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Zusammenfassung

Die vorliegende Arbeit untersucht die Verarbeitungsprozesse im Inektenhirn, die der Duft-

wahrnehmung und dem assoziativen Lernen zugrunde liegen. Kapitel 2 stellt eine vereinfachte

Variante eines Modells der Duftverarbeitung im Fliegenhirn dar, welche über die Verarbeitung

von sensorischen Daten hin zur Generierung motorischer Befehle die Aktivität eines Roboters

steuert. Diese auf einem spikenden neuronalen Netzwerk beruhende Kontrollarchitektur wird im

Rahmen eines einfachen Konditionierungsexperiments getestet. In Kapitel 3 wird die neuronale

Aktivität an synaptischen Endigungen im Pilzkörpereingang des Bienenhirns untersucht. Hier-

für wurden die im Rahmen eines Lernexperiments der klassischen Konditionierung von Bienen

gewonnen Daten analysiert. Es wird gezeigt, dass individuelles Tierverhalten mit den lernbed-

ingten Veränderungen in der neuronalen Aktivität hinsichtlich belohnter Düfte korreliert. Eine

mögliche Erklärung hierfür wird in Kapitel 4 im Rahmen eines Netzwerkmodells des Bienenhirns

detailliert beschrieben. Einzelne Verarbeitungsschritte der Duftwahrnehmung und -verarbeitung

werden in einem rechnerbasierten Modell abstrahiert abgebildet und durch die von Kapitel 3

gestützte Hypothese zur neuronalen Plastizität ergänzt. Diese wird anschließend anhand einer

Vielzahl von elementaren und nicht-elementaren Lernparadigmen evaluiert. Kapitel 4 stellt

somit eine Verbindung zwischen den Verhaltensdaten und den neurophysiologischen Erkennt-

nissen zur Duftverarbeitung im Bienenhirn her.

Summary:

This thesis investigates neural activity underlying olfactory processing and associative learn-

ing in the insect brain. Chapter 2 presents a simpliied version of a model of olfaction in the

ly brain, that processes sensory input in order to generate appropriate motor commands that

control the activity of a robot. This spiking neural network control architecture is tested in a

simple conditioning experiment. Chapter 3 investigates the neural activity in synaptic terminals

at the mushroom body input of the honeybee brain. For this, data from a classical conditioning

experiment was analyzed. It is shown that individual behavior is correlated with learning-induces

changes in neural responses towards rewarded odors. A possible explanation for this is described

in detail in chapter 4 in form of a network model of the honeybee brain. Individual stages of

olfactory processing are expressed in an abstract computation model, including a hypothesis

on neural plasticity that is supported by the results of chapter 3. Subsequently, this hypothe-

sis is evaluated based on a rich collection of data from elemental and non-elemental learning

paradigms. Therefore, chapter 4 provides a link between behavior and neurophysiological knowl-

edge about odor processing in the honeybee brain.

Keywords:

associative learning, autonomous robots, classical conditioning, computational modeling, hon-

eybee, insect brain, neuronal computation, plasticity, spiking neural networks
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Chapter 1

General introduction

1.1 The insect brain: An invaluable model system for neuro-

science

The brains of insects are considerably smaller than those of vertebrates, yet they give rise to

a range of complex behavioral capabilities such as highly diferentiated motor repertoires, ex-

tensive social structures and cognition (Chittka and Niven, 2009). Among insects, fruit lies

(Drosophila melanogaster) have become one, if not the most widely studied animal model, in

science in general and in neuroscience in particular, a process that has been strongly shaped

through the development of genetic tools (Weiner, 1999, for a brilliant bibliographic report on

this subject). Although the genetic toolbox is considerably smaller for other insect species,

several of these have become established animal models. Among them, eusocial insect families

of the order hymenoptera, in particular ants and bees, take a special place, as they show re-

markable skills of communication, navigation, and learning, and by this have become a source

of inspiration for the design of autonomous robots and control algorithms (Arena et al., 2013).

While some of their strategies to solve such complicated tasks might turn out to be speciic

to their kind, others will provide insights into fundamental principles of biological information

processing. One likely candidate for the latter is olfactory processing. Here, several structural

and functional components are shared across phyla (Hildebrand and Shepherd, 1997; Ache and

Young, 2005) and most likely have developed independently (Eisthen, 2002). The fact that the

precision, speed, and general performance of chemosensation even in fruit lies is beyond reach

for current technical implementations, such as artiicial noses, can at least in part be explained

by a lack of knowledge about the underlying principles.

This thesis is focused on internal processes of neural plasticity in honeybees (Apis mellifera) dur-

ing olfactory conditioning experiments, and by this tries to contribute to a better understanding

of olfactory processing and learning in insects. It takes three diferent approaches: Chapter 2

presents a robotic platform for the implementation and evaluation of spiking neural network

1
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control architectures. Inspired by models of olfactory conditioning in the fruit ly (Wessnitzer

et al., 2012) and honeybee (Haenicke et al., 2012), a simpliied model of the insect sensory-to-

motor network is combined with a biologically inspired synaptic learning rule and tested in an

absolute conditioning experiment. A diferential conditioning experiment is performed within

the study presented in chapter 3, where neural activity in the honeybee brain was recorded

before and after training in order to identify learning dependent plasticity. The target region

of the corresponding study were microglomerular complexes of the mushroom body calyx, a

candidate region to play an important role for learning and memory in the honeybee. Chapter

4 presents a network model of olfactory processing in the honeybee that was inspired in part by

the outcome of this experiment and entails a plasticity mechanism in the mushroom body calyx.

Within a computational framework, model predictions were calculated for conditioned behavior

in a variety of elemental and non-elemental learning paradigms and are evaluated with respect

to the corresponding honeybee data. In that study, I have tried to express the known physio-

logical components of the honeybee brain that are relevant to odor processing during classical

conditioning in form of an abstract computational model. Therefore, the work strongly relied

on the multitude of studies that have investigated the physiology of honeybee olfaction with

various methods.

1.2 Investigating the physiology of olfactory processing and

learning in honeybees

Our image, i.e. understanding of the world is intimately linked to the methods we use to create

images. The investigation of insect physiology has, thus, been deined by the development of

imaging techniques, such as optical microscopy. Incidentally, the oldest published image known

to have been made with a microscope was that of bees (Fig. 1.1). Crucial to visualizing de-

tailed structures in organic tissue, though, was the development of efective staining methods,

explaining the temporal gap between the invention of optical microscopy and the irst detailed

images of neural tissue. To name one important dye, haematoxylin is in use since more than a

hundred years (Allison, 1999) and was also involved in early studies that characterized details

of the neural architecture in the honeybee brain (Kenyon, 1896; Witthöft, 1967). Witthöft was

able to stain the nuclei of neurons in the bee brain and reported their number for a female

worker bee to amount to 851,458±15%.

A growing number of imaging techniques has allowed to identify the prominent neuropils in-

volved in olfactory processing in insects. The antennal lobe (AL) is the irst-order olfactory

neuropil, that receives input from receptor neurons of the antenna (ANT). Projections from the

AL reach two further neuropils, the mushroom body (MB) and the lateral horn (LH). Various

methods have been applied to assess the functional properties of these structures, many of

these with respect to learning and plasticity. A lack of appropriate techniques, though, has so

far hindered a detailed investigation of the LH. Surprisingly, only a few studies exist that inves-
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Figure 1.1: The oldest published image known to have been made with a microscope: bees by
Francesco Stelluti, 1630. Image: public domain.

tigated details of receptor neurons in the honeybee ANT (Esslen and Kaissling, 1976; Lacher,

1964; Akers and Getz, 1993). However, both of the other two neuropils, AL and MB, have been

numerously exposed to various techniques. To the exotic ones belong the analysis of current

source density in the MB (Kaulen et al., 1984) and the cooling of localized areas of both AL

and MB with small metal probes (Erber et al., 1980). Cellular details of synaptic interactions

in the input-region of the MB have been investigated by electron microscopy (Ganeshina and

Menzel, 2001), while, in a rather coarse approach, honeybee larvae were treated with hydrox-

yurea, causing varying degrees of MB ablations (Malun et al., 2002). Across AL and MB, a

multitude of studies have used both intra- and extracellular recording techniques to describe

the electrophysiological properties of the corresponding neuron types, though the most abun-

dantly applied method is the recording of calcium-dependent neural activities in these structures.

Based on data from calcium-imaging, I show in chapter 3 that neural correlates of learning

appeared in synaptic terminals at the input site of the MB. The possible sources of the ob-

served plasticity are discussed in the light of learning-induced changes in neural activity that

have been reported for diferent neuron types in both AL and MB. In addition, Chapter 4 ofers

a possible explanation in form of an abstract network model. With this, I tried to link internal

computations in ANT, AL, MB, and LH to the behavioral plasticity observed in honeybees

during classical conditioning. Prior to this, a simpliied model version of the insect olfactory

system that is integrated in a robotic platform is presented in the following chapter.
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"It is certain that there may be extraordinary mental activity with an extremely small absolute

mass of nervous matter: thus the wonderfully diversiied instincts, mental powers, and afections

of ants are notorious, yet their cerebral ganglia are not so large as the quarter of a small pin’s

head. Under this point of view, the brain of an ant is one of the most marvellous atoms of

matter in the world, perhaps more so than the brain of a man." (Darwin, 1871)



Chapter 2

Conditioned behavior in a robot

controlled by a spiking neural

network

Abstract

Insects show a rich repertoire of goal-directed and adaptive behaviors that are still beyond the

capabilities of today’s artiicial systems. Fast progress in our comprehension of the underlying

neural computations make the insect a favorable model system for neurally inspired computing

paradigms in autonomous robots. Here, we present a robotic platform designed for implement-

ing and testing spiking neural network control architectures. We demonstrate a neuromorphic

real-time approach to sensory processing, reward-based associative plasticity and behavioral

control. This is inspired by the biological mechanisms underlying rapid associative learning and

the formation of distributed memories in the insect.

Due to legal restrictions this article has been removed from the online version of this dissertation.

It can be accessed through http://dx.doi.org/doi:10.1109/NER.2013.6696078.
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Chapter 3

Neural correlates of odor learning

in the microglomerular circuitry of

the honeybee mushroom body

Plasticity in the mushroom body calyx correlates with learning success during classical condi-

tioning of the honeybee.

Summary

In the honeybee, a rich body of evidence suggests the mushroom body (MB) to play a key

role in memory formation and recall (Menzel, 2012). The exact localization of learning-related

plasticity in the MB circuitry, however, remained elusive. Here, we studied neural plasticity in the

MB calyx of the honeybee in relation to the learning success in individual animals. We performed

classical conditioning experiments where a speciic odor is paired with a sugar reward (Bitterman

et al., 1983). Learning performance was monitored by the conditioned response (CR) behavior

while we used Ca-imaging to measure the physiological odor responses in individual boutons

in the MB calyx. These boutons form synaptic hubs between excitatory projection neurons

(PNs) from the antennal lobe encoding the olfactory stimulus, the postsynaptic excitatory

Kenyon cells, and GABAergic MB feedback neurons (Rybak and Menzel, 1993; Rybak and

Menzel, 2010; Groh and Rössler, 2011). The octopaminergic reward pathway converges with

this microcircuit (Sinakevitch et al., 2013). In the course of learning, individual boutons could

show an overall increase or decrease of their Ca response, both for the rewarded stimulus (CS+)

and the unrewarded control stimulus (CS-). The amount of neural plasticity induced for the

CS+ was strongly and positively correlated with the learning success across individual animals.

No signiicant correlation was observed for the changes in the CS- response. The temporal

proile of the induced changes matched the Ca response dynamics of the inhibitory GABAergic

feedback neurons. We hypothesize that the observed plasticity in the microglomerulus relates

to the learned value of a stimulus, signiies short-term memory and underlies the conditioned

response behavior.

13
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Figure 3.1: Experimental paradigm and behavioral results. Bees (N=18) were trained in
a diferential conditioning paradigm. (A) Diferential conditioning. In the pre-training phase
(PRE) two odors were applied in pseudo-random order, at least ive times each. The subsequent
training phase (TRAIN) always started with the sucrose-rewarded odor (CS+), alternating with
the unrewarded odor (CS-). In the inal post-training phase (POST) both odors were repeatedly
presented again in a pseudo-random order. Ca-imaging was performed during phases PRE and
POST. (B) Table of odor names and number of experiments in which they served as CS+ or
CS-, respectively. (C) Behavioral data for the learner bees (N=13) during TRAIN (trials 1-10)
and POST (trials 11-20). The probability p(CR) of observing a CR in the population rapidly
increased and saturated after two pairings of CS+ and US. A small fraction of bees initially
generalized towards CS-. Multiple unrewarded test trials during the POST phase lead to a
gradual reduction of responses to the trained odor.

3.1 Results

Behavioral performance: Conditioned responses

We trained honeybees in a diferential conditioning paradigm as depicted in Fig. 3.1A (c.f.

Experimental procedures). We monitored individual animal behavior expressed in the proboscis

extension response (PER) (Bitterman et al., 1983) during all three experimental phases. None

of the bees showed a PER in any of the odor stimulation trials before training (PRE). Bees that

did not show a behavioral response to any of the CS+ trials in the training phase (TRAIN) or

the post training phase (POST) were classiied as non-learners (Pamir et al., 2011; Pamir et al.,

2014). For the learner bees a few trials were suicient to develop a stable conditioned response

(CR) to the rewarded odor (CS+) while they hardly responded to the unrewarded odor (CS-)

as illustrated by the group-averaged response probabilities p(CR) in Fig. 3.1 C. An asymptotic

level of p(CR) ≈ 0.9 was reached already after two rewarded trials, which matches the generally

observed rapid learning dynamics in honeybees during classical conditioning (Pamir et al., 2014).
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Bouton activity: Odor-evoked response proiles

We studied learning induced physiological plasticity at the level of PN boutons in the MB

calyx. To this end, PNs of the antennal lobe that project via the lateral antennal lobe tract

(Fig. 2A) were dye-loaded with the calcium-sensitive dye Fura-dextran and the lysine ixable

dye tetramethylrhodamine-dextran (Fig. 2B) that allowed to vizualise individual PN boutons

in the MB calyx (Fig. 2C). Each single bouton forms the core of a microglomerular structure

and is contacted by several postsynaptic KCs as well as by inhibitory feedback neurons (Sinake-

vitch et al., 2013). We imaged multiple trials of odor-evoked Ca-dependent responses before

(PRE) and after (POST) training (Fig. 2E). The locations of individual Ca-active boutons

were identiied (Fig. 2D) based on the trial-averaged responses, and for all trials individually

the time-resolved Ca activity of each bouton was extracted (c.f. Experimental procedures).

First, we compared Euclidean distances between Ca-response proiles in pairs of trials within

the same experimental phase (PRE or POST) with distances between trials of the two diferent

phases (PRE vs. POST). The results veriied that activity patterns were signiicantly more

similar within the same experimental phase than across phases (Supplementary Fig. 3.6 A; KS

test, p<0.0001). For further analyses we computed the time-resolved trial-averaged bouton

activities separately for each experimental phase and stimulus type (Fig. 3.2 F).

