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Introduction

Among dynamical systems that possess a unique stationary distribution, there exist
metastable dynamical systems characterized by the fact that their invariant set can
be decomposed into almost invariant subsets. Once such a system is within one of
these subsets, it stays there for “a long time” before it rapidly switches to another
almost invariant subset.

In molecular dynamical systems, which are the focus of our applications here,
the almost invariant subsets are named metastable conformations, and the station-
ary density is the Boltzmann density. Since such dynamical systems spend most
of the time in one of the conformations, their geometric structures and dynamical
properties are essential for the molecule’s long-term behavior. This is of interest in
computational drug design, where, for example, the binding capacities of different
ligands to certain target molecules are examined in order to decide which new lig-
ands are worth to be tested in laboratory experiments. To make it computationally
feasible, a reduced description of the molecular system in terms of conformations is
needed.

For this purpose, a multi-scale method called conformation dynamics has been
developed. Its main objective is the identification of metastable conformations
together with their life times and transition patterns. In this mixed determin-
istic/stochastic approach, the dynamics is modeled as a Markov process in a dis-
cretized finite state space, which results in a nearly completely decomposable transi-
tion probability matrix. The application of a cluster algorithm reveals the metastable
conformations [21, 23].

The idea of conformation dynamics goes back to the work of Dellnitz and co-
workers on almost invariant sets of dynamical systems [14, 15]. The method has
first been realized for Hamiltonian systems as they appear in molecular dynam-
ics by Deuflhard et al. [20], but the approach suffered some conceptual problems.
A reformulation in terms of statistical mechanics and the definition of a spatial
transition operator by Schütte et al. [89, 88, 90] were the key steps until the algo-
rithmic concept became applicable to the identification of biomolecular conforma-
tions [18, 22]. The transfer operator approach led to the insight that metastable
conformations can be identified with eigenfunctions of the transfer operator corre-
sponding to eigenvalues near the Perron root λ = 1. These eigenvalues are denoted
as Perron cluster eigenvalues and are usually well-separated from the rest of the
spectrum. A discretization of the configuration space yields a discretized transfer
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2 Introduction

operator, the transition probability matrix P , whose entries must be approximated
by Monte-Carlo quadrature. Since dynamical systems arising in molecular simula-
tions are mostly high-dimensional, the number of discretized states tends to increase
exponentially with the dimension. To avoid this curse of dimensionality, Weber in-
troduced mesh-free methods [109]. The eigenvectors corresponding to the Perron
cluster eigenvalues form an invariant subspace, the Perron subspace. The Robust
Perron Cluster Analysis (PCCA+) [23] constructs a linear transformation between
a basis of the Perron subspace and the discretized almost characteristic functions
of metastable conformations. Once these conformations have been identified, tran-
sition probabilities between them can be computed, which requires the knowledge
of the discrete stationary density. However, whenever a dynamical system exhibits
metastabilities, the computation of its discrete stationary density as eigenvector of
the transition probability matrix is highly ill-conditioned, whereas the computation
of the partial densities restricted to the conformations is well-conditioned. This led
to the development of a new aggregation/disaggregation method, where the aggre-
gation step is not based on the matrix but on an enhanced sampling algorithm that
covers only small patches of the sampling space [112].

Upon application of conformation dynamics to larger molecules, new difficulties
came into sight. They are the focus of the present thesis.

(i) The main deficiency in former analyses of conformation dynamics was the
lack of error estimators for the variables of interest, for example the Perron
subspace. Weber’s normE-criterion [109] gives only error bounds for the sta-
tionary distribution, which, due to ill-conditioning, yields impractically large
bounds. However, since the entries of the transition probability matrix are
determined by Monte-Carlo quadrature, it seems appropriate to assume ran-
dom perturbations. As will be shown in this thesis, the errors in the matrix
elements can efficiently be described by a few parameters of an appropriate
probability distribution. By the use of matrix perturbation theory [17, 105],
Markov chain theory [70, 9, 53], and statistics [77, 78, 91], these errors can be
related to the errors in the Perron subspace and other variables of interest.

(ii) The approximation of matrix elements by Monte-Carlo quadrature is only
one possible source of errors. The second main source is the quality of the
discretization. These two aspects are closely related. Weber already pointed
out that the sampling error is large, whenever there exist energy barriers
within the sampling domain. For this reason, he suggested the idea of a
hierarchical refinement of the current decomposition. Its practical realization,
however, had been left as an open problem. Questions that will be answered
here include error estimators, refinement criteria, the generation of new basis
functions, and possible stopping criteria. They build the basis for a new
sampling scheme that involves adaptive sampling and hierarchical refinement
of basis functions.

(iii) The introduction of domain decomposition concepts and approximation errors
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caused by truncated samplings led to a loss of reversibility in the resulting
transition matrix. Thus, the perturbation analysis, originally developed for re-
versible metastable Markov chains, no longer applies. Surprisingly, PCCA+
turned out to be robust, a fact that will be proved here by a modified pertur-
bation analysis based on the sensitivity of invariant subspaces.

(iv) Weber realized mesh-free discretizations in terms of radial basis functions
[109]. Such basis functions increase the acceptance ratio in Monte-Carlo sam-
pling methods. Furthermore, they additionally introduce a mass matrix S
in the resulting eigenvalue problem. In other words, the standard eigenvalue
problem PX = XΛ turns into a generalized eigenvalue problem PX = SXΛ.
While the matrix P can be interpreted as transition probability matrix of a
“standard” Markov chain, the matrix pair (P, S) does not allow for such an
interpretation. Nevertheless, we will speak of “generalized” Markov chains.
The appearance of a mass matrix and the characterization of metastabilities
in terms of almost characteristic functions require a modification in the deriva-
tion of a coarse-grained transition probability matrix that describes transition
probabilities between metastable conformations. This approach will lead to a
new objective function for PCCA+.

(v) Moreover, the identification of metastable conformations from matrix pairs
often fails. The reason for this fact lies in the dependence of the condition
number of the Perron subspace on the shape parameter of the radial basis
functions. This relation will be examined in the thesis.

The solution of the above listed problems is crucial for the applicability of con-
formation dynamics to larger molecular systems. Our methods include molecular
dynamics simulations, which are the most time-consuming part of the algorithms.
Alternatively, one could restrict the analysis to given data, for example to long term
trajectories, but this method prevents the possibility of adding missing information
by extended sampling. If no access to supercomputers such as Blue Gene [33] or
distributed computing platforms such as Folding@Home [84] is available, efficient
sampling methods are especially important. In other words, we have to generate
as few trajectories as possible, but as many trajectories as necessary. This is the
key to running conformation dynamics algorithms for larger molecules on single
workstations or computer clusters.

Outline The thesis is organized as follows. Chapter 1 contains the mathemat-
ical background of conformation dynamics. It explains the steps that lead from
a continuous dynamical system to a discrete transition probability matrix, from
which conformations are recovered by PCCA+. Chapter 2 summarizes pertur-
bation bounds on relevant matrix functions. Chapter 3 shows that transition
matrices stemming from molecular simulations can be considered as perturbations
of a certain class of matrices with special properties. This explains the stability of
PCCA+ even for non-reversible Markov chains. Moreover, Chapter 3 refers to
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the limitations of the perturbation theory in case of generalization to matrix pairs
as they arise from the discretization by radial basis functions. Chapter 4 illus-
trates how the matrix errors can be quantified from simulation data such that the
perturbation theory becomes of practical use. Since the error estimation is based
on statistics, not only error bounds but also error distributions can be computed.
As it turns out, the error bounds allow conclusions about the error contributions
from different basis functions. This is the starting point for Chapter 5, where it
is demonstrated how adaptive sampling and hierarchical refinement systematically
reduce the error in the output. Finally, in Chapter 6, we apply the methods to
the analysis of a small biomolecule, thus demonstrating the advantages of the newly
developed techniques over previous ones.



Chapter 1

Conformation Dynamics

The main challenge in molecular modeling is to bridge the different scales in space
and time between computational methods and real life phenomena due to limited
computer power. Computational methods can cover the dynamics of all atoms in
detail but they are restricted to short simulation times in the range of femtoseconds
(fs) and to medium-sized molecules. A possible way to circumvent these problems
is to perform a model reduction like conformation dynamics. This method is a
mixed deterministic/stochastic approach that combines data-based coarse graining
with efficient sampling techniques. In the presence of metastabilities, it is virtually
impossible to explore all physically relevant parts of the molecular state space with
one single trajectory because it would get trapped in basins of attraction of the po-
tential energy surface. Therefore, the state space is decomposed such that different
regions can be sampled independently. The dynamical process is then modeled as a
Markov chain in this finite state space. Since the states are located in different re-
gions of the sampling space, including transition states, the trapping problem does
not occur. Hence the resulting Markov chain does not suffer from the problem of
broken ergodicity. The Markov chain is defined by a transition probability matrix,
which is the basis for the identification of conformations. The first section of this
chapter explains the mathematical background of the steps that lead from the con-
tinuous dynamical system to the transition probability matrix. The recovering of
metastable conformations from this matrix via the Robust Perron Cluster Analysis
will be the topic of the second section. While the first section mainly contains well-
known facts about conformation dynamics, which is necessary for the understanding
of subsequent chapters, the second section includes a new contribution to the coarse
graining of discrete transition operators in the case of radial basis functions.

1.1 From continuous to discrete systems

The starting point for our mathematical algorithms is the constitutional formula
of a certain molecule. The parameterization by a force field like Merck Molecular
Force Field (MMFF) [39, 40] makes it feasible for potential energy calculations and

5



6 1 Conformation Dynamics

thus for molecular dynamics simulations. This is the basis for the algorithm which
leads to a reduced description of the dynamics in terms of a finite dimensional state
space.

1.1.1 Molecular dynamics

Consider the canonical ensemble (constant number of particles, constant volume,
constant temperature) in equilibrium, i. e., the positions q ∈ Ω and momenta p ∈ Rd

of all d atoms are distributed according to the Boltzmann (or canonical) density,

µ(q, p) =
1
Z

exp(−βH(q, p)).

H denotes the Hamiltonian function, which is the sum of potential energy V (q) and
kinetic energy K(p), β = 1/(kBT ) denotes the inverse temperature with Boltzmann
constant kB, and Z is the corresponding partition function. The canonical density
can be split into a distribution of momenta and positions, µ(q, p) = η(p)π(q), with

π(q) =
1
Zq

exp(−βV (q)) and η(p) =
1
Zp

exp(−βK(p)).

The positional density π(q) : Ω → [0, 1] induces an inner product in L2(π),

〈f, g〉π ≡
∫

Ω
f(q)g(q)π(q) dq.

Equivalently, we write 〈f〉π if we refer to
∫
Ω f(q)π(q) dq.

Molecular properties are determined by ensemble averages. However, in order
to derive these averages, one must examine single molecules. For this purpose, one
has to specify some microscopic dynamics. The corresponding equations of motion
depend on the model assumption and requirements. The dynamics is supposed to
model internal fluctuations within the unique stationary distribution.

The dynamics of choice is the Hamiltonian dynamics with randomized momenta.
It simulates the relaxation of the molecule after an initial interaction with the heat
bath (surrounding).

Hamiltonian dynamics with randomized momenta Consider the determin-
istic Hamiltonian system

q̇ = p, ṗ = −∇V (q)

with corresponding flow Φτ , i.e. (q(t), p(t)) = Φτ (q(0), p(0)). The process

qn+1 = ΠqΦτ (qn, pn), n ∈ N,

with pn chosen randomly from the canonical distribution of momenta, represents
a discrete time Markov process on Ω. Here, Πq is the projection of a state (q, p)
onto its position coordinate q. It has been shown that π(q) is invariant w.r.t. that
process [88].
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The corresponding one-step transition function is given by

p1(τ, f, g) =
∫

Ω
T τf(q)g(q)π(q) dq,

where T τ is the transfer operator introduced by Schütte [88],

T τf(q) =
∫

Rd

f(ΠqΦ−τ (q, p))η(p)dp.

It gives rise to a semigroup of propagators Tnτ : L1(π) → L1(π) by
Tnτ = (T τ )n. Thus the knowledge of T τ allows the prediction of long term dy-
namic behavior. Moreover, T τ is self-adjoint in L2(π).

Remark 1.1.1. In classical molecular dynamics (MD), the discrete time process is
given by (qn+1, pn+1) = Φτ (qn, pn). Since the energy H(q, p) is conserved over time,
the process generates a micro-canonical molecular dynamics trajectory (constant
energy instead of constant temperature).

1.1.2 Metastable conformations

A metastable conformation is characterized by an average geometric structure that
is preserved over a long period of time before the molecule switches to another
metastable conformation. Thus, metastable conformations are defined from a dy-
namical point of view. They are not dynamically stable, but still metastable. Al-
though we will mostly speak of conformations and skip the term “metastable”, the
concept should not be confused with geometric conformations, a term that is often
used in the chemical literature to denote single molecular configurations.

From a mathematical point of view, conformations are almost characteristic
functions χ : Ω → [0, 1] defined in position space which are almost invariant under
the transfer operator T τ [88, 109]. Assume there are nC such conformations. Then

T τχk(q) ≈ χk(q), k = 1, . . . , nC . (1.1)

The use of ≈ instead of equality should emphasize the attribute almost in connection
with invariance. Metastability analysis aims at a decomposition of the position
space Ω into nC metastable conformations χ1, . . . , χnC such that these functions
are non-negative (χk(q) ≥ 0) and form a partition of unity,

nC∑
k=1

χk(q) = 1 ∀ q ∈ Ω, k = 1, . . . , nC .

Conformation dynamics comprises the description of the dynamic behavior of
molecules in terms of transition probabilities between metastable conformations. In
some cases, average holding times and transition rates can be derived as well.
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1.1.3 Discretization

The first step in modeling complex dynamical systems is a discretization of Ω in
terms of a finite number of states, denoted by indices i = {1, . . . , N}. It is a
well known fact that the application of mesh based methods to high dimensional
approximation problems, as they appear in conformation dynamics, leads to the
“curse of dimensionality”. For this reason, Weber [109] introduced the concept of
mesh-free methods. The notation “mesh-free” refers to a particle based discretiza-
tion method. Given a number of nodes {qi}N

i=1 ∈ Ω, they define a set of functions
φi(q) ≡ φi(qi, q) : Ω → [0, 1] which form a partition of unity. These functions can be
either characteristic functions or almost characteristic functions. The special kind of
discretization has different algorithmic consequences, which will play a role in later
chapters. In either case, the conformations are expressed as linear combinations of
basis functions,

χj(q) =
N∑

i=1

χdiscr(i, j)φi(q), j = 1, . . . , nC . (1.2)

Since we will nearly always work with the discrete membership vectors χdiscr(:, j), we
will from now on skip the subscript “discr” and identify χj ≡ χdiscr(:, j). Whenever
a distinction becomes necessary, we will write χj(q) for the continuous function.

Voronoi tessellation A special kind of mesh-less discretization is the decom-
position of Ω into N subsets. These subsets are described by characteristic basis
functions {φi(q)}N

i=1 with φi : Ω → {0, 1}. The basis functions are defined as
Voronoi tessellation of Ω,

φi(q) =

{
1, if d(q, qi) = minj=1,...,nC d(q, qj)
0, else

,

where d(x, y) denotes some appropriate distance function, for example the Euclidean
metric.

A Galerkin discretization of condition (1.1) in terms of (1.2) leads to the stan-
dard eigenvalue problem

P τχj ≈ χj , j = 1, . . . , nC , (1.3)

where

P τ (i, j) =
〈φi, T

τφj〉π
〈φi〉π

, i, j = 1, . . . , N.

The denominator is the statistical weight of basis function φi(q),

wi ≡
∫

Ω
φi(q)π(q) dq. (1.4)
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The vector w = [w1, . . . , wN ]> is the left eigenvector of P τ corresponding to the
eigenvalue λ = 1,

w>P τ = w>.

It is denoted as stationary density or stationary distribution of P τ .
If the positional density π(q) is restricted to a certain basis function and nor-

malized appropriately, we obtain the partial density

πi(q) ≡
φi(q)π(q)∫

Ω φi(q)π(q) dq
. (1.5)

The partial densities πi(q) are Boltzmann densities corresponding to modified po-
tentials Vi(q) [109],

πi(q) =
exp(−β Vi(q))∫

Ω exp(−β Vi(q)) dq

with

Vi(q) =

{
V (q), if φi(q) = 1
∞, if φi(q) = 0

. (1.6)

Using these notations results in

P τ (i, j) =
∫

Ω
T τφj(q)πi(q) dq.

The matrix P τ ∈ RN×N is a stochastic transition probability matrix that describes
the transition behavior between the states. Metastable conformations will be iden-
tified from this matrix via the Robust Perron Cluster Analysis, which will be de-
scribed in Section 1.2.

Radial basis functions Alternatively to characteristic basis functions, Ω can
be discretized by almost characteristic basis functions, for example radial basis
functions

φi(q) =
exp(−α d2(q, qi))∑N

j=1 exp(−α d2(q, qj))
. (1.7)

The shape parameter α influences the overlap between the basis functions. The
larger α, the smaller the overlap. As α goes to infinity, the Voronoi tessellation is
recovered.

A Galerkin discretization of condition (1.1) in terms of (1.2) leads to the gener-
alized eigenvalue problem

P τχj ≈ Sχj , j = 1, . . . , nC , (1.8)

where

P τ (i, j) ≡ 〈φi, T
τφj〉π

〈φi〉π
(1.9)
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and
S(i, j) ≡ 〈φi, φj〉π

〈φi〉π
. (1.10)

Note that S is also a row-stochastic matrix with stationary distribution w. In terms
of partial densities (1.5), the matrix entries can be rewritten as

P τ (i, j) =
∫

Ω
T τφj(q)πi(q) dq, (1.11)

S(i, j) =
∫

Ω
φj(q)πi(q) dq. (1.12)

The corresponding modified potential reads

Vi(q) = V (q)− 1
β

log(φi(q)). (1.13)

Thus, the sampling of the partial density πi(q) can be considered as umbrella sam-
pling [106] with modified potential Vi(q). Note that the expression for P τ is the
same as in the Voronoi case. The matrix pair (P τ , S) is then examined by the
Robust Perron Cluster Analysis to identify metastable conformations. In the fol-
lowing, we will skip the index τ at the matrix P . However, if distinction of matrices
according to different simulation times τ becomes necessary, it will be added.

1.1.4 Simulation

The first step of the sampling routine comprises the generation of sampling points
{q(i)

k }ni
k=1 via hybrid Monte-Carlo (HMC) [26, 32] according to the partial density

πi(q). In HMC sampling, the proposal step is realized via a short term molecular
dynamics simulation. If the cells of the Voronoi tessellation become too small, the
MD trajectories might often lead to end points outside the cell, which results in
a small acceptance ratio of the sampling routine. To diminish this problem, one
could apply umbrella sampling [106] which drives the dynamics towards the center
of the cell. Umbrella sampling increases the acceptance ratio but requires the addi-
tional storage of weights for all sampling points. This disadvantage can be avoided
by directly incorporating the umbrella sampling functions into the discretization,
which gave rise to the idea of radial basis functions. High acceptance ratios can be
considered as the main advantage of that approach.

For radial basis functions, the horizontal sampling is used for an approximation
of (1.12) by Monte-Carlo quadrature,

S(i, j) ≈ 1
ni

ni∑
k=1

φj(q
(i)
k ). (1.14)

Monte-Carlo integration of (1.11) includes the generation of random momenta
{p(ik)

l }mik
l=1 and the application of the flow Φτ to the sampling points (q(i)

k , p
(ik)
l ),

P (i, j) ≈ 1
ni

1
mik

ni∑
k=1

mik∑
l=1

φj(ΠqΦτ (q(i)
k , p

(ik)
l )). (1.15)
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Figure 1.1: For every basis function φi(q), the partial density πi(q) is approximated
by a horizontal trajectory which is generated by hybrid Monte-Carlo. The ensemble
of points is then propagated by molecular dynamics in order to estimate transition
probabilities. Here q

(i)
jk = ΠqΦτ (q(i)

j , p
(ij)
k ).

In case of a Voronoi tessellation, the transition probability P (i, j) from a state i

to another state j is simply the portion of points {q(i)
k }ni

k=1 located in basis function
j after propagation. For radial basis functions, one has to compute the values
of all basis functions in the end points {ΠqΦτ (q(i)

k , p
(ik)
l )} and to sum up these

vectors over all points. Both discretizations require the computation of distances
between sampling points and the centers of the basis functions. Moreover, in case
of a Voronoi tessellation, one has to compute the argmin-value of these distances,
whereas in case of radial basis functions one has to apply the exponential function
and to compute the sum of these values, compare (1.7). Thus, radial basis functions
require slightly more computation time than Voronoi cells. Furthermore, much less
storage space is needed if one wants to store the values of the basis functions for
every sampling point in case of Voronoi cells compared to radial basis functions.
This can simplify, for example, a-posteriori analysis based on resampling techniques.

The overall sampling scheme is illustrated in Figure 1.1. The points {q(i)
k }ni

k=1

will be referred to as horizontal points or horizontal trajectory, whereas the points
{q(i)

kl = ΠqΦτ (q(i)
k , p

(ik)
l )} will be denoted as vertical points or vertical trajectory.

Similarly, the process of generating the horizontal trajectory will be denoted as
horizontal sampling, whereas the process of generating vertical sampling points
will be denoted as vertical sampling. Depending on the sampling method, some
horizontal points could be propagated several times with different initial momenta,
whereas other points might not be propagated at all.

In the described sampling scheme, all rows of P and S are computed separately.
The discretization in terms of basis functions φi(q) represents a partitioning of the
sampling space such that different regions are sampled independently. Hence, we
may as well speak of domain decomposition in Ω.

1.1.5 Error analysis

Since the elements of the matrices P and S are computed by Monte-Carlo quadra-
ture, they suffer from truncation errors. Instead of computing exact matrices P
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Figure 1.2: Toy example: Stationary density for β = 0.4.

and S, we end up with perturbed matrices P̃ = P +E and S̃ = S +F . Weber [109]
proposed a method to estimate ‖E‖∞ or ‖F‖∞, respectively, the so-called normE-
criterion. Since ‖E‖∞ = maxi=1,...,N ‖E(i, :)‖1, the norm of the error matrix can be
related to the row wise error that results from the sampling error of a single basis
function φi. To quantify this error, one starts a number c of well dispersed Markov
chains in basis function φi. All chains result in c different rows Pk(i, :), k = 1, . . . , c,
from which the estimate

‖E(i, :)‖1 ≤ max
l,k=1,...,c

‖Pk(i, :)− Pl(i, :)‖1, i = 1, . . . , N. (1.16)

is obtained. In practice, this kind of worst-case error estimator turns out to be too
pessimistic because it is sensitive w.r.t. outliers. The sampling effort to make ‖E‖∞
smaller than a certain bound is in most cases extremely large. Moreover, the error
does not necessarily decrease with increasing number c of sampling chains. This
motivated the construction of more appropriate estimators that will be presented
in Chapter 4.

1.1.6 A toy example

Throughout the chapters, we will often return to the following “toy system”. We
consider a two dimensional periodic domain Ω = [−π, π]2 and an artificial potential
energy

V (q) = −5 cos(3qx) + 0.5q2
x − 5 cos(3qy) + 0.5q2

y , (1.17)

which defines a Hamiltonian dynamical system w.r.t. positions q and momenta p,

q̇ = p, ṗ = −∇V (q).
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Figure 1.3: Structure of an unperturbed transition matrix with nc stable clusters.

The potential V is very similar to the free energy landscape of a pentane molecule
restricted to the space spanned by two dihedral angles. This low dimensional ex-
ample allows fast calculations and visualization. Unless stated differently, we will
always consider the system at inverse temperature β = 0.4. The change of the
dynamical behavior w.r.t. β has been considered by several authors [45, 30, 29]
but will not be in the scope of the present thesis. For β = 0.4, the corresponding
stationary density π(q) ∝ exp(−βV (q)) decomposes into nine well separated peaks
that represent the metastable conformations, see Figure 1.2. To apply molecular
dynamics for this system means that we use the Verlet algorithm [32] with time
step τ = 0.01. Other quantities will be given explicitly in the concrete examples.

1.2 Robust Perron Cluster Analysis

The transition probability matrix P represents a Markov chain on the state space
spanned by the basis functions. If discretized appropriately, the metastabilities in-
herent in the continuous system can be recovered from the structure of P . If two
basis functions belong to the same metastable region, the transition probability be-
tween them will be large, whereas the transition probability between basis functions
from different metastable regions will be small. Thus, after an appropriate permu-
tation of states, the matrix P will become nearly block-diagonal. An assignment of
states to the blocks corresponds to an assignment of basis functions to metastable
regions. This is the task of the cluster algorithm.

1.2.1 Perturbation theory for reversible Markov chains

To explain the basic idea of the clustering algorithm, assume that Ω can be de-
composed into stable parts, i.e. the corresponding Markov chain is decomposable.
The transition probability matrix of a decomposable Markov chain can be reordered
such that it becomes block diagonal, see Figure 1.3. Such matrices have an nC-fold
eigenvalue λ = 1, the so-called Perron root, where nC corresponds to the number
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of decoupled Markov chains. The corresponding eigenvectors {Xj}nC
j=1, the Perron

eigenvectors, are piecewise constant on the blocks and can thus be used to identify
the clusters [21]. They can be written as linear combinations of the characteristic
vectors of the metastable conformations,

Xj =
nC∑
k=1

akjχk,

where

χk(i) =

{
1, if state i belongs to cluster k

0, else
.

The perturbation theory developed in [21] shows that if, under some additional
conditions, the matrix P̃ is an O(ε)-perturbation of a block-diagonal matrix P ,

P̃ = P + εP (1) + O(ε2),

then the transition matrix P̃ will have a Perron cluster of eigenvalues

λ̃1 = 1, λ̃2 = 1−O(ε), . . . λ̃nC = 1−O(ε) ,

where ε > 0 denotes some perturbation parameter, which is scaled as

ε = 1− λ̃2 .

Moreover, there will be a set of corresponding eigenvectors X̃ = [X̃1, . . . , X̃nC ] ∈
RN×nC of the form

X̃i = Xi + εX
(1)
i + O(ε2) .

In [21], the result

Xi =
nC∑
j=1

α̃ij χj + ε
N∑

j=k+1

1
1− λj

ΠjP
(1)Xi︸ ︷︷ ︸

Ri

+O(ε2) (1.18)

has been obtained, where Πj denotes the π-orthogonal projection on the eigenspace
of P̃ corresponding to the eigenvalue λ̃i [52]. Unfortunately, the statement that Ri

equals zero as given in [23] turned out to be wrong (see [55]). Thus, perturbations of
order ε in the matrix elements cause errors of order ε in the characteristic functions
of the conformations.

The proof of (1.18) exploits that P̃ is generalized symmetric,

D̃2P̃ = P̃>D̃2, (1.19)

where D̃2 = diag(w̃i) and w̃ is the unique stationary distribution of P̃ ,

w̃>P̃ = w̃>.
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Equation (1.19) is just another formulation of the detailed balance condition,

w̃iP̃ (i, j) = w̃jP̃ (j, i), ∀ i, j = 1, . . . , N. (1.20)

However, this assumption is often violated in practical calculations due to the ap-
plication of domain decomposition methods and truncated sampling. Therefore, a
modified perturbation theory will be presented in Chapters 2 and 3.

Example 1.2.1. This example was part of a personal discussion with Ruedi Seiler
from TU Berlin and should illustrate the perturbation theory described above.

Consider P (ε) = P (0) + εP (1) with

P (0) =
1
2


1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

 and P (1) =


0 −1 0.5 0.5
−1 0 0.5 0.5
0.5 0.5 −1 0
0.5 0.5 0 −1


Let us first consider the unperturbed matrix P (0). It has a twofold eigenvalue λ = 1
with corresponding eigenvectors

X1(0) = [1, 1, 0, 0]> and X2(0) = [0, 0, 1, 1]>,

and a twofold eigenvalue λ = 0 with eigenvectors

X3(0) = [−1, 1, 0, 0]> and X4(0) = [0, 0, −1, 1]>,

The orthogonal projections Π3(0) and Π4(0) on the corresponding eigenspaces are

Π3(0) =
1
2


1 −1 0 0
−1 1 0 0
0 0 0 0
0 0 0 0

 and Π4(0) =
1
2


0 0 0 0
0 0 0 0
0 0 1 −1
0 0 −1 1

 .

According to the perturbation theory, the perturbed Perron eigenvectors can be
written as a linear combination of the unperturbed vectors plus error terms εRi +
O(ε2). In this example, R1 and R2 are indeed zero, but this is not satisfied in
general as will be shown below. There are some interesting facts in the current
example. First note that the eigenvalues of the perturbed matrix P (ε) are given by

{λi(ε)}4
i=1 = {1, 1− 2ε, ε, −ε}.

