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Abstract

Standards enable effective collaboration among individuals, organizations, and systems of
all sorts in our increasingly digitized society. Self-reinforcement in standard diffusion pro-
cesses creates installed base advantages for adopters, credible standards, and fosters a vari-
ety of complementary products and services. Self-reinforcement, however, breeds path de-
pendence and lock-in. Newly introduced, more efficient standards are often disadvantaged

because they have smaller networks.

The examples of global airline distribution and organizational IT infrastructures suggest
that work focusing primarily on the network size — in the tradition of Arthur’s path de-
pendence model — has difficulties explaining how inertia actually builds up and how im-
portant standardization patterns such as islands of shared technologies can arise. As the
notion of path dependence has come to impact research and managerial thinking, I believe
it is important to relax restrictive boundary conditions of its conceptual core. I contend
that path dependence theory must account for a broader range of interaction patterns and

growth logics. I view path dependence as a problem of standard diffusion in networks.

Consistent with this view, I first suggest a model of standard diffusion in growing net-
works. The model reproduces Arthur’s path dependence model and a Polya Process as
special cases and allows testing of the effect of different growth parameters on path build-
ing. Agent-based simulations show that network effects — formed as a function of a grow-
ing network size — and spillover effects — contingent on the degree to which an agent’s
partners adopt — are usefully distinguished in growing networks as having different, non-
monotonic effects on diversity. Network effects foster one standard’s dominance due to
increasing network influences. Spillover effects, in contrast, limit influences from growing
network sizes: segregated regimes can come to settle as new agents are less dependent on
the total number of adopters. A case study of a recycling company demonstrates the mod-
el’s usefulness for understanding the evolution of organizational IT landscapes. In addition,
a method is introduced to IT managers and architects that identifies critical I'T systems
with respect to their architectural embeddedness and links a system’s network position

with continuance inertia.

Based on problems of path creation in global airline distribution IT, I then suggest a se-
cond model conceptualizing the diffusion of a new standard as a contagious process that
spills over from one organization to another. I operationalize codeshare linkages among
airlines as a network and perform a network analysis. External shocks potentially trigger
domino effects that cascade through the network. I test scenarios with respect to varying
adoption thresholds that enable me to examine when and where a new standard diffuses to
a nontrivial fraction of agents. I introduce a group detection algorithm — switching maxi-
mum cliques of players — to demonstrate the effectiveness of targeted compared to random
network interventions. A two-step procedure for path breaking is thus suggested that iden-
tifies a set of key players and switches them collectively.

Viewed together, these results demonstrate the value of a network perspective to under-
stand better path dependencies in complex (inter-)organizational IT infrastructures.



Zusammenfassung

Standards unterstiitzen Individuen, Organisationen und Systeme verschiedener Auspréa-
gung in einer zunehmend digitalen Gesellschaft effektiv zusammenzuarbeiten. Durch
selbstverstarkende Dynamiken profitieren Nutzer verbreiteter Standards von Vorteilen:
Einer grofleren ,Installed Base“, der Zuverldssigkeit eines etablierten Standards und der
Verfugharkeit komplementdrer Produkte und Services. Selbstverstarkende Dynamiken in
Standarddiffusionsprozessen gehen jedoch mit Pfadabhéngigkeit und Lock-In einher. Neu
eingefiihrte, effiziente Standards sind haufig benachteiligt, da diese auf kleinere Netzwerke

zuriickgreifen kénnen.

Anhand der Beispiele von IT-Infrastrukturen im globalen Airline-Vertrieb und organisatio-
nalen IT-Architekturen wird deutlich, dass Studien die sich — wie das Pfadabhéngigkeits-
modell von Brian Arthur — primér auf die Netzwerkgrofle als Erklarung fiir Pfadbildungs-
prozesse beziehen, unzureichend sind. Haufig auftretende Phanomene wie Verfestigungs-
tendenzen in Teilen eines Systems werden ausgeblendet. Aufgrund der zunehmenden Be-
deutung des Pfadabhéngigkeitskonzepts in Forschung und Management ist es wichtig,
grundlegende Annahmen bestehender Modelle einer komplexeren Realitdt anzupassen und
Freiheitsgrade in Bezug auf Interaktionsmuster und Wachstumslogiken zuzulassen. Diese
Arbeit geht davon aus, dass Pfadabhingigkeit als Problem der Standarddiffusion in Netz-

werken verstanden werden kann.

Ausgehend davon wird zunéchst ein Modell der Standarddiffusion in wachsenden Netzwer-
ken entwickelt. Das Modell reproduziert Ergebnisse des Modells von Arthur und einer Art
von Polya-Prozessen als Spezialfille und ermdéglichst es den Einfluss verschiedener Wachs-
tumsparameter auf Pfadbildungsprozesse zu untersuchen. Mittels einer agentenbasierten
Simulation wird gezeigt, dass ,Spillover“-Effekte — externe FEinfliisse abhingig von dem
Interaktionsgrad zwischen Agenten — von Netzwerkeffekten — Einfliisse abhéngig von der
Verbreitung des Standards im Gesamtnetzwerk — zu unterscheiden sind. Beide Einflussar-
ten haben in wachsenden Netzwerken unterschiedliche Konsequenzen auf die Diversitat im
Netzwerk. Netzwerkeffekte begiinstigen die Dominanz einer Losung, da externe Einfliisse
mit der NetzwerkgroBe wachsen. Im Gegensatz dazu begrenzen Spillover-Effekte den Ein-
fluss wachsender Netzwerke: In einzelnen Teilen des Netzwerks konnen sich lokale Stan-
dards herausbilden und verfestigen. Anhand des Falls eines Recycling-Unternehmens wird
der Nutzen des Modells demonstriert, um Wachstumsprozesse innerhalb von organisationa-
len IT-Landschaften zu verstehen. Auflerdem wird eine Methode vorgestellt, die IT-
Manager und Architekten unterstiitzt, kritische Systeme anhand ihrer architekturelle Ein-
bettung zu erkennen und mit dem zu erwartenden Grad der Tragheit in Verbindung zu

setzen.

Basierend auf Problemen einen neuen Airline-Distributions-Standard zu etablieren, wird
dann ein Modell von Standarddiffusion als Imitationsprozess zwischen miteinander inter-
agierenden Organisationen vorgeschlagen. In dem Netzwerk sind Airlines als Knoten und
Codeshare-Verbindungen als Kanten abgebildet. Eingriffe in das Netzwerk konnen Domi-
noeffekte auslsen, die sich innerhalb des Netzwerks ausbreiten. Weiterhin wird ein Algo-

rithmus einfiihrt, bei dem eine maximale Clique kollektiv wechselt. Diese Interventionsart

ii



wird mit ungezielten Eingriffen verglichen. Hieraus ergibt sich eine Zwei-Schritt-Prozedur

zum Pfadbruch: Die Identifikation einer Kerngruppe und deren kollektiver Wechsel.

Gesamthaft zeigen die erzielten Ergebnisse den Nutzen einer Netzwerkperspektive, um
Pfadabhingigkeiten in komplexen (inter-)organisationalen IT-Infrastrukturen besser zu

verstehen.
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Part I

The Problem of
IT Infrastructure Path Dependence



What can be said at all can be said clearly; and
whereof one cannot speak thereof one must be silent.

(Ludwig Wittgenstein)

Chapter 1

Introduction and Motivation

The “vicious” booking class' — a fifty years old technical standard in airline distribution —
persists since the early days of automation. Disk space was limited then and designers of
early airline reservation systems decided to restrict booking class implementation to one
digit. This was sufficient for a long time and enabled a period of successful growth. Facing
discontinuous change from low-cost competition with pure web distribution, airlines want,
however, to go beyond just providing the price and the booking class to their customer.
They want to sell individualized services, ancillaries and all kinds of extras, which they
cannot do with the sales systems in place today (Isler and D’Souza 2009; Polt 2011;
Westermann 2013). Network carriers in particular — operating a long-haul network on a

hub-structure — face significant inertia in displacing their booking class-based strategies.

This is one example from a class of problems of IT infrastructure path dependence. What
locks an organization or even an entire industry into a ‘wrong’ standard? The theoretical
answer is self-reinforcing mechanisms. Referring to early work on standardization, several
sources of self-reinforcement have been identified: large setup or fixed costs, learning ef-
fects, coordination effects, and adaptive expectations (Arthur 1988). The underlying theo-
retical notion is one of network effects. The concept was applied to a variety of situations
“in which the benefits of owning a product, or using a standard, or, in fact, taking any
action, increased with the number of people doing the same thing” (Liebowitz and
Margolis 2013:128). To explain path dependence, work on standardization has primarily
focused on the network size, the number of actors using the same standard (cf. Afuah
2013; Weitzel et al. 2006).

I build a conception of path dependence that draws on these earlier lines of research but
also departs from them in an important respect. While harnessing the notion of network
effects, I also draw on the concepts of “interaction patterns” and “growth” as developed in
works from network analysis to account for the path-dependent consequences that arise
when a system grows in nontrivial ways and becomes increasingly complex. I use the term
interaction patterns to refer to couplings among individual agents in a network that is not
fully meshed and to describe how actions transmit by these interaction patterns, as when
technological standards spill over from one organization to another. By growth, I refer to
processes in which new agents entering a network will not be fully connected to all other

agents, as when new programs in an I'T landscape form links only to important hubs.

' The term was used by a revenue management expert throughout an interview to emphasize the
booking class limitation to a discrete number of 26 alphabetical letters (refer to field data 0S8).
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I contend that a conceptualization of path dependence — or lock-in, its theoretical comple-
ment — must also take into account interaction patterns and growth processes. Beyond
airline distribution, also organizational IT infrastructures illustrate the need to extend
path dependence theory as they are characterized by “ramified webs of externalities and
interdependencies” (Ciborra and Hanseth 2000:2) and are often highly independent from
central control (cf. Hanseth 2002). When an organization is small, information can be
managed using standard software. The information system architecture is simple and intel-
ligible. When firms grow, data processing requirements increase. Constant changes that
add new programs or extensions make IT infrastructures increasingly complex. Inertia
builds up as new systems and links are constantly added. In large enterprises, standards
diffuse and fundamental changes get out of reach. I view path dependence as a problem of

standard diffusion in networks.

Consistent with this view, in what follows I develop a set of models that take interaction
patterns and growth processes into account in explaining path building and path breaking.
I apply these models to two empirical sites; the primary setting is global I'T infrastructures
in airline distribution where I examine the conditions under which a new path in passenger
transportation may be created; in addition, I examine one model’s implications for the

evolution of an organizational IT infrastructure using a case from the recycling industry.

1.1 Motivation: The Example of Airline Distribution IT

To substantiate claims of path dependence, methodical advice suggests presenting empiri-
cal evidence on the influence of critical events, self-reinforcement, and lock-in (Sydow et al.
2012; Sydow et al. 2009). Consistent with Vergne and Durand (2010), I believe that such
evidence will always remain partial as data collection on critical events is retrospective,
self-reinforcing mechanisms in such complex settings — spanning across space and time —
are accompanied by various negative feedback loops, and inefficiency claims are construct-
ed by stakeholders on-the-fly. Nevertheless, I believe in the value of modeling. I draw on
the booking class case, because I believe that it is relevant to illustrate the need to extend
existing models of path dependence with respect to interaction patterns and growth pro-
cesses. However, serious inertia in changing existing practices in the area of pricing —
demonstrated by substantial evidence from a number of interviews and observations (refer
to online supplements 0S1 to 0S21), as well as archival sources (refer to online supplements
0522 to 0S39) — suggests that the booking class case is a well-chosen example of path de-
pendence. This proposition is substantiated by the following statements from industry ex-
perts (refer also to Table S5 in the appendix):

“With the booking class topic you have hit a lock-in bull’s eye. For a long time we
try to get rid of these things.” (Revenue management expert, refer to archival data
0535)

It will be difficult to depart from the booking class logic [..] I do hope some scien-
tist must be thinking that perhaps the time came to accept a booking with o passen-
ger value but perhaps I am now voyaging into Mars.” (Aviation expert, refer to
interview 0S21)



Consistent with Liebowitz and Margolis (2013), I believe that every relevant argument of
path dependence should be complemented by a claim of inefficiency. With respect to the
booking class standard, the claim goes as follows: the booking class standard enables effec-
tive collaboration among airlines, Global distribution systems (GDS), travel agents and
other stakeholders in airline distribution. Total airline sales were estimated as 3,300 million
bookings worldwide in 2012 of which 1,400 million came through the GDS (refer to
Amadeus-internal report in 0524). The booking class standard supported a long period of
successful growth in which additional marketing and pricing capabilities were built on top
of existing booking class-based IT infrastructures (refer to expert statements in 0oS7 and
0S16). An intense differentiation of organizational structures, routines, and IT systems is
the precondition to performing advanced airline processes. Availability and pricing infor-
mation can be exchanged between various organizational I'T systems as well as across or-
ganizational boundaries. This compatibility enables significant synergies: the booking class
standard is an important antecedent for additional revenues generated by interlining and
codeshare tickets, which are offered through carriers’ own channels directly as well as
through the GDS’s (refer to expert interview 0S8 to 0S10). However, growing evidence in
the area of airline pricing and revenue management suggests that booking class-based
practices are — at least theoretically — inferior from the perspective of individual airlines
using them, as the booking class standard’s implementation restricts adopters to a discrete
instead of a continuous number of price points (Levin et al. 2009; also refer to expert in-
terview 052 and 0S7 and archival material 0S34). In particular, a carrier with a continuous
number of price points could discriminate prices across different individual customers per-
fectly and would thus be able to generate incremental revenues which the carrier cannot
do with the current systems in place today (Isler and D’Souza 2009; Pélt 2011). To estab-
lish a new standard in airline distribution, airline industry association TAT A has started an
initiative, the New Distribution Capability (NDC) initiative (refer to IATA 2013 for more
information). Yet, it hasn’t really gotten off the ground. IATA faces difficulties in estab-
lishing the new standard.

Viewed together, I believe that the booking class standard is a local instead of a global
optimum (refer to the “hills” in Figure 1). Whether airlines will be able to overcome

switching costs and coordination problems is subject to much debate (Westermann 2013).

Figure 1 structures problem areas in airline distribution IT related to the persistence of the
booking class. In the figure, I distinguish between industry-level dynamics, on the left, and
organizational-level dynamics, on the right. On the industry level, I identified three main
problem areas: (1.) airline coordination problems, (2.) the market structure, and (3.) the
role of aggregators. It is useful to distinguish airline coordination problems from decision-
making by other stakeholders due to the complexity of the industry. I exclude GDS and
aggregators from explicit consideration as detailed, historical studies on GDS platform
competition exist already (Copeland and McKenney 1988; Farhoomand 2000; Granados et
al. 2008; Schulz et al. 1996) and the scope had to be limited. This focus is indicated by the
dashed squares in the figure. As shown on the right of Figure 1, it is argued that organiza-
tional level processes further reinforced the booking class standard.

Essentially, the booking class path was driven by “powerful network effects” on a market
level (refer to Figure S2 in the appendix). After airlines had established early computer
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reservation systems, retail automation in the US in the late 1970’s led to an increasing
adoption of GDS by travel agencies (Copeland and McKenney 1988). Increased use of GDS
by travel agents in turn incentivized airlines to exploit increasing returns from content
publishing via the GDS. Moreover, demand-sided scale economies created a rationale for
airlines to focus their efforts on a limited number of GDS and, in the following years, a
consolidation to a few dominant platforms took place (Copeland and McKenney 1988):
SABRE became dominant in the US (Copeland and McKenney 1988) and Amadeus in
Europe (Schulz et al. 1996). All major airlines subscribed to the GDS and adopted compat-
ible sales systems incorporating GDS standards such as booking classes. The GDS im-
portance continued despite significant effort to transform airline distribution to

e-commerce and the internet age (Farhoomand 2000; Granados et al. 2008).

industry level organizational level
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Figure 1. Booking class-related problem areas in airline pricing and distribution

Booking classes raise problems today going beyond the technical dimension because the
standard became the underlying core pattern for airlines’ capabilities in such important
areas as pricing. Essentially, pricing refers to “a firm’s ability to set the right prices” to
capture potential rents from market-based transactions (Dutta et al. 2003:616). Consistent
with Dutta et al. (2003), I view pricing as an organizational capability. Airline pricing has
its most important antecedents in a set of methods and tools referred to as “revenue man-
agement” (Cleophas and Frank 2011; Talluri and van Ryzin 2005). It goes as far back as
Smith et al.'s (1992) case study of successful yield management implementation at Ameri-
can Airlines, and Littlewood's (1975, 2005) approach to pricing forecasting and optimiza-
tion. Since then airlines developed several generations of increasingly advanced revenue
management (RM) approaches, from overbooking to origin-destination bid price revenue
management (Lehrer 1997; Lehrer 2000). Booking classes became a central parameter in
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deciding whether to accept or reject a booking request (Talluri and van Ryzin 2005:176).
Refer to Figure S3 in the appendix, which shows that each generation of revenue manage-

ment technology has used booking classes more intensively.

Today, the booking class is ubiquitous in almost any marketing/distribution-related airline
process (refer to interviews oS1 to 0S9). Figure 2 depicts important activities in which the
booking class standard spilled over. Ticketing, check-in and pricing systems refer exclusive-
ly to booking classes (refer to interview 0S9). Beyond that, it became central for
codesharing, customer loyalty and other processes such as revenue integrity and reporting.

Table S6 in the appendix substantiates the booking class usage in each of these activities.
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Figure 2. Diffusion of booking classes in airline activities. Source: own investigation

Bartke (2013:20) notes that “the pervasive use of the booking class standard throughout
the distribution, booking and check-in processes has so far prevented the adoption of [..]
newer methods in practice”. To imagine the magnitude of switching costs consider first the
example of British Airways. British Airways replaced its legacy inventory in 2002 (refer to
report by Amadeus in 0540): vendor Amadeus’ effort was approximated as 180 person
years, 13,400 British Airways employees were trained, 48,190 terminals had to be connect-
ed, and 51 core IT systems were interfaced, 2.5 million passenger name records were mi-
grated; more than 300 British Airways employees were drawn in the project over two
years. Moreover, while the inventory is one key IT resource in airlines’ distribution strate-
gy, dozens of other important systems have to be considered: the revenue management
system, the customer loyalty system, the reporting system, to name a just few, in more
than 1,000 commercial airlines worldwide.

Due to the standard-setting role of the airline industry, airline distribution standards also
spilled over to other industries such as hotels, railway companies, or car rentals (refer to
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Cleophas et al. 2011 for an overview of applications of revenue management and pricing
practices across different industries). These interdependencies today strengthen the impact

of booking class-related inertia.

Furthermore, when a top management team — as in individual airlines — can exhibit con-
trol, switching standards may be feasible, but as booking class-related activities are
interorganizational and embedded in global distribution infrastructures further constraints
diminish airlines’ scope of action. Two examples are codesharing and corporate customer
contracts. Codesharing involves two carriers: The marketing carrier, selling a flight, and an
operating carrier, operating the flight. On the strategic level, codeshares are negotiated
between those two carriers which not only gives rise to controversies regarding revenue
sharing (Gerlach et al. 2013; Gerlach 2013; Hu et al. 2013) but also with respect to finding
an appropriate mapping of customer categories to exchange flight availabilities and to
transfer bonus miles. Booking classes are a well-established yet unquestioned instrument.
Corporate customer contracts, to give another example, add a cognitive dimension to the
book class inertia. Not only do corporate customers stick to booking classes “like drowning
people” (refer to RM expert in 0S10) as they guarantee them privileges, status and pres-
tige, sales departments also speak to customers in the language of booking classes, negoti-
ating bonuses based on them and inscribe them into contracts. These examples confer the
booking class a cognitive and material dimension spanning organizational boundaries. Dis-
placing all booking class-based systems in the short or medium term seems unrealistic (re-
fer to RM expert statements in 0S11 to 0S14).

In the first part of this thesis, I suggest a model that portrays how inertia builds up by
new elements being added to an existing system, which makes switching increasingly im-
plausible. In the second part of this thesis, I suggest a model that contributes to the NDC
debate by examining scenarios regarding the creation of a new path in airline distribution.

1.2 Research Approach

This thesis draws on a number of data collection and analysis methods:

=  Expert interviews
= Case study research
* Modeling of empirical data (i.e. network analysis) and

= Agent-based simulation experiments

Throughout my research, I followed Gilbert and Troitzsch's (2010) guidelines on how to
conduct agent-based simulation research. Agent-based models are useful for theory build-
ing as they can facilitate understanding about complex, nonlinear phenomena in (inter-)
organizational contexts (Davis et al. 2007; Gilbert and Troitzsch 2010; Squazzoni 2012).
Positioning my work in information systems research, I consider agent-based modeling
useful for research on path dependence and standard diffusion as it can illuminate multi-
level phenomena incorporating a large number of heterogeneous, interacting agents (cf.
Kiesling et al. 2011; Weitzel et al. 2006). While I appreciate the role of simulation model-
ing for decision support (Law 2007), this research is not predictive in nature but intends to
inform research and managerial thinking on nonlinear, path-dependent processes in com-

plex IT infrastructural arrangements.



After reviewing the literature on path dependencies in IT infrastructures, I began my em-
pirical research by entering the field site of a German recycling company. I used a case
method (Yin 2013) to study the IT landscape of Recycle Inc.”, a privately-held company
with 9,000 employees. The company was selected as a representative example for a medi-
um to large-sized enterprise with a segmented (multi-corporate) structure. Founded in
1968, the company grew from waste management to several other domains, acquired and
split off subsidiaries regularly, and thus captured well how path dependencies in organiza-
tional IT infrastructures unfold. To limit the scope of the investigation, one business do-
main was selected as initial interviews confirmed that the company faced problems to con-
solidate its fragmented, legacy-centric domain IT landscape. Based on an in-depth study of
one core enterprise resource planning (ERP) system — including 13 expert interviews (refer
to 0541 to 0S53) — I recognized that standards, inscribed early in the platform, often dif-
fuse in an organization by new programs and extensions being added. When an IT infra-
structure grows, this will materialize in complex interdependencies between various IT
systems. While extensions of existing systems aim to work around limitations, they in fact
reinforce established standards by creating barriers to change the overall system. While my
initial presumption was that particular information systems follow a path-dependent tra-
jectory, I gained the impression that standards are an even more severe motor of path de-
pendence as they become inscribed in wvarious systems and persist despite the replacement

or adaptation of single systems.

I focused effort to finding an extreme case of path-dependent standards. I turned to the
airline industry and the booking class example. My perception of the importance of stand-
ards became amplified in several interviews with experts in airline distribution I'T and rev-
enue management (refer to interview oSl to 0S6; 0S15 to 0S21) on problems in introducing
dynamic pricing methods. I sensed that problems in replacing booking class-based practices
are not limited to local settings but increasingly interorganizational. Therefore, my analysis
shifted — based on the problem instance — from individual organizations’ IT infrastructures
to problems of coordination within an industry. To specify a model, I focused on an inten-
sive collaboration with Swiss International Air Lines (SWISS), a prestigious European full
service carrier. Interviews confirmed that SWISS faces problems displacing booking class-
based practices by dynamic pricing methods and that the carrier had started several initia-
tives that had not yet been successful (refer to interview oS7 to 0S14).

Based on the problem, I investigated models of path dependence and standard adoption. I
was disappointed by existing path dependence models’ qualities with respect to explaining
(a) how inertia actually builds up over time and (b) how paths can be broken in settings
with complex interactions among large numbers of distributed actors. For instance, Ar-
thur’s model of path dependence and increasing returns — a seminal example — assumes
that each new agent entering a network forms links to all other agents. This form of inter-
action is very particular and mischaracterizes most real world situations. I found that Ar-
thur’s model results in a too stark “winner-take-all” characterization of diffusion outcomes

(Fichman 2004); hence, it was only of limited value for my investigation.

2 To protect privacy, I agreed with the company’s IT management to not enclose company names
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Therefore, I explored another class of models on standardization problems from an eco-
nomic tradition in information system research (Domschke and Wagner 2005; Weitzel et
al. 2006; Weitzel et al. 2000). These models had already incorporated important aspects of
the network structure to explain how standards diffuse among actors selecting standards.
These models shed light on standardization gaps (Weitzel et al. 2006), penguin effects,
excess inertia (Liebowitz and Margolis 1996; Weitzel et al. 2006), and gateway technologies
(Buxmann et al. 2011; David and Bunn 1988; Farrell and Saloner 1992). However, these
models have limitations with respect to real world problems of path dependence in com-
plex IT infrastructural arrangements. Firstly, many of these models use a central optimiza-
tion approach. Hence, a central planner is assumed that can oversee and optimize the en-
tire network with respect to the standards used (Domschke and Wagner 2005). This ap-
proach is restricted to particular problem instances within firms or in very centralized
networks. Only few models propose decentralized approaches to agent decision-making
(e.g. Weitzel et al. 2006). They are, however, held back by the assumption of simultaneous
decision-making of all agents. This view is limited, as it requires complete information on
all other agents’ standardization costs, number of interaction partners and benefits from

mutual standardization.

Consequently, I suggest a new set of models to analyze IT infrastructure path dependence.
Drawing on network analysis as my theoretical foundation (Jackson and Zenou 2013;
Jackson 2008b), a first model (the “growth model”) highlights growth processes in net-
works showing how inertia builds up and how standards increasingly diffuse within a grow-
ing system. The model sets itself apart from other models by incorporating new ways how
to initialize the network and by a unique network growth strategy: agents entering the
network form links to a particular number of other agents uniformly at random and to
another fraction of agents as friends-of-friends (Jackson and Rogers 2007). I show that the
model is able to reproduce findings from seminal models of path dependence and I apply
the model to examine how random, preferential, or hybrid growth affects path building.

Building on network diffusion models (Elliott et al. 2014; Jackson 2008b), I then suggest a
second model (the “contagion model”) that taps into the extent to which new standards
diffuse by triggering selected nodes in a network and tracking the subsequent domino effect
running through the network. The model reproduces stylized facts from seminal models of
innovation diffusion. Furthermore, I demonstrate the model’s value to assess scenarios with

respect to the diffusion of a new standard in airline distribution IT.
1.3 Thesis Outline

Figure 3 outlines this thesis. Part I introduces problems of IT infrastructure path depend-
ence: chapter 2 reveals the link between path dependence theory and important streams of
information systems research; it also introduces selected formal models of path dependence
and suggests a network perspective as my theoretical foundation. Chapter 3 shows the
need for research and outlines the research questions.

Drawing on a distinction between path building and path breaking (Sydow et al. 2009),
the next two parts present the models and main results. In particular, part I concerns
questions of path building and part III investigates path breaking.



Part |: the problem of IT infrastructure path dependence

1 Introduction and motivation

2 Previous work and theoretical background

3 Research gap

L

Part Il: path building

4 Standard diffusion in growing networks

5 Insights from agent-based simulations: growth

6 Evolving IT infrastructures: Recycle Inc. case

Part Ill: path breaking

7 A new standard in airline distribution IT?

8 Insights from agent-based simulations: contagion

L

Part IV: conclusion

9 Limitations, implications, and directions

Figure 3. Qutline of this thesis

Part II investigates how a network’s growth logic affects path building. In particular,
chapter 4 suggests a new model of path building to structure network effects that pays
more attention to the mechanics of link formation in making sense of clustering dynamics
such as “islands of shared technology” that characterize many real world settings. Chapter
5 then presents results from experiments on growing networks to test propositions on the
effect of different growth logics on path building. As a final section of Part II, chapter 6
introduces the case of Recycle Inc. to demonstrate the value of the model in understanding
the evolution of organizational IT landscapes. Furthermore, I suggest a method that sup-
ports IT managers and architects in assessing system embeddedness and continuance iner-
tia. I build on established measures of centrality from network analysis to assess the criti-
cality of IT systems with respect to their architectural embeddedness.

Part IIT intends to add our understanding on path breaking. In particular, Part III focuses
on when and where a new standard diffuses to a nontrivial fraction of agents in a network.
Drawing on the example of path creation in airline distribution IT, chapter 7 introduces
empirical requirements, describes empirical data, and presents results from a structural
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analysis of an empirical network of codeshares in global distribution IT. Following suit, the
remainder of chapter 7 introduces a contagion model that can be applied to examine
standard diffusion in this network. Chapter 8 presents insights from agent-based simula-

tions including several important extensions to the base model.

Part IV (chapter 9) summarizes the research, discusses limitations, concludes, and intro-

duces an agenda for future research.
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Chapter 2

Previous Work and Theoretical Background

I start my examination of previous work by exposing the link between path dependence
and three recent and fruitful streams in information systems research: IS strategy and or-
ganization (chapter 2.1), research on information infrastructures and standards (chapter
2.2), and research on diffusion and adoption (chapter 2.3). Thereafter, a network perspec-
tive is introduced as the theoretical foundation of this thesis (chapter 2.4). Furthermore, I
introduce selected formal models of standard diffusion and path dependence (chapter 2.5).
Firstly, I turn to simple yet powerful urn models that are foundational for the path de-
pendence model by Brian Arthur (1989). Secondly, I discuss models on the diffusion of
standards and innovations. The chapter ends with a comparison of various models (chapter

2.6).
2.1 Path Dependence in IT Strategy and Organization Research

2.1.1 Concurrent Perspectives on Inertia in IT Infrastructural Arrangements

To begin, inertia generally denotes the “power of resisting by which every body, as much
as in it lies, endeavors to preserve its present state” (Newton 1846:72). Inflexibilities,
change barriers, persistence, rigidities, resistance, lock-ins and path dependence are com-
mon themes in information systems research on IS strategy, structure, and organizational
impacts being discussed from various perspectives such as the business value of IT, IT
flexibility, IT alignment, and IT architecture.

I start by turning to research on IT business value. Traditionally, much of the research in
this tradition has been concerned with the controversial question of how business value is
created from investments in IT (cf. Brynjolfsson 1993; Soh and Markus 1995; Zhu 2004;
Aral and Weill 2007; Kohli and Grover 2008; Mithas et al. 2011; Mithas et al. 2012). The
predominant paradigm is the resource-based view (RBV) of IT (Kohli and Grover 2008;
Melville et al. 2004; Piccoli and Ives 2005) that goes as far back as Bharadwaj's (2000)
notion of IT as a capability, consisting of a complex bundle of technical, human, and in-
tangible skills that potentially enable a firm to create business value.

An interesting implication of work in this tradition for path dependence research — general-
ly more interested in positive consequences of IT usage — is that after decades of contro-
versy, much attention has been devoted to complementarities as a source of I'T business
value creation (Kohli and Grover 2008). In its canonical form, complementarities between
two elements A and B have be assumed if the marginal benefit of investments in A in-
crease with the level of B, and vice versa’® (Porter and Siggelkow 2008:44). The emerging

? Further side conditions have to hold to assume that the relationship is robust that captures the
effect of a joint appearance of (investments in) two activities A and B on some performance meas-
ure P. In contrast to substitution relations, complementarities imply that P increases with increas-
es in A or B (Porter and Siggelkow 2008:44).

12



key insight was that I'T investments can only create value in combination with other, syn-
ergetic factors. Based on that insight, many studies in the ‘business value of IT’ tradition
have demonstrated the importance of complementarities between different elements of an
IT infrastructure to explain IT business value (e.g. Tanriverdi 2005; Zhu and Kraemer
2005; Tanriverdi 2006; Aral and Weill 2007; Bharadwaj et al. 2007; Lee 2008; Nevo and
Wade 2010). Complementarities — in form of super-additive performance or sub-additive
cost effects — can result, for instance, from shared IT infrastructures and IT management
processes among subunits. Examples for such processes include strategic I'T planning, IT
human resource management, and IT vendor management (Tanriverdi 2006). Other re-
search on IT business value has demonstrated the positive interaction effect from aligned
technical investments in the development of the I'T platform, and complementary compe-
tencies as well as IT practices that may unleash a positive feedback spiral resulting in
higher firm performance (Aral and Weill 2007). In addition, work by Aral et al. (2006) has
shown a positive performance effect that can result from subsequent investments in differ-
ent, complementary IT components; companies learn from prior IT investments in one
application area and are thus able to facilitate this knowledge in a later stage. Their re-
search illustrates that companies that implement an ERP system successfully can subse-
quently gain in performance when implementing a customer relationship management
(CRM) system.

Cases of inertia have long been recognized in the RBV literature, but are mostly discussed
as a side-note or anomaly in the respective papers. Bharadwaj (2000:187) for instance — in
her celebrated essay on IT as a capability — notes that some firms fall into “rigidity traps”
facing enormous barriers to change with their existing infrastructures. Referring to a study
on financial service companies, she observes that cost pressures and resistance by IT staff
often prevents necessary change with respect to existing legacy IT infrastructures. Little
research in the tradition of the RBV has, however, followed up on her trail.

This is surprising given the fact that extended research from organization theory and path
dependence has long noted that self-reinforcement — arising for instance from complemen-
tarities — can lead to undesirable path dependencies and capability lock-ins (Sydow et al.
2009). From organization theory we are well aware of “competency traps” (Siggelkow and
Levinthal 2005) and various investigations have shown that the positive impact of capabil-
ities may flip over from core competencies to core rigidities after a period of successful
growth (Leonard-Barton 1992; Sydow et al. 2009). Examples in this theme appear multiple
times in studies from organizational theorists, e.g. for firm strategizing processes
(Burgelman 2002), knowledge acquisition processes (Cohen and Levinthal 1990), product
development processes (Leonard-Barton 1992) and organizational learning processes in
general (March 1991). In this tradition, positive feedback captures the core idea of how
capabilities lock in (Sydow et al. 2009). Positive feedback in a set of complementary ele-
ments constantly reinforces a set of practices, processes, or capabilities. Mutual adapta-
tions over time make it more and more attractive to choose the given set of practices,
which unintentionally locks in the “deep structure” of capabilities (Sydow et al. 2009:599).
Eventually, “individual actors are no longer able to strategically influence population-level
outcomes or are trapped in local-level action patterns” (Dobusch and Schiiler 2013:20).
This is how path dependence constructs capability lock-ins.

13



The idea of dynamic capabilities has then extended and informed existing RBV research to
explain how to reconfigure existing capabilities to maintain flexibility in rapidly changing
environments (Eisenhardt and Martin 2000; Teece et al. 1997). Dynamic capabilities are
defined as a “a company’s ability to integrate, build, and reconfigure internal and external
capabilities to address rapidly changing environments” (Teece et al. 1997). They are dis-
tinct organizational processes allowing an organization to (7) sense emerging trends and
changes in the environment early, (i7) seize opportunities to follow these trends, and (%)
transform organizational capabilities and resources accordingly (Teece et al. 1997). Accord-
ing to this view, organizations need the ability to add, shed, and integrate resources and
capabilities in a flexible manner in order to transform operational capabilities (Eisenhardt
and Martin 2000). Various studies in the tradition of the RBV have tried to operationalize
dynamic capabilities in the context of IT infrastructures (Bhatt and Grover 2005; Piccoli
and Ives 2005; Sambamurthy et al. 2003). An extensive research tradition on strategic
information systems planning (SISP), for instance, explicitly or implicitly assumes that
SISP is a dynamic capability that helps organizations achieve competitive advantages (cf.
Galliers 1991; Segars and Grover 1998; Kearns and Lederer 2003; Newkirk and Lederer
2006). However, a thorough testing of whether and to what extent SISP is a dynamic ca-
pability is impeded by operationalization problems (Fuerstenau et al. 2014).

Other concepts have been suggested to extend the RBV with respect to explaining how
operational capabilities can be reconfigured in value-creating ways. For instance, the con-
cept of improvisational capabilities has been introduced — the possibility of predicting
competitive advantages in turbulent environments (Pavlou and El Sawy 2010). Improvisa-
tional capabilities denote an organizations ability to “spontaneously reconfigure existing
resources to build new operational capabilities to address urgent, unpredictable, and novel
environmental situations” (Pavlou and El Sawy 2010:443). A distinction of planned versus
unplanned change is introduced to theorize successful changes (Orlikowski and Hofman
1997; Pavlou and El Sawy 2010).

On a similar note, research on IT flexibility, as another important stream of IS strategy
and organization, has also — more implicitly — been concerned with inertia, as the goal of
becoming more flexible or agile is framed as a question of overcoming existing inertia
(Byrd and Turner 2000). Consequently, to become or remain competitive, firms should
strive for IT flexibility (cf. Byrd and Turner 2000) or business agility (cf. Weill et al. 2002;
Sambamurthy et al. 2003; Setia et al. 2007). IT flexibility" denotes a firm’s ability to ena-
ble business process innovations which will in turn create business value for organizations
(cf. Byrd and Turner 2000:168; Kohli and Grover 2008:26). IT flexibility allows organiza-
tions to respond to environmental changes swiftly (c¢f. Byrd and Turner 2000:170) and,

most desireably, enables organizations to sense changes in their environment early, react

" Byrd and Turner (2000:168) define IT infrastructure flexibility as ,the ability to easily and readily dif-
fuse or support a wide variety of hardware, software, communications technologies, data, core applica-
tions, skills and competencies, commitments, and values within the technical physical base and the hu-
man component of the existing IT infrastructure”. Business agility has been defined as an organizations’
ability to innovate and to introduce new products swiftly (cf. Tiwana and Konsynski 2010). An IT infra-
structure thereby denotes “a collection of reliable, centrally coordinated services budgeted by senior man-
agers and compromising both technical and human capability” (Weill et al. 2002:59).
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proactively and shape their environment through their superior I'T infrastructure capabili-
ties (cf. Andresen and Gronau 2005). Sambamurthy et al. (2003), for instance, treat IT as
a real-option that is valuable because “it provides an opportunity to realize benefits if or
when the need arises” (Kohli and Grover 2008:26). Hence, IT flexibility becomes a source
of sustainable competitive advantage (cf. Kohli and Grover 2008). Overcoming inertia is
put on the managerial agenda: by selecting the right initiatives that maximize business

value, organizations should (or will) increase strategic agility (cf. Weill et al. 2002).

Viewed together, one key assumption underlying many of these predecessors is the control
idea’ (Ciborra 2000:21f.). According to Ciborra (2000), the control idea refers to assuming
that targeted interventions will be able to align organizational IT infrastructures in ac-
cordance with managerial plans and directions. This is illustrated most forcibly by existing
research treating IT as a portfolio (Ciborra 2000:33-38). Thereby, it is asswmed that IT
presents a bundle of investment options that can be re-allocated flexibly by managers se-
lecting the right initiatives to maximize the business value of IT (cf. Ward and Peppard
2009). Factors impeding flexibility are misfits in contextual conditions within the organiza-
tion: for instance a lack of IT governance — how organizations structure their I'T decision
rights (cf. Weill and Ross 2010) — or lacking senior management commitment to enterprise
architecture (cf. Ross et al. 2006).

While the RBV and its many important extensions have mostly concentrated on how to
“get a grip on” inertia from a managerial point of view, an extensive body of research,
mostly drawing on vivid, in-depth case studies has illuminated many important anteced-
ents, drivers, and consequences of inertia in complex organizational IT infrastructures.
How and why will inertia arise in the first place? One of the main themes in this literature
is the consequences that arise from the entanglement of technical systems and human
agency (Boudreau and Robey 2005; Leonardi and Barley 2008; Robey and Boudreau 1999).
Many studies in this tradition suggest that inertia arises as human actors — users, manag-
ers, or other stakeholders — often resist, hinder, block, veto or implicitly withdraw new
systems and technologies for various reasons such as that they worry about changes in
their routinized, and often highly institutionalized work practices (Orlikowski 1992), they
worry about losses in power, influence or status (Markus 1983), or they perceive con-
straints from existing management systems such as budgeting and incentive-setting
(Leonard-Barton 1992). Underlying explanations arise from culture (cf. Cooper 1994), poli-
tics (cf. Markus 1983), institutionalization (cf. Orlikowski 1992; Orlikowski and Barley
2001; Orlikowski 2007) or organizational learning (cf. Robey and Boudreau 1999). Many
pertinent cases can be found in the literature. Orlikowski (2000), for instance, observes
limited groupware use by users reinforcing and preserving the status quo. Similarly,
Boudreau and Robey (2005) find users initially avoiding a new ERP system as much as
possible as it doesn’t fit with their learned practices and way of doing things.

Another common theme is the nature of the IT artifact itself (Leonardi and Barley 2008;
Orlikowski and Tacono 2001). Essentially, the underlying observation in many of these ar-

ticles is that early decisions, intentions, perceptions, and cognitive representations from

* In the words of Byrd and Turner (2000:170), “high flexibility corresponds with a high control of the
organization with respect to the environment”.
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designers, managers, key users, or other stakeholders become implicitly or explicitly n-
scribed in early stages of the technology lifecycle which often creates unchallenged, taken-
for-granted realities for organizational users drawing on these systems in later stages
(Orlikowski and Robey 1991; Orlikowski 2000). Markus et al. (2000), for instance, note
that many of the problems firms experience in later phases of an ERP life cycle originate
earlier, but remain unnoticed or uncorrected. Volkoff et al. (2007) portray how ordering
routines become inscribed in a complex ERP system, which gives them a material aspect
that inhibits their change in a later stage. Leonardi (2011) draws on an in-depth study of
engineers’ use of simulation tools to show that changes in the technology-in-use often make
particular complementary changes of work routines more beneficial, and vice versa. From
this he suggests a path-dependent trajectory where systems and routines are constantly
adapted and (recursively) imbricated based on the capacities that each of these subsystems
offers. From a thorough reading of this literature, we can thus learn that early decisions on
a deep, architectural level are often inscribed into systems and tools that will be in organi-
zational use over extended time periods. These design patterns on a deep, architectural
level can be perpetuated or even reinforced by user-driven processes of constant adapta-

tion, improvisation, and bricolage (Masak 2006b:268).

Finally, inertia should also be viewed from an IS architectural perspective (Ross et al.
2006). Information systems become embedded in work practices and integrated with other
systems on a technical level, and the larger the embeddedness, the less desirable replace-
ment decisions become (Furneaux and Wade 2011). Furneaux and Wade (2011) observe
that a system’s embeddedness in an organization is a source of inertia. According to this
view, the “extend to which the use of information systems is part of organizational activity
(..) impose significant constraints on discontinuance intentions” (ibid:579). One implica-
tion is that, as suggested by the IS architectural viewpoint, embeddedness is determined
by a system’s position in the IS architecture. More precisely, the extent of embeddedness
will be formed along several dimensions. Furneaux and Wade (2011) point to a system’s
embeddedness in work practices and the technical dependency of a system on other sys-
tems. Regarding technical integration, a survey among IT managers found that systems
integrated more strongly, became replaced less frequently (ibid:590).

In their celebrated book on enterprise architecture as a strategy, Ross et al. (2006) draw
on the case of an investment bank whose legacy systems were so cobbled together that “it
was a miracle they worked” (ibid:11). The complex architecture created rigidities and ex-
cessive costs as systems had to be adapted manually to respond to each new business initi-
ative. Schneberger and McLean (2003) argue that the computing complexity of an IT ar-
chitecture — the extent to which software becomes difficult to maintain or manage — in-
creases exponentially as a function of a system’s degree of distribution: while the complexi-
ty of (single) components decreases almost linearly with a systems degree of distribution,
the system complexity with respect to the number, variety, and change rate of interfaces
increases exponentially. Thus, the complexity of the overall architecture increases also ex-
ponentially.
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2.1.2 Standards as the Underlying Core Pattern for Organizational Capabilities

When capabilities become inert, an underlying core pattern — may it be a decision or ac-
tion pattern — cannot be changed despite change requirements from the environment of the
organization (Sydow et al. 2009). I argue that this core pattern may be a technical stand-
ard. While this appears at odds with capabilities defined as distinct resource allocation
patterns embedded in the organization (Dosi et al. 2000), I believe this is in no way a con-
tradiction as companies have to force selections concentrating on particular areas of appli-
cation to cope with a potentially infinite number of internal and external problems (cf.
Schreyogg and Sydow 2010). Consequently, standards on a technical level may remain
unquestioned as long as they allow developing capabilities enabling the company to
achieve a competitive advantage. This may even apply to dynamic capabilities. According
to Eisenhardt and Martin (2000:1108), “while dynamic capabilities are certainly idiosyn-
cratic in their details, the equally striking observation is that specific dynamic capabilities
also exhibit common features that are associated with effective processes across firms”.
This appears particularly reasonable considering the IT-enabled nature of many of today’s
capabilities building on complex IT systems, practices, and skills (Aral and Weill 2007;
Kohli and Grover 2008; Nevo and Wade 2010, 2011).

Possessing a capability implies excellence of a firm in a selected area of application
(Schreyogg and Kliesch-Eberl 2007). This excellence may be attributed to the firm because
of constant above-average performance or pure myth (Meyer and Rowan 1977; Schreyogg
and Kliesch-Eberl 2007). Improving a capability, however, requires effortful learning and
enhancement processes in every case (Eisenhardt and Martin 2000). Building a consistent
and reliable IT infrastructure to enable such capabilities has also been shown to be a pro-
tracted learning and adaptation process over extended time periods (Ross et al. 2006). We
know from research on IT-enabled capabilities that I'T assets and organizational resources
form possibly synergetic systems that enable a firm to realize IT business value (Nevo and
Wade 2010, 2011). According to this view, a synergy is, however, by no means prepro-
grammed. “In fact, emergent capabilities can be negative, neutral, or positive” (Nevo and
Wade 2010:168). Taking a dynamic perspective on capability developments, we know from
research on path dependence that positive feedback in organizational contexts first promote
gains with respect to a specific output variable and may later flip over to a negative value
contribution (Beyer 2005; Page 2006; Sydow et al. 2009). Alongside Dobusch (2010),
Dobusch and Sydow (2011), and Dobusch and SchiiBler (2013), I assume that complemen-

tarities in I'T infrastructures can unleash self-reinforcement that may flip over to lock-in.

2.1.3 Discussion and Conclusion

From this brief review of the literature, I can draw several conclusions. Firstly, it is useful
to distinguish different levels of an IT infrastructure at which inertia can arise. Most im-
portantly, I believe it is useful to discern the level of single systems in single sites and the
level of infrastructures. Tracing the trajectories of individual systems is illuminating and
we have learnt from many in-depth studies that sources of inertia can arise from various
factors related to the embeddedness of particular IT systems in organizations, as well as
from processes of inscription, institutionalization, and routine building. A single systems

view, however, grossly mischaracterizes the distributed nature of today’s IT systems
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(Henningsson and Hanseth 2011; Monteiro et al. 2013; Williams and Pollock 2012). Ac-
cording to Hanseth (2002), “the evolution of the kinds of IT infrastructures we are using
today — integrating numbers of systems across organizational and geographical borders -
significantly differs from the traditional view on information systems”. I therefore see a

greater need for research on inertia in ensembles of information systems.

Secondly, we have learnt from the RBV that complementarities among technical and non-
technical elements of an organizational I'T infrastructure are key to understanding I'T busi-
ness value creation (Kohli and Grover 2008). Synergies arise when organizations build a
reliable I'T infrastructure, complemented by IT skills and practices, and successfully com-
bine this infrastructure with existing organizational resources to form emergent capabilities
(Nevo and Wade 2010, 2011). Complementarities potentially unleash a self-reinforcing dy-
namic that enables firms to achieve a competitive advantage (Aral and Weill 2007). Based
on organization theory, I, however, presume that self-reinforcement is a two-sided sword:
as any other organizational capability, massively IT-enabled capabilities can also flip their
value-contribution from core capabilities to core rigidities (Leonard-Barton 1992; Sydow et
al. 2009). The question that arises is whether and to what extent organizations are able to
adapt their existing capabilities to react swiftly to environmental changes. Several concepts
have been proposed to theorize when and how organizations can reconfigure their existing
(IT-enabled) capabilities. My brief review focused on the notions of IT flexibility (Byrd
and Turner 2000), dynamic capabilities (Teece et al. 1997), and improvisational capabili-
ties (Pavlou and El Sawy 2010).

Turning to work by Heinz von Foerster (2010), I further group existing approaches by the
extent to which they assume that IT infrastructures are trivial or nontrivial machines.
Trivial machines transform inputs to outputs and the transformation function can be un-
derstood, modeled, and potentially altered by an outside observer. Nontrivial machines are,
in contrast, defined by nonlinear, recursive, complex relationships that remain opaque or
partial to an outside observer. I believe that many works on enterprise architecture, IT
flexibility, and the business value of IT treat IT infrastructures as trivial machines. I share
Ciborra's (2000) skepticism with respect to the validity of the underlying core assumption
of existing concepts such as IT flexibility: existing research has favored the control idea,
presuming that management is able to intentionally control the directions of IT infrastruc-
ture development processes by selecting initiatives that maximize the value of an IT port-
folio on-the-fly (Ciborra 2000:21f.). This however, often conflicts with unintended, path-
dependent consequences of small yet decisive decisions that could not be foreseen at the
time when these decisions had to be made (Ciborra 2000:33).

Viewed together, Figure 4 shows how I position my research in relation to predecessors in
the field of IS strategy and organization. On the vertical axis, I show the level of analysis
which spans from single systems in single sites (at the bottom) to a higher level of analysis
of IT portfolios, architectures, or infrastructures. On the horizontal axis, I depict the stand
that is taken by the respective approaches towards complexity as described by von
Foerster.
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I position my work in the upper right quadrant as I am interested in the interdependencies
between various systems and how these interactions lead to path-dependent consequences.
One the left side, I refer to work that has mostly assumed that linear theories suffice to
guide managers in controlling the evolution of IT infrastructures. Taking a path depend-
ence perspective, I am, however, more interested in how to understand and potentially
manage complex systems by setting the right boundary conditions to cultivate evolution
processes (Hanseth 2002). This focus on infrastructures and networks and their nontrivial
ways of evolving is indicated by the red circle in the figure.

In the next section, I discuss work on path-dependent standards, network effects and its
adoption in theories of information infrastructures.

2.2 Path Dependence in Research on Standards and Infras-
tructures

I begin my examination of previous work on more economic theories of IT infrastructure
inertia by turning to a stream of research on information infrastructures as it closely relat-
ed to traditional notions of path dependence. Along with Hanseth (2002), I define an IT
infrastructure as a shared, open, evolving, standardized, and heterogeneous installed base.

Shared. 1T infrastructures support or enable a wide range of activities; they are not tai-
lored for a particular purpose; they are “shared by a larger community (or collection of
users and user groups)” (Hanseth 2000:57) and cannot be split apart for different groups
(except analytically).
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Open. Any infrastructure is “sunk into, or is inside, other structures, social arrangements,
and technologies” (Ciborra 2000:22). Infrastructures in-use incorporate various technologies
and standards (Hanseth 2000).

Evolving. New infrastructures are “designed as extensions to or improvements of existing
ones” — never from scratch (Hanseth and Lyytinen 2004:208). During their evolution, the

established installed base strongly impacts how new components can be designed (Hanseth

2002).

Standardized. Standards play a central role within information infrastructure studies
(Hanseth 2000; Monteiro et al. 2013; Pollock et al. 2007). Standard diffusion will often be
driven by externalities in decisions of various actors; network effects are a core concept

(Ciborra 2000:34).

Heterogeneous. Various technologies that have been implemented over several generations

make up an IT infrastructure (Hanseth 2002).

Installed base. The installed base — the number of adopters or users — is central for success
or failure of an infrastructure (Ciborra 2000:34). New elements in an IT infrastructure in-

herit the strength and limitations of the installed base.

IT infrastructures are portrayed as similar to real-world infrastructures (e.g. railway or
airline networks), in contrast to investment portfolios. IT infrastructures are characterized
by large “webs of externalities”, complementarities, and interdependencies (Ciborra and
Hanseth 2000:2). These interactions produce outcomes, which are often hard to foresee for
actors due to delayed input-outcome relationships and complex causal chains (cf.
Henningsson and Hanseth 2011).

Path-dependent processes are of particular importance in complex infrastructural arrange-
ments. Hanseth (2000:66) observes that “[a]s the installed base grows [..] its development
and growth becomes self-reinforcing”. And, technologies which have reached a critical size
of adopters are hard to abandon due to lock-in-related switching costs and coordination
problems (Hanseth and Lyytinen 2004; Hanseth 2000). Due to asset specificity and high
degrees of irreversibility, IT infrastructures are “sunk and sticky investments” (Ciborra
2000:34). According to this view, the successful development of infrastructures requires,
“first, the creation of a self-reinforcing process, second, managing its direction” (Hanseth
2002).

