
Dissertation

zur Erlangung des akademischen Grades

des Doktors der Naturwissenschaften

(Dr. rer. nat)

A Rule-Based Agent-Oriented Framework

for

Weakly-Structured Scienti�c Work�ows

eingereicht

am Institut für Informatik

des Fachbereichs Mathematik und Informatik

der Freien Universität Berlin

von

Zhili Zhao

Berlin, 2014

Gutachter:

Prof. Dr. Adrian Paschke
Department of Computer Science

Freie Universität Berlin

Prof. Dr. Hans Weigand
Department of Information Systems and Management

Tilburg University

Tag der Disputation: 12. September 2014

ERKLÄRUNG/DECLARATION

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst,

andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten

Quellen wörtlich und inhaltlich entnommenen Stellen als solche kenntlich gemacht

habe.

I declare that I have authored this thesis independently, that I have not used other

than the declared sources/resources, and that I have explicitly marked all material

which has been quoted either literally or by content from the used sources.

Berlin, 29 July, 2014

Zhili Zhao

Abstract

Existing solutions for business work�ows as well as scienti�c work�ows mainly fo-

cus on the orchestrated and pre-structured execution of compute-intensive and data-

oriented tasks. On the contrary, this thesis explicitly considers Weakly-structured

Scienti�c Work�ows (WsSWFs), which contain goal-oriented tasks that have to make

agile runtime decisions. They may involve interactions between multiple partici-

pants or have complicated logic to express scienti�c policies and cater to dynamic

execution environments. In general, such WsSWFs not only need a rich process and

(domain-speci�c) decision logic speci�cation, but also require a �exible execution

and human interaction.

The main research problem addressed in this thesis is the combination of the

rule-based knowledge representation with the agent technology for the purpose of

supporting the WsSWF execution from a technical perspective, and a Rule-based

Agent-oriented Framework (RbAF) is proposed.

The �rst challenge is to describe work�ows by declarative rules. This thesis

employs messaging reaction rules, which go beyond global Event-Condition-Action

(ECA) rules and support performing complex actions locally within certain contexts.

Based on messaging reaction rules, the RbAF o�ers an event-driven architecture and

models complex work�ow patterns with the rule-based Complex Event Processing

(CEP) technologies. In addition, a Concurrent Transaction Logic (CTR)-based for-

mal semantics which precisely de�nes the rule-based work�ow language is presented.

The second challenge is the description of (domain-speci�c) decision logic in

work�ows. This thesis addresses the problem by exploiting bene�ts of both Logic

Programming (LP) and Description Logic (DL). LP with derivation rules is more

expressive than typical Boolean expressions and also more understandable for do-

main experts. Moreover, the RbAF provides three ways to access domain-speci�c

data encoded by Semantic Web technologies.

The third challenge is to support the �exibility required by the WsSWFs. Be-

sides the rule-based process and decision logic speci�cation, the RbAF employs

distributed rule-based agents as the work�ow execution environment and supports

asynchronous interaction between distributed agents. Moreover, the RbAF combines

two ways of the work�ow composition: orchestration and choreography. Another

�exible mechanism is to handle work�ow exceptions at runtime based on a work�ow

ontology structuring work�ow resources.

One further challenge addressed in this thesis is to integrate human users into

the work�ow execution. This thesis uses a human agent, which manages the life

cycle of human tasks and provides a Web interface for domain experts to operate

on human tasks. Human interaction also helps in handling exceptions that cannot

be automatically handled by the rule-based agents.

This thesis evaluates the RbAF from di�erent perspectives. In contrast to three

prominent scienti�c work�ow systems, the rule-based work�ow speci�cation of this

thesis shows higher expressive power with respect to the work�ow patterns that are

important for scienti�c work�ows. With respect to domain knowledge representa-

tion, the analysis results indicate that general (domain-speci�c) decision logic in

the WsSWFs can be represented by normal logic programs, which support negation

and are more expressive than propositional and �nite logic programs. An expressive

query language for DL is employed and di�erent reasoners can be easily con�gured

in the RbAF to reason domain ontologies with di�erent expressivity. In terms of

an empirical evaluation, the RbAF supports most of the typical properties of com-

putational models, including di�erent forms of execution cycles, non-deterministic

execution branches, parallel and concurrent execution, distributed computation and

asynchronous communication. Moreover, an experimental evaluation based on three

real-world WsSWF use cases is also given to analyze the performance and demon-

strate the expressive power of the domain knowledge representation in the RbAF.

This thesis concludes that the RbAF provides both an expressive work�ow descrip-

tion and a �exible work�ow execution environment, and meets requirements of the

WsSWFs (except provenance).

Keywords: scienti�c work�ows; weakly-structured processes; multi-agent sys-

tems; semantic web; logic programming; event-driven execution; user interaction

Acknowledgments
I would like to express my sincere gratitude to everyone who contributed to the

completion of this thesis. All of you made my study in Berlin so wonderful!

First and foremost, I would like to thank Prof. Dr. Adrian Paschke for supervis-

ing me in the past four years. Thanks for all your suggestions for my presentations

and papers. Without your advice and patience, this thesis would have never been

possible. I really appreciate everything you have done for me.

I am pleased to have Prof. Dr. Hans Weigand as the second examiner of my

thesis. I was impressed by your sincerity and amiability when I saw you at the

VMBO workshop in 2014 for the �rst time. I also would like to express my gratitude

to Prof. Dr. Ruisheng Zhang. Although I left your group after my master study,

you still gave me a lot of valuable advice during my PhD study.

I am thankful to my present and past group members from all over the world for

interesting discussions and for sharing with me PhD student experience; Kia Tey-

mourian, Ralph Schäfermeier, Alexandru Todor, Shashishekar Ramakrishna, Mo-

hammed Almashraee, Marko Harasic, Mario Rothe, Gökhan Coskun, Ralf Heese,

Markus Luczak-Rösch and Olga Streibel. In particular, I thank Shashishekar Ra-

makrishna for numerous hours of technical discussions on weekends.

Furthermore, I am thankful to Jialu Hu and Hui Yu for providing signi�cant use

cases to evaluate my work. Without your patient explanation I could not identify

these use cases from your research domains and use them in my work. I really

appreciate it.

I also would like to thank my friends who I knew before and during my PhD

study; Dr. Lili Jiang, Zhen Dong, Dr. Jiazao Lin, Dr. Yi Yang, Kai Zhang, Hong

Zhang, Bin Zhang, Ting He, Tao Liao, Miaomiao Zhu, Yubin Zhao, Yuan Yang, Dr.

Rongjing Hu, Fan Ding, Jiaxuan Wei and Dr. Xiaoliang Fan. It is amazing to know

you and our friendship is the most precious wealth in my life! In particular, I thank

Dr. Jiazao Lin for encouraging me a lot in the most di�cult time of my PhD study.

I also would like to give my gratitude to the �nancial support of China Scholar-

ship Council (CSC) and Corporate Semantic Web (CSW) work group.

I am grateful to my family, especially to my parents, for always supporting and

encouraging me.

Finally, I deep gratitude my girlfriend Ying Li for always being there, although

we were not together most of the time.

