place in restricted regions around
boreholes. However, the aim of the SBRC method is to estimate the effective hydraulic
diffusivity in a large rock volume of the spatial scale of the order of about one kilometer
and more. Generally, estimates of hydraulic diffusivity are able for the whole seismically
active volume of rock.

Because even small pore-pressure fluctuations are able to trigger microseismicity (see e.g.,
Zoback and Harjes [1997a] and Shapiro et al. [1997]) it is natural to assume that in a given
elementary volume of the medium, the triggering of the earliest microseismic events starts
before the substantial relaxation of the pore-pressure occurs. This means, that even in the
’near zone’ very early events occur in the practically unchanged medium. In other words,
the front of significant changes of the medium propagates behind the quicker triggering
front of earlier microseismic events. However, it is precisely these early events that are
important for our approach for estimating the diffusivity. Thus, the corresponding estimate
should be approximately equal to the diffusivity of the unchanged medium even in such sit-
uations, where the diffusivity was strongly enhanced by the hydraulic fracturing. Because
of this reason it is assumed that changes of the diffusivity caused by the injection can be
neglected. Thus,Di j is assumed to be pressure independent in eq. (2.1).

In figure 2.1 an example of a cloud of events is shown collected in December 1983 during
the hydraulic injection into crystalline rock at a depth of 3463 meters at the Fenton Hill
(USA) geothermal energy site (see for details and further references Fehler et al. [1998]).
Injection took place for about 80 hours at a depth of approximately 3.5 km. About 11366
events were induced. The lateral as well the vertical extension of the cumulative cloud was
about 1 km. Color correspond to the event occurrence times after the start of the injection.
The solid line corresponds to the injection borehole. Obviously, the events occurring early
after the fluid injection was started are located around the source location. Events occurring
later are located farther away from the borehole. This makes clear, that the cloud of events
shows a spatio-temporal evolution character.



2.1. THE CONCEPT OF TRIGGERING FRONTS 7

EastTop

Time [h]

South

11366 events

z~3500m

~ 1km
0     20     40      60     80   

Figure 2.1: Hypocenters of the microseismic events induced during the fluid injection experiments of the
Fenton Hill experiment, 1983. Color correspond to the event occurrence times after the start of the injection.
The solid line corresponds to the injection borehole.

In figure 2.2 a microseismic cloud induced at the hot-dry-rock geothermal site at Soultz-
sous-For̂ets (France) in 1993 is shown, where about 18000 events were induced during an
injection experiment (see Dyer et al. [1994]). The injection test continued for about 350
hours and fed about 25.300 m3 of water into the rock at a depth of 2.85-3.0 km. Approxi-
mately 9300 of these events were localized with sufficient accuracy within 400 hours after
the injection. The seismically active volume of rock comprises approximately 1.5 km3.
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Figure 2.2: Hypocenters of the microseismic events induced during the fluid injection experiments of the
Soultz-sous-For̂ets experiment, 1993. Color correspond to the event occurrence times after the start of the
injection. The solid line corresponds to the injection borehole.

To introduce the concept of triggering fronts in a more formal way let us firstly recall the
form of the solution of (2.1) in the case of a homogeneous poroelastic medium. In the case
of anisotropic homogeneous medium equation (2.1) takes the following form

∂p
∂t

= Di j
∂

∂xi

∂
∂x j

p. (2.2)

If the medium is also isotropic (i.e.,D11 = D22 = D33 = D, andDi j = 0, if i 6= j), then

∂p
∂t

= D4p, (2.3)
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Figure 2.3: Power spectrum of an rectangle pulse. The time-function of this pulse is given in the upper right
plot in this figure (taken from Shapiro et al. [2002]).

andD is the scalar hydraulic diffusivity. If a time-harmonic perturbationp0exp(−iωt) of
the pore-pressure perturbation is given on a small spherical surface of the radiusa with the
center at the injection point, then the solution of equation (2.3) is

p(r, t) = p0e−iωt a
r

exp

[
(i−1)(r−a)

√
ω
2D

]
, (2.4)

whereω is the angular frequency andr = |r| is the distance from the injection point to the
point, where the solution is looked for. From equation (2.4) one note that the solution can
be considered as a spherical wave (it corresponds to the slow compressional wave in the
Biot theory) with the attenuation coefficient equal to

√
ω/2D and the slowness equal to

1/
√

ω2D.