We observed diverse odor response patterns across animals, while the odor responses of individ-

ual boutons were often similar within individual animals showing rather homogeneous response

proiles (Fig. 3.4). On account of this, the average pairwise Euclidean distances between indi-

vidual trial-averaged bouton activities within animals were considerably and signiicantly smaller

than those between animals (KS test, p< 10−4, Fig. 3.6 B).

A more detailed characterization of odor response types is given in table 3.1 in the supplements.

It lists fractions of all 1652 bouton activities during experimental phase PRE with respect to

the presence of excitatory ON- and OFF-responses during the irst second after odor onset and

ofset, respectively. For this period, we found virtually no inhibitory odor responses.

To analyze the temporal response dynamics we calculated time-resolved odor-evoked response

proiles separately for excitatory and inhibitory odor responses. In the majority we observed

excitatory responses with a phasic-tonic proile and low response latencies that closely matched

previous Ca-imaging data recorded in PNs of the antennal lobe (Peele et al., 2006; Fig. 3.2 G)

and the typical intracellular spike responses in PNs (Krofczik et al., 2008; Strube-Bloss et al.,

2011; Brill et al., 2013). The average inhibitory response matched previous data recorded from

the inhibitory MB feedback neurons (Haehnel and Menzel, 2010) (Fig. 3.2H). Most excitatory

odor responses started within the irst two imaging frames after odor onset with an average

latency of 0.22 s (Fig. 3.2 I), whereas the latencies of inhibitory responses were more widely

distributed with an average of ≈ 1 s.
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Figure 3.2: Stainings and Ca-imaging from individual boutons. (A) Frontal view of the honeybee
brain with schematic overlay: Uniglomerular PNs (yellow) connect the antennal lobe (AL) with the
mushroom body calyx (CA) via the lateral antennal lobe tract (l-ALT; indicated by triangle). (B)
Confocal image of a stained brain, similar view as in A. PN somata were stained with a mixture of the
Ca indicator Fura dextran and the neuro-tracer rhodamine dextran (sight of injection marked by black
arrow). (C) Confocal image of rhodamine luorescence shows synaptic boutons of PNs in the MB CA.
(D) Identiied locations of synaptic boutons for one of the animals. Figure legend continues.
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Figure 3.2: Figure legend continued. (E) Color-coded Ca responses superimposed on raw luorescence
images for two trials (1 and 3) during the two experimental phases PRE (before training, left) and
POST (after training, right) in response to the odors octanal (rewarded during training, i.e. CS+,
upper row) and 2-octanone (CS-, lower row). Same animal as in D. (F) Temporal dynamics of Ca
activity for all 143 identiied boutons (color coded) and average trace for all boutons (black curve).
Traces were calculated as the average of all trials within experimental phase PRE (left column) or POST
(right column) for both CS+ (upper row) and CS- (lower row). Changes in the trial-averaged activity
were calculated as the diference between POST and PRE (central column). (G) Comparison of the
mean excitatory response proiles of experimental phases PRE (black) and POST (gray) with previously
published PN Ca data (red, Peele et al., 2006). (H) Comparison of the mean inhibitory response proile
(black) with the diference in excitatory response proiles (PRE-POST, gray) and previously published
Ca data from MB inhibitory feedback neurons (red, Haehnel and Menzel, 2010). (I) Mean latencies
and standard deviations of excitatory and inhibitory response proiles.

Bouton plasticity: Correlation with behavioral performance across individuals

We observed a variety of diferences in bouton activity patterns between the PRE and POST

phases (Fig. 3.5). Supplementary Table 3.1 lists fractions of all 1652 recorded boutons with

respect to the presence of signiicant positive and negative changes in odor-evoked responses

during the irst second after odor onset and ofset.

We quantiied neural plasticity for each animal and stimulus type (CS+ / CS-) separately com-

puting ∆NR as the absolute change in the Ca-dependent odor response in a single animal

averaged across all boutons (see Experimental procedures). Likewise, we quantiied the be-

havioral performance ∆CR of each individual bee during the training (TRAIN) and after the

training (POST) by computing the fraction of CS+ trials that lead to a conditioned response

(CR) and subtracting the fraction of responded CS- trials (see Experimental procedures). A

high performance in the TRAIN phase implied a high performance in the POST phase (Pamir

et al., 2014) with a signiicant correlation (ρ = 0.61, p<0.007).

Next, we tested whether the physiological plasticity observed at the level of individual PN

boutons in the calyx correlates with the behavioral performance during learning (TRAIN). We

ind a clear and highly signiicant positive correlation between CS+ plasticity and behavioral

performance (Fig. 3.3 A, ρ = 0.76, p<0.0002). This correlation is even more pronounced for

the subset of animals that showed Ca responses with a high signal to noise ratio (SNR, see

Experimental procedures, ρ = 0.84, p<0.0003). The training-induced neuronal plasticity in

response to the CS- odor, however, did not show a correlation with the behavioral performance

(Fig. 3.3 B), neither when considering all animals nor for the subgroup of animals with high SNR.

We conirmed the robustness of our correlation results using a jackknife approach where we

repeatedly used all but one animal to test for positive correlations between neuronal plasticity

and behavioral performance (Fig. 3.3 C,D). For CS+ the correlation is narrowly distributed

around the above stated values in both groups, and the corresponding p-values suggest statisti-

cal signiicance in all cases. In contrast, the correlations for the CS- are low and not signiicant
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Figure 3.3: Positive correlation between CR behavior and bouton plasticity. (A) Scatter plot of
behavioral performance during experimental phase TRAIN∆CRTRAIN against neural plasticity∆NR+

for the rewarded odor. A subset of animals (large symbols) was selected on the basis of their high SNR.
The correlation is highly signiicant. (B) ∆CRTRAIN versus neural plasticity of unrewarded odors
∆NR−. No signiicant correlation. (C) Jackknife resampling of Spearman’s rank order correlations
to estimate robustness and dependence on outliers. (D) Corresponding p-values. Thick dashed line
indicates a level of signiicance of 0.05.

with the exception of one single iteration.

To asses the plasticity efect on the temporal odor response dynamics we calculated the difer-

ence in the trial-average excitatory odor response proile between the phases PRE and POST

(Fig. 3.2H). Interestingly, the time course of this diference curve resembles the odor response

proiles of mushroom body extrinsic feedback neurons previously reported in (Haehnel and

Menzel, 2010). This suggests that the observed plasticity in the odor responses at the level of

boutons is due to learning-induced alterations of the inhibitory feedback response proile.
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3.2 Discussion

Expression of short-term memory

Due to technical limitations, Ca responses could not be recorded during acquisition. However,

neural response was recorded only 15 min after learning. For the rewarded odor, the amount

of neural plasticity ∆NR+ (Fig. 3.3) was signiicantly correlated with the observed behavioral

learning performance during acquisition ∆CRTRAIN . We therefore hypothesize that the ob-

served MB plasticity signiies short-term memory and that it is required for the generation of

the CR behavior. Our results her are thus in contrast to the plasticity reported in MB output

neurons that appeared only 3h after learning but not during acquisition which was interpreted

as a signum of long term memory (Strube-Bloss et al., 2011).

Origin of the observed physiological plasticity

Previously described correlates of associative odor learning in honeybees that appeared in the

neural activity of PNs have been primarily studied and interpreted on the basis of the AL net-

work and for time scales related to long-term memory (Fernandez et al., 2009; Hourcade et al.,

2009; Hourcade et al., 2010; Rath et al., 2011; Locatelli et al., 2012). An alternative hypothesis

(Szyszka et al., 2008; Haehnel and Menzel, 2010) suggested associative plasticity to reside in

the MB network, conveyed through a modulation of recurrent GABAergic signals of the MB

feedback neurons. A possible mechanism could be disinhibition of the rewarded odor-evoked

activity patterns at the level of individual boutons, as well as an increased inhibition of unre-

warded activity patterns. Multiple physiological indings support this hypothesis: In isolated bee

heads, odor responses of MB feedback neurons have been found to be modulated on account of

odor conditioning after a single odor-reward pairing (Grünewald, 1999). Extracellular recordings

from these MB feedback neurons showed their plasticity in classical conditioning experiments

with olfactory and visual stimuli (Klinke, 2011) . The recent study by (Sinakevitch et al., 2013)

described octopamine receptors to be co-localized with projections of the GABAergic feedback

neurons that terminate in the MB lip-region. Ongoing research investigates associative learning

with inhibitory feedback plasticity in a computational model of the honeybee MB.

In our data, for both CS+ and CS-, we observed a dominant decrease in the grand average of

odor-evoked activity proiles during odor stimulation from experimental phase PRE to POST.

The diference (PRE-POST) in these average excitatory proiles is closely related to the mean

temporal structure of activities that we classiied as inhibitory, and both resemble those of

odor-evoked responses of PCT-neurons during odor stimulation (Haehnel and Menzel, 2010)

(igure 3.2H). Taken together, these observations suggest that our recordings represent com-

pound signals that were predominantly shaped by the neural activity of PNs and modulated by

GABAergic feedback of PCT neurons.
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Response similarities within animals

Within each of the animals, the temporal structures of individual bouton responses were often

closely related to each other (compare igure 3.6 B). This result might be explained by the

following reasoning. Due to technical limitations, we observed a speciic, locally restricted

patch of the MB calyx of each animal, comprising an estimated 2% of the total area. We may

thus assume that this small section contained boutons from few and possibly similarly tuned

PNs. PNs form multiple boutons along their axons (Yamagata et al., 2009) so that we likely

observe correlated activity in a number of boutons. Recent evidence in the fruit ly suggests

that projection neurons with similar tuning properties have a tendency to converge onto the

same Kenyon cells (Gruntman, Turner 2013).

Efect of odor identities

In a majority of recordings, we applied the odorants octanal and octanon as conditioned stimuli.

A systematic feature of these recordings is the variation in signal strength, with octanal eliciting

mostly strong odor responses and octanon eliciting mostly weak odor responses, as illustrated

by the bimodal distribution of signal qualities in igure 3.6C. Both odors were equally used as

rewarded and as unrewarded stimulus, and we did not ind any signiicant diference in behavioral

performances with respect to odor identity. Therefore, we do not assume any direct efect on

the observed relations between calcium-imaging data and behavioral data.

Physiological plasticity might be underestimated

While we observed animals with a low plasticity score ∆NR+ that also showed a stable behav-

ioral performance ∆CR, we did not observe animals with a high plasticity score accompanied

by a weak behavioral performance (igure 3.3A). A likely explanation for this observation is

that we capture only a fraction of neural changes that appeared in a speciic animal due to the

undersampling of a small fraction of the calyx. In addition, the staining procedure may have

resulted in a varying amount of backilled ibers/cells. Presumably through these and other

related issues, the quality of odor-evoked signals difered across preparations and for diferent

odors, and physiological changes may have been concealed. These reasons can lead to a re-

duced ∆NR+ but not to an overestimated ∆NR+, which could explain the observation in Fig.

3.3 A.
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3.3 Experimental procedures

Preparation and dye loading

Bees were prepared as described in Yamagata et al., (2009). In short, foraging worker bees were

collected, chilled and ixed in recording chambers with wax. The head capsule was opened and a

mixture of the calcium-sensitive dye Fura-dextran (10 000 MW, Molecular Probes, Eugene, OR,

USA) and the lysine ixable dye tetramethylrhodamine-dextran (10 000 MW, Molecular Probes,

Eugene, OR, USA) was injected into the brain aiming for the soma cluster of the projection

neurons (PNs) of the lateral atennal lobe tract (l-ALT). Then the head capsule was closed

and the bees were fed until satiation and kept at 17–20➦C for 8–24 h. Before measurements,

the legs and wings were cut and the abdomen, thorax and mandibles were immobilized with

wax. The antennae were ixed with n-eicosane and the calyces of the MB were exposed for

measurements. Kwik-Sil Adhesive (World Precision Instruments, Inc.) was poured into the head

capsule to completely stabilize the brain. After sealing the gaps with vaseline, the recording

chambers were illed with Ringer solution (in mM: 130 NaCl, 7 CaCl2, 6 KCl, 2 MgCl2, 160

sucrose, 25 glucose and 10 HEPES, pH 6.7, 500 mosmol).

Calcium imaging

Calcium measurements were performed at room temperature with a sampling rate of 5 Hz,

using a TILL-Photonics imaging setup mounted on a luorescence microscope (Zeiss Axioskop,

Germany). Fura was alternately excited at 340 and 380 nm. Exposure times were 15 and 60

ms, respectively. Each measurement started 3 s prior to stimulus onset and lasted for 10 s.

Images were acquired through a 60Ö/0.9 NA water dipping objective (Olympus, Tokyo, Japan),

a 410-nm dichroic mirror and a 440 nm long pass ilter with an Imago CCD camera (640 Ö

480 pixels, 4 Ö binned on chip to 160 Ö 120). Pixel size was 1.47 Ö 1.47 µm, which allowed

a resolution of single boutons of PNs.

Odor stimulation and conditioning

In the majority of bees, 2-octanone and octanal (Sigma, Deisenhofen, Germany) diluted to

10−2 were used. In three animals, 1-hexanol and 2-octanol (Sigma, Deisenhofen, Germany)

were used, in two of them without dilution and in one of them diluted to 10−2 and 5x10−2,

respectively. The bees were exposed to a constant air stream. Injection of the odorant (40 µl

soaked with 1 cm2 x 2 ilter paper) into the constant air stream was switched on and of by a

computer-controlled solenoid valve (Galizia et al., 1997). Odors were presented for 3 s at an

inter-stimulus interval of 90 s.

Initially, sugar responses of the bees were checked and only responding animals were used fur-

ther. Bees were then moved to the recording site and given some minutes to rest. The protocol

for the classical conditioning experiment (Bitterman et al., 1983) was designed as follows (Fig.
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1A). In the pre-training phase (PRE), each bee was exposed to two diferent odors. Both odors

were presented repeatedly during 6-8 trials in a pseudo-random order. After an interval of 3

min the training phase (TRAIN) started. Bees were conditioned to one of the odors (CS+)

by pairing the odor with an unconditioned reward stimulus (US) consisting of a drop of 30%

sucrose that was presented with a delay of 2 s and lasted for 3 s. Conditioning always started

with the rewarded odor (CS+) and the non-rewarded control odor (CS-) was alternately pre-

sented (5-10 trials). After a 15 min interval the bees were again exposed to both odors during

at least 5 trials (5-8 trials) in a pseudo-random order (POST).

In all three experimental phases we monitored the animals’ conditioned response (CR) behavior

as expressed in the proboscis extension response (PER) by visual inspection. At the end of

each experiment the sugar response of each bee was tested and only responding animals were

included in the analyses. We performed calcium imaging from the MB calyx during the PRE

and the POST phase simultaneously with the CS and US stimulation. Honeybees were selected

for imaging during the POST phase according to their behavioral performance during training.

Consequently, only a small fraction of non-learners were imaged during the POST phase.