Zhili Zhao, in Berlin

Contents

List of Figures xiii

List of Tables xv

List of Abbreviations xvii

1 Introduction 1

1.1 Problem Statement . 1

1.2 Research Questions . 2

1.3 Research Methodology . 3

1.4 Thesis Contributions . 4

1.5 Literature Connections . 6

1.6 Thesis Outline . 7

I Background and State-of-the-Art 9

2 Background 11

2.1 Scienti�c Work�ows . 11

2.2 Scienti�c Work�ow Life Cycle . 13

2.3 Work�ow Management Systems . 14

2.4 Scienti�c vs. Business Work�ows . 15

2.5 Weakly-Structured Scienti�c Work�ows 18

2.5.1 Structured vs. Unstructured Processes 18

2.5.2 WsSWF Examples . 19

2.5.3 WsSWF Features . 26

2.5.4 WsSWF Main Requirements 27

2.6 Work�ow Description-Related Technologies 27

2.7 Imperative vs. Declarative Programming 29

2.8 Logic Program Overview . 31

2.9 Deductive, Abductive and Inductive Reasoning 35

2.10 Summary . 36

3 Flexible Work�ow Compositions 39

3.1 Classic Work�ow Languages . 39

3.2 Agent-Oriented Work�ow Compositions 41

3.3 Rule-Based Work�ow Languages . 44

3.4 Main Scienti�c Work�ow Languages 46

3.5 E�orts on Weakly-Structured Work�ows 48

3.6 Semantic-Based Work�ow Compositions 49

3.6.1 Semantic Web Services . 50

x Contents

3.6.2 Ontology-Based Work�ow Speci�cations 52

3.7 Summary . 55

II Conceptual Framework 57

4 Rule-Based Agent-Oriented Framework 59

4.1 Hierarchy of the Rule-Based Work�ow Speci�cation 62

4.2 Upper-Level Work�ow Ontology . 62

4.3 Declarative Work�ow Speci�cation 64

4.3.1 Reaction Rules . 64

4.3.2 Event-Driven Work�ow Execution 67

4.3.3 CEP-Based Work�ow Pattern Modeling 68

4.4 Domain Decision-Centric Logic Description 72

4.4.1 Derivation Rules . 72

4.4.2 Semantic Web Data Query 75

4.5 Integrating Orchestration with Choreography 78

4.6 Human Interaction . 80

4.7 Exception Handling . 82

4.8 Summary . 83

5 Formal Work�ow Representation 85

5.1 Work�ow Model . 85

5.2 CTR Overview . 87

5.3 Work�ow Representation Using CTR 91

5.3.1 Work�ow Representation . 91

5.3.2 Multiple Instances . 94

5.3.3 Reactive Logic Representation 94

5.4 Communication between Processes 96

5.5 Complex Event Processing . 97

5.6 Exception Handling . 100

5.7 Summary . 102

III Evaluation 103

6 Proof-of-Concepts 105

6.1 Prova . 105

6.2 The Work�ow Ontology . 106

6.3 Mapping the CTR-Based Work�ow Logic to Prova 108

6.4 Domain Logic Expression in Prova 113

6.5 Enterprise Service Bus Mule . 116

6.5.1 Prova Agent Deployment . 117

6.5.2 Mule ESB as Communication Middleware 119

6.5.3 Translations between Reaction RuleML and Prova 120

Contents xi

6.6 Exception Handling . 122

6.7 User Client . 124

6.7.1 Work�ow Submission . 124

6.7.2 Exception Management . 125

6.7.3 Human Task Management . 126

6.7.4 RDF Data Management . 127

6.8 Summary . 127

7 Evaluation 129

7.1 Work�ow Pattern-Based Expressiveness Evaluation 129

7.1.1 Control-Flow Patterns . 130

7.1.2 Data Patterns . 143

7.1.3 Scienti�c Work�ow Patterns 148

7.2 Evaluation of the Domain Knowledge Representation 150

7.2.1 LP-based Knowledge Representation Evaluation 150

7.2.2 DL-based Knowledge Representation Evaluation 152

7.3 Computational Model-Based Empirical Evaluation 156

7.4 Use Case-Based Experimental Evaluation 158

7.4.1 Protein Prediction Result Analysis 159

7.4.2 Snow Depth Data Screening 163

7.4.3 Ant Identi�cation and Treatment 165

7.5 System Performance Evaluation . 169

7.5.1 Message Passing Overhead . 169

7.5.2 System Concurrency . 170

7.6 Summary . 171

IV Conclusion 173

8 Conclusion and Outlook 175

8.1 Summary . 175

8.2 Outlook . 176

V Appendix 179

A Zusammenfassung 181

B About the Author 183

Bibliography 185

List of Figures

1.1 The General Methodology of Design Research 4

2.1 Scienti�c Work�ows . 12

2.2 Scienti�c Work�ow Life Cycle . 13

2.3 Work�ow Management System . 15

2.4 Control Flow vs. Data Flow . 17

2.5 Structured vs. Unstructured Processes 18

2.6 Weakly-Structured Scienti�c Work�ows 20

2.7 The Atrophy Computation Method Stages for Multiple Sclerosis . . . 20

2.8 Process of Treating a Newly Discovered Ant 21

2.9 Building Snow Depth Forecast Model from Remote Sensing Data . . 22

2.10 Ant Identi�cation . 23

2.11 Protein Prediction Result Analysis 24

2.12 GO Term Ancestor Chart . 25

2.13 Work�ow Description-Related Technologies 28

2.14 Classes of Logic Programs . 32

2.15 Logic Program Negations . 33

3.1 Agent-Based Scienti�c Work�ow Composition 42

3.2 Subjects and Communications in Holiday Application Process 43

3.3 The Upper Ontology of AWDL . 53

3.4 Top Level of OWL-S Process Ontology 54

4.1 Rule-Based Agent-Oriented Scienti�c Work�ow Framework 60

4.2 Hierarchy of Rule-Based Work�ow Description 62

4.3 Upper-Level Work�ow Ontology . 63

4.4 Multiple Work�ow Instances . 66

4.5 Event-Driven Work�ow Execution 67

4.6 Process of Implementing the AND Join Connector 69

4.7 Example of an AND Join Connector Implementation 71

4.8 Process of Implementing the OR Join Connector 72

4.9 Domain Knowledge-Intensive Decision with Derivation Rules 73

4.10 Semantic Web Data Query . 76

4.11 Integrating Orchestration with Choreography 79

4.12 Integrating Humans into Scienti�c Work�ows 80

4.13 Exception Handling in Event-Driven Scienti�c Work�ows 83

5.1 A General Work�ow Process Model 86

6.1 Protein Prediction Analysis Work�ow Ontology 107

6.2 Domain Ontology: UniProt Core Vocabulary 114

xiv List of Figures

6.3 SPARQL-DL Query Engine . 115

6.4 Mule Application Flow . 117

6.5 Class Diagram of ProvaUMOImpl . 118

6.6 Mule-Based Work�ow Architecture 120

6.7 Human Interaction Client . 124

6.8 Human Agent Proxy . 127

7.1 Expressiveness and Complexity of OWL Family 154

7.2 Complexity of Gene Ontology . 161

7.3 Gene Ontology Reasoning Analysis 162

7.4 Concurrency with Increasing Number of Work�ow Requests 171

List of Tables

2.1 Structured vs. Unstructured Processes 19

3.1 Main Scienti�c Work�ow Languages 48

3.2 Comparison of Flexible Work�ow Composition Solutions 56

6.1 Mapping CTR-Based Work�ow Representation to Prova Rules . . . 113

7.1 Control-Flow Pattern-Based Comparison 142

7.2 Data Pattern-Based Comparison . 147

7.3 Scienti�c Work�ow Pattern-Based Comparison 149

7.4 Comparison of Reasoners Implementing OWL API 155

7.5 Data Sets of Communication Overhead Evaluation 170

List of Abbreviations

Abbreviations

ACL Agent Communication Language

AGWL Abstract Grid Work�ow Language

AOP Aspect-Oriented Programming

API Application Programming Interface

ASP Answer Set Programming

BPEL Business Process Execution Language for Web Services

BPM Business Process Management

BPMN Business Process Model and Notation

CA Condition Action

CEP Complex Event Processing

CPAL Common Public Attribution License

CTR Concurrent Transaction Logic

DAX Directed Acyclic Graph in XML Format

DL Description Logic

ECA Event-Condition-Action

EDA Event-Driven Architecture

EDIT European Distributed Institute of Taxonomy

EHA Exception Handling Agent

EPC Event-driven Process Chain

ESB Enterprise Service Bus

GIS Geographic Information System

GO Gene Ontology

GUI Graphical User Interface

HA Human Agent

xviii List of Abbreviations

IDE Integrated Development Environment

IDL Interface Description Language

JMS Java Message Service

LAN Local Area Network

LP Logic Programming

LSST Large Synoptic Survey Telescope

LTL Linear Temporal Logic

MAP Multi-Agent Protocol

MAS Multi-Agent System

MoML XML-based Modeling Markup Language

NaF Negation as Failure

OGSA Open Grid Services Architecture

OMG Object Management Group

OPM Open Provenance Model

OWL Web Ontology Language

OWL-S OWL for Services

OWL-WS OWL for Work�ows and Services

PSL Process Speci�cation Language

QoS Quality of Service

RAWLS Rule-based Agent Work�ow System

RbAF Rule-based Agent-oriented Framework

RBSLA Rule-Based Service Level Agreement

RDF Resource Description Framework

RDFS Resource Description Framework Schema

SAWSDL Semantic Annotations for WSDL and XML Schema

S-BPM Subject-oriented Business Process Management

SCUFL Simple Conceptual Uni�ed Flow Language

List of Abbreviations xix

SEDA Staged Event-Driven Architecture

SLA Service Level Agreements

SMS Stable Model Semantics

SOA Service-Oriented Architecture

SOAP Simple Object Access Protocol

SPARQL SPARQL Protocol and RDF Query Language

SWFMS Scienti�c Work�ow Management System

SWRL Semantic Web Rule Language

SWSF Semantic Web Services Framework

SWSL Semantic Web Services Language

SWSO Semantic Web Services Ontology

TR Transaction Logic

UDDI Universal Description Discovery and Integration

UML Uni�ed Modeling Language

URI Uniform Resource Identi�er

WAN Wide Area Network

WDO Work�ow-Driven Ontology

WfMC Work�ow Management Coalition

WFMS Work�ow Management System

WFS Well-Founded Semantics

WSDL Web Services Description Language

WSFL Web Services Flow Language

WSMF Web Service Modeling Framework

WSMO Web Service Modeling Ontology

WsSWF Weakly-structured Scienti�c Work�ow

XPDL XML Process De�nition Language

YAWL Yet Another Work�ow Language

Chapter 1

Introduction

Contents

1.1 Problem Statement . 1

1.2 Research Questions . 2

1.3 Research Methodology . 3

1.4 Thesis Contributions . 4

1.5 Literature Connections . 6

1.6 Thesis Outline . 7

1.1 Problem Statement

Scienti�c work�ows have attracted more and more interest in recent years, as sci-