In reality the pore pressure at the injection point is not a harmonic function. Let us
roughly approximate the pore pressure perturbation at the injection point by a step function
p(t) = p0, if t ≥ 0 andp(t) = 0 if t < 0 (see figure 2.3). For instance, this can be a rough
approximation in some cases of a borehole fluid injection (e.g. for a hydraulic fracturing
or other fluid tests). For a particular seismic event at the timet0 the time evolution of the
injection signal for the timet > t0 is of no further consequence. Thus, this event is triggered
by the rectangular signalp(t) = p0 if 0≤ t ≤ t0 andp(t) = 0 if t < 0 or t > t0. The power
spectrum of this signal has the following form:

4p2
0t

2
0

sin2(ωt0/2)
ω2t2

0

(2.5)

This is the square of a well knownsinc-function. A plot of this function fort0 and p0

equal 1 is shown on figure 2.3. It is seen that the dominant part of the power spectrum
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is located in the frequency range below2π/t0. The magnitude of the second maximum is
approximately 25 times smaller than those of the first one.

It is natural to assume that the probability of the triggering of microseismic events is an
increasing function of the power of the pressure perturbation. Thus, the probability, that the
seismic event at the timet0 was triggered by signal components from the frequency range
ω ≤ 2π/t0 is high. This probability for the lower energetic high frequency components is
small. However, from equation (2.4) one has seen that the propagation velocity of harmonic
components of the pressure perturbation is proportional to

√
ω. Therefore, the velocity of

high-frequency components is higher than those of the low frequency components. Thus,
to a given timet0 it is probable that events will occur at distances, which are smaller than
the travel distance of the slow-wave signal with the dominant frequency2π/t0. The events
are characterized by a significantly lower occurrence probability for larger distances. The
spatial surface which separates these two spatial domains is called thetriggering front. It
corresponds to the location of the front of zero phase of the harmonic slow wave with the
frequency2π/t0 at the timet0.

2.1.1 Triggering fronts in homogeneous anisotropic media

Let us firstly assume, that the medium is homogeneous and isotropic. Then the slowness
of the slow wave (see eq. 2.4) can be used to estimate the size of the spatial domain, where
microseismic events are characterized by a high probability. One obtains (see also Shapiro
et al. 1997)

r =
√

4πDt. (2.6)

This is the equation for the triggering front in an effective isotropic homogeneous poroelas-
tic medium with the scalar hydraulic diffusivityD. If the value of the hydraulic diffusivity
in equation (2.6) is selected correctly, then equation (2.6) will correspond to the upper
bound of the cloud of events in the plot of their spatio-temporal distribution (i.e., the plot
of r versust, called ’r-t plot’ in further chapters).

In figure 2.4a a spatio-temporal distribution of the microseismicity according to equation
(2.6) is shown for the the microseismic data collected at Fenton Hill. A good agreement
between the theoretical curve withD = 0.17m2/s and the data is seen.

Such a good agreement supporting the above concept of the triggering of microseismicity
can be observed in many other cases. For example figure 2.4b shows a similarr-t plot for
the microseismic cloud induced at Soultz-sous-Forêts. The diffusivityD = 0.05m2/s was
observed for the seismically-active volume of the crystalline rock at the depth of 2500-
3500m.
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Figure 2.4: Distances of events from the injection source versus their occurrence time for a) the Fenton Hill
experiment, 1983 and b) the Soultz-sous-Forêts experiment, 1993. Taken from Shapiro et al. [2002].