For ε = 1/3, the second eigenvalue degenerates, i. e. the corresponding eigenvectors
are no longer analytic in ε. As long as ε < 1/3, the first two eigenvectors of the
perturbed matrix are independent of ε,

X1(ε) = [1, 1, 1, 1]> and X2(ε) = [1, 1, −1, −1]>.

Even more interesting is the fact that they span the same subspace as the unper-
turbed eigenvectors (that is why R1,2 equals zero). Thus, PCCA+ will produce
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the same membership vectors χ in the perturbed case as in the unperturbed case,
namely

χ1(ε) = [1, 1, 0, 0]> and χ2(ε) = [0, 0, 1, 1]>,

despite the fact that ε can be “large”.
Now consider a different perturbation in the form P (ε̂) = P (0) + ε̂P̂ (1) with

P̂ (1) =


0 −1 0.5 0.5
−1 0 0.75 0.25
0.5 0.75 −0.5 −0.75
0.5 0.25 −0.75 0

 .

If ε̂ > 0.5, P (ε̂) will not be positive. As long as ε̂ ≤ 0.5, P (ε̂) will be stochastic and
reversible. In this case, the term R2 does not vanish, i.e.

X̂
(1)
2 = [0, 0, −1, 1]>

is not in the span of the first two eigenvectors.

1.2.2 Basic algorithm

The first cluster algorithm, which was based on the sign structure of the Perron-
eigenvectors, was PCCA [21]. Deuflhard and Weber [23] developed the more robust
variant PCCA+ by exploiting the simplex structure of the eigenvectors for cluster-
ing. In case of a decomposable Markov chain, the rows of the Perron eigenvectors
can be considered as vertices of an (nC − 1)-dimensional simplex. Each state can
be assigned to one of the nC vertices and thus to one of the nC blocks. Under
perturbation, the simplex will be disturbed. There will be rows which cannot be
assigned uniquely to one of the blocks. Instead, PCCA+ aims at an assignment of
states i ∈ {1, . . . , N} to clusters j ∈ {1, . . . , nC} with certain grades of membership
χ(i, j) ∈ [0, 1].

Definition 1.2.2. [109] A set of vectors {χj}nC
j=1 with χj ∈ RN are called mem-

bership vectors if they meet the following properties.

1. χj(i) ≥ 0 ∀i ∈ {1, . . . , N}, j ∈ {1, . . . , nC} (positivity),

2.
∑nC

j=1 χj(i) = 1 ∀i ∈ {1, . . . , N} (partition of unity),

3. ∀j ∈ {1, . . . , nC} ∃i ∈ {1, . . . , N} : χj(i) = 1 (vertex condition).

The membership vectors can be interpreted in the sense of assigning a state i to
a cluster j with a certain probability χj(i). Note that the characteristic vectors χj :
Ω → {0, 1} introduced in Section 1.2.1 are a special instance of membership vectors.
They are also called crisp or hard membership vectors, whereas general membership
vectors are also denoted as soft membership vectors or soft characteristic vectors.
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The cluster algorithm PCCA+ aims at the generation of a regular transforma-
tion matrix A ∈ RnC×nC such that

χ = XA (1.21)

becomes a matrix of membership vectors. Here, X are the right eigenvectors of
the matrix P corresponding to the Perron cluster of eigenvalues near λ1 = 1. The
existence of such a transformation cannot be ensured for general transition matri-
ces. One of the four constraints on χ (positivity, partition of unity, vertex condi-
tion, invariant subspace) must be dropped to obtain an approximate solution [109].
Therefore, PCCA+ searches for a matrix A that optimizes some objective function
depending on the missing constraint [109, 23].

Originally, the objective was to maximize metastability, which is defined in [21]
as

trace(D−2
c χ>D2Pχ︸ ︷︷ ︸

P

), (1.22)

where D2
c = diag(χ>w). The matrix P is called coupling matrix and can be con-

sidered as a coarse grained transition probability matrix. In case of crisp member-
ship vectors χ : Ω → {0, 1}, it describes transition probabilities between set-based
metastable conformations. Thus, the objective is to maximize the holding proba-
bilities within the conformations.

1.2.3 A new objective function

In case of non-overlapping basis function, i.e. S = I, the transition probability
matrix P can be used to propagate discrete densities x(t) (xi(t) ≥ 0,

∑
i xi(t) = 1),

x(t + τ) = P>(τ)x(t).

Such densities can be restricted to the space of metastable conformations via the
membership functions χ,

xc(t) = χ>x(t).

This leads immediately to the question whether there exists a coarse grained prop-
agator matrix Pc such that propagation and restriction commutate in the sense
that

χ>P>(τ)x(t) = P>
c (τ)χ>x(t). (1.23)

This task has been examined in detail in [58, 60]. Indeed, under the condition that
χ is an invariant subspace of P (which is satisfied for PCCA+ because χ is a linear
transformation of eigenvectors), the coarse propagator matrix

Pc = (D−2
c χ>D2χ)−1D−2

c χ>D2Pχ = (χ>D2χ)−1χ>D2Pχ

satisfies (1.23). The proof is based on the assumption that the Perron eigenvectors
of P are orthogonal. Then they can be normalized such that X>D2X = I and
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consequently Pc = A−1ΛA. Thus, the Perron cluster eigenvalues are maintained,
which preserves the timescales of conformation dynamics. This can be considered
as the main advantage of PCCA+. Note that for crisp membership vectors χi :
Ω → {0, 1} the original definition (1.22) is recovered (Pc = P).

Remark 1.2.3. The matrix

χ†D = (χ>D2χ)−1χ>D2

can be considered as weighted pseudo-inverse and has already been examined by
G. W. Stewart [101]. The solution of the weighted least squares problem

‖D(y − χb)‖2 → min
b

,

where D2 is a diagonal matrix with positive diagonal elements, is given by b = χ†Dy.

The coarse graining procedure generalizes to the case of overlapping basis func-
tions by taking into account the mass matrix S. The appropriate coupling matrix
is given by

Pc = (D−2
c χ>D2Sχ︸ ︷︷ ︸

S

)−1D−2
c χ>D2Pχ = (χ>D2Sχ)−1χ>D2Pχ. (1.24)

This is the coarse analog to the matrix S−1P , which can be considered as matrix
representation of the transfer operator T τ in VN = span{φ1, . . . , φN}, compare
Eq. (1.8). Theoretically, the matrix S is generalized symmetric w.r.t. the stationary
density w, i.e. D2S = S>D2 1. In this case, the subspace basis X with PX = SXΛ
can be normalized such that X>D2SX = I. Then

Pc = S−1P = A−1ΛA.

Optimization of trace(Pc) or det(Pc) makes no sense because the expressions
only depend on Λ but not on A or χ, respectively. On the other hand, the matrices
P and S are stochastic whereas Pc is not, since it can have negative entries. Thus
the interpretation of Pc as a Markov chain transition matrix will fail. However, if S
were the identity, then Pc = P would be a row-stochastic matrix. This motivated
the new objective to find a transformation matrix A such that S gets close to the
identity matrix,

‖S(A)− InC‖ → min .

This corresponds to a minimization of the off-diagonal entries in S. Since trace(S) ≤
nC = trace(InC ), an appropriate objective function is given by

F (A) = trace(S(A)) → max .

1The perturbation of symmetry by the sampling scheme will be considered in detail in Sec-
tion 3.1.3.3.
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This equals the original objective function (1.22) with P replaced by S. Thus, the
implementation of the algorithm PCCA+ need not to be modified, but requires
only a different input argument. The new objective function can be interpreted as
making the conformational membership vectors as crisp as possible.

Remark 1.2.4. Different objective functions that force S towards the identity are
possible, for example the objective function used by Shalloway et al. [54]

F (A) =
∑

i

log(S(i, i)),

for which a gradient-based optimization routine has been developed [114]. Alterna-
tively, the objective function

F (A) = det(S)

can be related to holding times in metastable macro-states [109].

1.2.4 Characteristic life times

From [18], the characteristic life times or holding times of conformations are known
to behave (in first order) like

τi
.=

τ

1− Pc(i, i)
, (1.25)

where τ is the time step used for vertical propagation to approximate P τ . Clearly,
these times are extremely sensitive to perturbations of Pc(i, i) < 1 when Pc(i, i) is
close to 1.

Therefore, the numbers τi should only be interpreted qualitatively, but chemical
knowledge must be added to find the true quantitative values for characteristic life
times of molecular conformations. Alternatively, one could use a sampling-based
approach to obtain statistics of holding times, from which the characteristic life
times can be approximated directly by parameter estimation [57].





Chapter 2

Matrix Perturbation Theory

The central question of this chapter is the following: How does a matrix function
change when the matrix entries are subject to perturbations? The matrix functions
we are concerned with are the Perron cluster eigenvalues and the corresponding
invariant or deflating subspace, respectively. These are the quantities that influence
the decision for the number of metastable conformations and the assignment of
discrete states to the conformations. In other words, the accuracy of these quantities
influences the accuracy of the clustering. Emphasis is put on perturbation bounds
and the derivation of condition numbers that give insight into the sensitivity of
the eigenvalue problems. In some cases, there exist sharper, maybe even optimal
bounds, which are mostly more complicated. Instead, we decided to present bounds
that are easier to calculate and thus of more practical use.

The sensitivity analysis of eigenvectors and invariant subspaces goes back to
Stewart [97, 98, 99, 105], Golub and Wilkinson [37]. Later on, the theory was
refined and became part of numerical software [16, 17, 4, 49]. The material in
this chapter summarizes these contributions. It prepares the ground for subsequent
chapters and does not contain major new aspects in the perturbation analysis of
matrix eigenvalue problems. The main focus lies on first order perturbation bounds,
which will allow for efficient error estimation in subsequent chapters.

2.1 The standard eigenvalue problem

In this section we will deal with the perturbation of eigenvalues and invariant sub-
spaces of a matrix A ∈ RN×N . We are concerned with the question whether the
eigenvectors of a perturbed matrix Ã = A + E inherit the structure from the un-
perturbed eigenvectors. At this point an essential difference in comparison to the
previous perturbation theory comes into play. We are not able to derive perturba-
tion results for single eigenvectors because they are not unique in the unperturbed
case. Instead, we can apply existing perturbation results for invariant subspaces.
Since the goal of PCCA+ is to generate a linear transformation in the form of
(1.21), the clustering is independent of the choice of basis vectors. In other words,

21
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single columns of X do not play a role, only the subspace they span is of interest.
The sensitivity of the Perron root and the corresponding invariant subspace are the
topic of the present section.

2.1.1 Preliminaries

In the following, we will introduce the notion of distance between subspaces and the
separation of matrices, which are necessary do derive condition numbers for cluster
eigenvalues and the corresponding invariant subspace.

Angles between subspaces Denote by σ(A) the singular values of a matrix A.
Given two subspaces X and Y of same dimension with orthonormal bases X and
Y , respectively, the largest principal angle is given by [36]

θmax(X ,Y) = arccosσmin(Y HX) = arcsinσmax(XH
⊥ Y ).

The largest principal angle is related to the notion of distance between equidimen-
sional subspaces,

dist(X ,Y) = sin(θmax).

In the following, we identify sin Θ(X ,Y) = diag(sin θi(X ,Y)). Sometimes, we use
the symbol R if we refer to the column space of a matrix, for example X = R(X).

Real valued subspaces The above definition of subspace angles is also valid for
complex valued subspaces. Let X and Y be unitary bases where complex vectors
appear as conjugate pairs. Then

θmax(X, Y ) = θmax([real(X), imag(X)], [real(Y ), imag(Y )]).

A problem arising in the nearly reversible case is that the eigenvectors might
become complex valued, which is undesirable for the application of PCCA+. A
possible way to circumvent this problem is to work with the real Schur decom-
position of A and apply PCCA+ to the real Schur vectors. This is verified by
the fact that the real Schur vectors span the same subspace as the corresponding
complex Schur vectors which again span the same subspace as the corresponding
eigenvectors.

Theorem 2.1.1. (Real Schur Decomposition)([105], Exc. I.3.24) If A ∈ RN×N ,
then there exists an orthogonal matrix U ∈ RN×N such that

U>AU = T, (2.1)

where T is block triangular with 1 × 1 and 2 × 2 blocks on its diagonal. The 1 × 1
blocks contain the real eigenvalues of A, and the eigenvalues of the 2× 2 blocks are
the complex eigenvalues of A.
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Since the eigenvalues of T are easy to compute, the Schur decomposition is
a target for iterative eigenvalue algorithms such as the Jacobi-Davidson method
[96, 59] or the implicitly re-started Arnoldi method [63]. Since the following theory is
valid for general matrices, it is based on the complex Schur decomposition. However,
keep in mind that the basis of the invariant subspace can also be written in terms
of real vectors.

Spectral projectors and the separation of two matrices Assume that the
matrix A has a cluster of nC eigenvalues with corresponding block Schur decompo-
sition

[X1, X2]HA[X1, X2] =
(

L1 H
0 L2

)
, (2.2)

where X1 ∈ RN×nC . The columns of X1 and X2 are orthonormal and form bases
for the invariant subspace X1 and its complement X2, respectively. The eigenvalues
of L1 are exactly the eigenvalues of the cluster we are interested in. The spectral
projector belonging to L1 is defined as

P = (X1, X2)
(

InC R
0 0

)
(X1, X2)H , (2.3)

where R satisfies the Sylvester equation

L1R−RL2 = H. (2.4)

This equation has a unique solution if and only if L1 and L2 have no eigenvalues in
common [105]. The norm

‖P‖2 = (1 + ‖R‖2
2)

1/2

plays an important role in the bounds. However, in practice, one uses the cheaper
overestimate

‖P‖′ ≡ (1 + ‖R‖2
F )1/2.

To develop the perturbation theory, we need two more definitions. The first one
is the definition of the Sylvester operator T,

TF,G : Q 7→ QF −GQ.

The operator TL1,L2(Q) = QL1 − L2Q will be referred to as TA(Q). Second, the
separation of two matrices F and G is defined as [99]

sep(F,G) :=

{
‖T−1

F,G‖−1, 0 /∈ λ(T)
0, 0 ∈ λ(T)

, (2.5)

where λ(T) denotes the spectrum of T. In practice, the norm is taken to be the
operator norm subordinate to a consistent family of matrix norms ‖ · ‖p such that

sepp(F,G) = inf
‖Q‖p=1

‖TF,G(Q)‖p.
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Note that sepF (F,G) is the smallest singular value of T [105].
A formulation for TF,G(Q) can be obtained by using the Kronecker product and

the operator vecr that stacks the rows of a matrix into a long column vector. Then

vecr(TF,G(Q)) = KTF,G
· vecr(Q), (2.6)

where KTF,G
is given by

KTF,G
= IN−nC

⊗ F> −G⊗ InC .

Thus the action of the inverse T−1
F,G is given by the inverse matrix K−1

TF,G
. This

formulation will play an important role in the stochastic perturbation theory.

2.1.2 Perturbation of right invariant subspaces

We are now concerned with the question of how the eigenvector matrix X1 of A
corresponding to the Perron cluster eigenvalues changes under perturbations of A.

Perturbation bound Let us first summarize the classical perturbation results as
presented in, e.g., [105]. Let X1 be an invariant subspace of A, and let Ã = A + E
be a perturbed matrix. The goal is to show that for sufficiently small E there is
an invariant subspace X̃1 of Ã, that approaches X1 as E approaches zero, and to
bound their difference in terms of E.

Let X1 and X2 form orthonormal bases for X1 and X2, respectively. Then X1 is
a simple invariant subspace of A ([105], Def. V.1.2) if

λ(L1) ∩ λ(L2) = ∅,

where L1 and L2 are the matrices of the block Schur decomposition (2.2).
Let Ã = A + E be a perturbation of A with

[X1, X2]HE[X1, X2] =
(

E11 E12

E21 E22

)
. (2.7)

The existence of an invariant subspace X̃1 for Ã and a bound on sin Θ(X1, X̃1) are
specified by the following theorem.

Theorem 2.1.2. ([99], Thm.4.11.) Let A be a matrix with a simple invariant
subspace X1 and corresponding block Schur representation (2.2). Consider the per-
turbation Ã = A + E where E satisfies (2.7). Moreover, set

γ = ‖E21‖, η = ‖H‖+ ‖E12‖, δ = sep(L1, L2)− ‖E11‖ − ‖E22‖.

The conditions
δ > 0 and

γη

δ2
<

1
4

(2.8)
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ensure that the eigenvalues of L1 and L2 do not coalesce under perturbation such
that there exists a simple invariant subspace X̃1 for Ã with an orthonormal basis
X̃1 given by

X̃1 = (X1 + X2Q)(I + QHQ)−
1
2 .

Q is the solution of the Sylvester equation

T eA(Q) = Q(L1 + E11)− (L2 + E22)Q = E21 −Q(H + E12)Q (2.9)

and satisfies
‖Q‖ < 2

γ

δ
. (2.10)

Remark 2.1.3. The conditions (2.8) can be reformulated as a condition on ‖E‖
by introducing the corresponding left invariant subspace Y1. The bound reads ([99],
Thm.4.14.)

‖E‖ ≤ 1
4

sep(L1, L2)
‖ sec Θ(X1,Y1)‖

.

Thus, the theorem can only be applied if E is small enough. Otherwise it may
happen that δ < 0.

Since

sin θi = σi(XH
2 X̃1) = σi(Q(I + QHQ)−

1
2 ) =

σi(Q)√
1 + σi(Q)2

,

one obtains σi(Q) = tan θi and thus

‖ sin Θ(X1, X̃1)‖ ≤ ‖ tan Θ(X1, X̃1)‖ < 2
γ

δ
. (2.11)

The parameter δ indicates the separation of eigenvalues between L1 and L2. If L1

and L2 are diagonalizable (L1X = XΛ1 and Y HL2 = Λ2Y
H), one obtains [105]

sepF (L2, L1) ≥
minλ2∈Λ2, λ1∈Λ1 |λ2 − λ1|

κ2(X)κ2(Y )
.

If some of the eigenvalues are close, then the invariant subspace X̃1 may be distant
from X1. The converse need not be true, i.e. sep(L1, L2) can be small even though
the eigenvalues of L1 and L2 are well separated [105]. However, if additionally η is
small, the coupling between L1 and L2 is small and the subspace according to L1

is well-conditioned.

Remark 2.1.4. The above perturbation results on eigenvalues and eigenvectors
suggest the possibility of matrices with ill-conditioned eigenvalues and well condi-
tioned eigenvectors. An example is given in [97]. Therefore, the occurrence of an
eigenvalue gap cannot be used as the only criterion for the determination of the size
of the perturbed invariant subspace. An additional criterion based on the condition
of the invariant subspace should be applied.



26 2 Matrix Perturbation Theory

First order approximation If E is small compared to A and the spectrum of
L1 is well separated from the spectrum of L2, then ‖Q‖F is of the order of ‖E‖F

[99] and a first-order approximation of (2.9) is given by

TA(Q) .= E21. (2.12)

Consequently
Q

.= T−1
A (E21).

With the definitions from Theorem 2.1.2 and (2.5) it follows

‖Q‖≤ γ

sep(L1, L2)
+O(‖E‖2

F ). (2.13)

This local bound is tighter than the global bound (2.10).
Using the vectorized expression (2.6) and the equality [107]

vecr(K1K2K3) = (K1 ⊗K>
3 )vecr(K2),

we obtain
vecr(Q) .= K−1

TA
(XH

2 ⊗X>
1 )︸ ︷︷ ︸

≡T

vecr(E). (2.14)

This illustrates the approximated linear relationship between the error in the entries
of A and the error in the subspace represented by Q.

2.1.3 Perturbation of eigenvalues

Now we turn to the perturbation of the cluster eigenvalues of A, which coincide
with the eigenvalues of L1.

Perturbation bound Explicit expressions for L̃1 and L̃2 in terms of L1 and
L2 can be derived [99, 105], but it is difficult to interpret them, in particular the
eigenvalues of L̃1. Different representations can be obtained by working with the
spectral resolution of A ([99], Thm.4.13),

[Y1, X2]HA[X1, Y2] =
(

L1 0
0 L2

)
. (2.15)

where
[X1, Y2]−1 = [Y1, X2]H .

The space Y1 = R(Y1) is the unique left invariant subspace corresponding to X1,
and L1 is called the generalized Rayleigh quotient. The relation between Y1 and X1

is given by
Y1 = X1 + X2R

H ,
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where R solves L1R−RL2 = H. Moreover,

‖Y1‖2 = ‖Y2‖2 = ‖ sec Θ(X1,Y1)‖2 ≤
‖ sec Θ(X1,Y1)‖F = ‖Y1‖F = ‖Y2‖F .

Let E be a perturbation matrix with

[Y1, X2]HE[X1, Y2] =
(

F11 F12

F21 F22

)
. (2.16)

The existence of a generalized Rayleigh quotient for the matrix Ã = A+E is verified
by the following theorem, in which the star ? is used to distinguish the quantities
from Theorem 2.1.2.

Theorem 2.1.5. ([105], Thm.V.2.8.) Assume that the matrix A has a simple in-
variant subspace X1 with corresponding spectral resolution (2.15). Consider the
perturbation Ã = A + E where E satisfies (2.16). Set

γ? = ‖F21‖, η? = ‖F12‖, δ? = sep(L1, L2)− ‖F11‖ − ‖F22‖.

Under the condition
δ? > 0 and

γ?η?

δ2
?

<
1
4
, (2.17)

there exists a unique matrix Q? with

‖Q?‖ < 2
γ?

δ?
≤ 2

‖E‖p

δ?

such that
L̃1 = L1 + F11 + F12Q?

is a generalized Rayleigh quotient of A + E. The matrix Q? is the solution of the
equation

Q?(L1 + F11)− (L2 + F22)Q? = F21 −Q?F12Q?.

Assume that L1 contains the eigenvalues of interest. In our applications, i.e. for
metastable dynamical systems, they are closely clustered and thus highly sensitive
to perturbations. However, the average eigenvalue [38]

µ(L1) ≡ trace(L1)/nC

does not suffer from ill-conditioning of single eigenvalues as long as the spectra of
L1 and L2 are well separated [50, 117]. Let µ(L̃1) be the mean of the perturbed
eigenvalues. Since |µ(L̃1)− µ(L1)| ≤ ‖L̃1 − L1‖, we obtain

|µ(L̃1)− µ(L1)| ≤ ‖F11‖+ 2
γ?η?

δ?
. (2.18)
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First order approximation If E is small enough, one can disregard the term
F12Q? = O(‖E‖2

p) to obtain

µ(L̃1)
.= µ(L1) + µ(F11)
= µ(L1) + µ(Y H

1 EX1)
= µ(L1) + µ((XH

1 + RXH
2 )EX1)

With ∆µ = µ(L̃1)− µ(L1) the vectorized equation reads

∆µ
.=
[
((X̄1 + X̄2R

>)⊗X1)
vecr(InC )

nC

]>
︸ ︷︷ ︸

≡t>

vecr(E), (2.19)

where X̄ denotes the complex conjugate of X. This equation will be the starting
point for statistical condition estimates.

2.2 The generalized eigenvalue problem

In this section we will deal with the perturbation of eigenvalues and deflating sub-
spaces of matrix pairs (A, B) ∈ RN×N × RN×N . If B was non-singular, the gen-
eralized eigenvalue problem Ax = λBx could be reduced to the standard form
B−1Ax = λx. However, an ill-conditioned B might rule out this approach and
necessitates a perturbation theory for matrix pairs.

2.2.1 Preliminaries

Throughout this section we assume that the matrix pair (A, B) is regular, i.e. the
polynomial det(βA− αB) is not identically zero. If

βAx = αBx (2.20)

for (α, β) 6= (0, 0) and x 6= 0, then (α, β) is a generalized eigenvalue of the matrix
pair (A, B) with (right) eigenvector x. Since all nonzero multiples of such a pair
(α, β) also satisfy the eigenvalue equation (2.20), the eigenvalues are assigned to
equivalence classes,

〈α, β〉 = {τ(α, β) : τ ∈ C \ {0}}.

The set of all eigenvalues of a pair (A, B) is denoted by L[(A, B)].
An nC-dimensional subspace X is called (right) deflating subspace of the pair

(A, B) if AX and BX are contained in a nC-dimensional subspace Y, the (left)
deflating subspace. Deflating subspaces allow to reduce the generalized eigenvalue
problem to smaller subproblems. One possibility is the reduction to the generalized
Schur decomposition,

V HAU = R, V HBU = T
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with unitary matrices U and V and triangular matrices R and T . For brevity, we
will use the notation (A, B)U = (AU, BU) and V H(A, B) = (V HA, V HB). The
Schur decomposition will in general be complex, but realness can be preserved if R
is allowed to have two-by-two blocks along the diagonal.

Theorem 2.2.1. (Generalized Real Schur Decomposition)([36], Thm.7.7.2)
If (A, B) ∈ RN×N × RN×N , then there exist orthogonal matrices U ∈ RN×N and
V ∈ RN×N such that

V >(A, B)U = (R, T ),

where R ∈ RN×N is in real Schur form and T ∈ RN×N is upper triangular.

The Schur decomposition represents an equivalence transformation in that
L[(R, T )] = L[(A, B)]. Moreover, the nC leading columns of U and V span a
pair of deflating subspaces if the element T (nC + 1, nC) = 0. Since the eigenvalues
of (R, T ) are easy to compute, the generalized Schur decomposition is a target for
iterative generalized eigenvalue algorithms [95, 31, 82]. In the following, we will deal
with the complex Schur form because the theory is valid for general complex-valued
matrices.

U and V can be chosen such that the eigenvalues appear in any order along
the diagonals of R and T . Let V = [Y1, Y2] and U = [X1, X2] be a conformal
partitioning w.r.t. a cluster of nC eigenvalues. Then the corresponding generalized
block Schur decomposition is given by

[Y1, Y2]H(A, B)[X1, X2] =
((

A11 A12

0 A22

)
,

(
B11 B12

0 B22

))
(2.21)

The subspaces X1 = R(X1) and Y1 = R(Y1) form a pair of deflating subspaces
associated with the cluster of eigenvalues of (A11, B11). For a proof of existence of
such a decomposition, see for example [99], Thm.2.1.

In the following, we will work with the norm [98]

‖(W, Q)‖F ≡ max{‖W‖F , ‖Q‖F }.

With ‖(W, Q)‖F =
√
‖W‖2

F + ‖Q‖2
F we have

‖(W, Q)‖F ≤ ‖(W, Q)‖F ≤
√

2‖(W, Q)‖F . (2.22)

One can measure the separation of two matrix pairs, difA,B, as

dif[(A11, B11), (A22, B22)] ≡ inf
‖(W,Q)‖F=1

‖(WA11 −A22Q, WB11 −B22Q)‖F . (2.23)

Note that in general dif[(A11, B11), (A22, B22)] 6= dif[(A22, B22), (A11, B11)]. There-
fore,the following notation has been introduced [17, 49]:

dif l[(A11, B11), (A22, B22)] = dif[(A11, B11), (A22, B22)]
= difu[(A22, B22), (A11, B11)]. (2.24)
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The operator

T(A11,B11),(A22,B22) : (W, Q) 7→ (WA11 −A22Q, WB11 −B22Q)

is called the generalized Sylvester operator and will be referred to as TA,B. If TA,B

is nonsingular and TA,B(W, Q) = (E,F ), then [98]

‖(W, Q)‖F ≤
‖(E,F )‖F

difA,B
. (2.25)

There also exists a vectorized form of TA,B(W, Q):

vecr(TA,B(W, Q)) =
(

IN−nC
⊗A>

11 −A22 ⊗ InC

IN−nC
⊗B>

11 −B22 ⊗ InC

)
︸ ︷︷ ︸

KTA,B

(
vecr(W )
vecr(Q)

)
. (2.26)

This will later be useful for the derivation of a first order approximation.
Let (Rr, Rl) be the solution of the generalized Sylvester equation

A11Rr −RlA22 = A12, B11Rr −RlB22 = B12. (2.27)

Then
p = (1 + ‖Rl‖2

F )1/2, q = (1 + ‖Rr‖2
F )1/2 (2.28)

are the norms of the left and right spectral projectors belonging to L[(A11, B11)].
In the following, we will deal with the influence of a perturbation

(Ã, B̃) = (A + E,B + F )

on the eigenvalues and deflating subspaces.

2.2.2 Perturbation of deflating subspaces

Let us first consider the perturbation of a pair of right and left complementary
eigenspaces (X1, Y2).