ence becomes increasingly reliant on the analysis of massive data sets and the use of

distributed resources [1]. They assist scientists to perform data management, anal-

ysis and simulation of in silico experiments [2]. Compared with business work�ows

which are already supported by competing speci�cations and Business Process Man-

agement (BPM) standards, scienti�c work�ows have not been widely adopted and

supported yet. One signi�cant reason is that scienti�c work�ows have extra require-

ments over their counterparts in the business domain, such as explicit data/informa-

tion �ow, exact reproducibility, agility to quickly adapt to changed knowledge and

human/machine decisions, team cooperation for distributed problem solving [3]. To

address such requirements, existing business work�ow technologies need to be thor-

oughly adapted and extended. Furthermore, existing solutions for business work-

�ows as well as scienti�c work�ows mainly focus on structured compute-intensive

and data-oriented tasks, instead of decision-centric tasks that need the cooperation

of scientists or computer agents as a team supported by weakly-structured work-

�ows.

A WsSWF is a process, in which there are complex decision-centric tasks that

require agile runtime decisions during their execution; they may involve interac-

tions between multiple participants or have complicated logic to express scienti�c

policies and cater to dynamic execution environments; they could be modeled at a

high abstract level with standard graphical work�ow representation tools (e.g., Busi-

ness Process Model and Notation (BPMN)), but the inherent complex and �exible

behavior during the task execution cannot be easily implemented. In the current

2 Chapter 1. Introduction

state-of-the-art, there are partial solutions that have been proposed for some of the

aforementioned issues, such as increasing the �exibility of service composition [4, 5],

incorporating knowledge tasks and objects into work�ow models [6]. Nevertheless,

some core issues of the WsSWFs are still unsolved. Compared with the structured

computational scienti�c work�ows, the WsSWFs focus on knowledge-intensive tasks

and require:

(i) Rich Process Speci�cation: the WsSWFs contain complex decision-centric

tasks, which require processes to handle new and exceptional situations. Be-

sides simple control �ow descriptions (e.g., a task is enabled after the com-

pletion of a preceding task), it is also necessary to describe advanced process

logic, which needs dynamic recognition of operational as well as knowledge-

based states to implement intelligent routings at runtime.

(ii) Expressing Domain-Speci�c Policies: the WsSWFs often involve complex domain-

speci�c policies, which regulate the behavior of scienti�c applications. In order

to automate the WsSWFs, it is necessary to express such scienti�c policies and

enable machines to deal with them automatically.

(iii) Flexibility : the structured processes su�er from limitations with respect to dy-

namic evolution and adaptation at runtime. In order to provide high �exibility,

the WsSWFs should be allowed to be easily modi�ed according to individual

situations.

(iv) Human Interaction: scienti�c work�ow systems are often designed to automate

scienti�c processes and improve their operational e�ciency. However, human

users still need to conduct manual tasks and steer the work�ow execution to

deal with unforeseen problems at runtime.

(v) Exact Reproducibility : provenance plays an important role in veri�cation, ex-

planation, reproduction and informed reuse of data used and produced by

scienti�c work�ows, especially by the WsSWFs, which have non-deterministic

decision logic (However, provenance is a broad standalone topic in itself and

is out of the scope of this work).

1.2 Research Questions

This thesis mainly focuses on the execution phase of the scienti�c work-

�ow life cycle and proposes a rule-based, agent-oriented framework, called

RbAF, with a purpose of explicitly supporting the WsSWF execution.

On one hand, an agent-based framework can provide a �exible execution environ-

ment. On the other hand, declarative rules provide a declarative programming style

to specify the agent behavior. The combination of them o�ers a promising approach

to support the WsSWFs. In this thesis, four research questions are answered:

1.3. Research Methodology 3

(i) How to specify the WsSWF process logic? ECA rules are the most com-

mon rules used to specify work�ows. ECA rules react on occurred events by

executing actions and are usually de�ned with a global scope in the knowledge

base of a reactive system (e.g., in active databases). However, scienti�c work-

�ows are usually executed in certain cooperation contexts rather than in global

event occurrences. Moreover, it is known that reaction rules, especially ECA

rules can specify basic work�ow processes, but, are they expressive enough to

specify the WsSWF process logic?

(ii) How to express (domain-speci�c) decision logic and integrate it into

the process logic? Most of the rule-based work�ow languages mainly focus

on the process logic but ignore the expression of the decision points determin-

ing the execution paths at runtime. Moreover, the WsSWFs often involve do-

main policies regulating such decisions, which are made in terms of knowledge-

intensive decision criteria and may involve multiple sub-decisions. Therefore,

the (domain-speci�c) decision logic needs to be expressed and integrated to

the process logic.

(iii) How to support an adaptive work�ow execution? The adaptability

denotes to which extent work�ow processes are allowed to be automatically or

manually modi�ed according to changed situations at runtime [7]. To achieve

this, two sub-questions need to be addressed: (1) How to dynamically dis-

cover appropriate resources used to perform a task according to current cir-

cumstances at runtime? (2) How to implement �exible mechanisms to handle

exceptions at runtime, such as dynamic replacement of an exceptional re-

source?

(iv) How to support asynchronous communication between human users

and the work�ow system? Although some scienti�c work�ow systems

(e.g., Taverna [8]) can invoke Web services and hence it would be possible to

wrap human behavior by Web services, none of existing scienti�c work�ow

systems provides features to specify human tasks in work�ows [3]. To support

user interaction, �rstly it is necessary to provide a well-de�ned human task

speci�cation. Moreover, what users need are not only integrating them into

the work�ow execution, but also asynchronous interaction with the work�ow

system, especially when performing long running activities, such as discussions

and exhaustive knowledge searches.

1.3 Research Methodology

This thesis follows a general design science research methodology [9], which o�ers

speci�c guidelines for building and evaluating the utility of information system re-

search artifacts. Figure 1.1 shows a general cycle of design science research adapted

from [10]. Every design starts with an interesting problem (Awareness of Problem),

which may come from developments in industry or in a reference discipline. The

4 Chapter 1. Introduction

output of this phase is a (formal or informal) Proposal for a new research e�ort.

The Suggestion phase is an essentially creative step wherein a Tentative Design

is envisioned based on a novel con�guration of either existing or new and existing

elements. It is intimately connected with proposal as the dotted line indicates.

During the Development phase, an Artifact is implemented in terms of the sug-

gestions in the previous phase. The artifact could be seen as an implementation

of Tentative Design. The implementation is then evaluated (in the Evaluation

phase) according toMeasures implicitly or explicitly made in the Suggestion phase.

The Conclusion phase is the last step of a speci�c research e�ort and gives Results

of the research. As shown in Figure 1.1, Development, Evaluation and Suggestion

are iteratively performed during the course of a research e�ort. The basis of the

iteration, i.e., the �ow from partial completion of the cycle back to Awareness of

the Problem, is indicated by the Circumscription arrow.

After identifying the problems of the WsSWFs (see Sections 1.1 and 1.2), and

this thesis further proposes an overall conceptual work�ow framework based on the

combination of the declarative programming using rules with the agent technology

(see Chapter 4 and 5). Afterwards, this thesis presents a design artifact in Chapter

6 to support the WsSWF execution. The evaluation and conclusion are then given

in Chapters 7 and 8, respectively.

C
ir
c
u

m
s
c
ri
p

ti
o

n

Process Steps Outputs

1. Awareness of Problem

2. Suggestion

3. Development

4. Evaluation

5. Conclusion

Proposal

Tentative design

Artifact

Performance measures

Results

Figure 1.1: The General Methodology of Design Research

1.4 Thesis Contributions

For the purpose of supporting the WsSWF execution, this thesis proposes the RbAF,

which exploits the bene�ts of both the declarative programming using rules and the

1.4. Thesis Contributions 5

agent technology. In particular, the major contributions of this thesis are as follows:

(i) An expressive rule-based language for describing the WsSWFs. From a tech-

nical perspective, this thesis provides an expressive rule-based work�ow spec-

i�cation, which combines reaction and derivation rules to describe complex

reactive and decision logic of the WsSWFs. Moreover, a CTR-based formal

semantics which precisely de�nes the rule-based work�ow language is pre-

sented. According to the work�ow pattern-based evaluation (see Section 7.1),

the rule-based work�ow speci�cation of this work can not only describe basic

work�ow patterns, but also support advanced work�ow patterns that are not

fully supported by other scienti�c work�ow systems.