2.1.2 Diffusivity tensor estimation in 3D

Equation (2.6) provides scalar estimates ofD only. Let us now assume, thatDi j is ho-
mogeneously distributed in the medium. When estimating the diffusivity under such an
assumption the complete heterogeneous seismically-active rock volume is replaced by an
effective homogeneous anisotropic poroelastic fluid-saturated medium. The permeability
tensor of this effective medium is the permeability tensor of the heterogeneous rock up-
scaled to the characteristic size of the seismically-active region.

Performing very similar consideration as in Shapiro et al. [1997], but now using equation
(2.1) for homogeneous but anisotropic media the following equation for the triggering front
can be obtained for anisotropic media (Shapiro et al. [1999]):

r =

√
4πt

nTD−1n
. (2.7)

T denotes that the matrix (vector) is transposed,n = r/|r̄| andD−1 is the inverse ofD. Let
us consider this equation in the principal coordinate system of the diffusivity tensor. Then,
the matrixDi j becomes diagonal(D11,D22,D33), and one obtains:

x2
1

D11
+

x2
2

D22
+

x2
3

D33
= 4πt. (2.8)

If the principal coordinate system is scaled in the following way

xs j =
x j√
4πt

, (2.9)
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then the equation of the triggering front will be an equation of an ellipsoid:

x2
s1

D11
+

x2
s2

D22
+

x2
s3

D33
= 1 (2.10)

with the half-axes equal to the square roots of the principal diffusivities. It is clear that
the ellipsoid will keep its shape in an arbitrary rotated coordinate system. Therefore, if
the coordinates of all events are scaled by the square root of their occurrence time using
equation (2.9) then — by analogy with equation (2.6) and figure 2.3 — the ellipsoid (eq.
2.10) will be an envelope of the cloud of events, but now in a normalized 3-D space.

(a) (b) (c)

Figure 2.5: a) a view of the Fenton Hill microseismicity cloud from the South. b) the same view of the cloud
in the coordinate system scaled in accordance with equation (2.9). c) cloud in the scaled coordinate system
together with an fitting ellipsoid.

(a) (b) (c)

Figure 2.6: a) a view of the Soultz microseismicity cloud from the South. b) the same view of the cloud in the
coordinate system scaled in accordance with equation (2.9). c) cloud in the scaled coordinate system together
with an fitting ellipsoid.
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Let us now return to the examples of the Fenton Hill and Soultz HDR experiments to
demonstrate this signature of the diffusive nature of the triggering of events. Figure 2.5a
shows a view of the Fenton Hill microseismicity cloud from the South. In figure (b) the
same view of the cloud in the coordinate system scaled in accordance with equation (2.9).
The same is shown in figure 2.6 for the Soultz data set. In both cases one observes that
in the scaled coordinate systems (b) the shapes of the microseismic clouds become more
similar to ellipsoids than in the original coordinate system. This happens because in re-
ality, locations where rocks are close to a failure equilibrium are randomly distributed in
space. Therefore, even if the medium is hydraulically homogeneous, the seismicity cloud
can be very irregular. By normalization according to equation (2.9), some irregularities
will be eliminated, and the seismicity cloud will tend to an ellipsoid closely related to
the diffusivity tensor, as equation (2.10) shows. Of course, all features considered above
can be significantly disturbed in strongly heterogeneous hydraulic media. However, as the
examples above show, they can be observed in reality. Features of hydraulically induced
seismicity considered above are controlled by the diffusivity tensor. This tensor is directly
proportional to the tensor of permeability.

The estimation of a hydraulic diffusivity ellipsoid for the Fenton Hill data is shown in
figure 2.5c and for the Soultz data in figure 2.6c, respectively. More information about this
extension of the method can be found in Rindschwentner [2001] and Shapiro et al. [2003].
For the hydraulic diffusivity tensors shown, following estimates were obtained:

DFenton=




5.9 0 0
0 7.2 0
0 0 14.2


10−2m2/s, DSoultz=




1.9 0 0
0 4.8 0
0 0 14.2


10−2m2/s

The values found correlate well with results of independent studies and diffusiv-
ity/permeability estimates at these sites (Rindschwentner [2001]).