Perturbation bound In the following we present the perturbation result for the
right deflating subspace as it has been presented by Stewart and Sun [105].

Theorem 2.2.2. ([105], Thm.2.14.) Let X1 be an eigenspace of the regular pair
(A, B) and let the pair have the generalized block Schur decomposition (2.21). Con-
sider a perturbation (Ã, B̃) = (A + E,B + F ) with

[Y1, Y2]H(E,F )[X1, X2] =
((

E11 E12

E21 E22

)
,

(
F11 F12

F21 F22

))
. (2.29)
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Set

γ = ‖(E21, F21)‖F ,

η = ‖(A12 + E12, B12 + F12)‖F ,

δ = dif[(A11, B11), (A22, B22)]−max(‖E11‖F + ‖E22‖F , ‖F11‖F + ‖F22‖F ).

If δ > 0 and
ηγ

δ2
<

1
4
,

then there exist matrices W and Q as solutions of the generalized Sylvester equation

T eA, eB(W, Q) = (E21 −W (A12 + E12)Q, F21 −W (B12 + F12)Q) (2.30)

which satisfy

‖(W, Q)‖F <
2γ

δ
. (2.31)

The columns of

X̃1 = (X1 + X2Q)(I + QHQ)−1/2) and Ỹ2 = (Y2 − Y1W
H)(I + WWH)−1/2

span right and left complementary eigenspaces of (A + E,B + F ) corresponding to
the regular pairs

(Ã11, B̃11) = (A11 + E11 + (A12 + E12)Q, B11 + F11 + (B12 + F12)Q),

(Ã22, B̃22) = (A22 + E22 −W (A12 + E12), B22 + F22 −W (B12 + F12)).

The spectrum of (Ã11, B̃11) is disjoint to the spectrum of (Ã22, B̃22).

Stewart and Sun [105] point out that the norm ‖ · ‖F can be replaced by any
norm that allows the conditions of the theorem to be verified.

The bound on Q bounds the sine of the largest canonical angle between X1 and
X̃1,

sin θi(X1, X̃1) ≤ tan θi(X1, X̃1) ≤ ‖Q‖2 < 2
γ

δ
.

First order approximation If E and F are small compared to A and B and if
difA,B is large enough, then ‖Q‖F and ‖W‖F are on the order of ‖E‖F and ‖F‖F

and a first-order approximation of (2.30) is given by

TA,B(W, Q) .= (E21, F21). (2.32)

Consequently
(W, Q) .= T−1

A,B(E21, F21).

Together with (2.25) this yields the asymptotic bound

‖(W, Q)‖F ≤
‖(E21, F21)‖F

difA,B
+O(‖(E,F )‖2

F ),
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which is similar to the bound (2.13) for the standard eigenvalue problem. The
vectorized form of (2.32) reads(

vecr(W )
vecr(Q)

)
.= K−1

TA,B

(
Y H

2 ⊗X>
1 0

0 Y H
2 ⊗X>

1

)
︸ ︷︷ ︸

≡Z

(
vecr(E)
vecr(F )

)
. (2.33)

This will later be useful for the statistical error analysis in Section 4.5.

2.2.3 Perturbation of eigenvalues

In the following, we deal with the perturbation of the cluster eigenvalues, which
correspond to the eigenvalues of the matrix pair (A11, B11).

Perturbation bound Similarly to the standard eigenvalue problem, the com-
ponents A11 and B11 are called Rayleigh components of the generalized eigenvalue
problem A − λB. To provide bounds on these Rayleigh components, we return
to the spectral resolution [99]. If dif[(A11, B11), (A22, B22)] 6= 0, there are unique
matrices V1 and U2 such that (X1, U2) and (V1, Y2) are nonsingular and

[V1, Y2]H(A, B)[X1, U2] =
((

A11 0
0 A22

)
,

(
B11 0
0 B22

))
. (2.34)

U2 and V1 are computed by

U2 = X2 −X1Rr, V1 = Y1 + Y2R
H
l ,

where (Rr, Rl) solves (2.27). Let E and F be perturbations such that

[V1, Y2]H(E,F )[X1, U2] =
((

E11 E12

E21 E22

)
,

(
F11 F12

F21 F22

))
. (2.35)

Note that the matrices on the right hand side are different from the matrices
in (2.29), except E21 and F21. The following theorem provides the existence of
Rayleigh components Ã11 and B̃11 for (A + E)− λ(B + F ).

Theorem 2.2.3. ([105], Thm.VI.2.15.) Let X1 be an eigenspace of the regular
pair (A, B), and let the pair have the spectral resolution (2.34) which is perturbed
according to (2.35). Set

γ? = ‖(E21, F21)‖F , η? = ‖E12, F12)‖F ,

δ? = dif[(A11, B11), (A22, B22)]−max(‖E11‖F + ‖E22‖F , ‖F11‖F + ‖F22‖F ).

If

δ? > 0 and
η?γ?

δ2
?

<
1
4
,
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then there exist matrices W? and Q? satisfying

‖(W?, Q?)‖F ≤ 2
γ?

δ?

such that

(Ã11, B̃11) = (A11 + E11 + E12Q?, B11 + F11 + F12Q?) (2.36)
(Ã22, B̃22) = (A22 + E22 −W?E12, B22 + F22 −W?F12) (2.37)

are the Rayleigh components of (A + E)− λ(B + F ).

The theorem states that the Rayleigh components Ã11 and B̃11 are accurate to
terms E12Q? and F12Q? which are of order ‖E‖2

F and ‖F‖2
F , respectively.

Assume that B11 is non-singular, i.e. (A11, B11) has only finite eigenvalues. As
for the standard eigenvalue problem, we are interested in the perturbation of the
mean eigenvalue

µ(B−1
11 A11) ≡ trace(B−1

11 A11)/nC .

Let µ̃ = µ(B̃−1
11 Ã11). Then [49]

|µ− µ̃| ≤ ‖B−1
11 A11 − B̃−1

11 Ã11‖F

≤ ‖B−1
11 ‖2‖A11 − Ã11‖F + ‖B−1

11 − B̃−1
11 ‖F ‖Ã11‖2

≤ ‖B−1
11 ‖2(‖A11 − Ã11‖F + ‖B11 − B̃11‖F ‖B̃−1

11 ‖2‖Ã11‖2) (2.38)

Theorem 2.2.3 provides bounds on ‖A11 − Ã11‖F and ‖B11 − B̃11‖F . Equivalently
to (2.18) we will use the bounds

‖A11 − Ã11‖F ≤ ‖E11‖+ 2
η?γ?

δ?
, ‖B11 − B̃11‖F ≤ ‖F11‖+ 2

η?γ?

δ?
.

Different bounds in terms of ‖(E,F )‖ [99] or in terms of the spectral projectors p
and q from (2.28) [49] can be derived as well.

In practice, the terms ‖B̃−1
11 ‖2 and ‖Ã11‖2 are difficult to evaluate because the

exact size of the perturbation is unknown. Since

B̃−1
11 = B−1

11 −B−1
11 F11B

−1
11 +O(‖F‖2),

we can estimate
‖B̃−1

11 ‖2 ≤ ‖B−1
11 ‖2(1 + ‖B−1

11 ‖2‖F11‖s),

which is actually a first order approximation. However, the error contained in this
bound is compensated by using the sub-multiplication rule in the derivation of
(2.38). Moreover,

‖Ã11‖2 ≤ ‖A11‖2 + ‖E11‖s + 2
η?γ?

δ?
.
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First order approximation By ignoring the terms E12Q? and F12Q? in (2.36)
we obtain

B̃−1
11 Ã11

.= (B11 + F11)−1(A11 + E11)
= (B−1

11 −B−1
11 F11B

−1
11 +O(‖F‖2))(A11 + E11)

= B−1
11 A11 + B−1

11 E11 −B−1
11 F11B

−1
11 A11 +O(‖(E,F‖2).

Consequently, the mean cluster eigenvalue difference ∆µ = µ(B̃−1
11 Ã11)−µ(B−1

11 A11)
can be written in vectorized form as

∆µ
.=

1
nC

vecr(InC )>
[
((B−1

11 V H
1 )⊗X>

1 )vecr(E)− ((B−1
11 A11B

−1
11 V H

1 )⊗X>
1 )vecr(F )

]
.

(2.39)
This is often a very good approximation. With

z>1 ≡ 1
nC

vecr(InC )>((B−1
11 V H

1 )⊗X>
1 ),

z>2 ≡ 1
nC

vecr(InC )>((B−1
11 A11B

−1
11 V H

1 )⊗X>
1 ), (2.40)

the vectorized form can be written briefly as

∆µ
.= z>1 vecr(E)− z>2 vecr(F ). (2.41)

We will return to this formulation in Section 4.5.



Chapter 3

Metastable, Nearly Reversible
Markov Chains

The discretization of a reversible, metastable dynamical system leads to a symmet-
ric, nearly decomposable transition probability matrix that describes the essential
dynamic behavior between the discretized states. The assignment of states to dif-
ferent metastable regions comes as the result of the cluster algorithm PCCA+,
which reveals the hidden block structure of the matrix. PCCA+ is based on the
fact that the constant level patterns of the dominant eigenvectors of a symmetric,
block-diagonal transition probability matrix are well-conditioned w.r.t. small per-
turbations of the matrix. However, the matrices resulting from our applications
are only nearly reversible. The reason is that the matrices are computed row-wise
and that trajectories initiated in different basis functions have different statistical
weights. Thus, a simple symmetrization by evaluating trajectories in both direc-
tions is impossible. Nevertheless, as long as the number of Monte-Carlo sampling
points in the computation of matrix entries is large enough, the truncation errors
and thus the deviation from reversibility will be small. Moreover, the existence of
transition states increases the departure from the completely decomposable Markov
chain. Despite these deficiencies, PCCA+ turned out to be robust. To explain this
behavior, we will show that the matrices generated in our simulations are close to
some model matrices that have the desired properties. In the first section, we will
consider Markov chains as they result from a discretization by Voronoi cells. The
second section deals with the matrix pair (P, S) as it results from a discretization
by radial basis functions. Such a matrix pair cannot be interpreted as a transition
matrix of a discrete Markov chain. Nevertheless, it can be considered as a pertur-
bation thereof. That means, under certain conditions the metastable structure can
be recovered from a matrix pair. However, it is the main result of this chapter that
the shape parameter α of radial basis functions must be large enough to maintain
metastability.
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3.1 Standard Markov chains

If the molecular state space is discretized by Voronoi cells, the continuous dynamics
can be modeled as a Markov chain on the finite state space. The perturbation
theory in Section 1.2.1 was based on the assumption that the states of the resulting
transition probability matrix can be reordered such that the matrix becomes nearly
block diagonal, whereas each block corresponds to one metastable conformation.
Such Markov chains are known as nearly completely decomposable or nearly reducible
Markov chains [10, 100, 70]. Moreover, reversibility in the continuous system is
reflected by the fact that the resulting matrix meets the detailed balance condition.

However, there are two deficiencies in the former theory. First, the detailed
balance assumption is often violated for matrices stemming from numerical simula-
tions. This is due to truncation errors in Monte-Carlo sampling methods and the
lack of a trajectory-based symmetrization method. Second, in many of our applica-
tions the departure from the completely decomposable block-structured transition
matrix is too large due to the existence of transition states. Transition states are
not only an artefact of the discretization, but they have an analog in the continuous
systems in form of entropic or enthalpic energy barriers on the potential energy
surface.

3.1.1 Properties of transition matrices

In our applications the states of the Markov chain stem from a discretization of some
molecular potential energy surface. Regions in configuration space that separate
different metastable conformations can be energetic or entropic barriers. Energy
barriers can often be identified with saddle points of the potential energy surface,
whereas entropic barriers are characterized by narrow valleys connecting different
metastable regions. Roughly described, the discretization gives rise to two different
kinds of states: cluster states C, which are located near the center of a metastable
conformation, and transition states T , which are located near energetic or entropic
barriers. The non-unique assignment of transition states to the conformations gave
rise to the idea of soft clustering. Particles located in transition regions will rapidly
move to one of the nearby conformations, whereas particles in cluster states will
tend to stay in the states belonging to that specific conformation and rarely switch
to a different metastable region.

This behavior is reflected by the corresponding transition probability matrix P̃ .
Assume that the states have been ordered into cluster states and transition states
and consider the matrix (

P̃cc P̃ct

P̃tc P̃tt

)
.

If, additionally, the cluster states are ordered according to the conformations, the
sub-matrix P̃cc will take the well-known nearly-block-diagonal form [100]. More-
over, the entries in P̃ct will be small because transitions from the conformations to
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transition states are rare events. From now on, we assume that the Markov chains
we deal with satisfy the following properties.

1. P̃ is a primitive stochastic matrix.

2. The Markov chain is nearly reversible, i.e. there exists a small number εr > 0
such that

|w̃(i)P̃ (i, j)− w̃(j)P̃ (j, i)| ≤ εr ∀ i, j. (3.1)

This corresponds to a slight violation of the detailed balance condition.

3. The states in C can be reordered such that the sub-matrix P̃cc is of block-
diagonally dominant form

P̃cc =


P̃11 E12 · · · E1nC

E21 P22 · · · E2nC

...
...

...
EnC1 EnC2 · · · P̃nCnC


with

P̃kke > 1− εt, k = 1, . . . , nC , 0 ≤ εt ¿ 1, (3.2)

and
P̃kk(i, j) > κc, i, j ∈ Ck, εt ¿ κc < 1. (3.3)

Inequality (3.2) represents the condition for weak coupling between metastable con-
formations, whereas inequality (3.3) ensures that the dynamical system is rapidly
mixing within a metastable conformation on a timescale much smaller than the
transition time τ . However, this last inequality is critical for states which are not
classified as transition regions but located at the boundary of metastable conforma-
tions. In other words, the larger the overlap between metastable conformations, the
smaller κc, which complicates the calculation of partial densities. The existence of a
unique stationary distribution w is a direct consequence of item 1 [9, 53]. Matrices
with the above properties can be considered as perturbations of a simplified model
problem that will be explained in the next section.

3.1.2 Decomposable Markov chains with transient states

The stochastic model matrix P , which will be the basis for the upcoming perturba-
tion theory, has a form as illustrated in Figure 3.1. The cluster states C belong to
one of the metastable conformations and can thus be assigned to one of the blocks
in Pcc. The nt = |T | states represented by the last rows and columns are transient
states. Starting in a transient state, the Markov chain can switch to another state,
but once it reaches a metastable cluster, it stays there. Note that the discrete
stationary density w is zero for transient states.

Now we want to examine the eigenvalues and eigenvectors of such a transition
probability matrix with transient states. The number of stable clusters is denoted
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Figure 3.1: Structure of an unperturbed transition matrix with nC stable clusters
and a number of transition states, represented by the last columns and rows.

by nC . Assume that the blocks Pjj , j = 1, . . . , nC , are primitive and that the
corresponding Markov chains are rapidly mixing. That means, each block Pjj gives
rise to an eigenvalue λj1 = 1 and to eigenvalues λjk well-separated away from 1.
Thus, the overall matrix P has an nC-fold eigenvalue λ = 1 and a set of eigenvalues
{λk}N

k=nC+1 with |λk| < 1. Of course, the complete matrix P is not primitive
because any exponential Pm possesses the same structure as P and hence there
exists no m ∈ N such that Pm > 0 element-wise.

Let us first consider the stationary distribution w, which is defined as left eigen-
vector of P corresponding to the eigenvalue 1,

w>P = w>.

In fact, there is no unique stationary distribution, but only a unique left invariant
subspace X spanned by the following vectors,

X = span{


wC1

0
...
0
0

 , . . . ,


0
...
0

wCnC

0

}, (3.4)

where the vectors {wC1 , . . . ,wCnC
} are the unique stationary distributions of the

sub-chains. In other words, the Markov chain has several equilibrium states. Note
that the last nt components of all vectors are zero, which means that in every
equilibrium state the probability of being in a transient state is zero.

Similarly, the right eigenvectors according to the Perron root are not unique,
in contrast to the corresponding subspace. In the following, we call the subspace
spanned by these eigenvectors the Perron subspace. We want to show that there
exists a basis of membership vectors for this subspace. Denote by Ij , j = 1, . . . , nC ,
the set of indices which form the block Pjj . Moreover, the set (t1, . . . tnt) contains
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the indices of the transient states. Define a matrix χ = [χ1, . . . , χnC ] ∈ RN×nC and
decompose it into two parts,

χ =
(

χc

χt

)
, χc ∈ R(N−nt)×nC , χt ∈ Rnt×nC .

For χ to be a basis of the Perron subspace, it must satisfy

Pχ = λχ, λ = 1.

The equation can be rewritten in terms of χc and χt as(
Pcc 0
Ptc Ptt

)(
χc

χt

)
=
(

χc

χt

)
,

which equals the following system of equations:

Pccχc = χc and Ptcχc + Pttχt = χt.

Define the entries χj(i), i = 1, . . . , N − nt, j = 1, . . . , nC , of the upper matrix χc as

χj(i) =

{
1, if i ∈ Ij ,
0, if i 6∈ Ij and i is not a transition state.

Thus, χc satisfies Pccχc = χc. The matrix χt must satisfy the system of equations

(I − Ptt)χt = Ptcχc,

which is equal to the systems

(I − Ptt)χt(:, j) = [
∑
k∈Ij

P (t1, k), . . . ,
∑
k∈Ij

P (tnt , k)]>, j = 1, . . . , nC . (3.5)

Now assume that Ptt is irreducible. Otherwise, the states from T could be reordered
such that Ptt becomes block-diagonal with irrreducible blocks. Then one could
decompose χt accordingly and split the systems (3.5) into further subsystems.

To show that I − Ptt is non-singular, we use the following Lemma.

Lemma 3.1.1. Let A ≥ 0 be an irreducible matrix with row sums strictly smaller
than one, i.e.

∑
j A(i, j) < 1 ∀i. Then any eigenvalue λ of A is located within the

unit disc (|λ| < 1).

Proof. The Perron-Frobenius Theorem ([6], Thm.1.4.4) ensures the existence of a
positive eigenvector y > 0 corresponding to an eigenvalue λ0 > 0 that is maximal
in modulus among all the eigenvalues of A. It remains to show that λ0 < 1:

λ0yi =
∑

j

A(i, j)yj ≤ max
k

yk

∑
j

A(i, j) < max
k

yk, ∀i

The inequality is especially satisfied for i = argmaxk(yk), i.e. λ0ymax < ymax. Thus
λ0 < 1.
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The matrix Ptt is in fact non-negative. The assumption that the row sums of Ptt

are strictly less than one is reasonable because there are transitions to the clusters,
i.e. the row sums of Ptc are greater than zero. Consequently, the eigenvalues of Ptt

are within the unit disc and thus I−Ptt is regular (I−Ptt is actually a nonsingular
M-matrix). Therefore, equation (3.5) has a unique solution.

Lemma 3.1.2. The solution vectors χt(:, j) of (3.5) are non-negative and satisfy∑nC
j=1 χt(:, j) = 1.

Proof. Since (I−Ptt) is a non-singular M-matrix, the inverse (I−Ptt)−1 exists and
is non-negative ([6], Thm.1.5.2). Moreover, the right hand sides of (3.5) are non-
negative, such that χt will also be non-negative. Furthermore, set A ≡ (I − Ptt),
xj ≡ χt(:, j), s ≡

∑
j χt(:, j), and bj ≡ [

∑
k∈Ij

P (t1, k), . . . ,
∑

k∈Ij
P (tnt , k)]>. We

have to show that s is the vector of ones, i.e. s = e. Since P is stochastic, it holds∑
j bj =

∑
j A(:, j). Hence∑
j

A(i, j) =
∑

j

bj(i) =
∑

j

∑
k

A(i, k)xj(k) =
∑

k

A(i, k)s(k).

Consequently, s satisfies A(s− e) = 0. Since A is regular, it follows s = e.

To summarize, the vectors χj meet all properties of membership vectors; com-
pare Definition 1.2.2. They can be interpreted in the sense of assigning a state i
to a cluster j with a certain probability χj(i). Since the subspace is unique, any
eigenvector basis X corresponding to the Perron root λ = 1 can be transformed lin-
early into such membership vectors, i.e. there exists a non-singular transformation
matrix A ∈ RnC×nC such that χ = XA.

3.1.3 Perturbation theory

In Markov chains stemming from our simulations, the clusters are not completely
decoupled but interact either via the transition states (on small time scales) or
directly (on larger time scales). They can be considered as a perturbation of the
model matrix P from the previous section,

P̃ = P +
(

Ecc Ect

0 0

)
. (3.6)

From (3.2), it follows that ‖E‖∞ < εt. In the following, we will specify some per-
turbation results on the stationary density, the invariant subspace, and the cluster
eigenvalue of this model problem.

3.1.3.1 Perturbation of the stationary distribution

It is well known that the stationary distribution of a metastable Markov chain is
ill-conditioned because the second largest eigenvalue is not well-separated from the
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Perron root λ = 1 [71]. Perturbation bounds have been derived for nearly uncoupled
Markov chains by several authors, e.g. [72, 70, 103, 7], but only a few dealt with
block-wise perturbations [104, 47, 46]. Therefore, we think it is worth to summarize
and specify the results for our specific problem.

Stationary density of nearly transient states If the Markov chain has the
properties described in Section 3.1.1, then the stationary density of transition states
will be small. We will present a theorem for this fact which follows the ideas of
Stewart [104] who examined a slightly different problem. To circumvent singularity
of I − Pcc, the problem is transformed via a unitary similarity transformation.

Let {λi}nC
i=1 = 1 be the (maybe multiple) Perron eigenvalue of Pcc and let U1 be

an orthonormal basis for the corresponding left invariant subspace such that every
column of U1 is non-negative. Such a basis can be obtained by normalizing the
column vectors in (3.4). Let U2 be a basis for the complementary subspace such
that U = (U1, U2) is orthonormal. Now apply the similarity transformation with
the matrix diag(U, I) to P and let

B ≡
(

U> 0
0 I

)(
Pcc 0
Ptc Ptt

)(
U 0
0 I

)
=

B11 0 0
B21 B22 0
B31 B32 B33

 ,

where B11 = I and B33 = Ptt. Equivalently, let

F ≡
(

U> 0
0 I

)(
Ecc Ect

0 0

)(
U 0
0 I

)
=

F11 F12 F13

F21 F22 F23

0 0 0

 .

Let
w̃> = (w̃>

c , w̃>
t )

be the Perron vector of P̃ = P + E. Set

β = ‖P‖, η = ‖E‖, γi = ‖(I −Bii)−1‖, γ̃i = ‖(I − B̃ii)−1‖, i = 2, 3. (3.7)

The following theorem bounds w̃>
t .

Theorem 3.1.3. Let P be a stochastic matrix with decomposition

P =
(

Pcc 0
Ptc Ptt

)
,

where Ptt is non-singular, and E a perturbation matrix with decomposition

E =
(

Ecc Ect

0 0

)
.

Assume that P̃ = P + E is stochastic and has a unique stationary distribution
w̃> = (w̃>

c , w̃>
t ). Given the notations from (3.7), assume that

γ3ηβγ̃2 < 1.
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Then w̃t will be small in that

‖w̃>
t ‖ ≤

γ3(η + η2γ̃2)
1− γ3ηβγ̃2

.

The proof is given in the appendix A.1. If we take the ∞-norm, then β = 1
and η ≤ εt. Since Ptt is small, γ3 will be of moderate size. Moreover, as long
as the coupling between the metastable states in Pcc is small, γ̃2 will be small.
Consequently, the states in T remain nearly transient.

Condition of partial densities Assume that the stationary density w̃ is parti-
tioned as

w̃> = (s̃>1 , . . . , s̃>nC
, s̃>t ),

where

s̃>i =
w̃>

i

‖w̃>
i ‖

If P̃ was reversible, the partial densities s̃i could be computed exactly by the fol-
lowing aggregation step [112]. Assume that the states have been reordered such
that P̃cc is nearly block diagonal. The row sums of P̃ct plus the off-block-diagonal
entries in P̃cc are added to the diagonal of P̃cc. Then the entries of P̃ct and the
off-block-diagonal entries in P̃cc are set to zero. The rows of P̃ corresponding to
transition states remain unchanged. The thus constructed matrix has the structure
of the model matrix P from Section 3.1.2, and its partial densities si, i = 1, . . . , nC ,
are equal to the partial densities s̃i.

However, if P̃ is not reversible, the constructed partial densities si are only
approximations to s̃i, but the relative error will be small as shown by the following
theorem.

Theorem 3.1.4. Let P̃ be an irreducible stochastic matrix with the properties de-
scribed in Section 3.1.1. Set ε = εt/κc. Moreover, let P be the matrix that is
obtained from P̃ by setting the off-blockdiagonal entries of [P̃cc, P̃ct] to zero and
adding the deleted row-sums to the diagonal. Then the partial steady state vectors
sk and s̃k of the matrices P and P̃ satisfy

‖s̃k − sk‖∞
‖sk‖∞

≤ (1 + ε)Nk − 1 = Nkε +O(ε2), k = 1, . . . , nC .

For ease of readability, the proof is shifted to the Appendix A.2.
Once the partial stationary density vectors s̃k have been computed, their aggre-

gation into the overall steady state vector [70]

w̃> = (ξ̃1s̃>1 , . . . , ξ̃ts̃>t )

requires the computation of coupling factors ξ̃k. These coupling factors are the
entries of the unique stationary density of the stochastic, irreducible aggregation
matrix C̃ defined by [70]

C̃(i, j) = s̃>i P̃ije.
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However, the coupling factors are sensitive to perturbations in P [103]. Therefore,
a more stable algorithm as proposed in [112] should be used.

3.1.3.2 Perturbation of cluster eigenvalues and invariant subspace

Theorem 2.1.5 in Section 2.1.3 has been stated in terms of the projected error
matrices. This formulation will be of practical use in the statistical error analysis,
but the expressions in the theorem are difficult to interpret for our model problem.
Therefore, we repeat the theorem here in a slightly different form.

Theorem 3.1.5. [116, 99, 16, 4] Let X1 be an orthonormal basis of a simple invari-
ant subspace X1 of a matrix A ∈ Rn×n and let Y1 be its corresponding left invariant
subspace. Let P and sep(L1, L2) be defined as in (2.3) and (2.5). Assume there is
a perturbation matrix E ∈ Rn×n with ‖E‖F = εF . Then there exists a perturbed
right-invariant subspace X̃1 and a generalized Rayleigh quotient L̃1 of A + E such
that

θmax(X1, X̃1) ≤
εF

sep(L1, L2)
+O(ε2

F )

and
‖L1 − L̃1‖F ≤ εF ‖P‖2 +O(ε2

F ).

Moreover,if

‖E‖F <
sep(L1, L2)

4‖P‖2
(3.8)

then

θmax(X1, X̃1) ≤ arctan
(

2εF

sep(L1, L2)− 4εF ‖P‖2

)
,

and
‖L1 − L̃1‖F < 2εF ‖P‖2.

Thus, errors of order εF in the transition probability matrix cause errors of order
εF in the mean cluster eigenvalue and the corresponding invariant subspace. This
is the same result as in case of reversible Markov chains, compare Section 1.2.1.
Moreover, this form of the theorem verifies the notion of 1/sep(L1, L2) as condition
number of the invariant subspace. If we identify the matrix A with the model
matrix from Section 3.1.2 and define E as in (3.6), then ‖E‖∞ ≤ εt and thus
εF ≤ εt

√
N · |C|. Thus, the size of the perturbation depends on the coupling

between the clusters.

3.1.3.3 Reversibility and symmetrization

Although the continuous dynamical system is reversible, this property is lost for
the matrix due to truncated sampling. That means, the detailed balance condition
is just satisfied approximately. Therefore, the transition matrix can have complex
eigenvalues. In the following we will show under which conditions the imaginary
parts will be small.
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Assume that Ã is an unsymmetric perturbation of a symmetric matrix A ∈
RN×N with eigenvalues λk, i.e. E = Ã − A is not symmetric. It can be written as
the sum of the symmetric matrix Es = (E + E>)/2 and the skew-symmetric part
Eu = (E −E>)/2. The eigenvalues µk + iνk of Ã may be complex, but they are all
included in the union of regions

Dk = {µ + iν : |µ + iν − λk| ≤ ‖E‖2 and |ν| ≤ ‖Eu‖2}.

This result can be found in Wilkinson [116]. The first inequality can be considered
as a generalization of Gershgorin’s Theorem, whereas the second inequality trims
the disks at the top and bottom by horizontal lines at ±‖Eu‖2. As the perturba-
tion becomes increasingly symmetric, these lines approach one another, restricting
the imaginary parts of the eigenvalues of Ã. Another version of the result was
formulated by Kahan [51]. He proved that√√√√ N∑

k=1

ν2
k ≤ ‖Eu‖F and

√√√√ N∑
k=1

(µk − λk)2 ≤ ‖Es‖F +

√√√√‖Eu‖2
F −

N∑
k=1

ν2
k .