(ii) Domain-speci�c decision logic expression combining logic programs with de-

scription logic. This thesis gives a hybrid approach, which exploits the bene-

�ts of both DL and LP to express complicated (domain-speci�c) decision logic.

The decision logic encoded as declarative derivation rules also can integrate

external domain-speci�c Semantic Web data, which gives domain semantics

or even pragmatic meanings to the concepts involved.

(iii) Adaptive work�ow execution. The declarative rules specify the agent behavior

and make it possible to dynamically replace exceptional resources by reason-

ing the work�ow ontology. Moreover, the RbAF combines two ways of the

work�ow composition: orchestration and choreography. The agents can be

process-agnostic and are employed to execute part of a complex work�ow, and

they also can execute choreography work�ows via conversation-based messag-

ing reaction rules.

(iv) Asynchronous user interaction. The RbAF supports two types of activities

that require user interaction: the human tasks which are performed manually,

and the unexpected exceptions that cannot be automatically handled by the

work�ow systems. To support the asynchronous user interaction, a human

agent manages the life cycle of user interaction and provides a Web interface

for users to operate on manual activities asynchronously.

Compared to the existing work�ow solutions, this thesis explicitly considers the

WsSWFs from a technical perspective, and highlights the following major aspects:

(i) Abstraction via a distributed multi-agent model re�ecting the semiotic struc-

ture of scienti�c teams in a distributed choreography style of the work�ow

execution and distributed problem-solving.

(ii) Complex decision logic via derivation rules and logical inference deductions

beyond the typical restricted expressiveness of simple gateways in process ex-

ecution models.

(iii) Situation-awareness and behavioral dynamic reactions via reaction rules lead-

ing to dynamic and agile work�ow reaction patterns.

6 Chapter 1. Introduction

(iv) Semantic work�ow execution via domain models and information models rep-

resented as ontologies which are integrated into the work�ow execution se-

mantically.

(v) Decoupled via event messages enabling asynchronous communication and par-

allel processing, non-deterministic execution branches of problem solving tasks

in distributed agents.

(vi) Extending the range of work�ow applications via combining the bene�ts of

both orchestration and choreography, i.e., maintaining the overall work�ow

execution in a centralized way, while complex decision-centric tasks can be

performed by a group of collaborative agents sharing the same goal.

(vii) Asynchronous user interaction via the asynchronous communication enabling

users to operate on manual tasks or handle unexpected exceptions.

1.5 Literature Connections

Several publications were achieved in the course of accomplishing this thesis. A

general overview of this thesis was accepted by the PhD Symposium co-located

with 16th International Conference on Business Information Systems in 2013.

(i) Zhili Zhao and Adrian Paschke, �A Rule-Based Agent Framework for Weakly-

Structured Scienti�c Work�ows�, in Proceedings of Business Information Sys-

tems Workshops, pp. 290-301, 2013

The following publications are mainly about the rule-based, agent-oriented frame-

work, RbAF, presented in Chapter 4 of this thesis. The RbAF was introduced from

two di�erent perspectives: event-driven work�ow execution and rule-based, agent-

oriented execution. Several real-world WsSWF use cases are demonstrated in such

publications.

(ii) Zhili Zhao and Adrian Paschke, �Rule Agent-Oriented Scienti�c Work�ow Exe-

cution�, in Proceedings of the 5th International Conference on Subject-Oriented

Business Process Management, pp. 109-122, 2013

(iii) Zhili Zhao and Adrian Paschke, �Event-Driven Scienti�c Work�ow Execution�,

in Proceedings of Business Process Management Workshops, pp. 390-401, 2012

(iv) Zhili Zhao and Adrian Paschke, �A Semantic Multi-Agent System for Intel-

ligent and Adaptive Scienti�c Work�ows�, in Proceedings of the 4th Interna-

tional Workshop on Semantic Web Applications and Tools for the Life Sci-

ences, pp. 123-124, 2011

The formal semantics of the rule-based work�ow language presented in Chapter

5 was published in proceedings of the SWAT4LS workshop in 2013.

1.6. Thesis Outline 7

(v) Zhili Zhao and Adrian Paschke, �A Formal Model for Weakly-Structured Scien-

ti�c Work�ows�, in Proceedings of the 6th International Workshop on Semantic

Web Applications and Tools for the Life Sciences, 2013

The following publications are about SymposiumPlanner�a series instances of

Rule Responder. Rule Responder is a rule-based agent framework for specifying

virtual organizations and provides a preliminary architecture of the RbAF in this

thesis.

(vi) Zhili Zhao, Adrian Paschke, Chaudhry Usman Ali and Harold Boley, �Sympo-

siumPlanner: Querying Two Virtual Organization Committees�, in Proceed-

ings of RuleML 2011@BRF Challenge, pp. 125-132, 2011

(vii) Zhili Zhao, Adrian Paschke, Chaudhry Usman Ali and Harold Boley, �Princi-

ples of The SymposiumPlanner Instantiations of Rule Responder�, in Proceed-

ings of the 5th International Conference on Rule-based Modeling and Comput-

ing on the Semantic Web, pp. 97-111, 2011

(viii) Zhili Zhao, Kia Teymourian, Adrian Paschke, Harold Boley and Tara Athan,

�Loosely-Coupled and Event-Messaged Interactions with Reaction RuleML 1.0

in Rule Responder�, in Proceedings of RuleML 2012 Challenge, 2012

Another related publication is about Reaction RuleML , which is used as an

interchangeable rule format between the RbAF and its client.

(ix) Adrian Paschke, Harold Boley, Zhili Zhao, Kia Teymourian and Tara Athan,

�Reaction RuleML 1.0: Standardized Semantic Reaction Rules�, in Proceed-

ings of the 6th International Symposium on Rules on the Web: Research and

Applications, pp. 100-119, 2012

1.6 Thesis Outline

After identifying the challenges of scienti�c work�ows, this chapter presented the

research questions, methodology and contributions of this thesis. Further chapters

of this thesis are organized as follows:

Chapter 2 introduces the background information of scienti�c work�ows. In

particular, the WsSWF features and requirements are detailed through speci�c use

cases. Moreover, this chapter presents the basic information of declarative program-

ming and classes of logic programs.

Chapter 3 presents the state-of-the-art on di�erent solutions with a purpose of

improving the �exibility of both business work�ows and scienti�c work�ows, such

as classical work�ow languages, agent-oriented work�ow compositions, rule-based

languages, existing scienti�c work�ow languages and using Semantic Web technolo-

gies in the work�ow composition. Most of these e�orts focus on orchestrated and

pre-structured work�ows with a purpose of providing e�cient and reliable processes

to users, rather than the WsSWFs considered in this thesis.

8 Chapter 1. Introduction

Chapter 4 presents the design of the conceptual work�ow framework, the

RbAF. This chapter describes a declarative rule-based work�ow language to spec-

ify complex reactive and decision logic at a lower level. With the bene�ts of the

declarative rules and the agent technology, the framework supports the dynamic

and adaptive work�ow execution from di�erent aspects. In addition, the RbAF also

integrates human behavior into the work�ow execution.

Chapter 5 details a formal semantics of the rule-based work�ow language of

the RbAF based on CTR. The formal semantics provides a mathematical work-

�ow representation and focuses on conversation-based reactive logic representation,

(data) event-driven CEP and the communication between processes.

Chapter 6 introduces the implementation of the RbAF�a Rule-based Agent

Work�ow System (RAWLS). As a proof-of-concept, a Web rule language Prova is

adapted to represent knowledge-intensive scienti�c logic as semantic rules, wrapped

in the agents, and to support message-driven conversation-based interactions be-

tween the rule-based agents.

Chapter 7 evaluates the RbAF from di�erent perspectives. First, based on

control-�ow and data patterns proposed by Van der Aalst et al., the rule-based

work�ow language is evaluated for the level of solving di�erent types of tasks. Then

the domain knowledge representation is evaluated from both LP and DL perspec-

tives. Afterwards, an empirical evaluation of the RAWLS based on typical properties

of computational models is presented. A system performance is also given at the

end of the chapter.

Chapter 8 summarizes the achievements and highlights of this thesis. Finally,

this chapter outlines directions for future work.