2.1.3 Group-velocity surface of anisotropic slow waves

To gain more insight into the physical nature of the triggering-front surface (eq. 2.7) solu-
tions of the anisotropic diffusion equation are considered (2.2) in the form of homogeneous
plane waves:

e(ik jx j−iωt). (2.11)

Because we look for homogeneous waves (i.e. the real and imaginary parts of the wave
vector are parallel) a unit vectore in the direction of the wave vectork can be defined:

k = e(a+ ib) = ek, (2.12)
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wherea andb are real numbers andk is a complex one. Substituting equation (2.11) into
the diffusion equation (2.2) one obtains the following dispersion relationship characterizing
the low-frequency propagation of slow waves:

ω =−iD lmkl km =−iD lmel emk2. (2.13)

This equation gives

|k2|= |ω|
Dgseges

. (2.14)

The dispersion equation provides us with the following group velocity of anisotropic low-
frequency slow waves (see the definition of the group velocity in Landau and Lifshitz
[1984]):

Vgr
j =

∂ω
∂k j

=−iD lm(kl δm j +kmδl j ) =−2iD l j kl =−2iD l j el k, (2.15)

This gives the following absolute value of the group velocity:

|Vgr|2 = Vgr
j

?Vgr
j

= −2iD l j el k ·2iDm jemk∗

= 4Dl j Dm jel em|k|2

= 4Dl j Dm jel em
|ω|

Dgseges

= 4|ω|e
TDDe

eTDe
, (2.16)

In turn, eq. (11) shows that the direction of the group velocity is defined by a unit vector
egr with the components:

egr
j = Dl j el/

√
DgmegDsmes. (2.17)

Therefore,

egr =
De

eTDDe
(2.18)

Using the property of diagonal symmetry of the tensor of hydraulic diffusivity, inverting
this equation and changing the notations so that:egr = n one finally arrives at the following
result:
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|Vgr|=
√

4|ω|
nTD−1n

. (2.19)

A comparison of equations (2.7) and (2.19) shows that the triggering front has the same
spatial form as the group-velocity surface of anisotropic slow waves. Physically this means
that in the case of a point injection source triggering fronts in anisotropic rocks propagate
like heat fronts or light fronts in anisotropic crystals.

2.1.4 Inversion for the global diffusivity and permeability tensors

Shapiro et al. [1999a] proposed the following approach for estimating the diffusivity tensor
using equation (2.7). The entire space is divided inM directional sectors centered at the
injection point. In each spatial sector the hydraulic diffusivity is estimated using equation
(2.6). Thus,M values of the hydraulic diffusivity are estimated forM different sectors
of the space. They are calleddirectional diffusivitiesDi . The directional diffusivityDi

approximately characterizes the process of the pore-pressure relaxation along the direction
ni , given by the central ray ofi-th sector. On the other hand, the triggering front in an
anisotropic medium is described by equation (2.7).

Thus, the following system of matrix equations can be obtained from equations (2.6) and
(2.7):

nT
i D−1ni = 1/Di , f or (i = 1, ...,M). (2.20)

This system can be solved in a least squares sense. Using this approach not only the dif-
fusivity tensor but also errors of its estimations can be obtained. For example, in the case
of the above mentioned Soultz experiment the error of estimates of the principal compo-
nents is of the order of 20-30 per cent. Another approach to the inversion for the global
diffusivity tensor was proposed in Shapiro et al. [1999b].