A common symmetrization for stochastic, nearly-reversible matrices [28] is

Psym =
1
2
(P + D−2P>D2), (3.9)

where D2 = diag(w) contains the stationary distribution w of P on its diagonal.
This operation preserves the stationary distribution, i.e. w>Psym = w>, and Psym

is generalized symmetric w.r.t. the matrix D, D2Psym = P>
symD2. In contrast to P ,

Psym has only real eigenvalues.
The eigenvalue problem for DPD−1 can be considered as an unsymmetric per-

turbation of the symmetric eigenvalue problem for DPsymD−1 with error matrix

E = D(P − Psym)D−1 =
1
2
D(P −D−2P>D2)D−1 =

1
2
(DPD−1 −D−1P>D).

Note that in this case Es = 0 and E = Eu. Thus, ‖E‖F directly bounds the
imaginary parts of the eigenvalues. The entries of E are given by

1
2

1
√

wi wj
(wiP (i, j)− wjP (j, i)) , i, j = 1, . . . , N.

If P is nearly reversible as in (3.1), one obtains |E(i, j)| ≤ 1
2εr/

√
wiwj and thus

‖E‖F ≤ 1
2εr

√∑
i,j 1/(wiwj). This term can be large if there exist many basis

functions with small weight. Thus, the symmetrization should only be applied if
E is small. Furthermore, a good estimate of the stationary density w is required
for the symmetrization step. Since its computation as eigenvector of the transition
matrix P is ill-conditioned, we will not apply the symmetrization in practice until
a reliable estimate for w is available.
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3.2 Generalized Markov chains

The term “generalized” in this section refers to a discrete dynamical process de-
scribed by a matrix pair (P, S) as it arises in a discretization with radial basis
functions. The membership vectors χi of metastable conformations are the solu-
tions of the “generalized” eigenvalue problem

Pχi = λiSχi, , λi ≈ 1, i = 1, . . . , nC .

Since P and S are both row-stochastic, λ = 1 is an eigenvalue of (P, S). Moreover,
if both matrices are block-diagonal with nC blocks and the same block structure,
then λ = 1 is an nC-fold eigenvalue. In the following, we want to examine how
this multiple eigenvalue and the corresponding deflating subspace behave under
perturbations.

3.2.1 Perron-Frobenius results for matrix pencils

Several generalizations of the classical Perron-Frobenius theory to the generalized
eigenvalue problem Ax = λBx have been presented in the literature. A first re-
sult has been given in [66]. There, the condition (B>y ≥ 0 =⇒ A>y ≥ 0) has
been proved to be sufficient for the existence of a positive eigenvalue and a corre-
sponding nonnegative eigenvector. If furthermore either A or B has full column
rank, then this eigenvalue is equal to the spectral radius ρ(A, B). If A and B are
square matrices and B−1 exists, then the condition is that of the classical Perron-
Frobenius Theorem, i.e. Z = B−1A ≥ 0. Moreover, the irreducibility of Z ensures
that the eigenvalue is simple and the corresponding eigenvalue unique up to a scalar
multiple. However, both nonnegativity conditions are difficult to verify. Another
generalization [5] derives the sufficient condition that (B−A)−1A is nonnegative and
irreducible for the existence of an eigenvalue in (0, 1) and a corresponding positive
eigenvector. However, this condition is very restrictive since B −A is not necessar-
ily invertible. In [69] the relationship between these two different generalizations of
the Perron-Frobenius theory has been discussed. It turned out that, under certain
conditions, the main assumptions of both approaches are equivalent. A generaliza-
tion of the Perron-Frobenius Theorem to regular matrix pairs of arbitrary index
has been presented in [68]. The authors constructed projector chains in order to
derive a new sufficient condition which guarantees that the finite spectral radius
of (A, B) is an eigenvalue with a corresponding nonnegative eigenvector. Again,
an additional irreducibility assumption ensures uniqueness. This approach can be
considered as a generalization of [5], and several examples are presented where the
new condition holds wheras the previous conditions are not satisfied. While the last
two approches reduce to the classical Perron-Frobenius Theorem when B = I, the
first approch does not.

In our applications, none of the above conditions can be ensured. Since, by
construction, both matrices P and S are stochastic, λ = 1 is an eigenvalue corre-
sponding to the (positive) constant eigenvector e = (1, . . . , 1)>. However, by the
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same argument S−P is singular which rules out the approach in [5]. As long as the
parameter α in the construction of the radial basis functions is large enough, the
matrix S will be diagonally dominant. Thus S−1P exists, but is seldom nonnegative
which precludes the approach in [66]. The condition in [68] might be satisfied in
some cases, but not in general. Thus, the main problem is that we cannot assume
simplicity of λ = 1. But even worse, no conclusion about the spectral radius can
be drawn.

3.2.2 Model problem

In case of radial basis functions, the resulting matrix pair (P̃ , S̃) can often be
considered as a perturbation of the model matrix pair (P, I) with identity matrix
I and P as described in Section 3.1.2. Such model matrix pair has a subspace
basis of membership vectors. As long as the perturbation is small enough and the
eigenvalue cluster of (P, I) is well conditioned, the corresponding subspace of the
matrix pair (P̃ , S̃) will only differ slightly from the invariant subspace of P . This is
verified by the following theorem, which is similar to Theorem 2.2.2 but expresses
the errors in terms of ‖E‖F and ‖F‖F , respectively.

Theorem 3.2.1. [99, 17, 49] Let (A, B) be in generalized Schur form (2.21) such
that (A11, B11) contains the cluster of nC eigenvalues with left and right deflating
subspaces Y1 and X1, respectively. Let dif l and difu, p and q be defined as in (2.24)
and (2.28), respectively. Furthermore, let Ỹ1 and X̃1 be left and right deflating
subspaces of the pertubed matrix pair (A + E,B + F ) with ‖(E,F )‖F = εF . Then

sin θmax(Y1, Ỹ1) ≤ ‖Y1 − Ỹ1‖F ≤
εF

dif[(A11, B11), (A22, B22)]
+O(ε2F ),

sin θmax(X1, X̃1) ≤ ‖X1 − X̃1‖F ≤
εF

dif[(A11, B11), (A22, B22)]
+O(ε2F ).

Moreover, if

δ ≡ εF
4 max(p, q)

min(dif l, difu)
< 1

then

θmax(Y1, Ỹ1) ≤ arctan
(

δ

p− δ(p2 − 1)1/2

)
,

θmax(X1, X̃1) ≤ arctan
(

δ

q − δ(q2 − 1)1/2

)
,

and

|µ− µ̃| ≤ 1
σmin(B11)

(
1 +

σmax(Ã11)

σmin(B̃11)

)
3pεF .

Note that the condition on δ is equivalent to an upper bound on ‖(E,F )‖F ,

‖(E,F )‖F ≤
min(dif l, difu)

4 max(p, q)
. (3.10)
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Figure 3.2: (Example 3.2.2) Discretization of the “toy system” with N = 50 nodes.

This is the same kind of result as for standard Markov chains. Errors of order εF

in the transition matrices are carried forward to errors of the same order in the
cluster eigenvalue and the deflating subspace. Moreover, the bounds in the theorem
imply that dif[(A11, B11), (A22, B22)] is the reciprocal of the condition number for
deflating subspaces of a regular pair (A, B).

However, S can only be considered as a perturbation of the identy matrix if the
shape parameter α in the construction of the radial basis functions is large enough,
which guarantees that S is diagonally dominant. This completely coincides with
the observations we made in our numerical computations. While we often observe
a clustered eigenvalue in P even for a small value of α, no such cluster can be found
in the generalized eigenvalue problem. One can say that the deflating subspace of
the matrix pair (P, S) is more sensitive than the invariant subspace for the standard
eigenvalue problem. Note that ([98], Thm.4.3)

sep(A11, A22) ≥ dif[(A11, I), (A22, I)].

That means, even if S was the identity matrix, the condition number for the general-
ized eigenvalue problem would be larger than the condition number for the standard
eigenvalue problem.

Alternatively, one could consider the standard eigenvalue problem

(P + I − S)X = XΛ.

Under the condition that P + I − S ≥ 0 the theory for the standard stochastic
eigenvalue problem is recovered. However, this will only be the case if S is again
close to the identity matrix.

Example 3.2.2. We return to the “toy system” from Section 1.1.6 and generate
a discretization. The goal is to place the nodes in regions where the stationary
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Figure 3.3: (Example 3.2.2) Real part of the spectrum of the matrix pair (P, S)
(left hand side) and of P alone (right hand side) for different values of the shape
parameter α. The Perron cluster degenerates if α becomes too small.
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Table 3.1: (Example 3.2.2) Condition numbers for the eigenspace of the generalized
and the standard eigenvalue problem for different values of the shape parameter α.
α 1.0 5.0 ∞

1/difP,S 1.1e + 17 134.76 4.82
1/sepP 2.51 1.425 2.71

density is non-zero. For this purpose we first generated an HMC trajectory with
2000 sampling points at inverse temperature βpre = 0.1. This allows the trajectory
to explore the complete state space. Then we applied k-means clustering with
k = 50. The identified centers became the N = 50 nodes of the discretization, see
Figure 3.2. We tested three different discretizations: radial basis functions with
shape parameter α = 1 and α = 5, respectively, and a Voronoi discretization, which
can be considered as the limit case as α →∞. For all discretizations, we computed
the transition matrices P and S by Monte-Carlo sampling. In every basis function,
2000 sampling points were generated by HMC (10 MD-steps with τ = 0.01 as
proposal step) and then propagated vertically once (50 MD-steps with τ = 0.01).
Afterwards, we considered the spectrum of the resulting matrices. The eigenvalues
were ordered according to the difference |1− λi|.

Although the spectrum of P has a cluster of 9 eigenvalues near the Perron root
λ = 1 for all values of α, the corresponding eigenvalue gap disappears for the gener-
alized eigenvalue problem if α = 1, see Figure 3.3. For α = 1, the eigenvalues λ9 and
λ10 appear as conjugate pair such that the gap cannot be recovered. As expected,
the condition number of the corresponding invariant subspace of the matrix pair
(P, S) becomes huge for small α, see Table 3.1, whereas it is roughly of same size
for the standard eigenvalue problem for all values of α. Thus we close this chapter
with the following advise.

If the state space is discretized by radial basis functions with shape parameter
α, the value of α must be chosen large enough to assure that the cluster problem
is well-conditioned.





Chapter 4

Statistical Error Estimation

In order to apply the perturbation theory presented in the previous chapters, we
need an estimate for the errors in the matrices P and S. Since the entries of the
matrices are calculated by Monte-Carlo quadrature, it seems appropriate to assume
random perturbations. This allows not only for the computation of bounds, but
also for statistical analysis.

An appropriate norm for random matrices is the stochastic norm introduced by
G. W. Stewart [102]. To obtain interpretable formulas one has to impose restrictions
on the perturbation matrices E and F . For this purpose, we introduce the class of
row-wise correlated matrices. This is in perfect line with our algorithm because the
rows are generated independently by sampling single basis functions. In addition,
the resulting formula for the stochastic norm gives insight into the contribution of
different matrix rows to the error. This approach will be the basis for the adaptive
sampling algorithm in the next chapter.

Since the stochastic norm only depends on first and second moments, it is inde-
pendent of the form of the distribution. Thus, it would suffice to assume a multi-
variate normal (MVN) distribution for every matrix row and to estimate mean and
covariance matrices. However, the MVN distribution is not the best choice because
it allows for negative entries in the matrix elements. Therefore, we assume more
appropriate distributions: the Dirichlet distribution for probability vectors or the
Pólya distribution for count vectors. Since they are defined by only a few parame-
ters, they allow for an efficient description of the error distribution. Moreover, as
the number of sampling points increases the MVN distribution is recovered, which
facilitates the sampling of matrix rows.

In this chapter we will demonstrate how the parameters of the distribution can
be estimated from the sampling chains. Numerical examples verify the first order
perturbation expansions from Chapter 2 and the MVN approximation for matrix
rows.

51
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4.1 Row-wise correlated random matrices

In the following we will analyze the random character of matrix elements and com-
pute the norm and quadratic form of the corresponding error matrix. For brevity,
the following considerations always refer to the transition probability matrix P but
the results are also valid for the mass matrix S, which is a stochastic matrix as well.

4.1.1 Random matrices

The rows of the stochastic matrix P can be considered as random vectors which
are computed from N different independent sampling runs. From the algorithmic
point of view, they are approximated by the mean values

P̃ (i, :) =
1
ni

ni∑
k=1

Φ(q(i)
k ), (4.1)

where Φ : Ω → RN is the vector-valued function (φ1, . . . , φN ), and q
(i)
k ∈ Ω is the

kth vertical sampling point from sampling run i ∈ {1, . . . , N}. The convergence
towards

P (i, :) =
∫

Ω
Φ(q)πi(q)dq

is verified by the central limit theorem.

Theorem 4.1.1. ([91], Sec. 1.9.1, Thm. B) Let {Xi} be i.i.d. random vectors with
mean µ and covariance matrix C. Then

√
n

(
1
n

n∑
i=1

Xi − µ

)
d→ N(0, C),

where d→ denotes convergence in distribution.

In other words, the sequence of random vectors Sn = 1
n

∑
Xi is asymptotically

normally distributed with mean µ and covariance C/n for all n sufficiently large.
Since the components of a multivariate normal vector are univariate normal dis-
tributions, the components of Xi = (xi1, . . . , xiN ) are asymptotically normal with
mean µj and variance σ2

jj = C(j, j), j = 1, . . . , N . Besides the existence of the
first two moments, the central limit theorem does not use any assumption on the
distribution of the random variables Xi.

Based on the algorithmic realization and on the central limit theorem, we can
make the assumption that the matrix P̃ we obtain from the sampling routine equals
the sum of a deterministic mean P and a random matrix E,

P̃ = P + E,

where the entries of the error matrix E are distributed with mean zero and row
wise covariance matrices {Ci}N

i=1.
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Definition 4.1.2. A matrix E ∈ RN×N is a row-wise correlated random ma-
trix, if its entries are random variables with the following properties:

E[E(i, j)] = 0 and E[E(i, j)E(k, l)] = δikCi(j, l), i, j, k, l = 1, . . . , N. (4.2)

The operator E is the expectation operator.

4.1.2 Stochastic norms

An appropriate norm for such random matrices is the stochastic norm introduced
by G. W. Stewart [102],

‖E‖2
s ≡ E(‖E‖2

F ).

First note that for random matrices with zero mean, the norm ‖ · ‖s simplifies a lot:

‖E‖2
s = E

∑
i

∑
j

E(i, j)2


=

∑
i

∑
j

E[E(i, j)2]

=
∑

i

∑
j

(
var[E(i, j)] + E[E(i, j)]2

)
=

∑
i

∑
j

var[E(i, j)]. (4.3)

Similar to Thm. 2.3. in [102], we obtain the following expression for the quadratic
form w.r.t. an arbitrary matrix B ∈ RN×N ,

E[(E>BE)(i, j)] = E

[∑
k

∑
l

E(k, i)E(l, j)B(k, l)

]
=

∑
k

∑
l

B(k, l)E[E(k, i)E(l, j)]

=
∑

k

B(k, k)Ck(i, j).

The covariance matrices {Ci}N
i=1 are symmetric positive semidefinite. Hence,

there exist factorizations Ci = ΣiΣ>
i . Σi can be computed from an eigenvalue

decomposition of Ci. It is not necessarily triangular or square. The number of
columns νi equals the number of positive eigenvalues of Ci. If Ci was positive
definite, Σi would be the square, upper triangular Cholesky factor.

Remark 4.1.3. Since the Frobenius norm scales with the size of the matrix, one of
the referees suggested to replace ‖A‖F by ‖A‖F ? ≡ 1√

p‖A‖F , where p = min{m, n}
for an arbitrary matrix A ∈ Rm×n. Similarly, we would define ‖E‖2

s ≡ E(‖E‖2
F ?).

The theoretical results remain unaffected, but we expect some of the perturbation
bounds to become less pessimistic.
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4.2 Probability distributions

Given a set Di = {pi1, . . . ,piK} ⊂ RN of possible transition probability vectors
for row P (i, :) resulting from different samplings, we could simply compute the
maximum-likelihood estimate for the mean,

µ̂i =
1
K

K∑
k=1

pik ≡ pi.

The estimate of the mean could be used, for example, to calculate an estimate
of the mean cluster eigenvalue or an estimate of the Perron subspace. However,
the maximum-likelihood estimates give no indication of the uncertainties in the
transition probabilities. To quantify the size of the error matrix E, we additionally
have to compute an estimate for the covariance matrix. To choose between the many
different possible estimators, we use the fact that the distribution of probability
vectors pi follows the Dirichlet distribution Dir(·). Similarly, the distribution of
count vectors zi follows the Pólya distribution Poly(·), which is a compound of
Dirichlet distribution and multinomial distribution Mult(·). The properties of these
distributions will be explained in the following.

4.2.1 The Dirichlet distribution

The Dirichlet distribution, Dir(α), is a family of continuous multivariate prob-
ability distributions parameterized by a vector α of positive real numbers. Let
p = (p1, . . . , pN ) denote a random vector where

N∑
i=1

pi = 1, pi > 0 ∀ i ∈ (1, . . . , N).

Table 4.1: Moments of different distributions. The parameters n, w, αi and pi are
explained in the text.

E[Xi] var[Xi] cov[Xi, Xj ]

Dir(α) αi/w
αi(w − αi)
w2(w + 1)

−αiαj

w2(w + 1)
Mult(n,p) npi npi(1− pi) −npipj

Poly(n, α) nαi/w (n2 + nw)
αi(w − αi)
w2(w + 1)

(n2 + nw)
−αiαj

w2(w + 1)
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Under the Dirichlet model of order N ≥ 2 with parameters α = (α1, . . . , αN ) > 0,
the probability density function at p is given by

f(p; α) =
1

Z(α)

N∏
i=1

pαi−1
i .

Expected value, variance, and covariance are given in Table 4.1. The normalizing
constant,

Z(α) =
∏N

i=1 Γ(αi)

Γ(
∑N

i=1 αi)
,

is the multinomial beta function, which is expressed in terms of the gamma function.
In fact, the marginals pi are beta distributed, pi ∼ β(αi, w − αi), where

w ≡
N∑

i=1

αi.

The value w can be understood as the precision of p [74]. If w is large, p is likely
to be near the mean µ ≡ E[p] = α/w. When w is small, p is distributed more
diffusely.

The Dirichlet distribution has a wide range of applications. In biology, Dirichlet
distributions can represent proportions of amino acids when modeling sequences
with hidden Markov models [93] or with allelic frequencies [61]; in document clas-
sification, they can model topic probabilities [65].

Given a training set of proportions D = {p1, . . . ,pK}, where pk = (pk1, . . . , pkN ),
the classical way of estimating Dirichlet distribution parameters is to maximize the
log-likelihood given by

log P(D|α) = K log Γ(w)−K
N∑

i=1

log Γ(αi) +
N∑

i=1

(
(αi − 1)

K∑
k=1

log(pki)

)
.

To maximize this function, one classically uses the Newton-Raphson algorithm [87,
78, 79, 80]. Since the Dirichlet distribution belongs to the exponential family, the
function is globally concave [87] and the Newton-Raphson algorithm converges to
the global optimum, assuming that it does not go outside the admissible region,
which restricts the choice of initial parameter estimates [25, 87, 115]. An alternative
convergent fixed-point iteration has been derived by Minka [74]. Since mean µ and
precision w are roughly decoupled in the maximum-likelihood objective, one can get
simplifications and speedups by optimizing alternately the likelihood for w alone,

P(D|w) ∝

(
Γ(w) exp(w

∑N
i=1 µi log pi)∏N

i=1 Γ(w µi)

)K

,

and for µ alone,

P(D|µ) ∝

(
N∏

i=1

exp(w µi log pi)
Γ(w µi)

)K

.
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Here,

log pi =
1
K

K∑
k=1

log(pki).

The symbol ∝ means that terms not involving the variable to be optimized (w or
µ) were omitted. This method, which we will refer to as Minka’s ML algorithm,
has been implemented in the Matlab toolboxes Fastfit and Lightspeed [75, 76].
For further details, the reader is referred to [73, 74].

Given the estimated parameters α̂ and ŵ, the estimator for the mean is

µ̂ =
α̂

ŵ
, (4.4)

and the estimator for the covariance matrix becomes

Ĉ =
1

ŵ2(ŵ + 1)
[ŵdiag(α̂)− α̂α̂>] =

1
ŵ + 1

[diag(µ̂)− µ̂µ̂>]. (4.5)

The covariance matrices are positive semi-definite and represent rank-one updates
of diagonal matrices. Therefore they can be factorized efficiently [92],

Ci = ΣiΣ>
i .

For details about this factorization, the reader is referred to the Appendix C.2. If
K is large enough, then, by the central limit theorem, the distribution of a row
pi = P (i, :) converges to a multivariate normal distribution with mean µi and
covariance matrix Ci.

4.2.2 The multinomial distribution

The multinomial distribution, Mult(n,p), is the probability distribution of the num-
bers of N outcomes in n independent trials. In other words, each trial results in
exactly one of some fixed finite number N of possible outcomes, with probabilities
p1, . . . , pN , pi > 0 for i = 1, . . . , N ,

∑N
i=1 pi = 1. Let z = (z1, . . . , zN ) denote a

random vector where zi is the number of times outcome i was observed over n trials,
i.e.

N∑
i=1

zi = n, zi ∈ N.

Then z follows a multinomial distribution with parameters n and p = (p1, . . . , pN ),
z ∼ Mult(n,p). The probability density function is given by

f(z; n,p) =
Γ(n + 1)∏N

i=1 Γ(zi + 1)

N∏
i=1

pzi
i .

Expected value, variance, and covariance are listed in Table 4.1. The conjugate prior
of the multinomial distribution is the Dirichlet distribution, i.e., if z|p ∼ Mult(n,p)
and if the prior is a Dirichlet distribution with parameters α, p ∼ Dir(α), then the
posterior is also a Dirichlet distribution, p|z ∼ Dir(z + α).
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4.2.3 The Pólya distribution

The Pólya distribution, Poly(n, α), also denoted as Dirichlet-multinomial distri-
bution, is a compound distribution where a probability vector p is drawn from a
Dirichlet distribution with parameter vector α and then a sample of discrete out-
comes z is drawn from a multinomial distribution with probability vector p. The
probability density function of a vector of counts z,

∑N
i=1 zi = n, given the param-

eter vector α is

f(z; n, α) =
∫
p

f(z; n,p)f(p; α) dp

=
n!∑N

i=1 zi!

Z(α + z)
Z(α)

N∏
i=1

Γ(zi + αi)
Γ(αi)

.

Properties of this distribution have for example been analyzed in [77]. Nowadays,
the Pólya distribution is widely used in automated document classification and
clustering [65, 27].

One can obtain maximum-likelihood estimates of the parameters from a training
set of counts D = {z1, . . . , zK}, where zk = (zk1, . . . , zkN ). Similar to the Dirichlet
distribution, there exists an efficient iterative scheme that alternately optimizes for
w and for µ. If nk is the number of counts in sample zk (nk =

∑N
i=1 zki), then the

likelihood for the precision w alone is given by

P(D|w) ∝
K∏

k=1

(
Γ(w)

Γ(nk + w)

N∏
i=1

Γ(zki + w µi)
Γ(w µi)

)
,

and for µ alone by

P(D|µ) ∝
K∏

k=1

N∏
i=1

Γ(zki + w µi)
Γ(w µi)

.

For further details, the reader is referred to [73, 74].
Under the Pólya model, one can also compute the moments of the normal-

ized count vectors zk/nk. They are given by E[zk/nk] = E[zk]/nk, var[zk/nk] =
var[zk]/n2

k, and cov[zk/nk, zj/nj ]
nk=nj=n

= cov[zk, zj ]/n2; compare Table 4.1.

4.3 Parameter estimation

In Section 4.2, we have explained how the parameter vector α of a Dirichlet or Pólya
distribution can be estimated from a training set of outcome vectors. Now we want
to demonstrate how these training sets are generated in our numerical simulations.

4.3.1 Horizontal sampling

In case of radial basis functions, the horizontal sampling points are used to compute
an estimate for S. We are concerned with the question of how we can generate
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independent samples for the rows of S from which we can then estimate the Dirichlet
or Pólya parameters.

Single chain sampling Given a number of sampling points {q(i)
k }ni

k=1 distributed
according to a partial density πi(q), we can compute S(i, j) by (1.14). The num-
bers zij ≡ niS(i, j) can be interpreted as transition counts and thus as outcome of
a multinomial distribution. If we assume a Dirichlet prior distribution with param-
eters αij , the posterior of the transition probabilities is a Dirichlet distribution with
parameters uij = αij + zij . This is possible because the Dirichlet parameters uij

are not required to be integers. The values niS(i, j) will sometimes be called gener-
alized counts. If α is small enough, the distribution of transition probabilities will
become independent on the choice of the prior distribution with increasing number
of transition counts [92].

Multiple chain sampling If a basis function inherits metastabilities, it could
happen that a single horizontal chain is rapidly mixing in a partial domain but not
exploring the complete partial density. This leads to a small estimated error in
S although the approximated entries of the corresponding row are inexact. Such
a pseudo convergence can be excluded by running multiple horizontal chains, say
c chains. Each chain gives rise to a different estimate s(k)

i , k = 1, . . . , c, for row
i in S. These rows can be considered as a training set of count vectors, D =
{n(1)

i s(1)
i , . . . , n

(c)
i s(c)

i }, and can be used to compute an estimate of the parameter
vector αi in the Pólya distribution as explained in Section 4.2.3. As the chain
lengths increase, the precision w will increase and the different estimates for the
row will converge to the exact mean.

Remark 4.3.1. Alternatively, one could directly consider the training set of pro-
portions D = {s(1)

i , . . . , s(c)
i } as outcome of a Dirichlet distribution. This approach

implicitly assumes that the different chains sample from a unified Dirichlet distri-
bution, which might not be true in case of metastabilities inside a basis function.
Moreover, the information on the chain lengths n

(k)
i is not modeled by this approach.

4.3.2 Vertical sampling

The vertical sampling points are used to compute an estimate for P . We are con-
cerned with the question of how we can generate independent samples for the rows
of P from which we can then estimate the parameters. There are two different
kinds of sampling methods: The horizontal and vertical sampling can be performed
consecutively, or they can be performed concurrently.

Consecutive sampling We assume that we are given a single horizontal sampling
chain {q(i)

k }ni
k=1 that has converged towards the correct partial density πi(q). (In

case of multiple horizontal sampling chains, these trajectories are concatenated.)
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Then the vertical sampling can be performed by drawing a fixed number of points
randomly with replacement from the horizontal trajectory and propagating them
with random initial momenta. Thus, we are in the case of single chain sampling.
For Voronoi cells, we obtain a matrix Z = (zij) of transition counts where zij is
the number of transition samples started in cell i and ended in cell j. Assuming
a Dirichlet prior distribution with parameters αij , the posterior of the transition
probabilities is a Dirichlet distribution with parameters uij = αij + zij . For radial
basis functions, we do not count transitions but we compute directly the values
pij according to (1.15). However, the numbers nipij , where ni is the number of
propagated points from basis function i, can be interpreted as counts zij such that
we can proceed in the same way as for Voronoi cells.

Concurrent sampling Concurrent sampling means that the points generated
for a horizontal trajectory are immediately propagated vertically, which corre-
sponds to multiple chain sampling. Thus, every sampling chain k gives rise to
two proportion vectors s(k)

i and p(k)
i , which again can be interpreted as count vec-

tors nis
(k)
i and nip

(k)
i . The two training sets DS = {n(1)

i s(1)
i , . . . , n

(c)
i s(c)

i } and
DP = {n(1)

i p(1)
i , . . . , n

(c)
i p(c)

i } are then used to estimate the Pólya parameters αS(i,:)

and αP (i,:) independently.

The following statement summarizes the previous explanations.

Estimation of the parameter vector α from single chain sampling requires an
assumption on the Dirichlet prior distribution and treats the outcome as multi-
nomial distributed. Multiple chain sampling does not need an assumption on
the prior distribution but gives rise to a training set of outcomes (counts or
proportions) from which the parameter vector α is estimated directly.