Part I

Background and State-of-the-Art

Chapter 2

Background

Contents

2.1 Scienti�c Work�ows . 11

2.2 Scienti�c Work�ow Life Cycle 13

2.3 Work�ow Management Systems 14

2.4 Scienti�c vs. Business Work�ows 15

2.5 Weakly-Structured Scienti�c Work�ows 18

2.5.1 Structured vs. Unstructured Processes 18

2.5.2 WsSWF Examples . 19

2.5.3 WsSWF Features . 26

2.5.4 WsSWF Main Requirements 27

2.6 Work�ow Description-Related Technologies 27

2.7 Imperative vs. Declarative Programming 29

2.8 Logic Program Overview . 31

2.9 Deductive, Abductive and Inductive Reasoning 35

2.10 Summary . 36

2.1 Scienti�c Work�ows

The work�ow technology has been widely recognized to streamline a group of services

to accomplish large and sophisticated goals. In the business domain, work�ows auto-

mate and optimize an organization's processes ful�lled by human or computer agents

in an administrative context [11], also known as business work�ows. Nowadays,

they have been used in numerous business domains, such as �nance and banking,

healthcare, telecommunications and o�ce automation. For example, an e-business

process of placing an order includes activities, such as order placing, processing,

payment and arrangement of shipment. In the healthcare domain, the work�ow

technology manages care-providing tasks that involve direct interactions between

healthcare specialists and customers (e.g., adjusting a client's drip or medication),

and administrative tasks that are more related to the �nancial part of a customer's

situation, like the registration of a customer's personal details and insurance related

data [12]. They control business processes with an aim of providing better services

for customers and reducing costs for business owners at the same time.

12 Chapter 2. Background

Scienti�c work�ows can be regarded as an application of the work�ow technol-

ogy in the scienti�c domain. In recent years, science has experienced a step change

in problem-solving ability brought about by the increasing digitization and automa-

tion of scienti�c instruments and practice, leading to a new era of science, also

known as e-Science [13]. On one hand, scienti�c research activities have become

to rely more and more on advanced information, computational and software tech-

niques; there is a growing demand not only for computational tools and resources,

but also for collaborations between scientists around the world. On the other hand,

the Web has a signi�cant impact on facilitating the practice of science and supports

wide-scale information discovery and sharing, facilitating collaboration and enabling

widespread participation in digital science [13]. The development of distributed com-

puting technologies, especially the advent of Service-Oriented Architecture (SOA)

and Web services, makes it possible to access and integrate resources on demand

simply and transparently. Over the years, the distributed computing technologies

have experienced an evolution from Cluster Computing closely connecting a group

of loosely computers in local networks, Grid Computing providing a transparent

and pervasive computing infrastructure, which integrates the resources (e.g., super-

computers, storage systems and data sources) over a Local Area Network (LAN),

metropolitan or Wide Area Network (WAN), to the latest buzzing paradigm Cloud

Computing driven by economies of scale, in which a pool of abstract, virtualized,

dynamically scalable, managed computing power, storage, platforms, and services

are delivered on demand to external customers over the Internet [14].

Organization A

Task1 Task2 Task6

Task3

Task4

Task5

Organization B

Heterogeneous Resources

Workflow Model

Figure 2.1: Scienti�c Work�ows

2.2. Scienti�c Work�ow Life Cycle 13

Work�ows represent a main programming model for the development of scienti�c

applications on the distributed systems [15]. Scienti�c work�ows can support scien-

tists to perform large-scale and complex e-Science processes, which usually involve a

group of small tasks, such as data management, calculation, analysis and represen-

tation. They enable scientists to streamline a group of small tasks into sophisticated

ones and execute them systematically on distributed resources, as shown in Figure

2.1. In addition, scienti�c work�ow systems provide the ability of automatically

recording the provenance (or lineage) of intermediate and �nal data products gen-

erated during the work�ow execution to support reproducibility, validity, and re-use

of scienti�c experiments [16].

It should be noted that, although scienti�c work�ows have been used in many

domains, it does not mean that they are useful for all scienti�c experiments. Scien-

ti�c work�ows are usually employed for in silico experiments [2], where research is

conducted via computer simulations with models closely re�ecting the real world.

In such simulations, an object is always the representation of a target system [17].

However, for some experiments that have to operate directly on target systems, sci-

enti�c work�ows may not be always helpful. In such cases, scienti�c work�ows are

often used as auxiliary tools in, such as data extraction, conversion and analysis.

2.2 Scienti�c Work�ow Life Cycle

Experiment/

Workflow

Design

Workflow

Preparation

Hypothesis,

Experiment

Goals

Post-

Execution

Analysis

Workflow

Execution

Workflow

Repository

Data

Resources

Provenance

Store
Project
Space

Figure 2.2: Scienti�c Work�ow Life Cycle

Scienti�c work�ows are exploratory in nature. Before converging on suitable

parameters to de�ne an experiment, scienti�c work�ows are usually executed in

what-if manners and involve an exploration of variants, and manipulation of di�erent

14 Chapter 2. Background

work�ow con�gurations [18]. In other words, the de�nition of a new work�ow is

usually based on existing ones, also known as scienti�c work�ow reuse.

Figure 2.2 gives the scienti�c work�ow life cycle adapted from [19]. A scienti�c

work�ow usually starts from a scienti�c hypothesis or a speci�c goal. During the

work�ow design phase, scientists often reuse existing work�ows or templates from

a public repository and re�ne them to meet their requirements. Required data

sources are selected and parameters are set by scientists during work�ow preparation.

During the work�ow execution, the processing history (i.e., provenance information)

is simultaneously recorded. Scientists often evaluate work�ow results in a post-

execution analysis phase; they inspect the provenance information or compare the

results with previous ones. Depending on the analysis results, the original goal may

be revised and a new iteration of the cycle begins.

In essence, scienti�c work�ows are modi�ed as many times as possible until they

produce expected outcomes. Therefore, it is crucial to provide a �exible design and

allow the work�ow logic to be revised easily. Moreover, the analysis of work�ow

results in terms of completed provenance information also plays an important role

in the scienti�c work�ow life cycle.

2.3 Work�ow Management Systems

A Work�ow Management System (WFMS) is a generic information system that

supports modeling, execution, management and monitoring of work�ows [20]. In

1995, the Work�ow Management Coalition (WfMC) proposed a reference architec-

ture (model) for business work�ows, as shown in Figure 2.3.

The WfMC's work�ow reference model identi�es interfaces within the structure

and contains a number of generic components which interact in a de�ned set of

ways. Figure 2.3 shows its main features and the relationships between main func-

tions. The top level of a WFMS consists of build time and runtime. At build time,

work�ows are de�ned via a text or graphical editor. A work�ow de�nition speci�es

involved tasks and their dependencies. At runtime, a work�ow engine executes it in

terms of the work�ow speci�cation de�ned at build time. In general, the de�nition

of a work�ow determines the behavior of a work�ow engine at runtime, and adaptive

mechanisms of the work�ow engine in turn require a �exible design at build time.

A Scienti�c Work�ow Management System (SWFMS) is a specialized WFMS

designed for scienti�c work�ows. Since the WfMC's work�ow reference model was

proposed in 1995, the reference model and its variants have been widely adopted in

the development of di�erent business WFMSs, but none of these reference architec-

tures is suitable for SWFMSs [21]. Such architectures are mainly used to simplify

access, control and orchestration of remote resources (e.g., Web services), and they

lack support for additional requirements of scienti�c work�ows (see a comprehensive

comparison between scienti�c and business work�ows in Section 2.4).

There are di�erent SWFMSs that have been developed during the past few

years, some prominent ones, such as Kepler [22], Triana [23], Taverna [8], Trails

2.4. Scienti�c vs. Business Work�ows 15

Distributed Infrastructure Environment

Business Process Analysis,

Modeling & Definition Tools

Process

Designer

Build Time

Run Time

Process Design

& Definition

Workflow Management System

Work

Presentation

Application

Launch

Administrator

/ Supervisor

Run-time interaction

with Users and

Application Tools Users
Applications

& IT Tools

Process

Definition
Process

changes

Figure 2.3: Work�ow Management System

[24], Pegasus [25] and Swift [26]. However, these systems usually have their own

proprietary frameworks, and an architecture which can be used as a reference model

for future research and development is still missing [21]. It is worth noticing that

proposing a scienti�c work�ow reference model goes beyond the scope of this thesis.

The purpose of this section is mainly to illustrate the interactive relationship between

build time and runtime of a WFMS.

2.4 Scienti�c vs. Business Work�ows

The formal concept of work�ow has been around in the business domain for several

decades. In 1996, the WfMC de�ned a work�ow as:

�The automation of a business process, in whole or part, during which documents,

information or tasks are passed from one participant to another for action, according

to a set of procedural rules.�

Over the years, many competing speci�cations and standards of business work-

�ows were proposed, some of which have been broadly accepted and used, super-

seding others [27]. In 1995, the WfMC �rstly published a work�ow reference model,

which de�nes a WFMS and identi�es the most important system interfaces (see

above section). The WfMC also creates XML Process De�nition Language (XPDL),

which is an interchange business process de�nition between di�erent work�ow prod-

ucts. With the combination of IBM's Web Services Flow Language (WSFL) with Mi-

16 Chapter 2. Background

crosoft's XLANG, BEA Systems, IBM, Microsoft and other companies created Busi-

ness Process Execution Language for Web Services (BPEL) and submitted BPEL

1.1 to OASIS for standardization in April 2003, followed by BPEL 2.0. BPEL [28]

is a standard way of orchestrating Web service execution in the business domain.