The relationship between the hydraulic diffusivity and the permeability is derived along
with equation (2.1). For this Darcy’s law must be combined with the equation of mass
conservation (see e.g., Mavko et al. [1998], Section 8.1). In such derivations different au-
thors use different notations, arriving of course to analogous relationships. For example,
Rice and Cleary [1976] and van der Kamp and Gal [1983] use notations of early papers
of Biot, e.g., Biot [1956a]. Here we follow notations of Biot [1962] which are broadly
used in seismics of poroelastic media. Equation (2.1) is directly derived as low-frequency
limit of the system of Biot equations (Biot [1962]) describing acoustics of poroelastic sys-
tems. This derivation can be found in Dutta and Ode [1979]. Moreover, Dutta and Ode
[1979] show that equation (2.1) characterizes the low-frequency slow wave. Assuming that
the poroelastic continuum is isotropic and homogeneous relative to all its elastic parame-
ters and porosity, and that only the permeability can be anisotropic and heterogeneously
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distributed, equations (60), (62) and (63) of Dutta and Ode [1979] provide equation (2.1)
along with the following relationship between the hydraulic diffusivity and permeability:

D = NK/η, (2.21)

where K is the permeability tensor,η is the pore-fluid dynamic viscosity andN is a
poroelastic modulus defined as follows:N = MPd/H;M = (φ/K f + (α− φ)/Kg)−1;α =
1−Kd/Kg;H = Pd + α2M;Pd = Kd + 4/3µd. HereK f ,d,g are bulk moduli of the fluid,
dry frame and grain material respectively;µd is the shear modulus of the frame andφ is
the porosity. Note also, that here the elastic anisotropy in comparison with the anisotropy
of the permeability is neglected. For the case of a highly porous rocks an approximation
N ≈ K f /φ can be used. For the case of low-porosity crystalline rocksN can be approxi-

mated as follows:N =
[
φ/K f +α/Kg

]−1
.

For example, for the Fenton Hill experiment, accepting the following estimates used in the
literature for the crystalline rock at the depth of 3500m:φ = 0.003, η = 1.9 ·10−4 Pa.sec.
(dynamic viscosity of salt water at150◦C), Kd = 49 GPa,Kg = 75 GPa andK f = 2.2
GPa one obtainsN ≈ 1.68 1011 Pa, and the permeability tensor in the principle coordinate
system is:

K =




0.2 0 0
0 0.8 0
0 0 1.8


10−16m2 (2.22)

It is important to note that usually the permeability estimates of the SBRC are in a good
agreement with independent results of different hydraulic tests. Hydraulic tests in Fenton
Hill show estimates of the large-scale permeability of the order of10−17−10−15m2 (M.
Fehler, personal communication). Similar experiments in Soultz provided the following
estimates:

K =




0.7 0 0
0 1.9 0
0 0 5.2


10−17m2 (2.23)

2.2 Triggering fronts in heterogeneous media

To demonstrate the idea of the 3-D mapping of hydraulic diffusivity let us consider the
microseismicity cloud collected during the Soultz experiment mentioned above.

Figure 2.7 shows a view of this cloud. For each event the color shows its occurrence time in
respect to the start time of the injection. Evidently, the occurrence times contain much more
information than just the large-scale global velocity of the triggering front propagation in
an effective homogeneous anisotropic medium. If the space is subdivided to a number of 3-
D cells an arrival time of the triggering front can be defined into each of these cells. Under
such an arrival time one can understand a minimum occurrence time in a given cell. After
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Figure 2.7: A perspective projection of the 3-D distribution of microseismic events registered during the
Soultz-sous-For̂ets experiment: Borehole GPK1, September 1-22, 1993. The color corresponds to the event
occurrence time. The axes X,Y and Z point to the East, the North and the earth surface, respectively. The
vertical and horizontal sizes of the shown spatial frame (X×Y×Z) are802.5m×1274m×1943m. The depth
of the frame’s bottom is3503m. The surface shown is the triggering front of microseismicity for the arrival
time of 100h. The vertical and horizontal scales of the figure are equal.

some smoothing and interpolation the triggering fronts can be constructed for given arrival
times. Figure 2.7 also shows such a triggering front for the arrival times of 100h. It is clear,
that such a surface can be constructed for any arrival time presented in microseismic data.
Thus, the triggering front propagation can be observed. In a heterogeneous porous medium
the propagation of the triggering front is determined by its heterogeneously distributed
velocity. Given the triggering front positions for different arrival times, the 3-D distribution
of the propagation velocity can be reconstructed. In turn, the hydraulic diffusivity is directly
related to this velocity.