2.2.1 Technical Standards and Standardization

I will now delve into the underlying notions of “standards” and “standardization”. Accord-
ing to Weitzel et al. (2006), standardization studies can be grouped into standard setting
and standard diffusion studies. Prior work on standard setting often focused on agentic
processes that are important to create new paths (cf. Garud and Karnge 2001; Garud et al.
2010). These studies figure centrally the role of different actors (consortia, industry associ-
ations, and trade groups), the formation of coalitions and the social construction of effi-
ciency /inefficiency (Sydow et al. 2010; Windeler 2003). Studies on standard diffusion em-
phasize network effects in groups of adopters (Weitzel et al. 2006). In the following, I focus
on standard diffusion.
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According to Brunsson et al. (2012), standards carry three notable characteristics: first,
standards reflect explicitly formulated and decided rules and thus differ from more implicit
social norms (Brunsson et al. 2012:615). Second, standards are formally voluntary for po-
tential adopters as they are not stipulated by hierarchical authorities of states or other
organizations (cf. Liebowitz and Margolis 1996; Brunsson et al. 2012:615). The decision to
comply or not is left to potential adopters. Non-compliance with the standard may howev-
er impose legitimacy problems or (social) sanctions due to “incompatibility” with the
standard. Third, standards are meant for common use; having a normative character, they
prescribe “what those who adopt should do and hence enable and restrict behavior” (cf.
Brunsson et al. 2012:616). On the basis of this three characteristics, a standard can be
defined as “a rule for common and voluntary use, decided by one or several people or or-

ganizations” (Brunsson et al. 2012:616).

Standardization — in the context of I'T infrastructures — often takes the form of compatibil-
ity standards (cf. David and Greenstein 1990). Compatibility standards are "codified speci-
fications about components and their relational attributes” (Garud and Kumaraswamy
1993:535) and “assure that an intermediate product or component can be successfully in-
corporated in a larger system compromised of closely specified inputs and outputs” (cf.
David and Greenstein 1990; Widjaja 2011:6). Ensuring compatibility across users is a cen-
tral characteristic of standards (cf. David and Greenstein 1990). Standards are “conven-
tions or commonalities that allow actors to interact” (Liebowitz and Margolis 1996;
Widjaja 2011). Thus, “compatibility may be achieved through standardization” (cf. Farrell
and Saloner 1992; Widjaja 2011:6). According to Wiese (1990), compatibility harmonizes
components and thus enables potential adopters to realize network effects (cf. Widjaja
2011:7). In the following, I turn to the concept of network effects.

2.2.2 Network Effects and Bandwagon Dynamics

Network effects as a concept have their root in economics (Weitzel et al. 2000, 2006). Es-
sentially, the notion of network effects holds that a user’s value connecting to a network
increases with the network’s size. Katz and Shapiro (1985:424) observe that “[t|he utility
that a user derives from consumption of the good increases with the number of other
agents consuming the good”. Liebowitz and Margolis (2013) note that the term has not
been restricted to increased benefits from owning a product but was applied to a variety of
situations whereby an actor adopts a standard or in fact takes any action.

Research on information systems has applied the concept widely, e.g. to telephone net-
works (cf. Beck et al. 2008; Fuentelsaz et al. 2012; Lahiri et al. 2013), open source vs. pro-
prietary standards (cf. Zhou et al. 2006, Cheng et al. 2010; Liu et al. 2011a), and commu-
nication standards (cf. Weitzel et al. 2006; Zhu et al. 2006). Recently, the concept gained
new importance for platforms and ecosystems (Baldwin and Woodward 2008; Buxmann et
al. 2011; Tiwana et al. 2010), social networking (cf. Draisbach et al. 2013), and
crowdsourcing (Boudreau and Jeppesen 2012).

Traditionally, two types of network effects have been distinguished: direct and indirect
network effects. Direct network effects, defined as an increasing benefit from an increasing
number of actors taking the same action, are easily explained by the example of telephone
networks. The utility of a user adopting a standard increases with the number of existing
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subscribers to that standard. Models typically take the form of U, = a; + bN where U de-
notes the utility (or payoff) of agent ¢ to adopt a technology, arising from a standalone
effect a; and the network effect bV in a network of N agents (cf. Weitzel et al. 2006:490).

Indirect network effects arise from complementarities in the consumption of goods (Beck et
al. 2008:416). According to Katz and Shapiro (1985:94), “many products have little or no
value in isolation but generate value when combined with others (..) These are all exam-
ples of products that are strongly complementary, although they need not be consumed in
fixed proportions”. Benefits may not spill over directly from one agent to others but in-
vestments can signal more complements being available in the future. This increases the
(standalone) utility of the technology. The more complementary products (or services)
that are available, the greater the benefit for all adopters (cf. Widjaja 2011:10). Examples
include many system goods of hardware and software such as DVD players, gaming con-
soles, or mobile platforms (Widjaja 2011:10). Indirect network effect models typically tie
the number of complementary products (and hence again the standalone utility of a tech-
nology) to the overall diffusion rate (or installed base) of a technology in the network. The
positive feedback loop as depicted in Figure 5 describes the dynamics of indirect network
effects: according to Katz and Shapiro (1994:94), “another situation in which consumers’
coordination is vital arises when consumers must choose durable hardware, as when they
purchase a device to play a new format of prerecorded music. In making such a choice,
each consumer will form expectations about the availability of the software (..) In the
presence of economies of scale in the production of software, the availability of software
will depend on what other consumers do, which gives rise to positive feedback”. Church
and Gandal (1992:87f.) note that “as the number of compatible software products available
for a technology increases, the value of the technology is enhanced. This leads to more
hardware sales (a larger network), which increases market demand for software and en-
hances software profitability”.

Often, direct and indirect network effects work closely together in creating bandwagon
dynamics. Sterman (2000:12) builds on the Microsoft case and combines it with the domi-
nance of Intel machines to illustrate how positive feedback influences IT infrastructure
dynamics: “the larger the installed base of Microsoft software and Intel machines, the more
attractive the ‘Wintel’ architecture became as developers sought the largest market for
their software and customers sought systems compatible with most software; the more
Wintel computers sold, the larger the installed base”.

Similarly, Hanseth (2000:62) portrays the predominant positive feedback loop that charac-
terizes many standard adoption processes — Microsoft Windows, the Internet, or program-
ming languages — as shown in Figure 5: a larger installed base attracts more programmers
and vendors to produce complementary products, which increases the benefit from the
standard. A larger installed base with more complements also increases the credibility of
the standard. Altogether, this attracts new users to the standard. This leads to more adop-

tions, which further increases the installed base and so forth.

Network effects and path dependence are closely related as network effects can create a
tendency toward extreme diffusion outcomes where “winner-take-all” (Fichman 2004;
Shapiro and Varian 2008). Alternatively, if a technology fails to develop, or if adopters
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group around a different platform, a “stranded” technology can result (Farrell and Saloner
1992; Fichman 2004). As a final part of this review, I turn to possibilities to get out of

lock-ins from a viewpoint of research on information infrastructures.

Largerinstalled base

More complements produced

Further adoptions \L
Greater credibility of the standard

l

Reinforced value to users
[

Figure 5. Standards reinforcement. Source: Grindley (1995); Hanseth (2000:62)

2.2.3 Path Breaking: Creating New Standards

Various concepts have been proposed to understand how paths can be broken (refer to
Sydow et al. 2012 for an overview) such as path creation (Garud and Karnge 2001; Garud
et al. 2010), path constitution (Sydow et al. 2012), path defense or extension, unintended
path dissolution, or path breaking (Sydow et al. 2009). These notions vary in the degree of
taking into account “agentic” processes, path extension versus breaking, and an internal
versus external perspective.

My starting point for path creation from an information infrastructure perspective is the
observation that standards are often already diffused and deeply embedded in existing
infrastructures (Hanseth 2000). Thus, path creation is often a question of how to get out of
lock-in. The main observation is that strategies to get out of lock-in have to take into ac-
count the innovative potential of the new standard (in economic terms, the relative bene-

fit) versus the costs of overcoming the prevailing network effects.

Consequently, to unlock paths in IT infrastructural contexts, evolutionary (1.) and revolu-
tionary strategies (2.) have been proposed (Hanseth 2000). Evolutionary strategies (1.) aim
to create a superior product providing enough incentives for actors to switch in their own
interest (Hanseth 2000:68-69). The second strategy (2.) attempts to build a new, separate
network and to develop gateways or other transforming devices converting between the old
and the new network (Hanseth 2000). Gateways are important as they enable implement-
ing several versions of a standard, splitting a network into simpler, manageable parts (“di-
vide-and-conquer”), and lowering barriers that have to be overcome when switching entire
networks at once (Hanseth 2002). One example for a successful gateway strategy is contin-
uous/alternating dynamos (David and Bunn 1988). Convertibility between two different,
apparently incompatible, logics, prevented a hasty decision towards one of those standards
and suspended decision making until more insight into both technologies” properties could
be gained (Hanseth 2000).
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In summary, these findings suggest that what remains important for establishing a new
standard is considering the “underlying tension” between the forces of innovation and pre-
vailing network effects (Hanseth 2000:68).

2.2.4 Discussion and Conclusion

Research on information infrastructures is closely related to notions of path dependence. It
has drawn intensively on the (economic) concepts of standards, path dependence, and net-
work effects to theorize inertial tendencies in complex IT infrastructural arrangements. I
believe that it presents a valuable initial vantage point to build my approach upon. In the
next section, I turn to other information systems research on the diffusion and adoption of

innovations.

2.3 Path Dependence in Information Systems Research on
Diffusion

2.3.1 Diffusion versus Adoption

A good starting point is Topi's (2014:8) observation that a perspective of diffusion and
adoption has often been distinguished in research on information systems. According to
Topi’s literature review, work in a tradition of diffusion has been most influenced by early
work on the diffusion of innovations from Rogers (1962). In contrast, work on adoption has
been most affected by a study on material requirements planning (MRP) system adoption
across US companies by Cooper and Zmud (1990). Essentially, the latter study argues that
the processes of pre-adoption — allocating resources to require an innovation — and post-
adoption — implementing the innovation in a company’s I'T infrastructure — are usefully
distinguished as they benefit from different models explaining decision rationales within
each process (Topi 2014). While pre-adoption studies may draw on models of rational deci-
sion making, post-adoption studies may, more usefully, focus on politics and organizational
learning (Cooper and Zmud 1990).

Turning to the diffusion branch of the literature, I briefly introduce Roger’s (1962) study
on agricultural innovations and his diffusion theory. Essentially, diffusion theory argues
that diffusion processes usually take time to unfold and that these processes follow typical
trajectories. Most central to the theory is the diffusion curve concept; it holds that after
early adopters have paved the way for the innovation, subsequently larger groups of
adopters will come to join until the market finally reaches saturation whereby most willing
adopters have decided to adopt. This gives the diffusion process its typical, S-shaped form
where the horizontal axis depicts a measure of time and the vertical axis shows the frac-
tion of adopters.

Examples for studies in information systems that draw on diffusion theory are Moore and
Benbasat (1991) and Karahanna et al. (1999). The study by Moore and Benbasat (1991)
suggests a measure to capture the perceptions of individual organizations towards adopting
an IT innovation; in this context, the study is influenced strongly by Rogers' (2003) five
attributes of innovation explaining their adoption — relative advantage, compatibility,
complexity, trialabilty, and observability — as well as seminal work by Davis (1989) on
perceived usefulness, ease of use and user technology acceptance. The instrument was
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adopted by Karahanna et al.'s (1999) study on pre- and post-adoption beliefs and attitudes
(Topi 2014:7).

2.3.2 Spillover Effects

I now turn my attention to a recent study by Aral et al. (2009) examining the adoption of
instant messaging platforms among individuals. Using a large data set on adoption behav-
iors, the study distinguishes two important micro-level processes driving the diffusion of
the technology: influence-based contagion and homophily. I will discuss each of these pro-

cesses.

Influence-based contagion — in technological contexts also termed spillover effects — desig-
nates peer influences that spill over directly from actor for actor. One may think of a dis-
ease such as influenza where the prevalence of a virus in the social neighborhood of an
actor increases the propensity of that actor to also become infected (Jackson 2008b). In
social settings, the underlying mechanisms are subtler. According to work from sociology
and economics, the reasons for influence-based contagion include conformism (Akerlof
1997, Bala and Goyal 1998; Bernheim 1994; Bothner 2003; Burt 1987), peer pressure
(Christiakis and Fowler 2011; Kirsch 2004), and learning from the experiences of others
(Arthur and Lane 1993; Narduzzo and Warglien 1996; Vriend 2004). Table 1 summarizes

these mechanisms.

Table 1. Description of different influence mechanisms
Mechanisms Description Source
Conformism To better one’s standing through conforming Blau (1964); Burt
to the strictures of others; social constraints (1987); Bothner
(2003)
Peer pressure Formal and informal controls that are exer- Christiakis and
cised on an individual by a group of others Fowler (2011); Kirsch
(2004)
Learning from | Asking previous purchasers (or users) of a Arthur and Lane
the experience | product about their experiences with the (1993); Narduzzo and
of others product they bought and subsequently used Warglien (1996);
Vriend (2004)
Mimesis Adopting others successful organizational ele- | DiMaggio and Powell
ments when uncertain about alternatives (1983); Zucker (1987)
Coercion Formal and informal pressure on organizations | DiMaggio and Powell
by other organizations; force, persuasion, or (1983); Zucker (1987)
invitations to join in collusion; sanctions

From an organizational theory perspective, coercive and mimetic mechanisms have also
been suggested as underlying forces to explain why behaviors spill over. Coercion desig-
nates informal and formal pressure from one organization on another organization

(DiMaggio and Powell 1983). Coercion may take the form of sanctions, persuasion, or invi-
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tations to join in collusion; this has often been attributed to state authorities (DiMaggio
and Powell 1983; Zucker 1987). Mimesis designates tendencies of organizations to adopt or
imitate others successful elements in the face of uncertainty (Zucker 1987). Examples in-
cludes best practice transfer, employees that bring in practices from other organizations,

and consultancy firms or industry trade organizations (DiMaggio and Powell 1983).

Claims of influence-based contagions have often been substantiated by demonstrating (1.)
simple correlations among behaviors (e.g. adoption) of linked nodes or (2.) temporal clus-

tering in the timing of behavior (e.g. adoption) among linked agents (Aral et al. 2009).

A number of studies in information system research have utilized these concepts. Linking
coercion with standard diffusion, a study by Bala and Venkatesh (2007) finds that influ-
ence mechanisms were important to explain the assimilation of business process standards
particularly for non-dominant firms. Kirsch (2004) discusses peer pressure as a mechanism
in global software projects to exhibit control. A study by Singh and Phelps (2013) exam-
ines how prior adopters of open source software licenses socially influence the susceptibility
of subsequent actors to adopt a particular license type. Most importantly, the study finds

that the interpersonal network is most decisive in determining the choice of a license type.

Another process that has been suggested in driving diffusion is homophily. Essentially,
homophily denotes a correlation through sorting. Technically, it can be understood as a
process in which linked agents that share certain “demographic, technological, behavioral,
and biological similarities” become increasingly similar in other attributes, for instance the
technologies they choose, over time (Jackson 2008b; Aral et al. 2009:21544). Based on this
distinction, Aral et al.'s (2009) large-scale quasi experiment treat instant messaging plat-
form adopters as either peer-influenced or homophile. The study found that about 50% of
the adoption rate could was explained by homophily whereas the other half was explained
by influence-based contagion (Aral et al. 2009).

2.3.3 Diffusion and Path Dependence

The intersection of diffusion research and path dependence goes as far back as Arthur's
(1989) seminal work on path dependence. Arthur’s model of path dependence and increas-
ing returns conceptualizes path dependence in markets of technology adopters and cap-
tures how individual level technology adoption interacts with population-level diffusion
outcomes in shaping path-dependent trajectories towards one of several competing techno-
logical innovations. The main concepts of path dependence, salient already in this article,
are contingencies towards early events, self-reinforcing mechanisms, and lock-in (Arthur
1989; Sydow et al. 2009). The concept of self-reinforcement is particularly strongly inter-
woven with diffusion dynamics as new adopters, entering the market sequentially, poten-
tially increase the population-level adoption rate of a dominant technology, with their de-
cision influencing subsequent adopters’ decisions (Shapiro and Varian 2008). I believe that
this underlying core idea — understanding path dependence as a problem of standard diffu-
sion — has lost little appeal but was largely forgotten thereafter.

Recent work by Greve and Seidel (2014) has again linked the concepts of diffusion and
path dependence. Focusing on the adoption of aircraft models among airlines, the study

focused particularly on how early events shape the subsequent diffusion process as well as
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how peer influences — designated in the article as social selection mechanisms — drive the
following diffusion process of the innovation. Essentially, the article argues that a delay in
the production start of one aircraft was decisive as social selection mechanisms — that
worked in the meantime — have predetermined the eventual outcome of the adoption pro-
cess. | believe this result is important as it highlights the critical importance of individual

level interactions among agents in studying path-building processes.

2.3.4 Discussion and Conclusion

Turning in conclusion to implications for my work, I believe that the studies by Aral et al.
(2009) and Greve and Seidel (2014) demonstrate clearly that it is necessary to go beyond
the network size as the primary variable to explain diffusion outcomes and to take into
account spillover effects among individual agents. Influence-based contagion, as well as

homophily, are important processes in understanding how technology trajectories enfold.

2.4 Network Analysis as Theoretical Foundation

Networks gain importance as a theoretical perspective’ to understand diverse phenomena
such as passenger traffic planning, epidemics, technology adoption, or innovation diffusion
(Borgatti et al. 2009; Brockmann and Helbing 2013; Jackson 2008b; Kliewer and Suhl
2011; Valente 2012). I turn to the examples of organizational IT infrastructures and airline
distribution IT to show how a network perspective can usefully serve to study path build-

ing and path breaking.

2.4.1 Organizational IT Infrastructures as Networks

A network perspective serves useful to understand path dependence in organizational IT
infrastructures as it supports (a) visualization and analysis of complex interdependencies,
and (b) modeling of the processes governing their evolution.

Networks consist of a set of nodes and edges. I suggest applications — enterprise resource
planning systems as well as autonomous billing modules based upon MS Access — to repre-
sent nodes interacting with each other. In network analysis terminology, I define them as
nodes. To create a network for viable analysis, one needs to operationalize these interac-
tions. One may turn to a bipartite (also called a two-mode) network (Wasserman and
Faust 1994). In such network, an edge between two applications may be constructed if
both are used in the same business process. Hence, we would need to assess relevant pro-
cesses. Many IT systems are highly independent of central surveillance (Ciborra and
Hanseth 2000). Such systems will not contribute primarily to standardized logics. Instead
of assessing systems by using centrally defined processes, I thus find a one-mode network
based upon actual information flows, in forms of integrated interfaces, superior for my
analysis. In such a network, edges materialize in implemented and actually used interfaces
(e.g. file transfers, web services) between two systems (Dreyfus and Iyer 2008).

% Provan et al. (2007:481f.), in an overview article on interorganizational networks, distinguish be-
tween networks as a perspective and as a form of governance. I position my work in the former
literature as I am concerned with models, tools, and methods capturing the “relational
embeddedness” of behaviors.
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2.4.2 Global Airline Distribution IT as a Network

The transportation system is another useful example to study network phenomena (Barrat
et al. 2004; Brockmann and Helbing 2013). The underlying transmission network, a large
fixed investment, creates incentives for companies to collaborate (e.g. via interlining,
codesharing, or through traffic), because working together can create synergies from a
higher utilization of each individual company’s inventory (Puffert 2009:248). Higher capac-
ity utilization — often equated with higher revenues — benefits from interorganizational
sales systems that combine offers from different, distant transport companies, because us-
ers (e.g. travel agents) may be incapable, unwilling, or too slow searching offers from a

large number of possible connections.

The examples of the airline and railway industries suggest that different I'T-based collabo-
ration patterns (i.e. centralized, or decentralized) can arise in passenger transport (Schulz
et al. 1996). Drawing on airline distribution as an example, the product’s transnational
character creates incentives to build global distribution infrastructures. Traditionally, only
centralized infrastructures provided sufficient computing power (Copeland and McKenney
1988). These infrastructures were costly to build and maintain, which created incentives

for airlines to share them (Copeland and McKenney 1988).

To see how a network perspective can add our understanding on path creation in airline
distribution, consider the following scenario. Let us assume we can model interactions be-
tween airlines as a network that indicates who interacts with whom. One may think of n
airlines linked through codesharing agreements. To keep things simple at this point, let us
presume that airlines are either linked or not, so that we can ignore the fact that some
organizations might involve more frequent or intense interactions than others. Consider
now the introduction of a new standard (e.g. a technical format for distribution). Airlines
can either adopt the standard or not. Adoption is driven by spillover effects from one indi-
vidual carrier to another as each airline will be more willing to standardize if their partners
also do so. Let us also presume that airlines face different switching costs that operational-
ize in different threshold values to adopt. We can then ask: under which circumstances
does the new standard diffuse to a nontrivial fraction of airlines? Will there be a tipping
point above which all airlines adopt?

2.4.3 Discussion and Conclusion

In a celebrated essay, Hanseth (2002) suggests that information systems research should
move from “systems and tools to networks and infrastructures”. The examples of global
airline distribution IT and organizational IT infrastructures show how a network perspec-
tive can inform “how to study, make sense and intervene in complex infrastructural ar-
rangements” (Hanseth and Lyytinen 2004). T thus draw on network analysis as theoretical
foundation. The next section introduces formal models clarifying my conception of path
dependence and standard diffusion.

2.5 Selected Formal Models

I discuss selected formal models of path dependence and standard diffusion in networks.
From a small set of models on IT infrastructure path dependence as well as a broader
range of models on standard and innovation diffusion, the subsequent models were selected
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by (@) their perceived usefulness to model important processes within the problem instanc-
es, and (b) their conceptual compatibility with path dependence models, especially the one
presented in Arthur (1989).

2.5.1 Basic Definitions

Drawing on work by Page (2006), path dependence is defined formally and distinguished
from other dynamic processes. My starting point is a dynamic process with discrete time
intervals indexed by integers, t = 1, 2, 5..". I denote the outcome at time ¢ as z,. A history
at time 7, h; is the combination of all outcomes z; up to time T - 1. A history-
dependent dynamic process has an outcome function G, that maps the current history
into the next outcome (Page 2006:92). As shown in Equation 2.1, the outcome generated

by a dynamic process is then:

By = Gy (hy) (2.1)

In Bernoulli processes the probability of outcomes in the next period is independent of past

outcomes (Page 2006:94). These and similar processes will not be of further interest.

The outcome function can change over time, so it is indexed by ¢ For path-dependent
processes, the function G, will be stochastic®. Thus, it creates a probability distribution
over outcomes (Page 2006). In the following, I am interested in processes limiting the long-
run distribution over outcomes. These processes are called equilibrium-dependent (Page

2006).

In some cases, it is possible to partition the space of all histories into a finite number of
sets {s,...,sy} such that the outcome function at each moment in time depends only on the
set to which the current history belongs. These sets are called states (Page 2006:94). Think
of the number of red and blue balls in an urn, the members of a population, or adopters of
a technology.

A state transition rule, 7, maps the current state s, and (possibly) the current outcomes z,
into the next period’s state (Page 2006:95). This can be written as s,,,=T(s,z,). The state
transition rule depends only on finite states. A process is state-dependent if the outcome
in any period depends only upon the state of the process at that time. It can be written as
follows:

%, = G, (s,) where s, = T(s,x) (2.2)
In simple Markovian machines the state transition rule 7T remains the same in every

period. This property is called stationarity (Page 2006:95). It implies that G,=G for all
time periods t.

" This is called a discrete time process. Refer to Ashby (1956:9) for a discussion of continuous versus
discrete change in machines/systems. See Law (2007:6) and Law (2007:78f.) for a discussion of
fixed-increment time advance as a special case of discrete-event simulation models.
® A discussion of deterministic versus stochastic simulation models is given by (Law 2007:6). Ac-
cording to his definition, “if a simulation model does not contain any probabilistic (i.e. random)
components, it is called deterministic”. Otherwise, it is called stochastic. According to Vergne and
Durand (2010:741), a path-dependent process is necessarily a stochastic process.
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To understand this more clearly, imagine a simple model of a large number of insects
living in a pond (cf. Ashby 1956:167f.). An outside oberver sees only the sets of insects
living on the sand bank (B), in the water (W), and under the pepples (P). If their values
are B, W, and P in one moment, then they change to B’ and so forth in the next. Of the
insects in the water, three-quarters will change over to the bank, while a quarter will go to
the pebbles. Further, one-eighth of the insects from the pebbles go usually to the bank. In
general, the three populations will change according to the state transition probabilities as
described in Table 2.

Table 2. Sample Markov process transition probabilities. Source: Ashby (1956:168)
1 B W

B 1/4 3/4 1/8

|74 3/4 0 3/4

P 0 1/4 1/8

Imagine in the following that we start with a 100 insects in the pebbles and watch the
subsequent dynamics. On average only 12.5 would remain there, the remainder would go
to the bank (12.5 also) and to the water (75). The sets tend, through dying oscillations, to
a state of equilibrium, at (44.9, 42.9, 12.2) as shown in Figure 6, at which the system
remains indefinately. Refer to code example oSl in the online supplements for a Netlogo
implementation of the Marchov chain model. It shows that the steady state equilibrium is

not necessily unchanging as members of the population continue to move incessantly.
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Figure 6. Diffusion graph in Markov chain example. Source: Ashby (1956:168)

Both path-dependent processes and Marchovian machines can be determinate, resulting in
a steady-state equilibrium. I distinguish path-dependent processes from other sorts of
state-dependent processes, such as Marchovian machines, by showing that path-dependent
processes are non-stationary and non-ergodic. Drawing on work by Page (2006), I
illustrate these two properties by turning to simple ball and urn models (Arthur 1994).
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2.5.2 Urn Models

Urn models consist of a collection of various colored balls placed in an urn. In accordance
with Page (2006), I assume balls with two colors: maroon, which I denote by M, and
brown, which I denote by B. In each period, a ball is selected from the urn and, depending
on the color of the ball selected, other balls may be added or removed from the urn. The
selection of the ball plays the role of the outcome function (Page 2006). Because the ball is
selected randomly, the probability of an outcome depends on the composition of the urn:
how many balls of each color it contains. In each period, a ball is selected and returned to
the urn, and another ball is added to the urn of the same color as the selected ball. This
portrays the phenomenon of increasing returns as described by David (1985) and Arthur

(1994).

Polya Process. “Initially, M = B = 1. In any period, if a brown (resp. a maroon) ball is
selected then it is put back in the urn together with an additional ball of the same color.”
(Page 2006:98)

The Polya Process is equilibrium-dependent and can converge to any ratio of maroon and
brown balls (Page 2006:98). Depending upon the history of outcomes the urn could
eventually contain 80% maroon balls and 20% brown balls, or it could contain 63%
maroon balls and 37% brown balls. At some point, the urn contains enough balls that the
ratio converges, and balls continue to be selected in those proportions. Figure 7 shows a
simple example. Refer to code example 0S2 in the online supplements for an n-color

implementation of the Polya Process.
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Figure 7. Simple example for one run of the Polya Process

With this example in mind, one can define a process as path-dependent if the outcome
in any period depends on the set of outcomes and opportunities that arose in its history.
According to Page (2006:97), a path-dependent process can hence be written as

T, = G, ({h}) with s,,, = T(s,) (2.3)

where {h} denotes the set of outcomes up to time t. A stronger condition of path
dependence where the particular sequence of events (the ordering) also matters would
define z,,, = G, (h;). This implies that changing the order of z; and z, could change the
outcome produced by G,. I stick to the basic definition in Equation 2.3 and I will only refer

to the stronger condition if mentioned explicitly.

Consistent with Page (2006:99), I define a dynamic process as generating increasing
returns if an outcome of any type in period ¢ increases the probability of producing that
outcome in the next period.
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Given this definition, the Polya Process satisfies increasing returns. It is thus possible for
an urn process to exhibit increasing returns and to generate multiple equilibria.That does
not mean that all processes with increasing returns produce multiple equilibria, nor does it
imply that all process that generate multiple equilibria satisfy increasing returns. In fact,

no logical implication exists in either direction (Page 2006:100).

To show why path-dependent processes don’t have to go together with increasing returns,
I refer to a modified Polya process where we add two more colors (Red and Green) (Page

2006:100).
Modified Polya Process. “Initially, we start with M = B = R = G = 1. If a maroon

ball is selected, a red ball is added to the urn. If a green ball is selected, a brown ball is

added to the urn. And if a brown ball is selected, a green ball is added to the urn.” (Page
2006:100)

Pick R =Add M
Pick M —Add R
Pick G —Add B
Pick B —Add G

To show that this process exhibits equilibrium dependence, paint the red balls maroon and
the green balls brown. Doing so creates the Polya Process which was previously shown to
be equilibrium-dependent (Page 2006:100). The modified Polya Process does not, however,
satisfy increasing returns. In any given period, choosing any color ball decreases the
probability of picking that ball in the next period. Figure 8 shows a simple example with ¢
= 4 periods that shows this quite clearly. From this perspective, increasing returns are not
necessary for equilibrium dependence (Page 2006:100). One may, however, understand the
Modified Polya Process as an example where complementarities exist, because red balls
create an environment favorable for maroon outcomes in the future (Page 2006:100).

t=1 t=2 t=3 t=4
W
@) @)
! ® | ™ ! ©)
/4 1/4 1/4  1/4 2/5 1/5 1/5 1/5 36 16 1/6  1/6 47 Yyt 1yr 7

Figure 8. One sample run of the modified Polya Process over four periods

To show why increasing returns are not sufficient for path dependence, imagine a biased
Polya process where brown balls have an advantage (Page 2006:101).

Biased Polya Process. “Initially, M = 1 and B = 2. In each period a ball is selected. If
a maroon ball is selected, it is put back in the urn together with another maroon ball and

another brown ball. If a brown ball is selected in period t, it is put back in the urn together
with 2t additional brown balls.” (Page 2006:101)

Eventually, the proportion of brown balls in the urn converges to 100 percent, so this
process generates one unique equilibrium. We can see that selecting a brown ball satisfies

increasing returns. Maroon balls also satisfy increasing returns. If we select a maroon ball,
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then the probability of selecting a maroon ball in the next period also increases. Thus, a

process may generate increasing returns but will still be ergodic (not path-dependent).

This brings us to a formal definition of non-ergocity (cf. Arthur 1989). For path-
dependent processes, we request that two samples from the observer’s set of possible
historical events {t;} and {t;}, with corresponding time paths {z,} and {z,} are unequal
with probability one, as n>o (Arthur 1989:128). Hence, path-dependent processes can
exhibit multiple equilibria and it is not predictable ex-ante which of several possible
outcomes will comes to dominate. The Biased Polya process is ergodic (not path-
dependent) as different sequences of historical events always lead to the same market

outcome with probability one. In contrast, the Polya process is non-ergodic.

Imagine as a last example a Balancing process where a ball is selected from an urn, and
depending on the color of the ball, the ball is put back in an urn together with an addi-
tional ball of the opposite color (Page 2006:99). Refer again to code example 0S2 in the
online supplements for an implementation of the model. To see why the Balancing process
cannot create multiple equilibria imagine an urn with a large number of balls, 60% of
which are maroon and 40% of which are brown. From that point onward, maroon balls
would be more likely to be selected. Selecting these maroon balls would add brown balls to
the urn, increasing the proportion of brown balls above 40%. The Balancing process always
converges to equal fractions of maroon and brown balls. The Balancing process is hence
ergodic (not path-dependent). In fact, the Balancing process is a prime example for a pro-
cess under negative feedback as the selection procedure punishes a given color until it re-
turns to the base level.

2.5.3 Arthur’s (1989) Model of Path Dependence and Extensions

I now turn to an important model building on urn models: Arthur’s (1989) model of com-
peting technologies, path dependence and increasing returns. While interaction patterns
between agents are not explicitly captured, the model serves as a useful starting point,

combining increasing returns and path dependence in a two-tier model.

The base model works as follows: imagine a market of technology adopters choosing be-
tween two competing technologies as Berkeley Unix (B) and Microsoft (M). Sticking to the
terminology introduced above, we can think of this market as an urn with two sets of
balls. We color Berkeley Unix adopters brown (B) and Microsoft adopters maroon (M). In
each period, one new potential adopter (ball) enters and selects a technology (his or her
color) with the highest payoff according to the payoff function U as depicted in Table 3.

Table 3. Network effects in Arthur's model of path dependence
Brown (Berkley Unix) U, =rmn,
Maroon (Microsoft) U,=rn,

where n, is the fration of brown balls already in the urn (the number of Berkley Unix
adopters) and n,, is the fraction of maroon balls in the urn (the number of Microsoft
adopters). Let r be the network multiplier. If 7 is non-negative, it indicates the strength of
the increasing returns (otherwise, the model yields constant or negative returns). If the
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agent selects Microsoft (a maroon ball), the agent is added to the installed base of the
technology (the drawn ball is put back in the urn together with another maroon ball). If a
brown ball is selected in period ¢, it is put back into the urn together with one additional

brown ball.

To complicate matters, imagine now we had not only two sets of balls but also two sets of
agents (R-agents and S-agents) differing just by one attribute: the preferences towards
brown and maroon balls. The base preferences — one could think of a standalone utility of
the technology for the agent — is denoted as ap and by for R-agents, while they are ag and
by for S-agents. These preferences are real-valued and non-negative. For R-agents, it is
assumed that ap > b; and for S-agents it is assumed that by > a4 R-agents prefer brown
balls while S-agents will be happier if they select maroon balls. Combining these base pref-
erences with influences from the network, we end with the agent’s payoff functions as de-
picted in Table 4.

Table 4. Payoff functions of agents in Arthur’s simple model of path dependence
Brown (Berkeley Unix) Maroon (Microsoft)

R-agent ap + 11 bp+ T Ny

S-agent ag + s m, by + s n,

To remain completely in our urn world, imagine we flag new balls by the type of agent (R-
agents get a flag that they are from Rostock and prefer Berkeley Unix while S-agents are
from Stuttgart and prefer Microsoft). Both flags (agent-types) are equally likely. The agent
from Rostock has base preferences — think of them as the heights of two hills — of aj for
Berkley Unix (brown balls) and to b, for Microsoft (maroon balls), e.g. 15 cm and 10 cm
(as ay is always larger than by). People from Rostock have a natural inclination towards
Berkley Uniz. Each ball in the urn (each agent in the population) adds an additional
height of 1 cm to the hilltop depending on the agent’s technology choice (color), which can
be stretched by r (e.g. we assume the balls are of rubber and will be doubled as r equals
2). The new ball is now colored by the color of the higher stack. If the urn now held 5
brown balls and 6 maroon balls, the agent’s Berkley Unix (brown) hill piles up to 25 cm,
while the Microsoft (maroon) hill piles up to 22 ¢cm. Thus, in addition to all existing balls,
another agent turns to Berkley Unix (a brown ball is added to the urn). One can show
that an agent from Rostock (R-agent) would never choose Berkley Unix (a brown ball)
again, if the process pushes Microsoft (maroon balls) far enough ahead such that
n, — n, < (byp — ag) / . To understand this absorbing barrier (cf. Figure 9), imagine that
the process randomly samples three agents from Stuttgart (S-agents) in a row, all of which
turn to Microsoft (maroon balls). The new distribution over outcomes is now 5 people that
have selected Berkley Uniz (brown balls) and 8 people have selected Microsoft (maroon
balls). The next agent from Rostock entering the scene will now face a situation where the
height of the Berkley (brown) staple is 15 cm plus 5 x 2cm, which equals 25 cm. The Mi-
crosoft (maroon) staple has in contrast grown to 10 cm plus 8 x 2 ¢cm, which equals 26 c¢cm.
Hence, the new agent will select Microsoft (turns to a brown ball) despite differing base
preferences. As this is also true (and gets even worse) for all subsequent agents from Ros-
tock, the battle is over and the fraction of Microsoft adopters (maroon balls) will increase
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constantly. The same would be true if n, — n, > (by — ag) / s for S-agents. Consequently,
brown balls would come to populate the urn more and more. The urn converges upon a
steady-state equilibrium that equals the long run distribution over outcomes (1.0 0.0) or

(0.0 1.0).

A leads 1 D1ffe1:enccm
adoptions
of A and B
Both adopter types choose A
0 . R-types choose A. S-types choose B
Total adoptions
Both adopter types choose B. Lock-in
B leads * toB
Figure 9. Barriers in Arthur's path dependence model. Source: Arthur (1989:120)

The model has different interesting features. Firstly, it cannot be foreseen ex-ante which of
the two sets of balls will eventually come to dominate. The process is non-ergodic (path-
dependent) and equilibrium-dependent. One set of balls will always come to dominate but
a random walk determines which set of colors will eventually win. Secondly, once the ab-
sorbing barrier is passed, a stochastic process turns into a qualitatively-different kind of
process: a deterministic process in the form of a steady-state equilibrium (Lamberson and
Page 2012:192). The height of the absorbing barrier thereby simply depends on the size of
the network effects (7 and s) and the initial threshold of base preferences towards balls (ap
and by, or ag and bg respectively): the ratio of base preferences to network effects. It is in-
teresting to note that in a lock-in situation half of the population — at the limit — switches
to a color which conflicts with their natural inclination. Abstracting away the limitations
of two agents and two technologies, the model generalizes to the payoff function as depict-
ed in Table 5.

Table 5. Payoff functions of agents in a generalization of Arthur’s model

k" technology

i"-agent ay + b; my

In Table 5, we denote different sets of the agents (e.g. R-agents, S-agents) by the index ¢
and the set of technologies by k. Standalone utilities vary across types of agents and tech-
nologies while each agent type enjoys network effects (b,) in equal height for each of the k

technologies.

Relaxing the assumption of identical network effects across agent groups yields qualitative-
ly different results; it results in a biased Polya Process where one technology comes to
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dominate if the absorbing barrier for one technology is not yet passed (Leydesdorff and
van den Besselaar 2000:9f.). This opens up the space for “lock outs” (Leydesdorff and van
den Besselaar 2000).

The model has informed thousands of studies on standard diffusion, platform competition
and path dependence in technical and organizational contexts. It also informed many
works in the economics of IS field and especially on the software industry (Buxmann et al.
2011). Both, (a) formal and (b) quantitative-empirical approaches have been employed to
apply and extend the model. I discuss them briefly.

Formal approaches (a) — in more economic work on information systems — pick up the
topics of platform competition for gaming consoles (Liu et al. 2011a), software platforms
(Cheng et al. 2010; Lee and Mendelson 2007; Zhou et al. 2006), telecommunication mar-
kets (Beck et al. 2008), or social networking platforms (Draisbach et al. 2013). Researchers
have often suggested formal-analytical models drawing on the concepts of increasing re-
turns or lock-in. Simulations have been used less frequently in work drawing on Arthur’s
model. Exceptions are Weitzel et al. (2006), Beck et al. (2008), Draisbach et al. (2012).
Beyond its direct application in information systems, prior approaches apply Arthur’s
model in fields as diverse as innovation management (Frenken et al. 2012; Leydesdorff and
van den Besselaar 2000; Leydesdorff 2000), organizational rule adoption (Petermann et al.
2012), or institutional change (Crouch and Farrell 2004).

Quantitative-empirical approaches (b) often estimate network effect strength or transition
matrices in empirical markets, e.g. for Microsoft Windows and Linux operating systems
(Economides and Katsamakas 2006), the pre-packaged software industry (Lee et al. 2010),
interorganizational standards (Zhu et al. 2006) or the telecommunications industry
(Fuentelsaz et al. 2012). For reasons of relevance, I turn my subsequent attention to simu-
lation-based approaches.

Leydesdorff (2000): Agents in Interacting Selection Environments

Leydesdorff (2000) extends Arthur’s model of path dependence by bringing in multiple
selection environments. One may think of these selection contexts as market segments,
niches, regions, nations and so forth. From an evolutionary perspective (Nelson and Winter
1982), it is argued that market segments could shield a new technology to reach a critical
mass and “lock out” users to leave an existing path. Interaction effects could, however,

also reinforce a path even more.

For two selection environments their model is set up as follows: R and S-type adopters
arrive randomly as before and will additionally be assigned to market segments uniformly
at random. The agents’ base preferences and network effects coincide in these two markets
(C and D) differing across agent types (analog to Table 4). The authors then assess the
four combinations of markets and technologies (AC, AD, BC or BD) as depicted in Table
6. Given this basic model, the authors find (separate) lock-ins in both market segments.
Both markets often tip towards different technologies as markets evolve independently.
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Table 6. Agents in different selection environments. Source: Leydesdorff (2000:248)

Technology 4 Technology B
Market C AC BC
Market D AD BD

Next, the model introduces a coupling mechanism between technologies and market seg-
ments. In particular, network effects (r and s, cf. Table 4) and market segments interact
positively. The network effect is separated across markets; for example it becomes r; and 7,
for R-agents. Under these conditions, each adoption of one technology in one market now
increases the strength of the network effect of the given technology in the given market.
The network effect for R-agents towards technology A in market C will for instance in-
crease by 7, = 7, ¥ 1.001. The remaining setup is unchanged; if a technology is selected in

one market, the number of adopters is increased by one agent and so forth.

The model shows that the positive interaction of two stochastic processes enhances the
lock-in (Leydesdorff 2000:250). The system is expected to lock in to one of the four op-
tions. For three selection contexts (a “triple helix”), more complex outcomes occur
(Leydesdorff 2000:251).

Altogether, the model adds to our understanding by bringing in multiple selection con-
texts, which may be re-conceptualized as different segments of the airline industry. Within
this setting one market segment is the market of airlines adopting (booking-class versus
other) technologies and another market is the market of travel agents. The model by
Leydesdorff (2000) paves the way to modeling the interactions between both segments and
hints at possible path reinforcements.

Draisbach et al. (2012, 2013): Incorporating the Network Structure

I turn to a model by Draisbach et al. (2012, 2013) as it incorporates the network structure
more explicitly. Drawing on the strategic decision-logic from Arthur’s model in Table 4,
they assume that new agents will not be influenced by all other agents but only by a num-
ber of direct partners. Drawing on social networks as an example, the authors highlight the
need for incorporating direct influences from friends or peers for technology adoption.

To understand the model, imagine a network N(g) described by a real-valued adjacency
matrix n x n. The network is unweighted, undirected and simple. The network is static,
which means that the number of n nodes remains constant over time. The authors create a
network with a certain structure (e.g. a random network) and assign agents to nodes — one
may imagine slots filled by new agents — uniformly at random. Each new agent than se-
lects which ball it should select (turn into) based on the calculus as depicted in Table 7.

Table 7. Modified payoff functions. Source: adapted from Draisbach et al. (2012:5)
brown maroon

R-agent ap + 17 Yiengty b+ 7 Liengtmi

S-agent ag + 8 Yienglyi bs + 5 Yiengtyi
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Let ¢ be a binary (dummy) variable, which takes a value of 1 if node j is of the color which
agent 7 is currently assessing (e.g. brown), and 0 otherwise. Agent 7 thereby assesses all
direct neighbors j,,..j, in a radius of one step. After the agent has chosen a color, the game

is continued and another agent is assigned to the network uniformly at random and so on.

The authors are concerned with the number of agents for which the eventual decision con-
flicts with their base preferences, so-called “individual lock-ins” (Draisbach et al. 2012:8).
By the means of simulation, they find that the number of individual lock-ins increases with
the size of the network effects (r and s), which is not surprising. The upper boundary for
the number of individual lock-ins is half of the population (as in the Arthur model). For
different random networks they show that the link probability affects the extent of indi-
vidual lock-ins: if a network is densest, the number of individual lock-ins is highest. What
is interesting is that there is almost no difference between full density networks (where the
link probability is one) and networks with a link probability of 0.6. In sparser networks,

the curve of “individual lock-ins” for increasing network effects is smoother and fewer “in-

dividual lock-ins” can be observed.

2.5.4 Externalities Model by Page (2006)

Page (2006) presents another class of models on path dependence, which are decision-
theoretic in nature. These models set themselves apart from urn-type models by (7) being
sensitive to the (specific) sequence of events and () considering externalities as a (broad-
er) class of mechanisms that create path dependence. By externalities, Page (2006) refers
to — positive as well as negative — spillovers between activities or, in general, interdepend-

encies in the choices of actors.

An example is presented in Page (2014). Consider in connection a portfolio of projects
described by a vector {ABCDE}. Each of these projects has a value of 10 and creates ex-
ternalities as depicted in Table 8. The intersecting cell, A x A, depicts the (isolated) value
of 10. The other cells (e.g. A x B) show the size of externalities between projects, e.g. if
project A is conducted it spills over negatively to project B and causes a potential damage
of 20 units to the value of project B. This externality is, however, only realized if both
projects are performed.

Based on this example, Page argues that the specific sequences of events matters for the
set of outcomes, which will eventually result. Consider that the firm started by assessing
project A and its potential spillovers. Combining projects AB would not lead to a positive
payoff as the firm gets 10 for A, 10 for B, but both projects will conflict each other and
produce a negative externality of -20 (10 4+ 10 - 20 = 0). Combining project A and C, in
contrast, yields a positive payoff: the firm gets 10 for A, 10 for C, which is increased by a
surplus of 5 as both projects complement each other. Taking into consideration project D
also, the firm finds an additional spillover of -10 from doing AD together and no effect of
C on D, which results in a total situation of 10 + 10 + 5 + 10 (for D) — 10 (for AD) + 0
(for CD), which equals 0. Hence, the firm ends up doing D in addition to AC or not. Alto-
gether, the firm which started with project A might end up doing AC or ACD. Imagine
now the firm initially started with project B. As I have shown earlier, it would not com-
bine AB as there is no net value. Combining BC would also yield little value as there is a
negative spillover of -10. Doing BD, in contrast, would be highly beneficial indicated by a
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bonus of 30. Altogether, the firm finds itself in a very different position based on the initial
conditions — which activities they have put forward — but also the type of activities they
have selected along the path. With externalities, earlier projects can constrain or influence

later projects.

Table 8. Ezample matriz of project externalities. Source: based on Page (2014)
\ A B C D E

A 10

B -20 10

C 5 -10 10

D -10 30 0 10

E 10 -10 0 0 10

Think of the model’s outcome z, as sets of projects (as defined formally in chapter 2.5.1)
and think of different decision rules 7. We used a decision rule where a project was
approved if its expected value was larger than zero. A decision rule is now history-
dependent if there exists a reordering — which is defined as a permutation of a sequence of
projects — of some finite set of projects that makes a different set of approved projects

beneficial.

The model is sensitive to the specific sequence of events. Consider in this connection the
Arthur model as introduced in chapter 2.5.3. Let’s assume, we would set the standalone
utilities to zero. Imagine there are two brown (Berkley Unix) balls (adopters) and four
maroon (Microsoft) balls (adopters). The distribution over outcomes is (1/3, 2/3). The
next agent entering the scene will calculate utilities irrespectively of whether the prior
sequence has been R-R-R-R-B-B, R-R-R-B-B-R, R-R-B-B-R-R or so forth. A decision
maker in the externalities model, by contrast, assesses chunks of projects resulting maybe
in different orderings based on the starting point.

2.5.5 Models on Standardization Problems

I turn to a class of models on standardization problems (Buxmann et al. 1999; Domschke
and Wagner 2005) originating in economic work on standardization (e.g. David and
Greenstein 1990; Farrell and Saloner 1992; Besen and Farrell 1994) and transaction costs
(Williamson 1981). This class of models is important as it links strategic agents with a
network perspective. Most of them are, however, concerned with central optimization

problems.

The standardization problem conceptualizes standardization as a process in which agents
balance their utility when standardizing against standardization costs (cf. Buxmann et al.
1999; Weitzel et al. 2000). The authors argue that standardization benefits often arise from
compatibility with potential standardization partners (cf. chapter 2.2.1). One may think of
the introduction of an EDI document exchange standard where standardization benefits
result from reductions of postal charges or eases in transaction speed. Similarly, an ERP
implementation may reduce interface and personnel costs (Buxmann et al. 2011:40f.). On
the other hand, implementing a standard causes standardization costs. These arise from
implementing, licensing, and integrating the standard (Buxmann et al. 2011:41).
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Similar to Arthur’s model of path dependence, standardization models thereby assume that
an agent’s utility decomposes to a standalone utility and a network effect (Buxmann et al.
2011:40). Regarding the latter, the authors observe that an agent #'s utility from standard-
ization depends on decisions by j,,,j, related agents. The standardization problem then

arises from the interdependencies in agents’ decisions (cf. Besen and Farrell 1994).

Drawing on graph optimization, the (basic) standardization problem is formulated as a
discrete optimization problem (cf. Domschke and Wagner 2005). According to the formula-
tion by Buxmann et al. (2011:43), the objective is to find an optimal balance between
standardization costs and benefits, which is achieved by maximizing the standardization

net benefit F for the decision variable x according to Equation 2.4 as follows

mazx F(z)=X1; (bi-a;)z;- X7 iy ¢ (1- x; 7;) (2.4)

Ve
s.t. z;e {0,1}

where z; denotes a binary variable that takes the value of ‘1’ if agent ¢ standardizes. Only
in this case the base utility a; is realized and standardization costs K, accrue. Information
costs ¢; — which can be reduced by standardization and which can hence be interpreted as
(economic) network utilities — accrue if and only if both (potential) standardization part-
ners 7 and j standardize, shown by binary variables z; and z;. The linear program attempts
to maximize the difference between standalone utilities and network utilities for all n

agents in the network.

To understand the standardization problem, imagine a firm assessing a new document
standard. The central observer, e.g. a CIO or some other manager, has distilled costs and
benefits as depicted in Figure 10. In the model, nodes represent entities such as organiza-
tions or organizational units within a company. While the upper number within each node
denotes each agent’s index, the lower number shows the difference between each agent’s
standardization costs and standalone utilities. Both attributes are node-specific and can
hence be netted. In contrast, information costs accrue between agents: they may be saved
by standardization across the link between node ¢ and j. Within this frame, a central ob-
server can compute whether it is beneficial to standardize or not, which does not necessari-
ly imply that all agents enjoy positive returns from the standardization, as illustrated by
node 4. By using a common communication standard, node 2 and node 3 will save large

information costs (Buxmann et al. 2011:42).

While a vivid discourse on extending central standardization models exists, e.g. by linking
it with work on converter technologies (Wiistner 2005) or service-oriented architectures
(Widjaja 2011), I believe it is more fruitful to consider decentralized models as in distrib-
uted infrastructures central control has only limited substance. In the words of Weitzel et
al. (2006:494), optimal solutions “often fall short as decentralized agents’ incentives differ
from what a central planner’s aggregate objective function may suggest”. I turn to a model
by Weitzel et al. (2006) as a reference point.
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Figure 10. Ezample for standardization problem. Source: Buzmann et al. (2011:41)

A Unified Model of Standard Diffusion (Weitzel et al. 2006)

Weitzel et al. (2006) view standardization as a problem on a directed graph N(g). E; de-
notes the ex-post standardization utility for agent ¢ modeled as the excess of direct net-
work effects ¢; with partner j over standardization costs K, Agent ¢ standardizes if the ex-

post standardization utility E; > 0. Equation 2.5 captures the agent 7's utility function:

Where c; is the (network) utility of agent ¢ from standardizing with agent j realized if and
only if j also standardizes (indicated by the binary variable z;) decreased by agent s
standardization costs K, The benefit c;is summed over all of 7’s peers jj,..,j,. Standardiza-
tion costs K; will be attributed to nodes while standardization utilities will be assigned to
interactions between nodes 7 and j as a weight of the link .

Figure 11 shows a simple two-agent example (Weitzel et al. 2006:494). One may think of
two firms, one of which (firm 1) considers joining the EDI network of the other firm (firm
2). If the small firm (firm 1) decides in favor of the implementation, it has to bear stand-
ardization costs of K,=10 units. As the former firm is smaller, the utility it derives from
the standardization will be small (9 units), compared to the larger gains of the second firm
(30 units). At aggregate, standardization costs of 30 compare to utilities of 39, making
bilateral standardization beneficial. From the (decentralized) perspective, however, firm 1
would not standardize since the costs (K;=10) exceed the standardization gains (c¢;,=9).
Because in this case it has complete information, firm 2 would also not standardize
(Weitzel et al. 2006:494f.).

C12= 9

Cy = 30

Figure 11. Two agent standardization example. Source: Weitzel et al. (2006: 494).
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In the model, agents have no further information on its partners reasoning. Thus, they
build expectations on the other agents’ possible decisions. Each agent determines an ex-
pected value Expected [EJ. The agent now standardizes if Exzpected [E;] > 0. It incorpo-
rates each partner’s standardization costs K, the number of partners ¢, and standardiza-
tion utility with partners c;in a probability p; replacing the binary variable z; Equation

2.6 gives the expanded calculus:

. cii@i-K;
Expected[E] =X, 1, vy Dy Cij-Ki  with p,= (M) (2.6)

iy
s.t. ¢y, >0
That is, agents standardize if the utility from the standardization outweighs the costs.

Thus far, the model assumed binary (yes or no) decisions to standardize. In an extended
model, agents select one out of ¢ technologies with the highest (real) value. In general, q
can represent any discrete number of technologies. To model multi-standard problems, the

agents’ decision function from Equation 2.7 is then adapted such that

K
Expected[Eiq/:Zj in N(o) (u) “cii-Ky, (2.7)

Cji'Pj

where ¢ denotes the technology and K, the standardization costs for agent ¢. K, is the
standardization costs for agent j for technology ¢. Since standardization costs vary across
technologies, one can think of these standardization costs as different efforts to get rid of
legacy applications, data and practices when implementing the new standard (Weitzel et

al. 2006).