Compared with other business process languages, BPEL is supported by a great

deal of well-designed tools, such as ActiveBPEL Designer, Oracle BPEL Process

Manager, ActiveBPEL Engine, the BPWS4J Engine and Twister. In addition, the

Object Management Group (OMG) develops BPMN, which is a popular graphical

representation for specifying business processes in a business process model. As

mentioned before, the existing business work�ow tools cannot be directly reused

to capture scienti�c work�ows, but it is still valuable to compare them and obtain

experience from the development of business work�ows.

Scienti�c work�ows have di�erent goals with business work�ows. Business work-

�ows aim to automate and optimize an organization's processes ful�lled by human

or computer agents in an administrative context. The main purpose of building a

work�ow for companies is to enable customers to make better use of its services and

gain pro�ts from them. Their main concerns are the work�ow integrity and security.

For example, the service providers of an electronic business platform must ensure

that they provide comprehensive, powerful and customer-friendly transaction pro-

cesses, and every transaction is conducted in a secure environment; a seller will not

be noti�ed to ship products if a customer's payment is unsuccessful. On the other

hand, scienti�c work�ows usually assist scientists in streamlining (domain-speci�c)

knowledge-intensive activities in their experiments, especially in proving scienti�c

goals or hypotheses. Such scienti�c processes are often exploratory in nature, with

new analysis methods being rapidly evolved from initial ideas and preliminary work-

�ow designs [19]. They are often executed in multiple what-if (aka. trial-and-error)

manners, which may involve an exploration of variants, and manipulation of di�er-

ent work�ow con�gurations�often leading to signi�cant changes to a work�ow as

the experiment evolves to some useful outcomes [18, 29].

Also, the degree of �exibility that scientists have in their work is usually much

higher than in the business domain, where business processes are usually prede�ned

and executed in a routine fashion [29]. Driven by customers' demand, business

work�ows have to rely on �xed resources, and companies are willing to use their

own resources to ensure their work�ows running in a robust environment, even if

some resources are expensive. However, scienti�c work�ows are usually executed in

distributed environments, where integrated resources are heterogeneous and evolv-

ing in nature. It is necessary to provide �exible policies to react to dynamic changes

at runtime. For example, it is necessary to de�ne a policy to �nd alternative re-

sources if one requested resource is not available. Moreover, business work�ows are

usually constructed by professional business work�ow engineers. However, scientists

are work�ow authors, who are experts in their speci�c domains and are not nec-

essarily experts in information technology. It is necessary to hide the complexity

of underlying distributed environments and provide users with friendly interfaces.

All these factors demand a separate work�ow de�nition independent with concrete

2.4. Scienti�c vs. Business Work�ows 17

implementation details.

Business work�ows are typically control �ow-oriented and a task starts when its

precedent tasks are completed (see Figure 2.4 (a)). However, scienti�c computations

are usually more data �ow-oriented and a task is executed when required operands

are produced by its precedent task(s). In other words, what passes between work�ow

steps is not just control, but also data that �ows between and through the connec-

tions from one task to another and that drives the computation [19] (see Figure 2.4

(b)).

data1Task1

Task2

Task3

Task4

data2

data3

(b) Dataflow

Task1

Task2

Task3

Task4

(a) Control flow

Figure 2.4: Control Flow vs. Data Flow

In business WFMSs, it is important that a service keeps promised functional and

no-functional properties, and it is not important that how a service achieved its aims

in terms of used resources, software [30]. On the contrary, after a scienti�c work�ow

completes, scientists often want to know the derivation history of a work�ow in order

to prove the hypothesis set up at the outset of the work�ow. They may execute the

work�ow again to inspect if the same result could be produced once more, also known

as scienti�c work�ow reproduction. In other words, scienti�c work�ows should be

reproducible, and speci�c data products and tools used to generate work�ow results

have to be recorded. Provenance information provides scientists with an explanation

of work�ow execution and ensures that processes can be reproduced and extended.

As it can be noticed from the above comparison, such additional requirements of

scienti�c work�ows are the real challenges that prevent the development of scienti�c

work�ows. Currently there are two main ways to build a SWFMS: one solution is to

reuse the work�ow technologies in the business domain, such as [31, 32]. However,

although a great number of commercial business work�ow systems exist, the support

for scienti�c experimenting is still rudimentary and the commercially available tools

do not cover the whole life cycle of scienti�c experiments [33]. The other solution

is to build SWFMSs from scratch, such as Kepler, Triana, Taverna, Trails, Pegasus

and Swift. But these systems usually have their own proprietary frameworks and

limited application domains.

18 Chapter 2. Background

2.5 Weakly-Structured Scienti�c Work�ows

2.5.1 Structured vs. Unstructured Processes

From the process structure perspective, work�ows could be categorized into struc-

tured and unstructured processes, as shown in Figure 2.5.

Structured Process Unstructured Process

Task1

Task2

Task3 Task4

Task5

Task1

Task2

Task3

Task4

Weakly-Structured

Process

Figure 2.5: Structured vs. Unstructured Processes

The structured processes usually refer to a series of activities with a high de-

gree of organization to improve operational e�ciency and rein in costs through

automation. They have routine processes, and activity dependencies are rigorously

pre-de�ned in advance for the purpose of taking into account all process instance

permutations at runtime. Once established, the structured processes undergo far

fewer changes and are executed frequently with newly acquired datasets or varying

parameter settings [19]. Moreover, they are traditionally executed in a centralized

manner, which employs an e�cient central engine to coordinate and schedule tasks

of the processes. Scienti�c work�ows which are compute/data-intensive fall into

the structured ones, and their values lie in integrating distributed computational

resources to process large volumes of data. For example, Virtual Screening is a

promising approach to accelerate the drug development process, which is both data-

intensive and compute-intensive; it analyses a large number of chemical compounds

in order to identify those structures which are most likely to bind to a drug tar-

get [34]. Screening and further simulating each compound, depending on structural

complexity, can take from one to a few minutes on a standard PC, which means

screening a database with millions of chemical compounds can take years of com-

putation time [35]. With the bene�ts of the work�ow technology, it is possible to

integrate distributed resources to perform parallel computations and make more ef-

�cient drug discovery process. Another type of scienti�c work�ows in the scope of

the structured processes is administrative scienti�c work�ows, which refer to routine

activities, such as managing data coming from instrument streams [29].

Whereas the unstructured processes are often goal-oriented and done with un-

certainty. They have variable logic and need a �exible design to support dynamic

adaptation at runtime. Also, human users are often involved to guide the work�ow

execution at runtime, and execution �ows inside these processes might be modi�ed

by human users as needed. Moreover, compared with the structured processes, the

unstructured processes often involve knowledge-intensive activities as well as inter-

actions between multiple participants. Table 2.1 summarizes the di�erences between

2.5. Weakly-Structured Scienti�c Work�ows 19

the structured and unstructured processes.

However, it is di�cult to �nd a real-world scienti�c process, which is completely

structured or unstructured. The common ones are the processes that fall in between

the structured and unstructured cases. Such processes contain activities that are

either knowledge-intensive or exploratory but are vital to correct results. In this

thesis, these processes are referred to as Weakly-structured Scienti�c Work�ows

(WsSWFs).

Table 2.1: Structured vs. Unstructured Processes

Structured processes Unstructured Processes

Goal Improving e�ciency Goal oriented

Process logic Routine process with static logic Variable logic

Adaptability
Prede�ned in advance and

undergone fewer changes
Dynamic modi�cation

Service

Composition
Centralized work�ow execution

Collaboration between

participants

Human

Interaction
Fewer user interaction

Rich user interaction and

work�ow steering

Applications Compute or data-intensive
Knowledge

intensive/decision-centric

2.5.2 WsSWF Examples

The WsSWFs are intermediate ones in between the structured and unstructured

processes. At the heart of these work�ows there are tasks that are often done with

uncertainties, but they are crucial parts of the whole work�ows. These tasks may

be decision-centric and involve exploration of variants or manipulation of di�erent

work�ow con�gurations; they may be collaborative and involve interactions between

multiple participants in di�erent places; they could be knowledge-intensive and in-

volve complex logic to express messy scienti�c policies or deal with unpredictable

exceptions (or unforeseen scenarios) at runtime; moreover, human users might be

involved to perform manual tasks, e.g., making decisions at runtime and steering

the work�ow execution by determining the order of work�ow activities.