In the following it is tried to formalize this concept. As discussed above, the propagation
of the triggering front is approximately defined by kinematic features of a slow-wave front
of a particular frequency (see also later eq. 2.29). For the SBRC approach the earliest
microseismic events are of importance. It is natural to assume, that for their triggering in a
heterogeneous medium a possibly quickest front configuration will be responsible.

On the other hand, in the low-frequency range the slow wave represents the process of
the pore pressure relaxation and, therefore, is a kind of a diffusion wave. The real and
imaginary parts of its wave vector are equal. Thus, it is a very rapidly attenuating wave.

However, recent studies of diffusion waves (more systematic studies were performed for a
particular type of diffusion waves called the diffuse photon-density waves: see Yodh and
Chance [1995]; Boas et al. [1997] and further references there; Mandelis [2000] found that



2.2. TRIGGERING FRONTS IN HETEROGENEOUS MEDIA 17

they show all typical wave phenomena, like scattering, diffraction, refraction, reflection
etc.. Though different in character and aims, similar approaches are known from the field
of diffusive (i.e. low frequency) electromagnetics. Several techniques have been developed
to use wave techniques on these kind of data (Nekut [1994]; Gibert et al. [1994]; Virieux
et al. [1994]). Similar methods are also used in thermal-wave imaging (Padé [1994] and
the references given there).

This argumentation leads to the idea to use a geometrical-optics like description of trigger-
ing fronts as an approximative basis for the microseismic data inversion.

2.2.1 Triggering fronts for the case of a quasi-harmonic pressure per-
turbation

In the following we shall consider relaxation of a harmonic component of a pressure per-
turbation. By analogy with (2.4) we will look for the solution of equation (2.1) in a similar
form:

p(r, t) = p0(r)e−iωt exp
[√

ωτ(r)
]
, (2.24)

It is also assumed thatp0(r), τ(r) andDi j (r) are functions slowly changing withr.

Substituting equation (2.24) into equation (2.1), acceptingω as a large parameter and keep-
ing only terms with largest powers ofω (these are terms of the orderO(ω); the other terms,
which are of the ordersO(ω0) andO(ω1/2) are neglected) one obtains the following equa-
tion:

−i = Di j
∂τ
∂xi

∂τ
∂x j

. (2.25)

Considering again the homogeneous-medium solution (2.4) it can be concluded that the
frequency-independent quantityτ is related to the frequency-dependent phase travel time
T as follows:

τ = (i−1)
√

ωT. (2.26)

Note, that in turnT ∝ 1/
√

ω. Substituting equation (2.26) into equation (2.25) one obtains:

1 = 2ωDi j
∂T
∂xi

∂T
∂x j

. (2.27)

In the case of an isotropic poroelastic mediumDi j = δi j D, and equation (2.27) is reduced
to the following one:
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|∇T|2 =
1

2ωD
. (2.28)

Thus, a standard eikonal equation has been obtained. The right hand part of this equation
is the squared slowness of the slow wave. One can show (Červeny [1985]) that equation
(2.28) is equivalent to the Fermat’s principle which ensures the minimum time (stationary
time) signal propagation between two points of the medium. Due to equation (2.26) the
minimum travel time corresponds to the minimum attenuation of the signal. Thus, in this
sense, equation (2.28) describes the minimum-time maximum-energy front configuration.

2.2.2 Triggering fronts in the case of a step-function like pressure per-
turbation

Let us now return to a more realistic situation, where the pressure perturbation can be
roughly approximated by a step function in the source point.