In simulations, standardization costs K; are distributed to nodes randomly at normally (i.e.
by a mean and a standard deviation). The standardization utility c;is distributed random-
ly at normal to links. As a result of the initial standardization, agents decide in favor of
one technology. Agents may switch in a multi-standard situation as agents gain confidence
in their neighbors’ actual choices (Weitzel et al. 2006: 495).

The model illustrates that increases in the ratio of standardization costs versus benefits
may cause a standardization gap in which agents will not standardize despite global effi-
ciency of standardization (Weitzel et al. 2006:500). Furthermore, excess inertia can arise
where agents will wait for their partners to standardize and as a consequence nobody
standardizes. Furthermore, the authors begin to illuminate the impact of different network
topologies on standardization patterns. They show that in close topologies — in which links
between agents are drawn according to probabilities as a function of their proximity on a
grid structure — domino effects will not occur as some components of the network are un-

connected.
A Model of Direct and Indirect Network Effects (Beck et al. 2008)

Similarly, a study by Beck et al. (2008) examines how individuals adopt mobile communi-
cation standards as a function of network size-dependent indirect network effects and di-
rect network effects contingent on an agent’s position in the network. The study assumes
simultaneous expectation building by all agents and considers several network structures.
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2.5.6 Models on the Diffusion of Innovations

I turn to a set of models on the diffusion of innovations related to Roger's (2003) diffusion

theory.
The Bass Model

An early account — that is still a good starting point — is the Bass model (Bass 1969). Alt-
hough the model does not capture interactions among individual agents directly, the model
incorporates some aspects of social influence. The model is built on two key parameters: a
rate of spontaneous innovation and another rate at which the agents imitate other agents
or adopt because others do so (Jackson 2008b:187). One may also interpret the former as a
rate at which external shocks or triggering events occur and the latter as a sort of influ-
ence-based contagion or peer effect (Jackson 2008b:187). I refer to a dynamic process with
discrete time intervals t (cf. Equation 2.1). Let F(t) be the fraction of agents having
adopted the innovation by time ¢. The Bass model can then be described by the following

difference equation
Fty=Ft-1)+p(1-(F(t-1)+q(1-Ft-1)) F(t-1) (2.8)

where p is the rate of innovation and ¢ is the rate of imitation (Jackson 2008b:187). The
expression p (1- (F(t — 1)) is the rate of innovation times the fraction of agents that have
not yet adopted. The expression ¢ (1 — F(t — 1)) F(t — 1) captures the mimicry process,
where the rate of imitation is multiplied with two factors. The first factor, (1 — F(¢ - 1)), is
again the fraction of agents that have not yet adopted, and the second factor, F(¢t - 1), is
the fraction of agents that have already adopted and can therefore be imitated.

The Bass model can be made to fit a variety of diffusion curves such as the typical S-
shaped curve in Roger's (2003) theory on the diffusion of innovations by varying the pa-
rameters p and ¢. According to Jackson (2008b:187), the ratio of ¢ and p is critical in de-
termining the overall shape of the diffusion curve: initially, there are no agents to be imi-
tated, F(t) is close to zero, and hence the equation can be approximated by p (Jackson
(2008b:188). As time progresses, more agents can be imitated, which leads to the increase
in the diffusion curve that can be interpreted as a self-reinforcing process. A balancing
process occurs as time progresses, since there are more agents around that can be imitated
but fewer agents to do the imitation (Jackson 2008b:188). Hence, the diffusion process
saturates as there are no longer agents around that can imitate (Jackson 2008b:188).

Agent-based Models on Innovation Diffusion: Focus on Threshold Models

Recent work in a tradition of agent-based models has suggested going beyond variables on
the systemic level and considering instead individual level interactions among heterogene-
ous agents to explain diffusion outcomes (Kiesling et al. 2011). In their review, Kiesling et
al. (2011) identify three approaches: (1.) threshold models, (2.) utilitarian models, and (3.)
state-transition models. Threshold models (1.) mostly assume that agents adopt if a cer-
tain proportion of an agent’s link partners have adopted (Valente 1996). The threshold is
typically varied across the population and is either deterministic — agents decide to adopt
deterministically once the threshold is reached — or probabilistic — i.e. agents adopt with a
certain probability once a threshold is exceeded (Kiesling et al. 2011:193).
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An example in the former tradition of deterministic thresholds is Valente and Davis
(1999). The model brings in the social network structure and outlines a method to acceler-
ate the diffusion of innovations using opinion leaders — being announced by members of the
community as important by a questionnaire. Their claim on the effectiveness of opinion
leaders is substantiated by utilizing a computer simulation that depicts the percentage of
adopters as a function of time for varying initial adopters. The model assumes that each
agent in the network (N = 100) has a social neighborhood and adopts if a certain fraction
of its peers (15 percent) adopts. Based on whether the first 10 adopters were opinion lead-
ers, randomly picked, or marginal — those being least nominated — diffusion curves and
outcomes varied; the opinion leader strategy outperforms the other strategies. An example

that draws on probabilistic thresholds is Bohlmann et al. (2010).

Utilitarian approaches (2.) mostly draw on a tradition of network effects as discussed in
the previous chapter. Therefore, I do not discuss them in this section. State-transition
models (3.) mostly draw on a tradition of infectious disease models such as the SIR (sus-
ceptible, infected, and resistant) or SIS (susceptible, infected, and again susceptible) mod-
els (Kiesling et al. 2011:194). These models build on probabilistic transitions between two
states to explain adoption behavior. As existing models are highly stylized (Jackson
2008b), I do not include them for further consideration.

2.6 Comparison of Formal Models

I have introduced several models of path dependence and standard diffusion. This enables
me to compare these models along several dimensions and to draw important conclusions.
Within the discussion, I particularly focus on the extent to which existing models incorpo-
rate different aspects of the network structure in explaining diffusion outcomes.

First, self-reinforcing processes are fundamental for path dependence. I believe, in IT infra-
structural contexts, it is vital to discern two network-dependent effects as shown in Table
9": network-size effects (in short, network effects) and spillover effects. I showed that the
traditional approach to standard diffusion has been network effect models assuming in-
creasing utilities for agents with increasing adoption rates of a technology in a network.
The benefit of adoption for an individual agent increases as a function of the network size,
which is also the backdrop of seminal path dependence models (Arthur 1989; Leydesdorff
2000). Recent research has argued that the assumption that the network size N — the
number of existing standard adopters — is all that matters for standard diffusion, is too
restrictive (cf. Weitzel et al. 2006; Afuah 2013). This work particularly argued for consider-
ing individual agent interactions in explaining standardization outcomes. I have introduced
work on the diffusion on innovation that showed convincingly how spillover effects shape
the diffusion trajectory of a technology. Traditional path dependence models have not tak-
en individual level contagion processes into account. In a fully-meshed network, network

effects and spillover effects cannot be distinguished’’ as both fall together and it remains

Y My research suggests that one should also account for adaptation (or learning) effects that work
on an individual node or agent level but as my main focus is different forms of interactions across
nodes or agents, I exclude these processes from further consideration.

" A similar problem to discern average-group influences and peer effects has long been central to
sociology; both cannot be distinguished when an agent is linked to all other agents in a network,
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unclear whether influences spill over from direct interaction partners or whether they are a

consequence of the standards spread in the network.

Table 9. Self-reinforcing mechanisms in IS standard diffusion research
2 Definition Mechanisms Theoretical
antecendants

Network | Incentive to adopt a Credibility of standard; | Arthur (1988); Arthur

effects standard (or take any | installed base (1989); Hanseth (2000);
action) increases as a advantages; availability | Katz and Shapiro
function of the of complementary (1985); Liebowitz and
network size services and products Margolis (2013)

Spillover | Incentive to adopt a Conformism; peer Aral et al. (2009);

effects standard (or take any | pressure, coercision and | Jackson (2008a); Arthur
action) increases as a mimesis; learning from and Lane (1993);

function of the extent | the experiences of others | Narduzzo and Warglien
to which others do so (1996)

A second relevant dimension is the network topology — the structure of linkages defining
the underlying network. Traditional models of path dependence, such as Arthur’s (1989)
model and important extensions (Leydesdorff 2000), can be re-casted as a fully-meshed
network in which all agents are linked (Draisbach et al. 2013). This form of interaction is
very particular and does not capture many real world interactions. I have presented several
models utilizing other, non-complete network topologies. In addition to random networks,
which have often been used as a constructive baseline (i.e. in Weitzel et al. 2006; Beck et
al. 2008; Draisbach et al. 2013), presented models often extend their approach to one or
two other network topologies. Draisbach et al. (2012, 2013) draw on formation algorithms
for two social network topologies. Weitzel et al. (2006) discuss implications from a simple,
grid distance-based — network topology. Valente and Davis (1999) utilize an empirical so-
cial network. While many important network topologies have been discussed, I see a par-
ticular need for research on mixed forms between preferential attachment and random
networks (hybrid models) as they enable better fitting to important real world network’s
characteristics, such as degree distributions, clustering coefficients, and average path
lengths (Jackson 2008b).

which is known as the “reflection problem” in seminal studies on social interactions from sociology
(Manski 1993). For concreteness, think of a class of students in which each student is influenced by
every other student in the class (e.g. in his or her decision which movie to watch). In such situation
it may not be possible for an observer to distinguish whether the average taste of all students may
have influenced the student or whether this was due to specific influences from particular students
within the class. In fact, both forms of interaction fall together. In a situation in which the students
is, however, both influenced by average characteristics of the class as well as by particular peers in
his reference group, observing the outcome of the experiment will enable the observer to discrimi-
nate between both types of influence.
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A third important dimension is the approach to individual agent decision-making. The
models differ in their approach to individual agent decision-making. One approach — that
has been commonly used in standard diffusion models which come from a tradition of cen-
tralized optimization (e.g. Weitzel et al. 2006; Beck et al. 2008) — is that all agents in the
network decide or build expectations simultaneously; then, the simulation round is closed,
all decisions are collected and implemented. A second approach — commonly used in mod-
els of path dependence — is that agents decide sequentially (Arthur 1989; Draisbach et al.
2013; Leydesdorff 2000); one agent enters the network, decides, and then again the next
agent enters. Based thereupon, sequential decision-making could happen randomly or be
dependent on the positioning of the trigger node in the network. I conclude that none of
the presented approaches consider the actual trajectory of the ‘domino effect’ through the
network. I believe that there is a need for research on the effect of the position in which a

triggering shock penetrates the network on the diffusion outcome.

Growth is another important dimension. In static networks, nodes are created at the ini-
tialization and wired according to certain probabilistic rules (Jackson 2008b). Most of the
presented models fall into this category (Beck et al. 2008; Draisbach et al. 2013; Valente
and Davis 1999; Weitzel et al. 2006). One can conceptualize urn-type models, such as the
model by Arthur (1989) and Leydesdorff (2000) as a growing network in which agents
form links to all other agents in the network. Urn-type models, however, assume that the
number of formed links grows as a function of the network size. This approach is very lim-
ited. Existing models have not yet explored the impact of different growth logics — how
agents that enter a network form links to other agents — on diffusion outcomes.

Finally, models also account differently for individual agent heterogeneity. One approach —
found only in a limited number of early models on the diffusion of innovation (e.g. Valente
and Davis 1999) — is to assume identical thresholds (or preferences) for all agents in the
network. To maintain analytical traceability, early path dependence models have restricted
themselves to few, heterogeneous groups of agents (Arthur 1989; Leydesdorff 2000). Recent
models from standard diffusion have moved towards heterogeneous agents, where attrib-
utes such as standardization costs are distributed uniformly at random across agents (Beck
et al. 2008; Weitzel et al. 2006). Previous models have, however, utilized one-dimensional
representations of agent attributes. I see a need for research on how agent attributes inter-
act in shaping diffusion outcomes. Table 10 summarizes the comparison of the models

along the discussed dimensions.
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Table 10. Comparison of selected path dependence and standard diffusion models
Network Individual Heterogeneous Network influence processes | Growth Path breaking
topology age;t decision | agents Network Spillover Interventions
rmaxing effects effects
Innovation | Bass 1969 no n/a n/a yes no no no
diffusion . ; .
Valente 1999 | specific simultaneous | no no yes no opinion leaders
Path de- Arthur 1989 fully-meshed | sequential, one-dimensional | yes no simple no
pendence random
Leydesdorff fully-meshed | sequential, one-dimensional | yes no simple no
2000 random
Draisbach specific sequential, one-dimensional | no yes no no
et al. 2013 random
Standard | Weitzel et al. | specific simultaneous | yes yes no no no
diffusion 2006
Beck et al. specific simultaneous | yes yes no no no
2008
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Chapter 3

Research Gap

This chapter motives my research that aims at improving existing models in information

systems research to better understand problems of IT infrastructure path dependence.

3.1 Motivation for an Alternative Modeling

Previous models of path dependence and standard diffusion enable a general understanding
of path building processes in airline distribution IT and organizational IT infrastructures
through the notion of network effects. However, I gained the impression that the limita-
tions of existing models call for a recasting. Expert interviews (refer esp. to 0S10 and 0S11)
confirmed my impression that traditional path dependence models, i.e. Arthur 1989, char-
acterize outcomes from diffusion processes too starkly. Traditional models of path depend-
ence overestimate the susceptibility of a network to lock-ins as network influences remain
undifferentiated across different agents. These models tend to a broad “winner-take-all”
view while leaving the question unanswered of how paths build up in segments, groups, or
clusters. I contend that an alternative modeling must account for individual level interac-

tion patterns and different growth logics.

Consider the example of organizational IT infrastructures. Consistent with Aier et al.
(2009) and Matthes (2008), my research suggests that organizational IT infrastructures, for
mid-sized companies, consist of several hundreds or even thousands of information systems,
cobbled together in nontrivial ways. Organizational I'T infrastructures evolve over extend-
ed time periods and new systems and extensions — vital to fulfill changing business re-
quirements — are constantly added by central IT departments and business units. Stand-
ards spill over from one system to another as they enable compatibility across depart-
ments, actors, and systems. Complexity builds up over time and standards increasingly
diffuse. Fundamental changes move out of reach. For such systems, assuming a static in-

teraction structure among agents is too restrictive.

In addition, also organizational I'T infrastructures in airline distribution illustrate my main
argument that interaction patterns and growth matter. Recall that, in discussing problem
areas with respect to booking classes, I illustrated how the booking class standard increas-
ingly diffused in airline activities over time: revenue management, customer loyalty,
codesharing, and corporate customer contracts are only a selection of the aforementioned
areas drawing on a large number of IT systems. These systems evolved over decades and
interviews provide evidence for legacy in airlines’” I'T infrastructures tracing back until the
1960’s.

Turning to the interorganizational level, recall that booking classes connect several hun-
dred or thousand airlines having various codeshares and other alliance relationships. The
significance of alliances follows an increasing trend. The three foremost alliances combined
— Star Alliance, Sky Team, and Oneworld — flew nearly 73% of all passengers worldwide by
March 2009 (Hu et al. 2013). The aggregate number of members grew from 33 in 2003 to
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52 in 2010 (Hu et al. 2013). Since its foundation in 1997, Star Alliance members entered

and dropped out with a yearly rate of 15.9%, exemplifying alliance agglomeration.

3.2 Research Questions

3.2.1 Path Building
I suggest as a first research question:
Research question 1:  How does a network’s growth logic affect path building?

Beyond its direct implications for research on IT infrastructures, this question is im-
portant, because growth processes are essential in many organizational settings. On a mar-
ket level, organizations that enter a field can be portrayed as nodes forming links to other
nodes. Alliances, consortia, or joint ventures compete for resources, power, status and in-
fluence (Burger and Sydow 2014; Provan et al. 2007; Sydow 2010). The moment when an
organization enters a field or group is often a moment of technological choice. Pressure to
conform can force the organization to the ‘de-facto’ standard solution in the alliance rein-
forcing the overall diffusion of technology in the group. A variety of outcomes from diffu-
sion processes such as islands of shared technologies or local clustering makes me believe
that the conceptual underpinning of path dependence theory — urn-type models focusing on
the network size — is too restrictive. Urn-type models assume fully-meshed networks. New
agents link to all other agents in the network. As a consequence, they mischaracterize im-
portant features of growth processes such as the degree of interaction or preferentiality.
Paul David, a pioneer in research on path dependence, for instance, outlines a path-
dependent process in which complementary elements in a growing system tend to cluster
together more and more closely over time, which creates misfit costs for ill-fitting new ele-
ments (David 1994). However, conceptualizing such process is beyond the power of urn-
type models.

Network formation — a subfield of network analysis — provides models of growing networks
explaining how nodes entering a network select who to interact with (Jackson and Zenou
2013; Jackson 2008b). Network formation models have a greater power than traditional
urn-type models as they can incorporate selective influences and discern different types of
network influences, which is not possible with fully-meshed urn-type models. Newly im-
plemented systems or extensions to existing systems may be understood as nodes entering
a network that form links to other nodes. These links may be formed uniformly at random
but often times they will form preferential - proportional to the importance or centrality of
existing systems — or in other, more complex ways. The main proposition that I want to
examine is how a network’s growth logic affects the number of available options (e.g.
standards, action patterns) in the system.

3.2.2 Path Breaking

The example of global airline distribution IT points to the interesting question of how ex-
isting paths can be extended, complemented (or even replaced in the long-term) by creat-
ing a new path utilizing more effective standards. I thus suggest a second set of research

questions:
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Research question 2:  (a) How will interaction patterns affect whether a new standard

will diffuse to a nontrivial fraction of agents?

(b) Which agents should be targeted by network interventions to

facilitate a new standard’s diffusion?

This first part of this question (2a) is of obvious importance. Beyond the direct application
to airline distribution standards, it is closely related to other standardization problems
such as EDI/XML adoption in retailing (Lyytinen and Damsgaard 2001; Wareham et al.
2002) or the adoption of data standards in the financial service industry. Furthermore, it is
clear that the topology of linkages can be very important in determining the outcome. I
assume that networks with disconnected, closed topologies will exhibit different diffusion
patterns than, for example, fully-meshed networks (Weitzel et al. 2006). Moreover, net-
works with “power law” structures — that feature several important hubs — might foster
different diffusion patterns than networks in which organizations have roughly the same
degree (Elliott et al. 2014).

The second part of this question (2b) focuses on targeted intervention strategies. Trigger-
ing events, may it be random or targeted interventions, play an important role in any path
constitution process (Sydow et al. 2012). While most research on path breaking has so far
been devoted to clarify conceptual issues, a recent stream of research also began to explore
systematically the effectiveness of different path breaking strategies (Vergne and Durand
2010). Going beyond the question of whether paths can be broken to how this can be done
most effectively is important as the economic use of resources is vital in any organizational
context. Often, it may be useful to focus on selected “key players” that drive the overall
diffusion of a standard most effectively (Ballester et al. 2006; Borgatti 2006). Most favora-
bly, identifying such “driver nodes” could allow for full control over diffusion outcomes
(Liu et al. 2011b). The question is of further theoretical importance as it contributes to a
recent and fruitful stream of research on targeted network interventions (Valente 2012).
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Part 11

Path Building
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Chapter 4

Standard Diffusion in Growing Networks

4.1 Modeling Preliminaries

I suggest a model of standard diffusion in a network of N nodes linked through different
forms of interactions'. I envision two examples to operationalize the model. Firstly, think
of an organizational I'T architecture where business units raise demands for I'T support. In
the model, nodes operationalize in new systems or extensions of existing systems building
upon and linking to particular existing systems. Interactions materialize in specific tech-
nical interfaces. Secondly, think of a network of airlines having codesharing agreements.
Nodes operationalize in particular airline organizations and links represent ties of
interorganizational collaboration such as codeshare agreements. Codeshare agreements, for
instance, affect technology choice, as flight availabilities must be exchanged between part-
ners based on common distribution standards (Hu et al. 2013). In the model, I assume
positive network influences: the presence of interactions increase an actor’s incentive to
select the technology used by its partners. This is plausible for organizational IT infra-

structures as well as platforms for airline cooperation.

Networks can be classified as static or growing (Jackson 2008b). Studying standard diffu-
sion in the former will serve as useful when the network is in stasis and does not show
many fluctuations. All agents are created at the same time and then “links are drawn be-
tween them according to some probabilistic rule” (Jackson 2008b:78). Most predecessors in
standard diffusion subscribed to this approach (Buxmann et al. 1999; Draisbach et al.
2013; Weitzel et al. 2000, 2006). I, however, find a second class of models — in which new
agents enter the network over time and attach to others — more useful as I am interested
in how growth affects path building.

My starting point is a hybrid random growth model (Jackson and Rogers 2007) in which
new agents form links by attaching to a certain fraction of agents uniformly at random
and to another fraction as “friends-of-friends”, chasing adjacent links from their random
encounters. Hybrid growth models set themselves apart from other random growth models
by their ability to match realistic network structures of growing random, preferential at-
tachment and mixed networks regarding clustering coefficients, average path lengths, and
degree distributions (Jackson 2008b). Few models have combined non-random, growing
networks with strategic agents that select technologies based on a cost-benefit analysis
(Jackson 2008b).

4.2 Operationalization of the Network Growth Model

In the following, I introduce the main ingredients of the model: (1.) network initialization,
(2.) network formation, and (3.) strategic agents.

" Refer to Fuerstenau and Kliewer (2014) for an earlier version of the model published at ECIS
conference
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4.2.1 Network Initialization

As a starting point, I suggest creating an initial (static) network N(g) that consists of a
fixed set of n nodes and links between those nodes. These links can be described by a real-
valued n z n (adjacency) matrix g, where g; represents the (possibly directed and
weighted) relation between node ¢ and j (cf. Jackson 2008b:21). Links denote interactions
exhibiting a positive externality to adopt the technology used by an agent. I will restrict
the analysis to undirected networks in which g; = g for all nodes 7 and j. It will be stand-
ard that the values in g will be restricted to 0 and 1; hence, the network is unweighted. As
shown in Figure 12, the network is initialized using different standard network types de-

scribed in the following.

Lattice

Preferential
attachment

Figure 12. Different types of initial networks with nodes (circles) and links (lines)

Static Random Networks

As the most basic network type, I refer to Poisson random networks (cf. Jackson 2008b:9-
14). In random networks (cf. Figure 12d), each link is formed with a given probability A,
and the formation is independent across links (cf. Jackson 2008b:9). This serves as a useful

base case when no other theory or observations exist (cf. Jackson 2008b:77).
Preferential Attachment Networks

As another useful network type, I refer to preferential attachment networks (cf. Jackson
2008b:130-134). Preferential attachment models (cf. Figure 12f) will be supportive as a
convincing logic explicates why such networks form: new nodes in a growing network at-
tach preferentially to nodes which already show more importance. This is reflected in the
model of Barabasi and Albert (1999) by the fact that new nodes attach to nodes with a
probability proportional to their degree. Consequently, the distribution of degrees shows
“fat tails” — which means that there are more nodes with a very high degree than usually
expected from a random growth process. The distribution of degrees exhibits another in-
teresting feature: more nodes with lower degrees will be observed as many nodes will not
receive as much attention as under random growth (Jackson 2008b:131). Consistent with
Barabasi and Albert (1999), I expect that preferential attachment is, especially in techno-

logical contexts, fairly common.
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Centralized vs. Decentralized: Star, Lattice, Circle, and Small World Networks

Further network types can be grouped according to their degree of centralization (Borgatti
et al. 2009:893). Star networks (cf. Figure 12b), for instance, are strongly centralized as
they join together all power or influence to a single player. This player channels all com-
munication in the network. Imagine a star network with a large “core” organization sur-
rounded by many smaller “peripheral” organizations, each of which is linked to the core
organization. This could for instance emulate a network of airlines attached to a single
GDS platform. Lattice (cf. Figure 12a) or circle networks (cf. Figure 12¢) are, in contrast,
more decentralized as each node depends only on m direct neighbors. A mixed form is
small world networks (cf. Figure 12e) in which a circle is rewired, which results in smaller

average path lengths and diameters (cf. Watts and Strogatz 1998).
Technology Diffusion in Initial Network

I am interested in how growth affects path building. Consequently, the way in which tech-
nologies diffuse in the initial network is not central for my approach. However, initial con-
ditions will often predetermine path building processes before further growth sets in (cf.
Sydow et al. 2009). Think of a biased process as a result of a network imprint (Johnson
2007; Marquis 2003; Schreyoge and Sydow 2011), or shadow of the past (Sydow et al.
2009). Moreover, the mechanics of many network formation algorithms such as preferential

attachment require a network to already exist before further growth can set in.

Consequently, we have to consider that the initialization procedure can create an initial
upfront bias towards one technology which would predetermine the subsequent path
building process (Page 2006). Beyond the obvious random initialization with a given prob-
ability A and random assignments of technologies, I thus suggest two simple ways to assign
technologies in the initial network. Firstly, a minimal set strategy and secondly a strategy
to diffuse technologies from hubs. Regarding the former, I create a minimal set of nodes
equal to the number of technologies (k) but also not larger than that. Assume, for in-
stance, we consider two technologies competing for adoption. One may start with the
smallest possible network of two nodes and assigns one technology to each of the nodes at
random. This avoids any upfront bias towards any technology that could influence the

trajectory of the subsequent path building process.

Algorithm A.1 shows how to initialize a minimal, unbiased set of agents. Lines 1-3 set up k

nodes and k technologies. Lines 4-8 assign exactly one exclusive technology to each node.

Algorithm A.1 Initialize a minimal set of nodes

k := user-input where k is the number of technologies
to setup
Ist-technologies := create list of length % from sufficiently large list of all technologies
create k nodes
i:=0
while ¢ < length Ist-technologies do
foreach item 7 sort nodes do st-tech := item 7 Ist-technologies end foreach

end while

end setup
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There are, however, drawbacks from initializing minimal sets. First and foremost, as de-
scribed by Arthur (1989), early events will rapidly predetermine the process and one may
hence see only little influence from the pre-existing “installed base”. In contrast, standardi-
zation seldom starts from scratch (Hanseth 2000); standards will often already exist when
further growth sets in. Another way to initialize the network is thus to simulate the previ-

ous diffusion process based on assumptions on the pre-standardization history.

Observed tendencies towards clustering around important hubs in the empirical examples
suggest another strategy. I find it superior to create an initial preferential attachment net-
work, assign different technologies uniformly at random to hubs and then to simulate a
contagious process triggered from the hubs. Thus, I introduce Algorithm A.2. The algo-
rithm firstly creates a preferential attachment network of n nodes. Then, a fraction of all
nodes with above-average degrees — the hubs — are selected and technologies are assigned
uniformly at random to these hubs (lines 3-6). Then, the algorithm treats these predeter-
mined nodes as trigger nodes and triggers a cascade running through the entire network.
Each of the trigger nodes’ neighbors is stored in a list (lines 8-10) and then these nodes
assess which technology they should adopt by computing for each technology the number
of adopters in its neighborhood (lines 11-17). Then, this particular node adopts one of the
technologies with the maximum number of adopters in its neighborhood. The cascade as-
sesses recursively whether there are any nodes left which have not yet been assessed and
potentially adds them to the list of nodes that still need to be checked (from line 18). This
process continues until the entire reachable network is assessed. Finally, the algorithm
converges. As the outcome of the algorithm, any node within the components in which a
trigger node resisted has been assigned to exactly one technology.

Algorithm A.2 Diffusion of technologies from triggering hubs

1: compule average-degree in the network

2: st-tech := empty for all nodes

3: foreach node with count link-neighbors > average-degree do

4: st-tech := one-of Ist-technologies,

5: reached? := true

6: end foreach

T Ist-radiusl := all nodes with st-tech = one-of Ist-technologies

8: foreach item Ist-radiusi do

9: perform a radial search that adds all neighbors in radius 1 to lst-radiusl

10: end foreach

11: i:=0

12: while ¢ < length Ist-radius! do

13: foreach item i do

14: check which technology to adopt by assessing the agent’s payoff function
15: reached? := true

16: end foreach

17: end while

18: if any node with not reached? then

19: perform a radial search that adds all neighbors in radius 1 to Ist-radiusl
20: else converge by checking for each node in the Ist-radiusl which technology to adopt
21: end if
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4.2.2 Network Formation

My theoretical foundation to operationalize a growing network is a hybrid random growth
model as described by Jackson and Rogers (2007). I construct a simple and yet powerful
growth process: each period one agent 4, i,.., i, enters a network and links to m agents.
Let m designate the degree of interaction where m € N'. Let a designate the degree of
preferentiality (o € R | 0 <a <1).

What is the rationale for different degrees of interaction (m)? Technology adoption will
certainly depend on whether an agent is influenced by a few close peers or by a broader
community of distant others. Heavy interactions with many distant others are usefully
distinguished from low levels of interaction where few peers influence an agent’s decision
(cf. Borgatti et al 2009).

The next step will operationalize with whom to interact. The simplest way to do so is the
extent to which links form uniformly at random or preferentially. Drawing on Jackson and
Rogers (2007), new agents in this hybrid model form « - m links uniformly at random' and
(I — a)- m links by searching locally through the structure of the network (e.g. meeting
friends of friends). Consequently, m splits into random meetings (m,) and network-based
encounters (m,). Figure 13 depicts the idea: Figure 13a shows the elements being picked
uniformly at random while Figure 13b shows elements being picked as friends-of-friends. If
o equals one, agents attach completely at random whereas if o is closer to zero, agents
attach more preferentially. If a equals zero, I operationalize the model by a usual preferen-
tial attachment algorithm in which agents form links to other nodes with probabilities
proportional to their degree (Barabasi and Albert 1999).
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Figure 13. Hybdrid random growth. Source: adapted from Jackson and Rogers (2007)

Algorithm A.3 describes the hybrid random growth process. I assume that the network is
non-empty such that n > 0 nodes already exist and at least one link between these n nodes
is present. Let Ist-parents and [st-fof denote the randomly selected nodes and the nodes
picked as friends-of-friends, respectively. Then, lines 10-20 determine the fraction of ran-
dom and friends-of-friends-based encounters, lines 22-27 pick parent nodes at random, lines
29-41 pick friends-of-friends, and lines 43-44 create links to both types of nodes.

“Ifa-m+ (1-a)-m> m, then the number of network-based encounters is adjusted downwards.
Imagine, for instance, m = 5 and a = 0.5. Then, round(a- m) + round ((1-a) - m) = 6 # m . Thus,
m, is set to m — mr.
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Algorithm A.3 Hybrid random growth
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43:

m := user input, alpha := user input, time-limit := user input
to go
if ticks = time-limit then stop end if
create-nodes 1 [ grow-hybrid m ]
ticks := ticks + 1
end go
to grow-hybrid [ m ]
node i := self

others-set := [ ], Ist-parents := [ |, Ist-potential-fof := [], Ist-fof := [ ]
if m > count other nodes then m := count other nodes end if
let mr := alpha * m > number random encounters
let mn := (1 - alpha) * m > number friends-of-friends
if round mr = 0 then preferential-attachment"
else
mr := round mr > mr becomes an integer
mn := m- mr > mmn is set to remaining nodes

foreach other node do others-set := Iput self others-set end foreach
end if
i:= 0, node_j := null
if mr > 0 then
while ¢ < length others-set and i < mr do > pick parents at random
node_j := one-of others-set
Ist-parents := Iput node_j lst-parents
others-set := remove-item node_j
end while
end if
foreach Ist-parents do > pick friends-of-friends
foreach link-neighbors do
Ist-potential-fof := Iput self lst-potential-fof
end foreach
end foreach

Ist-potential-fof := remove-duplicates Ist-potential-fof

Ist-potential-fof := remove-item node_ i
h:=0
while h < mn and h < length Ist-potential-fof and length [st-potential-fof > 0 do
foreach one-of Ist-potential-fof do
Ist-fof := lput self Ist-fof
Ist-potential-fof := remove-item self Ist-potential-fof
end foreach
end while
foreach Ist-parents do create-link-with node i end foreach
foreach Ist-fof do create-link-with node i end foreach
end grow-hybrid

! This part of the algorithm is not described here, see Barabasi and Albert (1999). In contrast to
the hybrid growth algorithm, Barabasi and Albert's (1999) algorithm does not assume any random

encounters but instead picks nodes with probabilities according to their degrees.
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Why should we consider different degrees of preferentiality? Preferential attachment is
firstly empirically justified. Many social and technological processes show degree distribu-
tions in which a few central players accumulate above-average numbers of links (Barabasi
and Albert 1999; Jackson 2008b). The network literature discusses several reasons. Form-
ing links to central players in contrast to non-central players often yields different benefits
and costs. Benefits may arise from a central player’s connectedness and their more robust
or influential position (cf. Bothner et al. 2010). Central players may also have accumulated

considerable resources and capabilities which increases their attractiveness (Valente 2012).

At this point, each new agent formed a fixed, absolute number of links (m e N+). I next
turn attention to cases in which the number of links that each new agent forms grows over
time with the network size. Refer to chapter 2.2.2 for a discussion of network size-
dependent effects. Network effects will, for instance, arise if agents observe the installed
base of a technology in the market. Consequently, an agent’s later entry results in more
information being available as more agents already chose which technology to use. Draw-
ing on a term introduced by Fichman (2004), let m,,, designate an agent’s susceptibility to
network effects where m,, is the fraction of agents in the network at time ¢ that a new

< 1). Assuming m,, is constant over time, the

agent forms links with (m,, € R | 0 < m,, <
number of links grows proportionally to the network size in #. For concreteness, consider
that m,, equals 0.5. Then, in ¢, a new agent processes information from 0.5 - n, other
agents, in ¢, from 0.5 - (n, + 1), in ¢, from 0.5 - (n, + 2) agents and so forth. If m,, equals
one, each new agent processes information on the state of any other agent. This describes
an agent’s calculus in which it assesses a distribution over outcomes, e.g. the technologies’
shares in a market. Let p be a binary variable that designates whether growth is propor-
tional (p = 1) or non-proportional (p = 0). I modify Algorithm A.3 to account for different
growth logics as shown in Algorithm A.4.

Algorithm A.4 Proportional versus non-proportional growth
1: p = user-inputl, m = user-input, m,, = user-input

2: to-report find-m

3: if p = 1 then m := round count nodes - m,,

4: else m :=m

5: end if

6: report m"

T end find-m

The output of find-m is the input for the grow-hybrid function (refer to Algorithm A.3)

Ag shown in Table 11, three main factors describe the network’s hybrid growth process.

Table 11. Parameters of the model that control a network’s growth process
1. Proportionality (p) Are links forming relative to the network size or not?
2a. Degree of interaction (m) What number of links (m e N+) form in absolute ways?

2b. Degree of susceptibility to What is the fraction of links forming relative to the net-
network effects (m,,) work size?

3. Degree of preferentiality (o) | To what extent is link formation random or preferential?
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4.2.3 Strategic Agents

I turn to the question of how agents in the model decide which of several technologies to
use. Consistent with Arthur (1989), Weitzel et al. (2006), and Beck et al. (2008), I assume
that agents’ decisions to adopt technologies are irreversible as they create large fixed costs
and trigger extensive capability building, integration, and adaption processes. Agents in
the model decide which technology to adopt based on (1.) a technology’s standalone utility
and (2.) network influences. Essentially, the distinction captures the trade-off between
actors’ individual preferences and the way the actor is influenced by the broader social,
economic, institutional, or organizational environment (cf. Krackhardt 2001). One expert
from airline pricing designated these network influences as “inherent necessities” that cre-

ate pressure to conform (refer to expert statement in interview oS11).

I define that agent 7 of type v selects one of k technologies with the highest payoff U, ac-

cording to Equation 4.1 such that

UV}»' = ﬂ © QT (‘Z - ﬂ) /((‘Z - p) . bv . Z‘m in N(g) :BA') aa (p : bV : Z‘m,rrl in N(g) TA)/ (4]‘)

where a,, designates 7's preferences towards technology £ bringing in agent heterogeneity.
Let a,.be a positive, real-valued number (a,, € R | a, >0 Vv,k). Often, a, may be the
result of joining a set of attributes (a vector of real or binary numbers) by an arbitrary
mathematical function. For concreteness, think of two attributes, a real-valued variable
technology preference and a binary variable improvisational capability (e.g., designated by
(5 1)). The benefit of a new technology may then be unlocked only if the variable improvi-
sational capability is non-zero; technology preference may thus be multiplied with the
binary value, i.e. a = a; *a, =5 *1 = 5.

Let S designate the network influence strength designating the total importance of network
influences in comparison with a technology’s inherent qualities (f € R | 0 < g < 1). If
p =1, ©'s decision will fully depend on inherent qualities of the technologies. If, in con-
trast, f = 0, only network influences will influence 7’s choice. With respect to network in-
fluences, I distinguish two distinct types of network influences: the first is a network size-
dependent effect (in short, network effect) arising from the average characteristics of a
fraction of other agents in the network. The second type of network influence is a spillover
effect arising from direct influences from an agent’s peers. The expression ((1 —p) -b,-Z
i N Xi) captures the spillover effect that adds up an integer number of peers (m). It re-
mains a fixed, absolute value for each agent entering the network. Whether a peer has
adopted technology k is defined by the binary variable z;; it is one if the other agent has

adopted, and zero otherwise. The expression p - b, - X x, captures the network ef-

mrel in N(g)
fect. To compute the network effects, I add over a fraction of agents in the network. Let
m,,, be the number of sampled agents; the network effect grows proportional to the network
size if the number of agents increases over time. Let p be a binary variable that enables

switching between network effects, designated by the term (1 — p) - b, - X X, and

m in N(g)

spillover effects, designated by the expression p - b, - X ) X Let b, be the network

mrel in N(g
multiplier that captures the magnitude of network influences for each agent group v. It is a

non-negative, real-valued number.
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Algorithm A.5 operationalizes my conception of how agents decide in the case of k = 2
technologies. In the algorithm, let Ist-technologies designate the set {A, B} of all technolo-
gies of length k. Let further Ist-v designate the set {R, S} of all types of agents of length
v. Furthermore, let [st-payoffs designate each agent’s real-valued payoff vector. Finally, let
z, and z; be binary variables that indicate whether the agent adopts technology A or B,
respectively. Then, lines 3-5 set the payoff vector to the number of each agent’s link
neighbors adopting technology A or B. Lines 7-14 compute each agent’s utility by multi-
plying network influences with the network multiplier as well as adding the base utility,
depending on the agent type. Lines 15-16 set the adopted technology to the one that

maximizes the agent’s payoff.

Algorithm A.5 Payoff computation for k = 2 technologies and v= 2 agent types
1: for agent i* do

2 i:= 0, Ist-payoffs := k values [0]

3 while ¢ < length Ist-technologies do

4 X, := count link neighbors with technology &

5: Ist-payoffs := replace-item ¢ Ist-payoff x;

6 end while

7 if v = (item 0 Ist-v) then // payoff function for R-agent

8 Ist-payoffs := replace-item 0 Ist-payoff ((B * (b, * (item 0 lIst-payoff) + (1-B)*ay,))

9 Ist-payoffs := replace-item 1 Ist-payoff ((f * (b, * (item 1 lIst-payoff) + (1-B)*agy))

10: end if
11: if v = (item 1 Ist-v) then // payoff function for S-agent

12: Ist-payoffs := replace-item 0 Ist-payoff ((B * (b, * (item 0 lst-payoff) + (1-B)*ag,))
13: Ist-payoffs := replace-item 1 Ist-payoff ((f * (b, * (item 1 Ist-payoff) + (1-B)*agy))
14: end if

15% if max(Ist-payoffs) = item O Ist-payoff then x, := 1

16 if max(Ist-payoffs) = item 1 Ist-payoff then x; := 1

* when both technologies are the maximum one is chosen uniformly at random

Setting base preferences to zero and assuming non-proportional spillovers with four agents,
Figure 14 shows a simple example where a new agent adopts technology A as a result of
stronger influences from A-adopters despite equal diffusion rates of both technologies — A
and B —in the network.

° agent i, has adopted technology A
e agent i; has adopted technology B

If b, equals 100 and p equals 0,

Uy =0+1-((1-0)-(100- 3)+0) =300
Ug;=0+1-((1-0)-(100- 1)+0) =100
...agent i, adopts technology Aas U, > Ug

Figure 14. Simple illustration of decision calculus for a new agent
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4.2.4 Measuring Diversity in Networks

I am interested in the extent to which (7) one standard comes to dominate or (#) multiple
standards persist in a network that describes an IT infrastructure. A straightforward way
of measurement is the rate of adoption for each available technology (cf. Arthur 1989). In
addition, I suggest using a diversity index, a network-adjusted measure of homogeneity,
and individual misfits to quantify a network’s state of heterogeneity. As I will show, these

measures deliver complementary information contents.

The phenomenon of path dependence describes dynamic processes of diminishing scope of
action; a state of lock-in is characterized as a situation in which only one solution or action
pattern remains (Sydow et al. 2009). As the situation finally settles towards one solution —
where multiple solutions have been possible ex-ante — path-dependent processes have been
described as non-ergodic (Arthur 1989). According to a distinction by Page (2006), one can
characterize models of path dependence as describing situations where a system moves
from a stochastic state to a state of equilibrium. Nevertheless, path dependence theory
suggests that a system will not tip from a situation of contingency (or more formally, a
stochastic state) to a situation of lock-in (or more formally, equilibrium) by a single event.
Rather one or several critical events may turn the system into one path and then small
changes become accumulated as positive feedback narrows the scope until only one possi-

ble action pattern remains (cf. Sydow et al. 2009).

My model should hence enable us to quantify how diverse the (intermediate) states of a
process are to evaluate whether the system drove into a state of lock-in. It should allow
discerning networks in which the scope of action diminishes over time and networks in
which a sudden tipping occurs. Furthermore, measures of lock-in should account for the
network structure to distinguish whether local nodes group together — and adopt the same
standard — or whether diffusion outcomes are diverse by mere accident.

Diversity Index

Diversity indices have long been used to quantify the variety of different types in sets of
elements (cf. Page 2011). In history-dependent systems, diversity indices also help to quan-
tify the likelihood of changes in outcomes (Lamberson and Page 2012). Consistent with
work by Widjaja et al. (2012) that recently began to quantify IT infrastructure heteroge-
neity, I take them as my starting point to account for the diversity of technologies in an
IT infrastructure.

Several diversity indices have been suggested, relating closely to the concept of entropy
(Lamberson and Page 2012; Schiitz et al. 2013). Especially the Herfindahl index has long
been a workhorse in economics, where it was used to assess industry concentration in mar-
kets or even to quantify religious homogeneity within local areas (Bothner et al. 2010;
Page 2011). For market contexts, the Herfindahl index (HI) is written as the sum of firms’
squared market shares. For a network consisting of elements of k types, HI writes as shown

k
HI :Z. P2 (4.2)

in Equation 4.2 such that
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where p; is the probability that this type of outcome 7 is true and p,? denotes the probabil-
ity that if two elements would be selected at random from the distribution that both ele-
ments would be of the same type. The variable £ is the number of types in the set of ele-

ments.

For reasons of clarity, I inverse the Herfindahl index which then brings us the inverse di-

versity index D as shown in Equation 4.3:

1
T

(4.3)

The lower bound of the inverse diversity index is one if all types are equally likely and the

upper bound is 1/k.

I draw on a simple example from Page (2014) to illustrate the diversity index’s mechanics.
Suppose there are four types of outcomes, each of which have a probability of one-fourth of
being true such that A =%, B= %, C =14, D = Y. The diversity index now attempts to
quantify how unlikely the different types of outcomes (p4, ps, pe, pp) are, given the sys-
tem’s current state. As only these four types of outcomes can happen, probabilities p, to
pp have to add up to one. We want to discern homogeneous cases in which probabilities
are one-forth, one-forth, one-forth, one-forth, in contrast to diverse ones with one-half, one-
half, zero, and zero. Thus, we first compute the probability that if two elements interact,
they are of the same type. Suppose this is a distribution over technologies used by organi-
zations and there are four types A, B, C, and D. The probability that two random organi-
zations use type A is now p, * p, and so forth. The overall probability that two organiza-
tions use the same type of technology is then p, * py + ps * ps + pe™ pe + pp™ pp. Sup-
pose then we have p, = py= po= pp = 1/4. Then, the Herfindahl index becomes (1/4)% +
(1/4)2 + (1/4)? 4+ (1/4)?> = 4/16 = Y. Thus, the diversity index is then 1 over %, which is
equal to 4. As can be seen from the example, the upper bound of the diversity index is the
number of types in the set. There are four equally likely types in the set.

As another example, taken from Page (2014), suppose, we have three types but they are
not evenly distributed: p,=1/2 p;=1/3 p.=1/6. Hence, the diversity index should be a
little less than 3. This is because the system is not going to be as diverse as three types.
The Herfindahl index is (1/2)2 + (1/3)? + (1/6)? = 14/36. The diversity index hence is
36/14 or 2 4/7, which is less than 3.

So why does the diversity index serve as useful to measure lock-ins? The lower bound of
the inverse diversity index is 1; as we are looking at stochastic, history-dependent process-
es, this situation describes a deterministic state in which only one type in the set has a
positive probability of being selected. Thus, a diversity index of one would tell us that a
system is in a state of lock-in (cf. Page 2006). As an example, suppose there are initially
five types (e.g. technologies) an agent could select, but finally there is only one technology
left: the diversity index would fall from 5 to 1. In a path-dependent system, one could ob-
serve a shrinking diversity index, e.g. from 5, to 4.8, 4.5, 4.3 to 1.2, and 1.0, showing a

diminishing scope of agents’ actions.
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Network-adjusted Homogeneity

I further suggest a network-adjusted measure of homogeneity h, which is determined for

agent ¢ according to Equation 4.4

Y NG
h="0N0 T ith o e {01} and 0 < B, < 1 (4.4)

Nj;(g)

where 7; is a binary variable that draws on the technological choice of 7's neighbors. It is
one if 7's peer j also uses technology k, and zero otherwise. We sum over all neighbors of s.
The measure is normalized by dividing it by the total number of neighbors (). The idea
is that an agent’s choice and switching probability is contingent on its embeddedness in a
network. That is, how heterogeneous an agent’s neighborhood is. Homogeneity h, takes a
value of one if ¢’s reference group fully draws on technology k. In contrast, h; is zero if

none of 75 neighbors adopts the technology used by 1.

Network homogeneity H is calculated by averaging homogeneities over all individual

agents as shown in Equation 4.5:
H = average (h;) V i € N(g) (4.5)

Figure 15a gives a simple example in which each agent is adjacent to only neighbors of
different quality: homogeneity is minimal. Figure 15b shows a configuration in which each
agent is adjacent to only neighbors of the same type; homogeneity reaches a maximum and
the configuration is supposed to remain stable in a game under strategic payoff comple-
mentarities in which agents adapt their action to their direct peers’ behavior (cf. Jackson
2008b). Figure 15c also depicts a homogeneous situation. However, two technologies gov-
ern different clusters. We can mitigate concerns about distinguishing Figure 15b and Fig-
ure 15¢ by supplementary diffusion curve analysis (cf. Arthur 1989).

Figure 15. Ezxamples for network-adjusted homogeneity measure

Individual Misfits

As T have introduced strategic agents that draw on individual inclinations (“standalone
utilities”) and network influences, another measure on the extent to which a system is
locked in to a particular option is the extent to which agents’ actual decisions misfit their
individual preferences towards technologies (cf. Draisbach et al. 2013). To account for in-
dividual misfits, I define a binary variable imisfit, for agent ¢ as shown in Equation 4.6
such that

0, if a(k) = max(ay)
imisfits; = (4.6)
1, otherwise
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where a,(k) is the realized standalone utility of agent 7 computed as a function of the tech-
nology k the agent actually selected. If a; equals the maximum of the vector a,; consisting
of all standalone utilities to the agent, the chosen solution does fit its natural inclinations.
Thus, imasfits; equals zero, and one otherwise. To determine the fraction of individual mis-

fits over the entire network (imisfit), we average over agents’ individual values.

4.3 Equilibria for Extreme Cases and Hypotheses

In this section, I derive some baseline results on the type of outcomes that should be ex-
pected under varying growth processes and I put forward several hypotheses for further

experimental consideration.

4.3.1 Standardization Regimes

To best understand the impact of different growth parameters on standardization out-
comes, it is useful to distinguish three regimes with respect to diversity in the network.

The series of plots in Figure 16 illustrates these three regimes graphically:

I.  Chaotic regime: I define cases in which none of the technologies is able to govern sig-
nificant parts of the network as a chaotic regime. In such case, the diversity index is
high as different technologies persist in the network but network-adjusted homogenei-
ty is low as local neighborhoods remain diverse. From a central perspective, this situa-
tion is the worst as standardization benefits remain unrealized (Weitzel et al. 2006).

1. Clustered regime (islands of shared technologies): 1 define a situation in which differ-
ent technologies spread cluster-internally as a clustered regime. Under a clustered re-
gime, the diversity index is high as several technologies persist and network-adjusted
homogeneity is also high as clusters grow internally coherent. Standardization benefits
can be realized cluster-internally and gateway or converter technologies may enable
the connection of the different clusters of a network (David and Bunn 1988; Hanseth
2000, 2002).

III.  One standard’s dominance: Complete standardization with one technology is defined
as a regime of one standard’s dominance. Diversity is low as one technology comes to
dominate and network-adjusted homogeneity is high as local neighborhoods are homo-
geneous. Standardization theory suggests that such situation is often desirable as it
enables synergies among agents (Buxmann et al. 1999; Weitzel et al. 2006); one stand-
ard dominance will, however, point to lock-in situations (David 1985; Arthur 1989).

I. Chaotic regime II. Clustered regime Il. One standard dominance

Figure 16. Standardization regimes: (I.) chaotic, (II.) clustered, and (III.) uniform
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Chaotic and clustered regimes are usefully distinguished. First, both regimes differ in
standardization benefits (Weitzel et al. 2006). The former is inferior by realized synergies
from the standardization. Second, both regimes may require different network interven-
tions (Valente 2012) to get out of lock-ins. While network-wide standardization in chaotic
regimes requires solving a difficult coordination problem, network-wide standardization in

clustered regimes may be achieved by gateways or converters (cf. Hanseth 2002).

4.3.2 Extreme Case Hypotheses

The two squares depicted in Figure 17 show how key parameters in my model — propor-
tionality (p), degree of interaction (m), and preferentiality (a) — interact. The two squares’
relevant corners (1.) — (6.) provide extreme cases for which I derive hypotheses for experi-

mental consideration:

1. When the degree of interaction is low (m = 1) and link formation is preferential
(o= 0), the diffusion of different technologies in the network is likely: agents attach
preferentially to one of multiple hubs giving rise to hubs growing over time. As technol-
ogies are assigned randomly to hubs at the initialization, a clustered regime with multi-
ple islands of shared technologies (II.) should arise. Overall homogeneity in the network
should be high as hubs grow internally-coherent, similar to the pattern depicted in Fig-
ure 15b.

2. When the degree of interaction is low (m = 1) and link formation is random (o = 1),
different technologies should spread in the network. Outcomes should be chaotic (I.) or
clustered (II.) as new agents form chains of technologies with different lengths.

3. When the degree of susceptibility to network effects (m,,) is zero, no global patterns
will emerge as network effects are absent and agents’ decisions depend fully on agents’
natural inclinations, I expect a chaotic regime (I.) with different technologies to arise.

4. Refer to the former case (3.).

5. When the degree of susceptibility to network effects (m,,) is close to one and each new
agent connects to all other agents, I soon expect the network’s tipping over to one
technology; as interactions grow proportional to the network size, the growth process
gives rise to positive feedback that reinforces one solution. In this case, a regime of one
standards dominance should emerge (III.) as this case is structurally equivalent to the
model of path dependence and increasing returns proposed by Brian Arthur (1989).

6. Refer to the former case (5.).

If m, the number of links formed, is an absolute number for each new agent, m may be
larger than the network size n in any considered time period. The right side in the left
rectangle then corresponds to the cases (5.) and (6.) of the proportional model in which all
available states of other agents are processed by the new agent. As a consequence, I left
empty the right side of the first square because both cases then yield identical outcomes.
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Figure 17. Interaction of key parameters

4.3.3 Hypotheses on Effects of Growth on Diversity

My objective is to test the effects of growth on IT infrastructure diversity. I introduced the
diversity index and network-adjusted homogeneity as two useful measures of diversity. I

will now discuss hypotheses along the lines of research on network and spillover effects.

Positive feedback in standard diffusion processes can reinforce the dominance of the most-
diffused technology (Shapiro and Varian 2008). The mechanisms are a greater creditability
of a standard with more adopters, and the availability of complementary products and
services (Hanseth 2000). The underlying notion of network effects has been made opera-
tional in previous models by assuming that an agent’s payoff is a function of the network
size (Weitzel et al. 2006). If we portray a network of n agents — each adopting one of the &
technologies — we can recast network effects in the terminology of network formation: each
period, one agent %, 4, 45 and so forth enters the scene and forms links to existing agents.
Each of these links provides ¢ information on technology k. As the network grows over
time, network influences also grow: the number of links in ¢,, #,, t,.. grows proportional to
the network size. Under such growth process, the increasing benefits of adopting the most-
diffused technology may unleash a positive feedback spiral that eventually locks in one
technology (Arthur 1989). Arthur's (1989) model of path dependence is most illustrative to
underline my main argument: if agents entering the network become influenced by any
other agent in the network and their presence exhibits positive externalities on any other
agent, more and more agents will be drawn towards the most-diffused solution over time,
creating a situation of positive feedback in which network influences outweigh individual
preferences to a larger and larger extent. In other words, variety decreases and eventually
only one of several options remains. I expect this scope-diminishing effect to be strongest,

when influence from the network is strongest.