Therefore, the WsSWF is not one single work�ow but an umbrella term used to

generalize more speci�c work�ows: exploratory work�ows, collaborative work�ows,

knowledge-intensive work�ows, event-driven work�ows, interactive work�ows and

ad hoc work�ows, as shown in Figure 2.6. In what follows, real-world use cases from

di�erent domains are employed to introduce these work�ows.

20 Chapter 2. Background

Collaborative

Workflows

Knowledge-

Intensive

Workflows

Event-Driven

Workflows

Interactive

Workflows

Ad Hoc

Workflows

Exploratory

Workflows

Weakly-Structured

Scientific Workflows

Figure 2.6: Weakly-Structured Scienti�c Work�ows

2.5.2.1 Exploratory Scienti�c Work�ows

Scienti�c work�ows are traditionally used to weave the steps of scienti�c exper-

iments. In a number of new applications, however, work�ows are assembled for

exploratory, in other words, scientists are interested in undertaking one-of-a-kind

[36] or what-if [18] scenarios. Instead of designing a single work�ow that will be

run thousands of times, a user (or set of users) manipulates ensembles of work�ows

that are iteratively re�ned as he/she formulates and tests hypotheses [36]. Analy-

sis methods or tools in these exploratory scienti�c work�ows are evolved frequently

from initial ideas and preliminary work�ow de�nitions. With the formulation of

experiments as scienti�c work�ows, one could imagine creating a �rst work�ow de-

scription of an experiment and subsequently testing with di�erent combinations of

parameters and process adaptations until a suitable solution is found [37].

Input

image

Corrected

image

Registered

image

Normalized

image

No-uniform

intensity correction

Stereotaxic

registration Normalization

Filtered

image

Tissue

classes

Atrophy

computationBayesian

classification

Masking and

volumes computation

Anisotropic

diffusion

Figure 2.7: The Atrophy Computation Method Stages for Multiple Sclerosis

Caeiro-Rodriguez et al. [37] present an exploratory process in medical image

analysis, which is about the identi�cation of brain tissue loses in order to diagnose

2.5. Weakly-Structured Scienti�c Work�ows 21

Multiple Sclerosis. For the purpose of designing an automatic image-based method

to quantify brain atrophy, an iterative exploration on di�erent stages and datasets

is involved. The process of the atrophy computation methods adapted from [38] is

shown in Figure 2.7. Depending on the raw image features, some stages may be

required or not. For instance, the steps of non-uniformity intensity correction, nor-

malization and anisotropic di�usion are dependent on the hardware used to generate

the input image. The stereotaxic registration is employed to rectify discrepancies in

the raw images if necessary.

2.5.2.2 Collaborative Scienti�c Work�ows

Existing SWFMSs mainly allow single scientist to compose and manipulate work-

�ows [39]. As the nature of research questions becomes more and more complex,

many scienti�c research projects have become collaborative to �nd answers, and

there is a compelling need of a proper IT infrastructure and online services to sup-

port collaborative scienti�c work�ows on the Internet [39]. Collaborative scienti�c

work�ows not only integrate distributed heterogeneous data and computational re-

sources, but also allow researchers from di�erent organizations collaborating in a

large scienti�c experiment.

Collaborations supported by the scienti�c work�ows could take place in a variety

of ways, including data or computational resource sharing, delegating tasks to other

parties, working together on complex tasks, etc. Figure 2.8 presents a �ctional but

realistic process of identifying a newly discovered ant (scienti�c name: formicidae).

It is taken from European Distributed Institute of Taxonomy (EDIT), which is a

network of excellence gathering 28 major institutions devoted to knowing the living

world better with the support of the European Commission. The process involves

the collaboration of three participants: �eldworker, taxonomist and curator.

MagicDraw, 1-1 F:\FUB博士相关工作\Thesis\Thesis\images\Chapter2\AntTreatment.mdzip AntTreatm

Ant Description Receiving Report

Sending ReportTreatmentIdentification Archive

Result ArchiveReceiving Result

Description Report

Result

Figure 2.8: Process of Treating a Newly Discovered Ant

22 Chapter 2. Background

MagicDraw, 1-1 F:\FUB博士相关工作\Thesis\Thesis\images\Chapter2\SnowDepthModel.mdzip Untitle

Model AnalysisRegression AnalysisSample Screening

Raw Inverse Model

Raw Samples Valid Samples

Error Analysis

irrelevant

relevantdissatisfied

satisf ied

Figure 2.9: Building Snow Depth Forecast Model from Remote Sensing Data

The process is organized as follows. First, a �eldworker who often works in the

countryside triggers the identi�cation process. He/She describes a newly discovered

ant and then sends the description to a taxonomist, who has experience and expertise

to perform the identi�cation and treat it. Afterwards, a curator archives the iden-

ti�cation result. Finally, the corresponding treatment schemes are then provided to

the �eldworker. These participants are often in di�erent locations and collaborate

on the ant identi�cation.

2.5.2.3 Knowledge-Intensive Scienti�c Work�ows

Knowledge-intensive scienti�c work�ows often involve knowledge-intensive activities

regulated by complicated scienti�c policies. Such activities are decision-centric, and

the decisions are often made based on domain-speci�c knowledge, require multiple

sub-decisions, use a complex situation based on decision technique and conclude one

or more results [40].

Figure 2.9 shows a work�ow taken from the remote sensing and Geographic

Information System (GIS) domain with a goal of establishing a snow depth model

for pastoral areas without �eld measurements. The work�ow is based on an iterative

regression analysis to estimate the relationship between satellite data (horizontal and

vertical polarization brightness temperature di�erences, to be more precisely) and

the snow depth. To build a precise prediction model, the process involves a task of

screening valid snow depth samples, which is decision-centric with complex criteria.

For example, in an experiment of establishing a snow depth model for the pastoral

area of northern Xinjiang (in China) [41], screening snow depth samples is performed

in terms of the criteria: (1) the snow depth must be thicker than 3.0 centimeters;

(2) the meteorological station should be at an elevation lower than 2000 meters; (3)

the snow must not be thaw; (4) the snow must not be wet snow that contains much

liquid; (5) the snow must not be covered by deep frost; etc. The judgment of the

2.5. Weakly-Structured Scienti�c Work�ows 23

wet snow and the frost layer further involve sub-criteria, such as the thaw happens

in March if the local temperature is higher than 6 �.

In other experiments of building the snow depth model, the criteria can be reused

with di�erent parameters. For example, in another similar experiment of building

a snow depth model in Qinghai Province of China [42], the thaw happens when the

local temperature is higher than 9 �. Moreover, there is no limit the elevation of

meteorological stations.

MagicDraw, 1-1 F:\FUB博士相关工作\Thesis\Thesis\images\Chapter2\AntTreatment.mdzip Ant Identif

Human
Identification

Task
Allocation
(Location)

Body
Validation

Food
Validation

Nest
Validation

isSuccessful

isFailed

Figure 2.10: Ant Identi�cation

In addition, the ant identi�cation task itself involves complicated logic to dis-

tinguish an ant from its homogeneous groups; it is represented as a sub-process

(with a �+� mark in the notation) in Figure 2.8. The details of the identi�cation

are shown as a process in Figure 2.10. The process starts with assigning the task

to an inference service acting on the taxonomist behalf in terms of the location,

where the ant is discovered. Afterwards, the ant is identi�ed in terms of the do-

main knowledge. Ants can di�er widely in their food requirements and behaviors,

some pests even can cause a serious impact on crops. According to the Bayer's ant

identi�cation guide [43], the policies used to identify an ant include body features,

nest structure and habits (e.g., food preference). Likewise, the task assignment and

the ant treatment also need to be encoded with domain knowledge. In Figure 2.10,

these knowledge-intensive decision-centric tasks are represented as rounded rectan-

gles with small table notations in them. Moreover, if a discovered ant is unusual, it

might involve domain experts to identify it manually. From a technical perspective,

it is di�cult to implement this kind of knowledge-intensive decision-centric process

by traditional WFMSs.