4.4 Perturbation bounds

Once the parameters α1, . . . ,αN of the matrix rows have been estimated, the ex-
pected values P and S as well as the row-wise covariance matrices {CP,k, CS,k}N

k=1

can be computed. Moreover, we are able to compute expected values of the vari-
ables of interest, for example a basis for the Perron subspace, X1 = X1|P ,S . With
these tools at hand, the error matrices can be quantified.

4.4.1 Stochastic norms of projected error matrices

First consider the standard eigenvalue problem. Given the values for X1, X2, and
{Ck}, we are able to estimate the stochastic norms of the matrices Eij , i, j ∈ {1, 2}
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(see Equation (2.7)):

‖Eij‖2
s = E[trace(EH

ij Eij)] = E[trace(XH
j E>XiX

H
i EXj)]

= trace(XH
j E[E>XiX

H
i E]Xj)

= trace(XH
j

N∑
k=1

‖Xi(k, :)‖2
2CkXj)

=
N∑

k=1

‖Xi(k, :)‖2
2trace(XH

j CkXj)

=
N∑

k=1

‖Xi(k, :)‖2
2‖Σ>

k Xj‖2
F . (4.6)

Note that these norms do not pose any assumptions on the distribution of ele-
ments E(i, j) besides the fact that the first two moments exist.

For the generalized eigenvalue problem, similar formulas can be derived with a
slightly different notation; compare Equations (2.7) and (2.29):

‖Eij‖2
s =

N∑
k=1

‖Y i(k, :)‖2
2‖Σ>

P,kXj‖2
F , ‖Fij‖2

s =
N∑

k=1

‖Y i(k, :)‖2
2‖Σ>

S,kXj‖2
F .

4.4.2 Toy example

To illustrate the error bounds in terms of stochastic norms, we analyze the sampling
data stemming from the toy example in Section 1.1.6.

In the following, we want to examine error bounds for the mean cluster eigen-
value and for the invariant or deflating subspace, respectively. We are especially
interested in how the bounds change, if the discretization changes between Voronoi
decomposition and radial basis functions. To keep computational costs low, we
restrict ourselves to N = 16 basis functions {φi(q)}N

i=1. However, the nodes must
be located appropriately to resolve the metastabilities inherent in the system. This
will be demonstrated in the following.

We tested the following three types of discretization:
Grid based Voronoi discretization: We decompose Ω into N = s2 Voronoi

sets by a uniform s× s-grid,

{[−π;−π], [−π;−π + 2π/s], . . . , [π − 2π/s; π − 2π/s]},

where s = 4; see Figure 4.1(a).
Meshfree Voronoi discretization: We select N = 16 nodes via k-means

from a pre-sampling trajectory, see Figure 4.2(a). The pre-sampling trajectory with
2000 sampling points was generated via hybrid Monte-Carlo at inverse temperature
βpre = 0.1.
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Figure 4.1: The grid-based Voronoi discretization comprises nodes in transition
regions (marked by a cross) between metastable domains which results in large
variances in the corresponding matrix rows.

Radial basis functions: We use the same nodes as in case of a meshfree
Voronoi discretization, but this time we discretize by means of radial basis functions
with α = 5.

For each basis function, 2000 sampling points were generated via hybrid Monte-
Carlo (generation of proposal point via 10 MD-steps with τ = 0.01), distributed
according to the partial densities πi(q) at inverse temperature β = 0.4. These
points were then propagated by the Hamiltonian dynamics with randomized initial
momenta drawn from the distribution η(p) (50 MD-steps with τ = 0.01). The rows
of the transition matrices P and S were computed according to (1.15) and (1.14),
respectively.

For every type of discretization, we repeated the experiment c = 100 times, re-
sulting in training sets of 100 (generalized) count vectors for every matrix row, from
which the parameter vectors αi were estimated. The matrices P with
P (i, :) = α̂P,i/ŵP,i and S with S(i, :) = α̂S,i/ŵS,i were used as estimates for the ex-
act matrices P and S. Then, the Perron cluster eigenvalues and the corresponding
invariant or deflating subspace were calculated, together with the variables that are
involved in the perturbation theory.

Numerical results The values for the characteristic variables and bounds for all
problems are listed in Table 4.2. The notation is inherited from Chapter 2. The
bar on some quantities indicates that these values were computed at the expected
values P and S. The row “global bound” contains the bound from (3.8) or (3.10),
respectively. The bounds on ‖E‖∞ and ‖F‖∞ result from the former error estimator
(1.16). The bound on sin(θ) corresponds to (2.11), and the bound on ∆µ was
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Table 4.2: Values of variables and bounds involved in the perturbation analysis
of eigenvalue problems stemming from different discretizations. The notation is
adopted from Theorems 2.1.2, 2.1.5, 2.2.2, and 2.2.3.

Voronoi cells radial basis functions

grid based meshfree gen. eig. stand. eig.

λ9 0.7223 0.9074 0.9197 0.9232
λ10 0.0106 0.0531 0.0213 0.5364
sep(L1, L2) 0.7009 0.8395 – 0.3750
dif[(A11, B11), (A22, B22)] – – 0.2952 –
(‖E‖s, ‖F‖s) (0.6143,–) (0.1543,–) (0.1447.0.1545) 0.1581∗

global bound 0.1418 0.1786 0.0647 0.0825
(‖E‖∞, ‖F‖∞) (1.9510,–) (1.257,–) (1.2476,0.6074) 0.7543∗

(‖E11‖s, ‖F11‖s) (0.2418,–) (0.0588,–) (0.0583,0.0399) 0.0449∗

(‖E12‖s, ‖F12‖s) (0.1845,–) (0.0721,–) (0.0642,0.0826) 0.0856∗

(‖E21‖s, ‖F21‖s) (0.4274,–) (0.0731,–) (0.0756,0.0529) 0.0533∗

(‖E22‖s, ‖F22‖s) (0.3197,–) (0.0990,–) (0.0877,0.1126) 0.1132∗

δ 0.1394 0.6817 0.1427 0.2169
η 0.9608 0.6974 1.0424 0.3960
γη/δ2 21.0 0.1098 3.8685 0.4485
bound on sin(θ) – 0.2146 – –
γ?η?/δ?

2 0.3718 0.0089 0.1397 0.0739
bound on ∆µ – 0.0491 0.1751 0.0692
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Figure 4.2: The meshfree Voronoi discretization suits better to the metastable sub-
sets. The basis functions {φi}N

i=1 resolve the boundaries between metastable regions
such that the row-wise variances are small.
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Figure 4.3: Final clustering for grid-based and meshfree Voronoi discretization,
respectively. The plots were generated by assigning 2000 uniformly distributed
points to the cluster they belong to with maximal probability. If this probability is
smaller than 0.8, the marker is drawn with a small linewidth, otherwise it is drawn
in bold face.

computed according to (2.18) or (2.38), respectively. The ∗ in the last column
signalizes that these are not the values for E or F , but for G = E − F in the
standard eigenvalue problem (P + I − S)X = XΛ. The ? in the first column
indicates values from the spectral resolution.

For the grid-based Voronoi discretization, the stochastic norm of the error ma-
trix exceeds the global bound. Note that the former error estimator for ‖E‖∞ is
even larger. Unfortunately, γη/δ2 > 0.25. Any bound on sin(θ) thus becomes mean-
ingless. The reason is that the row-wise variances are very large for basis functions
whose nodes are located near a boundary between different clusters, see Figure 4.1.
The assignment of such states to clusters is very sensitive, see Figure 4.3(a).

For the meshfree Voronoi discretization, the eigenvalue problem is better con-
ditioned. The eigenvalue gap as well as the separation of the subspace are larger
than in case of a grid-based discretization. Consequently, we have γη/δ2 < 0.25,
which implies that the global bounds are valid. Indeed, the basis functions resolve
the boundaries between the metastable regions much better than in case of the grid
based discretization, see Figure 4.3(b). Moreover, the mean cluster eigenvalue is
approximated very well.

With radial basis functions, the eigenvalue gap is quite large and the estimated
matrix errors are of similar size as for the meshfree Voronoi discretization, compare
Table 4.2. However, the inverse condition number dif and thus the required upper
bound (3.10) on max(‖E‖s, ‖F‖s) is quite small. For the same reason, γη/δ2 is
larger than 0.25 such that we cannot apply the perturbation theorem 2.2.2. In case
of the spectral resolution, the condition γ?η?/δ?

2 < 0.25 is satisfied, but the bound
on ∆µ estimated via (2.38) yields the value 0.1751, which is quite large.
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Figure 4.4: Error norms and condition numbers in dependence on α, the shape
parameter of radial basis function. There seems to be an optimal value for α
around 20 where the norms of the error matrices attain a minimum. Small values
of α should be avoided because they imply large condition numbers.

Alternatively, we considered the standard eigenvalue problem (P + I − S)X1 =
X1Λ with error matrix G ≡ E − F . The eigenvalue gap in the corresponding
spectrum is much smaller than for the generalized eigenvalue problem. However,
the inverse condition number sep is larger. Nevertheless, ‖G‖s = 0.1581 is still
larger than the global bound 0.0825, and γη/δ2 > 0.25. Although the preconditions
of the perturbation theorem are still not satisfied, the values are much closer to the
required bounds than in case of the generalized eigenvalue problem. Moreover, the
spectral resolution indicates that the mean cluster eigenvalue is approximated well
(∆µ < 0.0692).

In all cases, an enhanced sampling might reduce the error such that the pertur-
bation theorems can be applied.

Dependence on the shape parameter In the following, we want to examine
how our observations depend on the shape parameter α of the radial basis functions.
The condition number of the invariant or deflating subspace, measured by 1/sep for
the standard eigenvalue problem with P + (I − S) and 1/dif for the generalized
eigenvalue problem (P, S) decreases with increasing α, see Figure 4.4(b). In other
words, the closer S to the identity, the better conditioned the eigenvalue problem.
On the other hand, the stochastic norms of the error matrices E and E − F seem
to have a local minimum for α ∈ [10, 50], see Figure 4.4(a).

The reason is that there exists a value of α for which the basis functions ap-
proximate the conformations best. In our example, the conformations have nearly
no overlap but large gradients. Thus α must be relatively large for a good approxi-
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mation. This is also verified by the fact that for α = 1 no clusters can be detected,
i.e. there is no integer number nC which leads to a well-conditioned invariant or
deflating subspace. Since the results for α > 10 do not deviate too much, one could
as well decide for α = ∞ (Voronoi tessellation) in our example.

A detailed statistical analysis to find the optimal value for α is out of range in
practice because it would require a complete horizontal and vertical sampling for
every α. However, the results are quite insensitive w.r.t. α, if α is near the optimum
[109]. If no well-conditioned invariant or deflating subspace can be identified, it is
recommended to repeat the simulation with a different value for α.

In summary, we may state that the perturbation bounds in case of radial basis
functions are larger than in case of a Voronoi discretization because the condition
number for the deflating subspace is larger than the condition number for the invari-
ant subspace. Moreover, radial basis functions introduce an additional error in the
mass matrix S, which is zero otherwise. Nevertheless, since perturbation bounds in
terms of norms are often quite pessimistic, the analysis of distributions might give
much better results. This will be examined in the following section.

4.5 Error distribution

Often one is not only interested in upper bounds on errors, but also in their distri-
butions. Given a training set of data for each row of P and S, one can estimate the
parameters αi and use them to sample more transition matrices. From these ma-
trices, one can compute the variable of interest and analyze its distribution, which
will be demonstrated in the following.

4.5.1 Direct method

The direct method starts with sampling the rows of E and F from the Dirichlet
or the MVN distribution, see App. C.2. For each sampled pair of matrices, the
variable of interest is computed. This method is very expensive because it requires
solving the eigenvalue problem in every iteration.

4.5.2 1st order approximation

Whenever a linear relationship between the perturbation (E,F ) and the variable
of interest is available, samples of the variable can easily be obtained by applying
the linear operator to the sample of (E,F ). If all other variables are replaced by
their expected values calculated from (P , S), then the linear relationship can be
considered as the first order Taylor series expansion for the variable of interest
about the values calculated at the expected values of the transition matrices.

Invariant subspace From Section 2.1.2 we know that, under certain conditions,
there exists an invariant subspace X̃1 of the perturbed matrix P̃ = P + E in the
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form X̃1 = X1 + X2Q, where a 1st order approximation of Q is given by

vecr(Q) .= Tvecr(E) (4.7)

with T defined as in (2.14). Remember that “vecr” stacks the rows of a matrix into
one column (see Section 2.1.1). The matrix T needs to be computed only once. Then
one can directly sample the rows of E from the Dirichlet or MVN distribution and
compute Q by one matrix-vector multiplication. This is much faster than the direct
method. The distribution of the largest singular value of Q equals the distribution
of tan(θmax(X 1, X̃1)).

Mean cluster eigenvalue of P According to Section 2.1.3, the deviation in the
average eigenvalue of L1 can be measured by the first-order approximation

∆µ
.= t>vecr(E) (4.8)

with t defined as in (2.19). Thus, a sample of ∆µ can be calculated by one vector-
vector multiplication with vectors of length N2.

Stationary distribution Following the approach by Singhal and Pande [44], the
first order Taylor series expansion for the stationary distribution w as a function of
the transition probabilities pij is given by

w .= w +
N∑

i=1

Gw
i ∆pi, (4.9)

where ∆pi = E(i, :)> and

Gw
i =


∂w1
∂pi1

∣∣
A

. . . ∂w1
∂piN

∣∣
A

...
. . .

∂wN
∂pi1

∣∣
A

∂wN
∂piN

∣∣
A


with A = P

> − I. The entries of the sensitivity matrix Gw
i are obtained from the

solution of a system of linear equations (compare Section B.2),[
A
e>

]
Gw

i = −wi

[
IN

0

]
.

Once the sensitivity matrices have been computed, every sample of w requires N
matrix-vector multiplications with matrices of size N ×N .
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Deflating subspaces Instead of solving the nonlinear Sylvester equation (2.30),
it mostly suffices to solve the linearized system(

vecr(W )
vecr(Q)

)
.= Z

(
vecr(E)
vecr(F )

)
(4.10)

with Z defined in (2.33). The matrix Z ∈ R2nC(N−nC)×N2
needs to be computed

only once. Then samples of Q can be obtained by multiplying the lower nC(N−nC)
rows of Z with the vector (vecr(E), vecr(F ))> ∈ RN2

.

Mean cluster eigenvalue of (P, S) There are two possibilities to sample from
the distribution of ∆µ. The first method does not rely on the linear relationship
between µ(Ã11, B̃11) and (E,F ). According to (2.36), we can use the linearized and
vectorized equations

vecr(Ã11)
.= vecr(A11) + (V H

1 ⊗X>
1 )vecr(E),

vecr(B̃11)
.= vecr(B11) + (V H

1 ⊗X>
1 )vecr(F )

to sample the matrices Ã11 and B̃11 efficiently. Then we have to solve the reduced
eigenvalue problem to obtain

µ(Ã11, B̃11)
.= mean(L[(Ã11, B̃11)]).

This is in contrast to the standard eigenvalue problem, where µ(L̃1) was sampled
directly without solving an eigenvalue problem. However, the computational effort
to solve the system of size nC ×nC is small compared to the direct approach which
additionally requires the computation of the Schur decomposition in each step.

The solution of the small eigenvalue problem can be avoided by using the linear
relationship (2.41),

∆µ
.= z>1 vecr(E)− z>2 vecr(F ). (4.11)

This requires the multiplication of vectors vecr(E) and vecr(F ) with vectors z1 and
z2 of length N2 in every sampling step, which can be done efficiently. These vectors
need to be computed only once at the beginning of the simulation. For this purpose,
nC rows of the Kronecker-product matrices (B−1

11 V H
1 )⊗X>

1 and (B−1
11 A11B

−1
11 V H

1 )⊗
X>

1 must be calculated (see Equation (2.40)), which is much cheaper than forming
the complete Kronecker products.

4.5.3 Multivariate normal approximation

If the sampling size is large enough, the rows of E and F will be distributed accord-
ing to the multivariate normal distribution with means mi and covariance matrices
Ci as given by (4.4) and (4.5). Once the covariance matrices have been factorized,
sampling from the MVN distribution is much easier than from the Dirichlet dis-
tribution; see Section C.2. If additionally a linear relationship is available, simple
closed form solutions for the distributions can be derived.
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It is a well known fact from the theory of normal distributions that if one
has a vector y ∼ MVN(µ, C), then the vector y′ = Fy + b is distributed as
y ∼ MVN(Fµ + b, FCF>).

We know about E and F that their rows are pairwise uncorrelated, which can
be expressed as

vecr(E) ∼ MVN(0, diag(CP,i)), vecr(F ) ∼ MVN(0, diag(CS,i)).

Given the factorizations of the covariance matrices CP,i and CS,i,

CP,i = ΣP,iΣ>
P,i, CS,i = ΣS,iΣ>

S,i,

samples of the variables of interest can just be generated by sampling vectors from
the standard normal distribution and performing vector-vector or matrix-vector
multiplications. The size of the matrices depends on the rank of the covariance
matrices, which is related to the number of non-zero entries in P and S. We will
denote by νP and νS the sum of the number of columns in the matrices ΣP,i and
ΣS,i, respectively.

Invariant subspace From samples of

y ∼ MVN(0, IνP )

we obtain samples for Q from (4.7) by setting

vecr(Q) = Tdiag(ΣP,i)y ∼ MVN(0, Tdiag(CP,i)T>).

Thus, every sampling step requires just one matrix-vector multiplication with a
matrix Tdiag(ΣP,i) of size nC(N − nC)× νP .

Mean cluster eigenvalue of P Given samples y from the standard normal
distribution, samples of ∆µ can be obtained from (4.8) via

∆µ = t>diag(ΣP,i)y ∼ N(0, t>diag(CP,i)t).

Thus, ∆µ follows a univariate normal distribution with variance σ2 = t>diag(CP,i)t
and can be sampled efficiently.

Stationary distribution Under the assumption that ∆pi = E(i, :)> ∼ MVN(0, CP,i),
the linear relationship (4.9) yields

w ∼ MVN(w,

N∑
i=1

Gw
i CP,i(Gw

i )>). (4.12)

In order to sample from this distribution, we sample N standard MVN variables
yi ∼ MVN(0, IνP,i), from which we get

∆wi = Gw
i ΣP,iyi ∼ MVN(0, Gw

i CP,i(Gw
i )>), (4.13)
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and finally

w = w +
N∑

i=1

∆wi.

Deflating subspace According to (4.10), samples of Q can be obtained via

vecr(Q) = Z(nC(N − nC) : 2nC(N − nC), :)diag(ΣP,i, ΣS,i)y,

where y ∼ N(0, IνP +νS ).

Mean cluster eigenvalue of (P, S) Similar to the first order approximation, the
distribution of µ(Ã11, B̃11) can be obtained by solving a small generalized eigenvalue
problem in every sampling step. This time, however, E and F are sampled directly
from the MVN distribution such that

vecr(Ã11) ∼ MVN(vecr(A11), Hdiag(CP,i)H>),

vecr(B̃>
11) ∼ MVN(vecr(B>

11), Hdiag(CS,i)H>),

where
H ≡ V H

1 ⊗X>
1 .

From samples yP ∼ MVN(0, IνP ) and yS ∼ MVN(0, IνS ) we obtain samples of Ã11

and B̃11 by setting

vecr(Ã11) = vecr(A11)+Hdiag(ΣP,i)yP , vecr(B̃11) = vecr(B11)+Hdiag(ΣS,i)yS .

By using the linear relationship (4.11), samples of ∆µ could also be obtained directly
by

∆µ = z>1 diag(ΣP,i)yP − z>2 diag(ΣS,i)yS .

4.5.4 Computational complexity

Table 4.3 summarizes the approximate running times for the different ways of com-
puting error distributions. As before, N denotes the number of basis functions or
the matrix size, respectively, and nC the cluster size. The number of samples is
denoted by L. Q is the time required to sample a single standard normal random
variable. The constants νP and νS correspond to the overall numbers of indepen-
dent normal random variables required to factorize the row covariance matrices of
P and S, respectively.

The direct method requires the solution of the eigenvalue problem in all L
sampling steps, which takes time O(LnCN2) for the standard eigenvalue problem
and time O(N3) for the generalized eigenvalue problem. Details can be found in
Section C.1. For a single eigenvector as the stationary distribution, the time reduces
to O(N2). Additionally, there are computational costs for the sampling of the error
matrices E and F which amount to O(LN2Q) for the Dirichlet distribution and
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Table 4.3: Approximate running times for calculating the error distribution of dif-
ferent quantities from sampling either by the direct method or by 1st order ap-
proximations. The columns differ by the distribution from which the matrices are
sampled. N denotes the number of basis functions or the matrix size, respectively,
and nC the cluster size. The number of samples is denoted by L. Q is the time
required to sample a single standard normal random variable. The constants νP

and νS correspond to the overall numbers of independent normal random variables
required to factorize the row covariance matrices of P and S, respectively.

Direct method
Dirichlet MVN

inv. subspace O(LnCN2 + LN2Q) O(N4 + LnCN2 + LνP (Q + N))
µ(L1) O(LnCN2 + LN2Q) O(N4 + LnCN2 + LνP (Q + N))
w O(LN2 + LN2Q) O(N4 + LN2 + LνP (Q + N))
defl. subspace O(LN3 + LN2Q) O(N4 + LN3 + L(νP + νS)(Q + N))
µ(A11, B11) O(LN3 + LN2Q) O(N4 + LN3 + L(νP + νS)(Q + N))

1st order approximation
Dirichlet MVN

inv. subspace O(n2
CN4 + LN2(Q + nCN)) O(n2

CN4 + LνP (Q + nCN))
µ(L1) O(N3 + LN2(Q + 1)) O(N3 + LQ)
w O(N3 + LN2(Q + N)) O(N4 + LνP (Q + N))
defl. subspace O(n2

CN4 + LN2(Q + nCN)) O(n2
CN4 + L(νP + νS)(Q + nCN))

µ(A11, B11) O(N3 + LN2(Q + 1)) O(N3 + LQ)

O(N4 + LNν + LQν) for the MVN distribution; see Section C.2. For the MVN
distribution, there is an initial cost of O(N4) for the factorization of the covariance
matrices. This cost could be reduced if the structure of these matrices was exploited;
see Section C.2.

Although the constants in the running time approximations are missing, we want
to point out that the computational costs for the sampling in case of the generalized
eigenvalue problem are approximately twice as large as the costs for the standard
eigenvalue problem.

For the 1st order approximation of the invariant subspace, the calculation of
the matrix T in Equation (4.7) takes an initial time O(n2

CN4). Thus, the time
for the initial computation of the eigenvalue problem can be neglected. In case of
a Dirichlet distributed matrix E, the sampling of E in all L sampling steps takes
time O(LN2Q). Additionally, the matrix-vector product in Equation (4.7) takes
time O(LnCN3). For the MVN distribution, the multiplication of the standard
normal random vectors with the covariance factor matrices Σi does not need to be
computed in every sampling step but must be computed only once at the beginning.
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The sampling of a standard normal random vector y ∈ RνP takes time O(LνP Q),
and multiplication with Tdiag(ΣP,i) takes time O(LνP nCN).

For the mean cluster eigenvalue, the construction of the vector t in (4.8) requires
the solution of the Sylvester equation (2.4), which takes time O(N3). Thus, the
formation of the Kronecker product, which takes time O(nCN2), can be neglected.
While the sampling of ∆µ from a Dirichlet distributed E requires a vector inner
product of size N2 with a standard normal random vector y ∈ RN2

in every sampling
step (O(LN2Q+LN2)), the MVN distribution only requires one computation of the
variance t>diag(CP,i)t (O(N3)) and the sampling of one standard normal random
variable in every step (O(LQ)).

The computation of the sensitivity matrices Gw
i for the stationary density in

(4.9) and (4.12) takes time O(N3). For the 1st order MVN approximation, how-
ever, this time is dominated by the factorization of the covariance matrices (O(N4)).
For the Dirichlet distribution, the generation of ∆wi requires N matrix-vector prod-
ucts with a matrix of size N × N and standard normal random vectors y ∈ RN

(O(LN2Q + LN3)), whereas the samplings of yi ∈ RνP,i and the matrix-vector
products in (4.13) can be performed in time O(LνP Q + LνP N).

To summarize, one can say that the direct method is only applicable for moder-
ate numbers of the sampling size L. One might get the impression that the compu-
tational costs for the solution of the eigenvalue problems in the direct method and
the costs for the generation of the error matrices and the following matrix-vector
products in the 1st order approximation are comparable. However, the approxi-
mated computational complexities for the solution of eigenvalue problems include
large constants that account for the number of iterations in the eigenvalue solver.
Therefore, the required computing time for the eigenvalue problems is much larger
than for the sampling in the 1st order approximation. Moreover, the use of the
Dirichlet distribution in the 1st order approximation of subspaces is not advisable
because the sampling effort scales with N3. The MVN distribution, however, allows
a reduced description in terms of fewer standard normal random variables (often
νP +νS ¿ N2) and is therefore preferable. It especially proves its superiority in case
of scalar variables as the mean cluster eigenvalue, where it reduces to a standard
normal distribution.

4.5.5 Toy example

Consider again the “toy system” from Section 1.1.6. In Section 4.4.2, 100 transi-
tion probability matrices have been generated according to a discretization with 16
nodes. For both types of discretization, Voronoi cells and radial basis functions,
we now generate 10000 samples of E from the estimated Dirichlet parameters and
compute the desired statistics.

The standard eigenvalue problem First consider the distribution of the mean
cluster eigenvalue ∆µ. We compare the result from the exact calculation (solid
line in Figure 4.5(a)) with the 1st order approximation (4.8) (dashed line) and the
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Figure 4.5: Validation of different approximation schemes for ‖Q‖2 and µ(L̃1) from
10000 samplings. We observe that the 1st order approximation as well as the MVN
approximation agree quite well with the exact calculation.
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Figure 4.6: Representative distributions of elements P (i, j) over 100 different ma-
trices. Although the distribution for larger matrix elements does not resemble a
normal distribution, the row-wise MVN approximation gives good results.
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Figure 4.7: Distribution of elements of the stationary density w resulting from
10000 Dirichlet samples of the error matrix E (left) and their MVN approximations
resulting from 10000 direct samplings of w (right). The boxes have lines at the
lower quartile, median, and upper quartile values. The dashed lines extending from
each end of a box show the extent of the rest of the data. They extend out to
the most extreme data value within 1.5 times the interquartile range of the sample.
Data values beyond these lines are marked as outliers. The mean values are marked
with a cross. We observe that the MVN approximation agrees rather well with the
exact calculation, although it allows for negative entries in w.

MVN approximation (dashed-dotted line). As it can be seen in Figure 4.5(a), the
three histograms are nearly indistinguishable, which verifies the approximations.
Moreover, the bound |µ(L̃1) − µ(L1)| ≤ 0.0492 from Section 4.4.2 is verified. The
correctness of the MVN approximation is a bit surprising, because the distribution
of some matrix elements P (i, j) is far from being normal due to the occurrence of
rare events, see Figure 4.6.

The histogram of ‖Q‖2 for samples of E from the Dirichlet distribution is rep-
resented by the solid line in Figure 4.5(b). It coincides very well with the 1st order
approximation of Q (dashed line). As it can be seen in the figure, the MVN approx-
imation (dashed-dotted line) slightly overestimates the 2-norm of Q. However, the
approximation is good enough to give a quantitative estimate of the subspace error.
Furthermore, the illustrated distributions verify the upper bound 2γ/δ = 0.2146 of
‖Q‖2 from Section 4.4.2.

Next, we analyze the stationary distribution. The results from the direct calcu-
lation are illustrated as box-plots in Figure 4.7(a). The boxes have lines at the lower
quartile, median, and upper quartile values. The dashed lines extending from each
end of a box show the extent of the rest of the data. They extend out to the most
extreme data value within 1.5 times the interquartile range of the sample. Data
values beyond these lines are marked as outliers. The MVN approximation gives
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Figure 4.8: Distribution of diagonal elements of the coupling matrix Pc (left) and
corresponding characteristic life times (right) resulting from 1000 samples of the
error matrix E. The boxes have lines at the lower quartile, median, and upper
quartile values. The dashed lines extending from each end of a box show the extent
of the rest of the data. They extend out to the most extreme data value within
1.5 times the interquartile range of the sample. Data values beyond these lines are
marked as outliers. The standard deviation in the diagonal elements of Pc amounts
to about 0.01 (≈ 1%), whereas the standard deviation in the characteristic life times
is about 1.8 (≈ 17%).

very similar results, see Figure 4.7(b). Now the median values coincide with the
mean values wi because single elements are distributed according to normal distri-
butions symmetrically around the mean values. However, the MVN approximation
allows for negative entries in the stationary distribution, which is not the case in
the exact calculations.