Recent work on diffusion has focused on direct spillovers between agents (Aral et al. 2009;
Borgatti et al. 2009). As a starting point, many of these models have thereby assumed
fixed capacities to link to friends, or generally interaction partners. This may be close-knit
dyadic partnerships, triadic of friendship ties or interactions in larger communities

(Borgatti et al. 2009). If we conceive new agents’ decisions of whom to interact with as a
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problem of link formation, these models assume a fized number of links — one at minimum
— being formed independently of the network size. Hence, we can say that link formation is
non-proportional. Traditionally, diffusion models have showed limited interest in systemic
phenomena such as path dependence and have been more concerned with analyzing dyadic
or triangular relationships (Borgatti et al. 2009). The limited extent to which these models
look into systemic diffusion of technologies, however, suggests more diverse patterns with

respect to technologies in use as a result of the network structure (cf. Aral et al. 2009).

Taken together, I suspect that it is useful to distinguish growth processes under (propor-
tional) network effects and (non-proportional) spillover effects. As the latter limits the

amount of network influences on a new agent, I propose that:
Hypothesis 1: Spillover effects and network effects influence diversity differently.

In many situations, the number of interactions will become increasingly large. For in-
stance, I'T systems such as airline inventory systems have technical (and business) inter-
faces to several dozens or even hundreds of other systems. Taking into account the perva-
siveness of situations in which new nodes in a network tend to connect to a large number
of other nodes, I am interested in whether growth under (non-proportional) spillover ef-
fects tends to approximate — in the limit — standard diffusion outcomes for network effect-
driven growth processes. I suspect that situations in which new agents link to an absolute
number of partners (non-proportional growth) will often produce similar outcomes to situa-
tions in which the number of partners is a function of the network size (proportional
growth) if the number of partners becomes sufficiently large. As an extreme case, the num-
ber of absolute links exceeds the network size in every considered time period which makes
non-proportional growth equivalent to proportional growth. Then, both growth procedures
should produce outcomes in which diversity decreases to its minimum level as one of sev-
eral standards comes to dominate the network (Arthur 1989; Leydesdorff and van den
Besselaar 2000). I thus suspect that:

Hypothesis 2: Increases in the degree of interaction lead to decreases in diversity.

Finally, I am interested in the influence of varying network influence strengths on diversi-
ty. Generally, there is a straightforward relationship between the strength of network in-
fluences and diversity: the stronger the network influence, the lesser value an agent places
on his or her natural inclinations, and hence the more susceptible the agent is to the net-
work influences, which results in an increasing number of instances in which agents decide
against their base preferences (cf. Arthur 1989). Hence, the number of individual misfits
(or “personal lock-ins“) should increase with increasing network influence strengths (cf.
Draisbach et al. 2013). If we assume that an equal share of agents with two different types
populate a network, in a situation of lock-in, half of the agents should decide against their
natural inclinations. The higher the number of individual "lock-ins®, the lower the diversi-
ty in the network, as agents would start to select only one particular technology even
though they may fancy another one (Draisbach et al. 2013). This effect should be strongest
if the network is densely connected, as a lower density in the network should limit the
extent of network influences (Draisbach et al. 2013).
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Hence, I expect the degree of interaction — which may be viewed as a measure of the net-
work’s density — to moderate the effect of varying network influence strengths on diversity.
I thus propose that:

Hypothesis 3: As the degree of interaction increases, an agent will be more adapt
to varying network influence strengths, thus increasing the effect of
network influences on diversity. Hence, diversity will decrease to a

higher extent with increases in degrees of interaction.
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Chapter 5

Insights from Agent-based Simulations: Growth

5.1 Computational Implementation of Growth Model

I implemented the growth model in Netlogo 5.0.3, an agent-based simulation platform
(Wilensky 1999). Refer to code example 0S3 in the online supplements. Netlogo provides a,
Logo-based, high-level programming language to create and run agent-based models; the
platform itself is mostly written in Scala (and Java); I selected the platform as it features
predesigned components such graphical prototyping that allows the creation of plots, mon-
itors, and other design elements instantaneously, and provides agent-communication
mechanisms, an integrated software tool for performing experiments, and various exten-
sions for debugging, performance measurements, and so forth (Gilbert and Troitzsch 2010;
Gilbert 2008). These features were particularly useful during the early phases of the project
as they allowed for rapid exploration of model variations; in addition, a significant user-
community provides several useful extensions and agent-models. For instance, I utilized
the network extension that allowed to draw on predefined network structures, primitives,
and measures (Netlogo 2014). As shown in Figure 18, my implementation featured not
only the quantitative analysis with respect to monitoring predefined heterogeneity and
network measures on the macro level and plotting their development over time, but also
enabled a visual analysis of the micro and segment-level” outcomes of my model. I was
therefore able to interact more intensely with the model.

P growth_interventions_v005 - NetLogo {CAU ter\Medi g (Privat}\02 Dissertation\03 Arbei imulation\03 MyModels\2014-04 Growth Interventions} = | B )
File Edit Tools Zoom Tabs Help

Interface | Info | Code

F B O+ U 7] view updates
| ==
Edit Delete Add normal speed continuous ~
- ks Degree Distribution Degree Distribution (log-los
g o @ o G S tiks:so L] g (log-log)
L 33 1.66 .
Initialization n g
] 2
start-network = 5
2 #
pref-attach v ks 5
——— 0 0 e
no-intial-nodes 10 1 degree 14 0 log(degree) 1,25
—— Boporters
ink-probability 0.50 count nodes nodes giant || Fraction giant Diffusion Curve
79 10 0.13 1 A
Gronth = |
count links |
157 strength of ru-effacts i
[
density beta 1.00
0.048 U
adaption-threshold 0 500

e foee
3 teta 0.00 st 049
mean-path-length no-technologies 2
2,64

dropout-rate 0.0000 n-gfects 1
assartativity
or o | ——
EEFF grow-relative? 0.273 T i
Tt e ey o e g e
2 0.98 054 0
Command Center

(C ==

jobserver | £

Figure 18. Implementation of the growth model in Netlogo

¥ Drawing on a distinction by Valente (2012), I refer to the micro level as status of individual nodes, e.g.

whether they adopt or not; by segment level, T refer to status of groups, clusters, or other sets of nodes.
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Scratching a platform would have required programming most of these prepackaged com-
ponents by myself; while the final model may have been faster and more scalable if I pro-
grammed the model using a (native) integrated development environment such as Eclipse
or Visual Studio (computing times for large instances with 10,000 or more nodes often ex-
ceeded one week at the high-performance cluster of Freie Universitat Berlin), I worried
about insufficient support for graphical analysis, rapid model prototyping, and experimen-

tation.

5.2 Theoretical Validation and Verification

This section derives some baseline results for particular parameter constellations demon-
strating that the model is able to replicate findings of well-known existing models such as

the Polya Process and the model of path dependence by Brian Arthur (1989).

5.2.1 A Network without Network Influences

A first set of simulations aimed at showing the system’s behavior in situations in which
network influences are absent. We expect to see a diverse network with technologies being
distributed randomly across agents. I chose the experimental setup as follows (refer to Ta-
ble S7, Exp. 1): as in Arthur’s model of path dependence (1989), I assumed two types of
agents (R and S from the set v) adopting two types of technologies (A and B from the
set k). I assumed that newly-created agents belong to either group with equal probabilities.
Fixing the strength of the network effects to zero (f = 0) and initializing a preferential
attachment network with 10 nodes in which we assigned technologies uniformly at random,
the network grew 300 periods.

A quick look at the series of network plots shown in Figure 19a-c¢ points instantly to the
main finding: for a setting in which network influences are absent and agents’ preferences
are balanced, the network growth process does not matter. Both technologies become
adopted by an equal fraction of agents. Figure 20 shows the outcome of a typical run in

which T also set agent’s base preferences to zero (apy = azp = agy = agz = 0).

technology A adopter
technology B adopter

Figure 19. Diffusion of technologies in absence of network influences
This figure shows three samples of the simulation for varying degrees of interaction (m). The

figure depicts in all cases the situation after 300 periods. We see that the density of the graphs
varies considerably but the diffusion outcome — the distribution over colors — is always diverse.
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Figure 20. Sample run for a process without network influences

This figure shows one sample run of a process without network effects in which both
technologies become adopted by almost equal fractions of agents. I set the degree of in-
teraction to a medium level (m = 5) fizing medium degrees of preferentiality (o = 0.5).

5.2.2 Replicating the Model of Path Dependence by Arthur (1989)

I set up further experiments (refer to Table S7, Exp. 2-6) to reproduce characteristic find-
ings of Brian Arthur’s model of path dependence and increasing returns (see Arthur 1989).
While my model is more general with respect to varying a system’s growth logic, the mod-
el’s outcomes should correspond to that of Arthur’s model for particular parameter constel-
lations. As Arthur’s original model is analytical while I use a stochastic simulation, I have
to average results over multiple runs to show correspondence (Gilbert and Troitzsch 2010).

Asg a first step, I show qualitatively that the model can produce diffusion patterns similar
to those of Arthur’s model (1989:120): agents eventually turn to one of two technologies.
In the long run, the system settles on one of multiple fix-point attractors. In other words,
“the observer must predict A’s share either as 0 or 100%” (Arthur 1989:121).

I draw on a hybrid random process assuming that new nodes attach to existing nodes in
the network. Consequently, one cannot start with a clean state as the first node entering
the network must attach to another node. To remain close to Arthur’s model, I start with
the simplest possible initialization process: I create a network of two connected nodes. I
assume that node 4, has adopted technology A and node 4, adopted technology B. By doing
so, I assure that the process is unbiased (Page 2006:101), excluding cases in which the pro-
cess tends deterministically to one equilibrium as the absorbing barrier is already passed
before the observation is started (refer to Algorithm A.1).
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Drawing on Leydesdorff and van den Besselaar (2000:15), I set usual ratios for standalone
utilities (apy = agz = 0.8, azy = agy = 0.2) and network multipliers (b, = bg = 0.1). In
Arthur’s model, growth occurs relative to the network size. For technology A, in particu-
lar, the agent’s choice is influenced by all existing adopters of technology A (n,) and for
technology B the agent is influenced by all adopters of technology B (ng). To receive this
network externality, a new agent needs to connect to all n existing agents in the network
N increasing linear with ¢. Hence, I set up a proportional growth model where the number
of links each new agent forms — which I denote as m,,, (its susceptibility to network effects)
— equals one. The agent is fully connected to all other agents (the agent takes into account
the feedback from each group of technology adopters depending on the technology as-
sessed). The degree of preferentiality (o) is set to one because any bias towards higher
degree nodes — as it is the case for any degree of preferentiality unequal to one — would
mischaracterize Arthur’s model. As agents, however, form links to all existing agents in the
network, the findings should be insensitive to different levels of preferentiality (refer to
Table S7, Exp. 2 for the setup).

The diffusion curves in Figure 21, which show absolute differences in adoption between
both technologies, illustrate my main finding here: the model enabled me to reproduce
Arthur’s analytical findings — dominance of one technology in the long run and the passing
of an absorbing barrier — by the means of simulation. In the five runs depicted, I observed

that the system always tipped towards one of the technologies.
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Figure 21. Absorbing barriers in samples replicating Arthur’s path dependence model

This figure shows the difference in adoption for five sample runs with medium network
multipliers (b, = by = 0.1) fizing agents’ base preferences to 0.8 and 0.2 for both agent
types respectively. For each run, I recorded the fraction of adopters for each technology
and computed the absorbing barrier according to Arthur (1989:120). I plotted the ab-
sorbing barrier as a straight line in the figure.
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As shown in Figure 22, the expectation that one of two technologies comes to dominate

could be confirmed: The system converged to a share of either 0 or 100% A-adopters.
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Figure 22. Sample runs for processes replicating Arthur’s model of path dependence

This  figure shows diffusion outcomes for five sample runs with medium
network multipliers (b = by = 0.1) fizing agents’ base preferences to 0.8 and 0.2 for
both agent types respectively.

Next, I carried out batch simulations to test whether the model produces outcome
patterns as expected from Arthur’s path dependence model in different dimensions using
the several measures of diversity introduced earlier: (7) diversity (D), (¢) the fraction of
individual misfits (imisfits), and (44 network-adjusted homogeneity (H). I now restate
them briefly and discuss my expectations on what values these measures should take in a
model reproducing Arthur’s model of path dependence.

Diversity (i) assesses the likelihood of particular types of outcomes to occur. This is
achieved by adding the squared probabilities of occurrence for all types of outcomes (and
then inversing it). Diversity tends to one, if one type of outcome is very likely while all
other outcomes are very unlikely. Diversity tends to its upper limit — the number of out-
come types — if each type is equally likely. Diversity in Arthur’s model should tend to one
as one set of outcomes (the ‘winning’ technology) becomes very likely over time and all
other outcomes become very unlikely.

The fraction of individual misfits (ii) assesses the extent to which agents make a choice
that corresponds with their “natural preference” (Arthur 1989:111). In a simple model,

agents’ preferences tend either towards technology A or technology B. If an agent’s choice
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misfits his or her natural inclinations and the agent is drawn to the other technology be-
cause of network influences, this agent is flagged as “individually locked in” (Draisbach et
al. 2013). The fraction of individual misfits reports the percentage of individually locked in
agents in the network. The fraction of individual misfits should tend to 0.5 in Arthur’s
model as both agent types (R-agents and S-agents) are equally likely to turn and in the
long run half of the agents should have an incentive to turn to the leading technology (cf.
Arthur 1989:120).

Network-adjusted homogeneity (iii) takes into account the extent to which agents in the
network are surrounded by peers adopting the same technology. An individual agent’s ho-
mogeneity tends to one if an agent only has neighbors that chose the same technology as
it. Homogeneity is zero if the agent is alien in its neighborhood; only surrounded by agents
using a different technology. Overall homogeneity is then defined as the mean over agents’
individual homogeneities; it should tend to one as one technology is expected to gain a
market share of 100%. Consequently, each agent should be surrounded only by peers

adopting the same technology.

Refer to Table S7 (Exp. 3-5) for the complete experimental setup. Table 12 summarizes
the results: I found that the model closely matched my expectations with respect to all the
measurement dimensions discussed above. In particular, I found that the model was robust
against increases in the network multiplier by two orders of magnitude. Increasing the
network multiplier to b, = by = 1.0 and b, = bz = 10.0 yielded qualitatively the same re-
sults as for by, = by = 0.1. At a very low level of the network multiplier (b, = by = 0.01),
the outcomes, however, balanced to an equal share of both technologies as both adopter
types mainly realized their preferences; in this case, the absorbing barrier was never passed

within the time limit.

Table 12. Results for different network effect strength with two technologies
Exp. Network multi- Diver- | Std. dev. | Fraction Std. dev. Homo- Std. dev.
pliers (b, = by) sity misfits geneity
1 0.1 1.056 0.033 0.475 0.020 0.948 0.028
2! 1.0 1.006 0.006 0.499 0.016 0.996 0.006
3! 10.0 1.006 0.010 0.500 0.015 0.996 0.010
' Average results for 100 simulation runs; time limit was set to 1,000 periods

To test robustness with regards to increases in the number of technologies, I set up further
experiments in which I increased the number of technologies to five (refer to Table S7,
Exp. 6). I also increased the number of types of agents to five. Each agent type preferred
one technology (a; = 0.8) while all other technologies appeared inferior to the agent (a., =
0.2). I started with a network of five fully-linked nodes, each of which adopted one of the
five technologies.

Figure 23 shows the results for a typical level of the network multiplier, setting it symmet-
ric across agent groups (b, _b; = 0.1). We see the path-dependent nature of the process
quite clearly. After an initial phase of contingency, one technology gains momentum and
subsequently the fraction of adopters rises constantly to a level close to one.
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Figure 23. Diffusion curves from one typical run with five technologies

Table 13 shows numerical results at this level of the network multiplier: as expected, di-
versity took a value close to the minimum of one, the network-adjusted homogeneity ap-
proximated a level close to one, and the fraction of individual misfits approximated a level
of (1 —1/5 = 0.80). Essentially, findings were robust for increases in the number of tech-
nologies with respect to diversity, network-adjusted homogeneity, and the fraction of indi-

vidual misfits.

Table 15. Robustness for a model with five technologies
Exp. Nw. multiplier Number D Std. | imisfits | Std. dev. H Std.
(b, _b,___b;) | technologies dev. dev.
4! 0.1 5 1.120 | 0.047 | 0.749 0.0216 0.895 0.037
' Average results for 100 simulation runs; time limit was set to 1,000 periods

5.2.3 Replicating the Polya Process

A third set of theoretical experiments aimed at verifying the model against the backdrop of
the Polya Process. The Polya process is a seminal example of a path-dependent process as
it aptly captures several characteristic features of path dependence such as non-ergocity
and equilibrium-dependence, as well as the phenomenon of increasing returns (cf. Arthur
1994; Page 2006). Drawing on a version by Page (2006:98), I define the Polya process as a
process in which an urn initially contains one brown (B) and one maroon (M) ball and if a
brown ball (resp. a maroon) ball is selected it is put back with another ball of the same
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color (Page 2006:98). The Polya Process is expected to converge to any ratio of balls (Page
2006:98; refer to chapter 2.4.2).

I model the Polya Process as a proportional growth process in a network in which new
agents enter sequentially (one at a time). Each new agent links fully to all other agents in
the network. To reproduce the Polya Process, I modify the growth model by adapting the
agents’ payoff function (cf. Equation 4.1) to account for the fact that agents will not max-
imize their utility with respect to technological choices but that they select technologies
according to the ratios by which these technologies are currently distributed within the
network. These ratios can be understood as selection probabilities. Thus, let p, designate
the probability that technology A or B from the set k is selected according to Equation
5.1, such that

D= Z/m Nig) Tk / (n—1) (5.1)

where z, is a binary variable and z, = 1 if agent 7 has selected technology k&, and z, = 0
otherwise; (n — 1) is the number of other agents in the network (excluding the agent that
just entered). Let rd designate a random variable where rd € R | 0 < rd < 1. In the simple
case of two technologies A and B, a new agent 7* then adopts a new technology A or B
from the set k — indicated by a switch in the binary variables x, or x; from zero to one —
according to the adoption function as shown in Algorithm A.6. The mechanics of the ap-
proach are straightforward: Line 3 calculates the selection probability p, for technology A.
Then, in line 4, a random number rd between 0 and 1 is drawn. If p, is smaller or equal to
that number, technology A is selected, otherwise technology B. Thus, in line 5 one of the
technologies is selected according to the current distribution in the network, denoted by
the binary variables z, and z;.

Algorithm A.6 Adoption function in Polya Process with £ = 2 technologies

I assume that p, is a real-valued variable initialized as p, = 0 for each agent and z, and xy are
Boolean variables designating whether the agent adopts technology A or B
for agent i* do

Xy =0, x3:=0

ps := sum [z,] of other nodes / count other nodes

rd := random-float 1

if rd < p, then z, := 1 else z; := 1 end if

end for

S Ot

For k£ > 2 technologies, we have to compute the selection probability p, for each technology
k in the network. Then, we think of the selection probabilities as places in a unit interval
from zero to one of different span-with. The first place spans from zero to p,, the second
from p, to p, + p,, the third from (p,+ p,) to (p,+ p,+ p;), and so forth. For all k, p, adds
up to one, as each new agent has to select one technology. Creating a random digit rd in
the interval from zero to one, agent 7* then selects one technology k by checking in which
of the k places rd falls. If rd < p,, i* selects technology A, if p, < rd < (p, + p,), i* selects
technology B, if (p, + p,) < rd < (p, + p, + py), i* selects technology Cand so forth.

The Polya Process can then be replicated by setting the parameters of the model as follows
(refer to Table S7, Exp. 7): first, I turn off agents’ base preferences and consider a situa-
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tion in which only network influences matter (8 = 1). Second, I fix the number of agent
types v to one (v= 1) as base preferences are non-existent and network effects are identi-
cal across agents. Third, I fix the network multiplier to one (b = 1) as for each ball drawn
from the urn exactly one more ball is added in the next period. Forth, I modify the agents’
original adoption function (refer to Algorithm A.5) by replacing the decision rule from
lines 15-16 (“adopt the technology with the maximum payoff”) with the new decision rule

from Algorithm A.6 (“adopt technologies according to their selection probability”).

Given the increasing returns-nature of the process, I then want the network to converge to
one particular ratio of technologies. As an important feature of the Polya Process, I expect
that each run settles to one specific distribution over outcomes differing across runs (e.g.
80:20, 73:27, 60:40, and so forth). Furthermore, I expect that the process will not show
considerable fluctuations over the run time once one regime has settled. Hence, diffusion

rates and diversity are expected to remain stable over the time of the observation.

The series of plots a-c in Figure 24 give support to the expectation that diffusion rates
remain stable once a particular regime has come to dominate. A quick look at the struc-
ture of each plot gets quickly to the main analytical finding: the processes converge to a
particular fraction of technology adopters. As expected, diffusion rates differ from run to
run as a function of early events within the process. I also found consistent results indicat-

ing a stabilizing diversity level.

Fraction adopters

0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500

Time (periods) Time (periods) Time (periods)
Figure 24. Three sample runs of the growth model replicating a Polya Process

5.2.4 How Inertia Builds Up

I next analyze visually how inertia builds up for varying degrees of interaction (m). Fixing
the degree of preferentiality to hybrid (a = 0.5), Figure 25 shows typical network plots.

We see that there is a remarkable difference between low degrees of interaction (m = 1)
and increasing it to a high level (m = 7): while clustered patterns emerge for low degrees
of interaction, the network lumps together for high levels. At a low degree of interaction
(refer to the series of plots a-c), we also see the influence of preferentiality quite clearly.
While all nodes gain links over time as a result of the hybrid growth process, central nodes
gain above-average numbers of links. These hubs grow in importance as a function of their
age and their above-average degree, which reinforces their importance over time. Further-
more, the average path length grows as a function of time as a number of nodes attach to
peripheral nodes without connections to distant locations in the network. This is a result
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of the fact that, for this degree of interaction, nodes cannot form other links than to one

close partner.

The series of plots in Figure 25d-e turns our attention to high degrees of interaction (m =
7). As a result of the interdependency between various elements, the network is dense in
contrast to the former case. The network’s average path length tends to a low value as
almost all nodes are connected. Therefore, high degrees of interaction point to a situation
in which changes in each element require complementary changes in an increasingly larger
number of other elements.

Time (periods)

v

1st period 100th period 250th period

Degree of interaction (m)

Figure 25. Growing networks with a varying degree of interaction (m)

5.3 Results: Standard Diffusion in Growing Networks

I now turn to a first set of main results. These concern how diversity in the network de-
pends on the degree of proportionality (p), interaction (m), susceptibility to network ef-
fects (m,,), and preferentiality (a).

5.3.1 Network Effects and Spillover Effects Are Usefully Distinguished

The first hypothesis proposed a difference in the diversity in settings with network effects
and spillover effects. For the simulations, I assume a full-density network with n = 35 ini-
tial nodes. Following the guidelines by Law (2007:500-505), I set the time limit of the
simulations to 500 periods. Based thereupon, I performed two sets of experiments (refer to
Table S7, Exp. 8-9): one set of experiments considered proportional and one non-
proportional growth. Under non-proportional growth (p = 0), I work with varying degrees
of interactions (m) between 1 and 20 (increasing it in increments of 1); under proportional
growth (p = 1), I vary the degree of susceptibility to network effects (m,,) between 0 and
1.0 (increasing it in increments of 0.1). For the experiments, I fixed the degree of preferen-
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tiality (a) to a level of a = 0.5. Agents selected one of k£ = 2 technologies according to the
adoption function in Algorithm A.5.

My first exercise concerns proportional growth (p = 1) for varying the degree of suscepti-
bility to network effects (m,,) while holding all other variables fixed. Results are shown in
Figure 26a: excluding the extreme case of m,, = 0 as well as cases in which m,, > 0.5, the
figure shows how diversity varies with typical levels of m,, I excluded cases in which
m,, > 0.5 as diversity did not decrease any more compared to a level of m,, = 0.5. From
the plot, we see that diversity peaks at 1.2 for m,, = 0.1 and then further decreases for

higher levels of m,,. Refer to the appendix, Table S8, for numerical results.
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Figure 26. Effects of proportional versus non-proportional growth on diversity

A second set of experiments (refer to Table S7, Exp. 9) concerns non-proportional growth
processes (p = 0). In this connection, Figure 26b spots the impact of growth with varying
degrees of interaction (m) on diversity. Varying degrees of interaction give us all outcome
regimes: when m is very low, m = 1 or m = 2, diversity always remained at a level close to
a value of 2. At that level, an equilibrium with two technologies persisted in the vast ma-
jority of instances: clustered regimes emerged. For medium ranges of m (m € [3, 4] and m
€ [5, 6]) diversity dropped to a range of 1.4 to 1.7. Standard deviations in this range were
high compared to the other cases. At that level, the system either remained in a diverse

state in which multiple technologies persisted or tipped more towards one technology.

From Figure 27 (cf. movie 0S1), a plot of typical sample runs with (a) spillover effects and
(b) network effects, we get to the main finding: in figure (a), with spillover effects and low
degrees of interaction (m = 2), several standards persist and clustered regimes settle in
separate parts of the network. The overall configuration stabilizes at a particular rate of
diversity. In figure (b), with network effects, diversity decreases. One standard settles.

Viewed together, Figure 26a and Figure 26b are important because they highlight salient
differences between proportional and non-proportional growth.

For non-proportional growth (refer to Figure 26a), I observed three distinct regimes: a
clustered regime (I1.) in which multiple technologies persist in different clusters of the net-
work, a chaotic regime (1.) in which limited network effects are not strong enough to tip
the entire network in one direction within a limited time frame, and a regime of one stand-

ard dominance (III.) in which one technology came to dominate the entire network.

79



Limited overlap between proportional (i.e. network effects) and non-proportional growth
(i.e. spillover effects) suggest that these growth processes are usefully distinguished. As can

be seen in Figure 26b, proportional growth fosters one standard’s dominance (II1.).
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Figure 27. Distinguishing spillover and network effects

This figure shows how diversity develops in settings with (a) spillover effects and (b) net-
work effects. In figure (a), I depict three runs of the simulation with low degrees of interac-
tion (m = 2) for a non-proportional growth process (a = 0.5). In figure (b), I depict one
sample run for a low degree of susceptibility to network effects (m,, = 0.2).

Additional Analysis for (Proportional) Network Effects

Exploring the peak in mean and standard deviation for m,, = 0.1, I performed further ex-
periments varying m,, between 0 and 0.3 in increments of 0.025 (refer to Table S7, Exp.

10). Figure 28 shows the impact for various values of m,, on diversity.

We see a non-monotonicity quite clearly. When m,,, is sufficiently low, 5 percent or below
(m,, < 0.05), we then see that diversity is above 1.2. At that level, a number of cases exist
in which two technologies persist in the network. As m,, increases (in the range starting
from 0.05 or above), the network settles to one technology in the vast majority of cases.
Decreases in the standard deviation of D — refer to Table S9 in the appendix — indicate a

decreasing number of instances in which multiple technologies persist for increases in m,,.
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Figure 28. Ezxtended results for effects of proportional growth on diversity

This figure shows diversity as a function of various degrees of susceptibility to network
effects (m,,) varying it from 0.025 to 0.3 in increments of 0.025. The number of links

formed by a new agent grows thus proportional to the network size.

Additional Analysis for (Non-Proportional) Spillover Effects

Considering diverse outcomes for medium ranges of m in more detail, I turn to a detailed
analysis of the micro level processes. Consider in this connection the series of plots as de-
picted in Figure 29. This figure shows how diffusion patterns emerge for varying degrees of
interaction (m). For each run, I initialized a preferential network with 10 nodes diffusing
technologies from hubs (refer to Algorithm A.2). Fixing preferentiality to hybrid (a = 0.5),
I grew the network for 150 periods. Fixing the strengths of the network influences to the
highest level (= 1), agents could choose between 2 technologies (A and B). Hence, agents

relied only on influences from the network and had no natural inclination in any direction.

Figure 29a turns attention to low degrees of interaction (m = 1). From the figure, we see
that several clusters emerged that were uniform in their technological choice. In Figure 29b
—d, I depict several runs in which I set the degree of interaction to a medium level (m =
3). We see that the system converges to varying fractions of adopters. In fact, I found the
system behaved as a Polya Process as particular clusters of the network that turned to
particular technologies became more and more uniform as can be seen in Figure 29b in the
bottom region. Figure 29e depicts the consequences of increasing the degree of interaction
to a high level (m = 7). We see that a tipping towards one technology occurred. I observed
that this became increasingly likely with increases in the degree of interaction (m).
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Figure 29. Clustering for varying degrees of interaction (m) in sample networks

Figure 30 shows typical diffusion curves when focusing on a medium degree of interaction
(m = 3) and keeping all other variables fixed. Consistent with the series of plots in Figure
29b-d, we see that the system converges to a particular fraction of adopters after an initial
period of contingency. The figure shows that this outcome pattern will most likely not be a
situation in which one standard comes to dominate but that diverse or clustered regimes
settle.
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Figure 30. Sample runs with medium degree of interaction for hybrid growth process

5.3.2 Diversity Decreases with Increasing Degrees of Interaction

In the second hypothesis, I was interested in the effect of varying degrees of interaction
(m) on diversity (D). I operationalize diversity by the inverse diversity index D. To test
this relationship (refer to Table S7, Exp. 13), I varied the degree of interaction (m) and
the degree of preferentiality (a), fixing the model to non-proportional growth. Following
Law (2007:500-505), I set the time limit of the simulations this time to 1,000 periods.

Table 14 shows how diversity varies with m and a. When m is low (m = 1), diversity

tends to a medium level of 1.5 or above. Higher levels of m correspond to lower levels of

diversity. This finding is robust across preferential (o = 0.0), hybrid (a = 0.5), and random

(a0 = 1.0) ways of link formation. From Table 14, we see an increasing number of cases

where one solution comes to dominate the network with increases in the degree of interac-

tion (m). I hence find support for the proposition that increases in the degree of interaction
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lead to decreases in diversity (refer to Figure S4 in the appendix for the complete set of

results for varying m and o).

Table 14. Diversity (D) as a function of interaction (m) and preferentiality level (a)
Degree of interaction (m)
Low Medium High
(m=1) (m = 3) (m=T7)
Degree of preferentiality (o) Mean Std. dev. | Mean | Std. dev. | Mean | Std. dev.
Preferential (o0 = 0) 1.58 0.37 1.09 0.20 1.01 0.02
Hybrid (o = 0.5) 1.53 0.35 1.26 0.34 1.01 0.03
Random (o= 1) 1.58 0.32 1.08 0.19 1.01 0.02

Decreases in diversity for increasing degrees of interaction become obvious when we look at
the series of plots in Figure 31: the more partners an agent interacts with, the more likely

it is for a single standard to dominate the network.

a b c

- Preferential (o = 0.0) ) Hybrid (o = 0.5) 5 Random (a= 1.0)
19 1 1.9 - 1.9
18 4 1.8 1.8 -
s 77 1.7 A 17 4
S 16 16 4 6 |
@ 15 15 - 1.5
S 14 14 - 14 -
0 13 13 - 13 -
12 1 12 1 1.2 A
11 4 1.1 A 11 A

1 1 1
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
Degree of interaction (m) Degree of interaction (m) Degree of interaction (m)

Figure 31. Effect of interaction (m) on diversity (D) for varying preferentiality (o)

This figure shows diversity (D) as a function of varying degrees of interaction (m), fizing
the degree of preferentiality to (a) preferential (a = 0.0), (b) hybrid (a = 0.5), and (c)
random (a = 1.0). The network grew for 1,000 periods; results averaged over 100 runs.

My next exercise is to assess how varying degrees of interaction (m) and preferentiality (o)
affect network-adjusted homogeneity. Drawing on the setup from Exp. 13 (refer to Table
S7), Figure 32 shows the impact of non-proportional growth for various degrees of interac-
tion (m) and preferentiality (a) on network-adjusted homogeneity (H).

The main analytical finding is straightforward: when m is sufficiently low, m = 2 or below,
homogeneity is highest with values close to 1. At that level, a local optimum is reached.
For high levels of m, with m at levels of 7 or above, the network again approximates the
limit value of H = 1. This configuration results in a U-shaped relation between degrees of
interactions and homogeneity. Two mechanisms are at work: for high m, network influ-
ences boost homogeneity with respect to one standard’s dominance (III.) while a clustering
effect works for lower m. New agents attach preferentially to hubs promoting coherent
clusters of different technologies (II.). Refer to Figure S5 in the appendix for the complete

set of results for varying m and a.
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Figure 32. Effect of interaction (m) on homogeneity (H) varying preferentiality ()

5.3.3 The Consequences of Varying Network Influence Strength

In the third hypothesis (H3), I was interested in the effect of varying network influence
strengths (f) on diversity (D), moderated by the degree of interaction (m). A next set of

experiments thus combines these two factors, f and m, to test their effect on diversity.

My first exercise is to vary the network influence strength () and the degree of interaction
(m), fixing preferentiality at a medium level (o = 0.5). I used the preferential attachment
strategy with & = 2 technologies to initialize the network (refer to Table S7, Exp. 11). The

network grew for 1,000 periods.

Figure 33a-c shows how diversity varies with fand m. We see a non-linearity at almost
every degree of interaction: Higher network influences, = 0.5 and above, result in diversi-
ty remaining at a high level (two is the maximum diversity for £ = 2 technologies). Essen-
tially, agents can realize their natural inclinations and multiple technologies persist in the
network. As expected, stronger network influences result in lower levels of diversity. As
shown in the figure, this proposition holds for all levels of m but the relationship is least
pronounced for low degrees of interaction (m = 1). As shown in Figure 33a, networks with
medium (m = 3) and high degrees of interaction (m = 7) switch suddenly from a chaotic,
multi-standard regime (I.) to a one standard dominance regime (II.). In contrast, Figure
33b shows that for low degrees of interaction (m = 1), the system’s diversity will not fall
to a minimum level but plateaus at a medium level. With low degrees of interaction, is-
lands of shared technologies emerge (IIL.). Refer to Figure S6 in the appendix for more
detailed results where I increased the degree of interaction (m) from 1 to 7 (in increments
of 1). Viewed together, I hence find support for the moderator hypothesis that diversity
will decrease to a higher extent with increases in degrees of interaction.
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Figure 33. Effects of network influence (f) on diversity (D) varying interaction (m)

This figure shows how diversity (D) decreases as a function of the network influence
strengths () for varying degrees of interaction (m). On the right-side, for medium and
high degrees of interaction (figure b and c), we see an almost immediate drop in diversity
from a high to a low level. For high network influence strengths, agents realize their pref-
erences and above a certain threshold level, agents’ natural inclinations lose importance
and sooner or later, one standard comes to dominate. For low degrees of interaction
(figure a), however, the decrease is less pronounced and particular technologies can come

to thrive in different areas of the network.

Table 15 shows numerical results for low (m = 1), medium (m = 3), and high degrees of
interaction (m = 7) and the varying strength of network influences. We can see that
standard deviations vary strongly: while standard deviations of zero point to cases in
which one regime settles deterministically — for instance for low network influences (8 = 0)
where a multi-standard regime (I.) always emerges — other cases in which standard devia-
tions vary drastically are less obvious to interpret. Consider for instance a situation in
which network influences are maximal (f = 1) and the degree of interaction is low (m =
1). We have considered this case already in the former experiments. In this instance, a
clustered regime (II.) emerged and the results on standard deviations show that results
often vary significantly with respect to the ratios with which both technologies come to
diffuse in the network.

Table 15. Effects of network influence (B) and interaction level (m) on diversity (D)
Diversity'? Degree of interaction (m)
Low (m = 1) Medium (m = 3) High (m = 7)
Nw. influence (B) Mean Std. dev.| Mean Std. dev. Mean Std. dev.
B=10 2.00 0.00 2.00 0.00 2.00 0.00
B=0.3 2.00 0.00 2.00 0.00 2.00 0.00
B=0.5 1.55 0.33 1.97 0.06 1.80 0.37
B= 0.7 1.56 0.31 1.00 0.00 1.00 0.00
p=1 1.57 0.33 1.00 0.00 1.00 0.00

! Refer to Table S7, Exp. 11 for the experimental setup
? Average results for 100 simulation runs
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Additional experiments (refer to Table S7, Exp. 12) showed that the findings were robust
for varying the network initialization strategy (from preferential attachment to a minimal
set strategy). The moderating effect of the degree of interaction (m) on diversity for low to

medium levels (1 < m < 5) was, however, less pronounced.

5.3.4 Summary of Findings

Table 16 summarizes the main findings of the experiments. In the next section, I discuss

important limitations and implications.

Table 16. Summary of findings from agent-based simulations

Hypothesis Reference Support Answer

Spillover and Aral et al. yes Strong susceptibility of growing net-

network effects (2009); Arthur work to lock-ins for all levels of net-

influence diversi- | (1989); Beck et work effects.

ty differently al. (2008); Spillover effects limit network effects;

Fichman (2004) “islands of shared technologies” be-

come more likely.

Increases in in- Arthur (1989); yes Growing networks in which influences

teraction degrees | Leydesdorff and spill over across nodes directly be-

lead to decreases | van den come increasingly susceptible to lock-

in diversity Besselaar (2000). ins to one standard for higher degrees
of interaction.

Network influ- Arthur (1989); partial No difference for situations of low

ence strengths Draisbach et al. network influences; agent’s decide

mediate effect of | (2012, 2013) according to base preferences.

spillover and For high levels of network influences,

network effects clustering effect when spillovers are

on diversity present; lock-in under network ef-
fects.

5.4 Discussion and Preliminary Conclusion

5.4.1 Interpretation

Based on a simple model of standard diffusion among standard-adopting agents, I have
examined the influence of interaction patterns in a growing network on diversity. The
model sets itself apart from previous models by incorporating a unique network growth
strategy: I combined a hybrid random growth model, featuring “friends-of-friends”-based
partner selection in proportional and non-proportional ways, with strategic agents.

My contribution over Draisbach et al. (2013) is as follows. First, I incorporated different

new growth logics and tested their effect on diffusion outcomes. I showed that standardiza-

tion outcomes are contingent upon whether a system grows driven by network effects

(proportional) or by spillover effects (non-proportional), and on the extent of interaction

and preferentiality with which new agents form links to existing agents. Second, I added
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different initial network forms (i.e. preferential attachment networks, centralized and de-
centralized structures) as well as two initialization procedures and tested the effect on

standard diffusion.

Analytical and experimental results highlighted several important features. Firstly, propor-
tional and non-proportional growth is usefully distinguished as having different, non-
monotonic effects on standardization outcomes: the dominance of a single global standard
(III) is most likely under proportional growth as the number of interaction partners grows
relative as a function of the network size, which makes new agents more and more likely to
adopt the most-diffused standard (cf. Figure 26a). Reproducing the model of path depend-
ence, as proposed by Brian Arthur (1989), increases confidence in my model’s finding. Sec-
ondly, increases in the degree of interaction (m), increase the likelihood of one standard’s
dominance (refer to Figure 31). There is, however, an interesting trade-off on how the de-
gree of interaction affects homogeneity. The trade-off results in a situation where middle
ranges are the most diverse (refer to Figure 32). These results could be explained by clus-
tered regimes with islands of shared technologies (II) that arise as a function of the net-

work’s non-proportional growth process.

5.4.2 Discussion: Islands of Shared Technologies and Their Implications

I believe that distinguishing chaotic regimes (I), islands of shared technologies (II), and
one standard’s dominance (III) — presents a useful reference point for theory building on
different forms of standardization patterns. Figure 34 provides a summary of how I define
these three states with respect to diversity and network-adjusted homogeneity. The most
important square in this figure is the theoretical notion of “islands of shared technologies”.
I define them as a situation in which network-wide diversity is high, as multiple technolo-
gies persist, but diversity in local neighborhoods (in my terminology, network-adjusted
homogeneity) is also high as local neighborhoods grow homogeneous. An important feature
of “islands of shared technologies” is that these clusters became inert over time as new
elements attach preferentially to clusters, such that they grow increasingly homogeneous.
Not unlike the Polya Process, a particular distribution over outcomes settles over time
whereas this ratio can vary significantly contingent on the network initialization and early

events in the process.

Existing research on standard diffusion has so far only distinguished multi-standard persis-
tence and the seminal path dependence case in which one technology comes to dominate a
network. My contribution over Weitzel et al. (2006) is that I showed that diverse “oligopo-
lies” differ with regards to local homogeneity. As the Polya Process, “islands of shared
technologies” exhibit all characteristics of a path-dependent process (i.e. equilibrium-
dependence and non-ergocity). Consistent with David (1994), these results show that mul-
ti-standard situations often persist: different technologies come to dominate in particular
clusters of a network which boosts the misfit costs for ill-fitting new elements.

As a result of my investigation, path creation strategies may consider different roads based
on the logic that governs a system’s growth: While chaotic regimes (I) may require more
traditional intervention strategies that aim at switching particular groups of agent’s to-
wards one standard (Weitzel et al. 2006), if one finds a system moving towards islands of
shared technologies, one may rather aim at (a) consolidation, or (b) establishing appropri-
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ate gateway or converter technologies that allow for smooth interactions between different
clusters (Hanseth 2000, 2002). Switching entire clusters may often require substantial ef-
forts as these clusters may have accumulated significant resources and network effects

within the cluster may impede transitions towards a common standard.

Network-adjusted

_’ .
Low <— homogeneity High
Low
One Standard
Dominance (I11)
Diversity
Chaotic Islands of
Regime (1) Shared
High Technologies (1)
Figure 34. Outcome regimes with respect to diversity and network homogeneity

5.4.3 Limitations: Beyond Undirected Links, Rationality, and Irreversibility

I point to three important limitations. Firstly, I limited the analysis to undirected links. I
believe that assuming mutual relations between nodes was a reasonable starting point in
the model, as new nodes decided only once and irreversibly on which technology to use
when they entered the network; the model could, however, mischaracterize situations in
which nodes are related in indirect ways and changes are not limited to the moment of
network entry.

Consider the series of plots in Figure 35. In Figure 35a, I refer to a situation in which two
nodes are jointly dependent on each other: if one element is changed, then changes in the
other element are triggered, as if two connected IT systems share the same data standards
and one system is updated. For clarity, think of the link between inventory and revenue
management systems by booking classes (Bartke 2013:20): optimization results from reve-
nue management are fed back into booking limits in the inventory, new bookings then
again become input for revenue management forecasting and optimization and so forth.
Expert interviews, for instance, suggest that changes in revenue management components
are only of limited value if results become thereafter transformed again in the restricted
booking class format (refer to expert statements in 052, 0S7, and 0S8). Even more alarm-
ing, Figure 35b portrays a situation in which two elements are not directly connected in
mutual ways but via a third party. Think of additional interdependencies of airlines with
GDS creating an indirect dependence where fare data from the inventory (7,) is published
to the GDS (4;) that is in turn quoted by revenue management components (i,) for fore-
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casting and so forth. The reddish color indicates potential constraints that arise from the
fact that the GDS are outside the influence of any particular airline and thus changes re-
quire potentially protracted negotiations (refer to expert statement in 0S10). Incorporating
such indirect dependencies has not yet been realized in the model and requires, at least, a
recasting of the approach to account for incoming and outgoing links as described by
Jackson and Rogers (2007).

2 b

Two additional limitations are the assumption of rational decision making by strategic

Figure 35. Interlocking of (a) two and (b) three connected nodes

agents and also the irreversibility of decisions that limits the approach to settings with
high sunk investments. In general, organizations will have limited switching points but

assuming complete irreversibility may often be too restrictive.

5.4.4 Future Directions: Combining Network and Spillover Effects

I emphasize three promising ways to proceed further. Firstly, further work could combine
non-proportional and proportional growth. Non-proportional growth captures well direct,
contagious influences in a close-knit circle of connected agents (e.g. individuals, organiza-
tions, or organizational units). Underlying mechanisms of influence-based contagions have
been described in Table 1: conformism, peer pressure, learning from the experiences of oth-
ers, or information contagion. Proportional growth portrays another important process:
agents’ large-scale information processing intelligence on the global state of a market (or
any other system of connected agents). The underlying mechanisms have been depicted in
the standard reinforcement cycle in Figure 5: a larger installed base fosters more comple-
ments being produced, which enhances the credibility of a standard, which in turn biases

decision-making of individual agents towards the dominant standard.

Few studies have combined influence-based contagion and network-size dependent effects
to discern, which parts of the variance in standardization processes are captured by either
of the effects. Figure 36 presents an important departure point in in this direction. The
figure depicts a useful way to think about combining proportional and non-proportional
growth: network influences may not grow linearly with the network size as a joint, hybrid
function (e.g. polynomial) of the standard’s total diffusion rate in the network and local
influence processes. Combining both processes could help to explain extra-local patterns in
the adoption of standards; especially those that require time to unfold installed base ad-

vantages.

Secondly, as noted by the economist Matthew Jackson (2008b), it is not only important to
understand how particular networks form but also why they form. The focus of my ap-
proach was to present a model explaining how important empirically observable phenome-
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na such as ‘islands of shared technology’ can arise. I utilized a hybrid random growth
model and combined it with strategic agents, selecting technologies based on explicit cost-
benefit considerations. I see it as a valuable initial vantage point towards further strategic
models of link formation that go beyond assuming that some initial links are formed uni-

formly at random (cf. Figure 13a).

network influence
(number links times network influence strength)

r

network effects

mixed-form

spillover
effects

network size
(number agents)

v

Figure 36. Combining network effects and spillover effects

Recasting my approach could aim to explain why links themselves form as a function of
the agent’s attributes and the agent’s embeddedness in the network, as if airlines in the
same geographical region have incentives to form codeshare linkages. Consider in this con-
nection the series of plots in Figure 37 that present an important extension to my ap-
proach to network formation: starting from the left in Figure 37a, I see that agents may
not merely choose their positioning in the network uniformly at random or preferentially
but by explicitly considering what existing agents in the network fit their natural inclina-
tions. As shown in the figure, this could be achieved by assuming that agents balance the
benefits they receive from linking to agents with high positional values, such as agent ,,
with information on which of the other agents matches the agent’s tastes or preferences.
For instance, agent ¢* would therefore also connect to agent 4z and further link formation
processes as shown in Figure 37b would build upon this strategically chosen position.
Essentially, the propensities with which these links form would thus become a function of
the positional values and the matching characteristics; data on both could be gathered
empirically. I believe the extension I have suggested in Figure 37 is important because it
directs future research explaining why links form as a function of nodes positional values
(the degree of preferentiality) and the agent’s attributes; it would thus enrich the model by
replacing the random component of the approach I have presented by actually observable

agent characteristics.
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nation towards A
. Agent has adopted
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technology B
Figure 37. Ezxtending link formation towards strategic link formation

Finally, one could harness my approach and extend the analysis from the micro level (sin-
gle nodes) and macro level (global patterns) to the segment level. As shown in Figure 34, I
substantiated my claim of different regimes of standardization outcomes by combining
both the diversity index and network-adjusted homogeneity. By analyzing simulation out-
comes using advanced clustering procedures, one could examine more directly the emer-

gence of structural patterns in parts of a network.

5.4.5 Implications for Research on Standards and Path Dependence

My work has implications for standard diffusion research. I suspect that distinguishing
network and spillover effects, as I have defined them, provides a useful reference point for
theorizing different forms of network influences. My approach presents a conceptual bridge
between traditional network effect theory, mostly concerned with actors being at the mer-
cy of market forces, and network analysis, typically subject to close-knit influences among
few individuals. My distinction between proportional and non-proportional growth can
guide future research on distinguishing quantitatively diffusion patterns such as clustered
islands of shared technologies, one standard’s dominance, and multi-standard persistence.

Turning in conclusion to broader implications for path dependence theory, my work con-
tributes to a recent stream of organizational path dependence research that concerns more
accurate portrayals of how inertia builds up in organizational contexts. Path dependence
theory has increasingly utilized the notion of complexity (Koch et al. 2009; Sydow et al.
2009:700; Seidel 2013). Not unlike in NK models (Kauffman 1993; Rivkin and Siggelkow
2002; Siggelkow and Rivkin 2006) — a class of models that theorizes inertia as a function of
the system’s number of elements (N) and the degree of connectedness (K) — a network’s
degree of interaction refers to the extent of coupling among components in a distributed
system. Seminal NK models assume that changes are made within the existing configura-
tion of a system. Change in a system is portrayed as a process where states of a fixed sys-
tem flip. In contrast, I have drawn attention to the extent to which growth processes can
make fundamental change in a system unlikely. In contrast to static NK models, the pre-
sented model assumes that the linkage structure changes as the network evolves. Existing
elements gain more links as a function of their age and their embeddedness in a system.
This presents an interesting extension to static NK models that allows to account for in-

creasing inertia of a system over time due to increasing interdependencies.
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Chapter 6

Evolving IT Infrastructures: Recycle Inc. Case

I turn to the case of Recycle Inc., a private German enterprise from the recycling sector. In
particular, the Recycle Inc. case will illustrate two main pieces of my argument: that IT
infrastructures are usefully analyzed as networks and that network embeddedness induces
inertia. I draw on this case because I gained in-depth qualitative and quantitative insights
into Recycle Inc.’s IT landscape. I conducted thirteen expert interviews that were tape-
recorded, transcribed, and stored for subsequent analysis in a case study data base (refer
to Table S4 for an overview of the field data). Furthermore, I gained access to a compre-
hensive enterprise architecture data set from the companies’ central I'T architecture group:
data on IT support for 29 subsidiaries in 73 business activities by about 400 applications'
was gathered in a real requirements engineering project during a three-month period in
2011 preparing a major I'T transformation. The data set mainly consisted of the company’s

existing applications, information flows and business processes.

Drawing on my conception of IT infrastructures as networks, the first part of this chapter
utilizes a design science approach (Peffers et al. 2007) to introduce a method to IT manag-
ers and architects that enables to identify and assess critical I'T systems with respect to
their architectural embeddedness. I demonstrate and evaluate the method’s usefulness
based on the Recycle Inc. case. Drawing on the growth model (chapter 4), the second part
of this chapter demonstrates the model’s usefulness to understand processes governing the
evolution of a real IT infrastructure.

6.1 Research Context and Data

Recycling Inc. has approximately 9,000 employees and its main areas of business are waste
operations, recyclables trading, services, steel and metals recycling. My point of entry was
an I'T unit in the waste operations business domain, employing 15 people at the time of my
research. Focusing on the waste operation domain, the core waste management process was

composed of the three main activities:
(/) Distributing and pricing waste operations services (e.g. different quality containers)
(7i)  Operating and disposing waste including tour planning and weighting and
(i) Invoicing, accounting and controlling services
I expected the data to reflect that process but I was surprised about the variety of differ-
ent applications and their coupling. I constructed a network data set from the information
I received by representing nodes as applications interacting with each other. Links materi-

alize in implemented and actually used interfaces between two systems (Dreyfus and Iyer
2008). The network is undirected; mainly data quality issues prevented meaningful inter-

' Estimates were not completely precise as issues occurred in the company agreeing on a common (appli-
cation) definition, e.g. how to handle multiple installations of a system and how to remove redundancies
from the data set. We however tried to mitigate concerns on data quality by using a later version of the

data set that has already gone through multiple rounds of reconciliation within the company.
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pretation of information flow directions. Based on this specification, I cleansed the data
and removed applications not interacting with any other system. I proceeded with a net-
work of 212 applications (nodes) and 234 links (information flows). I coded the data in an
n x n adjacency matrix, which I denote as Recycle Inc.’s information system (IS) network
B (refer to data set 0S2 in the online supplements). The data included three additional
application attributes — technical support, ownership, and organization using the applica-

tion — and three further attributes on interfaces (status, transferred data and interface

type).
6.2 A Method to Assess System Embeddedness in IS Networks

Next, I develop a method to assess the importance of IT systems in organizational IT in-
frastructures with respect to their architectural embeddedness'®. The method consists of a
set of useful measures and visualizations to conceptualize IT infrastructures from a net-
work perspective. To develop the method, I chose a design science approach (Peffers et al.
2007). Design science research is an important and widely accepted form of conducting
research on information systems (Gregor and Hevner 2013; Hevner et al. 2004). My re-
search followed a step-wise, iterative procedure as outlined by Peffers et al. (2007:54):
problem definition, definition of scope and objectives, design and development, demonstra-
tion, evaluation, and communication. I demonstrate the method’s application using a case
method (Yin 2013). I introduced the method to potential target users — IT managers and
architects — to evaluate the method’s effectiveness. Consistent with Hevner et al. (2004)
and Venable et al. (2012), I believe that case studies represent a legitimate way to evalu-
ate design science artifacts. Based on the potential of design science research for theory
building (Gregor and Hevner 2013; Kuechler and Vaishnavi 2012), I utilize the findings to
discuss the underexamined theoretical link between system embeddedness and continuance
inertia (refer to chapter 2.1.1).