Confocal microscopy

After Ca2+ measurements, the brain was dissected and ixed in 4% formaldehyde in Millonig’s

bufer overnight at 4➦C. The brain was then rinsed in saline, dehydrated in ethanol, cleared in

methyl salicylate, set into a chamber illed with methyl salicylate and observed with a confocal

microscope (Leica TCS SP2; Leica, Wetzlar, Germany). The excitation wavelength was 543

nm with a Green HeNe laser. The entire brain was scanned with a 10Ö/0.4 NA air objective

(Olympus, Tokyo, Japan). Where necessary, the AL was scanned with a 20Ö/0.70 NA air

objective (Olympus, Tokyo, Japan) and the MB calyx was scanned with a 63Ö/1.32–0.6 NA oil

objective (Olympus, Tokyo, Japan). Morphological images were acquired as an averaged raw

luorescence image of 380 nm during the measurements and was later unsharp mask-iltered in

Photoshop (Adobe).

Behavioral responses

For experimental phases TRAIN and POST we characterized the corresponding behavioral per-

formances ∆CRTRAIN and ∆CRPOST for each individual animal by computing the diference

between its PER-activity in all but the irst CS+ trials CRCS+
t and in the same number of CS-

trials CRCS−
t devided by the number of trials Nt. Thus, ∆CR is the diference between the
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empirical probabilities of a conditioned response p(CR) in CS+ and CS- trials.

∆CR =
1

Nt

Nt+1
︁

t=2

CRCS+
t −

1

Nt

Nt︁

t=1

CRCS−
t (3.1)

= p(CRCS+)− p(CRCS−),∆CR ∈ ℜ(−1,1)

For the training phase (TRAIN), we excluded the irst CS+ trial from this calculation because

only the subsequent trials of the training can be considered as both acquisition and test trials.

We deined bees as non-learners if they did not show a CR in any of the CS+ trials during both

phases TRAIN and POST (Pamir et al., 2011).

Bouton activity: Odor-evoked response proiles

Recorded videos of calcium responses were preprocessed in IDL (RSI, Boulder, CO, USA) using

custom scripts as described in (Yamagata et al., 2009). A mean of 15 frames during a single

odor stimulation was calculated and displayed as a false-color image (Figure 2 E). A spatial

low-pass ilter (5 Ö 5 pixels) was applied to these images for better visualization. Individual

boutons were determined as isolated activity spots (21 pixels) in the false-color images (Yam-

agata et al., 2009). We identiied between 45 and 143 boutons per bee. For each bouton a

response trace was calculated by averaging the signal of an activity patch without any iltering

and correction.

All of the recorded bouton activity traces were included in the following analysis. Data was

exported to Python and all subsequent analyses steps were performed using standard libraries

for numerical/scientiic programming in Python (NumPy, SciPy).

Overall, the observed calcium-dependent odor responses were dominated by excitatory signals

and, thus, followed a skewed distribution with excitatory signals being overrepresented. This is

mainly due to the fact that the inhibitory efect on the Ca response is bounded. It can only

suppress the relatively small amount of spontaneous Ca activity (i.e. before odor stimulus) while

an excitatory stimulation can lead to an arbitrary large increase in the Ca signal. Therefore,

before analyzing odor response proiles and their training-speciic changes in more detail, we

transformed all data using the hyperbolic tangent function with the efect of gaining a better

resolution of the inhibitory efect. This step facilitated the application of symmetric criteria for

the classiication of odor response proiles and their changes.

To acquire an overview of the diferent types of odor ON- and OFF-responses in the untrained

animal (PRE) we irst deined response intervals of 1s length starting with odor on- and ofset,

respectively. We then detected signiicant excitatory and inhibitory responses for each bouton

based on the trial-averaged Ca-activity. During a baseline period of (2.6s before stimulus on-

set we computed the mean a0 and standard deviation σa0 across time. Excitatory/ inhibitory
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responses were detected if the Ca activity exceeded a0 ± 2.5σa0 in at least three of the ive

response samples that were recorded during a response interval. A threshold of 2.5σa0 proved to

be suitable for separating the noisy signals that appeared during spontaneous activity from those

values that are likely related to odor stimulation. In total, there are 9 possible combinations of

odor ON- and OFF-response per bouton both for the rewarded (CS+) and non-rewarded odors

(CS-).

We further computed the average dynamic response proiles and the response latencies (Figure

3.2G, H and I). For the average excitatory response we included all boutons that satisied the

condition for an ON-response. In order to capture the fewer, weaker and mostly delayed in-

hibitory ON-responses we extended the number of considered samples, requiring sub-threshold

values in at least three of the 15 response samples that were recorded during the 3s odor pre-

sentation. For each of these excitatory and/or inhibitory responses, we calculated the response

latency as the time corresponding to the irst sample to exceed the deined threshold.

Bouton plasticity: Changes in odor response proiles

To provide a coarse overview of the changes in odor response proiles that exist between phases

PRE and POST we deined a number of classes of changes in odor response on the basis of the

change in activity during and shortly after odor stimulation (see 3.1). For this, we calculated

the average c0 and standard deviation σc0 across time for each bouton during baseline activity

(prior to odor stimulation) with respect to odor type (CS+, CS-). We deined positive and

negative changes as those that exceeded c0+/−2.5σc0 in at least one of the 20 samples that

were recorded during the plasticity interval that we deined as the time between odor onset and

1s after odor ofset. This threshold provided a suitable compromise for iltering most of the

changes that appeared during spontaneous activity while keeping those that might be related

to odor stimulation. Overall, we deined a set of four types of odor response changes for both

the rewarded and the unrewarded odors (see table 3.1).

To further analyze the changes in average odor response proiles between phases PRE and

POST, we assigned a single measure of neural plasticity ∆NR to each animal and stimulus

type (∆NR+ for CS+ and ∆NR− for CS-). For this, we computed the sum of the absolute

change across all samples that exceeded c0 ± 2.5σc0 in the plasticity interval on a per bouton

basis. In a second step we averaged across boutons to quantify neural plasticity for each indi-

vidual animal and each stimulus type.

Signal quality

We observed pronounced odor-dependent variations in response strength and signal quality. We

analyzed this relationship by characterizing the signal quality of each animal as its average signal-
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to-noise ratio (SNR) calculated according to equations 3.2 and 3.2, with ab(t) representing

the time-varying activity trace of bouton b for a total of Nb boutons per animal. µ() and σ2()

indicate the mean and the variance, respectively:

SNRb =

︂

Psignal

Pnoise

︂

=
µ
︀

ab(t)|
4s
t=0s

︀

σ2
︀

ab(t)|
0s
t=−2.6s

︀SNR = µ(SNRb|
Nb

b=1) (3.2)

We calculated SNR for each animal and stimulus type as an average of responses during both

TRAIN and POST. Based on the bimodal distribution of these values we deined an empirical

threshold to distinguish between weak (low SNR) and strong (high SNR) signals (see igure

3.6B for details).

Correlation analysis

We calculated Spearman’s rank order correlation and the corresponding p-value as a test

for positive linear correlations between measures of behavioral performances (∆CRTRAIN ,

∆CRPOST ) and neural plasticity (∆NR+, ∆NR−). We performed correlation analyses sep-

arately for the full data set consisting of all 18 animals and for the subset of animals with

recordings that showed strong signals according to the deinition given in the previous para-

graph (8 animals in the case of CS+ and 10 animals for CS-; see igure 3.6B for details).

Because of the low number of samples, we applied jackknife resampling as an estimate for the

robustness and dependence on outliers of the correlation results.
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3.4 Supplemental information

types of odor responses types of response changes

Stimulus ON OFF both none up down both none

CS+ 39.5 3.3 9.9 47.2 14.2 33.0 7.8 45.0

CS- 40.9 2.7 12.3 43.6 18.7 31.4 5.7 44.2

both 15.8 0.0 0.8 16.6 2.8 11.0 0.6 20.7

Table 3.1: Percentages of bouton types classiied according to odor responses and response
changes.

Odor responses

Allthough boutons were visually identiied as locations of odor-dependent activity, the activities

of approx. 17% of boutons appeared too sparse or too noisy to satisfy our rather conservative

criteria for an odor-evoked response (none+both). The fractions of bouton response proiles

that were accepted as excitatory ON- and/or OFF-responses are roughly equally distributed in

terms of CS+ and CS-, with around 40% that showed excitatory ON-responses, approx. 10%

that showed excitatory ON- and OFF-responses, and fewer than 5% that showed only excita-

tory OFF-responses. Nearly all excitatory OFF-responses were exclusive to one of the applied

stimuli, meaning that virtually none of the boutons showed excitatory OFF-responses for both

CS+ and CS-.

More than half of the boutons (approx. 58%) responded to one of the odors only. This high

odor speciicity is mainly caused by the fact that we recorded weak or no responses at all to one

of the two applied odors for nearly all of the animals (see igure 3.6B for details). This clear

dichotomy of odor response proiles is mainly connected to stimulations with 2-octanone and

octanal (about equally distributed between CS+ and CS-, compare igure 3.1B) in 15 out of

18 animals. 2-Octanone elicited only weak responses in 13 of these. On the contrary, octanal

elicited rather pronounced signals in all but one of the recordings.

Response changes

Nearly 30% of all boutons did not show a signiicant change in their average response proile

from PRE to POST. For the remaining 70% of boutons we report a number of salient features:

The majority (approx. 80%) of boutons that changed their response proiles signiicantly did

this in one direction only within the analyzed response windows, i.e. they either reduced or in-

creased their odor response from PRE to POST. A minority of less than 13% of boutons showed

signiied changes in both directions in their dynamic response proile. Response reduction, i.e.

an inhibition of the previous odor response, appeared more often (in more than 30% of the
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cases) than response increase. Across all classes, the number of boutons are roughly equally

distributed with respect to stimulus type (CS+/CS-). Hence, looking at the sign of the changes

in odor response proiles did not reveal any apparent contrast between the rewarded and the

unrewarded odor. A majority of the boutons showed speciicity to either one of the odors in

the changes. Just as for odor-evoked responses, this is related to the bimodal distribution of

odor-dependent signal qualities (igure 3.6C).
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Figure 3.4: Trial-averaged odor-evoked bouton activity patterns. Color-coded calcium-
dependent odor response proiles of all 18 bees, comprising traces of 1652 PN boutons recorded
at the MB input for stimulations with CS+ (left two columns) and CS- (right two columns),
respectively. For each bouton, response proiles were calculated as an average of all trials
within each of the two experimental phases PRE (irst and third column) and POST (second
and fourth column), respectively. Black horizontal lines separate boutons of diferent animals,
whose IDs are given as ordinate labels. Odors were applied between 0s and 3s. Measures of
neural plasticity and SNRs were calculated on the basis of all time steps between 0s and 4s
(enclosed by red horizontal lines).
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Figure 3.5: Changes in trial-averaged odor-evoked bouton activity patterns. Color-coded changes
in calcium-dependent odor response proiles of all 18 bees, comprising traces of activity modulations of
1652 PN boutons recorded at the MB input for stimulations with CS+ (left column) and CS- (right
column), respectively. Diferences were calculated by subtracting averages of all trials of experimental
phase PRE from those of experimental phase POST for each bouton. Black horizontal lines1 separate
boutons of diferent animals, whose IDs are given as ordinate labels. Odors were applied between 0s
and 3s. Measures of neural plasticity and SNRs were calculated on the basis of all time steps between
0s and 4s (enclosed by red horizontal lines).
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Figure 3.6: Additional data properties. A: Distributions of pairwise Euclidean distances of
trials within and between diferent experimental phases. On average, bouton activity patterns
are more similar to those of the same experimental phase than to those recorded during the
other phase: Gray areas show smoothed distribution densities of Euclidean distances that were
calculated as pairwise distances of all combinations of trials within or between experimental
phases PRE and POST, averaged across boutons of each animal. Black boxplots show medians
within boxes extending from lower to upper quartile, whiskers extend to the most extreme data
points within 75%-25% of the inner quartile range, liers represent data points that extend
beyond the whiskers. Pairwise Kolmogorov-Smirnov statistics were applied as a two-sided test
for the null hypothesis that two independent samples are drawn from the same continuous
distribution. B: Distributions of average pairwise Euclidean distances between trial-averaged
bouton activities within the same animal and between diferent animals. On average, bouton
activity patterns are more similar to those of the same animal than to those recorded in other
animals. C: Signal-to-noise ratios sorted according to odor type. Histogram of signal-to-noise
ratios (SNR) with odor types represented in diferent shades of gray. For illustrative purposes,
a Gaussian kernel density estimation of the underlying distribution was added as gray area in
the background. The orange line indicates the median of all SNRs that was used as a decision
threshold to separate strong from weak recordings. Applied odor combinations were either
octanon and octanal or octanol and hexanol, with both pairs of odors distributed randomly
between CS+ and CS- (compare with table in igure 3.1B).



Chapter 4

Distributed plasticity in a network

model of the honeybee brain

explains behavioral responses of

classical conditioning experiments.

Abstract

The honeybee is a prominent model for studying the neural mechanisms underlying the for-

mation and retrieval of associative memories. Here, we present a biologically motivated neural

network model of the honeybee (Apis mellifera) brain that forms associative memories. In

our network simulations we can reproduce the observed conditioned response (CR) behavior of

honeybees in a variety of classical olfactory conditioning protocols. Our network model com-

prises peripheral olfactory receptor neurons, the antennal lobe (AL) network, the mushroom

body (MB) and the lateral horn (LH). Plasticity is included at two levels, the AL and the MB.

Plasticity in the interneurons of the AL allows for a decorrelation of odor response patterns

within few trials, reducing generalization across odorants during training. Plasticity in the MB

underlies the formation of associations. Uniglomerular projection neurons (PN) project from

the AL to the MB calyx where each PN bouton forms the core of a microglomerular complex

(Rybak and Menzel, 2010; Groh and Rössler, 2011) making contacts with several excitatory

Kenyon cells (KC) as well and with inhibitory feedback neurons from the MB output. Based

on physiological evidence (Sinakevitch et al., 2013) we assume reward-modulated plasticity in

these inhibitory feedback synapses. The plasticity in this recurrent network structure leads to a

training-induced modulation of bouton activity as observed in vivo (unpublished data, see pre-

vious chapter) and, in turn, modulates the pattern at the level of the MB output (Strube-Bloss

et al., 2011). Subsequently, KC patterns are decoded by a MB-extrinsic neuron (EN) through

a specialized dendritic tree that provides a layer of independent computational subunits (Polsky

et al., 2004). As a result the MB output conveys a value code, i.e. odor identity represented in

the combinatorial code of the PNs is recoded into odor valence at the MB output level (Strube-

31
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Bloss et al., 2011; Menzel, 2014). A read-out of the value code by a downstream pre-motor

neuron of the LH relects the corresponding CR probability. We show that predictions derived

from our network model match a range of behavioral data from elemental and non-elemental

learning paradigms, including absolute and diferential conditioning, trace conditioning, and

odor patterning.
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4.1 Introduction

The honeybee brain hosts a remarkable repertoire of associative learning faculties, and the link

to cognition in higher animals has been made repeatedly (Giurfa and Giurfa, 2003; Menzel et al.,

2006; Menzel, 2012). Learning under various experimental conditions has been characterized

extensively by olfactory conditioning of the proboscis extension response (PER) (Bitterman

et al., 1983; Giurfa and Sandoz, 2012; Matsumoto et al., 2012). In this classical conditioning

paradigm, honeybees are subjected to odorants (conditioned stimuli, CS) that are presented

in a deined temporal relation to a sucrose reward (unconditioned stimulus, US). The learning

performance during training is monitored by computing the group-averaged probability for a

proboscis extension (conditioned response, CR) on each conditioning trial.