Furthermore, we compute the elements of the coupling matrix Pc according to
(1.24). The membership vectors χ are obtained from PCCA+ via maximizing
trace(S). The diagonal elements, which represent the probability of the system to
stay within a certain conformation, have 95% confidence intervals of approximately
±0.005, see Figure 4.8(a). This amounts to relative errors in the mean holding
times of approximately 10% (Figure 4.8(b)).

Parameter sensitivity First of all, the quality of the MVN approximation main-
ly depends on the lengths of the sampling chains and thus remains valid also for a
smaller number m of sampled matrices.

However, the number m of sampled rows influences the precision of the Dirichlet
parameter vectors αi. The larger m, the larger the precisions wi. The results
become more insensitive w.r.t. outliers if m increases. This can be illustrated by
resampling sets of m matrices from the original set {Pi}100

i=1 with replacement. The
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Figure 4.9: Histograms of the mean cluster eigenvalue µ for different collections of
m matrices Pi from the original set of matrices {Pi}100

i=1. The bold lines with +-
markers represent the histograms for the original matrix set. The histograms have
been obtained by sampling 10000 different values of µ via the MVN approach. The
larger m, the smaller the deviation from the expected value.
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Figure 4.10: Histograms of ‖Q‖2 and µ(Ã11, B̃11) from 10000 samplings. The 1st
order approximation as well as the MVN approximation agree quite well with the
exact calculation.

histogram plots of the mean cluster eigenvalue will look different for every such
sampling because the estimated Dirichlet parameters will vary. However, the larger
m, the smaller the variance and the more similar these histograms will be, see
Figure 4.9.
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Figure 4.11: Mean and standard deviation for sin(θmax) and µ(Ã11, B̃11) with vary-
ing value of α, the shape parameter of the basis functions.
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The generalized eigenvalue problem Figure 4.10 illustrates the validity of
1st order and MVN approximation for the generalized eigenvalue problem. We
are especially interested in the question of how the sensitivity of the (generalized)
eigenvalue problem changes with the shape parameter α. As already demonstrated
in Section 4.4.2, the stochastic norms of the error matrices E and E − F seem
to have a local minimum for α ∈ [10, 50], see Figure 4.4(a). The same yields for
the mean of the subspace deviation sin(θmax) (Figure 4.11(a)) and the mean of the
standard deviation of the mean eigenvalue µ (Figure 4.11(b)). The reason is that
the conformations are approximated best by basis functions with large value of α,
compare Section 4.4.2. Thus, α should be chosen carefully in practical applications.





Chapter 5

Grid-free Hierarchical
Refinement

Previous chapters have made clear that there are two main error sources in our ap-
proach to conformation dynamics: the quality of the discretization and the approx-
imation of matrix elements by Monte-Carlo quadrature. This raises the following
two questions:

• Given a discretization of the state space, how can one efficiently compute the
entries of the transition probability matrix to sufficient accuracy?

• How must the discretization look like such that the sampling will be efficient
and the clusters are represented correctly?

These two problems are coupled in the following way. Assume we are given a
discretization such that one basis function covers two different conformations. Then
the sampling of the stationary density converges slowly because trajectories tend to
stay in one of the two conformations. Consequently, the entries in the corresponding
row of the transition probability matrix will reveal large variances which implies
large error bounds on the Perron subspace and other variables of interest. Given a
fixed discretization, the goal is to distribute the sampling points among the basis
functions in such a way that all basis functions contribute equally to the overall
error. If a basis function requires a large amount of sampling points, this hints
to the existence of metastabilities within that function. A decomposition of the
basis function along the boundary between different conformations will resolve this
problem on the next hierarchy level. In the present chapter, we want to demonstrate
how an iteration of adaptive sampling and hierarchical refinement as illustrated in
Figure 5.1 systematically reduces the stochastic norms of the error matrices and
improves the accuracy of calculated variables.

79
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initial discretization

initial sampling

error estimation

adaptive sampling

stopping criterion exit

hierarchical refinement

Figure 5.1: A sampling scheme that involves adaptive sampling and hierarchical
refinement.

5.1 Adaptive sampling

In this section we are concerned with the first of the two questions cited above:
Given a discretization of the state space, how can one efficiently compute the en-
tries of the transition probability matrix to sufficient accuracy? So far we have
considered a fixed number of horizontal trajectories with fixed chain length. How-
ever, since the matrix entries of P and S are evaluated by Monte-Carlo quadrature,
the quadrature error will decrease with increasing number of sampling points at the
worst case convergence rate of O(n−1/2) [86]. Thus, the estimated rows of the tran-
sition matrices P and S will get closer to the exact values, which will be reflected
by an increased precision of the estimated parameters. In other words, the row wise
variances will be reduced by an enhanced sampling, which improves the accuracy
of calculated observables.

Here, adaptive sampling means that we add sampling points to the basis func-
tion that contributes most to the error. Within the basis functions, we always
use standard Monte-Carlo methods. This is different to other concepts of adap-
tive sampling that would aim at choosing the sampling points within a basis func-
tion as elements of a low-discrepancy sequence such that the best possible order
of convergence can be achieved with a fixed number of sampling points [81, 43].
These methods are also known as quasi-Monte-Carlo methods. They combine the
low-discrepancy property of deterministic quadrature points with the advantage of
Monte-Carlo methods that previous results must not be recomputed if more sam-
pling points are added. However, quasi-Monte-Carlo methods are not in the scope
of the present thesis. Moreover, it is unclear whether these methods can really out-
perform the standard Monte-Carlo approach in case of irregularly shaped domains
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and non-smooth functions as they appear in our applications.

5.1.1 Horizontal sampling

The goal of adaptive horizontal sampling is to sample the partial Boltzmann dis-
tribution πi(q) within each basis function φi with the smallest possible number
of sampling points. In case of a Voronoi discretization, we need a criterion that
measures the distance to the desired distribution. This will be the Gelman-Rubin
convergence factor r [34]. Gelman-Rubin convergence is a necessary condition that
the distribution within a basis function is sampled correctly. In case of radial basis
functions, we use a much stronger criterion. We want the errors in entries of the
mass matrix S to be small. This requires an extensive sampling in the overlap
region between different basis functions, which is difficult, if the overlap has small
statistical weight. If the distribution in these overlap regions is approximated well,
then it will also be accurate in the remaining parts of the basis functions.

Convergence towards the stationary distribution When we sample within
a basis function, the horizontal sampling is said to have converged if the trajectory
is rapidly mixing w.r.t. the partial density πi(q). That means, trajectories starting
in different points will, after some relaxation time, sample the same distribution.
Such a behavior can be analyzed via the Gelman-Rubin convergence factor. The
Gelman-Rubin convergence indicator compares the within-chain-variances with the
between-chain-variances and returns a potential scale reduction factor r > 1 that
declines to 1 as the sampling size goes to infinity. When r is close to 1, each chain is
close to the target distribution and the sampling can be stopped. When r is large,
then further simulations may improve the inference about the target distribution.
The decision to continue the sampling does not depend on other basis functions.
The adaptive sampling procedure will be stopped as soon as r falls below a certain
threshold TOLGR.

Example 5.1.1. Let us revisit the example from Section 4.4.2 with the mesh-free
discretization by 16 nodes. We start 5 trajectories within each basis function and
compute the Gelman-Rubin convergence number r every 500 steps, ignoring the
first 500 points. The horizontal sampling is stopped when r < TOLGR = 1.01. We
perform this sampling strategy for the Voronoi discretization as well as for radial
basis functions with α = 5. Figure 5.2 shows the final distribution of sampling points
among the basis functions for both discretizations. We observe that the points are
almost equally distributed for the Voronoi discretization. In case of radial basis
functions, some functions require much more sampling points than others. The
reason is that the radial basis functions have larger support than Voronoi cells. In
particular, if a radial basis function covers different metastable regions, the inherited
metastability is much stronger than for a Voronoi cell. Figure 5.3 illustrates this
behavior for the first basis function. Thus, a large Gelman-Rubin convergence
number indicates metastabilities inside basis functions.
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(a) Voronoi discretization.
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(b) Radial basis functions.

Figure 5.2: (Example 5.1.1) Distribution of sampling points among the basis func-
tions to reach Gelman-Rubin convergence. In case of radial basis functions, metasta-
bilities are more pronounced such that some functions require more sampling points
than others.
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Figure 5.3: (Example 5.1.1) Representative horizontal trajectory for basis function
no.1 with node (1.9356, 2.9694). The radial basis function has larger support than
the Voronoi cell such that the metastability is more pronounced.
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Reducing the error in the mass matrix In case of radial basis functions, the
horizontal sampling is used directly to compute the entries of the mass matrix S.
Different horizontal trajectories started in different points will give different results
for the corresponding row in S. From these candidate rows, one can estimate the
parameters of the Dirichlet distribution and calculate the corresponding covariance
matrix. Among other things, these covariance matrices enter the computation of
F21 in the perturbation analysis described in Section 2.2.2. Since we do not yet
know the matrix P , we have no information about the invariant subspace. Thus,
we can only control the error matrix F in S = S + F . The goal is to make ‖F‖s as
small as possible. According to (4.3), we have

‖F‖2
s = E[

∑
i

∑
j

F (i, j)2] =
∑

i

∑
j

var[F (i, j)] =
∑

i

∑
j

var[S(i, j)]. (5.1)

Single trajectory: First consider the case where a basis functions φi(q) is sam-
pled by a single trajectory. The variance of S(i, j) under the Dirichlet distribution
with parameters uij is given by

var[S(i, j)] =
uij(wi − uij)
w2

i (wi + 1)
=

S(i, j)(1− S(i, j))
wi + 1

.

If m more samples are added and we assume that the expected transition probabili-
ties and thus the parameters uij remain constant, then the variance sum∑

j var[S(i, j)] will be reduced by

∆i =
N∑

j=1

[
S(i, j)(1− S(i, j))

wi + m + 1
− S(i, j)(1− S(i, j))

wi + 1

]
.

Thus, m more sampling points are added to the basis function k that reduces the
variance sum the most,

k = arg max
i

∆i. (5.2)

The sampling could be stopped as soon as ‖F‖s becomes smaller than a given
threshold TOLF , a maximum number of sampling points is reached, or the decrease
in ‖F‖s is smaller than some value. A similar idea, applied to another variable, has
been presented in [44].

Multiple trajectories: In case of multiple trajectories, each with length ni,
the variance of S(i, j) under the Pólya distribution with parameters αij is given by

var[S(i, j)] =
(1 + wi/ni)

(wi + 1)
S(i, j)(1− S(i, j)).

An increasing of the chain lengths ni will not decrease the variance, if ni is already
large and the chains locally mixing such that αij remains nearly constant. On the
other hand, basis functions that inherit metastabilities are characterized by a small
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Figure 5.4: (Example 5.1.2) Reduction of ‖F‖s by the adaptive horizontal sampling
procedure for different numbers of sampling chains. In case of multiple chains, the
existence of metastabilities within basis functions results in larger error estimates
at the beginning.

precision wi of the Dirichlet parameters αi and thus contribute much to the variance
sum (5.1). Therefore, more sampling points will be added to the basis function that
contributes most to the sum in (5.1) with index

k = arg max
i

∑
j

var[S(i, j)]. (5.3)

Both sampling strategies (5.2) and (5.3) fall into the class of greedy algorithms,
i.e. they make a locally optimal choice at each stage with the hope of finding the
global optimum. The objective is to find the optimal distribution of sampling
points such that ‖F‖s becomes smaller than a certain threshold. However, we are
not really interested in a global optimum because almost all solutions represent
an improvement compared to the standard sampling method where the points are
distributed evenly among the basis functions.

Example 5.1.2. Let us revisit the example from Section 4.4.2 with the discretiza-
tion by N = 16 radial basis functions (α = 5). We first start single trajectories of
length 500 in every basis function. By assuming a Dirichlet prior with αij = 1/16,
the distribution of the probabilities si ≡ S(i, :) given the observed data is Dir(si;ui)
with uij = αij + 500S(i, j). According to (5.2) we determine the basis function
that is expected to reduce the error most and add 500 more sampling points to
the corresponding horizontal trajectory. Then the Dirichlet parameter vector α
is reestimated and the error analysis is repeated. This iteration is continued until
‖F‖s ≤ 0.05, which happens after 45 iterations; see Figure 5.4. As shown in the his-
togram in Figure 5.5(a), the sampling points are distributed quite evenly among the
basis functions. However, we cannot be sure that the horizontal chains really rep-
resent the local stationary distributions. Therefore, we repeat the experiment with
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Figure 5.5: (Example 5.1.2) Distribution of horizontal sampling points among the
basis functions for different numbers of chains. In case of multiple chains, basis func-
tions with metastabilities require more sampling points and indicate insufficiencies
in the discretization.

5 chains of length 500 each within every basis function. We consider the different
rows {500s(k)

i }5
k=1 as discrete outcomes from a Pólya distribution and estimate the

parameters α of the underlying Dirichlet distribution as described in Section 4.2.3.
Then, according to (5.3), we determine the basis function that contributes most to
the error and add 500 more sampling points to all 5 horizontal trajectories. After
40 iterations we end up with ‖F‖s ≤ 0.05. The convergence behavior is illustrated
in Figure 5.4. As one can see, the initial error is larger in case of multiple chains,
which indicates the existence of basis functions with metastabilities. However, as
the chain lengths increase the convergence rate becomes roughly the same as for a
single chain. This indicates that the different chains are now mixing and give similar
results for the corresponding row in S. Basis functions that inherit metastabilities
require much more sampling points than others because the chains are not mixing
at the beginning; see Figure 5.5(b). Thus, multiple chains are a useful tool to detect
insufficiencies in the discretization.

In sum, one can say that a single chain can give misleading convergence results
if it is too short. Moreover, a single chain is inadequate to decide whether a certain
chain length is sufficient. Therefore, it is recommended to run multiple chains al-
though the sampling effort is larger. This coincides with the numerous results about
convergence towards the stationary distribution as, for example, the Gelman-Rubin
convergence criterion. The reduction of ‖F‖s can be used as alternative conver-
gence criterion to Gelman-Rubin. It is of similar complexity, but more suitable to
the problem in case of radial basis functions.
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5.1.2 Vertical sampling

Both types of discretization, Voronoi cells or radial basis functions, give rise to a
transition probability matrix P . In the same way as the horizontal sampling was
enhanced to reduce the error in S , the vertical sampling can be enhanced to reduce
the error in P . The advantage of vertical sampling is that the horizontal sampling
is already given such that a perturbation analysis in terms of S and P can be
performed. Thus, we can compute estimates for the invariant or deflating subspace
and work with the projected error matrices. The goal is to reduce the error in P
such that the preconditions of Theorem 2.1.2 or 2.2.2 become valid.

Consecutive vertical sampling Assume we are given a number of horizontal
sampling points {q(i)

k }ni
k=1 in basis function i which sample from the correct partial

density πi(q). The vertical sampling can then be performed by drawing randomly
points from the horizontal trajectory and propagating them with random initial
momenta. This corresponds to single chain sampling. From the transition counts
zij in case of Voronoi cells or nipij for radial basis functions, respectively, we obtain
an estimate for the Dirichlet parameter vector ui by assuming a Dirichlet prior. In
the following numerical examples, we will assume a Dirichlet prior with αij = 1/N .

Moreover, in case of radial basis functions, we assume that F is fixed such that
‖F21‖s is much smaller than ‖E21‖s. For Voronoi cells, ‖F21‖s is zero anyway.
Since the upper bound on the subspace angle sin θ(R(X1),R(X1)) decreases with
decreasing ‖E21‖s, the goal is to make this norm as small as possible. Since ‖E21‖s

decomposes into a sum over all basis functions (compare Equation (4.6)), we can
easily determine the one that contributes most to the norm. To be more precise,
consider the row-wise covariance matrices (compare Equation (4.5)), which can be
written as

Ci =
1

wi + 1
[diag(pi)− pip

>
i ],

where pi = (P (i, :))>. If m more samples are added in basis function i and we as-
sume that the expected transition probabilities remain constant, then the covariance
matrix becomes

Ĉi =
1

wi + m + 1
[diag(pi)− pip

>
i ].

Thus, the ith summand in Equation (4.6) (standard eigenvalue problem) is expected
to reduce from

pi ≡ ‖X2(i, :)‖2
2trace(XH

1 CiX1)

to
p̂i ≡ ‖X2(i, :)‖2

2trace(XH
1 ĈiX1).

For the generalized eigenvalue problem, X2 is just replaced by Y2. Consequently,
we choose the state k with

k = arg max
i

(pi − p̂i). (5.4)
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(a) Voronoi cells.
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Figure 5.6: (Example 5.1.3) Distribution of vertical sampling points among the
basis functions. We do not observe any significant difference between Voronoi cells
and radial basis functions.
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Figure 5.7: (Example 5.1.3) Reduction of ‖E21‖s for Voronoi cells and radial basis
functions (α = 5) by adaptive vertical sampling. We do not observe any significant
difference between the two discretizations.

In other words, we will add sampling points to the basis function that is expected
to reduce ‖E21‖s most.

Example 5.1.3. We start with the horizontal samplings that have been gener-
ated in Example 5.1.2. Since the Gelman-Rubin convergence factor r is small in
all basis functions, the horizontal trajectories within one basis function can be con-
catenated into single trajectories. We want to demonstrate how ‖E21‖s increases by
adaptively adding vertical sampling points to the basis function that is expected to
reduce the error most. We first select randomly m0 = 100 sampling points in every
basis function from the horizontal trajectory and propagate them vertically with
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Figure 5.8: (Example 5.1.3) Convergence history of the adaptive vertical sampling
for different values of m and m0 in case of Voronoi cells. Larger values of m0 and
m improve the convergence, but could at the same time overshoot the mark.

random initial momenta. Then, we estimate the Dirichlet parameter vectors αi

from the transition counts and the assumed prior. According to (5.4) we determine
the index of the basis function that is expected to reduce ‖E21‖s most and select
randomly m = 100 more sampling points from the horizontal trajectory for vertical
propagation. Parameter estimation and index determination are continued over 100
iterations. As one can see from Figures 5.6 and 5.7, the convergence behavior does
not depend on the type of discretization. Thus, the treatment of numbers nipij as
transition counts in case of radial basis functions is reasonable.

A comparison with Figure 4.2(a) shows that basis functions in transition regions
(number 1, 3, and 15) require most sampling points.

Parameter sensitivity The adaptive vertical sampling consists of two main
phases. In the first phase, a fixed number m0 of points is chosen randomly from
the horizontal trajectory in every basis function. Second, in each refinement step a
fixed number m of points from a selected basis function is added for vertical sam-
pling. The number m0 determines the quality of the initial subspace basis. The
larger m0, the smaller the bound on ‖ sin Θ‖. If the initial bound is already close
to the desired bound, fewer additional sampling steps might be required in the fol-
lowing adaptive sampling procedure; see Figure 5.8. This example is the same as
the previous one based on a Voronoi disctretization, but this time the number of
vertical sampling points is varied. Since the initial sampling will be improved by the
following adaptive sampling, m0 can in principle be very small. However, if it was
too small, it could happen that some transitions between metastable regions do not
occur and the perturbation analysis would fail. Hence, m0 should be large enough
to deliver an adequate initial solution but small enough to keep the sampling effort
moderate. The smaller the parameter m, the more exactly the sampling points
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Figure 5.9: (Example 5.1.4) Results of the simultaneous horizontal and vertical sam-
pling procedure. Although initially ‖E21‖s is larger than ‖F21‖s, it decreases much
faster such that less vertical sampling points are needed than horizontal points.

can be distributed among the basis functions. However, there is a computational
overhead resulting from the calculation of the error bound after every refinement
step. Therefore, m should not be too small. Furthermore, if m0 and m were chosen
too large, one could overshoot the mark, i.e. too many sampling points would be
generated to reach a certain bound. In general, different values of m lead to similar
distributions of sampling points.

Simultaneous horizontal and vertical sampling For radial basis functions,
the horizontal sampling routine is stopped as soon as ‖F‖s decreases to a certain
threshold. The problem is that we do not know in advance which threshold on
‖F‖s is necessary before having performed the vertical sampling. To circumvent
this disadvantage, one could reduce the error in S and P simultaneously to meet a
global convergence criterion.

By starting multiple horizontal chains and propagating points thereof vertically,
we obtain a number of candidate rows for S and P . These rows are considered as
outcomes of Pólya distributions and are used to estimate the underlying parameter
vectors αi. The basis function that contributes most to max(‖E21‖s, ‖F21‖s) is
selected for enhanced sampling,

k =

{
arg maxi ‖Y2(i, :)‖2

2trace(XH
1 CS,iX1) , if ‖E21‖s < ‖F21‖s

arg maxi ‖Y2(i, :)‖2
2trace(XH

1 CP,iX1) , if ‖E21‖s > ‖F21‖s

. (5.5)

Example 5.1.4. Previous experiments have shown that for radial basis functions
‖E21‖s decreases faster than ‖F21‖s, i.e. to reach the same error tolerance for ‖E21‖s
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as for ‖F21‖s, one needs fewer vertical sampling points than horizontal sampling
points.

We started with 5 trajectories of length 500 in every basis function and propa-
gated 50 randomly selected points in every trajectory vertically. Then we computed
the 5 candidate rows for P and S and estimated the corresponding parameters of
the Pólya distribution. Afterwards we computed the variables in Theorem 2.2.2
and determined the basis function that contributes most to max(‖E21‖s, ‖F21‖s).
The 5 horizontal trajectories in this basis function were then extended by further
500 sampling points, whereof 50 points were propagated vertically. Thus, the total
number of horizontal sampling points is always ten times higher than that of vertical
sampling points. The 5 candidate rows for S and P and the parameter vectors αi

were then recalculated and the next basis function was determined. The iterations
were stopped as soon as γη/δ2 < 0.25, which happened after 93 iterations. The
final bound on sin(θmax) amounts to 2γ/δ = 0.1140. At the beginning, ‖E21‖s is
larger but it decreases faster than ‖F21‖s; see Figure 5.9(a). Thus, the portion of
vertical sampling points could have been chosen even smaller then 10 percent. The
distribution of horizontal and vertical sampling points among the basis functions is
illustrated in Figure 5.9(b). The final number of horizontal sampling points amounts
to 2.725 ·105. Again, this example confirms the main insight: More sampling points
are needed in transition regions (basis functions 1, 3, and 15) whereas only a few
sampling points are required within metastable conformations.

5.1.3 Comparison of different sampling schemes

The simultaneous sampling as it has been performed in Section 5.1.2 has an im-
portant practical drawback. It requires a priori knowledge about the number of
metastabilities, nC . There are two possibilities to circumvent this problem. First,
one could interrupt the sampling procedure after the first iteration and analyze
the intermediate matrix pair (P, S) to select nC according to the smallest condi-
tion number. However, the sampling chains must be rather long to ensure that all
relevant parts of the sampling space have been captured. Otherwise, one might
leave out some metastable regions, which leads to a wrong value for nC . Since the
following distribution of sampling points is optimized according to this value, one
can obtain misleading results.

A second method that does not require the value nC is to reduce ‖E‖s and ‖F‖s

instead of the projected error matrices. However, since nC and hence the subspace
condition number are unknown in this case, it is difficult to define upper bounds
on these norms and to select a stopping criterion for the sampling procedure. The
same problem occurs in case of adaptive horizontal sampling, if the goal is to reduce
‖F‖s alone.

Fore these reasons, we propose to perform the horizontal sampling first, and to
start the vertical sampling afterwards. The basic algorithm for the adaptive vertical
sampling is illustrated in Figure 5.10. In most cases, Gelman-Rubin convergence
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Figure 5.10: Algorithm for adaptive vertical sampling. The shortcut “AF” stands
for ansatz or basis function.
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implies a small error in S. Alternatively, one could first sample until Gelman-Rubin
convergence is reached and then continue the horizontal sampling adaptively to
further reduce ‖F‖s as described in Section 5.1.1. Afterwards, the adaptive vertical
sampling can be performed as described in Section 5.1.2. However, if Gelman-Rubin
convergence cannot be achieved in some basis function within a maximum number
of sampling steps, this hints to metastabilities within this function. Thus, it makes
no sense to start a vertical sampling because the dynamical process is not rapidly
mixing within this function. Instead, the basis function should be refined as it will
be demonstrated in the following section.

5.2 Hierarchical refinement

In the present section we deal with the following question: How must the dis-
cretization look like such that the sampling will be efficient and the clusters are
represented correctly? This question is closely related to the adaptive sampling
procedure. Whenever the sampling effort for a certain basis function becomes too
large, the discretization should be adapted by decomposing the function. The re-
sults from the previous section give rise to an algorithm in which alternating vertical
sampling and hierarchical refinement lead to a final discretization that resolves the
boundaries between different clusters. This algorithm is referred to as vertical re-
finement and explained in detail in Section 5.2.2. However, it turns out that this
kind of algorithm is very expensive because it requires horizontal and vertical re-
sampling of the refined functions. For this reason, a second algorithm, denoted as
horizontal refinement, will be presented in Section 5.2.3. This algorithm arrives at a
final discretization by alternating horizontal sampling and hierarchical refinement.
Given the final discretization, an adaptive vertical sampling systematically reduces
the error in the transition probability matrix. Thus, horizontal refinement decou-
ples vertical sampling and hierarchical refinement, which makes it more efficient
than vertical refinement and therefore applicable to larger systems.

The numerical examples are restricted to Voronoi based discretizations, but sim-
ilar results could be derived for radial basis functions. However, since the condition
number of the deflating subspace for the matrix pair (P, S) is larger than the con-
dition number of the invariant subspace of P alone, the sampling effort for radial
basis functions would be larger to achieve the same accuracy as for Voronoi cells.
Moreover, for radial basis functions the evaluation of hierarchical basis functions in
a single point q requires a recursive function call for all basis function. This is com-
putationally more costly than in the Voronoi case, where only one basis function
needs to be evaluated recursively.

5.2.1 Partitioning of basis functions

Whenever a basis function is selected for hierarchical refinement, its partitioning
into new basis functions should satisfy two main properties. First, the decomposi-
tion must not influence the other basis functions, and second, the new set of basis
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functions must again form a partition of unity and meet the positivity constraint.
Weber [109] proposed a general way of constructing such a new basis. Assume we
are given a set of basis functions {φ1, . . . , φN} : Ω → [0, 1] whereof basis function k
is selected for hierarchical refinement into s new basis functions. Then, a temporal
set of basis functions {φ̃k1, . . . , φ̃ks} : Ω → [0, 1] is constructed such that this basis
forms a partition of unity and meets the positivity constraint. Finally, the new
basis functions are computed by

φki(q) := φk(q)φ̃ki(q), i = 1, . . . , s.

In fact, the new basis functions {φ1, . . . , φk−1, φk+1, . . . , φN , φk1, . . . , φks} form a
partition of unity and meet the positivity constraint. Concerning the matrices P
and S, hierarchical refinement means that row and column corresponding to the
old basis function φk will be deleted and new rows and columns will be added.
Unrefined basis functions must not be resampled, but their trajectories must be
analyzed again to compute the interaction with the new basis functions.

The question remains of how to construct the temporal basis {φ̃1, . . . , φ̃s}. Given
the number of sub-states a basis function should be decomposed into, the task is to
determine the center points for the functions on the next hierarchy level. Ideally,
the boundary between the new functions coincides with the entropic or energetic
barrier within the original basis function. However, in dimension 3 and higher it
is impossible to detect these barriers with moderate effort. The original idea was
to start a new pre-sampling at high temperature within the basis function and
to select equidistant nodes thereof as new center points, which is computationally
expensive. Therefore, an alternative node selection method became necessary. Fi-
nally, we decided to apply k-means clustering [41] to the horizontal trajectory that
results from concatenating the single sub-trajectories. When the single chains are
not mixing, i.e. if there are metastabilities within the basis function, k-means will
probably deliver center points in different metastable regions. If there are at least
two center points in different metastable regions, the boundary between these re-
gions will be better resolved by the new basis functions than by the old ones. It
might happen that the points selected by the k-means routine represent molecular
configurations with low statistical weight, which complicates subsequent sampling
methods. Therefore, the points from the horizontal trajectory of the decomposed
basis function that are closest to the selected k-means center points are selected as
nodes for the new basis functions.