In the previous section an equation for the triggering timeT(r) of a harmonic pressure
perturbation was derived. Using this equation another one can be derived, which will de-
scribe the triggering timet(r) of a step-function pressure perturbation. From our earlier
discussion it is known, that the triggering timet roughly corresponds to the frequency

ω0 = 2π/t. (2.29)

Thus,
T|ω=ω0 = t. (2.30)

On the other hand, it is known that generallyT(ω) ∝
√

1/ω. Now this relationship can be
used to computeT at the frequencyω0, if T is known at any arbitrary frequencyω:

t = T(ω0) = T(ω)
√

ω
ω0

. (2.31)

Using this equation and equation (2.29) one obtains:

T(ω) =

√
2πt
ω

. (2.32)

Substituting this equation into equations forT of the previous section one obtains the fol-
lowing results. In the general case of an anisotropic heterogeneous poroelastic medium

t = πDi j
∂t
∂xi

∂t
∂x j

. (2.33)
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In the case of an isotropic poroelastic medium this equation is reduced to the following
one:

D =
t

π|∇t|2 . (2.34)

As well as the previous versions of the SBRC the last two equations are also limited to the
low-frequency diffusion type of Biot slow waves. The advantage of the last two equations
over the previous versions of the SBRC is following. These equations can serve as a basis
for an inversion procedure aimed to reconstructing spatial distributions of the hydraulic
diffusivity in heterogeneous media. In contrast to this, the previous versions of the SBRC
worked with an assumption of a homogeneous medium.

2.2.3 Inversion for the permeability of heterogeneous media

In the case of an isotropic poroelastic medium equation (2.34) can be directly used to
reconstruct the 3-D heterogeneous field of the hydraulic diffusivity. In turn, using equation
(2.33) in the case of an anisotropic medium, it is impossible to reconstruct a 3-D distribution
of the diffusivity tensor. The only possibility is the following. Let us assume that the
orientation and the principal components proportion is constant in the medium. Then, the
tensor of hydraulic diffusivity can be expressed as

Di j (r) = d(r)ξi j , (2.35)

where ξi j is a nondimensional constant tensor of the same orientation and principal-
component proportion as the diffusivity tensor, andd is the heterogeneously distributed
magnitude of this tensor. This tensor can be found using the global SBRC estimate of
the hydraulic diffusivity as was mentioned above. Then, the quantityd can be directly
computed as follows:

d =
t

πξi j
∂t
∂xi

∂t
∂x j

. (2.36)

Note, that if the tensorξi j is normalized so thatξ11+ ξ22+ ξ33 = 3, then in the case of
an isotropic medium it is equal to the unit matrix. In addition, a transformation of the
hydraulic diffusivity tensor to the permeability tensor can be performed using for example
equation (2.21) above.

Let us finally consider an example of application of the method. Figure 2.8 shows the
reconstructed hydraulic diffusivity for Soultz-1993 data set according to equation (2.34).
From the other hand assuming, that the tensorξi j has the same orientation and principal-
component proportion as the diffusivity tensor given in equation (16) of Shapiro et al.
[1999a], equation (2.36) can be applied to obtain the diffusivity-tensor magnitude.
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Figure 2.8: An example of the hydraulic diffusivity reconstruction in 3-D for the Soultz-1993 data set. For
the inversion isotropic variant of the method has been used. The diffusivity is given in the logarithmic scale.
It changes between 0.001 and 1.0m2/s. Light gray corresponds to cells with no diffusivity value resolved.
The geometry corresponds to that given in figure 2.7.

Without showing this into detail, it is interesting to note that there is no significant dif-
ference between the representation of the isotropic and anisotropic variant of the method.
They both show larger diffusivity in the upper part of the medium then of the lower one. In
addition, a high permeable channel leading to the upper right-hand part of the medium is
visible in the reconstructed hydraulic diffusivity. This is in good agreement with figure 2.7,
which shows a number of early events in the upper right-hand corner of the rock volume.