The multitude of diferent variants of this protocol can be devided into absolute and non-

absolute conditioning protocols. In absolute conditioning, honeybees are presented to only one

conditioned stimulus during training. The efect of several experimental parameters on learning

can be studied in this type of protocol, such as the concentration and duration of odorants (Pelz

et al., 1997; Wright, 2004; Wright et al., 2005; Wright et al., 2009), the inter-stimulus-interval

between odor and sucrose reward (Szyszka et al., 2011) or the inter-trial-interval (Menzel et al.,

2001). Non-absolute conditioning on the other hand entails learning of stimulus-reward con-

tingencies for more than one odorant during training. For example, in diferential conditioning

animals are faced with two diferent odors, only one of which appears in combination with a

reward. This task can be made more diicult by reducing the concentration of odorants, or

by employing a mixture of odorants at diferent ratios for the rewarded and unrewarded stim-

ulus (Fernandez et al., 2009). Even more complicated variants of PER conditioning, such as

negative or positive patterning (Deisig et al., 2001), introduce an ambiguity in the value of

individual odor components by presenting them both in rewarded and unrewarded trials. Figure

4.1 summarizes the typical paradigm structure and the range of parametric variations included

in this study.

In Drosophila, behavioral plasticity over consecutive training trials in individual animals is typi-

cally not monitored and considered further by theoretical studies, followind the assumption that

the expression of behavior in a sample of fruit lies is homogeneous (Quinn et al., 1974). Conse-

quently models are only constrained by group-averaged behavioral performance scores measured

after training (Young et al., 2011; Wessnitzer et al., 2012). The case is diferent for classical

conditioning in harnessed honeybees, where the experimental procedure allows to follow and

record the behavior of each individual over training trials (Felsenberg et al., 2011; Matsumoto

et al., 2012). These studies thereby provided the basis for studying inter-individual diferences

in learning performance in the honeybee (Scheiner et al., 2001; Scheiner et al., 2004; Pamir

et al., 2014). Furthermore, knowledge on group heterogeneity supports the correct deinition

of behavioral model constraints (Pamir et al., 2011).
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Figure 4.1: General paradigm structure of olfactory conditioning of the PER. Within an
experimental phase, honeybees are typically subjected to a combination of one or more odorants
(blue) for a given number of trials. These are combined with a sucrose reward (red) in a subset
of the trials. During each trial the conditioned response (green) is monitored. Each experiment
deines speciic stimulus combinations with corresponding intensities and temporal relations.
Values in brackets indicate the parametric ranges covered by conditioning experiments that
were collected for this study.

The large body of evidence on behavioral plasticity in the honeybee is accompanied by numer-

ous neuroanatomical, physiological, and biochemical studies on olfactory information processing

and learning in the honeybee brain (Sandoz, 2011; Himmelreich and Grünewald, 2012, with a

list of learning-related events in the honeybee brain in table 1). Despite the huge amount of

data on trial-resolved behavioral plasticity on the one hand and neural information process-

ing on the other, hardly any theoretical attempts have been made so far to explicitly link the

two by a computational model, and those that exist focus on a speciic experimental protocol

(Bazhenov et al., 2013). Our study integrates several key indings on behavioral plasticity in

the honeybee, which were observed under various diferent training protocols (Table 4.1). We

explain the observed changes in conditioned response probabilities over consecutive training

trials by neural computations in an abstract network model of the honeybee brain. To this end,

we implemented an information processing scheme along the sensor-to-motor circuitry in the

honeybee, which captures the current computationally relevant knowledge of honeybee phys-

iology within an abstract network model. This approach allows us to investigate the efects

of stimulus parameters, network structure, and computational principles on the emergence of

behavior (Carandini, 2012).

Multiple existing modeling studies of the insect brain (Huerta and Nowotny, 2009; Young et al.,

2011; Wessnitzer et al., 2012; Bazhenov et al., 2013) implement learning mechanisms between

mushroom body intrinsic and mushroom body extrinsic neurons, a model structure that is
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supported by physiological indings (Cassenaer and Laurent, 2012). In contrast to these, a

series of physiological indings (Hammer, 1997; Szyszka et al., 2008; Haehnel and Menzel,

2010; Sinakevitch et al., 2013) suggests that an important mechanism for associative plasticity

in the honeybee brain might be located in the microglomerular circuitry of the mushroom

body calyx, mediated by inhibitory feedback neurons that integrate mushroom body intrinsic

signals of the Kenyon cells and project this information back to the mushroom body calyx

via the protocerebral tract (PCT, Fig. 4.2). We integrated this hypothesis into our network

model complemented by a mechanism of neural plasticity located in the antennal lobe (AL),

explained in detail in the following section. In section 4.3 we evaluate the learning performance

of the system on the basis of a rich collection of data that characterizes behavioral plasticity in

honeybees during olfactory conditioning. We found that predictions from our network model

match a wide range of behavioral data from elemental and non-elemental learning paradigms.

These results are discussed in the light of the implemented plasticity mechanism at inhibitory

synapses of the MB calyx (section 4.4).
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4.2 Methods

4.2.1 Network model

Figure 4.2 provides an overview of the most important neuron types involved in olfactory pro-

cessing in the honeybee, most of which form the functional components of our network model.

Odorant molecules interact with olfactory receptors (OR) in the antenna (ANT) and elicit dis-

tinct activity patterns across olfactory receptor neurons (ORN). These provide excitatory input

to diferent types of neurons of the antennal lobe (AL), which is organized in spherically shaped

neuropils called glomeruli. Two types of local neurons (LN), whose branching patterns stay

within the AL and which are presumably mostly inhibitory, provide gain control through global

inhibitory feedback (global LNs, gLN) as well as lateral inhibition through distinct asymmetrical

connections (local LNs, lLN), respectively. Uniglomerular projection neurons (uPN) connect

the AL with the lateral horn (LH) and the mushroom body (MB) via diferent antennal lobe

tracts (ALT). Connections to the LH might be involved in the regulation of innate behavior and

are not considered in our model. uPNs provide excitatory input to the MB-intrinsic Kenyon

cells (KC). The activity patterns of the KCs are integrated by MB-extrinsic neurons (EN).

While one subgroup of these forms an inhibitory feedback circuit back to the input region of

the MB via the protocerebral tract (PCT, this abbreviation will also used for the corresponding

group of neurons), other types of ENs send their axons to the LH. In addition, projections from

multiglomerular projection neurons (mPN) of the AL also arrive at the LH. All of the three

major neuropils that are involved in the processing of olfactory stimuli (AL, MB, and LH) are

innervated by two octopaminergic neurons (ventral unpaired median neurons, VUM neuron)

that mediate information on sugar reward. In the following paragraphs, we provide more in-

formation on neurophysiology and corresponding references. See Sandoz (2011) for a detailed

review on olfactory perception and learning in honeybees.

Details of the network geometry are shown in igure 4.3. This includes numbers for each type of

neuron, dimensions of connection matrices, and implemented sights of neural plasticity. Each

processing step is explained in the subsequent sections. First, we introduce the Heaviside step

function Θ() and the Kronecker delta function δ() that help to formalize the computational

mechanisms we implemented:

Θ(x) =

︃

1, x > 0

0, x ≤ 0
and δ(x) =

︃

1, x = 0

0, x ̸= 0
(4.1)

Two diferent versions of neural transfer functions are used, a normal sigmoid function f()

as well as a shifted and stretched sigmoid function f2(). Both range from 0 to 1 and are

parameterized for neuron group N by a threshold Nθ, a tuning broadness Ng and a center Nc
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Figure 4.2: Olfactory processing in the brain of the honeybee (after Sandoz 2011).
For clarity, neuron types are drawn in one hemisphere only. Receptors of olfactory receptor
neurons (ORN) in the antenna (ANT) are stimulated by odorant molecules and excite neurons
in the glomeruli (blue circles) of the antennal lobe (AL). Uniglomerular projection neurons
project to the lateral horn (LH) and the mushroom body (MB) via two main pathways, the
lateral and medial antennal lobe tract (l-ALT, m-ALT). Multiglomerular projection neurons
provide inhibition to the LH via the medio-lateral ALT (ml-ALT). Lateral neurons (LN) are
mainly inhibitory and stay within the AL. Two octopaminergic ventral unpaired median neurons
(VUM) branch in AL, MB and LH. Kenyon cells (KC) receive excitatory input from uPNs.
Their patterns are integrated by extrinsic neurons (EN) that send their axons to the LH. Next
to these, feedback neurons integrate the KC pattern and project this information back to uPN-
KC-connections in the MB calyx via the protocerebral tract (PCT).

(threshold and center default to 0 for some neuron groups):

fN (x) =
Θ(x−Nθ)

1 + exp(−Ng(x−Nc))
(4.2)

fN
2 (x) = 2 ·Θ(x−Nθ) ·

︂

1

1 + exp(−Ng(x−Nc))
− 0.5

︂

(4.3)

Odor-reward integration

Each conditioning experiment consists of a series of trials (Fig. 4.1). For a given neuron group,

a single activity pattern is calculated in each trial, neglecting any detailed temporal dynam-

ics. The only exception to this is the temporal relation between the conditioned stimulus (CS)
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Figure 4.3: Overview of the network structure. Neuron groups are represented as circles
including the number of computational unites per group, the group name and the type of transfer
function (TF), with / for linear TF and

︀

for sigmoidal TF. Rectangles represent weight matrices
including dimensions, matrix name and connectivity (c). VUM: ventral unpaired median neuron,
ORN: olfactory receptor neuron, lLN: local lateral neuron, gLN: global lateral neuron, mPN:
multiglomerular projection neuron, uPN: uniglomerular projection neuron, KC: Kenyon cells,
PCT: mushroom body feedback neurons following the protocerebral tract, EN: mushroom body
extrinsic neurons, DN: downstream neuron.

and the unconditioned stimulus (US). Based on neurophysiological evidence (Hammer, 1993;

Schröter et al., 2007; Sinakevitch et al., 2013), we assume this information to be present in

the form of a synaptic tag ΓOA at the two proposed sights of neural plasticity, i.e. synapses of

lLNs in the AL and synapses of PCTs in the MB.

We calculate an eligibility trace E(t) that mediates temporal information about the CS (Wess-

nitzer et al., 2012), independent of its concentration (Fig. 4.4). It increases exponentially after

CS-onset and decreases exponentially after CS-ofset, as characterized by the two variables αE

and τE :

E(t+∆t) = E(t) · exp
−∆t

τE +(1− E(t)) · αE ·Θ(CS(t)) (4.4)

During a rewarded trial, the value of E(t) at US-onset deines the magnitude of ΓOA:

ΓOA =

tend︁

tstart

E(t) · δ(t− USonset) ·∆t (4.5)

We use this tag to scale the weight changes that occur as a consequence of the temporal stim-

ulation pattern of each trial. We assume that these weight changes occur within the intertrial-

interval (ITI, 1-30 min) and do not inluence the tag of the subsequent trial (E(t0) = 0).
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unconditioned
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Figure 4.4: Eligibitlity trace E(t) and synaptic tag ΓOA. The eligibility trace increases
exponentially during CS presentation and decreases exponentially after the CS ends. Speeds
of increase and decrease are parameterized by αE and τE , respectively. The temporal relation
between CS and US determine the magnitude of the synaptic tag ΓOA.

On the basis of the smallest time diference between CS- and US-onset that was used in the

experiments we studied (200ms), we deined the temporal resolution to be ∆t = 0.1s. αE was

determined according to three experimental groups from (Wright et al., 2009) that received

the US 200, 500, and 800 ms after CS-onset, respectively. We itted τE with respect to trace

conditioning experiments reported in (Szyszka et al., 2011).

Antenna

In the model, the response of an odor receptor (OR) to a speciic ligand is deined by its binding

ainity k (the inverse of the receptor sensitivity), by its Hill coeicient m that determines the

efective concentration range, and by the ligand concentration c as

fOR(k,m) =
1

1 + (k
c
)m

. (4.6)

Hence, k represents the center of a sigmoid function in relation to a concentration, and m

controls the broadness of the corresponding sigmoid.

In a calcium imaging study, (Sachse and Galizia, 2003) measured odor response dynamics in

the AL as a compound signal, which was presumably dominated by olfactory receptor neurons

(ORN). They estimated both binding ainity and Hill coeicient for a number of glomeruli and

odors. On the basis of this data, we generate the distribution of binding ainity ki of receptor

ORi for a single ligand as

ki = 10(kmin+kmax·X
ORexp
i ), Xi ∼ U([0, 1]) (4.7)

With ORexp < 0 this formalism accounts for the uneven distribution of receptor sensitivities

with only few highly sensitive receptors. The Hill coeicient ORm is shared by all olfactory
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receptors in the model and is set to the average of the Hill coeicients reported in (Sachse

and Galizia, 2003) (Figs. 4.6A, 4.12A). kmin determines the decimal logarithm of the minimal

binding ainity (highest possible sensitivity), which we deined to be -5. The two remaining

parameters were itted with respect to the concentration dependence of the fraction of active

ORNs (compound signal) estimated in (Sachse and Galizia, 2003) (Figs. 4.6D, 4.12B,D).

In each trial, the CS is deined by one or a mixture of odorants, i.e. ligands. While they always

share their temporal properties, they might difer in their concentrations (Fig. 4.1). Indirect

evidence for mixture perception of olfactory receptors in honeybees suggests hypoadditivity

as the predominant mechanism (Deisig et al., 2006; Deisig et al., 2010). Assuming that

hypoadditive and synergistic activities, which are evident in the AL of honeybees, are mainly

caused by lateral interactions within the AL network, we implemented a hypoadditiv mixture

integration for all receptors. Thus, in the model each olfactory receptor neuron ORNi responds

to a mixture of NL ligands with the maximum of all ligand speciic activations of its receptor

ki:

ORNi =
NL
max
l=1

(kli) (4.8)

The overlap between activity patterns of two diferent odorants ORi and ORj is controlled

by sji that deines the similarity between the patterns on a scale from 0 (opposite tuning) to

1 (identical tuning). The N th tuning pattern ORi is generated on the basis of all previously

generated patterns using the same receptor activations shuled in a new sequence �i:

�i = argsort

︂N−1︁

j=1

︁

�=
j · [sij − 0.5]++ (4.9)

�*
i ·

︀

0.5− |
1

N − 1
·
N−1︁

k=1

sik − 0.5|
︀

+

� ̸=
j · [0.5− sij ]

+
︁

︂

�=
j denotes the sequence of ligand ainities of odorant ORj , � ̸=

j stands for the opposite

sequence, and �*
i is a uniformly randomly generated sequence. Therefore, each newly generated

receptor activity pattern is a compromise between similarities to previously deined patterns (Fig.