5.2.2 Vertical refinement

In his doctoral thesis, Weber [109] pointed out that the convergence of Monte-
Carlo sampling is slow whenever there exists an energy barrier within the modified
potential Vi(q). Horizontal trajectories starting on different sides of this barrier will
seldomly or never cross it. When propagated vertically, these trajectories will show
a different dynamic behavior resulting in different rows of the transition probability
matrix. If the adaptive sampling method is applied to such a discretization, these



94 5 Grid-free Hierarchical Refinement

mark all AFs for sampling Start

for all marked AFs: hori-
zontal and vertical sampling

error estimation

convergence? Stop

determine AF for refinement

maximum
number of
sampling

steps
reached?

maximum
hierarchy

level
reached?

mark AF for sampling decompose AF

mark new AFs for sampling

no

yes

no

yes

yes

no

Figure 5.11: Algorithm for hierarchical refinement based on horizontal and vertical
sampling. The shortcut “AF” stands for ansatz or basis function.

basis functions will require a large amount of sampling points. This will be used as
indicator for a hierarchical refinement.
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(a) Nodes before and after hierarchical refine-
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(b) Final clustering after vertical refinement.

Figure 5.12: (Example 5.2.1) Hierarchical refinement based on vertical sampling of
a grid based starting discretization. The refinement steps shift the nodes away from
the boundaries between metastable conformations such that these boundaries can
be resolved by the final discretization.

Algorithmic details The basic scheme is presented in Figure 5.11. Given the
matrix rows resulting from different sampling chains, one can estimate the parame-
ter vectors {αi}N

i=1 and calculate the covariance matrices. The information is used
to determine the basis function that contributes most to the error. Then, one can
either extend the horizontal and vertical trajectories or refine the basis function.
The hierarchical refinement will be stopped as soon as the preconditions of Theo-
rem 2.1.2 or 2.2.2 are satisfied and the subspace angle sin θ(X1,X 1) becomes smaller
than a certain threshold TOLsin(Θ).

Example 5.2.1. We return to the example from Section 4.4.2 with a Voronoi dis-
cretization, but now we aim at an automatic state space decomposition. We started
with the same initial discretization as illustrated in Figure 4.1(a) and generated 5
horizontal sampling chains in every basis function, each one consisting of 1000 sam-
pling points. Then the points were propagated over a time span ∆t = 0.5 (50
MD-steps with τ = 0.01), which results in 5 candidates for each row of P . We
estimated the parameters αi of the Pólya distributions and computed the corre-
sponding covariance matrices. Then we applied the perturbation theory and se-
lected the state that contributes most to ‖E21‖s for refinement. This procedure
was continued iteratively until the stopping criterion 2γ/δ < TOLsin(Θ) = 0.1 was
satisfied. The initial and final nodes are shown in Figure 5.12(a). Each refinement
step reduces the subspace error, see Figure 5.13. After nine refinement steps, the
value of γη/δ2 becomes smaller than 0.25 such that the error bound becomes valid;
see Figure 5.13(b). After 10 refinement steps, we end up with γη/δ2 = 0.0839,
‖E‖s = 0.1077, and ‖ sin Θ‖ ≤ 2γ/δ = 0.0868. Now the boundaries between the
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Figure 5.13: (Example 5.2.1) Hierarchical refinement based on vertical sampling of
a grid based starting discretization. Convergence history.
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Figure 5.14: (Example 5.2.1) Hierarchical refinement based on vertical sampling of
a grid based starting discretization. Contribution of basis functions to ‖E21‖s in the
start discretization and after hierarchical refinement. Initially, the errors are dis-
tributed non-uniformly among the basis functions, whereas the error contributions
are equilibrated in the final discretization.
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(a) Nodes before and after hierarchical refine-
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(b) Final clustering after vertical refinement.

Figure 5.15: (Example 5.2.2) Hierarchical refinement based on vertical sampling
of a few initial basis functions. Distribution of nodes and clustering. Hierarchical
refinement generates new nodes in metastable conformations which had not been
resolved by the initial discretization.

clusters can be resolved; see Figure 5.12(b). As expected, the refinement strategy
led to an equilibration of errors among the basis functions; see Figure 5.14.

The algorithm also works for irregularly distributed initial sampling points. If
one uses a priori knowledge about the target number of clusters, and if the initial
number of basis functions is larger than this number, then consecutive refinement
steps will lead to a distribution of nodes in all metastable regions as will be illus-
trated in the following example.

Example 5.2.2. We selected randomly N = 10 nodes from a pre-sampling trajec-
tory of length 2000 at βpre = 0.1; see Figure 5.15(a). The horizontal and vertical
sampling were performed with the same parameters as before. The basis function
that contributed most to the stochastic norm of E21 was refined hierarchically until
convergence; see Figure 5.16. Indeed, the final nodes cover all metastable regions,
as illustrated in Figure 5.15(a). While the original discretization cannot resolve all
metastable regions, the final nodes can do, see Figure 5.15(b).

Since the target number of clusters is seldomly known a priori, we will now
propose a second refinement strategy which is solely based on the convergence of
the horizontal sampling towards the stationary distribution.

5.2.3 Horizontal refinement

The goal is to decompose basis functions that inherit metastabilities. Since hori-
zontal trajectories starting on different sides of an energy barrier will seldomly or
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Figure 5.16: (Example 5.2.2) Hierarchical refinement based on vertical sampling of
a few initial basis functions. Convergence history. It takes a few hierarchical refine-
ment steps until all metastable conformations are detected and the preconditions
of Theorem 2.1.2 become valid.

never cross it, metastabilities can also be detected by analyzing the variance of the
horizontal sampling.

Algorithmic details The algorithm decomposes into two parts. First, the hori-
zontal sampling is performed for each basis function and the discretization is refined
such that these samplings converge; see Figure 5.17. Second, the adaptive vertical
sampling is performed as in Figure 5.10.

When we sample within Voronoi cells, the horizontal sampling is said to have
converged if the Gelman-Rubin convergence factor r is close to 1. For every basis
function, the horizontal trajectories will either produce a small value for r or reach
the maximal chain length. In the second case, the basis function will be marked
for refinement. For radial basis functions, the function that contributes most to the
norm ‖F‖s will be marked for sampling. Then either the horizontal trajectories will
be continued or the basis function will be marked for refinement. As explained in
Section 5.1.2, we do not know in advance which bound on ‖F‖s is necessary before
having performed the vertical sampling. There is a possibility to circumvent this
problem. Whenever the metastable conformations are geometrically well separated,
a cluster analysis on S alone would reveal the conformations. In other words, we
could compute the invariant subspace R(X1) of S in every iteration and stop as
soon as the conditions of Theorem 2.1.2 are satisfied. Since the condition number
sep is nearly twice as large as dif, one should nevertheless continue the iterations
until ‖F‖s is a factor smaller than the desired threshold.
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Figure 5.17: Algorithm for hierarchical refinement based on horizontal sampling.
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Figure 5.18: (Example 5.2.3) Hierarchical refinement based on horizontal sampling
of a grid-based starting discretization. The final discretization is very similar to the
discretization obtained by vertical refinement (compare Figure 5.12(a)).
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Figure 5.19: (Example 5.2.3) Adaptive vertical sampling w.r.t. the final discretiza-
tion in Figure 5.18(a). The sampling points are distributed rather evenly among
the basis functions which is a measure for the quality of the final discretization.
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Example 5.2.3. First we consider the grid-based initial discretization from Sec-
tion 4.4.2. In every basis function we generated 5 horizontal trajectories with a
maximum of 2000 sampling steps each. Every 500 steps, we computed the Gelman-
Rubin convergence factor r corresponding to the 5 different chains. If the number
r did not become smaller than TOLGR = 1.5, the basis function was marked for
refinement. The final discretization is very similar to the one achieved by vertical
refinement, compare Figures 5.18(a) and 5.12(a). Finally, the horizontal trajecto-
ries within a basis function were concatenated to one single trajectory. Then, in
every basis function 200 points from the horizontal trajectory were selected ran-
domly with replacement and propagated vertically (50 MD steps with τ = 0.01)
with random initial momenta. These samples were used to estimate the Dirich-
let parameters and to compute the subspace error. The basis function that was
expected to reduce ‖E21‖s most was marked for further sampling. From the hori-
zontal trajectory of this basis function, we selected 200 further points for vertical
propagation and recomputed the corresponding row in P . This sampling procedure
was continued iteratively until the bound 2γ/δ on sin(Θ) became smaller than 0.05.
This happened after 307 refinement steps. Within these 307 steps, the bound on
sin Θ could be reduced from 0.2023 to 0.0499; see Figure 5.19(b). The histogram
in Figure 5.19(a) indicates that the fewest sampling points are necessary for ba-
sis function number 11, which corresponds to the node [0, 0], and basis function
number 34, which corresponds to the node (−2.5476, 2.5434). Indeed, these basis
functions are located in centers of metastable regions. On the other hand, basis
function number 41 requires many sampling points. It corresponds to the node
(−2.7623,−2.7388), which is located at the outer bound of the metastable cluster
in the lower left corner (see Figure 5.18(a)) and thus close to the cluster in the
upper right corner. This is exactly what one expects. Basis functions in transition
regions require more sampling points than basis functions in metastable regions.
However, by and large the sampling points are distributed quite regularly among
the basis functions, which is a desired property of the discretization.

Example 5.2.4. Even if we start with only two basis function, the hierarchical
refinement with TOLGR = 1.3 leads to a distribution of nodes which covers all
metastable regions; see Figure 5.20(a). While it is obviously impossible to cluster
Ω into metastable regions with these two basis functions, the final discretization
can do so; see Figure 5.20(b). Subsequent adaptive vertical sampling with 200
sampling points in each iteration reduces the subspace error from 0.2384 to 0.0499
within 221 iterations, see Figure 5.21(b). The histogram in Figure 5.21(a) indi-
cates that basis function number 29 is the critical one. It corresponds to the node
(−1.0121,−0.4105), which is located between two clusters. This is also verified by
its membership vector

χ = [0.0027, 0.0020, 0.0052, 0.0082, 0.0001, 0.4468, 0.0534, 0.0526, 0.4290],

which shows that the basis function belongs to cluster 6 and 9 with similar weight.
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Figure 5.20: (Example 5.2.4) Hierarchical refinement based on horizontal sampling
of a start discretization with two random nodes. Similar to vertical refinement, new
nodes are generated in metastable conformations that are not resolved by the initial
discretization (compare Figure 5.15(a)).
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Figure 5.21: (Example 5.2.4) Adaptive vertical sampling w.r.t. the final discretiza-
tion in Figure 5.20(a). The distribution of sampling points suggests a further re-
finement of basis function 29.
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5.3 Discussion

As demonstrated in this chapter, there are several possibilities for adaptive sampling
and hierarchical refinement. Which method shall we choose for the biomolecular
application in the following chapter?

The first choice concerns the type of basis functions. Radial basis functions have
some practical drawbacks. They can lead to an ill-conditioned eigenproblem and do
not allow for an interpretation of the dynamical process as Markov chain. Therefore,
we prefer Voronoi cells. Their only disadvantage compared to radial basis functions
is the reduced acceptance ratio in HMC sampling. We did not observe this problem
in our simulations, but whenever it occured, it could be diminished by the use of
umbrella sampling.

Second, one has to decide between vertical and horizontal refinement. As al-
ready mentioned, horizontal refinement is computationally cheaper than vertical
refinement. In contrast to vertical refinement, horizontal refinement of an insuf-
ficient start discretization does not use a priori knowledge about the number of
metastabilities. The goal of horizontal refinement is to detect the correct number
of metastabilities, whereas vertical refinement aims at a good approximation of a
fixed number of metastabilities. Consequently, we will apply horizontal refinement
for the biomolecular example. In case of Voronoi cells, the refinement will be based
on the Gelman-Rubin convergence factor, which requires multiple chain sampling.

Given the final discretization, the natural way to proceed is to apply adaptive
vertical sampling. For this purpose, the appropriate number of metastable confor-
mations must be identified. We suggest to run an initial vertical sampling with a
small number of sampling points in every basis function. From the initial guess for
the matrix P it should be possible to select an appropriate value for nC according
to the spectral gap or the condition number. Then the vertical sampling can be
continued adaptively in order to reduce the error in the corresponding invariant
subspace, i.e. to reduce ‖E21‖s. If it turns out that some basis function requires
much more sampling points than others, it can further be refined hierarchically.

If there does not exist a number nC of metastable conformations for which the
invariant subspace is well-conditioned, the vertical sampling should be performed
adaptively in order to reduce ‖E‖s instead of ‖E21‖s. Although the preconditions
for the validity of perturbation bounds might not be satisfied in this case, error
distributions for the invariant subspace could be derived.

The proposed sampling and refinement strategy will be illustrated in the next
chapter, where the application of conformation dynamics to a small biomolecule is
presented.





Chapter 6

A Biomolecular Application

The main challenge in molecular simulations is the high dimensionality of the state
space. Besides rotation and translation of the complete molecule, positions and
momenta of all atoms are changed during the molecular dynamics simulations. The
positional degrees of freedom are comprised in form of internal coordinates: bond
lengths, bond angles, and dihedral angles. Since bond lengths and angles mostly
oscillate around mean values, molecular conformations can often be described by
a small number of dihedral angles [1] whose selection requires some chemical intu-
ition. The methods presented in this thesis are based on the assumption that the
underlying dynamical system exhibits metastabilities w.r.t. these dihedral angles.
In general, the sampling effort depends on the separation between the fast timescales
that describe the molecule’s motion within a metastable conformation, and the slow
timescales on which the molecule switches between different conformations. If these
time scales are clearly separated, there will be a cluster of eigenvalues close to the
Perron root which is well separated from the rest of the spectrum. Then, the cor-
responding invariant or deflating subspace will be well conditioned such that the
perturbation in the matrix entries can be of moderate size. In practice, however,
many biomolecules do no exhibit such a behavior, at least not in such a pronounced
way. This is mainly due to a low flexibility inside metastable conformations, very
high energy barriers between them, and the existence of “sub-metastabilities”. By
sub-metastabilities we mean parts of the conformational space where the holding
time of a trajectory is much shorter than in the identified metastable conforma-
tions, but at the same time much larger than in typical transition regions. In the
discrete setting, this behavior is reflected in a spectrum that decays slowly from the
Perron root. Sometimes, chemical knowledge is required to identify the conforma-
tions correctly. A typical example will be presented in the following, the molecule
hexabromocyclododecane.

The simulations in this chapter have been performed with the software package
ZIBgridfree [113], which has been developed at Zuse Institute for four years
now. It includes the Merck Molecular Force Field (MMFF) [39, 40], which has been
designed for small molecules.
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Figure 6.1: Different stereoisomers of technical HBCD. Top row from left to right:
(+)-α-HBCD, (+)-β-HBCD, (+)-γ-HBCD. Bottom row from left to right: (-)-α-
HBCD, (-)-β-HBCD, (-)-γ-HBCD.
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Figure 6.2: Possible interconversion reactions of HBCD isomers connected to the
three sets of vicinal bromine atoms.

6.1 Hexabromocyclododecane

The molecule 1,2,5,6,9,10-hexabromocyclododecane (HBCD) is one of the major
flame retardant additives to plastics and textiles. Besides trace amounts, which can
be found in all parts of the environment, higher concentrations of the α-isomer have
recently been found in sediments, clearing sludge, fish, and even humans [12, 13,
11]. Therefore, HBCD is currently one of the emerging environmental analytes of
interest, and an EU risk assessment is under way.

Technical HBCD consists mainly of three diastereometric pairs of enantiomers;
see Figure 6.1. Since, in the absence of a chiral environment, the (-)-enantiomers be-
have in the same way as the (+)-enantiomers, only one group must be investigated,
here the (+)-enantiomers. It was shown experimentally [85, 42, 48] that a mix-
ture containing α-, β-, and γ-HBCD in any composition interconverts towards an
equilibrium that is dominated by α-HBCD. The reaction pathways are depicted in
Figure 6.2. A configuration of (+)-α-HBCD, visualized by amiraTM[2], is illustrated
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Figure 6.3: Structure of (+)-α-HBCD.

Figure 6.4: Interconversion mechanism for HBCD. The interconversion is only pos-
sible, if the two bromine atoms are in anti-position. This process is largely inde-
pendent from the structure of the rest R.
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in Figure 6.3. The chemical mechanism of the transition between these structures
is shown in Figure 6.4. Two vicinal bromine atoms change their positions with two
hydrogen atoms under inversion of absolute configurations. This quantum mechani-
cal process is largely independent from the structure of the rest R and can only take
place, if the two bromine atoms are in anti-position. Anti-position means that the
dihedral angle θ spanned by the bromine atoms and the connecting carbon atoms
lies in the interval [−π,−2π/3]∪ [2π/3, π], in contrast to the gauche-position where
θ ∈ [−2π/3, 2π/3]. Classical simulations can be used to characterize the intercon-
version process qualitatively by determining the part of the configurational space
for which the dihedral angle is in anti-position compared to the part of the config-
urational space where the angle is in gauche-position. The more the anti-position
is preferred, the faster the conversion at the corresponding angle will occur. The
distribution of conformers is different for each diastereomer, but for the purpose of
demonstration we will concentrate on the (+)-α-HBCD. In case of HBCD, there are
three sets of vicinal bromine atoms and thus three dihedral angles (C1C2, C5C6,
C9C10); compare Figures 6.3 and 6.1. Thus, we search for metastable conforma-
tions in the space spanned by these three dihedral angles. Since the interconversion
of neat HBCD takes place above its melting point at about 433 K, this will be the
temperature of interest. As an approximation, the simulations in this chapter are
performed for the vacuum.

The question of dividing the conformational space into anti- and gauche-po-
sitions has already been addressed in [110]. Due to the existence of dynamical
metastabilities inside the ring structure, the simulations were performed at high
temperature (1500K) in order to avoid the trapping problem. Then, an interpola-
tion approach was used to approximate the Boltzmann distribution at 433K. Since
cooperation partners from industry were only interested in qualitative results, this
approach was sufficient but an evaluation of the results is missing. With the help
of adaptive sampling and hierarchical refinement we are now able to perform the
simulations at 433K directly. Thus, we do not only obtain mean values, but also
histograms at the desired temperature.

6.2 Simulation results

To verify the advantage of adaptive sampling and hierarchical refinement compared
to the non-adaptive sampling method, we compare the results of both approaches.
In the non-adaptive method, an initial discretization is generated and the hori-
zontal sampling within every basis function is performed until the Gelman-Rubin
convergence factor decreases to a certain tolerance or until a maximum number of
sampling points is reached. All horizontal sampling points are then propagated once
with random initial momenta to build the transition probability matrix P . In a sec-
ond approach, the initial discretization is refined hierarchically until all horizontal
samplings reach the tolerance for the Gelman-Rubin convergence factor. Then, the
vertical sampling is performed adaptively until the number of sampling points from
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Figure 6.5: Condition numbers, minChi-values, and eigenvalues for the matrix stem-
ming from the non-adaptive approach (figures on the left) and for the matrix re-
sulting from initial vertical propagation after hierarchical refinement (figures on the
right). Different criteria suggest different numbers of conformations.

the non-adaptive approach is reached. Finally, we compare the error distributions
in the invariant subspace, the mean cluster eigenvalue, the cluster weights, and the
characteristic life times of conformations. Moreover, the refined sampling results
are used to examine the distribution of gauche- and anti-conformations. All HMC
trajectories were generated with 60 MD steps and τ = 1.3 fs as proposal step. The
vertical sampling also consists of 60 MD steps with τ = 1.3 fs. This amounts to
78 fs, a time interval which is short enough such that the corresponding initial value
problem remains well-conditioned [19].



110 6 A Biomolecular Application

Table 6.1: Identified conformations of HBCD by the non-adaptive approach.
conformation C1C2 C5C6 C9C10

1 (-)-gauche (-)-gauche anti
2 anti (+)-gauche (-)-gauche
3 (+)-gauche (+)-gauche (+)-gauche
4 anti (+)-gauche (+)-gauche
5 (+)-gauche (+)-gauche (-)-gauche
6 (-)-gauche (-)-gauche (+)-gauche
7 anti (-)-gauche (+)-gauche
8 (-)-gauche (+)-gauche (+)-gauche
9 (+)-gauche (-)-gauche (+)-gauche
10 (-)-gauche (-)-gauche (-)-gauche
11 (+)-gauche (-)-gauche (-)-gauche
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Figure 6.6: Boxplots of statistical weights and holding probabilities for the 11 con-
formations identified by the non-adaptive approach. The boxes have lines at the
lower quartile, median, and upper quartile values. The dashed lines extending from
each end of a box show the extent of the rest of the data. They extend out to
the most extreme data value within 1.5 times the interquartile range of the sample.
Data values beyond these lines are marked as outliers. The statistics results from
1000 samples of the error matrix E.
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Table 6.2: Mean and standard deviation (in parentheses) of variables computed by
the non-adaptive approach.
conformation statistical weight holding probability life time (ps)

1 0.0003 (0.0002) 0.9665 (0.0025) 2.342 (0.177)
2 0.0125 (0.0064) 0.9746 (0.0010) 3.079 (0.127)
3 0.0072 (0.0040) 0.9907 (0.0009) 8.493 (0.834)
4 0.0189 (0.0078) 0.9961 (0.0003) 20.282 (1.595)
5 0.0320 (0.0284) 0.9942 (0.0004) 13.621 (0.918)
6 0.0281 (0.0166) 0.9988 (0.0004) 71.337 (24.712)
7 0.0503 (0.0233) 0.9591 (0.0012) 1.909 (0.058)
8 0.0454 (0.0660) 0.9999 (0.0001) 930.5 (893.19)
9 0.0804 (0.0603) 0.9997 (0.0004) 343.9 (154.99)
10 0.2324 (0.1145) 0.9914 (0.0004) 9.137 (0.404)
11 0.4925 (0.1770) 0.9999 (0.0001) 1125.9 (627.12)

Table 6.3: Values of variables and bounds involved in the perturbation analysis of
the eigenvalue problem for HBCD in the non-adaptive and the adaptive approach.
Errors and condition numbers in these two approaches are of similar size.

nC sep ‖E‖s global bound ‖E21‖s δ

non-adapt. 8 0.0082 0.0768 0.0006 0.0050 -0.0671
non-adapt. 11 0.0219 0.0768 0.0016 0.0076 -0.0534
adapt. 9 0.0065 0.1058 0.0005 0.0059 -0.0988
adapt. 14 0.0183 0.1058 0.0010 0.0096 -0.0875
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6.2.1 The non-adaptive approach

To find an initial discretization, we first generated an initial HMC pre-sampling tra-
jectory at T = 1500K. From this trajectory, we selected 100 nodes located evenly in
the space covered by the pre-sampling trajectory. The Voronoi cells defined by these
nodes form the set of basis functions. In each basis function, 5 horizontal sampling
chains were started at T = 433K and continued until the Gelman-Rubin conver-
gence factor reached the tolerance TOLGR = 1.1 or until the lengths of the chains
extended to 5000 points each. In sum, 1302500 horizontal sampling points were gen-
erated. All points were propagated once to build the matrix P . The analysis of P
suggests 8 or 11 metastable conformations (Figure 6.5(a)). The number of clusters
should be selected such that the condition number is as small as possible. While
the gap in the spectrum correlates with the condition number, the former minChi-
criterion1 does not give insight to the sensitivity of the subspace; see Figure 6.5(c).
A larger subspace corresponds in general to a better separation, i.e. a smaller con-
dition number, and at the same time to a larger value of ‖E21‖s; see Table 6.3.
However, these differences are mostly very small so that the choice of the number
of clusters mainly depends on chemical intuition. If too few metastable conforma-
tions are selected, one might miss important structural information. Therefore, we
decided for the selection of 11 metastable conformations.

As it turned out from the visualization of the corresponding configuration densi-
ties, all combinations of (+)-gauche and (-)-gauche appear as conformations, besides
the combination ((-)-(+)-(-)), which is missing (Table 6.1). Thus, the state space
might not have been sampled completely. In addition, three conformations contain
the angle C1C2 in anti-position, and in one conformation, C9C10 is in anti-position.
Although these conformations are quite unlikely, they are metastable in that the
probability to stay in one of the conformations within the time interval τ = 78 fs is
very large. While the accuracy of the computed holding probabilities (the diagonal
entries of the matrix Pc from (1.24)) is quite high (Figure 6.6(b)), the corresponding
characteristic life times are rather inexact (Table 6.2). The reason is that their com-
putation from the holding probabilities via (1.25) is ill-conditioned. The same yields
for the statistical weights of the conformations (Figure 6.6(a)). More sophisticated
sampling methods are required to determine them correctly [112].

6.2.2 The adaptive approach

In this second numerical experiment, the basis functions that did not exhibit hori-
zontal convergence in the first experiment were refined hierarchically. After 6 refine-
ment steps, all basis functions converged. The final discretization now comprises 163
basis functions; see Table 6.4. Then the adaptive vertical sampling was performed.

Initially, 2500 horizontal sampling points in every basis function were selected for
vertical propagation. An analysis of the subspace condition numbers after this initial

1The value minChi = |mini minj χj(i)| measures the deviation of the eigenvectors from the
simplex structure as it occurs in the unperturbed case.
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Table 6.4: Hierarchy levels in the simulation of HBCD in the adaptive approach.
“AF” stands for ansatz function. The pool size refers to the total number of nodes
in the hierarchy tree, whereas the leaves comprise only the nodes on the deepest
hierarchy level.
level sampled AFs converged AFs pool size leaves

1 100 64 100 100
2 72 57 172 136
3 30 22 202 151
4 16 13 218 159
5 6 5 224 162
6 2 2 226 163
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Figure 6.7: Distribution of the mean cluster eigenvalue and the deviation of the
subspace from the expected value for different discretizations (hierarchy level 1 or
6) and different numbers of conformations. The statistics have been obtained from
10000 samplings of the error matrix E.
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Table 6.5: Identified conformations after hierarchical refinement in the adaptive
approach.
conformation C1C2 C5C6 C9C10

1 (-)-gauche anti (+)-gauche
2 (-)-gauche (-)-gauche anti
3 (+)-gauche anti (-)-gauche
4 (-)-gauche (-)-gauche (+)-gauche
5 (-)-gauche (+)-gauche (-)-gauche
6 anti (+)-gauche (-)-gauche
7 anti (-)-gauche (+)-gauche
8 anti (+)-gauche (+)-gauche
9 (-)-gauche (+)-gauche (+)-gauche
10 (-)-gauche (-)-gauche (-)-gauche
11 (+)-gauche (+)-gauche (-)-gauche
12 (+)-gauche (+)-gauche (+)-gauche
13 (+)-gauche (-)-gauche (+)-gauche
14 (+)-gauche (-)-gauche (-)-gauche

Table 6.6: Mean cluster weights for different numbers of identified conformations
in the adaptive approach.
conformation mean statistical weight

nC = 14 nC = 9

1 0.0001 –
2 0.0003 –
3 0.0041 –
4 0.0056 0.0021
5 0.0195 0.0044
6 0.0156 –
7 0.0174 –
8 0.0390 0.0111
9 0.0317 0.0374
10 0.0931 0.1019
11 0.2169 0.1757
12 0.1576 0.1727
13 0.1805 0.1922
14 0.2178 0.3026
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Figure 6.8: Boxplots of statistical weights and holding probabilities for the 14 con-
formations identified in the adaptive approach. The boxes have lines at the lower
quartile, median, and upper quartile values. The dashed lines extending from each
end of a box show the extent of the rest of the data. They extend out to the most
extreme data value within 1.5 times the interquartile range of the sample. Data
values beyond these lines are marked as outliers. The statistics result from 1000
samples of the error matrix E.