6.2.1 Useful Measures on the Micro and Macro Level

I begin by distinguishing between three different levels of network analysis. (1.) Macro
analysis focuses on patterns of interconnections. Relationship analysis (2.) is based on the
types of edges and the (non-)existence of relationships. It is highly concerned with cliques,
structural holes or ’boundary spanners’ (Cross and Prusak 2002:9f.). Finally (3.), a micro
analysis narrows the scope to the attributes of a single node (Lima 2007).

Measures on the Micro Level

When the main objective is finding and evaluating the specific nodes which are most criti-
cal with respect to some attribute such as continuance inertia, several measures on the
micro level of a network (3.) serve to be useful. Consistent with Dreyfus and Iyer (2008), I
expect that “[a]pplications with high positional value may be important because they in-
fluence many other applications”. Following suit, I focus on metrics for the influence of
applications on others. In network analysis, a variety of centrality measures are used to

assess a node’s influence. T focus on three of them, which are degree, betweenness, and

' Earlier versions of this method have, in parts, being outlined in Fuerstenau and Rothe (2014),
and Fuerstenau (2014)
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Eigenvector centrality. I chose these metrics by two means. First of all, they are used most
often throughout research based upon centrality in network analysis on a micro-level. Sec-
ondly, they allow for distinct interpretations. I will evaluate these metrics following the
widely accepted SMART criterion for decision processes consisting of five attributes:
(s)pecific, (m)easurable, (a)ttainable, (r)ealistic, (t)imely (cf. Doran, 1981; Wright, 2008).
(S)pecificity concentrates on a clear target to be improved. My target is to assess the cen-
trality of IT systems. A (m)easurable item offers quantifiable indicators. Metrics are used
to define (a)ttainable goals. It needs to be as simple as possible to understand clearly their
direct implications. Metrics should also clarify their reach, to be used in (r)ealistic decision
processes. Finally, the (t)ime between data collection and decision need to be minimized.
All centrality measures use the same source of network data. Hence, across them
(m)easurability and (t)imely data collection do not differ. Both attributes are therefore not
used to evaluate the usability of the metrics. They are essential for our further analysis
nonetheless. Therefore, I will focus on them in the next chapter, which is concerned with
the procedural model. Degree centrality defines (actor) centrality on a micro level most
simply (Wasserman and Faust 1994). In a non-directional network, degree centrality C}, is
defined in Equation 6.1 as

% 3jj
g-1

C'p(n;)= (6.1)
where 3 z; is the sum of ties (z) between one node ¢ and any other node j within the net-
work, standardized by the size of the remaining network (g - 1). It focuses on the direct
neighbors of a node. Hence, although the metric is easy to interpret we can only vaguely
assess the influence of such a node on the overall network. An IT system with a degree
centrality of zero shares no data with any other application. A high degree of centrality
may indicate that the application is integrated into a dense cluster of systems which is
strongly interconnected. Nevertheless, it may also hint to a system having a boundary
spanning role between different systems in the IS architecture. Degree centrality is very
comprehensible, as it only counts the amount of used interfaces. (A)ttainable and
(r)ealistic decisions could be made on this indicator. For our purpose — to find central ap-
plications within an IS architecture — it leaves room for ambiguous interpretations as it

only accounts for direct neighbors. Hence, it lacks (s)pecificity.

Another frequently discussed metric is betweenness centrality. It is a path-based cen-
trality measure and particularly accounts for indirect ties between nodes (Freeman 1977;
Wasserman and Faust 1994). Betweenness centrality measures the probability that a node
(4) lies on a shortest path between two other nodes (j and k). We add up the probabilities
for every constellation within the network. Betweenness centrality is mostly discussed
when it comes to boundary spanning. Nodes with a high betweenness centrality are likely
to be the only link between cliques and clusters in a network. Their importance is driven
by the fact that if they are removed, the whole network may fall apart. As shown in Equa-
tion 6.2, I also standardize betweenness for the overall network (g) as follows:

, , Zj<k -(ljk(llﬁ)/'(/fk
o Bk 6.2
B( 2) (g-1)(g-2)/2 ( )
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With regards to a visualization of an IS architecture, betweenness centrality may be a
good indicator for indirect dependence of applications. I take it as a point of departure for
(a)ttainable and (r)ealistic decision making. One may begin asking the right questions:
does an ERP A rely on an application C to get data from B? If so, application C becomes
a “boundary spanner” or “gatekeeper” (Wasserman and Faust 1994). While the answers to
such questions may be very insightful, the metric itself lacks an important attribute, which
degree centrality already contributed for. It only partly accounts for the effects of direct
links. Even with a low betweenness centrality, the application concerned may have many
links to other systems, which by themselves may be interconnected. Moreover, little cer-
tainty exists that data streams between applications always take the shortest path, which

is a key assumption underlying betweeness centrality.

Finally, I discuss Eigenvector centrality, frequently used to capture the power of a node
within a network (Bonacich 1987). It is also similar to the PageRank used by Google to
assess the importance of web pages within the World Wide Web. Eigenvector centrality
combines attributes of the two before mentioned approaches (cf. Bonacich 2007). It does
not only take the direct ties of a node into consideration but also the neighborhood of the-
se ties. Moreover, the centrality of a node rises with the centrality of its direct neighbors.
The recursive function — referring to Newman (2008) — in standardized form is given by

Equation 6.3:

Cﬂ(i)zéijij ca(j)
(6.3)

It uses the adjacency matrix B, in which z; = 1, if node 7 and j are tied to each other. The
eigenvalue A is a constant. Transferred to information systems, one may assume that an
application ¢, sharing data with a very central ERP j, is also more central in the overall IS
architecture. The measure takes direct and indirect connections into account. Therefore, it
fulfills our (s)pecific need to find central actors within a network. Due to its recursive defi-
nition, the causes of its centrality remain unclear compared to the other metrics. Thus, it
is rather difficult to define (a)ttainable and (r)ealistic decisions based upon this metric. In
my following analysis, I will therefore use degree centrality and betweenness centrality to
assess the importance of an IT system within the IS architecture. I find both measures
simple enough to derive direct decisions as well as comprehensive enough to complement

each other.
Measures on the Macro Level

I turn to measures on the macro level that will be useful in understanding network for-
mation and overall patterns of interactions in IS architectures. Macro level patterns are
often visualized graphically or by adjacency matrices (Lerner 2010:355-364). I briefly in-
troduce the following summary statistics that characterize a network’s macro state: densi-
ty, average degree, average clustering coefficient, average path length, assortativity, degree
distribution, and giant component size. Thereafter, I sort out suitable measures for my
approach to understand the evolution of IT infrastructures.

One of the most prominent coefficients for macro analysis is the density of a network. It
can be determined by the strength and quantity of connections between dyads and triads
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of interconnected nodes. In an absolutely dense network every node shares a tie with every
other (Borgatti and Everett 1997:253). Technically, density is the average degree divided

by n — 1, where n is the number of nodes.

The average degree is the average number of links for all nodes divided by the overall
number of nodes. Density and average degree characterize a network’s overall degree of
interconnection. If a network has a low density then typically it consists only of small
components, but if the density is high enough then a single large component forms, usually

accompanied by many separate small ones (Newman 2011).

The average clustering coefficient tapes into the extent to which triads — in social
networks constellations where friends befriend with friends — are present (Jackson 2008b).
It is defined as the mean over all local clustering coefficients; and the local clustering coef-
ficient designates the number of pairs of neighbors of node ¢ connected with each other
divided by the overall number of pairs of ¢ (Watts and Strogatz 1998).

The average path length is a measure of the distance — the length of (number of links
in) the shortest path (or geodesic) between nodes in a network (Jackson 2008:32). As
many networks are not fully connected, one typically reports the average path length with-

in the giant component — the largest number of connected nodes.

Assortativity characterizes a situation in which high-degree nodes tend to link with other
high-degree nodes (Jackson 2008:65-66). Assortativity designates a correlation in degrees
(Newman 2002); it may help to shed light on the patterns of diffusion — how information
flows through a network and how it is transmitted in the network. For example, a study
on trade relationships by Jackson (2008:67) found a negative correlation in degrees of
countries trading with each other, which was caused by a pattern where small countries
tend to trade with few large countries forming a hub-and-spoke structure.

One may think of the degree distribution by constructing a vector of all the nodes’ de-
grees. That is, the number of link neighbors each node holds. Based on this vector, the
degree distribution is a histogram of the relative frequency with which each value of degree
is present in the vector. Important patterns of scaling have been characterized by degree
distributions (cf. Barabasi and Albert 1999). Typically the logarithm of degrees and rela-
tive frequencies is used to plot the degree distributions. Preferential attachment networks
will be approximated well by a straight line with a negative slope (Jackson 2008:59-65).
Growing random networks, in contrast, are better fit by a polynomial regression line, also
with a negative slope (Jackson 2008:135).

Finally, the giant component size is the maximum number of connected nodes in a net-

work.

To this point, I introduced several measures to characterize a network’s macro state. Con-
sistent with Liu et al. (2011b), T expect that it will be useful to focus on degree distribu-
tions to fit data from the IS network as this will reproduce important structural properties
of the network. As focusing on degree distributions alone could result in missing important
aspects of a network’s structure, I believe that it is important to extend the analysis by
four other coefficients.
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Firstly, the clustering coefficient shows whether a node’s neighbors tend to be connected.
Connectedness among neighbors — which is discussed as “triads” in the sociological litera-
ture — is not reflected by degree distributions. In a network of information systems, a high
clustering coefficient could indicate deadlock situations whereby information flows through
various systems that tie back to the source of information. For concreteness, think of a fare
engine quoting a GDS for fares before transferring optimization results to the airline’s in-
ventory, which in turn publishes the bookings to the GDS, creating an interlocked triad.
Secondly, average path lengths allow estimating the distance between different nodes in a
network. This is useful when differentiating between, for instance, tree-like and ring-like
structures, which may have similar degree distributions but differ strongly in how fast (by
how many steps) nodes can be reached from any other node (cf. Jackson 2008:32). I also
harness density and giant component size as they describe to what extent the network is
connected or whether a fraction of the network is unreachable, which is important for

spillover and risk analysis.

The design artifact consists of the presented measures as well as a procedural model on

how to apply the method. For the procedural model refer to Fuerstenau and Rothe

(2014:6-7).

6.2.2 Results: System Embeddedness in Recycle Inc.’s IS Network

Figure 38 depicts Recycle Inc.’s application landscape as a network. In the figure, nodes
denote applications and links denote flows of information. One may think of a node as a
SAP finance module. Colors designate which business unit, subsidiary, or IT unit owns the
application. Headquarter-owned ones are for instance bluish. Table 1 summarizes the mac-
ro structure of the network. As can be seen from the figure, the network is sparse with one
giant component (density is 0.010). The giant component consisted of 178 nodes; average
clustering coefficient is thus reported for the giant component: clustering is 0.241, indicat-

ing a low to medium connectedness among triads of nodes.

Comparing the data to a random network, my results suggest that the observed network is
not a purely random network. In a network with 212 nodes, I found an average degree of
2.179. Following Jackson (2008:59), a purely random network with this average degree
would have a probability of any given link forming of 2.179 divided by 212, or roughly
0.0102783. The clustering I observed in the actual network was 0.241, which is approxi-
mately 23.4 times higher than what we would see in a random network with the same size
and connectivity. T hence conclude that the examined information system network is a

non-random network.

Table 17. Summary statistics on Recycle Inc.'s IS network

Number Giant Number | Density Average | Clustering Average Assortativity
nodes | component | links degree coefficient | path length
212 178 234 0.010 2.179 0.241 4.357 -0.010

While the network is non-random, it is neither planned in a central fashion. The network
plot in Figure 38 shows that several of the hubs are assigned to specific regions or subsidi-
aries of the company. This lets me conclude that the historical, although not necessarily
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the actual, organizational structure determines (and certainly is determined by) the cur-
rent IS network. Take for instance MEMO — an ERP/logistics system — as depicted in
Figure 40d. The reddish color of the application in Figure 38a shows that the system is
mostly used in the southern regions of the company, which is due to the fact that the sys-
tem just entered Recycle Inc.’s IS architecture when the company acquired subsidiaries
from a competitor in this region. This example illustrates how historical contingencies

shape the actual clustering of an information system network.
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Figure 38. Querview of Recycle Inc.’s network of information systems

This figure shows the IT landscape of Recycle Inc.’s waste operations domain (2011).
Nodes are applications, e.g. an SAP finance/controlling system, and links indicate flows of
information that materialize in technical interfaces. The colors designate the responsible

unit as shown in the legend, e.g. bluish systems are owned by the headquarter IT unit.

I now turn to the network’s degree distribution (for raw data refer to Table S10 in the
appendix). Figure 39a plots the frequency of occurrences for each number of interfaces,
which I denote as the applications’ degrees. The plot is a valuable initial vantage point as
it already indicates an imbalance between a large number of low-degree and high-degree
applications while the middle section of the plot is infrequently populated. Many applica-
tions have one or two interfaces while only few applications can be found in the middle
region. From eyeballing the data, we see a “power law” structure that is typical for prefer-
ential attachment networks (Jackson 2008b). The log-log plot in Figure 39b reinforced my
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view and points to a robust linear relationship between the logged degree and the logged
relative frequency of occurrences. Viewed together, Figure 38 and Figure 39 suggest that
Recycle Inc.’s IS network tends towards a hub-and-spoke structure: a few important appli-

cations (“hubs”) are surrounded by several small components (“spokes”).
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Figure 39. Degree distribution of IS network: (a) absolute and (b) log-log plot

Consistent with this finding, I focused further analytical attention on central systems with
respect to their degree. Consider the left side of Figure 40 depicting degree centralities.
Central systems are colored in blue, red and orange; less central applications appear tur-
quoise and green. Figure 40a lists the most central applications: SAP Finance, MEMO,
Entrance, Recyclix and Candy, of which Recyclix — the unit of analysis for my qualitative
study — SAP Finance — used for invoicing and accounting applications — and MEMO are

most important for my further analysis.

Various systems in Recycle Inc.’s IS architecture have been around for twenty years or
longer. Recyclix (cf. Figure 40b) — an ERP/logistics application — for instance went live in
1995 after an initial planning phase (refer to archival data 0S55). It replaced two other
transactional systems, which are, however, still in operation. Since then, it was extended
by various add-ons and extensions. A yearly budgeting and release planning process — as
well as multiple uncoordinated changes — brought in various new applications, e.g. for tour
planning, winter services and public waste operations (refer to interviews 0S43 to 0548,
and 0S50 to 0S52). These new programs and extensions became necessary to respond to
changes in legal and market conditions as well as to react to strategic necessities. Traces of
legacy clearly shape Recycle Inc.’s current IT landscape. Several interviewees (refer to in-
terview 0542, 0544, 0548, 0549, and 0S51) confirmed my impression that the IS architec-
ture is fragmented. Consider for instance the spokes around Recyclix in Figure 40b: there
are multiple interfaces to weighting applications, tools for dangerous goods reporting, as
well as other controlling and reporting applications, some of which were planned while

others were reactions to shortcomings of the system’s current functionalities.
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Figure 40. Degree centrality in Recycle Inc.’s network of information systems

SAP Finance, depicted in Figure 40c, is the most central system by the total number of
interfaces (24 interfaces absolute). Consider the waste operations process: SAP is used
mainly for invoicing and accounting. Numerous transactional systems provide data for
SAP, e.g. several ERP/logistics systems, weighting and tour planning programs; this
makes the system an important hub. Furthermore, many applications use data from SAP,
e.g. a controlling cockpit, a data warehouse and several archival systems. The system’s
high degree approximates well the perception that emerged in my interviews (refer esp. to
interview 0S41): the system is strongly embedded in Recycle Inc.’s organizational activity.
Interviewees reported that Recycle Inc. had not updated SAP from R/3 for a long time
(refer to interview oS41 and 0S44); this exemplifies the company’s inertia arising from
business-critical yet strongly embedded (and customized) systems.

Moreover, when an IT system is characterized by high betweenness centrality, IT man-
agement should be alert: the overall IS architecture is at risk of break down if the I'T sys-
tem fails to provide its services. The example of BetaSigner (refer to Figure 41f) indicates
that such systems are often important gateways.
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Assortativity denotes that high-degree nodes tend to connect to other high-degree nodes.
Recyclix for instance interfaces with other important hubs in the application landscape,
e.g. SAP (cf. Figure 40¢) to automate invoicing, accounting and dunning. Newman (2002)
claims that technological networks often show a negative assortativity (cf. Jackson
2008:66). I did not observe assortative mixing in the data (assortativity degree: -0.0096). A
possible explanation for this lack of correlation among high-degree nodes is the specific
process by which IS networks form: I expect that low-degree nodes (“small programs”)
attach to a few (or one) high-degree nodes. These high-degree nodes in turn connect to a
large number of low-degree nodes as well as other high-degree nodes. These dynamics tend
to outweigh the degree of correlation among high-degree nodes. The network representa-
tion (cf. Figure 38) also points in this direction of “islands of shared technology”: five to
six high-degree hubs, e.g. SAP Finance and Recyclix, are complemented by many spokes.
The IS network at hand is characterized by a hub-and-spoke network.

Hub-and-spoke structures intuitively suggest a preferential growth process in which new
nodes attach preferentially to high-degree nodes. In the following sections, simulation re-
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sults are presented to suggest a network formation process that fits with the empirical
data; it is intended to add our understanding of generative mechanisms constituting real
information system networks: How did this network form? To what extent is it random or

preferential ?

6.2.3 Discussion: Linking System Embeddedness and Continuance Inertia

Furneaux and Wade (2011) link system embeddedness and continuance inertia. I suggested
a method to assess the extent of system embeddedness using measures from network ana-
lysis. I identified most central systems in Recycle Inc.’s IS architecture with respect to
degree and betweeness centrality. I found that degree is a straightforward measure that
can easily be applied and communicated to stakeholders; a high degree points to important
systems being surrounded by a large ecosystem of satellites. I referred to the examples of
SAP Finance (refer to Figure 40c) and MEMO (refer to Figure 40d) to illuminate why a
high degree is often associated with continuance inertia. In addition, betweeness centrality
highlights systems spanning different parts of the landscape. Viewed together, I conclude
that both measures complement each other in assessing the degree of system
embeddedness. In case of a high degree centrality, a large number of other systems depend
directly on an IT system; if the organization’s ability to maintain the system drains or the
support is discontinued, organizational measures to replace the system may be drawn back;
it is easy to imagine situations in which systems embed so strongly in the organization
that serious inertia to discontinue the system arises (e.g. because of difficulties in transfer-
ring interfaces or business logics inscribed in the system). I believe these results are a theo-
retical step forward towards a better understanding of how system embeddedness affects

continuance inertia.

In Table S12 in the appendix, I have outlined a theoretical model that could be used in
future research to test the relationship between system embeddedness and continuance
inertia. I believe this model is important as it links system embeddedness and continuance
inertia in a way that one can operationalize by drawing on available, quantitative data
from a company’s IT documentation. My contribution over Furneaux and Wade (2011) is
that the network measures — on which my approach builds upon — can replace, or at least
complement, the potentially biased expert judgments used in previous works.

6.2.4 Concluding Remarks

This study explored what network analysis concepts are helpful in assessing I'T infrastruc-
tures with respect to system embeddedness. I also aimed at shedding light on the reasons
why system embeddedness affects continuance inertia. I suggested a method that models
system embeddedness as the positional value of an application in a network of applications
and interfaces. To identify embedded systems, I suggested centrality measures from net-
work analysis. I found that degree centrality is a simple and yet powerful measure that
captures the number of neighbors of a system. When a system shows a high degree, it is
likely to exhibit high levels of inertia as illustrated in the example of SAP Finance (refer to
Figure 40c¢): Organizations may delay suspensions or updates as a large number of inter-
faces need to be adapted, some of which may be undocumented or idiosyncratic. Changes
would ripple and require the adaptation of several other business-critical systems. Addi-
tionally, betweeness centrality captures a system’s position as a boundary spanner. Sys-
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tems with high betweeness centrality will also be critical with respect to continuance deci-
sions as shown in the example of BetaSigner (Figure 41f): they connect different clusters of
an IT infrastructure. In case of their discontinuance the architecture is at risk of breaking

down, so they may stay operational despite capability shortcomings.

My work is not without limitations. Firstly, I focused on the technical integration between
information systems as one important dimension of embeddedness (refer to Furneaux and
Wade 2011). Further work is necessary to operationalize the embeddedness of systems in
organizational work practices. A possible starting point is work by Aier and Winter (2009)
on business and IT architecture linkages. Secondly, although I could observe legacy traces
in the data, I could not track historical growth processes over time directly. Recasting my
approach to consider network dynamics would be a natural next step. This could be done
by gathering further network data at different points in time. My vantage point in the
next section is a simulation that fits the network dynamics with empirical data; it aims to
improve our understanding of generative mechanisms constituting real information system

networks.

Turning in conclusion to managerial implications, I believe that IT managers can benefit
from concentrating on central systems in their transformation efforts. Information systems
having reached a critical size and risk status will be more likely to exhibit continuance
inertia. Systems playing a central role in a company’s I'T infrastructure are also more likely
to be essential in multiple business processes. In this connection, my approach provides IT
managers with a standardized procedure to assess system embeddedness and continuance
inertia. A dashboard solution could build up on my approach.

6.3 Insights from Agent-based Simulations: Architecture Evolution

6.3.1 Model Operationalization

In chapter 4.2, T suggested a hybrid random growth model with the following main param-
eters (cf. Figure 17): proportionality (p), degree of interaction (m) and degree of preferen-
tiality (a). In the model, where new nodes enter every turn, links form in random, prefer-
ential, or hybrid ways.

For the purpose of this study, I constructed a compact version of the model focusing on
fitting the growth process of the information system network at hand. Firstly, I excluded
strategic agents from the model — hence, new node’s entering a network select partners
purely at random or preferentially (or in a hybrid way). I also excluded proportional (rela-
tive) growth from the model as experiments suggested that a non-proportional (absolute)
growth process would approximate the data better. Thirdly, I extended the model by
bringing in two additional parameters describing the growth logic of a network in more

detail: the variance of interactions (o,,) and the dropout rate (t).

The wvariance of interactions (o,,) portrays the extent to which a new node’s number of
interaction partners (m) varies with m. In the basic model a new node links to m partners.
This produces degree distributions mismatching empirical distributions: as m is a lower
bound to a node’s degree (as the network is undirected), each node has at least a degree of
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m. In the extended model, I therefore assume that m is distributed randomly normal'® with
o,. | did that, because it appears plausible from studying empirical degree distributions

that the law of large numbers applies for links forming in information system contexts.

I furthermore extended the model by a process where existing nodes drop out of the net-
work. I model a simple dropout process as shown in Algorithm A.7: Each period, I select a
certain fraction of nodes uniformly at random that will drop out in the next period. The
user inputs a dropout-rate, which is the fraction of the given population of nodes that is in
danger of fall out of the network (initially all nodes are not endangered). Then, in each
period a fraction of nodes is flagged as endangered (line 5-8). In the next period, endan-
gered nodes and their links die (line 1-4). This results in a simple dropout process where

the absolute number of endangered nodes increases relative with the network size.

While growth processes may reinforce a standard if new nodes attach to previous ones and
positive externalities or spillovers are present, dropout may lead to segregation, decay, or
generally counteracting dynamics. It is easy to imagine the empirical process: existing in-
formation systems will be dispended or replaced at the end of their lifecycle (cf. Furneaux
and Wade 2011). I define a mortality rate (t). T scales between zero and one; each period,
a fraction of T nodes is picked uniformly at random and removed in the next period from
the population of nodes'. All existing links will also be removed from the network. I bring
in dropout as simulated networks will tend to overestimate the size of the giant compo-
nent. In a (random) network where A (the link probability) is larger than log(n) / n, the
probability that the network is connected will always tend to one (cf. Erdés and Rényi
1961; Jackson 2008b:92-97). Hence, the network will remain connected as new nodes in the
model only attach to existing nodes in the giant component. A dropout process restricts
the giant component’s size as the network can now decay.

Algorithm A.7 Dropout

foreach node with ‘endangered’ do > flagged nodes die
foreach link do die end foreach > first all links die
die > then the node dies

end foreach
foreach node do
let rd := random-float 1
if rd < dropout-rate then endangered := true end if > node is flagged

end foreach

Viewed together, Table 18 summarizes the main parameters of the given model. The next
section presents results from fitting selected models to the empirical data.

' Note that in cases where 6, = 0, the model is equivalent to our base model. When the degree of inter-
action after the transformation is smaller than one, the model sets it to m = 1. For small m, i.e. when

m = 1, this produces a distribution that cuts off the lower part of the “Gaussian” curve.

""In an empirical study, Aier et al. (2009) estimated “probabilities of death” for applications based on
enterprise architecture data in three companies. The values ranged considerably between years and com-
panies from 0.00 to 0.41 (company A), 0.05 to 0.19 (company B) and 0.00 to 0.18 (company C).
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Table 18. Main parameters of the simulation model
Simulation | Math. Description
parameter notation
Start- - Initialize a static network with a given network type (random,
2 | network preferential)
g
=
X | No-init-nodes | n, The initial network consists of n, nodes
@
Z | Link- A Nodes become linked by a certain link probability (X), which is
probability only applicable for random networks.
Degree-of- m Each “new” node finds partners given a certain degree of in-
interaction teraction, which is the number of links formed
alpha o The degree of preferentiality (o) indicates whether a new node
attaches primarily to high-degree nodes (o = 0) or to random
Eg— nodes (o = one)
o
3 variance-of- o, The extent to which a new node’s number of interaction part-
interactions ners varies
Dropout rate | T If the dropout rate (t) is non-zero, pick T * n nodes at random
and tag them as “endangered”. Endangered nodes and their
links are removed in the next period.

6.3.2 Model Implementation and Experimental Setup

The model was coded in Netlogo 5.0.3 as a branch of the network growth model. The pro-

gram code of the compact network growth model is attached in code example 054.

I use a simulation approach to derive parameter values of the model as the number of pa-

rameters complicated a mean-field approximation. Table 19 illustrates the precise steps

carried out at the simulation’s beginning and at every step until the time limit is reached.

Table 19. Sitmulation procedure

Step Action

I Initialize a static network with a given network type (random, preferential) consisting of
a certain number of nodes (n,) linked by a certain link probability (L)

II Grow the network until the time limit is reached

a* Create one new node and set status to ‘new’

b* For each ‘new’ node, find partners given a certain degree of interaction (m),
a variance of interactions (o,,) and a degree of preferentiality (a)

c* If the dropout rate (t) is non-zero, pick T * n nodes uniformly at random and flag them
as ‘endangered’. Endangered nodes and all their links are removed from the network in
the next period

d* (Re-)calculate measures of the network’s macro state, i.e. number nodes, links, density,
average degree, clustering coefficient, average path length and assortativity

* These tasks are repeated each period of the simulation
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6.3.3 Result: Enriched Preferential Attachment Fits the IS Network’s Growth

Based on the procedure described in Jackson (2008:139), I calculated m (the degree of in-
teraction) for the simulation model directly. Since m is the number of links that form each
period, it is half of the estimated degree in each period (as I used an undirected model).
The overall degree is 2tm, and so m is half of the average degree. In the network, average

degree is 2.179, and so m is roughly 1. I restrict further analysis to m < 2.

I then estimated values for a - the degree of preferentiality. After qualitative analysis of
several models, I ran 40 batch simulations with 100 runs per model (40 models by 100 runs
equals 40.000 experiments). I restricted the time limit to 200 (or 250 runs, respectively) as
the overall degree is 234, which must equal 2t (because I set m < 2). I did not use the

precise run numbers as I had to account for dropout processes in several models.

I analyzed how well the models fitted the empirical degree distributions by the means of
regression. When fitting several models to data, I concentrated on finding an appropriate
regression for degree distributions and reporting the coefficient of determination (R?). I
refined these results to reach the best possible fit between data and regression. I calculated
a (linear, quadratic, or cubic) regression model showing a good fit with the results of the
simulation (in terms of R?). Then, I observed the fit between the regression and the empir-

ical data.

In addition to the degree distribution, I used additional coefficients as described in chapter
6.2.1. I acknowledge that iterative procedures could find an optimal solution automatically.
Jackson (2008b:139f.), for instance, suggests that parameter values for hybrid models
can be estimated by an iterative least squares regression or a maximum likelihood es-
timation. I did not use these approaches as I was interested in a multiplex characteriza-
tion of the data including other coefficients also.

I sampled one degree distribution from the 100 runs uniformly at random and estimated an
appropriate regression model — linear, quadratic or cubic — fitting the distribution of de-
grees for the run. I then fitted this regression model to the empirical distribution and cal-
culated the degree of determination. Table 20 reports results for five models where m
equals 1 in which I excluded variance in the degree of interaction (parameter ‘variance of
interaction’ was set to zero). I also report three further models, which I discuss below (re-
fer to Table S13 in the appendix for the complete range of simulated models).

All quadratic models with m = 1 and a < 0.5 fitted the data well (cf. Table 20, R? ranged
from 0.914 to 0.941). For regression results of one quadratic model from the simulated
networks (i.e. model 9) refer to Table S11 in the appendix. As the simulation uses a pref-
erential growth model for round (m * a) < 1, and as I restricted m to 1, all of these mod-
els (i.e. model 9 to 17) select partners based on a preferential attachment procedure.

I then calculated the simulated models’ normalized distances from the main coefficients to
the empirical data. The top of Table 21 shows three models with the closest distance to
the data. The bottom part of the table gives estimates for one model as a representative
for all preferential attachment models. These models (e.g. model 9), however, did not fit
well with respect to clustering coefficients, because for low degrees of interaction (m = 1)
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and preferential growth, new nodes attach to a single hub without connections to other

nodes.
Table 20. Results of selected models for regression
Model parameters Goodness of fit Unstandardized
coefficients

Model | m | Variance | a T R? to R? to Log Log (Con-
of m model | empirics | degree | degree? | stant)
Model 9 | 1 0 0.0 | 0.0000 0.959 0.941 -3.248 1.111 -0.045
E) Model 11 | 1 0 0.1 | 0.0000 0.958 0.925 -2.610 0.706 -0.124
% Model 13| 1 0 0.2 | 0.0000 0.964 0.914 -2.496 0.554 -0.144
;i:) Model 15| 1 0 0.3 | 0.0000 0.940 0.942 -3.192 1.123 -0.082
Model 17| 1 0 0.4 | 0.0000 0.892 0.940 -3.795 1.692 -0.009
Model 36 | 1 2 0.7 | 0.0000 0.947 0.705 0.543 -1.686 | -0.659
:i Model 31 | 1 1 0.7 | 0.0000 0.899 0.781 -0.573 | -1.144 | -0.387
= Model 37| 1 2 0.7 | 0.0001 0.947 0.724 0.301 -1.589 | -0.572

By incorporating variance in the degree of interactions — as shown for model 36, model 31
and model 37 in Table 21 — I could decrease the distance between the model and the em-
pirical data considerably. Model 36 for instance echoed the empirical data very well with
respect to clustering coefficient and average path length. Model 31 performed even better
with respect to network density. These models, however, showed relatively poor perfor-
mance with respect to fitting degree distributions as shown in Table 20.

Table 21. Results of selected models for main coefficients
Model m o(m) a T Density | Clustering | Path Distance®
coefficient | Length | (normalized)
Empirical data | n/a n/a n/a n/a 0.01000 0.241 4.357 n/a
Model 36' 1 2 0.7 | 0.0000 | 0.01399 0.252 4.688 0.167
Model 31! 1 1 0.7 | 0.0000 | 0.01084 0.286 5.959 0.177
Model 37! 1 2 0.7 | 0.0001 | 0.01412 0.252 4.980 0.193
Model 9'*? 1 0 0.0 | 0.0000 | 0.00981 0.001 5.199 1.028

' Average results for 100 simulation runs; time limit was set to 200 ticks

> Mean squared differences of model and data in normalized density, clustering coefficient and path length

3 Results without significant differences were obtained for model 11, 13, 15 and 17

By incorporating dropout, I could significantly enhance the fit of the model with respect to
the size of the giant component (cf. Table 22).
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Table 22. Size of the giant component for different dropout rates
Model Number of Number of Nodes in giant | Fraction of nodes in
nodes links** component giant component
Empirical data 212 234 178 0.840
T = 0.000' 212 234 212 1.000
T =0.001" 186.08 168.87 134.78 0.724
T = 0.002' 167.88 137.85 91.02 0.542
T = 0.003' 154.05 118.34 68.51 0.445
" Average results for 100 simulation runs; time limit was set to 200 ticks
? Results are reported for preferential attachment model with o = 0.0 and m = 1

6.3.4 Concluding Remarks

This study aimed to describe important generative processes of IT infrastructure evolution.
I used a simulation approach to breed information system networks in a virtual laboratory.
Based on network characteristics and estimates of clustering for a real information system
network, I showed that information system networks are non-random networks. I utilized a
model of network formation that fitted degree distributions and other important structural
coefficients to empirical data. I found that preferential attachment — as a special case of a
hybrid model for low degrees of interaction — was the best proxy for the network’s degree
distribution (cf. Table 20). Preferential attachment, however, performed poorly in fitting
the data’s clustering coefficient (cf. Table 21). This was due to the fact that, for low de-
grees of interaction new nodes attach to a single hub only, and peripheral nodes remained
unconnected among each other. To improve the fit, I brought in variance in the degree of
interaction (cf. Table 21) and a dropout process (cf. Table 22), which enabled me to ap-
proximate clustering coefficients, giant component size and path lengths more closely.

I conclude that the evolution of the information system network at hand is characterized
well by a dropout-enriched preferential attachment with variances in link formation.

The degree distribution was best approximated by a quadratic regression with a positive
slope on the log-log plot in the range for log(degree) > 1.0 (refer to Table S11 in the ap-
pendix). Other researchers used mostly linear models to approximate preferential attach-
ment processes (Jackson 2008b:63f.). I believe that the regression model provides a better
fit for the data as the company acquired a number of subsidiaries from a competitor in the
years after 2008. Integrating these applications into the IT landscape altered the network
structure and introduced several high-degree nodes. Refer to MEMO as depicted in Figure
40d. These applications had not been integrated into a single business solution at the time
of my research, which potentially skews the data towards more high-degree nodes. Inte-
grating them would remove several high-degree nodes from the plot and could hence lead

to a straighter line.

Before sketching future directions and managerial implications, I emphasize two conditions
that limit the generality of my approach. First, while a preferential growth model — that
suggests an exponential increase in degrees for critical applications — fit historical data
well, I have little evidence that this growth logic holds when predicting future growth. My
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interviews — refer especially to expert statements in 0542, 0S43, and 0S49 — partly mitigat-
ed concerns about the predictive power of the model as stakeholders described equivalent
dynamics across different contexts and times. However, construing boundary conditions

across space and time will increase the model’s usefulness.

Furthermore, company efforts to consolidate the IS architecture, centralize redundant ap-
plications, or integrate interfaces in service-oriented ways could balance or even counteract
increasing inertia from growing numbers of interfaces and IT systems. One may thus col-
lect further data on cases in which (several) transformations have been performed in the

past to see how major shocks affect structure and diversity in an IS network.

I see three particularly promising ways to proceed further. Firstly, I used a simulation to
create a model portraying the IT architecture’s historical growth process. A natural next
step would be to construe predictive models that describe how an IT landscape is expected
to develop in the future. I believe this is important — also from a practical point of view —
when deciding on the right time to displace or split off critical IT systems, which may oth-

erwise grow out of control or costs.

Secondly, while I fitted the network’s growth process, I did not fit technology /standard
diffusion in the network. Consistent with my theoretical results, my interviews suggest
homogeneity of technologies around central hubs of the network. Consider the network
plot in Figure 38. We see quite clearly, for instance for the reddish applications in the
Southern region, how the organizational structure is imprinted in the IS architecture.
Within my interviews, I gained the impression that the clustering around hubs also corre-
lates with technology diffusion. I believe this observation strengthens my theoretical argu-
ment from the previous chapter that technological influences spill over directly from node
to node. Future research could thus aim to integrate real world data on growing IS net-
works with strategic agents. Strategic growth models not only answer how particular net-
works form but also why they form (cf. Jackson 2008b). This aims at understanding the
cost and benefit structures of agents to choose actions (e.g. to adopt technologies) and to
form links in more detail. In this way, one could learn in more detail how technological
paths build up in clusters or segments of the network. As a starting point, one could har-
ness the approach I have presented in chapter 4.2.3 — with v agent types selecting one of k
technologies — to see whether the model is able to match observed levels of diversity in the
network. This presents interesting challenges for future research.

Finally, I have drawn attention to growth and dropout as two processes that are of partic-
ular importance to describe how IT infrastructures evolve. Using the terminology used by
Palla et al. (2007) in a model to quantify social group evolution, I defined growth as a
“birth” process where a new node emerges without predecessor and drop-out as a “death”
process where a node disappears without successor. In addition, future work could intro-
duce further important evolution processes. Referring to Palla et al. (2007:664), I believe it

is useful taking into account

»  Merges: several nodes join together (i.e. systems become integrated or consolidated)
= Splits: a node splits in several smaller nodes (i.e. modularization or service-enabling)
»  Contractions: a node loses internal elements (i.e. internal complexity decreases) and

»  Expansions (“growth”): a node gains internal elements (i.e. internal complexity grows)
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Turning in conclusion to the broader implications for path dependence and other lines of
research, I believe it is important to emphasize that central IT systems can gain im-
portance over time in exponential ways. IT managers should consider that a critical IT
system today might be drastically more critical tomorrow. Humans tend to forecast linear-
ly. Therefore, exponential growth processes in the IT landscape may remain underappreci-
ated. This can undermine efforts to replace, consolidate, or reengineer I'T landscapes. An
interesting trade-off exists between the positive effects of growth on alignment between
business and IT structures and the, often hidden, side-effects. In preferential settings, add-
ons and new systems attach primarily to well-tested, approved solutions (reflected by their
above-average degrees). These extensions are important, because they fulfill previously
unaddressed needs of the organization and are thus important drivers of business innova-
tion. However, these results also point to a process in which inertia builds up for central
IT systems in exponential ways. Central systems become more and more embedded in the
company’s IS architecture. This observation is important with respect to risk evaluation,
strategic planning, and investment decisions. Managerial understanding of the underlying
dynamics will become more and more decisive as technological advances (e.g. cloud ser-
vices, service-oriented architectures, and web services) further magnify the degree of distri-
bution in future IT infrastructures. My work also contributes to the literature on network
formation. I found that hybrid models with low degrees of interactions (especially m equals
one) tend to underestimate clustering in the network. Enriching a preferential or hybrid
growth process by variations in interactions can produce a better fit with real world net-

works.
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Part III

Path Breaking
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Chapter 7

A New Standard in Airline Distribution IT?

In this chapter, I suggest an empirically-grounded contagion model to study path creation
scenarios for a new standard in airline distribution IT. I believe contagion models are supe-
rior to traditional network effect models because they enable going beyond the network
size to spillover effects among individual agents in a spatial network as an important ex-
planatory for standard diffusion (Afuah 2013; Aral et al. 2009).

Consistent with this view, several expert interviews reinforced my impression that spillo-
vers are important for standard adoption in airline distribution IT. Consider the following

examples:

“Phoeniz Travel” tends to follow SWISS, that's a historic thing, that's another thing
you will find in the airlines, that airlines at one point or another will have, many air-
lines will have invested in another airline or there was a time at which they were

working together when one airline was in very big trouble. And those legacy alliances

remain.” (revenue management expert; refer to interview oS17)

“For that, the old inventory was just not capable any more. You need inventories that
allow for interlining, offer codeshare connections, you definitively need more product
classes, because all the others have that; certainly it is the precondition for joining an
alliance.” (revenue management expert, refer to interview 0S2)

“Because what happened is that also many of the leaders of the organizations come
from another airline too. So there is a lot of cross fertilization in the carriers.” (reve-

nue management expert; refer to interview oS17)

I believe these examples illustrate the fundamental importance of spillovers for decisions
about whether to adopt standards in airline distribution IT. Consistent with this view, I
develop a model that takes into account influence-based contagion among individual
agents as the primary driver for standard adoption. Recently, network analysis has been
established as a powerful tool with which to study systematic risks in the financial indus-
try. The IMF uses network analysis to assess potential cascades of failures from systemic
linkages among banks (Minoiu and Reyes 2011). The model closest to my thinking is a
contagion model by Elliott et al. (2014). It models a network of states (i.e. in the Euro
zone) interacting via financial linkages and it assesses the extent to which one state’s fail-

ure triggers cascades of other states’ breakdowns.

An agent-based simulation approach is chosen; I followed the procedures described by
Gilbert and Troitzsch (2010), kept the model simple and plain, and fed it with empirical
data. I gained invaluable insights for specifying the model by interviewing revenue man-
agement experts from SWISS. I constructed a data set of codeshare linkages among more

¥ To protect privacy, the carrier’s name was anonymized but it is not of particular importance for
the further proceeding
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than 200 airlines, which I use to test different scenarios with respect to the diffusion of the
new standard. I select one (trigger) airline uniformly at random and make this airline
adopt the new standard. This starts the internal loop of the algorithm, which cascades
through the codeshare network assessing whether its codeshare partners will adopt and
potentially switches them to the new standard if certain thresholds are exceeded. In the
initial, simple threshold model — which I extent later — an agent adopts if most of its
neighbors have already done so. Using these simple rules, the algorithm checks for conta-
gion over multiple rounds until it has snowballed through the entire network or until all
nodes in a connected component have been assessed. Then, the algorithm triggers a new
intervention. After each intervention, I track the (cumulated) fraction of airlines having

adopted the new standard.

7.1 Research Context and Data

Focusing on interactions among airlines, my starting point is the topology of codeshare
linkages among airlines. Codesharing is a marketing practice in which “one airline (the
marking carrier) marketing and selling its own itineraries and services on flights that are
actually operated by a different airline (the operating carrier)” (Hu et al. 2013:1177). For
a carrier like Lufthansa, half of its marketed flights are operated by allied carriers (Gerlach
et al. 2013). Codeshares and other multicarrier revenues are a crucial factor in airlines’
business strategies and account for up to 10% of the generated revenues (cf. Gerlach et al.

2013; Hu et al. 2013).

My interviews suggest that codesharing is not only a marketing practice but also im-
portant for technological choice on the operational level as inventories must be shared with
and flight availabilities will become exchanged between partners (refer to interview oS7 to
0514). The basic level is the swapping of a block of seats. This ranges from the free sale of
seats to the ability to sell the last seat of the other airline. To achieve this integration, a
codeshare mapping is agreed between carriers, which will require at least a minimum level
of standardization for inventory data exchange. This is accomplished by using booking
classes as data exchange between inventories, by default, takes places on a seg-
ment/booking class level (refer to interview 0S10). Exceptions include only non-

standardized bid price exchanges between particular carriers.

I constructed a data set from public data on all existing airline codeshares as of January
2012. The data contained 231 commercial airlines as listed with codeshares in the GDS
(data was crawled from the GDS by airlineroute.net). After cleansing the data for carriers
that ceased operations until December 2013, I continued with a list of 213 carriers. My
sample contained all top ten airlines by passenger traffic expect Ryanair. The list con-
tained a total of 1,570 (bidirectional) pairs of partnerships on nearly 16,900* routes around
the world (*duplication). After cleansing the data with respect to the abandoned carriers, I
ended with a dataset of 850 (unidirectional) codeshare linkages.

I weighted linkages by the number of codeshare routes between two carriers as a proxy for
the intensity of collaboration. As illustrated in Figure 42, the network was thus undirected,
weighted, and non-multiplex — meaning that I considered only one type of linkages be-
tween nodes. I coded this network in the n z n adjacency matrix A (refer to data set 0S1

in the online supplements).
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Finally, I included two node attributes to account for agent heterogeneity: alliance mem-
berships (7) and size (#). An airline alliance (7) is an “agreement between multiple inde-
pendent partners to collaborate in various activities to streamline costs (e.g., by sharing
sales offices, maintenance facilities, ground handling personnel, check-in and boarding staff,
etc.) while expanding global reach and market penetration” (Hu et al. 2013:177). Alliance
members often use codeshares intensively. Alliances are also important for technological
choice as members often agree on minimum standards for operational and technical collab-
oration. Airlines entering an alliance must demonstrate their ability to conform to these
standards. Compliance is, for instance, checked via catalogs of technical requirements be-
fore new airlines can enter. I coded whether airlines belong to Star Alliance (1), Sky Team
(2), Onewold (3), or whether they do not adhere to any alliance (0). I used public data

from the alliances as of October 2013 and also coded affiliated airlines as alliance members.

Figure 42. An undirected, weighted, and non-multiplex network

I further included firm sizes (#) drawing on the number of destinations as of March 2014.
I used this measure, because complementarities in the route network are an important
proxy for the attractiveness of an airline. The potentials for technical and commercial col-
laboration among carriers will often depend on the number of destinations.

7.2 Structural Analysis of Codeshare Network

7.2.1 Macro Structure of the Network

Structural analysis — based on network visualizations and measures — of the codeshare
network N(g) was a first step to illuminating how interactions among airlines affect stand-
ard diffusion. The codeshare matrix (A) contains 44,084 zero values from a total of 45,369
cell entries. This results in a network density — which is a measure for the ratio of present
to potential linkages in a network — of 0.038. Despite the network’s overall sparseness, one
giant component within the network appears densely connected. Figure 43 allows insight

into the structure of the network and shows several macro level indicators.

We can observe a core-periphery structure in which “core members are densely connected
to one another and peripheral members are connected to the core but not to each other”
(Borgatti and Everett 2000; Valente 2012:50). We see, for instance, that a carrier in the
dense core such as Lufthansa (LH) has codeshares not only with other core members (e.g.
United/UA, US Airways/US, and Turkish/TK) but also links to the periphery (e.g. Air
Malta, Air China/CA, and Adria/JP). In contrast, a more peripheral carrier such as
Adria/JP links predominantly with core members (e.g. LH, SAS, Austrian, Aeroflot, Brus-
sels, SWISS/LX).
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Figure 43. Alliances in the network of codesharing airlines as of January 2012

I specify how to operationalize the core in the codeshare network. We see from the net-
work plot that clusters within the core and major alliances (Star, Sky, and One) strongly
overlap. Additional analyses hence tried to illuminate whether the network may be better
understood as a preferential attachment network. Under preferential attachment, several
hubs come to exist that are complemented by a large number of spokes. This results in a
“power law” degree distribution in which central nodes accumulate a higher number of
linkages than would be expected in random networks equipping the degree distribution
with a “fat tail” (Barabasi and Albert 1999; Jackson 2008b). To examine my presumption,
I plotted the log-logged degree distribution (refer to Figure S7 in the appendix). Eyeballing
the data built trust in the fact that there is a linear relationship between node’s logged
degree and their logged relative frequency as expected for a preferential attachment model
(cf. Jackson 2008:130-134). The good fit of a linear regression further strengthened my
presumption that the network exhibits a preferential attachment structure (R? = 0.798, F'
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= 122.723, p < 0.001). Therefore, one can discuss the model against the backdrop of pref-

erential attachment networks.

7.2.2 Segment-Level Analysis

To evaluate further whether linkages remain mostly within airline alliances (“inside-in”) or
whether a significant share of linkages go to the remaining network (“inside-out”), I used a
blockmodeling approach (Borgatti and Everett 1992). As a first step, I defined the alliances
as blocks. Then, I designated inside-in linkages as those that stay within one block while
inside-out linkages span from one block to another. Rearranging the codesharing matrix A,
the modeling aimed at four blocks: Star, Sky, One, and the other block.

Figure 44 depicts the fraction of linkages remaining within a particular alliance (inside-in)
versus the linkages that span from one alliance to members of another alliance or non-
alliance members. In a block model, one would expect that particular blocks would be
strongly wired but not wired to the outside blocks. We see that, within the Star Alliance
block, the share of inside-in and inside-out linkages is almost balanced (47 percent versus
53 percent) while the other two alliances have significantly lower inside-in ratios. For Sky
Team and Oneworld, the fraction of inside-in versus inside-out linkages is about one-third
against two-third. As expected, the fraction of inside-in linkages is lowest for non-alliances
members. As codesharing is a practice that was developed in an alliance context, often at

least one codesharing party is organized in an alliance (cf. Hu et al. 2013).
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Figure 44. Share of inside-in versus inside-out linkages

This figure shows that the fraction of inside-in linkages is highest for Star Alliance (about
one-half) and comparatively lower for the other alliances and the others group.
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7.2.3 SWISS as an Example for Improvisational Capabilities

We begin our micro level analysis by turning to the example of SWISS. As a first step, we
contrast SWISS with selected other carriers. In Figure 45 — an extract of the network plot
zoomed and filtered with respect to SWISS’ positioning in the network — we see that
SWISS links most intensively with close-knit partners of the same alliance; it is part of a
densely connected group of Star Alliances members (e.g. Lufthansa/LH, Brussels, Air Can-

ada, United, and Austrian). A limited number of links span across alliances.
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Figure 45. Embeddedness of SWISS in codeshare network

This figure shows the positioning of SWISS in the codeshare network. The colors of the
nodes denote the alliances; reddish nodes belong to Star Alliance, greenish nodes belong to
Sky Team, and blueish nodes belong to Oneworld.

Table 23 compares SWISS and Air Berlin with respect to selected measures of centrality.
As both are mid-sized carriers, I added Lufthansa as an example of a large carrier. SWISS
codeshares with 26 other entities; this indicates above-average embeddedness in the net-
work. When we take into account the intensity of collaborations however, we see that the
overall number of codeshare routes is only slightly above average. I suspect that the carri-
er’s regional positioning is a natural limit. Comparing these results with Air Berlin’s con-
firms the impression that SWISS is more intensively embedded but also more specialized
to particular customer segments, geographical destinations, and markets.
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Table 23. Selected measures of centrality for SWISS and two other airlines

SWISS Lufthansa Air Berlin Mean
Destinations 76 236 134 56.042
Degree 26 33 13 7.981
Weighted degree | 115 1,032 264 97.906

I further detail the example of SWISS. The account of SWISS illustrates two main pieces
of my argument: that codeshare interaction patterns matter for the scope of action in
adopting a new standard and that a firm’s improvisational capabilities can be undermined

by spillover effects from its network embeddedness.

I proceed by turning to SWISS’ organizational IT infrastructure. Consistent with my over-
all approach, I model it as a network. In Figure 46, nodes represent applications interact-
ing with each other. Links materialize in flows of information. For reasons of clarity, I fo-
cus on selected aspects of the IT landscape that are most relevant for my study. In partic-
ular, I concentrate on distribution and pricing and abstract away systems in the area of

airline operations. For important nodes, I gathered data on information flow directions.

Of the several systems depicted in Figure 46, two are most relevant for my study: the host
inventory in the center, with strong ties to almost any other system, and, most important-
ly, the Real-time Dynamic Pricing Engine (RTDP) at the bottom.

The host inventory is the most critical I'T resource in SWISS’ IT infrastructure and many
other systems build upon it. SWISS’ predecessor Swissair was an early leader in retail au-
tomation; it replaced its original CRS, implemented for SWISS’ sales offices 1972 (Schulz
et al. 1996:53), in the 1980’s with another SABRE-branched CRS, which is still operational
today. The system — previously managed by the former IT unit of Swissair Atraxis — is
now operated by HP. The system integrates ticketing, distribution, and pricing very tight-
ly and efficiently; in addition, it interoperates smoothly with several GDS. According to
interviews (refer to RM experts in 0S8-10), the inventory is an important link to the out-
side world as well as a major antecedent for additional marketing and pricing models
building on top of it. The GDS connects in real-time to SWISS’ host inventory for each

13

agent request — using a mechanism called “seamless availability” (Isler and D’Souza
2009:259f.). The host inventory determines the availability status and responds back with-
in seconds. This is possible with reasonable effort even in an origin and destination net-
work context as the network optimization problem has a “relatively simple structure”
(Isler and D’Souza 2009:260). Most relevant for my study is that booking classes are deep-
ly inscribed in the system. They are most pervasive in ticketing and for fare product func-

tionality managed by the system (refer to RM experts in 0S7 and 0S8).