4.5). With a total of 160 ORs and, in turn, 160 ORNs the model is approx. scaled to the

number of potentially functional types of olfactory receptors and the number of AL glomeruli

in honeybees (Sandoz, 2011). Table 4.3 contains a description of all ANT parameters.

Antennal lobe

The AL network is deined by four neuron groups, receiving the ORN activity pattern (Fig. 4.6A)

as their input. gLNs and mPNs are both represented by a single nonlinearity that integrates
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A B C D

A 1.00 -0.69 0.37 -0.04

B -0.69 1.00 0.41 -0.02

C 0.37 0.41 1.00 -0.08

D -0.04 -0.02 -0.08 1.00

odorant A odorant B

odorant C odorant D
s_10 = 0.25

s_20 = 1.0, s_21 = 1.0 s_30 = s_31 = s_32= 0.5

A B

Figure 4.5: Parametric coniguration of overlap between odorants based on similarities
sxy. A: Example of receptor tunings for multiple odorants. Tuning vectors of 160 receptors
are shown as twodimensional matrices ordered with respect to the irst odorant (blue). The
second odorant (green) is anticorrelated to odorant A (s10 < 0.5). Tuning of the third odorant
represents a compromise between the blue and green odorant. Tuning of the fourth odorant
is not correlated to any others. Color intensity represents tuning strength. B: Coeicients of
variation between tuning vectors corresponding to odorants in A.

the activity of all ORNs and provides gain control through inhibition for the AL and the LH,

respectively (Fig. 4.6D, L). Lateral interactions between glomeruli are provided by lLNs (Fig.

4.6B). lLNs receive excitatory input from ORNs through a 1-to-1 connectivity and, efectively,

copy the ORN activity pattern. lLNs connect to uPNs with a probability of plLN,uPN = 0.25.

The majority (85%) of these connections is inhibitory and the corresponding weights are ini-

tially normally distributed around wlLN
in and wlLN

ex for excitatory and inhibitory connections,

respectively (Fig. 4.6C). lLNs receive octopaminergic signals from the VUM neuron (Sinake-

vitch et al., 2013) that support the formation of ΓOA and is assumed to be available to lLNs

as an intracellular marker. Based on this, we implemented a mechanism of reward-dependent

plasticity for these connections that is described in section 4.2.1.

uPNs of the two major tracts lALT and mALT are not distinguished in the model. A single

computational unit represents the uPNs of each glomerulus (corresponding to the number of

ORs, ORNs and lLNs). Average response latencies in LNs have been shown to be signiicantly

shorter than in uPNs (Krofczik et al., 2008). Therefore, we calculate the corresponding activity

pattern of uPNs on the basis of previously calculated LN activity:

uPN = fuPN
2

︁

uPNsr +ORN +W lLN · lLN − gLN
︁

(4.10)

uPNsr is a spontaneous rate that we added based on observations for PNs in honeybees (Deisig

et al., 2003; Nawrot et al., 2010; Meyer et al., 2013). In the model, its function is to provide

a baseline activity that facilitates the emergence of activity patterns in the MB at low odor

concentrations. The parameters of the uPN transfer function were determined regarding data
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from fruit lies (Bhandawat et al., 2007) (igures 4.15). Subsequently, we deined values for

the concentration dependence of the fraction of active uPNs (Sachse and Galizia, 2003). This

allowed us to it the concentration dependent level of gain control in the antennal lobe by

adjusting the three parameters gLNg, gLNc, and wgLN (Fig. 4.14). The resulting low activity

in gLN (Fig. 4.6D) matches the observation that application of GABA in the AL of honeybees

silences all uPN activity (Sachse et al., 2002). Table 4.3 contains a description of all AL

parameters.

Mushroom body

The model contains 12000 MB-intrinsic KCs that receive excitatory input from uPNs. The

corresponding connectivity matrix is parametrized by NPN,KC that deines the average number

of KCs a single uPN projects to, resulting in a set of 120,000 synaptic terminals of uPNs that

contact the population of KCs. These are uniformly randomly distributed across all possible

synaptic connections. To quantify population sparseness in KCs we used the measure of kurtosis

(Field, 1994).

KC activity patterns are integrated by two neuron groups, PCTs and ENs. Both are implemented

as a single nonlinearity (Fig. 4.6H, M). The EN connects the MB with the LH and is further

described in section 4.2.1. The PCT projects back to the MB calyx and contacts each synaptic

connection between uPNs and KCs through an inhibitory synapse, forming an inhibitory feedback

loop:

KC = fKC
︀

W uPN · uPN −WPCT · PCT
︀

(4.11)

PCT = fPCT
︀

WKC,PCT ·KC
︀

(4.12)

= fPCT

︂

WKC,PCT · fKC
︀

W uPN · uPN −WPCT · PCT
︀

︂

(4.13)

These equations can be solved numerically and result in a stable solution that represents a

point of balance between KC and PCT activity. The weights of WKC,PCT were scaled to 1,

the plastic weights of WPCT were always initialized with 0.5 (Fig. 4.6, B).

PCTs are also contacted by the octopaminergic VUM neuron, as suggested by physiological

evidence (Sinakevitch et al., 2013). We assume that this connection provides relevant infor-

mation about the temporal relation between CS and US and, in turn, supports the formation

of ΓOA that is available to PCTs as an intracellular marker (see section 4.2.1). Based on this,

we implemented a mechanism of reward-dependent plasticity for these connections that is de-

scribed in section 4.2.1.

Some of the parameters of the MB network were set to heuristically chosen values. In addition,

we deined target values for the concentration dependent PCT activity and fraction of active

KCs and itted the remaining parameters according to these (Fig. 4.16). Table 4.3 contains a
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description of all MB parameters.

Lateral horn

A pool of ENs connects the MB with the LH. Analogous to PCTs, these are abstracted as

a single computational unit with a nonlinear transfer function that integrates the activity of

all KCs (Fig. 4.6M). However, the KC signals are individually transformed by a dendritic tree

that provides a layer of independent computational subunits (Fig. 4.6K). These sigmoidally

modulate the KC inputs prior to a global summation, a model that was proposed in (Polsky

et al., 2004) to explain data recorded from cortical pyramidal neurons in vertebrates.

Yet another nonlinear unit, the DN, combines the EN signal with the activity of inhibitory mPNs

(Fig. 4.6N). Here, mPNs connect the AL with the LH (Abel et al., 2001; Sinakevitch et al.,

2013) and provide a global signal of AL activity (Fonta et al., 1993). With its DN activity the

network generates a signal that represents the probability of a conditioned response (p(CR)).

Plasticity in the mushroom body

We apply a reward-dependent learning rule to the inhibitory PCT synapses that modulate the

connections between uPNs and KCs on the basis of ΓOA as well as pre- and postsynaptic signals.

According to equations 4.14-4.18, the synaptic weight wi,j that modulates the connection

between uPNi andKCj is decreased in the presence of a synaptic tag (ΓOA > 0) and increased

otherwise (ΓOA = 0). The speed of this process is scaled by learning rates α+
wPCT and α−

wPCT .

In addition, following multiplicative rules wPCT
max and wPCT

min provide upper and lower boundaries

for the synaptic weights, respectively. This mechanism leads to a disinhibition of rewarded

patterns and a suppression of unrewarded patterns.

∆w−
i,j = ΓOA · uPNi ·KCj (4.14)

∆w+
i,j = (1−Θ(ΓOA)) · uPNi ·KCj (4.15)

∆wPCT
k = α+

wPCT ·∆w+
i,j · (w

PCT
max − wPCT

k )− (4.16)

α−
wPCT ·∆w−

i,j · (w
PCT
k − wPCT

min ) (4.17)

wPCT
k (t+∆t) = wPCT

k (t) + ∆wPCT
k (4.18)

α−
wPCT was itted on the basis of a simple absolute conditioning protocol (Pamir et al., 2011) to

match the generally observed rapid learning dynamics in honeybees during classical conditioning

(Pamir et al., 2014). α+
wPCT was itted to the rate of extinction reported in (Stollhof et al.,

2005). Consequently, the same synapses that are reduced in eicacy during appetitive learning

will be strengthened during unrewarded trials.
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Plasticity in the antennal lobe

We integrated a reward-dependent learning rule into the inhibitory synapses of lLNs that modu-

late the activity of uPNs in the AL on the basis of ΓOA as well as pre- and postsynaptic signals.

In contrast to the plasticity model of the MB, pre- and postsynaptic signals are scaled by the

diference between the expected reward -expressed by activity of DN - and the received reward.

The synaptic weight wlLN
k of neuron lLNk that receives input from ORNi and inhibits uPNj

is changed according to the following equations:

ℋk = ORNi · uPNj · |DN − ΓOA| (4.19)

ΓOA > 0, ΓOA −DN > 0.05 : ∆wlLN
k =

⎧

⎪

⎨

⎪

⎩

−wlLN
k · αwlLN · ℋk for wlLN

k < 0

(wlLN
ex,max − wlLN

k ) · αwlLN · ℋk for wlLN
k > 0

(4.20)

ΓOA = 0, DN > 0.05 : ∆wlLN
k =

⎧

⎪

⎨

⎪

⎩

−(wlLN
in,max + wlLN

k ) · αwlLN · ℋk for wlLN
k < 0

−wlLN
k · αwlLN · ℋk for wlLN

k > 0

(4.21)

wlLN
k (t+∆t) = wlLN

k (t) + ∆wlLN
k (4.22)

Thus, in dependence on ΓOA and DN, excitatory and inhibitory connections are changed in

opposite directions. Positive weights are increased while negative weights are decreased for

rewarded patterns, and vice versa for unrewarded patterns. Most of the involved parameters

were determined with respect to behavioral data from a diferential conditioning experiment

(Pamir et al., 2011).

4.2.2 Behavioral model constraints

Classical conditioning of the proboscis extension response in the honeybee was introduced more

than ifty years ago (Takeda, 1961; Giurfa and Sandoz, 2012). Details on this experimental

procedure can be found elsewhere (Scheiner et al., 2001; Felsenberg et al., 2011; Matsumoto

et al., 2012). In order to parameterize and evaluate our computational model, we collected a

large set of classical conditioning protocols from the experimental literature (Table 4.1). Our

study concentrates on the dynamics of behavioral plasticity that appears over the course of a

few conditioning trials, roughly within up to a few hours. Hence, a prerequisite for any protocol

to be used was the availability of corresponding data.

Typically, during a standard absolute conditioning experiment, a distinct subgroup of 10-20%

of the bees does not react to the rewarded odor in any of the conditioning trials (Pamir et al.,
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2011). When possible, we excluded these non-responding animals, which results in a more

homogeneous sample of animals with respect to learning performance. This procedure was not

applicable to datasets in which the learning task was made more diicult by reducing the CS-

concentration and/or the US-duration (Wright et al., 2009) or by increasing the inter-stimulus

interval (Szyszka et al., 2011). In these datasets we subtracted a hypothetical basic level of

non-responders, which was estimated based on those groups of bees that were part of the same

experiment - and therefore were subjected to the same general conditions - but were not faced

with an increased degree of diiculty.

Another subgroup of bees is characterized by the fact that they extend their proboscis as a reac-

tion to the CS presentation during the irst conditioning trial. Recently it has been shown that

these spontaneous responders share the same learning dynamics as bees that start responding

in later trials (Pamir et al., 2014). However, in several datasets these spontaneous responders

were excluded by the experimenter. Additionally, we did not explicitly integrate a mechanism

of spontaneous response into our model, and therefore removed these individuals from other

datasets as well if possible.

In the majority of the protocols the experimental raw data at the level of individual animals

was available to us. In these cases, we were able to exclude non-learners and spontaneous

responders from the data as described. For some conditioning protocols the raw data was not

available. To obtain targets for the simulations we transcribed the CR probabilities manually

from the original publications. In total, we collected the data for 89 experimental groups from

17 studies corresponding to a total number of 3944 animals (Table 4.1). In some cases we

combined experimental groups within a study that only difered with respect to long-term ef-

fects tested after several hours, for these are not considered here.

Parameter search

We itted the parameters of the model in a number of steps to the available physiological data,

to a subset of the behavioral data, and where necessary to heuristically deined targets. To this

end, we implemented a simple brute search parameter optimization algorithm that minimizes

the root mean squared error (RMSE) between the observed and the simulated conditioned

response probabilities. For model m and a given set of data d from a classical conditioning

protocol lasting NT trials this is deined as

RMSEd,m =

⎯

⎸

⎸

⎷

1

NT

·

NT︁

T=1

pd(CR(T ))− pm(CR(T )). (4.23)

In some cases, the parameter search was be performed by minimizing the RMSE for a collection

D of ND classical conditioning protocols, scaled by the relative number of animals nd in each
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Amount of included Raw Used to it Description of

Reference groups animals data parameters learning paradigm

ELEMENTAL LEARNING PARADIGMS

(Pamir et al., 2011) 1 61 (100)
√ √

absolute

(Marter et al., 2014) 1 (4) 158 (221)
√

− absolute, US duration

(Wright et al., 2009) 21 877 (987)
√ √1 absolute, concentration

(Szyszka et al., 2011) 1 62 (93)
√

− absolute, delay

(Szyszka et al., 2011) 7 263 (328)
√ √

absolute, trace

(Stollhof et al., 2005) 1 (5) 177 (228)
√ √

absolute, extinction

(Chandra et al., 2010) 7 115 (124)
√

− latent inhitibion

(Pamir et al., 2011) 1 87 (120)
√ √

diferential

Yamagata, unpublished 1 13 (18)
√

− diferential, extinction

(Smith, 1998) 3 90 − − absolute, feature

positive discrimination

NON-ELEMENTAL LEARNING PARADIGMS

(Fernandez et al., 2009) 10 319 − − diferential, concentration

Szyszka, unpublished 1 57 (89)
√

− negative patterning

(Komischke et al., 2003) 2 64 − − positive/negative patterning

(Deisig et al., 2001) 6 422 (422)
√

− positive/negative patterning

(Deisig et al., 2002) 6 245 (255)
√

− positive/negative patterning

(Deisig et al., 2003) 6 237 (271)
√

− positive/negative patterning,

(Chandra and Smith, 1998) 9 215 − − diferential, neg. patterning,

biconditional discrimination

Total 82 (89) 3462 (3944) 13/17 6/17

Table 4.1: Overview of classical conditioning studies. For groups, numbers in brackets
indicate the amount of experimental groups in the original study that we combined to a single
group. For animals, numbers in brackets indicate the number of bees that were part of the
corresponding study before we corrected for non-learners and spontaneous responders. 1six
groups were used for parameter itting.

data set d:

RMSED,m =

ND︁

d=1

RMSEd,m · nd (4.24)

During parameter searches for the concentration dependency of both uPNs and KCs, heuristic

target values were introduced in equation 4.24 as individual error terms (Figs. 4.14 and 4.16).