Table 6.7: Mean and standard deviation (in parentheses) of variables computed in
the adaptive approach.
conformation statistical weight holding probability life time (ps)

1 0.0001 (0.0003) 0.9833 (0.0025) 4.76 (0.9)
2 0.0003 (0.0003) 0.9666 (0.0013) 2.34 (0.1)
3 0.0041 (0.0022) 0.9713 (0.0008) 2.72 (0.1)
4 0.0056 (0.0095) 0.9987 (0.0026) 95.96 (90.6)
5 0.0195 (0.0558) 0.9996 (0.0004) 645.41 (1340.7)
6 0.0156 (0.0161) 0.9967 (0.0003) 24.03 (2.3)
7 0.0174 (0.0122) 0.9853 (0.0010) 5.43 (3.2)
8 0.0390 (0.0176) 0.9589 (0.0024) 1.95 (1.4)
9 0.0317 (0.0388) 0.9995 (0.0003) 219.41 (145.9)
10 0.0931 (0.0840) 0.9996 (0.0002) 284.43 (217.1)
11 0.2169 (0.0989) 0.9975 (0.0012) 32.52 (4.4)
12 0.1576 (0.1154) 0.9994 (0.0004) 190.93 (154.3)
13 0.1805 (0.0928) 0.9919 (0.0013) 9.66 (0.7)
14 0.2187 (0.1235) 0.9997 (0.0002) 360.26 (249.5)
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Figure 6.9: Boxplots of the stationary density computed as eigenvector of the ma-
trix P (left) and of the partial stationary densities computed from the stochastic
complements (right). The boxes have lines at the lower quartile, median, and upper
quartile values. The dashed lines extending from each end of a box show the extent
of the rest of the data. They extend out to the most extreme data value within
1.5 times the interquartile range of the sample. Data values beyond these lines are
marked as outliers. The statistics have been obtained from 1000 samplings of the
error matrix E. The overall density is ill-conditioned, resulting in a large variance,
whereas the partial densities are well-conditioned.
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Figure 6.10: Convergence of ‖E‖s during adaptive vertical sampling. The sampling
points are distributed evenly among the basis functions, which hints to a sufficient
discretization.
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Figure 6.11: Convergence of ‖E21‖s during adaptive vertical sampling (nC = 14).
Since the invariant subspace is ill-conditioned, the conditions for the validity of the
perturbation bound are not satisfied (δ < 0, compare Theorem 2.1.2).

sampling suggests the selection of 9 or 14 metastable conformations (Figure 6.5(b)).
However, in both cases the condition number is quite large and, in particular, δ < 0.
Therefore, we decided to continue the vertical sampling adaptively in order to reduce
‖E‖s. From the basis function that was expected to reduce ‖E‖s most, 2500 more
sampling points were selected (with replacement) for vertical propagation. This
procedure was repeated over 358 iterations such that finally the total number of
vertical sampling points, 163 · 2500 + 358 · 2500 = 1302500, equals the number of
sampling points from the non-adaptive approach. Thus, ‖E‖s could be reduced
from 0.1916 to 0.1058; see Figure 6.10.

Based on the larger amount of sampling data, we now looked at the error dis-
tributions to decide for a number of conformations. If 9 conformations are selected,
the mean cluster eigenvalue µ = 0.9994 ± 1.9 · 10−6 is nearly invariant under per-
turbations and the error in the corresponding invariant subspace is quite small; see
Figure 6.7. In case of nC = 14 conformations, the subspace error is slightly larger.
However, among the 14 conformations, there are 6 conformations with one of the
angles in anti-position, whereas 5 of these conformations are assigned to one of the
other conformations in case of nC = 9; compare Tables 6.5 and 6.6. Consequently,
if one is interested in the computation of transition rates between gauche- and
anti-positions, the analysis must be based on nC = 14 metastable conformations.

The accuracy of statistical weights, holding probabilities and characteristic life
times of conformations is given in Table 6.7. The holding probabilities are quite
accurate whereas the statistical weights of the conformations as well as their char-
acteristic life times are rather inexact; see also Figure 6.8. The reason is that these
quantities are ill-conditioned. Furthermore, the errors in the overall stationary den-
sity are rather large (Figure 6.9(a)). This is due to the weak coupling between the
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Figure 6.12: Density plot for conformation 14 from the adaptive approach.

conformations, which makes the computation of the left eigenvector of the transi-
tion probability matrix ill-conditioned. For the same reason, the partial densities
are well-conditioned and can be computed with higher accuracy by stochastic com-
plementation [70]; see Figure 6.9(b).

Extensive vertical sampling with 5000 iterations, thus increasing the number of
vertical sampling points to 12.9 · 106, could not improve the results significantly;
see Figures 6.10 and 6.11. Since the sampling points are distributed evenly among
the basis functions, we do not get suggestions for further refinement. In both cases,
nC = 9 and nC = 14, the condition number for the invariant subspace is quite large
such that perturbation bounds are not valid.

Interpretation The ill-conditioning of the subspaces hints to the fact that HBCD
does not have pronounced metastabilities w.r.t. the selected dihedral angles. Al-
though it is possible to identify regions in sampling space with large holding prob-
abilities, transitions between them are not fast processes. The typical flip-flop
behavior of time series as it occurs for example for the dihedral angles of alkane
molecules does not appear in such a pronounced way for the selected dihedral angles
of HBCD.

Moreover, the identified conformations of HBCD exhibit low flexibility. To il-
lustrate this behavior, Figure 6.12 shows the representative probability density of
conformation 14. Besides some dislocation in the ring structure, the density has
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Table 6.8: Free energy differences ∆gaA between gauche- and anti-conformations of
(+)-α-HBCD at T = 433K.
level nC C1C2 C5C6 C9C10

1 11 -9.61 kJ/mol -20.32 kJ/mol -31.64 kJ/mol
6 14 -6.07 kJ/mol -20.32 kJ/mol -23.53 kJ/mol

only a small variance and the bromine atoms stay close to their mean positions over
time.

Nevertheless, the adaptive as well as the non-adaptive approach lead to a com-
mon insight. The anti-configuration is less favorable then the gauche-configuration.
If one of the three dihedral angles is in anti-position, it is probably the angle C1C2.
Then C5C6 and C9C10 are most likely in (+)-gauche-position. On one hand, if one
of the angles is in anti-position the holding probability is rather high (the confor-
mation is metastable). On the other hand, conformations involving anti-positions
are unlikely which hints to high energy barriers.

6.2.3 Evaluation of free energy differences

The mean membership basis χ and the mean stationary density w were used to
compute the histograms of the three dihedral angles of interest. A comparison of
the histograms in Figure 6.13 reveals that in the non-adaptive approach the (+)-
gauche configurations were not explored by the horizontal trajectories, which hints
to an insufficient discretization. The histograms from the adaptive approach were
then used to approximate the free energy differences between gauche- and anti-
configurations by

∆gaA(β) = − 1
β

ln
(

Ngauche

Nanti

)
,

where
β =

1
kB T

=
1

T · 0.008314403 kJ
mol·K

≈ 0.2778.

Here, Ngauche and Nanti denote the sum of histogram bin counts (bin width=
2π/500) in gauche- or anti-position, respectively. The results are given in Table 6.8.
From a chemical point of view, the angles C5C6 and C9C10 are symmetric such
that the free energy differences should be equal. This symmetry is much better re-
solved by the adaptive approach that involves hierarchical refinement and adaptive
sampling.

6.3 Discussion

In addition to the eigenvalue gap and the minChi-indicator, the condition num-
ber of the corresponding invariant subspace provides a further tool to detect the
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Figure 6.13: Histograms of dihedral angles C1C2, C5C6, and C9C10 (bin width=
2π/500) as they result from the non-adaptive approach (left hand side) and from
the adaptive approach (right hand side).
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appropriate number of metastable conformations. This condition number is often
very large such that an enormous sampling effort would be required to compute
perturbation bounds. However, as already indicated by the low-dimensional exam-
ple in previous chapters, error distributions are more appropriate and give insight
into the accuracy of computed variables even for a moderate amount of sampling
data. Moreover, by applying hierarchical refinement to an initial discretization,
the probability of missing an important part of the conformational space decreases
significantly.

The algorithm used in this thesis is optimized to find a discretization that can
resolve all metastable conformations and to assign correct membership vectors to
the basis functions. While the computation of observables for selected conforma-
tions requires a correct assignment of basis functions to clusters, the computation
of histograms w.r.t. the complete molecular state space makes use of the stationary
distribution. In the algorithm applied here, the stationary distribution has just
been computed as left eigenvector of the transition probability matrix, which is
ill-conditioned. Nevertheless, the resulting histograms contain all relevant confor-
mations and reflect the symmetry between the angles C5C6 and C9C10 quite well.
In order to achieve a higher accuracy, more sophisticated methods like ConfJump
[108, 111] should be applied as post-processing.

As demonstrated for HBCD, it is often difficult to detect the correct number of
metastable conformations. The reason is that the timescales of switching between
metastable conformations and relaxation within them are not well-separated. This
behavior is typical for many small biomolecules where transitions between different
conformations involve the movement of massive atom groups such as aromatic ring
structures. Further examples are fentanyl or epigallocatechin. However, the math-
ematical methods we have available now allow the conclusion whether a missing
eigenvalue gap is due to insufficient discretization and missing sampling data or
simply a property of the continuous system.





Conclusion

This thesis represents a further step in the development of conformation dynamics
as a reliable and widely applicable method for the computation of molecular con-
formations. Since conformational membership vectors, as they are computed by
the Robust Perron Cluster Analysis, form an invariant subspace of the discretized
transfer operator, subspace-based error estimators are of particular interest. The
extension of PCCA+ to non-reversible Markov chains, verified by the corresponding
perturbation theory, and the modification of the objective function for the case of
soft membership vectors represent a further generalization of the clustering method,
thus continuing the development from PCCA over PCCA+ to “PCCA++”.

The decomposition of the state space into basis functions and the approxima-
tion of integrals by Monte-Carlo quadrature give rise to row-wise correlated random
matrices, for which stochastic norms are computed. Together with an appropriate
statistical model for the distribution of matrix rows, this allows for the calculation
of error bounds and error distributions of the invariant subspace and other vari-
ables of interest. Equilibration of errors among the basis functions can be achieved
by enhanced sampling in regions where the trajectories are mixing slowly. Hier-
archical refinement of such basis functions systematically improves the clustering
into metastable conformations by reducing the error in the corresponding invariant
subspace. In biomolecular applications, hierarchical refinement is essential for a
complete exploration of the molecular state space.

The methods developed in this thesis are useful for but not limited to confor-
mation dynamics. In fact, they are applicable to a broader class of problems which
combine domain decomposition with Monte-Carlo quadrature. Possible application
areas may include the chemical master equation or quantum dynamical systems
[56].
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Proofs

A.1 Proof of Theorem 3.1.3

Proof. Note that
p̃> = w̃>diag(U, I)

is the Perron eigenvector of the matrix B̃ = B + F . Consequently,

p̃>(I − B̃) = 0.

We decompose
p̃> = (p̃>1 , p̃>2 , p̃>3 )

where p̃>1 = w̃>
c U1 ≥ 0, p̃>2 = w̃>

c U2, and p̃>3 = w̃>
t . Since both w̃ and U1 are

positive, we may renormalize w̃ such that ‖p̃1‖2 = 1. In detail, the system reads

(p̃>1 , p̃>2 , p̃>3 )

 −F11 −F12 −F13

−(B21 + F21) I − (B22 + F22) −F23

−B31 −B32 I −B33

 = 0.

It follows

(p̃>2 , p̃>3 )
(

I − B̃22 −F23

−B32 I −B33

)
= (f>12, f

>
13),

where B̃22 = B22 + F22, f>12 = p̃>1 F12, and f>13 = p̃>1 F13. An equivalence transfor-
mation results in

(p̃>2 , p̃>3 )
(

0 −F23

I −B33 −B32(I − B̃22)−1F23 I −B33

)
= (f>13 + f>12(I−B̃22)−1F23, f>13).

Consequently,

p̃>3 (I −B33 −B32(I − B̃22)−1F23) = f>13 + f>12(I − B̃22)−1F23.

By taking norms we obtain

‖f>13 + f>12(I − B̃22)−1F23‖ ≤ η + η2γ̃2,
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‖(I −B33 −B32(I − B̃22)−1F23)−1‖ ≤ γ3

1− γ3βγ̃2η
,

and thus

‖w̃>
t ‖ = ‖p̃>3 ‖ ≤

γ3(η + η2γ̃2)
1− γ3ηβγ̃2

.

This completes the proof.

A.2 Proof of Theorem 3.1.4

Proof. The proof is based on the entry-wise perturbation bound given by O’Cinneide
([83], Thm.1). He shows that if the off-diagonal entries of an irreducible generator
G of order n and its perturbation G̃ satisfy

KLG(i, j) ≤ G̃(i, j) ≤ KuG(i, j), i 6= j,

where 0 < KL ≤ 1 ≤ KU , then the steady-state vector s satisfies(
KL

KU

)n

s(j) ≤ s̃(j) ≤
(

KU

KL

)n

s(j), j = 1, . . . , n.

We adopt his theorem in the following way. The partial density sk satisfies

s>k (Pkk − I) = 0, k = 1, . . . , nC ,

where Pkk = P̃kk + diag(P̃k?e) is the kth block in Pcc, and P̃k? is the kth row of
blocks with P̃kk removed. The matrix (Pkk − I) takes the role of G in the theorem
of O’Cinneide. The partial density s̃i can be obtained as steady state vector of the
stochastic complement [70]

S̃kk = P̃kk + P̃k?(I − P̃k)−1P̃?k.

Here again, P̃kk is the kth block in the nearly block-diagonal matrix P̃cc. Moreover,
P̃k denotes the principal submatrix of P̃ obtained by deleting the kth row and kth
column of blocks from P̃ , and P̃?k is the kth column of blocks with P̃kk removed.
We have

s̃>k (S̃kk − I) = 0,

and thus S̃kk − I takes the role of G̃. Now let us bound the entry-wise error.

G̃(i, j)
G(i, j)

=
S̃kk(i, j)
Pkk(i, j)

, i, j = 1, . . . , Nk, i 6= j, k = 1, . . . , nC

=
P̃kk(i, j) + (P̃k?(I − P̃k)−1P̃?k)(i, j)

P̃kk(i, j)

Since P̃k?(I − P̃k)−1P̃?k is non-negative ([70], Thm.2.1), we have

G̃(i, j)
G(i, j)

≥ 1 ≡ KL.
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Moreover [70]
P̃k?(I − P̃k)−1P̃?ke = P̃k?e = 1− P̃kke ≤ εt.

Consequently, (P̃k?(I − P̃k)−1P̃?k)(i, j) ≤ εt and

G̃(i, j)
G(i, j)

≤ P̃kk(i, j) + εt

P̃kk(i, j)
≤ 1 +

εt

κc
≡ KU .

Thus we obtain for j = 1, . . . , Nk, k = 1, . . . , nC ,

|̃sk(j)− sk(j)|
sk(j)

≤
(

KU

KL

)Nk

− 1 =
(

1 +
εt

κc

)Nk

− 1.

which yields the theorem.





Appendix B

Sensitivity Analysis

The sensitivity analysis for right eigenvectors and eigenvalues in case of the stan-
dard eigenvalue problem has been derived in [44]. However, we believe that the
equations for the generalized eigenvalue problem and the simplifications in case of
the stationary density are worth to be presented.

B.1 Right eigenvectors and eigenvalues

The objective is to find ∂vλ/∂pij and ∂vλ/∂sij , where vλ is the solution of the
eigenvector equation

(P − λS)︸ ︷︷ ︸
A

vλ = 0.

We will first calculate ∂vλ/∂pij . Differentiation of this equation w.r.t. a parameter
pij gives (

∂A

∂pij
+

∂A

∂λ

∂λ

∂pij

)
vλ + A

∂vλ

∂pij
= 0.

Using the fact that ∂A/∂λ = −S, an evaluation of the partial derivatives at the
expected values pij and sij leads to

A
∂vλ

∂pij

∣∣∣∣
A

= −
(

∂A

∂pij
− S

∂λ

∂pij

)
vλ. (B.1)

The additional constraint
w>vλ = 1

uniquely determines v. Different normalizations are possible, see for example [44].
Differentiation leads to

w> ∂v
∂pij

= 0,

which, in combination with (B.1), gives[
A
w>

]
· ∂vλ

∂pij
=
[
−((∂A/∂pij)I − (∂λ/∂pij)S)vλ

0

]
.

129



130 B Sensitivity Analysis

The same system of equations results for ∂vλ/∂sij if pij is replaced with sij .
We have ∂A/∂pij = eie>j and ∂A/∂sij = −λeie>j . Thus it remains to calculate

∂λ/∂pij and ∂λ/∂sij . As demonstrated in [44], this can be done efficiently by using
the LU -factorization of A. In contrast to the calculations given there, the following
lines account for the output of the corresponding Matlab command.

The Matlab command lu(A) delivers an LU -factorization,

A = LU, (B.2)

where L is lower triangular with unit values along its diagonal, and U is upper
triangular with a zero element in its last row: ukk = 0. This zero element is due to
the fact that the matrix A is singular. Its derivative w.r.t. pij and sij must therefore
equal zero,

dlkk

dpij
=

∂lkk

∂λ

∂λ

∂pij
+

∂lkk

∂pij
= 0,

dlkk

dsij
=

∂lkk

∂λ

∂λ

∂sij
+

∂lkk

∂sij
= 0.

Define vectors x and xa by

L>x = ek, Uxa = 0, xa
N = 1. (B.3)

Differentiating (B.2) by a general parameter h gives

∂A

∂h
=

∂L

∂h
U + L

∂U

∂h
.

Pre- and post-multiplying this equation by x and xa and substituting their defini-
tions (B.3) leads to

x>
∂A

∂h
xa =

∂ukk

∂h
.

Setting h equal to either λ or pij results in(
x>

∂A

∂λ
xa

)
∂λ

∂pij
+
(
x>

∂A

∂pij
xa

)
= 0.

Since ∂A/∂λ = −S and ∂A/∂pij = eie>j , one obtains

∂λ

∂pij
=

xixa
j

x>Sxa
.

Similarly,
∂λ

∂sij
= −λ

xixa
j

x>Sxa
.

These expressions will be evaluated at the expected values of the parameters by
replacing S by S, λ by λ, and x and xa by x

∣∣
A

and xa
∣∣
A
, respectively. Finally, one

obtains [
A
w>

]
· ∂vλ

∂pij
=

−ei(vλ)j −
xixa

j

x>Sxa Svλ

0

 ,
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[
A
w>

]
· ∂vλ

∂sij
=

λei(vλ)j + λ
xixa

j

x>Sxa Svλ

0

 .

The system of equations for ∂vλ/∂pij in case of the standard eigenvalue problem
results by setting S = I, see [44].

B.2 Left eigenvectors and eigenvalues

The objective is to find ∂v/∂pij and ∂v/∂sij , where v is the solution of the eigen-
vector equation

(P> − λS>)︸ ︷︷ ︸
A

vλ = 0, w>v = 1.

We have

∂A/∂pij = eje>i , ∂A/∂sij = −λeje>i ,
∂λ

∂pij
=

xjxa
i

x>Sxa
,

∂λ

∂sij
= −λ

xjxa
i

x>Sxa
.

Applying the same calculations as above results in[
A
w>

]
· ∂vλ

∂pij
=

[
−ej(vλ)i −

xjxa
i

x>Sxa Svλ

0

]
,

[
A
w>

]
· ∂vλ

∂sij
=

[
λej(vλ)i + λ

xjxa
i

x>Sxa Svλ

0

]
.

Sensitivity analysis of the stationary density The objective is to find ∂v/∂pij

and ∂v/∂sij , where v is the solution of the eigenvector equation

(P> − S>)︸ ︷︷ ︸
A

v = 0, e>v = 1.

Since P and S are alway stochastic matrices, λ = 1 is fixed and we have ∂λ/∂pij =
∂λ/∂sij = 0. Consequently, [

A
e>

]
· ∂v
∂pij

=
[
−ejvi

0

]
,

[
A
e>

]
· ∂v
∂sij

=
[
ejvi

0

]
.





Appendix C

Computational complexity

C.1 Solving eigenvalue problems

Over the years, efficient solvers for eigenvalue problems have been developed and
included into numerical software like ARPACK [62, 64]. We will briefly explain
their main ideas and give rough estimates for the computational complexities.

C.1.1 Solving the standard eigenvalue problem

The Matlab command [V,D] =eigs(A,k,σ) returns a diagonal matrix D with the
k eigenvalues of A closest to the scalar σ and a matrix V whose columns are the
corresponding eigenvectors. The function eigs provides the reverse communication
required by the Fortran library ARPACK, namely the routines DSAUPD, DSE-
UPD, DNAUPD, DNEUPD, ZNAUPD, and ZNEUPD [62, 64]. The underlying
algorithm is the Implicitly Restarted Arnoldi Method (IRAM) [63]. This approach
combines the implicitly shifted QR scheme with a k-step Arnoldi factorization to
compute a few (k) eigenvalues with user-specified features. An Arnoldi factorization
of length m = k + p is compressed to a factorization of length k that retains the
eigeninformation of interest,

AVk = VkHk + fke
>
k .

Vk ∈ CN×k has orthonormal columns, V H
k fk = 0, and Hk ∈ Ck×k is upper Hes-

senberg with non-negative sub-diagonal elements. It is impossible to predict an
optimal value for the number p of basis vectors. By default, the algorithm uses
p = 2k. The computational costs (in floating point operations) for one iteration of
IRAM amount to O(2N2p + (k + p)3) [3]. The extraction of eigenvalues and eigen-
vectors from the Arnoldi factorizations takes further time O(k2) [36]. Under the
assumption that the number of required iterations is much smaller than the prob-
lem size N and nC ¿ N , the computation of an nC-dimensional invariant subspace
takes time

O(nCN2).
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C.1.2 Solving the generalized eigenvalue problem

The Matlab function eigs can also be applied to solve the generalized eigenvalue
problem AX = BXΛ, but the matrix B is required to be symmetric. Since this is
not the case in our applications, we have to use an alternative eigenvalue solver for
the generalized non-hermitian eigenvalue problem. The Jacobi-Davidson style QZ
algorithm [95, 31] is a generalization of the Jacobi-Davidson algorithm, in which a
partial (generalized) Schur form of size k is computed. It can be interpreted as a
subspace iteration variant of the QZ algorithm [36]. A Matlab implementation has
been provided by Gerard Sleijpen [94]. Each step in the iterative process requires
the reduction of a projected systems to an ordered generalized Schur form, and
an approximate solution of the Jacobi correction equation. The solution of the
Jacobi correction equation requires the application of (A − τB)−1 with shift τ .
However, once an appropriate pre-conditioner has been derived, for example the
LU factorization, which can be obtained in time O(2N3/3) [36], the solution takes
only time O(N2) in every iteration. The number of times the correction equation
must be solved is at least as large as the number k of desired eigenvectors. The
ordered generalized Schur form can be obtained in time O(m3), where m is the
dimension of test and search spaces. In general, m ≤ k +10. Under the assumption
that the number of required iterations is much smaller than the problem size N ,
the computation of an nc-dimensional invariant subspace takes time

O(2N3/3 + nCN2).

For comparison only, the complete Schur decomposition by the overall QZ process
takes time O(66N3) [36].

C.1.3 Solving the Sylvester equation

The standard method to solve the Sylvester equation

L1R−RL2 = H (C.1)

with L1 ∈ RnC×nC , L2 ∈ R(N−nC)×(N−nC), H ∈ RnC×(N−nC) is the Bartels-Stewart
algorithm [8]. The main idea of this algorithm is to apply the Schur decomposition
to transform (C.1) into a triangular system which can be solved efficiently by for-
ward or backward substitution. The method takes time O(N3). The effort to solve
the generalized Sylvester equation (2.27) is about twice as large as for the standard
equation.

C.2 Sampling from probability distributions

Algorithms for the fast and simple generation of random variables mostly assume
that one has a fast way to generate normal variables. In the following, the time to
sample from a normal distribution will be denoted by Q.
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C.2.1 Sampling from the multivariate normal distribution

It is a well known fact from the theory of normal distributions that if one has
a vector y ∼ MVN(µ, C) ∈ RN , then the vector y′ = Fy + b is distributed as
y ∼ MVN(Fµ + b, FCF>). Given the decomposition

C = ΣΣ> (C.2)

and a sample y ∼ MVN(0, I), a sample p ∼ MVN(µ, C) is given by

p = Σy + µ. (C.3)

If C was positive definite, Σ would be the square, upper triangular Cholesky factor.
If C is only positive semi-definite, Σ can be computed from an eigenvalue decompo-
sition of C. Σ is not necessarily triangular or square in this case. Any eigenvectors
whose corresponding eigenvalue is close to zero (within a small tolerance) are omit-
ted. Thus, we obtain Σ ∈ RN×ν , where ν is the number of eigenvalues of C larger
than the small tolerance. This method is implemented in the Matlab function
cholcov which has been used in our examples. The decomposition (C.2) is obtained
with a cost of O(N3) [36], but needs to be computed only once as long as the co-
variance matrix is fixed. Then, for every sample from the MVN distribution one
has to draw ν independent samples from the standard normal distribution, which
takes time O(Qν). The matrix-vector multiplication in Equation (C.3) takes an
additional time O(Nν). Altogether, the generation of L samples from the MVN
distribution takes time O(N3/3 + LNν + LQν). If we want to sample a complete
matrix E ∈ RN×N with MVN distributed rows, where the numbers of columns of
the matrices Σi ∈ RN×νi sum up to ν ≡

∑N
i=1 νi, the overall sampling will take time

O(N4 + LNν + LQν).

Remark C.2.1. Singhal and Pande [92] pointed out that the covariance matrices
we are interested in (compare Table 4.1), are rank-one updates of diagonal matri-
ces. Therefore, it is possible to implicitly calculate the matrix Σ in time O(N)
and to perform the multiplication in Equation (C.3) in time O(N) by using slight
modifications of the methods described by Gill et al [35]. We did not made use of
this approach in our examples, but will apply the method for larger problem sizes
in future work.

C.2.2 Sampling from the Dirichlet distribution

A method to sample a random vector p = (p1, . . . , pN ) from the N -dimensional
Dirichlet distribution with parameters α = (α1, . . . , αN ) follows from the following
connection. If Y1, . . . , YN are independent gamma random variables with param-
eters αi > 0, and Y0 =

∑N
i=1 Yi, then pi = Yi/Y0 (i = 1, . . . , N) are distributed

by the Dirichlet distribution with parameters α and independent of Y0 ([24], Thm.
XI.4.1). We use the gamma sampling algorithm implemented in the Matlab func-
tion randg(). It is based on a rejection method by Marsaglia and Tsang [67]. Each
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gamma sample requires in average one sample from the standard normal distribution
and has a rejection constant of less than 1.052. Thus, by ignoring the time taken for
mathematical functions such as exponentiation, square roots, and logarithms, the
expected time to generate L Dirichlet samples is O(LNQ). The complete sampling
of a matrix E ∈ RN×N with Dirichlet distributed rows thus takes time

O(LN2Q).
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almost invariant aggregates in reversible nearly uncoupled Markov chains.
Linear Algebra Appl., 315:39–59, 2000.
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Zusammenfassung

Das Verständnis von geometrischen Strukturen und dynamischen Eigenschaften
molekularer Konformationen ist essentiell für die Vorhersage des Langzeitverhal-
tens von Molekülen. Die Identifikation metastabiler Konformationen sowie die Be-
stimmung von Übergangswahrscheinlichkeiten und Haltezeiten sind Bestandteil der
Konformationdynamik. Dabei handelt es sich um eine Mehrskalenmethode, die auf
eine reduzierte Beschreibung des Systems mittels einer stochastischen Übergangs-
matrix führt. In der vorliegenden Dissertation wurde untersucht, wie man die Ge-
nauigkeit der Matrizen sowie der daraus berechneten Größen quantifizieren kann.

Im Mittelpunkt stehen dabei Fehlerschätzer für den invarianten Unterraum,
da die rechten Eigenvektoren als Grundlage der Robusten Perron Cluster Analyse
(PCCA+) zur Identifizierung der metastabilen Konformationen dienen. Die Zer-
legung des Zustandsraumes in Basisfunktionen sowie die Approximation der Ma-
trixeinträge mittels Monte-Carlo-Quadratur führen zu zeilenweise korrelierten Zu-
fallsmatrizen. Mit Hilfe einer stochastischen Norm sowie einem geeigneten statisti-
schen Modell für die Verteilung der Matrixzeilen können u.a. Fehlerschranken und
-verteilungen für den invarianten Unterraum berechnet werden. Eine Equilibrie-
rung des Fehlers zwischen den Basisfunktionen kann durch erweitertes Sampling
in solchen Regionen erreicht werden, in denen die Trajektorien nur langsam mi-
schen. Eine hierarchische Zerlegung dieser Basisfunktionen verbessert systematisch
die Zerlegung in metastabile Konformationen, indem sie den Fehler im invarianten
Unterraum reduziert. Diese Techniken gestatten eine Evaluierung der Simulations-
ergebnisse und ebnen den Weg zur Behandlung komplexerer Moleküle.

Desweiteren wurden Verallgemeinerungen der PCCA+ untersucht. Die Erwei-
terung der PCCA+ auf nicht-reversible Markov-Ketten sowie die Modifizierung der
Zielfunktion für den Fall der weichen Clusterung setzen die Entwicklung von der
PCCA über PCCA+ zu PCCA++ fort. Somit können neue Anwendungsfelder
für dieses Cluster-Verfahren erschlossen werden.

Die Methoden wurden zwar in Rahmen der Konformationsdynamik entwickelt,
jedoch lassen sie sich auf eine weite Problemklasse anwenden, in der Gebietszerle-
gungsverfahren mit Monte-Carlo-Quadratur kombiniert werden. Mögliche Anwen-
dungsgebiete umfassen die chemische Master-Gleichung oder quantenchemische Sy-
steme.
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