Another important IT resource to support SWISS’ advanced pricing capabilities is its
RTDP. Essentially, the system is responsible for updating availabilities of fares based on
the results of forecasting and optimization. In 2003, a project at Swissair introduced an
origin and destination-based revenue management system. After SWISS was founded, the
project was re-launched and the system went live (refer to RM expert in 0S7). The RTDP
was constantly advanced over a “good last decade” in close collaboration with an Ameri-
can software vendor (refer to RM expert in 0S11). Additional functionality was moved
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over from SWISS’ host inventory and integrated in the RTDP; for instance, the availabil-

ity calculator or the connection builder (CB).
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Figure 46. SWISS’ distribution and pricing IT landscape. Source: own investigation

This figure shows central IT systems and their linkages in the area of distribution and
pricing in SWISS® IT landscape. The figure was compiled using field data, i.e. 0534.

Based upon this infrastructure, SWISS could build advanced dynamic pricing capabilities,
starting to control not only seat availabilities but also price availabilities on a booking-
class level. In particular, dynamic pricing (with continuous price points) represents another
technical refinement of bid pricing (refer RM expert in 0S7 and memo 0S31): fare availa-
bility is controlled on the level of particular booking classes (refer to expert statement in
0531). Particular fares are utilized to determine the value of a booking class. This value is
both used in the online mechanisms — responding prices to trip requests directly — and for
computing bid prices. Revenue management then concentrates on the optimal availability
of fares by switching particular booking classes on and off selectively. This is expected to
enable price discrimination according to customer characteristics (e.g. length of stay, fre-
quent flyer tier level, advanced purchase) better than predetermined fare conditions associ-
ated to a fare. Most preferably, only one fare is published per booking class (refer to memo
0531). But at least fewer fares are used for segmentation.
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Supported by SWISS’ improvisational capabilities, several initiatives have been started to
work around the limitations of the booking class standard. For instance, a project was
launched in 2013 to reengineer the group booking process. The idea was to gain more in-
dependence from booking classes by not using another booking class for groups but instead
to evaluate all group bookings together based on their value. In this way, SWISS aims to
calculate the optimal group price as a “spot price” based on an instant quote for a particu-
lar group and its particular requestor, which is offered only then, with a value that differs
from the APTCo-filed fare (refer to RM experts in interview 0S8 and 0S9). Traditionally,
airlines have utilized GDS components for this task (refer to interview 0S20) and moving
to more independence requires in-depth insights into how to build connections in a large
origin-destination network finding the cheapest applicable fares for those connections. As a
first step, the company aims at replacing the usually heavy-machinery “host”-based build-
ing process in use today with an XML interface that scales to significantly larger request

volumes.

Initiatives to work around the limitations of the booking class standard are, however, un-
dermined by SWISS’ embeddedness in existing distribution networks. Beyond GDS re-
strictions, requirements to conform to predefined standards also arise in the context of
alliances and joint ventures. A pertinent example is when SWISS’ had to reintroduce more
complex fare structures when it entered the Atlantic Joint Venture in 2009. A revenue

management expert reports:

“On intercontinental routes, I had to replace particular pricing methods, because we
joined the A++ transatlantic joint venture. Because |[..] when you want to harmonize
prices, and certain carriers, [..] they do not even have an origin destination system.
And what you cannot do is simply to adopt these fare structures, if you do not have the
subsequent machinery” (revenue management expert; refer to interview oS7)

The consequences of codeshare agreements for SWISS become most visible when we turn
to the left side of Figure 46. For each codeshare agreement, a class mapping is agreed with
the particular partner, integrating inventory systems on a technical level. From this a situ-
ation follows in which multiple airlines have to be integrated, which is often achieved using
booking classes as a “smallest common denominator” (refer to RM experts in 0S8).

7.3 Contagion Model

Based upon the requirements from the empirical problem instance (refer also to chapter
1.1), I proceed further by introducing a model of contagion simulating how a new standard
cascades through a network of codeshare linkages to assess whether such a new standard
will come to diffuse to a nontrivial fraction of agents.

7.3.1 Triggering Events and Contagions

Figure 47 depicts the dynamics of the network analysis starting with a matrix of linkages
among n agents. Individual agents hold the attributes size and alliance membership. The
analysis consists of simulating triggering events (“shocks”) to a specific agent (the “trigger
airline”) and tracking the domino effect to other agents in the network.
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Algorithm A.8 describes the steps carried out throughout the network analysis. After hav-
ing initialized the network, the algorithm proceeds as follows: I trigger a cascade by select-
ing one agent/node uniformly at random that I switch to the new standard (trigger-switch,
lines 2-10). This node is classified as reached. Then, in the internal loop (lines 11-27), I
collect all neighbors of the trigger node and store them in a list of direct neighbors. This
list holds all neighbors of the trigger node within a distance of one step. The cascade is
now running and a counter of the contagion round (cround) is initialized with the value of
zero. Starting in the first contagion round, I then assess for each node in the direct neigh-
borhood whether each of these nodes will switch to the new standard given particular
threshold-specific rules described below. Next, I perform a further, radial search (lines 28-
39) for each of the direct neighbors of the first-order neighbors and store the second-order
neighbors of each of the first-order neighbors in another, temporary list (wait-Ist). The
temporary list then replaces the initial list of first-order neighbors. Then, the count of the
contagion round is increased by one. The contagion rounds continue until all nodes in the
network have been assessed or until no further nodes in the component of the trigger node
remain. After each cascade, defined as an intervention and the subsequent contagion
rounds, the algorithm converges (lines 40-48): The trigger node itself assesses whether it
should stay with the newly explored standard or whether it should return to the old
standard (line 45). This is done by performing the check-switching operation. After each
cascade, the fraction of nodes having switched to the new standard is measured and the

network is reset (lines 46-47). If the target level is not reached, a new cascade is triggered
LG
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Figure 47. Network analysis: assessing the role of linkages for the standard’s spread

Note that the figure was adapted from IMF (2009:78), where a similar algorithmic idea
is used to assess to the systemic implications of financial linkages in the banking sector.
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Algorithm A.8 Network analysis

1: irunning? := false

2: to trigger-switch

3: if not ¢running? then

4: for one-of nodes with technology not ‘new’ do

5: trigger-node := true, technology := ‘new’, reached? true

6: Ist-radiusl := all nodes in radius 1 without trigger node

T irunning? := true, cround := 0

8: end for one-of nodes

9: end if

10: end trigger-switch

11: to internal-loop

12: if irunning? true then

13: if cround > 0 then

14: if length Ist-radiusl = 0 then converge-algorithm

15: else

16: i:=0

17: while i < length Ist-radiusl do

18: foreach node from lIst-radiusl do check-switching, reached := true
19: end foreach

20: if any? unreached? node then lst-radiusl := radial-search lst-radiusl
21: else converge-algorithm end if

22: cround := cround + 1

23: end while

24: end if

25: else cround := cround + 1 // to start the first contagion round in next period
26: end if

27: end if

28: end internal-loop

29: to radial-search

30: wait-lst := [ |

31: if not any? connectable-nodes then converge-algorithm

32: else

33: foreach node from Ist-radiusl do

34: foreach node in radius-1 do

35: if not ‘reached’ of item i sort nodes in radius 1 then put item i on wait-Ist
36: end foreach

37 end foreach

38: remove duplicates from wait-Ist, report wait-lst

39: end radial-search

40: to converge-algorithm

41: j=0

42: while j < length Ist-radiusl do

43: foreach item Ist-radiusl do check-switching end foreach

44: end while // trigger node may stay with the new standard

45: foreach node with trigger-node = true do check-switching end foreach
46: Ist-radiusl := [], cround := 0, irunning? false

47: foreach node do reached? := false end foreach

48: end converge-algorithm
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An alternative intervention strategy, although not yet systematically explored, is put for-
ward by Jackson (2008b). He suggests shocking nodes with high degree, betweeness, or
Eigenvector centrality. In a later section, I modify the model with respect to alternative
intervention strategies that target particular groups of agents such as alliances or maxi-

mum cliques.

7.3.2 Adoption Rules: Individual-Level Thresholds

In agent-based simulation research, often simple rules on the micro level create complex,
emergent outcomes on the macro level (Gilbert and Troitzsch 2010; Holland 1995). I use
individual-level adoption thresholds to guide agents’ adoption behavior as they are superior
to collective thresholds in creating emergent outcomes (cf. Valente 1996). Adoption
thresholds condense important information about an agent’s state such as the agent’s
switching costs and benefits. If a predefined threshold is exceeded, agents will adopt the
new standard. Otherwise, they stick with the old standard. To assess whether an agent

will adopt, I introduce the following simple rule:

Codesharing rule: Adopt if a fraction of your codesharing partners adopted that
is equal or larger than your threshold (6).

where 6 € R and 0.0 £ 6 < 1.0. This simple threshold rule takes into account imitation
across peers and is expected to produce contagious dynamics following from spillovers from
one agent to another'. For a threshold 6 of 0.5, it can be considered as a majority rule (cf.
Narduzzo and Warglien 1996) in which agents adopt if most of the agent’s partners have
adopted.

Consider the following simple example. An agent with three partners assesses whether a
switch to the new standard is beneficial. First imagine that, two partners of the agent have
already adopted. For a threshold 6 = 0.5, the agent would then also adopt, as two-thirds
is larger than the majority and thus the threshold is exceeded. For 6 = 0.3, the individual
agent’s threshold is also exceeded and the agent would also adopt. For 6 = 1.0, the agent
would not adopt; only if all three partners of the agent had adopted, would the agent par-

ticipate in the initiative.

' Note that, in this simple threshold model, I assume homogeneous thresholds for all agents in the
population. In a later stage, I relax this assumption taking into account heterogeneous thresholds
across agents. In particular, I consider individual agent sizes relative to the agent’s peers (size-
adjusted threshold) and individual agents’ collaboration intensity from weighted links (weight-
adjusted threshold).
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Chapter 8

Insights from Agent-based Simulations: Contagion

8.1 Computational Implementation of the Contagion Model

The model was implemented in Netlogo 5.0.3 (refer to code example 0S5 and chapter 5.1
for a general introduction of the simulation environment). I draw on the new network ex-
tension (Netlogo 2014) that was particularly useful for the implementation of the conta-

gion model as it eased graph distance calculations and group detection in graphs.

8.2 Theoretical Validation and Verification

The next sections present baseline results for archetypical networks and reproduce findings

from seminal diffusion models.

8.2.1 Baseline Results for Archetypical Networks

The easiest way to illustrate how the adoption dynamics unfold in the model is cellular
automata. A cellular automata consist of a number of identical cells arranged in a regular
grid (Gilbert and Troitzsch 2010:131f.). Cellular automata can also be re-conceptualized as
a network of nodes on a (spatial) lattice with a regular number of neighbors. I assume that
the number of nodes in the network is finite and the edges are not connected. In our sim-
ple cellular automata, each cell has only two states: either it adopts the standard (1) or
not (0).

Based on this notion of cellular automata, we can discuss how the model unfolds for differ-
ent structures and adoption thresholds. Think first of a one-dimensional cellular automata
with five cells (cf. Figure 48a). I label these cells 7,,..,7, If we assume that initially all cells
are ‘off’ (0), how long will it take until the standard diffuses for different threshold values?
Let us examine extreme cases where the adoption threshold is zero and one. For 6 = 0, a
triggering event that switches one cell on (1) uniformly at random, would cascade to all
immediate neighbors in one step — it switches them on, cascades to the next set of imme-
diate neighbors and would terminate in a maximum of four steps (if it came to trigger 1,
first). One shock will suffice. For 6 = 1, immediate neighbors of a triggered cell will only
switch if our observer came to penetrate a cell one step next to the edge (7, or 7;). In this
case, the cell on the edge (7, or i;) changes its state from off to on. A minimum of two
shocks is required if both close-boarder cells came to be penetrated within the first two
interventions. Drawing on the terminology by Liu et al. (2011b), I denote these “close-
boarder” nodes as unmatched nodes.

I move on to a more complex cellular automata with cells arranged as a rectangular array
(cf. Figure 48b). The graph is now cyclic. I start with a square of four cells 7,,..,4,. An in-
tervention for 8 = 0 will change all states to on after the first shock has cascaded in two
rounds. A shock for 6 = 1 will have no effect as each cell is surrounded by two neighbors:
as one of its neighbors is on while the other one is off, immediate neighbors of a triggered
cell will not switch. This remains true for any threshold above 0.5. Below this threshold,
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immediate neighbors will switch as seen for 6 = 0. An even more complex cellular automa-
ta with nine cells (cf. Figure 48¢), i,,..,4, yields qualitatively different results due to the
fact that the cell in the center has exponential requirements regarding the number of im-
mediate neighbors that have to change states before it switches. For 6 = 1, four neighbors
(instead of two in the case of four cells) have to adopt the standard before the cell in the

center switches.
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Figure 48. Adoption dynamics in networks with regular, cellular automata structure

To discuss structural differences across networks in more detail, I refer to a fully-meshed
network (cf. Figure 49a), a preferential attachment network (cf. Figure 49b), a star net-
work (cf. Figure 49¢), and a tree network (cf. Figure 49d). Let us start with a full density
network (cf. Figure 49a) and 6 = 0. Think of four nodes 7,,..,4, where each of the nodes is
wired. Given a shock to a random node 7, the new standard propagates immediately along
the paths 4,4, 4,4, and 7,4, to all nodes in the network. In the example, the convergence
time is one and the number of shocks also equals one. This can be generalized for each
number of nodes in a fully meshed network. If 6 = 1, each initiative dies out quickly for n
> 2 as each node has several neighbors (exactly it is n — 1) of which only one has adopted.

Hence, the system does not converge for any number of shocks.

a fully-meshed b preferential attachment C star d tree

9> o
@"‘QQQQ ONNONO

Figure 49. Ezxamples for adoption dynamics in different networks

I move on to a preferential attachment network (cf. Figure 49b) and 6 = 0. The rule holds
that nodes switch for any number of neighbors having already adopted. Given a shock to a
random node %, in the first contagion round, the new standard propagates along the path
iyly, 10, 1485 through the network. In the next contagion round, the standard travels along
the path 7,7, to the last remaining node 7,. The convergence time equals the length of the
shortest path to any other node in the network; it is two in our example. The system con-
verges (always) after one shock. For 6 = 1, the trigger node only switches any other node
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if a close-boarder node such as 4, or 4, is hit. I turn to star networks to illustrate this in

more detail.

Consider a star of four nodes with a center 7, as shown in Figure 49¢. I assume that a node
switches only if all of its neighbors adopted (6 = 1). Then, there are two types of nodes:
the center and any other node. In the example, the center 4, is only adjacent to peripheral
nodes that switch immediately after ¢, has been shocked. The network converges after one
shock. Consider as another example a tree with two layers (cf. Figure 49d): 4,, the root, i,
and 7, on the first layer and 4, on the second layer adjacent only to ¢, The network con-
verges after a minimum of two shocks to 4, and 7,. This is the case as there are (7) un-
matched nodes and (7)) matched nodes. Unmatched nodes are defined as nodes being adja-
cent to peripheral nodes that are only connected to this particular node or that have only
further peers that have already switched. Shocking an unmatched node will affect the state
of the network; peripheral nodes will switch. This may change the state of the network as
unmatched nodes will maybe become peripheral, matched nodes. Think of a shock to i,
which triggers a switch of 4, Only then will a shock to 4, trigger a switch of 7; (who went
back to the old standard according to the definition in Algorithm A.8) and 4. In general,
the probability triggering an unmatched node will decrease proportional to the network
size. The system only converges if it is tree-like, meaning that a search could propagate
backwards through the network until it reaches a root node. This is, for instance, the case
for trees and stars but will seldom be the case for random networks. Hence, the lower limit
to the number of shocks is determined by the (recursively defined) number of unmatched
nodes in the network. It is two in our example; first ¢, must be shocked and then 4, (cf.
Figure 49d).

8.2.2 Equilibrium Existence

There exist solutions where (a) no agent adopts, (b) an incomplete fraction of the popula-
tion adopts, and (c) all agents in the population adopt.

Imagine first a fully-meshed network with four nodes (i,,..,7,). As shown in Figure 49a, the
new standard will not diffuse as each intervention peters out immediately after its initiali-
zation. The strong integration among peers inhibits adoption of the new standard.

As a next example, think of a network in which we add one node (i), wired only to 7, If a
spontaneous innovation is triggered at ¢;,, the newly added node 4; adopts the new stand-
ard. All remaining nodes stick, however, with the old standard and the fraction of adopters
will settle at one-fifth of the population. Standard diffusion remains local and thus partial.

Imagine, as a third example, that we remove only one edge (7,4,) from the network. After 4;
has adopted, shocks to either 4, or 45 will trigger a switch of 4;. Subsequently, ¢; adopts and
then finally ¢, and 4,. The entire population moves to the new standard. Standard diffusion
is complete.

Based upon these three states, I proceed further by illustrating the existence of solutions
with non-complete adoption rates for random networks. I set up experiments with random
networks under different link probabilities (A). Figure 50 shows one sample run where the
new standard did plateau after initial diffusion to a fraction of about 15 percent of all
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agents. It illustrates that standard diffusion may settle at a non-complete fraction of the

population.
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Figure 50. Incomplete diffusion in one sample run of the simulation

This figure shows the adoption dynamics for one sample Tun in a random network with
n = 50 nodes and a link probability of A = 0.09. The adoption threshold was set to a
medium level (6 = 0.5). The simulation was stopped after 10,000 periods as no further
dynamics could be observed.

8.2.3 Replicating “S-Shaped* Diffusion Curves

A next set of experiments aimed at replicating the “S-shaped” diffusion curve from diffu-
sion theory (Rogers 2003). According to this view, initially, a few innovators adopt early,
then diffusion increases in speed due to word-of-mouth or observations by others, and
eventually adoption slows down as the market saturates (Jackson 2008b).

To reproduce this stylized fact, I set up experiments drawing on random networks and
medium adoption thresholds (6 = 0.5). Random networks serve as a useful baseline that
enable benchmarking results for different degrees of connectedness (Jackson 2008Db), ex-
pressed by the link probability (A).

Decreasing the link probability (A) in steps of 0.01, I found that S-shaped diffusion curves
were most likely for n = 50 nodes in a small interval between A = 0.07 and A = 0.04. For
higher values of A, the network did not converge as the dense linkage structure prevented
that the new standard gained momentum. For low levels of A, below 0.04, the network was
disconnected and the new standard could not spill over to isolated nodes.

Figure 51 shows one example in the middle range (A = 0.07) where I could observe a diffu-
sion curve that reproduces the expectations from diffusion theory. During the first 100
periods few agents adopt, then the standard gains momentum and spills over. Finally, the
“laggards” adopt.
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Figure 51. Replication of S-shaped diffusion curve

This figure shows adoption dynamics for one sample run in a random network with
n = 50 nodes and link-probabilities of A = 0.07. The adoption threshold was set to a me-
dium level (6 = 0.5). The simulation was stopped after 300 periods as the entire popula-
tion adopted.

8.3 Results: Assessing Scenarios for a New Standard’s Diffusion

The next sections present simulation results using different configurations and intervention
strategies to examine under what circumstances the new standard diffuses to a nontrivial
fraction of agents.

8.3.1 Experimental Setup and Measurement of Convergence to Target Level

I define a fraction of 75% adopters as the baseline to assess whether a nontrivial fraction of
agents was tipped for the particular configuration of the system where a binary variable
target level is one if this is the case and zero otherwise.

Fraction adopters: As agents may return to the old standard after having assessed the new
standard (refer to Algorithm A.8), the system may not converge to the target level. Hence,
I report the fraction of adopters either 250 ticks after the target level was reached or at the
end of each simulation run. Following the procedures described in Law (2007:488 et seq.), I
set the simulation’s time limit to 7,500 periods.

Timing of tipping point (timing TP): I report the number of contagion rounds until the
target level is reached (for convenience often abbreviated as time/periods as it equals the
simulation time). As tipping points in almost all cases occurred shortly before the target
level is reached, we can approximate the timing of the tipping point by this measure.

Shocks target: As often times multiple shocks will be necessary before the system converg-
es, I also report the number of cascades running through the system until it converges to
the target level. As the network diameter is 8, the number of shocks will be a maximum of
one-eighth of the number of periods in the simulation environment.

Intensity of the tipping point (intensity TP): To map the relationship between the adop-

tion threshold (6) and strength of the tipping point, I implemented a measure taking into
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account the differences in (relative) adoption between two subsequent cascades. For each
cascade, I recorded the fraction of adopters after the end of the cascade. The model then
computes the differences between adopters in this cascade in comparison to the adopters
after the last cascade. From this list, holding the differences in the fraction of adopters for
each cascade, I compute the maximum. In case a tipping point exists — indicated by the
binary variable target level — the amplification of the tipping point is the maximum value

in the vector of differences in adoption. This designates the intensity of the tipping point.

8.3.2 Simple Thresholds: Exponential Increases Due to Power-Law Structure

I now turn to a first set of simulation results using data on the real codeshare network.
Drawing on the simple threshold model, I report whether the system exceeds the prede-
fined target level for varying adoption thresholds (). I performed additional experiments
on theoretical network structures (i.e. random networks with varying link probabilities,
preferential networks, lattices, and star networks). Refer to Table S22 in the appendix for

complete results.

Figure 52 depicts three sample runs for — what I defined as — a low, medium and high
threshold (6). In the example, a medium threshold level (6 = 0.5) portrays a situation in
which an agent switches to the new standard if the majority of its partners switched. We
see that for a medium and high threshold, the network will not converge to the target lev-
el. For a low adoption threshold (6 = 0.3), we find an S-shaped diffusion curve (cf. red line
in Figure 52): adoption dynamics unfold slowly during the first 500 periods (contagion
rounds, which equals around 30 to 50 shocks) but after the system has exceeded an adop-
tion rate of about 30 percent, a tipping point occurs; almost the entire remaining popula-
tion adopts. We see a sudden and abrupt change within one or two cascades.
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Figure 52. Adoption dynamics for varying thresholds

Table 24 reports the complete results. An investigation of the column 6 = 0.3 and 6 = 0.4
gets quickly to the main finding: For smaller values of 6, the target level of 75% is exceed-
ed and most airlines adopt. For larger 6 values, the standard plateaus at 40% or less. Cor-
responding to these findings, the fraction of all airlines by size also, as shown in the fourth
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row, exceeds the target level for low threshold levels, while it remains marginal for medium
and large threshold values. Table 24 also offers a valuable vantage point from which to
investigate the amount of interventions necessary to tip the system: while a triggering
event that penetrates two or three airlines will suffice for 6 = 0.1, the number of shocks
increases exponentially with increases in the adoption threshold 6. An inspection of the

last two rows expresses this finding: the number of shocks increases from one to ninety-six.

Table 24. Results for varying levels of simple adoption threshold
Adoption threshold"** (@)
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Target level? | yes yes yes yes no no no no no no no

Adopters (%) |0.958 |0.958 | 0.958 | 0.958 [0.408 | 0.352 | 0.220 | 0.221 | 0.220 |0.220 | 0.220
Std. dev. 0.000 |0.000 | 0.000 |0.000 |0.000 | 0.000 | 0.002 | 0.001 | 0.001 |0.002 | 0.002
Adopter,,(%) [0.979 [0.979 | 0.979 | 0.979 |0.216 | 0.158 | 0.082 | 0.082 | 0.082 |0.082 | 0.081
Std. dev. 0.006 |0.005 | 0.005 |0.005 [0.000 | 0.000 | 0.000 | 0.000 | 0.000 |0.001 | 0.001
Timing TP 3.59 |18.66 | 73.86 [523.86 | n/a | n/a n/a n/a n/a | n/a| n/a
Std. dev. 0.68 | 6.99 | 28.58 [144.21 | n/a | n/a n/a n/a n/a | n/a| n/a
Shocks target | 1.08 | 3.79 | 13.98 [96.470 | n/a | n/a n/a n/a n/a | n/a| n/a
Std. dev. 0.27 |1.233 | 5.232 [26.626 | n/a | n/a n/a n/a n/a | n/a| n/a
Intensity TP 0.95 0.70 0.53 0.32 | 0.02 | 0.02 0.02 0.02 0.02 | 0.02 | 0.02
Std. dev. 0.00 0.12 0.09 0.06 | 0.00 | 0.00 0.00 0.00 0.00 | 0.00 | 0.00

' Target level was 75% of the population and the simulation was terminated if this level was exceeded
* Average results for 100 simulation runs

® The time limit of the simulation was set to 7,500 ticks; n/a denotes non-converging cases

Figure 53a depicts the distribution over outcomes for the four thresholds (6 = 0.0, 0.1, 0.2,
0.3) at which the system converged to the target level. We see an exponential increase of
the timing at which the tipping point occurs as a function of 6 (R? = 0.956, F = 8,554.45,
p < 0.001, refer to Table S14 in the appendix for regression parameters). I believe the ex-
ponential increase in the timing of the tipping point can be explained by the “power law*
structure of the network. Key players in the model are those ones holding positions that
carry away other players with them. These positions are occupied by a few hubs in a pref-
erential attachment model like ours, which makes these few hubs increasingly hard to tip

with increases in 6; in contrast to a regular-structured network.

Figure 53b shows how the strength of the tipping point varies with 6. Essentially, higher
adoption thresholds (6) correspond to less pronounced tipping points. The figure illustrates
the linear decrease in the strength of the tipping point with increases in 6 (R? = 0.888, F
= 3,149.34, p < 0.001, refer to Table S15 for regression parameters). I believe that the
tipping in smaller chunks stems from the fact that higher barriers for particularly strongly
restricted nodes will only be exceeded after re-running interventions several times before
they are finally successful; which gives the adoption function a more cascaded curving (cf.
Figure 52).
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Figure 53. Timing and strength of tipping point for varying thresholds (6)

To understand the adoption dynamics in more detail, I sliced the data in pieces and plot-
ted the network at different points in time. Consider the series of plots for a low adoption
threshold (6 = 0.3) as shown in Figure 54. The timeline moves from the upper left to the
right and then continues in the second row. The upper series of plots illustrates that pe-
ripheral airlines — weakly embedded in the network — adopt early (cf. Figure 54a). Initial-
ly, few core airlines switch to the new standard. The standard then gains ground slowly in
the periphery as depicted in Figure 54b. Little happens over an extended time, which be-
comes obvious by contrasting Figure 54b and Figure 54c. Then, suddenly the standard
breaks through as shown in Figure 54d. This is the brief moment when the network tips:
almost all of the rest of the population herds to the new standard. Figure 54e and Figure
54f depict the contagion rounds directly subsequent to Figure 54d where more than half of
the agents adopt. This is the tipping point, as shown in Figure 52, after which the system
settles rapidly.

In summary, for low thresholds (6 < 0.3) I find an S-shaped diffusion curve that is con-
sistent with seminal diffusion models (Bass 1969; Rogers 1962). Individual thresholds de-
termine whether a tipping point exists and non-innovation can be explained by the model
as a function of individual thresholds. The timing of the tipping point increases exponen-
tially with increases in the threshold and occurs in smaller chunks with increases in the
threshold as a consequence of the network’s “power law” structure.

Furthermore, I find a periphery-core effect whereby the new standard gains momentum in
the less-restricted periphery and then spills over to the densely connected core. As lesser
restrictions from the network structure may, however, be outweighed by the limited access
of peripheral nodes to information, resources and competencies, further experiments will
tap into non-random interventions that predominantly target central players in the densely
connected core. Before T do so, T will enrich the model with size- and weight-adjusted
thresholds that account for agent heterogeneity.
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Figure 54. Adoption dynamics for one sample run in the codeshare network

This figure shows adoption dynamics for one sample run of the algorithm in the codeshare
network for low thresholds (6 = 0.3). The standard gains momentum in the periphery
(figure a to c). The rapid spillover from a few to a large number of adopters (figure e to f)
is clearly visible and occurs within o few periods. This is the tipping point towards the new

standard. Refer also to movie 0S2 in the online supplements.

8.3.3 Size-Adjusted Thresholds: Smallness Affects Alliances Differently

The next set of experiments examine to what extent agent heterogeneity, in the form of
firms’ sizes relative to their peers, alters adoption patterns. My data tracked 213 airlines
and their size with regards to their number of served destinations. The carriers’ size ranged

from marginal ones with two destinations, to mega carriers with more than three-hundred.

Drawing on theorizing by Bothner (2003), I consider firm characteristics by adjusting indi-
vidual organizations’ thresholds with respect to size relative to their peers. Organizations
small in size relative to their peers will be more adept at imitating their partners’ strate-
gies. Their individual threshold is rising. Larger organizations, relative to their peers, will
in contrast be more resistant. Their individual threshold is adjusted upwards.

The mechanism, I envision, is one in which smaller organizations face less “structural”
inertia to change their internal processes and systems (cf. Hannan and Freeman 1984) and
are hence more willing to adopt the new standard. Recall that, in the growth model, I
showed how inertia builds up as a function of new elements being added to a system. As a
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consequence, this adjustment links inertia on the organizational level conceptually with

varying adoption thresholds among organizations on the industry level (refer to Figure 1).

Algorithm A.9 shows the procedure to size-adapt the agents’ threshold. First, I rank each
organization by size compared to their peers (line 2). I then compute each organization’s
(absolute) difference in positions by size to the median of all peers including the organiza-
tion itself. Because size distributions were often skewed if there was one large organization
in a group of peers, I chose to use the median instead of the mean. To derive at the ad-
justment factor, I compute an adjustment increment by dividing 1 by the number of or-
ganizations in the peer group (line 4). I further multiply the difference in positions with
the increment to obtain the total adjustment factor (line 5). I then add the total adjust-
ment to the threshold of the organization (line 6). This adjusts the adoption threshold
upwards or downwards contingent on whether the organization positions above or below
average in its peer group. By limiting the individual adoption threshold’s upper boundary
to one and its lower boundary to zero, I ensure that each adjustment results in a feasible

solution (lines 7-8). Finally, it is checked whether the agent switches (lines 9-12).

Algorithm A.9 Size-adjusted threshold

foreach agent i do
rank order all agents j,,..,j, in neighborhood by the attribute size incl. agent ¢
compute the agent’s absolute difference in ranks to the median in the rank order
increment := 1 / number of agents in the rank order
adjustment := difference in ranks * increment
threshold := threshold + adjustment
if threshold > 1 then threshold := 1 end if
if threshold < 0 then threshold := 0 end if
foreach agent j in rank-order do

H
=

if agent j has adopted standard then adopted? := 1 else adopted? := 0 endif

— =
N

end foreach
if [sum] of adopted? V¥ agent j,,....j, / count j,,...,j, = threshold then switch endif
end foreach

—_
w

Consider Air Berlin, a German carrier focusing on leisure and business customers. Based
on the example, the mechanics work as follows: Figure 55a, on the left illustrates Air Ber-
lin’s position in its reference group of codeshare neighbors. The figure depicts each carrier’s
absolute number of destinations. Reverse coding Air Berlin’s size in relation to its peers
(cf. Figure 55a) shows that its size is above average. The airline occupies position thirteen
of fifteen. As shown in Figure 55b, the carrier closest to the median is Etihad on position
eight. Consequently, Air Berlin finds itself five positions above average in the rank order.
Computing the increment as shown in Figure 55a arrives at a value of one-fifteenth.
Hence, Air Berlin’s threshold (64, is increased by one-fifteenth multiplied with five,
which equals one-third. For any threshold, an extra of one-third of Air Berlin’s peers have
to adopt before the airline switches.
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Air Berlin: number of destinations (size) a
relative to codeshare partners

oy,

Rank order by size b
(reversed):

mIBEX (1.)

B Bangkog (2.)
= MEA (3.)

B Meridanafly  (4.)
ENIKI (5.)

H Royal Jordanian (6.)

M Hainan (7.)
W Etihad (8.)
Pegasus 9)
192
M S7 Airlines  (10.)
M |beria (11.)
Finnair (12.)
Air Berlin _ (13.
107
British Airways (14.)
American Airlines (15.)
Self: Air Berlin (position 13)
Median: Etihad (position 8)
Difference: 5 positions
Increment: 1/15 = 0.067
Adjustment: 0.067 * 5 =0.333

Size-adjusted ©: © + 0.333

Figure 55. Ezxample for the size-adjustment procedure for one airline

My starting point to investigate the effect of relative sizes is again the network of
codesharing airlines. Varying the threshold levels (6) in three increments, Figure 56 shows
typical examples of how the proportion of switched airlines by size varies with 6. To con-
struct this figure, T computed the fraction of adopters by size as the sum over the individ-
ual adopting airlines’ sizes and divided it by the total size of all airlines in the network.
One of the most salient features of Figure 56 is that the target level is exceeded for low
and medium thresholds. Now, I observe herding to the new standard even for medium
threshold levels (6 = 0.5), in contrast to non-convergence in the simple model (cf. Figure
52). Because smaller airlines’ individual threshold decreases, these airlines rush early to the
new standard giving it a kick start. Because of this early advantage, contagions are easier
to start. Early advantages for smaller airlines outweigh higher individual thresholds of
larger airlines. Investigating the curving for a medium threshold (6 = 0.5) in Figure 56, we
see a step-wise increase in the proportion of adopters. Compared to Figure 52, the tipping
point occurs in smaller chunks. The main finding from earlier simulations — that a tipping

point exists for lower levels of 8 — remains intact but agent heterogeneity shows that the
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tipping point occurs even for higher average thresholds. Tipping becomes dependent on

airlines’ sizes in addition to airlines’ positioning in the codeshare network.
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Table 25 shows results for varying levels of 6. Consistent with Figure 56, we see that for

low and medium levels of 6 the system converges. As we continue to increase the threshold

to levels above 6 = 0.5, the fraction of adopters falls as high thresholds now lower the

chances that airlines switch. For high thresholds the system will not converge. My finding

of an exponential increase in the timing of the tipping point as a function of 6 was robust

to the size-adjustment; however, slightly less variance could be explained by the model (R’
= 0.851, F = 3,989.09, p < 0.001). The finding of a linear decrease in the intensity of the
tipping point as a function of 6 remained intact (R* = 0.929, F = 9,110.67, p < 0.001).

Table 25.

Results for varying size-adjusted thresholds

Adoption threshold"** ()

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Target Level? | yes yes yes yes yes yes yes no no no no
Adopters (%) | 0.972 | 0.972 | 0.972 | 0.972 | 0.97 | 0.972 | 0.971 | 0.746 | 0.634 | 0.507 | 0.479
Std. dev. 0.000 | 0.000 | 0.000 | 0.000 | 0.00 | 0.000 | 0.004 | 0.000 | 0.000 | 0.000 | 0.000
Adopter,,.(%) | 0.986 | 0.986 | 0.986 | 0.986 | 0.98 | 0.986 | 0.985 | 0.487 | 0.358 | 0.254 | 0.235
Std. dev. 0.000 | 0.000 | 0.000 | 0.000 | 0.00 | 0.000 | 0.010 | 0.000 | 0.000 | 0.000 | 0.000
Timing TP | 14.62 | 16.37 | 22.19 | 30.15 | 65.6 | 195.3 | 560.0 | n/a | n/a | n/a | n/a
Std. dev. 3.926 | 4.303 | 6.919 | 7.526 | 19.8 | 47.21 | 101.8 | n/a n/a n/a n/a
Shocks targ. | 3.230 | 3.480 | 4.430 | 5.990 | 12.2 | 36.53 | 1054 | n/a n/a n/a n/a
Std. dev. 0.863 | 0.882 | 1.241 | 1.439 | 3.51 | 8.562 | 19.28 | n/a n/a n/a n/a
Intensity TP | 0.640 | 0.562 | 0.454 | 0.330 | 0.21 | 0.113 | 0.066 | 0.047 | 0.036 | 0.030 | 0.028
Std. dev. 0.091 | 0.070 | 0.054 | 0.043 | 0.03 | 0.025 | 0.015 | 0.012 | 0.007 | 0.006 | 0.003

* Average results for 100 simulation runs

? The time limit of the simulation was set to 7,500 ticks; n/a denotes non-converging cases

! Target level was 75% of the population and the simulation was terminated if this level was exceeded
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Consistent with theorizing by Bothner (2003), I expect smaller-sized organizations in the
simulation to adopt earlier, as their individual thresholds (by assumption) became size-
adjusted. I began my investigation of size-determinant adoption by implementing an addi-
tional measure that recorded, for a medium threshold (6 = 0.5), the adoption events as a
time series. I also further tracked the respective switchers’ size. After clustering all 19,167
adoption events from 100 simulation runs by the sizes of the adopters, I was able to gener-
ate a table that displayed the average adoption period for each size-occurrence as one data
point. Figure 57a shows the results. Before applying a regression model predicting the
adoption point as a function of agent’s size, I transformed the data by squaring the time of
adoption (noshocks) to account for the strong clustering of the data in the bottom-left
quadrant. Based on the transformed data, I could apply a linear regression model that
found a significant relationship between size and the (squared) average adoption period (R*
= 0.516, F'= 101.228, p < 0.001, refer to Table S16 in the appendix for regression parame-

ters).

In a next step, I examined whether organizations’ degree (their number of codeshare link-
ages) predicts their time of adoption. Consistent with the observation by Granovetter
(1985), T expect that organizations’ that have a high degree will be more restricted by the
network structure and will thus be less willing to adopt the new standard. Fixing the
threshold to a medium level (6 = 0.5), I again used a time series approach that tracked
the time period of each organizations’ adoption and their respective degree. Averaging
results over 100 simulation runs, I generated a data set of organization’s time of adoption
and their degree. Figure 57b shows the results. Using a linear regression model, I found a
significant positive link between organizations’ degree and their adoption behavior (R’ =
0.492, F = 31.999, p < 0.001, refer to Table S17 for regression parameters). The analysis
provided preliminary evidence to suggest that high-degree airlines adopted at a later point

in time than low-degree airlines.
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Figure 57. Awerage adoption period contingent on agents’ size (a) and degree (b)

In a next step, I estimated how these effects vary across alliance and non-alliance mem-
bers. Starting with the relationship between degree and time of adoption, I split the data
in two groups and ran two regressions. The results suggest that the degree only predicts
adoption times for alliance members (R* = 0.325, F = 26.023, p < 0.001, refer to Table
S18 for regression parameters) while it fails to predict adoption times for non-alliance
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members (R* = 0.005, F = 0.088, p = 0.770 > 0.05, Table S18). Figure 58a and Figure 58b
illustrate the differences quite clearly: while the relationship is strongly pronounced in the
left-hand plot for alliance members (cf. Figure 58a) the effect vanishes for non-alliance
members (cf. Figure 58b). Drawing on a #test of regression coefficients, I could not, how-

ever, reject the null hypothesis that regression coefficients are equal across both groups (¢
= 1474, p = 0.145 > 0.05).
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Figure 58. Time of adoption by degree for alliance and non-alliance members

This figure turns our attention to alliance membership as a predictor for an airline’s
time of adoption. In the figures I turn to the effect of airlines‘ degree: while there is a
linear relationship for alliance members (figure a) where airlines that have lower degrees
adopt earlier, there is no relationship between degree and adoption time for non-alliance
members (figure b).

A similar effect can be observed for the relationship between size and adoption time: the
relationship was pronounced for alliance members and correlation coefficients from a linear
regression on the transformed data show a strong and significant relationship (R* = 0.546,
F = 85.449, p < 0.001, refer to Table S19 for regression parameters), while no relationship
could be observed for non-alliance members (R* = 0.003, F = 0.199, p = 0.657 > 0.001, cf.
Table S19). Figure 58c and Figure 58d illustrate these inter-group differences quite clearly.
In addition, the tvalue was 9.244 and significant (p < 0.003), indicating that groups differ

with respect to regression coefficients. Smaller airlines in alliances adopt earlier than larger

airlines.
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Figure 59. Time of adoption by size for alliance and non-alliance members

137



This set of outcomes is important because it suggests that taking into account group mem-
bership is a necessary part of understanding the link between organizations’ importance (in
terms of size and embeddedness) and their adoption behavior. Being small in an alliance
may be usefully distinguished from being small in the others group. The next set of exper-
iments will further illuminate the relationship between discerning factors of an organiza-

tion’s network embeddedness and adoption behavior.

8.3.4 Weight-Adjusted Thresholds: Strongly Tied Groups Will Not Adopt

In a next step, I account for link weights. Pursuing this objective is important because
assuming that all collaborations are equally important could obscure the fact that some
collaboration is significantly less intense than others. In distribution and pricing IT, ad-
vanced skills and substantial tacit knowledge are required to adapt and extend complex
sales infrastructures that evolved over decades. Consistent with Hansen (1999) and Afuah
(2013), I believe that influences in such knowledge-intensive settings will come from part-
ners with which the focal organization has built trust from frequent and close relationships
rather than from loose and marginal ones. I thus assume that partners with whom an or-

ganization has strong ties, will be more influential than marginal ones.

Two empirical examples back up my assumption. I interviewed RM experts from SWISS
about which of their partners are most influential in determining their technology strategy
in the area of distribution and pricing IT (refer esp. to interview 0S13): most of the named
partners, such as Lufthansa or Air Canada, were strongly coupled by existing codeshare
linkages. Another example came up in an interview with another RM expert. The example
concerns a transatlantic codeshare joint venture among SWISS and several other carriers.
According to the interview (refer esp. to interview oS7 and observation memo 0S16),
SWISS had to reintroduce a conventional fare structure — with multiple fares per booking
class — as several partners, with which SWISS thereafter collaborated intensively, could not
support its advanced dynamic pricing approach that utilized only one or few fares per
booking class. These examples illustrate the importance of taking into account collabora-
tion intensities in computing the strength of peer influences.

Taking the number of codeshare routes among carriers as a starting point, I developed a
procedure that penalizes less intensive collaboration. Figure 60 utilizes the example of
SWISS to depict varying numbers of codeshare routes across different partners. In the fig-
ure, we see that a small fraction of partners, e.g. United, Lufthansa and US Airways, ac-
count for a substantial amount of all codeshare routes by SWISS. The example thus em-
phasizes my proposition on the importance of weighting peer influences according to differ-
ent collaboration intensities. The example further illustrates the fact that drawing on the
absolute number of codeshare routes could mischaracterize varying peer influences as mar-
ginal carriers would be grossly underrepresented and influences would only be exhibited by
a very restricted group of peers. I thus restricted the weight-adjustment procedure to the
rank order among an airline’s peers as I suspected the stronger assumptions made by a
cardinal procedure could over-represent intense partnerships while under-representing me-

dium and small ones.
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Figure 60. Ezxample of the number of routes that SWISS codeshares with partners

m 9. SOUTH AFRICAN AIRWAYS (SA) H10. TAP PORTUGAL (TP)

W 11. CROATIA AIRLINES (OU) W 12. TURKISH AIRLINES (TK)
W13 EL AL ISRAEL AIRLINES (LY) M 14. LOT POLISH AIRLINES (LO)
15. ADRIA (JP) W 16. AIRFRANCE (AF)
m17. AIR MALTA (KM) 18. BLUE1 (KF)
. DARWIN AIRLINE (F7) 20. EGYPTAIR (MS)
H UKRAINE INT'L AIRLINES (PS)  m22. ANA (NH)

3. AUSTRIAN (OS) 24. ESTONIAN AIR (OV)
5. ROSSIYA AIRLINES (FV) 26. THAI (TG)

Algorithm A.10 shows how I weight-adjust individual agents’ thresholds, granting more
weight for intense partners and penalizing non-intense collaborations. As shown in lines 2-
3, I construct a rank order of all first-order neighbors of agent 7 and create an increment
by dividing 1 by the number of peers. For each peer, I then compute a penalty according
to the agent’s position in the ranking (lines 4-9). Starting from the second rank, each sub-
sequent position becomes penalized more strongly. As the penalizing procedure lowers the
weight the agent’s peers exert, Lines 10-11 balance the threshold accounting for removed
overall penalty. Finally, the agent decides whether it should adopt according to the
weight-adjusted threshold (lines 12-13).

Algorithm A.10 Weight-adjusted threshold

foreach agent ¢ do

construct a rank-order of agents in reference group j,,...,j, by collaboration intensity

increment := 1 / number of agents in the rank-order

foreach peer j in rank-order do
penalty := (rank in rank-order — 1) * increment
if j adopts new-standard then adopted? := 1 else adopted? := 0 endif
intensity-adjusted influence := (1 — penalty) * adopted?

end foreach

sum-penalties := X of penalties V j in rank-order

balance-factor := sum-penalties / length rank-order

threshold := threshold * balance-factor

if 3 of intensity-adjusted influence ¥ j in rank-order / count agents in reference group
> threshold then switch endif

13: end foreach

—_
— O

H
v

Figure 61 turns our attention to adoption dynamics with respect to the weight- and size-
adjusted threshold. We see a qualitative difference between situations with low or medium
versus high thresholds. In the latter case, the system will not converge to the target level.
A significant fraction of agents do not adopt the new standard.
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Figure 61. Effects of weight- and size-adjusted threshold on the fraction of adopters

Table 26 shows numerical results averaged over 100 simulation runs. We see that tipping
occurs for low and medium thresholds. For high thresholds, the system comes close to the
target level but failed to hit it in all cases. If weighted links are incorporated, some groups

of agents will never adopt.

Table 26. Results for varying weight-adjusted thresholds
Adoption threshold"** ()
Low (6 = 0.3) Medium (6 = 0.5) High (6 = 0.7)
Mean Std. dev. Mean Std. dev. | Mean Std. dev.

Target level? yes yes no
Fraction adopters (%) 0.972 0.001 0.972 0.000 0.746 0.000
Size adopters (%) 0.986 0.000 0.986 0.000 0.487 0.000
Timing tipping point 29.250 7.259 198.790 41.969 n/a
Shocks target 5.850 1.410 37.120 7.566 n/a
Intensity tipping point 0.334 0.044 0.107 0.021 0.049 ‘ 0.012
' Target level was 75% of the population and the simulation was terminated if this level was exceeded
? Average results for 100 simulation runs
* The time limit of the simulation was set to 7,500 periods: n/a denotes cases non-converging cases

Consider in this connection the series of plots in Figure 62. The main insight that emerges
from these figures is that whether a clique or group adopts, depends on the linkage struc-
ture among neighboring agents. In Figure 62a, I depicted two nodes, large in size and
strongly connected, with weak ties to other nodes. The influence from the other agents
may not suffice to tip either of these two large nodes. In Figure 62b, T adapted the linkage
structure only marginally. T rewired one of the other agents, resulting in a situation in
which all the outside influence concerns one of the large players. In contrast to the previ-
ous example, outside influences may now exceed the threshold level and the agent switch-
es. This switch immediately results in a subsequent switch of the other large player, too.
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The individual linkage structure is therefore decisive for whether — given the same level of
influence — one group of connected agents can counterbalance strong ties between other

groups of agents.

Figure 62. Influence of interaction structure on adoption behavior of groups

8.3.5 Targeted Interventions: Collective Action by Maximum Cliques

The next set of experiments moves away from random interventions to more purposeful
ones. One may think of a collective action by a group of willing airlines or by an arbitrary
strategic alliance (cf. Botzem and Dobusch 2012; Brunsson et al. 2012). Random interven-
tions assume that innovations occur with equal probabilities in any part of the network. In
core-periphery structures, as found for airline codeshares, core members may, however, find
it more useful to join forces to move collectively to the new standard; in turn, isolated
airlines may be less likely to adopt modern practices and methods (cf. Valente 1995;
Valente 2012).

I pursue the objective to test empirically two theoretical propositions: first, I want to ex-
amine whether targeted network interventions can outperform random interventions
(Valente 2012). Targeted interventions are those interventions identifying sets of key play-
ers purposefully that are expected to maximize the diffusion outcome (Borgatti 2006).
Consistent with the observations by Valente (2012), I expect that targeted interventions
on a segment-level are most effective if they utilize group detection algorithms as im-
portant groups of players may find it difficult to adopt “unless the entire group agrees to
use the system at the same time” (Valente 2012:337). Hence, I propose that targeted inter-
ventions, utilizing group detection algorithms, can outperform random ones. The null hy-
pothesis is that both strategies perform equally (or targeted interventions perform even
worse). Second, I want to tap into the extent to which targeted network interventions can
be more resource-effective in reaching the goal of maximizing diffusion outcomes than
“coalition-building by convenience”. By selecting sets of key players purposefully with the
goal of maximizing diffusion outcomes, I expect that the model can outperform interven-
tions that draw on a random attribute of group membership that evolved in another con-
text or targeted another objective. Thus, one may be able to focus resources on sets of key
players that are relevant for the given problem at hand (with respect to the number of
players that have to be triggered in the first place). Alliances are a good example.

I thus compare the group detection algorithm with the switch of an entire alliance. I used
Star Alliance as a test balloon as it is the largest alliance in the codeshare network by the

number of members and affiliates.
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Many different approaches have been proposed for group detection (cf. Palla et al. 2005;
Fortunato 2010; Valente 2012). These range from traditional techniques such as hierar-
chical clustering, modularity-based methods, and methods based on statistical inferences,
to methods for overlapping communities (Fortunato 2010). Technically, the problem of
clique detection has basically been defined as detecting complete subgraphs (“cliques”), i.e.
sets of nodes where each pair of nodes is linked. In a social network, one may think of
cliques as subsets of people that all know each other. The mazimum clique then designates
the largest subset of nodes being completely connected (Fortunato 2010). To test my
proposition regarding different intervention strategies, I draw on the Bron—Kerboscht algo-
rithm (Bron and Kerboscht 1973) as it is a well-known and efficient algorithm to detect
cliques in networks. The basic form of the algorithm is a recursive backtracking that
searches for all maximal cliques in a given graph G. The algorithm augments a candidate
clique by considering one node at a time, either adding it to the candidate clique or to a
set of excluded nodes that can’t be in the clique but must have a number of non-neighbor
in the final clique (cf. Bron and Kerboscht 1973). The result is a vector of nodes (airlines)
designating a maximum clique. In the codeshare network, the maximum clique consisted of
eight members (4% of the population); Lufthansa (LH), United Airways (UA), Swiss (LX),
Thai (TG), and Air Canada (AC) among others.

To test whether interventions to the maximum clique outperform random interventions, I
pick the same number of nodes as the maximum clique size uniformly at random. Overall,

I thus proceed with three intervention strategies:

1. Random-nof A group of players of the same size as the maximum clique
2. Maz-clique:  The set of key players that belongs to one of the maximum cliques
3. Star: Star Alliance members (all nodes holding this attribute)

To test the theoretical propositions, I adjust the experimental design; in the following, I
perform only one shock to a set of players (a block, clique, cluster, or random set of nodes)
to examine the extent to which their collective action affects the new standard’s diffusion
in the overall network. Consequently, I extend the triggering event from one random node
to a set (or list) of nodes that I input either at random, purposefully, or as a result of a
group detection algorithm. Then, I investigate a single round of contagions (one cascade or
shock). T investigate whether the shock is sufficient to tip the overall network to the target
level. This time, it is assumed that coalitions will stay with the standard once they have
adopted. Varying the adoption threshold 6 in three steps (low, medium, high) for the three
intervention strategies (random-nof, maz-cliques, star), I conducted 3 x 3 x 100, equals 900
experiments. I utilized the weight-/size-adjusted threshold 6, developed over the previous
sections. In addition, I performed experiments for the complete interval of thresholds, 6 €
[0,1], in increments of 0.1. The complete set of results can be found in the supplementary
materials in Table S20.

Focusing on the maximum clique strategy, Figure 63 shows the adoption dynamics for a
typical run of the simulation for a low threshold (6 = 0.5). As shown in Figure 63a, we see
quite clearly that the maximum clique is situated within the core of the network and that
most members belong to Star Alliance (indicated by the Star-type shape); they are mostly
large in size (the size of each node indicates its number of destinations). In the first conta-
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gion round, the standard spills over from the maximum clique most intensively to a large
number of adjacent nodes (cf. Figure 63b). The second contagion round mostly spreads the
standard further to the periphery (cf. Figure 63c) but the large wave already slows down.
The third, fourth, and fifth contagion round contribute only marginally to the new stand-

ards diffusion.

a .trigger-nodes 2 " bilst hontagion round e 2nd.conte.agion round

A

Figure 63. Adoption dynamics for mazimum clique strategy in one sample run

This figure shows how adoption dynamics unfold within the frame of the mazximum
clique strategy for a low threshold (6 = 0.3); cf. movie 0S3 in the online supplements.

Figure 64 shows how different intervention strategies (random-nof, maz-cligue and star)
affect the proportion of adopters after one cascade. When the threshold is low (6 = 0.3),
the maz-clique strategy performs well above the random-nof strategy and almost reaches
the target level of 75%.

The maz-clique strategy also delivers comparable results to the star strategy. We see sub-
stantial cascades from few members of the population. For medium thresholds (6 = 0.5),
the extent of cascades falls for each of the intervention strategies below the target level.
Both random-nof and max-clique strategies suffer extensively while the star strategy is
surprisingly robust. For high thresholds (6 = 0.7), random-nof and the maz-clique strategy
again suffer substantially while the star strategy, again, faces only a little decline.
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Figure 64. Fraction of adopters after one shock for different intervention strategies

As a next step, I examine whether targeted interventions can outperform random interven-
tions. The averaged data in Figure 64 offers a valuable initial vantage point. Limiting our
attention to cross-group differences between random interventions (random-nof) and group
detection (maz-clique), I used an ANOVA to test the significance and the strength of the
effect. Table 27 shows the results. I find significant differences in group means for each
examined threshold level (p < 0.001 V 8) and strong effect strengths (n?). These results
build confidence in my theoretical proposition that targeted interventions can outperform

random interventions.