To summarize, model parameters were itted as follows:

❼ We itted ANT, AL and MB parameters to match concentration dependent activities of

neural groups in each stage (ORNs, uPN and KCs, respectively). Target values were

based in part on physiological data.
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❼ Using a learning rate of αPCT = 1.0, we itted LH parameters with regard to the observed

p(CR) of three absolute conditioning groups from (Wright et al., 2009) that difered with

respect to CS concentration (0.3, 0.003 and 0.00003 %v/v).

❼ We itted the temporal dynamics of the synaptic tag ΓOA to match the observed p(CR)

in three absolute conditioning groups from (Wright et al., 2009) (varying CS duration to

it αE) and all trace conditioning groups from (Szyszka et al., 2011) (varying US onset

to it τE).

After we determined this irst set of parameters, we reined the learning dynamics of the model

in two steps:

❼ Based on the hypothesis that plasticity in the MB calyx is the predominant mechanism

underlying rapid learning dynamics in honeybees, we reined the learning rates that control

MB plasticity (α+
wPCT and α−

wPCT ) to match acquisition and extinction dynamics during

absolute conditioning (Pamir et al., 2011; Stollhof et al., 2005). This step involved the

deactivation of AL plasticity. We refer to this coniguration where only MB plasticity is

active as m0.

❼ Based on the hypothesis that plasticity in the AL is the predominant mechanism underlying

odor decorrelation, we reined the parameters that control dynamics of AL plasticity

(wlLN
ex,max, w

lLN
in,max, and αwlLN ) to match data from diferential conditioning (Pamir et al.,

2011). Both plasticity mechanisms are active in this case. We refer to the corresponding

coniguration as m1.

Model evaluation

For both conigurations, we generated model predictions for all collected conditioning protocols.

Here, the same set of parameters was used for both conigurations, difering only in terms of

AL plasticity being switched of (m0) or switched on (m1). Some protocols used mixtures of

odorants. For these, we adjusted the parameters that control the odor tuning to match the

observed odorant similarity as evident from generalization efects during the irst block of trials.

For those components of the network model that were generated using a standard pseudo-

random number generator (receptor tuning, connectivity matrices), we used predeined seeds

for each of these components to initialize the number generator. Thus, we used the identical

network instance for both model conigurations.
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4.3 Results

We implemented a computational model of odor processing and learning in the honeybee that

comprises a mechanism of synaptic plasticity located in the calyx of the mushroom body, a

network scheme that has so far not been studied in a computational framework (Fig. 4.3). We

also collected a large assembly of behavioral data from classical conditioning protocols (Table

4.1). In this section we try to establish a quantitative link between the neural computation in

the model and the observed dynamics of behavioral plasticity.

In order to quantify the diference between model predictions and honeybee data we calculated

the root mean squared error (RMSE) of the diference in the probability of a conditioned re-

sponse p(CR) across learning trials for each protocol (section 4.2.2). For brevity, we present

detailed results only for a subset of protocols in the following sections. Details about the corre-

sponding conditioning protocols can be found in table 4.4. Table 4.2 lists the average RMSE

of all considered studies to provide a comprehensive overview.

Pamir et al. 2011

Marter et al. 2014

Wright et al. 2009

Szyszka et al. 2011

Szyszka et al. 2011

Stollhoff et al. 2005

Chandra et al. 2010

Pamir et al. 2011

Yamagata

(unpublished)

Smith, 1998

Fernandez et al. 2009

0.06

0.10

0.15

0.02

0.09

0.05

0.18

0.33

0.18

0.06

0.20

0.07

0.10

0.15

0.03

0.10

0.08

0.19

0.10

0.13

0.07

0.19

AC

AC

AC

AC (DLC)

AC (TC)

AC, EX

LI

DC

DC

AC

DC

Szyszka

(unpublished)

Komischke et al. 2003

Deisig et al. 2001

Deisig et al. 2002

Deisig et al. 2003

Chandra & Smith 1998

0.18

0.36

0.39

0.30

0.41

0.32

0.12

0.26

0.20

0.22

0.28

0.23

NP

NP, PP

NP, PP

NP, PP

NP, PP

DC, NP,

BC

RMSEElemental learning paradigms

Non-elemental learning paradigms

m
0

Plasticity

in MB

m1
Plasticity

in MB+AL

m
0

Plasticity

in MB

m1
Plasticity

in MB+AL

0.05 0.40

Table 4.2: Average model performances. Model performances were characterized by the
root mean squared error (RMSE) calculated for the diference in probabilities of conditioned
responses between simulation results and bee data, averaged across all experimental groups from
a given study. AC: absolute conditioning. DLC: delayed conditioning. TC: trace conditioning.
EX: extinction. LI: latent inhibition. DC: diferential conditioning. NP: negative patterning.
PP: positive patterning. BC: biconditional discrimination.
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4.3.1 Results of elemental learning paradigms

Elemental learning paradigms are characterized by the fact that a discernible property of a

rewarded stimulus will never appear in an unrewarded trial. Hence, a simple link between this

property and the reward suices to solve the task (Giurfa, 2003).

Absolute conditioning

The typical variability between identically treated groups of bees during absolute conditioning

calculated as RMSE amounts to approx. 0.05-0.1, as estimated on the basis of the experimental

groups from Stollhof et al., 2005 and Marter et al., 2014 (average group size ∼40). Within

the margin of this variability, the learning dynamics during acquisition of nearly all absolute

conditioning protocols were reproduced by the model. The diferences between the two model

conigurations m0 and m1 are negligible for absolute conditioning.

The dependence on concentration and CS-duration was itted according to a subset of groups

from (Wright et al., 2009). Here, the RMSE is higher than in the other absolute conditioning

experiments, a result that can be attributed to a combination between the way we determined

parameters for the neural groups in the lateral horn (LH) and a rather high variability in the

corresponding behavioral data (Fig. 4.7A-F).

In latent inhibition, a stimulus is presented during a pre-training phase in the absence of reward

for a given amount of trials, followed by a number of rewarded training trials (Chandra et al.,

2010). As evident from the corresponding behavioral data, honeybees respond with a delay in

acquisition that is dependent on the number of unrewarded pre-training trials. This efect is

reproduced by the model for up to 20 pre-training trials (Fig. 4.7G, H). For groups of bees that

were subjected to even more pre-training trials, acquisition speed is further reduced and, judged

on the basis of the 6th training trial, also the asymptotic level of the conditioned response is

signiicantly reduced (Fig. 4.7H). This efect is not captured by the model, causing an average

RMSE near 0.2.

The time constant of the decay in eligibility τE was determined on the basis of data from a

set of trace conditioning protocols, in which an increase in the temporal gap between CS-ofset

and US-onset led to a reduced acquisition speed (Szyszka et al., 2011). Therefore, it is not

surprising that this salient efect is paralleled by the trial-averaged p(CR) of the model (Fig.

4.7J-L). But further more, also the linear increase in acquisition is closely reproduced by the

model.



Chapter 4 Page 51

1 4 8 12

0

1

p
(C

R
)

N = 27

1 4 8 12

0

1

p
(C

R
)

N = 67

A R A+, data A+, model

1 4 8 12

Trials

0

1

p
(C

R
)

N = 19

1 4 8 12

1 4 8 12

0

1

p
(C

R
)

N = 42

Wright et al. 2009

CS conc. = 3e-5%v/v

CS duration = 1s

1 4 8 12

0

1

p
(C

R
)

N = 38

1 4 8 12

0

1

p
(C

R
)

N = 39

1 3 6

1 3 6

Trials

0

1

p
(C

R
)

N = 30

1 3 6

Trials

0

1

p
(C

R
)

N = 32

1 3 6

Trials

0

1

p
(C

R
)

N = 36

6 11

6 11

0

1

p
(C

R
)

N = 16

26

0

1

p
(C

R
)

N = 15

36

0

1

p
(C

R
)

N = 19

A+, data A+, model

A B C

D E F

G H I

J K L

Wright et al. 2009

CS conc. = 3e-3%v/v

CS duration = 1s

Wright et al. 2009

CS conc. = 3e-1%v/v

CS duration = 1s

Wright et al. 2009

CS conc. = 3e-3%v/v

CS duration = 0.2s

Wright et al. 2009

CS conc. = 3e-3%v/v

CS duration = 0.5s

Wright et al. 2009

CS conc. = 3e-3%v/v

CS duration = 0.8s

Chandra et al. 2010, 5 pre-trials Chandra et al. 2010, 20 pre-trials Chandra et al. 2010, 30 pre-trials

Szyszka et al. 2011

US-onset = 1s

Szyszka et al. 2011

US-onset = 3s

Szyszka et al. 2011

US-onset = 6s

Figure 4.7: Observed and simulated dynamics of associative learning in selected pro-
tocols of absolute conditioning. Black curves show the experimentally observed CR proba-
bilities. Red curves show the simulated CR probabilities of model coniguration m0. Stimulus
onsets and durations in each trial are illustrated by colored pictograms. CS-duration varied
among A-C, which is not shown in the corresponding pictogram.
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Plasticity in the mushroom body during absolute conditioning

Figure 4.8 presents details about the MB network during absolute conditioning. In the model,

MB plasticity is expressed by a decrease of eicacy in a subset of PCT synapses (section 4.2.1).

This process is illustrated by a decrease of the average synaptic weight of WPCT (Fig. 4.8A).

As a consequence, two opposing efects exist in the mushroom body network. While the activity

of some KCs is drastically increased (Fig. 4.8F), the total number of active KCs goes down

from more than 13% and levels out at below 12% after three trials (Fig. 4.8E). This is caused

by an increase in the overall level of KC activity (Fig. 4.8C) and, in turn, an increase in the

overall level of inhibition at the MB input (Fig. 4.8B). Concerning the population sparseness

of the KC pattern, the model predicts a strong increase during the irst three training trials

followed by a constant decrease during later trials (Fig. 4.8D).
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Figure 4.8: Efects of plasticity in the MB during absolute conditioning. A: Synaptic
weights of connectivity matrix WPCT are initialized at 0.5. A subset of weights is reduced
during learning. Average values were calculated for these weights. B: Inhibitory feedback
neurons respond with an increased activity during learning, caused by an increase in overall KC
activity shown as the sum across all KCs in C. D: The model predicts two phases of change
in population sparseness of KCs, a rapid increase during the irst trials followed by a slower
decrease thereafter. E: The ratio of responsive KCs is reduced during learning and saturates
at just below 12%. F: The activity of a subset of KCs is strongly increased during learning.
Through an increase in inhibition at the MB input, the maximum activity in KCs is constantly
slightly reduced during the last three trials.

Diferential conditioning

In diferential conditioning, one rewarded odor and one unrewarded odor are presented in turn.

Typically, the rewarded odor is presented in the irst trial, followed by the unrewarded odor

in the second trial. Depending on the perceptual similarity of the used odors, a number of
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bees will generalize and respond with a CR in the second trial. Between the two datasets from

(Pamir et al., 2011) and (Yamagata, unpublished) the ratio of bees that generalized difers

signiicantly (Fig. 4.9A-D). For each of these protocols, we chose the similarity between the

two tuning vectors (parameterized by s10) to match the observed generalization in the second

trial. In both cases, plasticity in the MB alone is not suicient to separate the rewarded from

the unrewarded odor as efectively as observed in the behavioral data (Fig. 4.9A, C), especially

if the similarity between tuning vectors is high (Fig. 4.9A). Using the model coniguration m1

that comprises the additional AL plasticity, the model traces more closely resemble those of the

observed data (Fig. 4.9B, D).

The quantitative measure of model performance that we used (see section 4.2.2) can be mis-

leading in some cases, as evident from the learning paradigm studied in (Fernandez et al., 2009).

It involves the presentation of two odorants in diferent combinations of concentration ratios.

Further more, the CS-duration was varied across some of the experimental groups. Individual

data was not at hand and, consequently, we could not control for spontaneous responders that

were part of some groups. Interestingly, in this study all bees received the same pseudorandom-

ized sequence of rewarded and unrewarded stimuli. Here, we present the behavioral data and

model results for two exemplary groups (Fig. 4.9E-H).

In the irst example from this study, the ratio of odorant concentrations was 10:0, i.e. the

two used odorants did not appear as a mixture. Within each trial the CS was presented for

4 s with an overlap of 1 s between CS and US presentation (Fig. 4.9F, H). About 15% of

the bees spontaneously responded in the irst trial. The high level of generalization towards

the unrewarded odor suggests a high perceptual similarity between the used odors. It reaches

an even higher level in subsequent trials. For the rewarded odor the response level saturates

after about four presentations (trial 7), due to the rather low odor concentration used (approx.

0.003 %v/v). In both conigurations, the model response to the CS+ also saturates after trial

7, although at a slightly higher level. The efect of odor decorrelation through plasticity in the

AL (m1) is visible in the last two unrewarded trials (Fig. 4.9H).

In the second example, bees had to learn to distinguish between odorants that were mixed in

a concentration ratio of 9:1, with one of the two possible combinations of concentration levels

being assign to CS+ and the other one to CS- (Fig. 4.9E, G). In addition, odors were only

presented for 500 ms with a gap of 500 ms between CS-ofset and US-onset. At the end of this

rather demanding task, a low level of diferentiation appears in the behavioral data. Focusing on

the rewarded odor, the model prediction of m0 (no AL-plasticity) does not reach the same levels

of p(CR) but closely follows the general shape of the behavioral data. For the unrewarded odor

the diference in response levels is larger but, more importantly, model responses stay above

those of the rewarded pattern. This shows that the model is not able to separate both stimuli

from one another. In the case of m1 (distributed plasticity) the general shape of the responses



Chapter 4 Page 54

A B R

1 10

0

1

p
(C

R
)

N = 13

Yamagata, unpublished - m0C D

A+, data

A+, model

B, data

B, model

1 6 12

0

1

p
(C

R
)

N = 87

Szyszka et al. 2011 - m0A B

1 6 12

0

1 N = 87

Szyszka et al. 2011 - m1

1 10

0

1 N = 13

Yamagata, unpublished - m1

A+, data

A+, model

B, data

B, model

1 9 18

0

1 N = 30

AB+, data AB+, modelAB, data AB, model

0

1

p
(C

R
)

N = 30

1 9 18
Trials

1 6 12

0

1

p
(C

R
)

N = 19

B+, data

B+, model

A, data

A, model

Trials

1 6 12

0

1 N = 19
E F

G H

Fernandez et al. 2009 - m0 Fernandez et al. 2009 - m1

Fernandez et al. 2009 - m0 Fernandez et al. 2009 - m1

Figure 4.9: Observed and simulated dynamics of CR probabilities in selected protocols
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and m1 (B, D, F, H). Stimulus onsets and durations in each trial are illustrated by colored
pictograms.
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is similar to m0, but after trial 12 the response levels for the rewarded odor stay above those

of the unrewarded odor. Although the diference in response levels at the end of the experi-

ment is not quite as strong as in the behavioral data, the qualitative outcome is the same. This

qualitative diference in model performance is not expressed in the quantitative measure we used.