2.3 Discussion

The main limitations of the extension of the SBRC to the case of heterogeneous media
proposed here are apparently related to the validity range of equation (2.25). Roughly they
can be formulated from the following consideration of the right hand part of equation (2.1)
in a 1-D medium:

∂
∂x

[
D

∂p
∂x

]
=

∂D
∂x

∂p
∂x

+D
∂2p
∂x2 (2.37)

Our approach is expected to be valid if the following inequality is satisfied:

∂D
∂x

∂p
∂x
|/|D∂2p

∂x2 | ¿ 1 (2.38)
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This can be roughly reduced to the following:|∂D
∂x |/|Dk| ¿ 1, wherek is the wave num-

ber. Taking into account that approximately|k|2 = ω/D we arrive at the following, rather
simplified condition:

|∂D/∂x|2
D

< ω. (2.39)

This inequality relates the gradient of the hydraulic diffusivity and the frequency of the
pressure perturbation. It is rather typical for the geometric optic approximation. It shows,
that if the frequency is high enough and the medium heterogeneity is smooth the above
approximation can be applied. In the case of the step-function like pressure perturbation
the frequency corresponding to the triggering front is accepted to beω = 2π/t. Using the
equation of the triggering front in homogeneous poroelastic media (2.6) the occurrence time
of earlier events can be roughly approximated ast ≈ x2/(4πD). Note, thatx denotes the
distance from the injection source. Thus, inequality (2.39) can be reduced to the following
one

|∂D/∂x|
D

¿ 2π
√

2
x

. (2.40)

This condition is a rather restrictive one. In addition, it shows that the smaller the distance
x the higher is the resolution of the method.

In spite of the restrictive character of the inequalities above, the geometric optic approx-
imation is applicable to the propagation of microseismicity triggering fronts under rather
common conditions. This is based on the causal nature of the triggering front definition.
When considering the triggering front we are interested in a quickest possible configuration
of the phase travel time surface for a given frequency. Thus, kinematic aspects of the front
propagation are of interest only. The quickest possible configuration of the phase front
is usually given by the Hamilton-Jacobi, i.e., eikonal equation. However, the conditions
above necessarily take into account not only kinematic aspects of the front propagation but
rather mainly dynamic aspects, i.e., amplitude of the pressure perturbation. In other words,
the eikonal equation is usually valid in much broader domain of frequencies than those
given by the inequalities above. Therefore, the method will give meaningful and useful
results, at least semi qualitatively.

2.4 Conclusions

A new technique (SBRC) was developed for reconstructing the permeability distribution
in 3-D heterogeneous poroelastic media. For this the seismic emission (microseismicity)
induced by a borehole-fluid injection is used. The SBRC is based on the hypothesis that the
early triggering front of the hydraulic-induced microseismicity in naturally stressed rocks
propagates like a diffusive process (the pore pressure relaxation process) in a heterogeneous
anisotropic poroelastic fluid-saturated medium.
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In a homogeneous medium the surface of the seismicity triggering front has the same form
as the group-velocity surface of the low-frequency anisotropic Biot slow wave. A version of
the SBRC approach which assumes that the medium is homogeneous provides an effective
(global) permeability tensor upscaled to the characteristic size of the seismically-active
heterogeneous rock volume. Usually, global estimates of permeabilities obtained by SBRC
agree well with permeability estimates from independent hydraulic observations.

A further generalization of the SBRC approach uses a geometrical-optic approximation for
propagation of triggering fronts in heterogeneous media. In this approximation in the case
of quasi harmonic pressure perturbations kinematical aspects of triggering front propaga-
tion are described by an eikonal equation. This equation must be modified for the case
of step-function like perturbation. In the case of isotropic heterogeneous media the inver-
sion for the hydraulic properties of rocks follows from a direct application of this modified
eikonal equation. In the case of an anisotropic heterogeneous medium only the magnitude
of a global effective permeability tensor can be mapped in a 3-D spatial domain. Results
of field examples show that SBRC can be used at least semi-quantitatively to characterize
reservoirs. It can be very helpful as a method providing important constrains or starting
models to reservoir simulations or for more sophisticated inversions.