Table 27. Across-group difference for random interventions and mazx-clique strategy
Threshold | Strategy Mean'? Std. dev. F p n?

Low 1 — random-nof | 0.347 0.116 722.102 0.000 0.785
(0=03) | 2- maxclique | 0.677 0.038

Medium 1 — random-nof | 0.157 0.061 1381.944 0.000 0.875
(0=05) |2 max-clique | 0.488 0.065

High 1 — random-nof | 0.096 0.037 1405.192 0.000 0.876
(6 =0.7) 2 — max-clique | 0.256 0.021

! Dependent variable was fraction of adopters after one shock

? Average results for 100 simulation runs

As the switch of an entire alliance (star strategy), for each threshold, outperformed target-
ed network interventions (maz-clique strategy), I had to reject my second hypothesis that
group detection is able to reach the same level of adopters as “coalition building by con-

venience”.
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Figure 65 shows how cascades differ between the max-clique and the star strategy. We see
that both strategies start from a different level — the maz-clique strategy targeted 8 mem-
bers (4% of the population) while the star strategy targeted 34 members (16% of the popu-
lation). The subsequent cascades peak stronger for the star strategy but then run dry very
fast. To some extent, this can be explained by the fact that the large numbers of targeted
nodes have direct paths to a larger number of adjacent nodes. The maz-clique strategy
shows an interesting dynamic. For low thresholds (6 = 0.3), the first and second round of
contagions will switch almost the same number of nodes. At that level, the max-clique
strategy performed almost equally to the star strategy. For medium and high thresholds,
there is however a strong or even very strong decline in the extent of the cascade after the

first contagion round.

In summary, for low thresholds (6 = 0.3), I found that both strategies yielded similar re-
sults. For medium and high thresholds (6 = 0.5 and 6 = 0.7), however, I observed a signi-
ficant drop in the effectiveness of the maz-clique strategy. Viewed together, these results
suggest that group detection strategies may not be equally effective across settings, and
that not only “understanding who is part of the core is critical for the coalition success”

(Valente 2012:49) but also how individual actors incentive structures vary.
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Figure 65. Adoption dynamics over one cascade for max-clique and star strategy

This figure shows the adoption dynamics within one cascade after an intervention that
targeted (a) a mazimum clique, and (b) all members of Star Alliance. The figure plots the

absolute number of adopters in each contagion round for varying thresholds (6)

I performed additional experiments using a brute force method in which I first created a
large number of combinations at random (i.e. sets of 10,000 or 100,000) from all possible
combinations® and then tested all of these seeds for their effect on the fraction of switched
agents. I included results for the two best-performing seeds in the supplementary material
Table S21. While these strategies outperformed random strategies, the search did not find
a seed that was able to beat the maximum clique strategy.

* Consider, for instance, a situation in which 213 agents ought to be placed on 8 positions (8, be-
cause this is the number of agents in the maximum clique). Then, there are C = M! / (M — N)!'*
NIy = 213! / ((213 — 8)! * 8!) = 9.19906903e13 possible combinations.
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8.4 Discussion and Preliminary Conclusion

8.4.1 Interpretation

This contribution was aimed at understanding tipping points for the diffusion of a new
distribution standard in the airline industry. To briefly summarize, I constructed a data
set of codeshare linkages among airlines and performed a network analysis. The presented
contagion model then shocked particular agents uniformly at random. This intervention
triggers cascades running through the network. Based on peer influences, the algorithm
assesses whether agents switch to the new standard. Agents adopt if individual level

thresholds are exceeded.

Utilizing the codeshare network to assess different scenarios, I found that whether a tip-
ping point exists depends on individual level thresholds. Essentially, for low thresholds, the
functional relationship between the fractions of switched agents over time shows an S-
shaped form (cf. Figure 52) replicating findings from seminal models of innovation diffu-
sion (cf. Rogers 1962; Bass 1969). As a notable extension to previous attempts, my ap-
proach also enables for explaining of innovations’ non-spread; this is a theoretical step for-

ward towards understanding diffusion processes’ micro foundations (cf. Kiesling et al.

2011).

While the standard diffused to a nontrivial fraction of airlines for low average thresholds,
cascades ran dry for medium and high average thresholds (cf. Figure 52). In addition, con-
vergence time grows exponentially with increases in the threshold level (cf. Figure 53a).
This result is important because it suggests that the network structure is important for the
diffusion of a new standard. It particularly shows that, in a network with a “power law”
structure, the diffusion of a new standard may be very sensitive to changes in adoption
thresholds. More broadly, it also highlights that even a small decrease in the threshold —
for instance as a result of minor technological advancements — can significantly increase
the probabilities that a new standard diffuses. Interviews, for instance, suggest that pro-
gress in the area of fare quote engines — converting fare quotes from GDS to a company’s
dynamic pricing engine — may be such a central piece of the puzzle that could spur up
overall adoption significantly (refer to RM experts in interview 0S11).

I then highlighted the importance of agent heterogeneity as a factor that facilitates or im-
pedes standard diffusion. Extending the model by Bothner's (2003) observation that small
firms are often more likely to copy their peers’ technology strategies, 1 size-adjusted the
agents’ adoption thresholds relative to their peers. Performing experiments for varying
thresholds, I found that the average threshold, for which the predefined target level was
exceeded, decreased in a heterogeneous setting compared to a setting with simple thresh-
olds. Consider the different diffusion curves for medium thresholds in Figure 52 and Figure
56: in the size-adjusted model, the new standard gains momentum even for medium
thresholds. T believe this result aptly captures the emergent effects that can arise when the
early tipping of the most-adaptable group lowers the overall threshold at which a tipping

occurs.

Additional analysis on the effect of size and degree on the time of adoption revealed an

interesting distinction: being small in size and degree mattered most in an alliance context.
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I found that a significant relationship between an agent’s degree and size and the time of
the adoption could only be observed for agents that belong to any of the three alliances
(cf. Figure 58a and Figure 59a). For non-alliance members, the effect was absent (cf. Fig-
ure 58b and Figure 59b). This result is substantially important because it indicates that
being small in an alliance can mean something entirely different to being small in another
group. It also suggests that targeted network interventions focusing on agent characteris-

tics and centrality may not be equally effective across different groups of agents.

Investigating the adoption dynamics in the model in detail revealed that the new standard
grows in the periphery as agents close to the periphery are less restricted by prevailing
network effects (cf. Figure 54). The standard may then spill over to the densely connected
agents in the core. However, significant numbers of shocks were necessary until the new
standard spilled over. Viewed from an organizational perspective, I suspect that peripheral
players will often lack resources, competencies and knowledge to adopt early. Furthermore,
core players may be more willing to adopt early as they face stronger competitive pressure
and are thus more adapt to explore an innovation that potentially enables them to gain a
competitive advantage. Due to their restricted network position, they may thus build coa-
litions to move collectively to the new standard. To illuminate the consequences of collec-
tive efforts, I turned my attention to non-random interventions triggering events that
shocked multiple players at once, tracking the effect on the overall network. Suggesting an
algorithm for community detection in graphs, I conceptualized collective action as a situa-
tion in which the largest clique in the network switches collectively. I focused on the one-
off effect of this local action on the global diffusion outcome. Comparing this intervention
strategy with random interventions and the move of all members of an arbitrary alliance, I
found that community detection could outperform random interventions and performed
close to more resource-intensive collective actions by an entire alliance — at least for low
and medium thresholds.

8.4.2 Limitations: Beyond Either-Or, Undirected Links, and Static Networks

Before sketching future directions and implications for other lines of research on the diffu-
sion of standards and innovations, I emphasize three conditions that limit the generality of
the perspective I have presented.

Firstly, there are clearly settings in which organizations are not restricted to either adopt-
ing or non-adopting a new standard and where an as-well-as logic — in which multiple
standards co-exist over extended periods — therefore defines the network. Consistent with
the observations by Hanseth (2000, 2002), and Monteiro et al. (2013), I believe that stand-
ardization is a complex process occurring on multiple levels of an information infrastruc-
ture at several, discontinued points in time. Consider in this connection the multi-level
analysis of SWISS in Figure 45 and Figure 46 whereby the first figure represented SWISS’
embeddedness in a network of codesharing carriers and the latter figure drilled down to
SWISS’ network of information systems. One can clearly see similarities between both fig-
ures as codesharing also has a technical aspect, integrating inventory systems from multi-
ple partnering carriers; there are, however, aspects that are abstracted away by assuming
that an airline either adopts or not. In connection to that point, Hanseth (2002) emphasiz-
es the importance of gateways for the success of creating new paths. I believe that the ex-
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ample of SWISS shows the essential need for conversion technologies as — when adopting a
new standard — organizations have only limited capacities that require keeping some do-
mains fixed, at least preliminarily (cf. Schreyégg and Sydow 2010). Future work could give
a more fine-grained account for varying abilities to implement a new standard. A starting

point would be to link my growth model with the perspective presented in this chapter.

Secondly, I considered codeshare linkages as undirected. There are clearly settings in which
peer influences are unequally distributed among both partners in a mutual codeshare rela-
tionship. One may think of the example of SWISS and Lufthansa as shown in Figure 45.
While both carriers codeshare intensively, peer influences may not weigh equally strongly
for both partners. In the example, SWISS is part of the Lufthansa Group, which not only
provides financial backup but also implements measures of managerial control that may
imbalance both partners’ influences on each other. I believe that my approach already cov-
ered important aspects with respect to partnership-specific power imbalances by feeding
back a carrier’s size relative to their peers into agent’s decision making. In settings where
one partner is large and the other partner is small, the larger carrier’s adoption threshold
is adjusted upwards while the small carrier’s adoption threshold is adjusted downwards.
My approach may, however, mischaracterize situations in which peer influences are une-
qually distributed despite equal sizes of both carriers. In addition, it is also possible to
imagine situations in which the smaller partner dominates the larger partner in terms of
technology strategies. As information on the directions of influence are impossible to infer
from public codeshare data, a valuable initial vantage point for recasting my approach
could be to complement the codeshare matrix A by a matrix of financial linkages B. As
suggested by Elliott et al. (2014), such modeling could account for the direction and inten-
sity of financial linkages among organizations. As suggested by Greve and Seidel (2014),
one could also enrich my approach by using regional proximity as another measure in a net

of multiplex influences.

Thirdly, while I have aimed to accurately characterize important dynamics on the target
under investigation to distill stylized facts while preserving the simplicity of the model, it
may be entirely plausible that the new standard takes an entirely different trajectory to
the ones projected in the model. As the NDC standard is in its early stage of business
adoption, it remains open which trajectory the standard will eventually take and whether
the outcomes will match the model. My research aims to gain original insight into poten-
tial scenarios with respect to the diffusion of a new standard and is hence not intended to
predict a particular trajectory. To gain face validity, I discussed my findings carefully with
domain experts of a case company, industry stakeholders and other researchers. There are,
however, possibilities that dynamics outside the model rule out scenarios that have been
found as useful or instructive. Unfortunately I cannot fast forward the tape of history to
see how the new standard unfolds. I thus emphasize the need to replicate the model in
other settings to see whether the particular trajectory that the standard diffusion process
eventually took can be sampled from the universe of parameter combinations incorporated
in the model.
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8.4.3 Future Directions: Market Structure, Effective Interventions, and Dy-

namics

In addition to applying the model to other settings, especially those in which standardiza-
tion has already taken place and standard diffusion outcomes are therefore straightforward

to replicate, I present four particularly promising ways to proceed further.

Firstly, although the codeshare network — and the model that I build thereupon — enables
us to draw a quite detailed picture of how airline interactions affect individual level stand-
ard adoption, it is easy to imagine a more complex model taking into account a multi-tier
market structure with GDS, Internet aggregators and other stakeholders. The airline-
specific industry structure with GDS as a problematic broker is essential to understanding
why there are problems switching to a new distribution standard. To this end, Figure 66
points to the particularities of the airline industry with respect to the market structure
creating problems when switching to a new standard. A short history of the GDS evolution
reveals the strong impact that these systems have on current inertial tendencies in airline
distribution and pricing. GDS have evolved since the 1960’s from airline reservation sys-
tems (Copeland and McKenney 1988). Later, when regulatory concerns in the US and Eu-
rope were raised, GDS were spun off from airline companies (Belobaba et al. 2009;
Copeland and McKenney 1988). Tendencies towards oligopoly in the market for platforms
for commercial and technical cooperation have been strongly promoted by increasing re-
turns in the two-sided market of travel agents and transport companies. This operational-
izes in a straightforward positive feedback spiral that is contained in material I received
from GDS vendor Amadeus (refer to Figure S2): the more routes and connections become
available in a travel platform, the higher the value for a transport company to bring addi-
tional content to a travel platform, the higher the value for travel agents to use these plat-
forms for their bookings, which in turn reinforces the value of the platform to the airline.
This is a network effect that leads to increasing returns until the entire inventory of a par-
ticular carrier is utilized and outweighs competition in the platform with other transport
companies as the other option — non-presence in the travel platform — results in the loss of
profit. Interviews showed that this is almost a non-option for airlines as they face a strong-
ly competitive market environment in which they drive close (or even below) profitability
(refer to RM expert in 0S2). This goes together with an indirect network effect which is
due to the fact that abnormal returns for GDS could be re-invested into platform en-
hancements; more transport companies also bring complementary services and products
(e.g. car rental, hotel rooms) to the platform which further increases the value of the plat-
form. Furthermore, GDS could use high returns to expand into complementary areas such
as airline distribution IT, which further strengthens the “consumer lock-in” (cf. Greenstein
1997). Amadeus, for instance, earned in 2012 a return of 1,108 million Euro (Earnings be-
fore interest, taxes, and depreciation; EBITDA) giving revenue of 2,900 million Euro (refer
to 0523). While this story may be told as a problem of the economics of IS, one could also
focus more explicitly on the technical dimension of GDS infrastructures. GDS operate
enormous information infrastructures going beyond even the largest organizational IT in-
frastructures. Amadeus, for instance, operates a data center in Erding, Germany, pro-
cessing more than 1.6+ billion transactions and 3.7+ million net bookings per day (on
average days in 2012; refer to 0526). This is beyond any imagination and adds a concrete
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technical dimension to these economic figures. Distribution standards such as the passen-
ger name record and booking classes are deeply embedded in these infrastructures. Several
interviewees reinforced my impression that attempts to reengineer the GDS go beyond the
capacities of any of the GDS vendors. This is substantiated by the following expert state-

ments:

“So there is an enormous amount of fundamental logic locked up in those GDSs that
is, no one knows, what is there. It would, what it takes to change something is ex-
tremely costly and the people who originally, most of this is undocumented and the
original writers and even the second generation of people who worked with it, are

mostly dead.” (revenue management expert; refer to interview oS17)

» This is such a fundamental part of this entire software, yes. If you had switched this
concept, you could not have done that [..] would had not been technically feasible; ab-
solutely right. Not technically feasible.* (GDS manager and distribution 1T expert; re-

fer to interview 0S20)

This is illuminating for the underlying reasons for diverging interests between GDS ven-
dors and airlines with respect to the booking class standard. As GDS are also in wide use
across car rentals, hotels, cruises, railway companies and further industries (Farhoomand
2000), this creates additional barrier to change (GDS manager and distribution IT expert;

refer to interview 0S20).

Travel GDS
agent
Travel
agent
Figure 66. Airline-specific industry structure. GDS as a problematic broker

Extending my model in this direction would require modeling these actors as additional
agents, specifying their group-internal interactions and their interactions with airlines as
well as equipping them with realistic adoption thresholds. Figure S8 in the appendix is a
first step into this direction. T believe this figure is important as it sketches centrally the
multiplicity of interactions between airlines, GDS, and aggregators. Consistent with
Hanseth (2002), the figure therefore reemphasizes the importance of considering converters
between the established booking class standard and a potential new airline distribution
standard; it especially portrays the need for airlines to remain compatible with the GDS as
they are an indispensable source of revenues now and for the near to mid-term future (re-
fer to RM experts in 0S2 and 0S7). Due to the particularities of airline distribution IT,
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with its increasing return nature from combining offers in large platforms, I believe it is
necessary to recast the model to account for this important structure; a useful starting
point could be the Modified Polya Process — shown in Figure 8 — as it is able to capture
the complementarities that arise from the interactions between airline-internal systems and
aggregators’ infrastructures. However, the Modified Polya approach would need, again,

recasting with respect to interaction patterns.

Secondly, I emphasized the importance of non-random intervention strategies — especially
those utilizing a maximum clique strategy for group detection — to ensure the rapid and
effective diffusion of the new standard. Targeted network interventions are a fruitful yet
underexplored research area (Valente 2012). Examples in this area are Borgatti's (2006)
algorithms to find sets of key players that maximize diffusion outcomes or actor centrality-
based approaches as suggested by Ballester et al. (2006) or Jackson (2008b). Taking into
account the modular structure of my model, other, non-random invention strategies can be
plugged into the model easily to test whether these strategies are able to perform similar or
even outperform the maximum clique strategy I have presented as the backdrop of my
approach. Future research could also build upon the counter-intuitive, brute force ap-
proach that I have sketched (refer to the results in appendix Table S21); such an approach
would be especially helpful to find key players that maximize the diffusion outcomes while
minimizing the resources with regards to the number of players that have to be mobilized
in the first place. Rerunning the model multiple times for each possible combination is,
however, computationally costly. A more feasible approach could thus be to use a genetic
algorithm or some other heuristic to find sets of key players from the large number of all
possible combinations that satisfy a predefined outcome measure with respect to diffusion
outcomes and costs more effectively. This presents interesting challenges for future re-
search.

Thirdly, I assumed a fixed underlying transmission network, designated by the codeshare
matrix A as well as fixed agent attributes (i.e. size and alliance membership). In turbulent
environments, this assumption may be too restrictive. My work on growing networks (refer
to chapter 4-6), was motivated particularly by the observation that airlines enter and drop
out of networks regularly. For instance, with a rate of 15.9% yearly for Star Alliance. Fur-
thermore, I had to cleanse the data as 18 (of 231) carriers ceased operations from 2011 to
2013. In addition, new codeshares are announced on a weekly or monthly base creating
further dynamics. TATA assumes that business adoption of the new standard will require
at least three years. Recasting the model to account for these dynamics may extend the
approach accounting for growth (refer to Algorithm A.3) and dropout processes
(Algorithm A.7) on the individual node level as well as matching this data with empirical
observations on the timing and intensity with which new codeshares emerge. This could be
done by parsing selected sources (e.g. airlineroute.net or routesonline.com) for codeshare
updates and feeding the data to time-dependent adjacency matrices (A;, A, Ajz and so
forth). In combination with empirical data on growth, dropout, and additional merging
processes, this would allow to estimate realistic growth rates, degrees of interactions, and
preferentiality. Thereafter, one could test the robustness of the findings given this im-

portant extension.

151



Fourthly, shocks represent interesting disturbances to a system. Extending my approach
could introduce a continuous reassessment by agents over multiple periods to see whether
the system tips or settles into a new equilibrium without further shocks. Another interest-
ing direction is the observation by Arthur (1988) and Weitzel et al. (2006) that standard
diffusion processes, once they gain momentum, often become self-fulfilling. Recasting my
approach could be achieved by introducing a rationale to anticipate future developments in

the agents’ threshold values.

In addition to further elaborating the methods, tools, and models I have presented as the
backdrop of my approach, another interesting research direction would be a to conduct a
systematic, multi-disciplinary analysis incorporating the perspectives of multiple stake-
holders on the consequences of big data methods using the airline industry as an example;
such study could especially concern the widely-held underlying core assumption of the air-
line industry on the value of first degree price discrimination — charging the maximum
price consumers are willing to pay. Isler and D’Souza (2009:255), two respected revenue
management experts, note that “[p|rice discrimination can lead to increased efficiency and
is tolerated by the public to a certain degree if it is not perceived as too unfair [..| the air-
line industry would not be able to offer its current public service level for both leisure and
business customers without it”. Price discrimination in the airline industry has gone hand-
in-hand with increasingly complex algorithms as well as the technical development of ad-
vanced computerized distribution and revenue management systems (Isler and D’Souza
2009:255). I believe that the airline industry is an exceptional case in the respect that it
has brought to perfection the use of big data methods. The case could thus be used to il-
luminate not whether price discrimination per-se is good or bad for the public but to an-
swer questions such as: How does it affect various stakeholders? Who are the winners and
the losers? What are the policy implications that follow from the use of big methods in
that context? To what extent is the joint development of underlying assumptions, methods
and tools reversible if societal norms change? The substantial qualitative data (cf. field
data 0S1-0521) I have collected on pricing methods — mostly from the perspective of indi-
vidual airlines — could be complemented and extended to cover such — more holistic —
views on these, from a societal perspective, highly relevant questions (cf. Majchrzak and
Markus 2013).

8.4.4 Implications for Research on Standard Diffusion

Turning in conclusion to broader theoretical implications, my results show that not only
size matters for the success of the new standard but also the extent to which TATA is able
to utilize the network structure in airline distribution with its close-knit interactions
among carriers. Along with Afuah (2013), Weitzel et al.'s (2006), and Draisbach et al.'s
(2013), I emphasized the implications of network topologies in explaining population-level
diffusion outcomes. More broadly, my work is part of a maturing and fruitful stream of
research that explains, from a network perspective, how individual level-interactions affect
the diffusion of standards and innovations (Aral et al. 2009; Borgatti et al. 2009; Borgatti
2006; Jackson 2008b; Valente 2012). I believe that future research on standard diffusion
will profit from going beyond agent-population level interactions by spending more time
connecting individual agent interaction patterns with segment- and population level-
outcomes.
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My contribution over Weitzel et al. (2006) is as follows. Firstly, I explained individual
level-adoption as a discrete, positional process in contrast to assuming simultaneous deci-
sion-making (or expectation building) by all agents in the network at the same time. New
standards take time to spread and it is contingent on the position where a triggering event
takes place if and when domino effects hit a particular agent. Hence, I can fit empirically
observable time-dependent adoption dynamics such as the S-shaped curving of the fraction
of adopters as a function of time as well as the non-spread of innovations. Secondly, I ex-
amined the implications of several previously unexplored theoretical (i.e. preferential at-
tachment, decentralized and centralized structures) as well as one empirical network topol-
ogy on standard diffusion outcomes. Interesting simulation results such as an exponential
increase of the timing at which a tipping point occurs could be linked directly to a prefer-
ential attachment structure of a network. Thirdly, I demonstrated that interventions
should not only consider individual agent’s characteristics — i.e. an agent’s size and posi-
tional importance — but also that these characteristics may vary across different groups of
agents. Being small (in size and degree) in an alliance differed significantly from being
small in another group. Fourthly, I incorporated different non-random intervention strate-
gies, i.e. a group detection algorithm for maximum cliques, and showed that standardiza-

tion success may be contingent on the chosen intervention strategy.

8.4.5 Implications for Research on Path Breaking

Regarding intervention strategies for deliberately breaking (inter-)organizational paths
(Sydow et al. 2009), my results point to a possible two-step procedure to create new paths.
In a first step, I suggest identifying a maximum clique of connected players. As a second
step, one takes measures that this cohesive group of players adopts collectively. I showed
that this form of collective action could outperform random interventions in a preferential
attachment-type network. Furthermore, the maximum clique strategy performed akin to
the switch of much larger subnetworks. My approach had the benefit of requiring no addi-
tional knowledge on the network other than its structure. However, my research also
showed that these interventions must be fine-tuned: if one “attacks” random central (high-
degree) players in an early stage, cascades often run dry as central (high-degree) players in
a core-periphery network tend to connect to other central (high-degree) players, resulting
in prevailing network effects that are hard to overcome. A team of several smaller and less
central players will often be more ready to switch a new standard. Consider the example of
Lufthansa as depicted in Figure 45. Several important players in the airline industry will
influence Lufthansa’s choice and create inertial forces to stick to established standard.
Switching Lufthansa alone will thus be of little value. Airlines without these strong extents
of interdependencies will have more room to maneuver. They are the first that could
switch. Not until a sufficient base has been built in the periphery, will the core jump on
the bandwagon (cf. Figure 54). I further emphasized the effect of agent heterogeneity on
the success of creating a new path. Findings for size-adjusted thresholds suggested that
average adoption thresholds can be lowered if some (small) agents thresholds are reduced
even when others (large) players thresholds increase. This was due to the fact that initial
momentum can be used to tip a core of large, densely-connected players. This is consistent
with prior work on standardization processes that argues that standards often have to
grow in a separate niche (Hanseth 2000:68), but adds to our understanding on when and
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how the thriving standard spills over from its self-contained compartment to a larger group

of adopters.

8.4.6 Practical Implications

Practical implications for intervention strategies to “get the bandwagon rolling” are two-
fold: first, my results suggest that IATA may foster the diffusion of the new standard most
efficiently by mobilizing a maximum clique in the dense core that unleashes the necessary
network effects and lets the standard gain momentum. I found that the codeshare network
exhibits a core-periphery structure that was organized around several hubs demarked by
the alliances (cf. Figure 43), restricting core members most severely. Targeted network
interventions are hence needed that tip sets of key players collectively (cf. Valente
2012:50). Considering the results I have obtained from different intervention strategies (cf.
Figure 64), my analysis suggests that a focus of resources onto a maximum clique in the

core could significantly ease the overall transformation towards the new standard.

Second, my analysis suggests that IATA relieves peripheral airlines — necessary for the
standard to gain additional momentum — most efficiently by lowering individual level
adoption thresholds. Peripheral airlines are the first that could switch as they are least
restricted by network effects giving them a privileged position. A limited size, different
business model, or technology strategy and hence resource constraints of these more or less
isolated carriers may, however, prevent them doing so (cf. Valente 1995; Valente 2012). I
found an exponential decrease in the number of necessary interventions with decreases in
individual level thresholds due to the “power law” structure of the network (cf. Figure
53a). By facilitating technological process and especially conversion technologies, such as
efficient fare quote engines, TATA can thus spur peripheral carriers’ adoption more effi-
ciently.
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Part IV

Conclusion
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Chapter 9

Limitations, Implications, and Directions

9.1 Summary of Findings

My first research question aimed to explore how a system’s growth logic affects path build-
ing. I have suggested a model of growing networks that has distinguished two different
network influences linking individual agents’ interactions with network-wide outcomes:
network-size dependent effects (traditionally, network effects) — increasing network influ-
ences as a function of the network size — and spillover effects — influences to take action
(e.g. to adopt a standard) as a function of the extent to which an agent’s direct interaction

partners have done so. Modeling and agent-based simulations produced valuable insights:

= [ have brought to the forefront a not yet sufficiently theorized process — spillover ef-
fects across agents — that can lead to path-dependent outcomes

= Simulation results show that network effects and spillover effects are usefully distin-
guished as having different, non-monotonic effects on diffusion outcomes

* Consistent with seminal work on path dependence (Arthur 1989; David 1985), my
results suggest that network effects will increase a system’s susceptibility to lock-ins
as network influences grow with the network size

» In contrast, spillover effects can make standards increasingly diffuse in segregated
parts of a system. New elements are added to the system in nontrivial ways stabiliz-
ing the current configuration (e.g. heterogeneity of technologies in a system), not un-
like the Polya Process

My second research question explored (a) the impact of interaction patterns for standard
diffusion and (b) possibilities for targeted network interventions. Consistent with a tradi-
tion of innovation diffusion that distinguishes spontaneous and imitation-driven diffusion
processes, I have build a model that conceptualizes the adoption of a new standard as a
contagious process that potentially spills over via ‘domino effects’ rippling through the

network. Some interesting insights emerged:

= The diffusion of a new standard is a time-dependent process; it is contingent on the
position where triggering events occur whether and to what extent ‘domino effects’
arise

* In a network with a “power law” structure, the diffusion of a new standard may be
very sensitive to changes in adoption thresholds

= Agent heterogeneity can matter to a different extent across groups, e.g. being small
in an alliance may be very different from being small in another group

=  Targeted network interventions, i.e. group detection algorithms, can outperform

random interventions

Beyond the immediate implications for research on IT infrastructure path dependence, as a
byproduct, T have developed a flexible simulator — consisting of a platform with several
adaptable models — that can be used by other researchers.
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9.2 Limits to Generality

Along with Davis et al. (2007), Gilbert and Troitzsch (2010), Vergne and Durand (2010),
and Squazzoni (2012), I contend the value of agent-based modeling for theory building in
the social sciences in general and for research on complex IT infrastructures in (inter-)
organizational settings in particular. Modeling is, however, always a task of abstraction —
not unlike drawing a cartoon — that is in danger of missing or mischaracterizing important
properties, links, and dynamics of a particular system (cf. Holland 1995). Consistent with a
long empirical tradition of scientific discovery that goes as far back as Popper's (1959)
notion of falsifiability, I believe that theories must stand the test of reality to prove their
usefulness. As suggested by Law (2007) and Gilbert and Troitzsch (2010), I have con-
structed my models closely to be intertwined between existing theories — top down — and
empirical problems — bottom up — by interviewing domain experts and collecting data from
the field. I have aimed to validate the models by linking them theoretically with existing
models and, where necessary, arguing for the appropriateness of my assumptions. However,
much more could be done to validate my results externally; a salient limitation shared

with many simulation studies.

9.3 Theoretical and Practical Implications

9.3.1 Research on Path Dependence and Path Breaking

My results contribute to a recent stream of research that has started to categorize process-
es and mechanisms that potentially lead to path-dependent outcomes (Sydow et al. 2009).
Based on the examples of global airline distribution IT and organizational IT infrastruc-
tures, I have conceptualized a spillover process in which each new element can reinforce
the current configuration, which makes a system increasingly inert. Depending on the de-
gree of interaction, this process potentially increases the probability that a system will lock
in to one standard — if the degree of interaction is sufficiently high to allow action patterns
to spill over from one part of the network to another — or segregated islands of shared

technologies will arise.

In connection to that point, I emphasize that path dependence researchers can easily fall
into the trap of assuming that every complementarity, mutual interdependency or spillover
effect will result in a path-dependent trajectory in which the system locks in to a single
standard, technology, or action pattern. This misperception can arise as network effects
and spillover effects cannot be distinguished in situations where a set of fully coupled ac-
tors influence each other. In fact, this assumption — founded upon urn-type probability
models — is a theoretical core of seminal work on path dependence by Arthur (1989) and
remained unchallenged for a long time. Ironically, many important works on path depend-
ence in other domains, such as organizational path dependence (Schreyogg and Sydow
2011; Sydow et al. 2009), or path-dependent IT infrastructures (Ciborra et al. 2000;
Hanseth 2002) have built their theorizing on this restrictive assumption. The failure to
account for real-world diffusion patterns such as islands of shared technology, local
equilibria in close-knit circles of interaction partners, and the growth of heterogeneous hub-
and-spoke structures lets me believe that my approach is a necessary recasting that hope-
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fully guides path dependence researcher to pay more attention to the way in which differ-

ent elements of a system are coupled.

I further explored possibilities for path breaking. I have linked path dependence theory
with a recent and fruitful stream of research on targeted network interventions (Valente
2012). Consistent with a tradition of path dependence research that construes path break-
ing as contingent on the effectiveness of external shocks (Vergne and Durand 2010), I have
suggested a two-step procedure for path breaking based upon non-random network inter-
vention strategies. I believe that my approach is a good starting point for further research
on path breaking as it suggests to move on to the question of which interventions will be
most effective in overcoming prevailing network effects. My results point to the interesting
theoretical possibility that particular intervention strategies can be more effective than
others in switching a system from one state (e.g. standard or action pattern) to another.
Building upon my approach, future researchers can construct and test algorithms that aim

to maximize the effectiveness of path breaking interventions.

9.3.2 Research on Network Models

I now discuss implications of my work along the lines of network formation and standard
diffusion in networks. Firstly, I have presented a new model of growing networks. Few
network formation models have combined non-random, growing networks with strategic
agents selecting technologies based on a cost-benefit analysis (Jackson 2008b). My starting
point was a hybrid random growth model (Jackson and Rogers 2007) where new agents
form links to other nodes by attaching to a certain fraction of agents uniformly at random
and to another fraction as “friends-of-friends”, chasing adjacent links from their random
encounters. My contribution over Jackson and Rogers (2007) is as follows. In addition to
non-proportional, absolute growth, I have added proportional growth as a function of the
network size, which enabled me to discern the consequences of spillover effects and net-
work effects analytically. This is important as it combines two related, but previously un-
connected branches of the literature on networks. Secondly, I have instantiated the model
for Recycle Inc., a case company. In this context, I have added two useful extensions to
network formation models: variances in the degrees of interaction and dropout processes.
This approximates clustering coefficients and giant component sizes better than previous

models.

Furthermore, I have presented a model that describes how standards diffuse in a network
driven by shocks to particular nodes triggering subsequent cascades running through the
network. Building on recent research on network interventions (Valente 2012), my contri-
bution over Elliott et al. (2014) is as follows. I have conceptualized targeted network inter-
ventions by purposefully selecting groups of key players who were expected to maximize
diffusion outcomes. I have applied a group detection algorithm that identifies maximum
cliques and T have demonstrated by the means of simulation that my algorithm could out-
perform random interventions. Furthermore, I have enriched notions of agent heterogenei-
ty by showing that behavior (adoption of standards) may not only be contingent on the
individual agent’s characteristics (e.g. size) but also its group membership (i.e. alliance

membership). I believe this result is important as it demonstrates a need for research on
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how structural equivalence — the exposure of a group to a common “shock” — interacts
with global diffusion outcomes (cf. Borgatti and Everett 1992; Burt 1987).

9.3.3 Research on Standard Diffusion and Information Infrastructures

I embraced a perspective of information infrastructure that centrally figures path depend-
encies in IT infrastructures, defined as a shared, evolving, open, standardized, and hetero-
geneous installed base (Hanseth 2002; Henningsson and Hanseth 2011). My work contrib-
utes to a maturing research stream on standard diffusion and adoption in information in-
frastructures (Hanseth 2000; Monteiro et al. 2013; Weitzel et al. 2006). My contribution to
this literature is two-fold. First, prior work suggests that the installed base is most im-
portant to understand lock-ins in I'T infrastructures as bandwagon effects, greater credibil-
ity of standards, and complementary products and services often reinforce one standard’s
dominance and lock out alternative solutions. I conclude that the size of the installed base
is only one factor in a complex array of variables that explain IT infrastructure heteroge-
neity. My results demonstrate that not all IT infrastructures are equally susceptible to
lock-ins and, dependent on the growth logic of a system, path dependence can emerge not
only on a global scale but also in segments and clusters of a network; segmented regimes —
with multiple islands of shared technologies — are particularly important if we acknowledge
that processes to adopt a standard are not only driven by — network size-dependent — net-
work effects but also by direct spillover effects between coupled elements of a system. This
micro-foundation helps to illuminate the puzzling variance in many important cases of
path dependence. SAP landscapes in companies often co-exist with many other legacy sys-
tems and companies spend significant effort to consolidate their fragmented IT infrastruc-
tures (Engels et al. 2008; Masak 2006b). A strong community of Linux users thrives local-
ly, despite a predominant Microsoft Windows path (Dobusch 2008, 2010; Shapiro and
Varian 2008). Path dependence is inherently local. Paths decompose to agglomeration dy-
namics around hubs, which remains puzzling without a model that takes into account dif-
ferent growth logics in explaining the heterogeneity of standardization outcomes.

Secondly, the literature on information infrastructures suggests that “cultivation” — setting
the right boundary conditions — instead of control is a necessary recasting when accounting
for limited managerial variety to govern the evolution of IT infrastructures (Hanseth
2002). My research on booking class inertia adds an extreme case to this literature that

substantiates limited managerial control in complex IT infrastructures.

Related to the previous point, my results on system embeddedness and continuance inertia
suggest that I'T managers may be better of focusing resources on critical IT systems with
respect to their embeddedness in the overall IT architecture. These system are often cen-
tral to support a company’s business processes but in case of capability shortcomings or
discontinued support, they will be hard to abandon as they are connected to a large num-
ber of other systems or span between different parts of an IT architecture. Changes to
these systems ripple through the entire architecture. Drawing on measures from network
analysis, I suggested visualizations and measures from network analysis (i.e., degree and
betweeness centrality) to identify these important systems. A managerial dashboard solu-
tion could build up on my approach.
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9.3.4 Research and Practice in Revenue Management and Airline Distribution
IT

Increasingly complex IT systems are a precondition to performing advanced airline pricing
processes. The booking class standard has enabled a long, successful tradition of airline
revenue management that manifests in advanced airline pricing processes and systems.
Consistent with Ciborra et al. (2000), Masak (2006b), and Pavlou and El Sawy (2010), my
research suggests that constant enhancements, improvisation, and workarounds are vital in
complex IT infrastructural arrangements to create such IT-enabled capabilities. However,
my research has also substantiated — consistent with Bartke (2013) — that the pervasive
use of booking classes in today’s airline distribution and pricing systems creates inertia
when moving to newer pricing methods. As switching costs build up over extended time
periods, changes to the overall system are increasingly out of reach. Tiny standards can
travel long paths. Revenue management approaches presuming that existing systems and
practices can be changed on-the-fly — e.g. to account for an indefinite number of price
points — fall short. This challenges the rational underpinning of many revenue management
approaches and dynamic pricing methods (refer to Talluri and van Ryzin 2005; Levin et al.

2009).

I hope that my research can impact managerial thinking and help to avoid some of the
pitfalls that can arise when technical standards become a core pattern for companies’ ca-
pabilities. I suggest reflexivity, mindfulness, and, most importantly, models that expatiate
assumptions and allow the consideration of nonlinear dynamics and interaction patterns in

complex systems.

In addition, my research illustrated that airline pricing is increasingly interorganizational,
performed by various actors that span firm boundaries. Drawing on the example of book-
ing class-usage in codeshares, my research has pointed to the fact that pressure to conform,
peer influences, and learning from the experiences of others are important mechanisms to
understand the processes that determine whether or not standards will spill over from one
organization to another. My research suggests that network effects and spillover effects
created a situation in which the booking class standard could become one of the key path
dependencies in the industry. Illustrated by the example of SWISS, my findings also sug-
gest that the improvisational capabilities of particular firms to work around the limitations
of an inflexible standard can be undermined by pressures to conform in a larger web of

influences from other organizations, vendors, and distribution partners.

Furthermore, my results lead me to suspect that a new distribution standard such as the
NDC will not replace the booking class standard in the short or middle term. Taking into
account the shared, heterogeneous, large-scale character of IT infrastructural arrangements
(Ciborra et al. 2000; Hanseth and Lyytinen 2004; Henningsson and Hanseth 2011), my
research suggests that a new standard will come to extend and complement existing airline
distribution infrastructures. My results show that booking classes are inscribed and buried
deeply within existing airline distribution IT infrastructures. Thus, the questions of wheth-
er the current standardization initiative by airline industry association TATA will succeed
departs from the question of whether the booking class path can be broken. Both problem
areas are intertwined but only to the extent that any new distribution standard in the
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airline industry will build upon, extend, and work around limitations of existing standards

and infrastructures.

9.4 Agenda for Future Research

In addition to the research avenues I have outlined at the end of every main chapter, I

emphasize three overarching directions to proceed further.

First, it seems promising to replicate my approach in other settings, especially in those in
which IT infrastructure complexity built up over extended periods and seems to be set in
stone. The banking industry, the insurance industry, the railway industry, and the tele-
communication industry are excellent examples that let me believe that my work is by far
not limited to the specific application domain of airline I'T distribution standards. Most
closely, in the railway industry, technical standards have also been inscribed in sales sys-
tems and reinforced over prolonged periods. I see apparent similarities with respect to
problems of transforming business-critical systems to the internet age. In the banking in-
dustry, data standards for bank account transactions such as Deutsche Bank’s “branch-
account number” are a similar legacy from the early days of automation that today re-
stricts the firm’s scope of action. In the insurance industry, product definition in inventory
systems also follows a specific logic that causes serious problems in adapting business pro-
cesses and strategies to disrupted environments. These examples illustrate the need for
further research on the organizational impacts of technical path dependencies. I see my
approach as a prelude to a larger set of models that centrally figure interdependencies
among elements in complex systems to investigate evolutionary processes in IT landscapes
— on the individual, segment, and systemic level.

Second, I applied a network perspective to multiple levels of analysis in I'T infrastructure
contexts. I construed a company’s IT architecture as a network in order to investigate
architectural embeddedness, continuance inertia and evolution processes. I further con-
structed a model that examines standard diffusion in a network of organizations linked
through, necessarily IT-based, codeshares. I believe agent-based models have the potential
to combine multiple levels into a unified, multi-level model of IT infrastructure path de-
pendence.

Finally, the increasing availability of large-scale data on information infrastructures ena-
bles novel investigations of IT infrastructure evolution processes. Our understanding of
stabilizing and de-stabilizing processes within these infrastructures is still limited and held
back by linear theories (Henningsson and Hanseth 2011). It is therefore promising to draw
on these new data sets to foster original insights with regards to IT infrastructure inertia
and change.
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Supplementary Materials

Figures S1 to S8
Tables S1 to S22

Field data as listed in Table S2 to Table S4 is available upon request from the author

Online Supplements

movie oS1 A demonstration of the hybrid random growth model featuring var-

ious start networks and new growth logics

movie 052 A movie of the contagion model featuring empirical grounding of
the underlying network structures and theoretical grounding with

respect to the Roger’s model of innovation diffusion

movie 053 A movie of different intervention strategies and how the subse-

quent cascades unfold in the codeshare network

code example 0S1 Marchov chain model

code example 052 Polya Process and Balancing Process model

code example 0S3 Network growth model

code example 0S4 Compact network growth model (Recycle Inc.)

code example 0S5 Contagion model

data set oSl Codeshare network, adjacency matrix A

data set 0S2 Information systems (IS) network, adjacency matrix B
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Figure S1

Availability display with booking classes. Source: Memo from email by air-
line distribution expert (refer to 0S39)

THU 22AUG13 LONDON AREA /FRANKFURT 22/0000 22/2359 G*GAL

1 LHR FRA 0625 0905 LH 921 J9 C5 D9 Z7 P9 Y3 BS M3 U3 H9#320C*E

2 LHR FRA 0700 0945 @AB5012 ¥9 B9 HI K9 M3 L3 V3 59 N9 QS#767C'E
3 LHR FRA 0700 0945 BA 902 JS C9 DS R9 19 Y3 BS H3 K9 MS#767C*E

4 LHR FRA 07150955 LH 923 J9 C9 DS Z9 P9 Y3 BS M3 U3 HS9#321C*E

9 LCY FRA 0745 1015 @LH 927 J5 C3 D8 Z7 P6 Y39 B9 M3 U9 HS#ES0C*E
6 LCY FRA 0745 1015 @NHG234 J4 C4 D4 74 P4 Y4 B4 M4 U4 H4#ESOC'E
7 LCY FRA 0805 1035 @AB5088 Y9 B9 H9 K9 M9 L9 V9 59 N9 QS#E70CE
8 LCY FRA 0805 1035 @BAB732 J9 C5 D9 R9 19 Y9 BS HI K9 MS#ETOC'E

The figure depicts a neutral display screen for a flight connection from London to Frank-
furt from the Galileo GDS. The first line, on the top of the figure, shows the connection.
After that, the further lines denote information in the following order: result number, de-
parture airport, arrival airport, departure time, arrival time, flight number, booking class

and availability of that class

178



Figure S2

Network effects for airline platforms for distribution. Source

porate presentation (refer to 0522)

Our distribution customers benefit from
powerful network effects

Amadeus
Over 700
Airlines,
250,000 hotels
inventory+
others

More travel
providers on
the platform

i [ amapeus

Your technology partner

Better products

More attractive
to travel
providers

s S .

More attractive
to travel
agencies

*, More

% investment
e iniT

.
.

More travel
agency
subscribers

: Amadeus cor-

.
<" Almost39% ‘.
global market
share of travel

agency air bookings,
representing 477
. million air and .
e, non-air bookings in 2
% 2012 .

dMADEUS

The figure depicts a slide from a corporate presentation of Amadeus in 2013.
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Figure S3

Development of booking class usage of selected airlines from 1983 to 1995.
Source: Lehrer (1997:58)

The figure pinpoints the fact that each new generation of revenue management technology
used booking classes more and more intensively. As shown in the figure, over the period
from 1983 to 1995 the number of booking classes used at Lufthansa (LH) increased from
three to fourteen. For British Airways (BA) it increased from three to fourteen. For Air

France (AF), it increased from three to seven.

Booking Classes

30 1

25 -

20 4 —— BA (pot)
-—BA (act)

15 A —-—LH
——AF

10 ~

_/_
5 - 7 e

1983 1985 1987 1989 1991 1993 1995

Sources: For BA: British Airways News, 13 Sept 1985 and interviews; for AF:
Bordes-Pages (1994b); for LH: Fremdenverkehrswirtschaft Intern, 4 July 1989;
Der Lufthanseat, 19 June 1992 and 22 Jan 1993

Today, a carrier such as SWISS uses almost each booking class available as shown in the
subsequent table (some booking classes are reserved for special purposes). The table shows
the booking class hierarchy for SWISS intercontinental flights 2011 (refer to archival data
0S37)

First Compartment Business Compartment Economy Compartment

F A O JCDZP YBMUHQVWSTETLK
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Figure S4

Effects of varying and degrees of interaction (m) and degrees of preferentiali-
ty (@) on diversity (D)

2.0

Diversity (D)

-
m18-20
1.8 e m16-18
g ml4a-16
£ 16 =12-14
[
2 14 m10-12
1.2 '
’ 07
10- 0.5
Degree of
preferentiality (o)
6 0
Degree of interaction (m) 7
Diversity"* Degree of interaction (m)
Low Medium High
m=1 m =2 m=3 m = m=>5 m = m=7
Preferen- Mean | Std. | Mean | Std. | Mean | Std. | Mean | Std. | Mean | Std. | Mean | Std. | Mean | Std.
tiality dev. dev. dev. dev. dev. dev. dev.
preferential
(a=0) 1.58| 037 148|035| 1.09] 0.20| 1.12]024| 1.02|0.08| 1.03]0.11] 1.01]0.02
- 2= 0.3 1.59 0.34 1.59 | 0.33 1.49 0.37 1.54 | 0.34 1.12] 0.23 1.16 | 0.26 1.09 | 0.22
:2 a=0.5 1.53 0.35 1.58 | 0.34 1.26 0.34 1.27 | 0.33 1.06 | 0.13 1.07] 0.21 1.01 ] 0.03
o =0.7 1.54 0.34 1.55 | 0.32 1.32 0.34 1.15 | 0.28 1.04]0.14 1.05] 0.14 1.01] 0.02
random
(a=1) 1.58| 032] 157]038| 1.08] 0.19| 1.09]020| 1.03|0.11| 1.02]0.04| 1.01]0.02
! Refer to Table S7, Exp. 13 for the experimental setup
? Average results for 100 simulation runs
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Figure S5

Effects of varying and degrees of interaction (m) and degrees of preferentiali-
ty (@) on homogeneity (H)

1.00
0.95
Homogeneity (H)
5;. 0.90 m0.95-1.00
.‘é M0.90-0.95
én 9 0.85-0.90
=° 0.85 M0.80-0.85
H0.75-0.80
0.80 1.00
0.70
0.75 Degree of
preferentiality (o)
6
7
Degree of interaction (m)
Homogeneity
(H)"? Degree of interaction (m)
Low Medium High
m=1 m =2 m=3 m =4 m =5 m =6 m=7
Preferen- Mean | Std. | Mean | Std. | Mean | Std. | Mean | Std. | Mean | Std. | Mean | Std. | Mean | Std.
tiality dev. dev. dev. dev. dev. dev. dev.
preferential
a=20 1.00| 0.00| 0.86| 0.09| 0.95| 0.06| 0.93| 0.09| 0.97[0.04| 0.97|0.05| 0.98| 0.02
- oa=0.3 1.00| 0.00| 1.00{ 0.00| 1.00| 0.00| 0.99| 0.01| 0.94|0.08| 0.93]0.09| 0.95| 0.07
=
:g, a=0.5 1.00| 0.01| 1.00{ 0.00| 091| 0.09| 0.90| 0.09| 0.96|0.07| 0.96]|0.07| 0.98| 0.03
oa=0.7 1.00| 0.00| 1.00{ 0.00| 091| 0.07| 0.93| 0.09| 097|0.06| 0.97]|0.06| 0.99| 0.02
random
a=1 1.00| 0.00| 0.84| 0.09| 0.96| 0.06| 0.95| 0.08 0.98[0.05| 0.98|0.03| 0.99| 0.02

! Refer to Table S7, Exp

. 13 for the experimental setup

2 . .
Average results for 100 simulation runs
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Figure S6

Effects of varying network influence strengths (f) and degrees of interaction

(m) on diversity (D)

2.00
1.80
. Diversity (D)
a
> 160 m 1.80-2.00
§ m 1.60-1.80
o 140 m1.40-1.60
W1.20-1.40
1.20
m1.00-1.20
1.00
0.3
0.5 3
Network influence 2 5 ]
strength (B) ! egree o
interaction (m)
Diversity"? Degree of interaction (m)
Low Medium High
m=1 m=2 m=3 m=4 m=25 m==6 m=7
Network Mean | Std. | Mean | Std. | Mean | Std. | Mean | Std. | Mean | Std. | Mean | Std. | Mean | Std.
influence dev. dev. dev. dev. dev. dev. dev.
strength
B=0 2.00f 0.00| 2.00| 0.00f 2.00| 0.00| 2.00| 0.00| 2.00| 0.00f 2.00|{ 0.00| 2.00| 0.00
=03 2.00f 0.00| 2.00| 0.00f 2.00( 0.00| 2.00| 0.00{ 2.00| 0.00f 2.00| 0.00| 2.00| 0.00
=05 1.55| 033 1.59| 034 197 0.06| 196| 0.09| 1.61| 0.38| 1.61| 0.34| 1.80| 0.37
B=0.7 1.56| 0.31| 1.57| 0.35| 1.00| 0.00| 1.00| 0.00f 1.00|f 0.00| 1.00| 0.00| 1.00| 0.00
=1 1.57| 033 1.63| 0.32| 1.00| 0.00| 1.00| 0.00f 1.00|f 0.00 1.00| 0.00| 1.00| 0.00

! Refer to Table S7, Exp. 11 for the experimental setup

? Average results for 100 simulation runs
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Figure S7
Degree distribution of codeshare matrix A on log-log plot
Log (degree)

0 T T T T T T T T T |
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Log (relative frequency)

R2 = 0.789

00 Q@GO

-2.5 -

I eliminated nodes from the data set that did not have any links (12 nodes out of 213
nodes). I then plotted relative frequency as a function of relative degree on a log-log plot
as suggested by Jackson (2008a). The figure also shows that a linear regression model is
able to explain 78.9 percent of the variance. This result reinforces my presumption that

the network has a preferential attachment structure.
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Figure S8

Extended model of airline interactions considering GDS, aggregators, and
travel agents. Source: own investigation (based on sketch by RM expert in
0513)

Airlines Alliance IR
A 2

GDS/
Aggregators
Travel
Agents
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Table S1

Equation listing

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
4.1
4.2
4.3
4.4
4.5
4.6
5.1
6.1
6.2
6.3

Dynamic process

State-dependent process

Path-dependent process

Basic standardization problem

Ex-post standardization payoff

Standardization payoff with adaptive expectations
Multiple-standard payoff function

Bass model

Agent payoff function in growth model
Herfindahl index

Diversity index

Network-adjusted homogeneity for individual agent
Network-adjusted homogeneity

Individual misfits

Payoff function in Polya Process

Degree centrality

Betweeness centrality

Eigenvector centrality
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Table S2

Airline distribution IT: expert interviews and observational data

Source Dur.| Date [Firm' Inter- Content Internal Reference to
viewee(s) reference field data

Interview |0.5h | Aug 12 |AB | RM expert Preliminary talk Interview-00001 oS1
AB-IntAZ

Interview |1.0h |Aug 12 |AB |RM expert | GDS, booking clas- Interview-00002 052
ses, RM AB-IntAZ

Interview |2.0h | Oct 12 |AB |IT director | Airline distribution Interview-00003 053
IT AB-IntAZ

Interview |2.0h |Jun 13 |AB | Data analyst | Customer loyalty Interview-00004 054
AB-IntAZ

Public talk | 1.0h | Nov 12 |AB | Pricing Airline pricing, Archiv-00004 0S5
manager booking classes AB-IntAZ

Oberser- 2d Jan 12 |AB | RM expert, |Revenue manage- Obs-00011 056
vation 8 users ment systems AB-IntAZ

Interview |1.0h |Sep 12 |LX |RM expert |GDS, dynamic pric- | Interview-00031 0S7
ing, booking classes LX-IntAZ

Workshop |[1.5h |Mar 13 |LX |2 RM ex- GDS, RM, booking Interview-00032 0S8
perts classes LX-IntAZ

Workshop |[1.0h |Mar 13 |LX |2 RM ex- GDS, RM, booking Interview-00033 059
perts classes LX-IntAZ

Workshop |[1.5h |Mar 13 |LX |2 RM ex- GDS, RM, booking Interview-00034 0S10
perts classes LX-IntAZ

Phone 1.0h |May 13 |LX |RM expert |New Distribution Interview-00035 oS11
interview Capability LX-IntAZ

Workshop |2.0h |Aug 13 |LX |2 RM ex- Fare filing, booking | Interview-00036 0S12
perts classes LX-IntAZ

Phone 1.5h | Dec 13 |LX |2 RM ex- Standard diffusion in | Interview-00037 0513
interview perts growing networks LX-IntAZ

Phone 1.5h [Apr 14 |LX |RM expert Model validation Interview-00038 0S14
interview LX-IntAZ

Public talk |1.5h |[Jul 12 | O? Manager Lufthansa e-com- Archiv-00021 oS15
e-commerce | merce and processes LH-IntAZ

Oberser- 0.5d [Jul 12 | O* |4 airline RM consortium Archiv-00050 0516
vation RM experts XX-IntAZ

Interview 1.0h |Dec 12 |O? RM expert GDS, alliances, book- | Interview-00051 oS17
ing classes XX-IntAZ

Interview |2.0h [Jun 13 |AM | Manager Amadeus History Interview-00041 0518
Quality Am-IntAZ
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Interview |2.0h [Jun 13 |AM | Manager Amadeus History Interivew-00042 0S19
Quality Am-IntAZ

Interview |2.0h [Jul 13 |AM | Manager Amadeus architec- Interivew-00043 0520
Quality ture, booking classes Am-IntAZ

Email In- |- Jul 13 |O? | Aviation Embeddednesss of Interview-00052 0521

terview expert booking classes XX-IntAZ

' Short name or IATA code

2 Other indicates sources outside the companies directly tackled in the in-depth cases
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Table

S3

Airline distribution IT: archival data sources

Source Date | Firm' Type Pages Content Internal Reference to
collect- reference field data
ed

Archival | Feb 13 | AM Presentation 30 | Corporate Presen- Archiv-00200 0522
tation 2013 AM-IntAZ

Archival | Mar 13 | AM Report 200 | Amadeus Annual Re- | Archiv-00204 0523
port 2012 AM-IntAZ

Archival | Jun 13 | AM Report 133 | Strategy Intelligence | Archiv-00205 0524
Dashboard 2013 AM-IntAZ

Archival | Dec 12 | AM Brochure 8 Amadeus Data Center | Archiv-00206 0525
Infrastructure AM-IntAZ

Archival | Jun 13 | AB Document 1 Buchungsklassen Archiv-00234 0526
Bonusmeilengutschrift | AM-IntAZ

Archival | Jan 13 | AB Website 1 Buchungsklassen Bo- | Archiv-00235 0527
nus Meilen AB AM-IntAZ

Archival | Dec 12 | AB Document 4 Konzerniibergreifendes | Archiv-00240 0528
Informationssystem AB-IntAZ

Archival | Dec 12 | O? Memo 1 Background talk Archiv-00022 0529
LH-IntAZ

Archival |Sep 12 | O? Website 1 Meilen sammeln beim | Archiv-00252 0530
Fliegen LH-IntAZ

Archival | Dec 12 |LX Email memo 1 RM approach, booking | Archiv-00260 0531
classes LX-IntAZ

Archival | May 13 | LX Email memo 1 Memo revenue man- Archiv-00261 0532
agement box LX-IntAZ

Archival | Aug 08 |LX Document 21 | SWISS Preferred Fare | Archiv-00265 0533
Modell LX-IntAZ

Archival | Aug 13 |LX Presentation 15 | Dynamic Pricing and | Archiv-00267 0534
Future Distribution LX-IntAZ

Archival |Jul 13 |LX Email memo 1 Preliminary talk Archiv-00270 0535
SWISS LX-IntAZ

Archival | Jul 13 | LX SWISS 1 SWISS vereinfacht Archiv-00272 0536
Magazine Gruppenbuchungen LX-IntAZ

Archival | Jun 13 |LX SWISS 1 SWISS Archiv-00273 0537
Webseite Flugtarifkategorien LX-IntAZ

Archival | Dec 13 | LX Document 1 SWISS Scheme Airline | Archiv-00274 0538
Industry Actors LX-IntAZ

Archival | Apr 13 | O? Document 1 Neutral display screen | Archiv-00303 0539
from Galileo XX-IntAZ

Archival |Nov 13 | O? Magazine 1 e-interface press an- Archiv-00306 0540
nouncement XX-IntAZ

! Short name or IATA code

? Other indicates sources outside the companies directly tackled in the in-depth cases
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Table S4

Recycle Inc.: interviews, observational and archival data sources

Source of | Length | Date Inter- Content Internal Reference to
data viewee(s) reference field data
Interview | 0.5h Dec | IT manager Preliminary talk Interview-00001 0541
2011 AL-IntAZ
Interview | 1.5h Jan 2 IT em- IT strategy Recycle Inc. | Interview-00002 0542
2012 ployees waste operations AL-IntAZ
Interview | 2.5h Jan 31T em- Recyclix Interview-00003 0543
2012 ployees AL-IntAZ
Interview 1h Mar | IT manager |IT demand management | Interview-00004 0544
2012 waste operations AL-IntAZ
Interview 1.5h Mar | IT manager | IT strategy Recycle Inc. | Interview-00005 0545
2012 waste operations AL-IntAZ
Interview 1.5h Mar Business Business demands; Interview-00006 0546
2012 manager Recyclix AL-IntAZ
Interview 1.5h Mar 2 business Business demands; Interview-00007 0547
2012 manager Recyclix AL-IntAZ
Interview | 0.75h Apr CIO IT strategy and Interview-00008 0548
2012 Recyclix AL-IntAZ
Interview | 0.75h Apr IT project Project management | Interview-00009 0549
2012 manager southern region AL-IntAZ
Interview 1h May Manager Recyclix; demand man- | Interview-00010 0S50
2012 vendor agement; history AL-IntAZ
Interview 1h May | IT business IT landscape waste Interview-00011 0S51
2012 analyst operations; Recyclix AL-IntAZ
Interview 1h Jun Business Recyclix Interview-00012 0552
2012 manager AL-IntAZ
Interview 1h Jun | IT manager | Evaluation of findings | Interview-00013 0553
2012 AL-IntAZ
Direct 4h Jan |IT employee; | Recyclix user training Archiv-00050 0554
observ. 2012 | business user AL-IntAZ
Archival 12 p. 1999 - Article in practitioners Archiv- 0555

journal (1999)

00200AL-IntAZ
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Table S5

Evidence for initial path dependence proposition with respect to booking

class standard from various expert interviews

Quote

Reference

“It will be difficult to depart from the booking class logic as most RM
systems are based on this science. I do not know I do hope some
scientist must be thinking that perhaps the time came to accept a
booking with a passenger value but perhaps I am now voyaging into

Mars”

Aviation expert (refer to
interview 0S21)

“I would almost say, set in stone. Without a real chance to get really
out. Except you make everything entirely different”

Airline expert and former
board member (refer to
memo 0S29)

“With the booking class topic you have hit a complete lock-in target.
For long, we try to get rid of these things, but in the meantime, not
only a technical but also a cognitive lock-in is apparent for almost all
stakeholders”

Revenue management
expert (refer to archival
data 0S35)

“Of course, they are aligned to each other, because this is, I would
say, a decade-long symbiosis of global distribution systems, reserva-
tion systems, and inventory systems. And thus, breaking up this
symbiosis, I mean, what does it help to change my inventory [..] it
still requires a nice, accurate partition building to 26 booking classes
and the associated fares in the background”

Revenue management
expert (refer to interview
052)

“And these global distribution systems, which are first of all the win-
dow to the outside world, provide anyway just an availability display
where I get only the letter of the booking class and a number. What
help would it be if I had an inventory system in the background
where I could configure ‘this should now please cost 113.70°, if this
information is completely lost on the other channels.”