Plasticity in the antennal lobe during diferential conditioning

Figure 4.10 illustrates details of the AL network during the diferential learning paradigm shown

in igure 4.9A,B. The modeled mechanism of AL plasticity involves a tuning of the weight

matrix W lLN that modulates the uPN activity pattern (section 4.2.1). Briely, for rewarded

patterns excitatory connections are strengthened while inhibitory connections are depressed.

Conversely, unrewarded activity in the AL leads to a decrease in excitatory weights and an

increase in inhibitory weights. For the given protocol these opposing processes are shown in

Figs. 4.10A and B. Over time, the weight changes become smaller and the synaptic weights

level out at higher absolute values for both positive and negative weights. The efect of this

tuning is shown in Figs. 4.10C and D. A general increase in inhibition underlies the reduction

in the average uPN activity pattern for both odors (Fig. 4.10C). However, the pattern of

the rewarded odor A+ is only slightly suppressed. In comparison to this the pattern of the

unrewarded odor receives much more inhibition. Efectively, the initially rather high correlation

between both odor patterns (CV ≈ 0.6) is clearly reduced over time (CV ≈ 0.4).

4.3.2 Results of non-elemental learning paradigms

Learning paradigms are classiied as non-elemental when stimuli ambiguously appear in both

rewarded and non-rewarded training trials (Giurfa, 2003). Though complexity of training pro-

tocols can vary substantially, the number of training trials is typically larger than in elemental

learning paradigms. In most of the paradigms pseudorandomized trials sequences were used

that difered between subgroups of bees from the same conditioning protocol. In these cases

we could not infer the exact sequences that were used on the basis of the available data. To

compensate for this, we calculated the average p(CR) of the model across multiple simulations

of pseudorandomized trial sequences.

A clear diference in model performance between m0 and m1 is visible in this collection of

learning paradigms (Table 4.2). While m0 could not solve most of the more diicult tasks

of negative and positive patterning, the qualitative outcome of the observed behavior was

reproduced by m1 in all cases. Still, the RMSE between model prediction and behavioral data

reached high values for m1 in some non-elemental learning paradigms (Komischke et al., 2003;

Deisig et al., 2003). This can be mainly attributed to a combination of the large number of

trials and the degree of odor decorrelation in negative patterning that resulted at times in a

faster and stronger separation of rewarded and unrewarded stimuli in the model prediction.
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Figure 4.10: Efects of plasticity in the AL network during diferential conditioning. A:
The strength of inhibitory weights (absolute value) is decreased after rewarded trials (uneven
numbered trials) and increased after unrewarded trials (even numbered trials). On average, in-
hibitory weights are increased, i.e. acquire higher negative values. B: The strength of excitatory
weights is increased after rewarded trials and decreased after unrewarded trials. C: Rewarded
odorant A is only slightly suppressed by the increased inhibition in the AL, while the average
uPN activity towards unrewarded odorant B is drastically reduced. D: The correlation between
uPN activity patterns is reduced through plasticity in the AL during diferential learning.
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Positive patterning

We selected a typical example for positive patterning that was studied in (Deisig et al., 2001).

In this learning protocol, the mixture of two odorants was paired with a US (AB+) while pre-

sentations of the individual components were not (A-, B-). Each of the three stimuli appeared

equally often in a sequence of 24 pseudorandomized trials (Fig. 4.11A,B). Beginning with the

second presentation of the rewarded odor, there is a small but clear separation in honeybee re-

sponse levels between the rewarded pattern and the unrewarded components. This separation

gradually increases during subsequent trials, caused by a gradual decrease in response probabili-

ties for the unrewarded stimuli, while the response levels for the CS+ remain around 0.5. Using

only MB plasticity, model coniguration m0 cannot disentangle the unrewarded stimuli from

the rewarded one. In the end, it responds to the single odorants as strongly as to the pattern,

far away from the behavioral data. In contrast to this, with AL-plasticity switched on (m1) the

model reaches nearly the same levels of response for all of the stimuli, though it takes slightly

longer to suppress CS-. Qualitatively, this result is exemplary for other learning paradigms of

positive patterning.

Negative patterning

The example of negative patterning also involved two odorants. These were rewarded in trials

where only one of them was presented. Thus, the odor pattern was not paired with a reward.

In a pseudorandomized trial sequence, unrewarded stimuli appeared twice as often as rewarded

(Fig. 4.11C, D). After the irst block of six trials, an obvious separation between rewarded

and unrewarded stimuli exists in the behavioral responses. For model coniguration m0, the

MB plasticity mechanism is suicient to separate rewarded from unrewarded stimuli, but this

separation is less distinct (Fig. 4.11C). With the additional odor decorrelation in the AL, the

suppression of the unrewarded odorant pattern follows a similar path as in the behavioral data,

but the response levels for the rewarded odorants even surpass those observed in the bees. In

general, this outcome is paralleled by other learning paradigms of negative patterning.

Biconditional discrimination

Figures 4.11E and F contain an example of biconditional discrimination studied in (Chandra

and Smith, 1998). Four odorants were presented in four diferent pairwise combinations. Only

two of these combinations were paired with sugar as a positive reinforcement. Speciic to this

study, the experimenters applied a salt solution to the antenna as punishment in trials that

were not to be rewarded, a mechanism that we did not explicitly integrate into the network

model. Over the course of 24 trials, each odorant appeared as often in rewarded as in punished

stimuli. Bees learned to distinguish between rewarded and punished stimuli and acquired a

strong positive association towards both rewarded pairs of odorants. A clear separation of

rewarded and unrewarded stimuli is visible in the results of model conigurationm0, but response

levels for unrewarded patterns were far higher than observed in bees (Fig. 4.11E). In combination
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with AL plasticity though, response levels of m1 quickly dropped in unrewarded trials to values

even lower than those observed in bees.
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Figure 4.11: Observed and simulated dynamics of CR probabilities in selected protocols
of non-elemental conditioning paradigms. Black curves show the experimentally observed
CR probabilities. Red curves show the simulated CR probabilities of model coniguration m0

(A, C, and E) and m1 (B, D, and F). Stimulus onsets and durations in each trial are illustrated
by colored pictograms.
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4.4 Discussion

We investigated olfactory processing and learning characterized by data from a range of classical

conditioning of the proboscis extension response (PER) in honeybees with a coherent compu-

tational network model. Individual processing stages of our model were designed to capture

the essential details of the physiological properties of the bee brain. We integrated a reward

dependent plasticity mechanism as inspired by physiological indings (Sinakevitch et al., 2013)

that entails the modulation of inhibitory feedback in the mushroom body (MB) calyx. This

hypothesis has been formulated before (Szyszka et al., 2008; Haehnel and Menzel, 2010) but

has so far not been implemented within a computational model. We generated predictions on

honeybee behavior for a large collection of both elemental and non-elemental learning paradigms

and compared these with the original data to evaluate our model.

We found that this form of plasticity in the MB (model coniguration m0), if calibrated on the

basis of learning dynamics observed in absolute conditioning and extinction trials, is compatible

with a large number of elemental learning paradigms but fails to efectively separate odorants in

diferential an more challenging non-elemental conditioning protocols. However, in combination

with a plasticity mechanism that supports decorrelation of odorants in the antennal lobe (AL,

coniguration m1) the model successfully reproduces the qualitative outcome in all elemental

and non-elemental conditioning paradigms.

This result does not mean that an efective decorrelation mechanism could not also be computed

by the proposed MB circuitry: Increasing the "unlearning" rate for unrewarded patterns α+
wPCT

in an arbitrarily strong suppression. As a consequence though, the learning rate α−
wPCT

that

supports disinhibition of rewarded patterns needs to be increased to balance both mechanisms.

Our result does rather support the hypothesis of a distributed plasticity across AL and MB

without ruling out theories of locally restrained foci of plasticity, which needs to be investigated

further.

In regard to our quantitative measure of model performance it should be noted that our ap-

proach sufers from the high degree of variability across diferent PER conditioning experiments

(Matsumoto et al., 2012; Frost et al., 2012). More so, between identically treated groups of the

same study we estimated the average variability to be similar to the average variability in pre-

diction error during absolute conditioning, even when excluding known sources of heterogeneity

such as non-learners and spontaneous responders (Pamir et al., 2011). Considering that we

were not able to correct for these in many of the non-elemental learning paradigms, an increased

prediction error is to be expected here. The existing diferences between model prediction and

behavior could be signiicantly reduced by increasing the number of degrees of freedom in the

model for individual studies or even individual experimental groups. But considering the com-

plexity of the model, such an approach could have likely resulted in some degree of overitting of

the behavioral data and would have hindered the assessment of the general validity of the model.



Chapter 4 Page 60

The process of inding the best general model of associative learning during PER conditioning

in honeybees naturally requires a complete set of behavioral data. Several important training

conditions are missing in the current study, such as blocking (Smith and Cobey, 1994; Ger-

ber and Ullrich, 1999), reversal learning (Hadar and Menzel, 2010), backward conditioning

(Hellstern et al., 1998), conditioned inhibition, or second-order conditioning (Takeda, 1961).

Although we are continuously trying to enlarge our collection of behavioral data, for many of

the older studies data acquisition of learning dynamics often proofs to be impossible, especially

with respect to individual data.

Given the collection of learning paradigms at hand, many of these include training and test

trials covering a wide range of time scales, which we did not give credit to in our model. We

conigured our model to represent learning dynamics that appear within a period of up to a

few hours. Thus, plasticity in our model is primarily scaled to represent learning in the range

of mid-term memory. Behavioral performance is, though, controlled by multiple processes of

memory formation and decay (Hammer and Menzel, 1995). Therefore, the predictive power

of the model will drop for paradigms that resolve diferent forms of memory in the behavioral

data. An example for this phenomenon might have occurred in the study on latent inhibition

from (Chandra et al., 2010). As described in the results, model predictions closely matched be-

havioral data for a number of up to 20 unrewarded pre-trials. Groups of bees that received even

more pre-trials (30, 40, 50) showed a signiicantly decreased acquisition speed and possibly a

reduced asymptote in CR probabilities. This efect was not captured by our model. Considering

the corresponding durations of three and more hours, this divergence from model predictions

might indicate the existence of a type of long-term memory that governed the observed behav-

ioral plasticity in part.

Assuming the existence of the proposed mid-term memory trace in inhibitory synapses of the

MB calyx, our model makes predictions about the activity of the involved neuron types during

appetitive learning that might be tested experimentally. As presented in the results (Fig. 4.8),

the model predicts an overall increase in population sparseness across KCs. This study revealed

two mechanisms underlying this process: The activity of a speciic subset of KCs is drastically

increased. At the same time, other KCs that were originally responsive towards the rewarded

odor become silent. Thus, a high appetitive value is not necessarily encoded by high PCT

activity, but rather entails a strongly increased activity of a subset of KCs.

A key assumption of the proposed plasticity mechanism for the decoding of the KC pattern at

the MB peduncle - the output region of the MB - is the non-linear integration by individual

dendritic branches and the subsequent integration of the iltered KC pattern that is provided

by the MB extrinsic neuron (EN). Thus, the EN provides a much more selective ilter for high

KC activities than a linear summation would (Polsky et al., 2004). Such a nonlinear dendritic
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transformation at the level of individual synapses could be provided by the single Pe1 neuron

that exists in each hemisphere of the bee brain and arborizes throughout all layers of the MB

peduncle (Rybak and Menzel, 1998). Furthermore, the Pe1 receives input from PCT neurons

and has repeatedly been found to decrease its activity on account of associative learning on

timescales compatible with the debated processes (Okada et al., 2007; Hussaini and Menzel,

2013). This form of reward dependent plasticity in the Pe1 could result from a varying ra-

tio between excitatory KC activity and inhibitory PCT activity as observed during absolute

conditioning in our model (Fig. 4.8B, C). However, considering the lack of detailed knowl-

edge about connectivity in the lateral horn (LH) and in the name of minimizing the number of

unknown parameters we omitted the explicit integration of the Pe1 into our model at this stage.

The level of detail in terms of both network structure and temporal resolution could be readily

increased. However, the model already allows to investigate theories of neural coding during

compound processing or to estimate the potential of novel conditioning protocols. Apart from

that, it ofers multiple options to improve its current predictive power. To name one, the

dynamics of mixture separation in m1 during non-elemental paradigms could be adjusted to the

learning dynamics observed in behavior. This would entail handling the most intriguing aspect

of the model: The interdependency of the two distributed plasticity mechanisms remains to be

analyzed.
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4.5 Supplemental material
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Figure 4.12: Parameter search for ANT parameters. Both parameters control the distribution
of binding ainities across all 160 olfactory receptors. ORk1 deines the upper boundary of binding
ainities. ORexp controls the random placement of binding ainities between lower and upper boundary
(ORk0 and ORk1). A value near 1 results in uniformly distributed binding ainities. A value lower 1
reduces the probability of low binding ainities, i.e. high receptor sensitivities.
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Figure 4.13: Binding ainities of olfactory receptors (OR) and resulting concentration dependence of
olfactory receptor neurons (ORN). A: Blue line marks the average Hill coeicient of receptor dynamics reported
in (Sachse and Galizia, 2003). Model receptors were randomly placed along this line (red dots). B: Concentration
dependent activations of all 160 model ORNs resulting from the placement ORs shown in A. C: Comparison
between concentration dependencies of ORNs as reported in (Sachse and Galizia, 2003) (black curves) and as
resulting from a constant Hill coeicient (blue curves). D: Concentration dependent ratio of active ORNs in
the model (red dots) and as reported in (Sachse and Galizia, 2003) (black dots).
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Figure 4.14: Parameter search for AL parameters. After ixing all other parameters, gain control
through gLNs was itted on the basis of target values for the concentration dependent ratio of uPNs.
This included the synaptic weight wgLN,uPN (identical for all synapses) and the shape of the lLN
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Figure 4.15: Transfer function and concentration dependent activation of uPNs. Left: Trans-
fer function of uPNs was deined with respect to PN data from drosophila. Right: Concentration
dependence of the ratio of active uPNs. Gray lines represent standard deviation of bee data.
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Figure 4.16: Parameter search in the MB. First, PCTg was heuristically deined. Subsequently,
the remaining four parameters that shape the transfer function of KCs (KCc. KCg, KCt) and PCT
(PCTg) were itted through a parameters search. Target values were heuristically deined ratios of active
KCs (4-14%) and the average PCT activity (0-0.5) at diferent concentrations (1e-7 - 1e0 %v/v).
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Figure 4.17: Concentration dependence of KCs and PCTs. A and B: PCT activation and ratio
of active KCs closely follow the predeined heuristic targets. C: Average KC activity monotonically
rises with higher concentrations. D: For low concentrations, the highest activity among KCs is roughly
proportional to odor concentration. Inhibitory gain control through PCT activity reduces the maximal
KC activity for high odor concentrations.
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Figure 4.18: Fitting LH parameters. Five parameters were itted in the LH network based on data
from (Wright et al., 2009). Prior to this, target were deined as shown in D. A: Input to EN was
calculated for absolute conditioning protocols at three diferent levels of CS concentration (salmon,
blue, olive bars). Fitted transfer function of EN (red curve). B: Concentration dependent mPN input
(salmon, blue, olive bars). Fitted mPN transfer function (red curve). C: DN input for itted transfer
function of EN and mPN (salmon, blue, olive bars). Fitted DN transfer function (red curve). D: Bee
data for absolute conditioning at three levels of concentration (dashed lines). Derived target values
for concentration dependent DN activity that equals p(CR) of the model (dots). Best it based on
parameter search for EN transfer function (ENc, ENg), LH gain control through mPNs (wmPN ,
mPNg), and DN transfer function (DNg).