Revenue management
expert (refer to interview
052)

“And this is just the data exchange among airlines; internal to GDS’s
also, in the end; and this was always based on IATA formats. There
are entire lexica, bibles on particular messaging formats, which were
originally based on Telex formats and that are valid until today”

GDS manager and distri-
bution IT expert (refer to
interview 0520)
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Table S6

Usage of booking classes in airline processes in different domains

Activity

Booking class usage

Availability
display

Airlines connecting to a GDS post availabilities for their predetermined booking
classes in a standardized format (Talluri and van Ryzin 2005:523). Codes such as
Flight 31}: Y4 M/ B0 indicate that four seats in class Y and M are available, and
zero seats in class B. While classes Y and M are still ‘open’; B is ‘closed’. An agent
requesting itinerary information receives this information on the availability display
and may perform a booking for a particular class (Talluri and van Ryzin 2005). See

also the availability display example in Figure S1.

Billing &
settlement

Settlement using the TATA Billing & Settlement Plan (BSP) is a monthly process
between IATA-accredited agents and airlines using issued, booking class-based tick-
ets (refer to 0S33 for an example).

Check-in

Most steps from check-in to boarding directly or indirectly draw on the booking
class standard. This includes the check-in process with customer identification, seat-
ing logic, validation of tickets, and regulatory steps, baggage management, standby
management, boarding management by gate agents, and disruption management.

Codesharing
availability
exchange

Codesharing carriers have to resolve practical constraints on multiple levels includ-
ing legal, technical, and organizational (Gerlach 2013:8). Focusing on the technical
level, codesharing incorporates information sharing regarding the state of the other
carrier’s inventory. To achieve this, in many cases carriers map booking classes to
exchange availability data between inventories. Consequently, carriers agree indi-
vidual class mappings with each company they are codesharing with (cf. RM expert
in interview 0S12).

Corporate
customer
contracts

Many airlines have special arrangements with particular corporate customers guar-
anteeing them preferred fares. For several reasons (ensuring availability of these
preferred fares in GDS/travel agent tools, routine development and so on) these

contracts are often associated to booking classes (cf. RM expert in 0S10).

Customer
loyalty

Collecting status and bonus miles either relates to the booking class of a flight di-
rectly (e.g. for Miles & More in the Lufthansa Group where “the amount of bonus
miles is determined by the booking class”, cf. 0S30) or indirectly via the fare level
(e.g. Air Berlin where “the amount of bonus miles is determined by the service lev-
el, the booked fare and for long-haul flights additionally the actual distance”). In
the latter case, fare levels are related to booking classes, e.g. Air Berlin’s FlyFlex
fare is associated to the booking classes Y and B (cf. 0S27). Contingent on the in-
ternal structure of the airline’s inventory, booking classes will be mapped to bonus
mileage classes, which in turn determine the actual status and bonus miles (cf.
0526). Alternatively, one may simply use distance or number of flight segments to
determine status and bonus miles (cf. data analyst in 0S4).

)

“Dynamic’
pricing

Some carriers began controlling their demand on a booking-class level by drawing on
an advanced online process taking into account the fare(s) assigned to a booking
class to determine to potential value of each booking. To achieve this, these airlines
strive for restricting multi-fare usage and rather aim at simple fare structures (Isler
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and D’Souza 2009; see also 0S31, 0S33; RM experts in 0S8, 059, 0S10).

Fare filing

Fares (indicated by a fare code which includes the booking class) — in particular,
public fares — are uploaded to ATPCo, a third party, for publication in the GDS
and subsequently subscribed by other internal and external stakeholders. This is a
time-consuming, lagged, offline process (cf. Polt 2011).

Fare quota-
tion

Using a fare quote engine, the cheapest fare(s) for an origin-and-destination connec-
tion on a specific date in a specific booking class are quoted. Traditionally, the
GDS’ fare quote engine is quoted after the fare has been filed (ex-post), because of
the complexity to build connections and to determine associated fare rules.

Group book-
ings

Similar to individual bookings, tickets are issued for group passengers. However, the
group booking process deviates with respect to discounting, payment and so forth
(cf. 0S3). Carriers either maintain group booking capacity in special booking classes
or assign group passengers to various booking classes ‘on-the-fly’ (RM expert in
0S8)

Inventory
control

The inventory implements the optimal availability function: It offers all products
for which the optimal availability function is true, given the current vector of book-
ings, and prevents the sale of all other products (Bartke 2013:23). Actual inventory
systems will constrain the set of availability functions that can be implemented. In
practice, inventory systems may constrain the number of bookings in a certain
booking class on a particular flight by booking limits or protection limits (Bartke
2013:23). Computerized revenue management systems control whether booking
limits are exceeded and limit availabilities per booking class or fare class according-
ly (Belobaba et al. 2009:88). Early revenue management systems simply partitioned
available seats to set booking limits, while more recent systems use virtual nesting,
providing ‘buckets’ for particular markets or a bid price control (Talluri and van
Ryzin 2005:83-87). Alternatively, they can set a bid-price for each flight and only
make those products available for which the price exceeds the sum of bid-prices of
the flights in the itinerary (Bartke 2013:23). Combinations are also possible and in
practical use. Airlines using bid price controls have to support seamless availability
— using a particular EDIFACT standard — to exchange price and availability data
between GDS and airline’s inventory (Talluri and van Ryzin 2005: 86f. and 603f.).

Individual
bookings

When a ticked is issued, the booking record (passenger name record) is used to
assign a booking class to a ticket (Talluri and van Ryzin 2005).

Pricing

On an operational level, the activity of pricing is concerned with determining fares
on a fare level whereas often multiple fare are assigned to one booking class (cf.
Talluri and van Ryzin 2005; Belobaba et al. 2009; see also RM experts in 0S7 and
0S8).

Rebooking/
cancellations

Many airlines couple their refunds for no-shows or rebooking’s to the booking class
of the customer. In particular, these policies are tied to the fare or fare code (Talluri
and van Ryzin 2005).

Revenue
management
demand
forecasting

Bartke (2013) distinguishes three levels of revenue management demand forecasting:
Simple, market-sensitive, and price-sensitive estimation models. Demand prognosis
(“revenue forecasting”) centers around the idea to estimate expected bookings for a
particular origin and destination pair as a function of the number of expected book-
ings for available booking classes (simple estimation model). Market-sensitive and
price-sensitive estimation models go one step further by making distribution as-
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sumptions incorporating more advanced machine learning techniques (Bartke 2013).
The number of expected bookings is determined by historical booking data as well
as further information. This process is called “unconstraining” (Cleophas 2009:25-
27).

Revenue
management

optimization

Revenue management optimization combines the expected bookings for all availabil-
ities received from the forecaster with a vector of prices of each product. It then
finds the optimal availability that maximizes the function of prices given expected
bookings (Bartke 2013:23). According to Bartke (2013:23), “this conceptually simple
step can usually not be solved to optimality in practice due to the very large num-
ber of potential availability functions”. Consequently, heuristic methods are used in
actual implementations to find an approximate solution to the optimization prob-
lem. The output of the optimizer is the optimal availability function which is sent
to the inventory (Bartke 2013:23).

Revenue
accounting &
integrity

After the flight, issued tickets — including the passenger’s fare and booking class —
are checked for accounting and revenue integrity purposes. In former times, this
process was performed using paper-based tickets but today draws mainly on online
tickets (cf. RM expert in 0S8).

Reporting &
controlling

Based on booking and ticketing information from the inventory, settlement system,
check-in system, availability planning and so forth, airlines such as Air Berlin build
data warehouses for central (revenue-)controlling purposes (cf. document 0S28).
This may either complement or actually compensate for weaknesses in revenue
management solutions (cf. 0S28).
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Table S7

Setup for experiments on growing networks

Initialization Network formation Strategic agents
Exp. Ch. | Internal Name Time Diffusion ng A Growth B q m m, [0 k A% b Vv a, V k
Exp.1 |5.2.1 |Exp 01 absent 500 from hubs 10 - hybrid 0 0 | var. - 0.5 2 2 0 0
Exp.2 [5.2.2 [Exp 02 | Arthur 1,000 unbiased 2 - hybrid 1 1 - 1.0 1.0 2 2 0.1 R:[0.8 0.2]
S:10.2 0.8]
Exp.3 [5.2.2 [Exp 03 | Arthur 1,000 unbiased 2 - hybrid 0.5 1 - 1.0 1.0 2 2 0.1 as above
Exp.4 1522 |Exp 04 | Arthur 1,000 unbiased 2 - hybrid 0.5 1 - 1.0 1.0 2 2 1.0 as above
Exp.5 (522 |Exp 05 | Arthur 1,000 unbiased 2 - hybrid 0.5 1 - 1.0 1.0 2 2 10.0 as above
Exp. 6 (522 |Exp 06 | Arthur 1,000 unbiased 2 - hybrid 0.5 1 - 1.0 1.0 5 5 0.1 R;: [0.8,0.2,..,0.2]
R,: [0.2,0.8,..,0.2]
R;: [0.2,0.2,..,0.8]
Exp. 7 15.23 |[Exp 07 Polya - unbiased 2 - hybrid 1 1 - 1.0 1.0 2 1 1.0 0
Exp.8 [5.3.1 [Exp 12 growth 500 random 35 |03 hybrid 1 0 | var. - var. 2 2 100 0
Exp.9 |5.3.1 [Exp 13 growth 500 random 35 0.3 hybrid 1 1 - var.' 1.0 2 2 100 0
Exp. 10 |5.3.1 |Exp 14 growth 500 random 35 |03 hybrid 1 1 - |var? 1.0 2 2 100 0
Exp. 11 [5.3.3 |Exp 69 |network 1,000 from hubs 10 - hybrid var. | 0 | var. - var. | 2 2 100 R: 0.8 0.2]
effects S:0.2 0.8]
Exp. 12 |5.3.3 |[Exp_ 69 |network 1,000 unbiased 2 - hybrid var. | 0 | var. - var. 2 2 100 R: 0.8 0.2]
effects S:0.2 0.8]
Exp. 13 |5.3.2 |Exp 76 | growth 1,000 from hubs 10 - hybrid 1 0 | var. - var. | 2 2 100 0
"'m,, .. [0 0.1 1] where the ordering in the brackets is start value / increment / end value
> m,, .. [0.025 0.025 0.3] where the ordering in the brackets is start value / increment / end value
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Table S8

Effects of proportional growth (p = 1) on diversity (D)

Diversity (D)"?

Descriptives

Mgy N Mean Std. Std. Error | 95% Confidence Inter- | Minimum | Maxi-
Dev. val for Mean mum
Lower Upper
Bound Bound
0.1 100 1.2172 0.15479 0.01548 1.1865 1.2479 1.04 1.90
0.2 100] 1.1054 0.06967 0.00697 1.0915 1.1192 1.04 1.59
0.3 100] 1.0773 0.02608 0.00261 1.0721 1.0825 1.03 1.19
0.4 100] 1.0775 0.03092 0.00309 1.0714 1.0837 1.03 1.20
0.5 100 1.0694 0.02501 0.00250 1.0644 1.0744 1.03 1.18
Total 500] 1.1094 0.09606 0.00430 1.1009 1.1178 1.03 1.90

' The experimental setup is given in Table S7, Exp. 9

? Average results for 100 simulation runs
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Table S9

Extended results for effects of proportional growth on diversity

Diversity (D)"?

m,, N Mean | Std. Dev. Std. 95% Confidence Interval for Mean | Minimum | Maximum
Error
Lower Bound Upper Bound

0.000 100 | 1.9328 0.08285 0.00829 1.9163 1.9492 1.63 2.00
0.025 100| 1.6494 0.25457 0.02546 1.5989 1.6999 1.14 2.00
0.050 100 | 1.3487 0.20195 0.02020 1.3087 1.3888 1.04 1.91
0.075 100| 1.2106 0.10901| 0.01090 1.1890 1.2322 1.05 1.49
0.100 100| 1.2071 0.14813| 0.01481 1.1777 1.2365 1.05 1.81
0.125 100 | 1.1468 0.09507 | 0.00951 1.1279 1.1657 1.04 1.53
0.150 100 | 1.1308 0.07039| 0.00704 1.1168 1.1448 1.04 1.45
0.175 100 | 1.1217 0.07943| 0.00794 1.1059 1.1375 1.04 1.63
0.200 100 | 1.1030 0.05324| 0.00532 1.0924 1.1135 1.04 1.29
0.225 100 | 1.0971 0.04674| 0.00467 1.0879 1.1064 1.03 1.33
0.250 100 | 1.0960 0.04770| 0.00477 1.0866 1.1055 1.04 1.34
0.275 100 | 1.0821 0.03310| 0.00331 1.0755 1.0887 1.04 1.27
0.300 100| 1.0757 0.02497 0.00250 1.0708 1.0807 1.03 1.16
Total 13001 1.2463 0.27482] 0.00762 1.2313 1.2612 1.03 2.00

' The experimental setup is given in Table S7, Exp. 10

? Average results for 100 simulation runs
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Table S10

Recycle Inc.: empirical degree distributions of information system network

Degree Log(degree) | Frequency | Rel. frequency | Log(rel. frequency)

1 0.000 136 0.642 -0.193
2 0.301 40 0.189 -0.724
3 0.477 16 0.075 -1.122
4 0.602 7 0.033 -1.481
5 0.699 1 0.005 -2.326
6 0.778 3 0.014 -1.849
7 0.845 2 0.009 -2.025
13 1.114 1 0.005 -2.326
18 1.255 2 0.009 -2.025
19 1.279 1 0.005 -2.326
23 1.362 1 0.005 -2.326
24 1.380 2 0.009 -2.025
Sum 212
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Table S11

Recycle Inc.: regression coefficients for quadratic model

The results illustrate the results from a quadratic regression on the degree distribution of one

exemplary run using ‘model 9’. In the next appendix see the complete set of models.

Variable Processing Summary

Variables
Dependent Independent
Log (rel. freq.) Log (degree)
Number of Positive Values 0 12
Number of Zeros 0 1
Number of Negative Values 13 0
Number of Missing Values User-Missing 0 0
System-Missing 1 1

Model Summary and Parameter Estimates
Dependent Variable: Log (rel. freq.)

Equation Model summary Parameter estimates
R Square F dfl df2 Sig. Constant bl b2
Quadratic 0.959 117.509 2 10 0.000 -0.045 -3.248 1 1.111

The independent variable is Log (degree).

O Observed
00 = Quadratic
-850
-
o
-1.004
[t
©
=
o
=]
1,50 -
-2.004
Q o o o
-2.50 T T T T T
0o 25 50 75 1.00 1.25

Log (degree)
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Table S12

A model of system embeddedness and continuance inertia

The goal: model the strength of a system’s continuance inertia (y;) as a function of its

embeddedness in a network of information systems

Sketch of a theoretical model:

Vim0 Nz T Zmom PuX i+ N+ &
where

is a vector of a system’s individual characteristics explaining the internal variance of

inertia (i.e., the number of users, size, and internal complexity)

B is a vector of the strength of influence for each individual characteristic explaining the
external variance of inertia

A is a binary (dummy) variable taking the value of ‘1’ if j is in ¢’s group of neighbors and
‘0’ otherwise, and

... is the strength of the network multiplier (or “spillover effect”) from the “reference

group” of j neighbors
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Table S13 Recycle Inc.: Fit of selected simulated models with network measures; model parameters in right column

Exp. Model Number | Number | Density |Density| Average [ Clust. CC |Average Path| Path Length | Assortativity Distance** start- [ no-initial- link- degree of | variance of | alpha | dropout-| Time limit
of nodes | of links (norm.) | degree |coeff. (CC)[ (norm.) Length (normalized) (normalized) network [ nodes | probability | interaction | interaction rate
Empirical data [ 212,0 234,0 | 0,01000 | 1,000 2,179 0,241 1,000 4,357 1,000 -0,010
21 Model-1* 168,2 248,4 | 0,01767 | 1,767 2,952 0,255 1,059 4,974 1,142 0,0763 0,612 random 5 0,50 1 2 0,70 | 0,0020 200
22 Model-2* 169,4 193,2 | 0,01350 | 1,350 2,278 0,293 1,214 6,589 1,512 0,0377 0,431 random 5 0,50 1 1 0,70 | 0,0020 200
23 M odel-3* 168,6 139,9 | 0,00989 | 0,989 1,658 0,002 0,007 5,318 1,221 -0,0952 1,035 random 5 0,50 1 0 0,70 | 0,0020 200
24 M odel-4* 168,5 3056 | 0,02164 | 2,164 3,624 0,218 0,903 4,182 0,960 0,1026 1,366 random 5 0,50 1 3 0,70 | 0,0020 200
25 Model-5* 167,5 293,0 | 0,02100 | 2,100 3,496 0,318 1,321 4,486 1,030 0,0466 1,314 random 5 0,50 2 1 0,70 | 0,0020 200
26 M odel-6* 168,1 276,1 | 0,01966 | 1,966 3,284 0,686 2,847 4,484 1,029 -0,0695 4,346 random 5 0,50 2 0 0,70 | 0,0020 200
27 M odel-7* 168,3 2452 | 0,01741 | 1,741 2,912 0,134 0,555 4,872 1,118 0,1081 0,761 random 5 0,50 1 2 0,80 | 0,0020 200
28 M odel-8* 168,2 2548 | 0,01811 | 1,811 3,027 0,370 1,536 5,057 1,161 0,0700 0,970 random 5 0,50 1 2 0,60 | 0,0020 200
19 M odel-9* 205,0 205,1 | 0,00981 | 0,981 2,001 0,001 0,005 5,199 1,193 -0,1957 1,028 random 5 0,50 1 0 0,00 | 0,0000 200
19 | Model-10* 205,0 4051 | 0,01937 | 1,937 | 3,95239 0,081 0,337 3,370 0,774 -0,1551 1,369 random 5 0,50 2 0 0,00 | 0,0000 200
19 Model-11* 205,0 205,3 0,00982 | 0,982 2,003 0,002 0,007 5,149 1,182 -0,2009 1,019 random 5 0,50 1 0 0,10 | 0,0000 200
19 | Model-12* 205,0 4009 [ 0,01917 | 1,917 3,911 0,084 0,350 3,359 0,771 -0,1604 1,316 random 5 0,50 2 0 0,10 | 0,0000 200
19 | Model-13* 205,0 204,9 | 0,00980 | 0,980 1,999 0,002 0,008 5,209 1,196 -0,2095 1,023 random 5 0,50 1 0 0,20 | 0,0000 200
19 | Model-14* 205,0 405,0 | 0,01937 | 1,937 3,951 0,077 0,321 3,375 0,775 -0,1550 1,390 random 5 0,50 2 0 0,20 | 0,0000 200
19 | Model-15* 205,0 203,0 | 0,00971 | 0,971 1,980 0,001 0,006 5,217 1,197 -0,2031 1,029 random 5 0,50 1 0 0,30 | 0,0000 200
19 | Model-16* 205,0 404,6 | 0,01935 | 1,935 3,947 0,692 2,870 4,639 1,065 -0,0545 4,374 random 5 0,50 2 0 0,30 | 0,0000 200
19 | Model-17* 205,0 204,9 | 0,00980 | 0,980 1,999 0,002 0,007 5,295 1,215 -0,2045 1,034 random 5 0,50 1 0 0,40 | 0,0000 200
19 Model-18* 205,0 404,9 0,01936 1,936 3,950 0,692 2,870 4,598 1,055 -0,0553 4,378 random 5 0,50 2 0 0,40 | 0,0000 200
19 | Model-19* 205,0 4045 | 0,01934 | 1,934 3,946 0,692 2,870 4,549 1,044 -0,0515 4,372 random 5 0,50 1 0 0,50 | 0,0000 200
19 | Model-20* 205,0 404,9 | 0,01936 | 1,936 3,950 0,693 2,874 4,625 1,062 -0,0545 4,394 random 5 0,50 2 0 0,50 | 0,0000 200
19 | Model-21* 205,0 2053 | 0,00982 | 0,982 2,002 0,003 0,013 7,483 1,717 -0,0274 1,489 random 5 0,50 1 0 0,60 | 0,0000 200
19 | Model-22* 205,0 404,4 | 0,01934 | 1,934 3,946 0,692 2,871 4,620 1,060 -0,0498 4,375 random 5 0,50 2 0 0,60 | 0,0000 200
19 | Model-23* 205,0 205,3 | 0,00982 | 0,982 2,003 0,003 0,012 7,572 1,738 -0,0335 1,520 random 5 0,50 1 0 0,70 | 0,0000 200
19 | Model-24* 205,0 404,6 | 0,01935 | 1,935 3,947 0,693 2,877 4,603 1,057 -0,0574 4,400 random 5 0,50 2 0 0,70 | 0,0000 200
19 | Model-25* 205,0 205,0 | 0,00981 | 0,981 2,000 0,003 0,012 7,473 1,715 -0,0305 1,488 random 5 0,50 1 0 0,80 | 0,0000 200
19 | Model-26* 205,0 4052 | 0,01938 | 1,938 3,953 0,024 0,099 3,880 0,890 0,0575 1,704 random 5 0,50 2 0 0,80 | 0,0000 200
19 | Model-27* 205,0 2051 | 0,00981 | 0,981 2,001 0,003 0,013 7,546 1,732 -0,0350 1,510 random 5 0,50 1 0 0,90 | 0,0000 200
19 | Model-28* 205,0 405,0 | 0,01937 | 1,937 3,951 0,024 0,102 3,879 0,890 0,0642 1,697 random 5 0,50 2 0 0,90 | 0,0000 200
19 | Model-29* 205,0 205,1 | 0,00981 | 0,981 2,001 0,003 0,012 7,541 1,731 -0,0256 1,510 random 5 0,50 1 0 1,00 | 0,0000 200
19 | Model-30* 205,0 4049 | 0,01936 | 1,936 3,950 0,024 0,100 3,882 0,891 0,0555 1,699 random 5 0,50 2 0 1,00 | 0,0000 200
20 | Model-31* 255,0 350,9 | 0,01084 | 1,084 2,752 0,286 1,187 5,959 1,368 0,0713 0,177 random 5 0,50 1 1 0,70 | 0,0000 250
20 | Model-32* 2255 277,7 | 0,01097 | 1,097 2,462 0,290 1,204 6,586 1,512 0,0474 0,313 random 5 0,50 1 1 0,70 | 0,0010 250
20 | Model-33* 201,0 223,1 | 0,01109 | 1,109 2,218 0,295 1,223 7,304 1,676 0,0366 0,519 random 5 0,50 1 1 0,70 | 0,0020 250
20 | Model-34* 179,2 181,6 | 0,01137 | 1,137 2,025 0,290 1,202 7,232 1,660 0,0247 0,495 random 5 0,50 1 1 0,70 | 0,0030 250
20 | Model-35* 160,2 148,9 | 0,01167 | 1,167 1,857 0,296 1,228 6,352 1,458 0,0265 0,289 random 5 0,50 1 1 0,70 | 0,0040 250
20 M odel-36* 255,0 452,9 0,01399 1,399 3,552 0,252 1,046 4,688 1,076 0,1278 0,167 random 5 0,50 1 2 0,70 | 0,0000 250
20 | Model-37* 226,1 359,4 | 0,01412 | 1,412 3,178 0,252 1,047 4,980 1,143 0,1048 0,193 random 5 0,50 1 2 0,70 | 0,0010 250
20 | Model-38* 200,8 288,9 | 0,01440 | 1,440 2,875 0,250 1,039 5,289 1,214 0,0816 0,241 random 5 0,50 1 2 0,70 | 0,0020 250
20 | Model-39* 177,6 236,1 | 0,01504 | 1,504 2,655 0,256 1,061 5,508 1,264 0,0832 0,327 random 5 0,50 1 2 0,70 | 0,0030 250
20 | Model-40* 161,1 196,6 | 0,01522 | 1,522 2,437 0,269 1,115 5,833 1,339 0,0769 0,401 random 5 0,50 1 2 0,70 | 0,0040 250
I* Results averaged for 100 runs per model; note that dot is used as a decimal delimiter in this table (European data format)
[** Distance is calculated asthe mean squared difference between model and empirical data in nomalized density, clustering coefficient, and average path length




Exp. Model start- [no-initial- link- degree of | variance of | alpha |dropout- [ Time limit R2 (sim.): | Adjusted R?| Std.error of | KORREL (linear): | Logdegree | Logdegree |Logdegree[(Constant)
network | nodes | probability | interaction | interaction rate model fit estimate Fit with data "2 "3
21 Model-1* random 5 0,50 1 2 0,70 | 0,0020 200 0,959 0,951 0,135 0,755 -0,137 -1,219 -0,504
22 Model-2* random 5 0,50 1 1 0,70 | 0,0020 200 0,957 0,940 0,144 0,769 -0,374 -1,247 -0,388
23 Model-3* random 5 0,50 1 0 0,70 | 0,0020 200 0,913 0,855 0,280 0,778 -0,873 -1,971 -0,206
24 Model-4* random 5 0,50 1 3 0,70 | 0,0020 200 0,851 0,822 0,225 0,759 -0,163 -1,019 -0,560
25 Model-5* random 5 0,50 2 1 0,70 | 0,0020 200 0,966 0,958 0,113 0,670 1,117 -2,214 -0,751
26 Model-6* random 5 0,50 2 0 0,70 | 0,0020 200 0,958 0,944 0,133 0,679 6,039 -12,758 6,004 -1,257
27 Model-7* random 5 0,50 1 2 0,80 | 0,0020 200 0,962 0,952 0,140 0,694 0,967 -2,501 -0,612
28 Model-8* random 5 0,50 1 2 0,60 | 0,0020 200 0,859 0,818 0,247 0,719 0,442 -1,932 -0,556
19 Model-9* random 5 0,50 1 0 0,00 | 0,0000 200 0,959 0,951 0,152 0,941 -3,248 1,111 -0,045
19 M odel-10* random 5 0,50 2 0 0,00 | 0,0000 200 0,936 0,927 0,181 0,938 -4,753 1,556 1,184
19 Model-11* random 5 0,50 1 0 0,10 | 0,0000 200 0,958 0,946 0,165 0,925 -2,610 0,706 -0,124
19 Model-12* random 5 0,50 2 0 0,10 | 0,0000 200 0,961 0,956 0,130 0,935 -4,202 1,326 0,936
19 Model-13* random 5 0,50 1 0 0,20 | 0,0000 200 0,964 0,955 0,148 0,914 -2,496 0,554 -0,144
19 M odel-14* random 5 0,50 2 0 0,20 | 0,0000 200 0,912 0,900 0,205 0,934 -4,372 1,358 1,036
19 M odel-15* random 5 0,50 1 0 0,30 | 0,0000 200 0,940 0,927 0,187 0,942 -3,192 1,123 -0,082
19 M odel-16* random 5 0,50 2 0 0,30 | 0,0000 200 0,897 0,878 0,232 0,900 -2,859 0,445 0,559
19 Model-17* random 5 0,50 1 0 0,40 | 0,0000 200 0,892 0,865 0,254 0,940 -3,795 1,692 -0,009
19 M odel-18* random 5 0,50 2 0 0,40 | 0,0000 200 0,929 0,919 0,190 0,934 -4,474 1,390 1,108
19 Model-19* random 5 0,50 1 0 0,50 | 0,0000 200 0,877 0,846 0,251 0,460 8,370 -14,479 6,051 -1,954
19 M odel-20* random 5 0,50 2 0 0,50 | 0,0000 200 0,966 0,958 0,138 0,357 8,822 -13,950 5,436 -2,227
19 M odel-21* random 5 0,50 1 0 0,60 | 0,0000 200 0,905 0,874 0,282 0,819 -1,446 -0,830 -0,198
19 M odel-22* random 5 0,50 2 0 0,60 | 0,0000 200 0,943 0,929 0,171 0,348 9,259 -14,934 5,974 -2,249
19 M odel-23* random 5 0,50 1 0 0,70 | 0,0000 200 0,987 0,982 0,092 0,761 -0,364 -1,952 -0,303
19 M odel-24* random 5 0,50 2 0 0,70 | 0,0000 200 0,899 0,884 0,225 0,899 -2,919 0,445 0,569
19 M odel-25* random 5 0,50 1 0 0,80 | 0,0000 200 0,973 0,959 0,122 0,809 -1,067 -0,831 -0,270
19 M odel-26* random 5 0,50 2 0 0,80 | 0,0000 200 0,957 0,947 0,120 0,766 -0,311 -1,216 -0,245
19 M odel-27* random 5 0,50 1 0 0,90 | 0,0000 200 0,985 0,980 0,094 0,778 -0,683 -1,526 -0,284
19 M odel-28* random 5 0,50 2 0 0,90 | 0,0000 200 0,919 0,901 0,197 0,798 -0,837 -0,921 -0,061
19 M odel-29* random 5 0,50 1 0 1,00 | 0,0000 200 0,949 0,928 0,183 0,808 -1,141 -0,923 -0,247
19 M odel-30* random 5 0,50 2 0 1,00 | 0,0000 200 0,956 0,948 0,155 0,763 -0,297 -1,388 -0,195
20 M odel-31* random 5 0,50 1 1 0,70 | 0,0000 250 0,899 0,878 0,246 0,781 -0,573 -1,144 -0,387
20 M odel-32* random 5 0,50 1 1 0,70 | 0,0010 250 0,944 0,925 0,195 0,723 0,494 -2,495 -0,448
20 M odel-33* random 5 0,50 1 1 0,70 | 0,0020 250 0,965 0,947 0,155 0,711 1,003 -3,565 -0,431
20 M odel-34* random 5 0,50 1 1 0,70 | 0,0030 250 0,979 0,971 0,113 0,765 -0,346 -1,469 -0,368
20 M odel-35* random 5 0,50 1 1 0,70 | 0,0040 250 0,908 0,862 0,304 0,730 0,482 -3,447 -0,346
20 M odel-36* random 5 0,50 1 2 0,70 | 0,0000 250 0,947 0,936 0,144 0,705 0,543 -1,686 -0,659
20 M odel-37* random 5 0,50 1 2 0,70 | 0,0010 250 0,947 0,932 0,129 0,724 0,301 -1,589 -0,572
20 M odel-38* random 5 0,50 1 2 0,70 | 0,0020 250 0,960 0,947 0,110 0,730 0,244 -1,681 -0,528
20 M odel-39* random 5 0,50 1 2 0,70 | 0,0030 250 0,962 0,949 0,138 0,703 0,909 -2,696 -0,546
20 M odel-40* random 5 0,50 1 2 0,70 | 0,0040 250 0,988 0,983 0,074 0,716 0,597 -2,362 -0,497




Table S14

Results for exponential regression of tipping point timing (noshocks_target)
for varying thresholds (6)

Model Summary

R R Square Adjusted R Std. Error of
Square the Estimate
0.978 0.956 0.955 0.356
The independent variable is 6.
ANOVA
Sum of df Mean Square F Sig.
Squares
Regression 1081.354 1 1081.354| 8554.445 0.000
Residual 50.311 398 0.126
Total 1131.665 399
The independent variable is 6.
Coefficients
Unstandardized Coefficients | Standardized t Sig.
Coefficients
B Std. Error Beta
threshold_ teta 14.706 0.159 0.978 92.490 0.000
(Constant) 0.908 0.027 33.617 0.000
The dependent variable is noshocks target.
noshocks_target
O Observed
200 = Exponential
8
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Table S15

Results of linear regression of tipping point intensity as a function of varying
adoption thresholds (6)

Model Summary

R R Square Adjusted R Std. Error of
Square the Estimate
0.942 0.888 0.888 0.081
The independent variable is 6.
ANOVA
Sum of df Mean Square F Sig.
Squares
Regression 20.770 1 20.770 | 3149.342 0.000
Residual 2.625 398 0.007
Total 23.394 399
The independent variable is 6.
Coefficients
Unstandardized Coefficients | Standardized t Sig.
Coefficients
B Std. Error Beta
threshold teta -2,.38 0.036 -0.942 -56.119 0.000
(Constant) 0.932 0.007 137.148 0.000
intensity_TP
O Cbserved

—Linear

00 T T T

threshold_teta
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Table S16

Results of linear regression of squared average adoption period

(noshocks__squared) as function of the agents’ size

Model Summary

R R Square Adjusted R Std. Error of the
Square Estimate
0.718 0.516 0.511 333.094
The independent variable is size.
ANOVA
Sum of Squares df Mean Square F Sig.
Regression 11231431.489 1 11231431.489 101.228 0.000
Residual 10540390.972 95 110951.484
Total 21771822.461 96
The independent variable is size.
Coefficients
Unstandardized Coefficients Standardized t Sig.
Coefficients
B Std. Error Beta
Size 4.638 0.461 0.718 10.061 0.000
(Constant) 462.784 49.287 9.390 0.000
noshocks_squared
2000 2 E)it;::::ved
1500
1000
500
7 100 200 300 400
size
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Table S17

Results of linear regression of average switch period (noshocks) as function of

agents’ degree (number of codeshare links)

Model Summary

R R Square Adjusted R Std. Error of the
Square Estimate
0.702 0.492 0477 5.892

The independent variable is degree.

ANOVA
Sum of Squares df Mean Square F Sig.
Regression 1110.778 1 1110.778 31.999 0.000
Residual 1145.523 33 34.713
Total 2256.301 34
The independent variable is degree.
Coefficients
Unstandardized Coefficients Standardized t Sig.
Coefficients
B Std. Error Beta
Degree 0.529 0.094 0.702 5.657 0.000
(Constant) 19.933 1.982 10.058 0.000
noshocks
s 2 o
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Table S18

Results of linear regression of average adoption period (noshocks) as function

of degree across alliance-members (1) and non-alliance members (0)

Variables Entered /Removed®

Alliance  Model Variables Variables Method
Entered Removed

0 1 degree” Enter

1 1 degree” Enter

a. Dependent Variable: noshocks

b. All requested variables entered.

Model Summary

Alliance  Model R R Square Adjusted R Std. Error of the
Square Estimate
0 1 0.074" 0.005 -0.057 8.24663
1 1 0.570" 0.325 0.313 7.39218
a. Predictors: (Constant), degree
ANOVA*®

Alliance  Model Sum of Squares df Mean Square F Sig.

Regression 6.004 1 6.004 0.088 0.770
0 1 Residual 1088.110 16 68.007

Total 1094.115 17

Regression 1422.033 1 1422.033 26.023 0.000
1 1 Residual 2950.797 54 54.644

Total 4372.830 55
a. Dependent Variable: noshocks
b. Predictors: (Constant), degree

Coefficients®
Alliance  Model Unstandardized Coefficients Standardized t Sig.
Coefficients
B Std. Error Beta

(Constant) 21.628 3.545 6.100 0.000
’ ! degree 0.085 0.287 0.074 0.297 0.770

(Constant) 21.423 1.929 11.108 0.000
! ! degree 0.502 0.098 0.570 5.101 0.000

a. Dependent Variable: noshocks
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Table S19

Linear regression of squared average adoption period (noshocks * noshocks)

as function of size across (a) alliance-members and (b) non-alliance members

Variables Entered /Removed®

Alliance  Model Variables Variables Method
Entered Removed

0 1 size” Enter

1 1 size” Enter

a. Dependent Variable: noshocks_

b. All requested variables entered.

sqquared

Model Summary

Alliance  Model R R Square Adjusted R Std. Error of the
Square Estimate
0 1 0.059" 0.003 -0.014 357.98715
1 1 0.739" 0.546 0.540 365.76770
a. Predictors: (Constant), size
ANOVA®

Alliance  Model Sum of Squares df Mean Square F Sig.

Regression 25526.390 1 25526.390 0.199 0.657"
0 1 Residual 7432978.248 58 128154.797

Total 7458504.637 59

Regression 11431919.580 1 11431919.580 85.449 0.000”
1 1 Residual 9498806.652 71 133786.009

Total 20930726.233 72
a. Dependent Variable: noshocks  squared
b. Predictors: (Constant), size

Coefficients®
alliance Model Unstandardized Coefficients Standardized T Sig.
Coefficients
B Std. Error Beta

(Constant) 590.898 74.757 7.9041 0.000
’ ! size 0.622 1.394 0.059 0.446 ] 0.657

(Constant) 446.173 69.470 6.423] 0.000
! ! size 5.209 0.563 0.739 9.2441 0.000

a. Dependent Variable: noshocks

squared
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Table S20

Effect of different intervention strategies (random-nof, maz-clique, star) on

fraction of adopters for varying threshold levels (o)

Intervention strategy'

Threshold (6) Random-nof Max-clique Star

Mean | Std. dev. | Mean | Std. dev. Mean Std. dev.
0 0.78 0.06 0.90 0.02 0.91 0.02
0.1 0.67 0.07 0.86 0.03 0.87 0.03
0.2 0.52 0.11 0.77 0.03 0.81 0.02
0.3 0.35 0.12 0.68 0.04 0.75 0.02
0.4 0.20 0.08 0.61 0.04 0.71 0.01
0.5 0.16 0.06 0.49 0.07 0.69 0.01
0.6 0.12 0.05 0.33 0.04 0.63 0.02
0.7 0.10 0.04 0.26 0.02 0.59 0.01
0.8 0.08 0.02 0.23 0.02 0.53 0.01
0.9 0.07 0.02 0.19 0.02 0.51 0.01
1 0.06 0.02 0.15 0.01 0.39 0.01
Total 0.28 0.26 0.50 0.27 0.67 0.15
' Average results for 100 simulation runs

1.00 __—___—_—_—\\_

Fraction adopters

0.2 0.3

0.4 05

0.6

Adoption threshold (8)
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0.7

0.8

0.9

Intervention
strategy
M 1- random-nof
W 2 - max-clique

M 3-star

/3 - star
/" 2 - max-clique
1 - random-nof



Table S21

Results from additional experiments using a brute force method: effect of
varying thresholds (@) on fraction of switched agents' for two seeds that
were filtered out in a previous step as those ones maximizing the overall fit-

ness
0.8 -
0.7 -
0.6 -
0.5 -
§
5 @ random-nof
® 04 -
S O seed_63972
g M seed_65398
03 -
M max-clique
0.2 -+
0.1 +
0 -
low (6=0.3) medium (6=0.5) high (6=0.7)
Adoption threshold ()
Random-nof Seed 63972 Seed 65398 Max-clique
Threshold Mean | Std. dev.| Mean | Std. dev. | Mean | Std. dev. | Mean | Std. dev.
Low (6 = 0.3) 0.347 0.116| 0.557 0.028| 0.516 0.018| 0.676 0.038
Medium (6 = 0.5) | 0.157 0.061| 0.320 0.017| 0.341 0.010| 0.488 0.065
High (6 =0.7) 0.096 0.037| 0.175 0.008| 0.207 0.003| 0.256 0.021
! Average results for 100 simulation runs

Within additional experiments I pursued the objective to find one combination of agents
(from the large number of all possible combinations) that maximized the overall diffusion
outcome in the network. As a first step, I decided to limit attention to cases in which the
number of agents was restricted to eight as this was the size of the maximum clique — my
target that I aimed to outperform. Then, I generated five sets of seeds with either 10,000
or 100,000 combinations, overall 320,000 combinations. Then, I used Behavior Search — an

extension for the simulation environment Netlogo — as a means to find those combinations
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that maximized the expected outcome. For each seed file (a text file with 10,000 or 100,000
combinations), I performed five searches to ensure that I find a well performing solution.

The subsequent figure shows the Behavior Search interface for one sample run with five
searches. In particular, I drew on a genetic algorithm that aimed to maximize the overall
fitness. As my outcome measure, I chose the fraction of switched agents after one shock.

Results are depicted in the previous table for two seeds that performed best.

Search Progress
: : : : From all searches:

0;250. BEStfﬂl.lIlﬂSﬂfa]‘:
0,225 - _ rel-sizeT=true
; | | weigh-links?=true
02001 ] ] - : ! | | target-level=0.750000
0,175 SE=== 5 5 5 5 | | fin-rule?=false
0,150 1 ! _ ; _ i | | start-network=pref-attach
i : : ' ' | | no-initial-nodes=0.00000
; ] | | financial threshold=0.00000
0,100 1 I I [ one-shock?=true
0,075 1 ; ; ; ; ; | | intervention-strategy=brut-force
| | seed=7542.00
| | tink-probability=0.450000
oS s neefale
0,000 - : : 5 5 5 | | adoption-threshold=0.500000
' so 100 150 200 250 300
& of model runs Fitness= 0.280282

7]
[r]
M
C

=

L

0,125 1

0,050

|— Search 1 — Search 2 — Search 3 Search 4 — Search &

Finished search 5 of 5: (5:07:12 elapsed - 0:00 remaining)

l Done )
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Table S22

Experimental results for theoretical network structures

I performed experiment on different theoretical network structures to see whether the sys-
tem was converging to the target level (75% of the population) and how many shocks
where necessary to achieve that level. First, I turn to random networks. As (Poisson) ran-
dom networks are well understood analytically, they serve as a useful baseline to character-
ize important properties of my model (cf. Jackson 2008b:9-14). Each link between nodes is
formed with a given probability p. In such network, a connected component — where all

nodes in the network can be reached via paths — arises if the probability of a link forming
is larger than log(n)/n (cf. Erdos and Rényi 1961; Jackson 2008b).

I initialized a static random network with n = 100 nodes and varying link probabilities
(A). In this network, I expect that a giant component will arise at log(100)/100 = 0.02. As
expected theoretically, we see a sparsely connected network with several disconnected is-
lands in figure (a) for A = 0.01. For A = 0.02 in figure (b), a giant component emerged;

though some isolated nodes remained. For A = 0.05 in figure (c¢), the network was having a

giant component and the entire network was almost surely connected.

Using the network analysis algorithm (refer to Algorithm A.8) and fixing the simple
threshold to a medium level (6 = 0.5), I performed simulations triggering one node uni-
formly at random at a time and tracking the subsequent domino effect running through
the network. Multiple interventions were performed until the network exceeded the target
level or until the time limit of the simulation (5,000 ticks) was reached.

The subsequent table shows results. For disconnected random networks (A = 0.01), the
network did not converge to the target level and the system plateaued at a level around 50
percent of adopters. I observed that many interventions did not impact the network as
they targeted isolated nodes that could not trigger subsequent cascades. For random net-
works with medium degrees of connectedness (A = 0.02), we see that the network exceeded
the target level in most cases whereas about one-third of all nodes had to be shocked be-
fore the system converged. The most salient feature for completely connected networks (A
= 0.05) is the high standard deviation in the number of shocks until convergence. This is
due to the fact that many simulations failed to tip enough nodes to exceed the network
within the time limit. In these cases, the network plateaued at a lower level of adopters as
the standard failed to spill over from few nodes in the periphery to the core.
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Number shocks!2%* Fraction adopters

(in percent)

Mean Std. dev. Mean Std. dev.
random (A = 0.01) n/a n/a 0.49 0.07
random (A = 0.02) 35.71 12.68 0.83 0.05
random (A = 0.05) 1917.25 2299.39 0.70 0.39

' Average results for 1,000 simulation runs
? Reports the number of shocks until the network converged to the target level (0.75)

* Time limit was set to 5,000 ticks
4

n/a denote cases where the network did not converge to the target level

The subsequent figure (a) captures how dynamics enfolded in cases where the standard
spilled over (figure b) and where it failed to gain momentum (figure ¢). We performed ad-
ditional simulations for higher link-probabilities but I found that the system did not con-
verge for link-probabilities larger than A = 0.05. These results indicate that the higher
average degree of each node in these networks created a counteracting effect that restricts

the diffusion of the standard in these networks.

Fraction adopcars (In parcam)

periack:

I turn to further theoretical network structures. First, I performed additional simulations
for lattices and for star networks. The subsequent table shows results. Lattices have a reg-
ular structure and each node is either surrounded by two, three or four neighbors based on
the positioning in the grid. As shown in the table, for lattice networks the system did not
converge as each intervention failed to trigger a subsequent cascade for a medium thresh-
old (6 = 0.5). Next, I turn to star networks. Stars have a very centralized structure with
one node in the center that is connected to any other node in the network. As shown in
the table, I found that the number of shocks varied widely based on the random period in
which the center node became shocked. I then observed that the system converged imme-
diately to a completely standardized state in which any node in the network adopted.

In a next set of experiments, I turn to preferential attachment networks. The table shows
results. We see that the system converged in almost any case to a state of complete adop-
tion. As the preferential attachment network is completely connected, all of the nodes re-
side within one giant component. The hub-and-spoke structure further fosters the diffusion
as the standard can progress from the periphery to the center of the network. Viewed to-
gether with the previous table, I can thus conclude that the structure of the network fos-
ters the diffusion of the standard. With respect to the number of necessary shocks, a ran-
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dom network with medium connectedness (A = 0.02), however, outperformed the preferen-

tial attachment network as the tipping point was more pronounced in these networks.

Number shocks!2%* Fraction adopters

(in percent)

Mean Std. dev. Mean Std. dev.
Lattice2d n/a n/a 0.01 0.00
Preferential attachment 39.13 9.83 0.99 0.02
Star 97.57 91.04 1.00 0.00

' Results averaged over 1,000 simulation runs
? Reports the number of shocks until the network converged to the target level (0.75)
* Time limit was set to 5,000 ticks

" n/a denote cases where the network did not converge to the target level
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