Chapter 4 Page 66

Table 4.3: List of all parameters with description, value and further comments.

Parameter Description Value [unit] Comments

ODOR-REWARD INTEGRATION

∆t
temporal resolution of
reward integration

0.1 [s]
half of the lowest time constant
in conditioning protocols (200 ms)

CS onset start of odor stimulation 0 [s] deined as t=0s
CS length duration of odor stimulation 0.2 - 6 [s] deined in conditioning protocol
US onset start of sucrose reward -2 - 14 [s] deined in conditioning protocol

US length duration of sucrose reward 1-10 [s]
deined in conditioning protocol,
parameter not considered in model

US
concentration

molarity of sucrose solution
approx.
1-2 [M]

deined in conditioning protocol,
parameter not considered in model

αE
rate of increase of eligibility
trace

0.09 []
itted to dependence on
CS duration [Wright2009c]

τE
time constant of decay of
eligibility trace

4.3 [s]
itted to trace conditioning
[Szyzska2011]

ANTENNA

NOR number of receptor types 160
deined as the number of receptor
types in the honeybee (∼163)

ORm
Hill coeicient of tuning
curves

0.26
itted according to average of
coeicients reported in
[Sachse2003]

k0
decimal logarithm of most
sensitive receptor

-5
estimated based on most sensitive
value reported in [Sachse2003]

k1
decimal logarithm of least
sensitive receptor

12.4
itted to concentration dependence
of compound signal reported in
[Sachse2003]

ORexp

exponent determining
nonlinear distribution of
receptor sensitivities

0.5
itted to concentration dependence
of compound signal reported in
[Sachse2003]

sXY
tuning similarity between
odor compounds X and Y

0-1
adjusted for some non-absolute
conditioning protocols

ANTENNAL LOBE

uPNsr spontaneous rate of uPNs 0.025 heuristic value

uPNg
broadness of uPN
transfer function

9
itted to transfer function of
drosophila PNs [Bhandavat2007]

mPNg curvature of mPN transfer function 0.19

itted to concentration
dependent acquisition
[Wright2009c]
(adjusted values)

plLN,uPN mean connection probability
between lLNs and uPNs

0.25 heuristic value

rex
ratio of excitatory connections
between lLNs and uPNs

0.15 heuristic value

wlLN
in

determines initial excitatory
weights between lLNs and uPNs

0.03 heuristic value

wlLN
ex

determines initial inhibitory
weights between lLNs and uPNs

0.075 heuristic value

wlLN
in,max

maximum of inhibitory weights
between lLNs and uPNs

0.2
itted to diferential
conditioning data [Pamir2011]

wlLN
ex,max

maximum of excitatory weights
between lLNs and uPNs

0.3
itted to diferential
conditioning data [Pamir2011]

αwlLN

learning rate for weight
changes between lLNs and uPNs

0.25
itted to diferential
conditioning data [Pamir2011]

gLNc center of gLN transfer function 74
itted to concentration
dependence of uPNs
[Sachse2003] (adjusted values)

gLNg
broadness of gLN
transfer function

0.06
itted to concentration
dependence of uPNs
[Sachse2003] (adjusted values)

wgLN initial weights between
gLNs and uPNs

0.55
itted to concentration
dependence of uPNs
[Sachse2003] (adjusted values)
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Table S1 conditued

Parameter Description Value [unit] Comments
MUSHROOM BODY

wuPN weights between uPNs and KCs 0.5 heuristic value

NuPN,KC
mean number of uPNs
connected to each KC

10
downscaled number of
estimated uPNs per KC ( 50)

NKC number of KCs 12000
downscaled number of olfactory
KCs

KCc
center of KC transfer
function

1.6
itted to heuristically deined
KC concentration dependence

KCg
broadness of KC transfer
function

2.1
itted to heuristically deined
KC concentration dependence

KCt threshold of KCs 0.8
itted to heuristically deined
KC concentration dependence

PCTc
center of PCT transfer
function

360
heuristically itted (10% active
KCs with a mean activity of 0.3)

PCTg
broadness of PCT transfer
function

0.015
itted to heuristically deined
KC concentration dependence

wPCT
init

initial weight of connections
between PCT and wuPN

0.5 arbitrary value

wPCT
max

maximal weight of connections
between PCT and wuPN

0.6
itted to latent inhibition
[Chandra2010]

wPCT
min

minimal weight of connections
between PCT and wuPN

0.22
itted to fast acquisition during
absolute conditioning [Pamir2011]

α+

wPCT

learning rate of weight
increase in wPCT

0.75
itted to extinction dynamics
[Stollhof2005]

α−

wPCT

learning rate of weight
decrease in wPCT

3.25
itted to fast acquisition during
absolute conditioning [Pamir2011]

LATERAL PROTOCEREBRAL LOBE AND LATERAL HORN

wmPN weight between mPN
and DN

0.29

itted to concentration
dependence during absolute
conditioning [Wright2009c]
(adjusted values)

dENc
center of dendritic transfer
function of EN

0.5 heuristic value

dENg
broadness of dendritic
transfer function of EN

10 heuristic value

ENc
center of EN transfer
function

61

itted to concentration
dependence during absolute
conditioning [Wright2009c]
(ajdusted values)

ENg
broadness of EN transfer
function

0.01

itted to concentration
dependence during absolute
conditioning [Wright2009c]
(adjusted values)

DNg
broadness of DN
transfer function

6.4

itted to concentration
dependence during absolute
conditioning [Wright2009c]
(adjusted values)
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Figures Reference
ITI
[min]

CS
CS conc.
[%v/v]

CS dur.
[s]

US conc.
US onset

[s]
US dur.

[s]

4.7A-F Wright et al. 2009 5
1-hexanol, 1-octanol,
2-octanone

high: ∼0.3
medium: ∼0.003
low: ∼0.00003

0.2, 0.5,
0.8, 1

1.5 M 1 1

4.7G-I Chandra et al. 2010 5
geraniol, hexanal,
2-octanone, 1-octanal

1.0 4 1.5 M 3 3

4.7J-L Szyszka et al. 2011 10

1-nonanol, 1-octanol,
1-hexanol, 1-nonanone,
2-heptanone, octanal,
citral

0.01 0.5 1.0 M 1-15 3

4.9A, B Pamir et al. 2001 7
1-octanol,
1-hexanal

1.0 5 30% 3 4

4.9C, D
Yamagata, unpublished
Figure 4.9C, D

1.5
1-hexanol, 2-octanol,
octanal, 2-octanone

0.01 3 30% 2 3

4.9E-H Fernandez et al, 2009 6
1-hexanol,
2-octanone

∼0.003
(0:10, 9:1)

2 2 M 1 4

4.11A-D Deisig et al. 2001 8
linalool, 1-hexanol,
limonene, 2-octanol

1.0 6 40% 3 3

4.11E, F Chandra & Smith 1998 n.a.
geraniol, hexanal,
1-hexanol, 2-octanone

1.0 4 1.5 M 3 2

Table 4.4: Details of the classical conditioning protocols that were presented in the results.
Odor concentration were converted to %v/v when given in M.
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General discussion

Chapters 2 - 4 of this thesis are presented in chronological order. While chapter 2 (Helgadot-

tir et al., 2013) was published more than a year ago, chapters 3 and 4 present recent work.

This order is also relected by the content of the chapters. The network model that controls

the robot presented in chapter 2 is an early version of the one presented in chapter 4, and

was originally used for the investigation of behavioral plasticity observed in honeybees during

classical conditioning experiments (Haenicke et al., 2013). The data analysis of chapter 3, in

combination with newly available physiological evidence (Sinakevitch et al., 2013), inspired the

implementation of the network structure presented in chapter 4. Thus, a new hypothesis was

formulated on the basis of the experimental data (chapter 3), which was then implemented

as a computational model, and subsequently tested (chapter 4). This, in turn, provided new

insights that can be explored by future experiments. Although the robotic implementation

could not provide immediate insights into insect olfaction at the stage of research presented

in this thesis, such an approach can be advantageous with respect to the complex temporal

properties of odor plumes that come with great computational costs in a simulated environ-

ment. This aspect, though, prompts an important question: How can the olfactory system

of insects, showing intricate temporal dynamics in odor responses across all involved neuropils,

be represented in an informative way by an abstract computational model using static patterns?

The computation model presented in chapter 4 was, by necessity, designed on the basis of

many assumptions. One of the most drastic ones is the assumption to capture most of the

relevant computations in the network while ignoring almost all temporal details concerning the

ongoing neural activity. During a single trial, the only temporal relation considered in the model

is the relative timing between the conditioned stimulus (CS) and the unconditioned stimulus

(US), resolved with a temporal precision of 100 ms. This time step was chosen in relation to

the smallest temporal diference between CS-onset and US-onset that was used in the studied

conditioning experiments (200 ms). Therefore, the only signal in the network that is computed

in a time-resolved way is the synaptic tag ΓOA. Moreover, this tag is only relevant for adjusting

the synaptic weights in AL and MB during the ITI. All neural activities in the network during

a trial are expressed as a pattern of static rates, which seems like a drastic simpliication that
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cannot result in the expression of the computational principles at work in the animal. How-

ever, there are some arguments that support this level of abstraction in the context of this study.

The central coding element of the model that was to be investigated is the recurrent net-

work structure in the mushroom body (MB). In short, the recurrent inhibitory feedback neuron

(PCT) provides both a global signal for gain control as well as bouton-speciic modulations for

memorizing odor-reward associations, resulting in the expression of a value code in the form

of the Kenyon cell (KC) pattern. Here, the assumption is, that default KC responses are low

and correspond to a background activity that provides an essential level of excitation in the

PCT. Without this minimal inhibitory activity in the MB calyx, KC response patterns towards

rewarded odors could not be disinhibited. Rewarded patterns, on the other hand, are assumed

to elicit strong responses in a subset of the responsive KCs, at an increased level of PCT activity.

This subset of highly active KCs is subsequently detected through the computational properties

in the dendritic tree of the MB-extrinsic neuron (EN). Here, the nonlinear properties of individ-

ual branches of the EN dendrite result in a transmission of signals from highly active KCs, while

suppressing those of "default" KCs. Therefore, the assumption is not that temporal details in

the bee brain are not important and can be neglected. On the contrary, small diferences in the

number of successive spikes within a small time window in a KC are predicted to be a crucial

component of the system, and it is assumed that they can be expressed, in this context, in

form of a static pattern. In experimental studies, this model prediction has not been conirmed

directly, but it its to the temporal sparseness of KC activity that has been observed in diferent

insect species, including honey bees (Perez-Orive et al., 2002; Szyszka et al., 2005; Ito et al.,

2008). For KCs in manduca, it was "found that odor presentations that support associative

conditioning elicited only one or two spikes on the odor’s onset (and sometimes ofset) in each

of a small fraction of Kenyon cells" (Ito et al., 2008). According to the model, in such an

extreme case of temporal sparseness, it might make a crucial diference whether a KC spikes

only ones or twice.

Even if the MB network might be appropriately represented in this way, the question remains

whether something is lost computationally, if the neural activity of the antennal lobe (AL) is

reduced to a single pattern in each trial. In contrast to KC activity, it has been described that

(in locust) "representations are dense, dynamic, and seemingly redundant in the antennal lobe"

(Perez-Orive et al., 2002). In addition, diverse dynamics entailing oscillatory synchronization

seem to be a common feature across phyla. However, most experimental procedures involve

static step stimuli, for which it has been demonstrated repeatedly that PNs show phasic-tonic

odor responses with latencies below 200 ms (see chapter 3), LNs were reported to respond even

faster (Krofczik et al., 2008). This stereotypic shape of the applied olfactory stimuli is shared

among all learning paradigms considered here. Therefore, in the model, odor evoked activities

of PNs and LNs are also represented by a static rate pattern, assuming that the initial response

in PNs deines the MB input pattern that elicits KC spikes. Exploring the temporal details of
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olfactory processing seems only reasonable in the context of stimuli that show detailed temporal

dynamics (Gefen et al., 2009).

Apart from this, many physiological details of the bee brain are simpliied in the model. One of

these is the separation of projections from AL to MB into several antennal lobe tracts (ALT).

The two most prominent of these are the lateral and the medial ALT. The corresponding

uniglomerular projection neurons (uPN) that connect to the MB via these pathways, derive

from two distinct groups of AL glomeruli. These have been suggested to represent paral-

lel olfactory pathways with distinct functional properties (Schmuker et al., 2011; Brill et al.,

2013). However, the reported diferences between both tracts were of a rather quantitative

than qualitative kind. While it is feasible to integrate such a dichotomy into the AL network to

provide diferent degrees of concentration and odorant discrimination in parallel, the number of

unknown parameters would increase and would need to be determined heuristically until more

knowledge about the concrete connectivity in the AL is available. In addition, based on the

randomly generated tuning properties of the given 160 uPNs, two virtual subgroups could be

identiied and selected to represent these two pathways. Therefore, uPNs in the model are

represented in form of a single neuron group.

Related to this, uPNs of both tracts send axons to both the MB and the lateral horn (LH).

It has been suggested that the projections to the LH are involved in the control of innate

odor-driven behavioral patterns. Under the assumption that, in harnessed honeybees, the ex-

tension of the proboscis during conditioning experiments follows internal processes that are

largely independent of the innate behavioral repertoire, this detail in connectivity was omitted.

Apart from uPNs, the projection pattern of the VUM neurons (cf. section 4.2.1) does also

include the LH. Physiological evidence suggests that a few ibers of the medio-lateral ALT, i.e.

projections of multiglomerular PNs (mPN), receive octopaminergic input (Sinakevitch et al.,

2013). Therefore, it is likely that reward dependent plasticity can be found in the LH. Lacking

further knowledge about details in connectivity and function of the LH and its downstream

connections, though, the LH network that is proposed in the model includes a gain control

mechanism mediated through mPNs that is not subject to learning.

So, which neuropils of the honeybee brain govern associative and non-associative learning? In

this thesis, it is suggested that the microglomerular circuitry in the mushroom body calyx plays

a key role in a process of distributed plasticity. How diferent loci of plasticity work together,

and how this question might be addressed both experimentally and theoretically, remains to

be answered in the future. The computational framework developed in this thesis provides a

powerful tool to help in this process.
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