Figure 2.11 shows another process used to analyze the precision of protein pre-

diction algorithms. Proteins perform most important tasks in organisms, such as

catalysis of biochemical reactions, transport of nutrients, recognition and transmis-

sion of signals [44]. In general, protein function can be thought of as, �anything that

happens to or through a protein� [45]. For the purpose of describing protein func-

tions, the Gene Ontology Consortium [46] provides an ontology of protein functions

based on a dictionary of well-de�ned terms, also known as Gene Ontology (GO)

terms. Each GO term de�nes gene product properties as well as the relationships

24 Chapter 2. Background

MagicDraw, 1-1 F:\FUB博士相关工作\Thesis\Thesis\images\Chapter2\ProteinPredictionAnalysis.mdzi

Protein Validation

Predicted GO Term
Validation

Download Protein
Annotations

Prediction Analysis

Reliable GO Term
Selection

Reliable GO TermsPredictedGOTerm

GO TermsProtein

valid

hasReliableGOTerm

noReliableGOTerm

invalid

invalid

valid

Figure 2.11: Protein Prediction Result Analysis

with other terms. The protein prediction is often conducted by computational algo-

rithms that generate one or more GO terms indicating the functions that a protein

may have. The prediction is considered correct if the protein has some true annota-

tions (i.e., GO terms) that lie on a path in the gene ontology tree from the root to

a leaf that visits the predicted annotation (i.e., GO term) [47]. For example, Figure

2.12 [48] shows an ancestor chart (gene ontology tree) of GO term GO:0007167 in

the context of its related terms. The GO term GO:0007167 is generated by a pro-

tein prediction algorithm NetCo�ee [49] to predict protein Q15653 of human. The

prediction is considered correct since the protein Q15653 has a reliable GO term

GO:0007165 (i.e., cell death) that lies on a path in the ancestor chart of the GO

term GO:0007167 from the root to a leaf.

The process of Figure 2.11 has two inputs: a protein (represented by protein

product ID) and a predicted GO term generated by a protein prediction algorithm.

It starts by retrieving GO terms associated with the protein. This task is often

done by querying Quick GO database [48] with a protein name. The GO terms of

Quick GO are suggested by and solicited from members of the research and anno-

tation communities. They have evidence codes that indicate how the description

to a particular term is supported. In general, only reliable GO terms are used to

analyze the precision of protein prediction algorithms. For example, in the analy-

sis of protein prediction results generated by NetCo�ee, GO terms with evidence

codes IEA (inferred from electronic annotation) and ISS (inferred from sequence or

structural similarity) are considered as unreliable terms [49]. The analysis process

iteratively takes reliable GO terms of the protein, checks if there is a reliable GO

term lying on a path in the gene ontology of the predicted GO term; the analysis

process terminates when one or no required reliable GO term is found.

In order to automate the analysis task, it is necessary to analyze the gene on-

tology. Moreover, to improve the robustness of the process, the work�ow inputs

given by users need to be veri�ed, i.e., the work�ow inputs must be a valid protein

2.5. Weakly-Structured Scienti�c Work�ows 25

Figure 2.12: GO Term Ancestor Chart

product ID and a GO term, as shown activities in Figure 2.11. These veri�cation

activities also involve decisions based on domain knowledge and cannot be easily

implemented by traditional WFMSs.

2.5.2.4 Event-Driven Scienti�c Work�ows

The integration of content-based event noti�cation systems with work�ow manage-

ment is motivated by the need for dynamic, data driven application systems which

can dynamically discover, ingest data from, and interact with other application sys-

tems, including physical systems with online sensors and actuators [50]. On one

hand, event-driven work�ows are capable of providing more accurate outcomes with

the use of updated or real-time data inputs. On the other hand, due to the di-

versity of the work�ow inputs, these work�ows need a �exible design to support

dynamic decision-making on-the-�y. In other words, selecting subsequent branches

is based on real-time environmental information; prior to the decision, all subsequent

branches are possible to be selected.

Caeiro-Rodriguez et al. also present two event-driven scienti�c work�ow exam-

ples: one is about producing daily forecasts of near-surface temperatures in cran-

26 Chapter 2. Background

berry bogs in Wisconsin; the other is about processing streaming observations from

external sensors [37].

2.5.2.5 Interactive Scienti�c Work�ows

Even though scienti�c work�ows are mainly used to automate repetitive tasks, how-

ever, there are still manual tasks that are too complicated to automate, such as

setting environment properties, checking intermediate results and controlling the

convergence of results for subsequent branches. Such work�ows requiring human

interactions are also refereed as interactive scienti�c work�ows in this thesis. In ad

hoc work�ows (explained in the next section), which may contain steps that need to

be determined on-the-�y. Human users can be instrumental to make dynamic deci-

sions and steer the work�ow execution. For example, in the ant identi�cation and

treatment process mentioned above, domain experts will be involved if the intelligent

inference services cannot perform the identi�cation automatically. Moreover, user

interaction also helps in handling unexpected exceptions at runtime. For example,

scientists may be asked to provide missing resources.

2.5.2.6 Ad Hoc Scienti�c Work�ows

Compared with the work�ows mentioned above, ad hoc work�ows are much closer

to the unstructured ones. They have no prede�ned structures and the work�ow

execution is steered by scientists as required. There are generally two di�erent types

of ad hoc work�ows: one involves a set of activities that can be pre-de�ned at design

time, but the sequence of their performances are determined by scientists depending

on latest context information; the other one can deal with unpredictable exceptions

at runtime. For example, there might be no resource available to perform a scienti�c

task at runtime, resulting in the failure of the whole process and the waste of time.

With an ad hoc operation, it is possible to avoid these problems by providing missing

resources or modifying the work�ow logic, thereby improving work�ow robustness.

2.5.3 WsSWF Features

The WsSWFs are miscellaneous and could involve two or more distinct work�ows

mentioned above. In general, the WsSWFs have the following features:

(i) Variable scienti�c processes: compared with the structured processes that

are undergone fewer changes, the WsSWFs have variable logic in terms of

individual circumstances. In other words, one instance of the process might

be di�erent from another based on di�erent circumstances.

(ii) Knowledge-intensive: work�ows usually contain decision points that de-

termine the execution paths at runtime. In the WsSWFs, these decision

points are not limited to simple Boolean expressions but often involve complex

knowledge-intensive conditional decisions that rely upon the knowledge about

a speci�c domain.

2.6. Work�ow Description-Related Technologies 27

(iii) More error-prone: the WsSWFs extend the range of scienti�c work�ow

applications. However, since they are less-structured, they are more likely to

subject to frequent changes and exceptions at runtime.

(iv) Collaboration and interaction: instead of improving the operational ef-

�ciency, the WsSWFs focus on �nding solutions to problems. They usually

need to interact with human experts and involve collaboration between mul-

tiple participants.

2.5.4 WsSWF Main Requirements

This section summarizes main requirements of the WsSWFs, which will be used as

the benchmarks to evaluate the existing WFMSs in Chapter 3.

(i) Rich Process Speci�cation: the WsSWFs contain complex decision-centric

tasks, which require processes to handle new and exceptional situations. Be-

sides simple control �ow descriptions (e.g., a task is enabled after the com-

pletion of a preceding task), it is also necessary to describe advanced process

logic, which needs dynamic recognition of operational as well as knowledge-

based states to implement intelligent routings at runtime.

(ii) Expressing Domain-Speci�c Policies: the WsSWFs often involve complex domain-

speci�c policies, which regulate the behavior of scienti�c applications. In order

to automate the WsSWFs, it is necessary to express such scienti�c policies and

enable machines to deal with them automatically.

(iii) Flexibility : the structured processes su�er from limitations with respect to dy-

namic evolution and adaptation at runtime. In order to provide high �exibility,

the WsSWFs should be allowed to be easily modi�ed according to individual

situations.

(iv) Human Interaction: scienti�c work�ow systems are often designed to automate

scienti�c processes and improve their operational e�ciency. However, human

users still need to conduct manual tasks and steer the work�ow execution to

deal with unforeseen problems at runtime.

(v) Exact Reproducibility : provenance plays an important role in veri�cation, ex-

planation, reproduction and informed reuse of data used and produced by

scienti�c work�ows, especially by the WsSWFs, which have non-deterministic

decision logic. However, provenance is a broad standalone topic in itself. This

thesis jut provides a basic outline on it, and the problem as a whole is out of

the scope of this thesis.

2.6 Work�ow Description-Related Technologies

This thesis aims at describing the WsSWFs and supports their adaptive execution

from a technical perspective, and this section clari�es the technologies related to a

work�ow programming language, as shown in Figure 2.13 adapted from [51].

28 Chapter 2. Background

specify based on

describe

describe

describe

Graphical

Modeling

Technologies

Programming

Languages

Formal

Models

Workflow

Patterns

describe

Figure 2.13: Work�ow Description-Related Technologies

Work�ows automate recurring activities (in whole or part) with a purpose of

improving e�ciency and reducing costs at the same time. Such recurring work�ow

processes are described by abstract work�ow patterns, which are independent with

speci�c implementation technologies. From di�erent perspectives, the Work�ow

Patterns Initiative [52] has delivered four types of work�ow patterns related to the

development of work�ow applications, i.e., control-�ow patterns, data patterns, re-

source patterns and exception handling patterns. Work�ow patterns are the formal

ways of documenting the solutions to recurring problems and are re�ected in di�er-

ent layers of the work�ow description, including work�ow programming languages,

graphical work�ow modeling technologies, and work�ow formal models, as shown in

Figure 2.13.

Work�ow programming languages (or work�ow languages) capture the relevant

information of application processes with the aim of their execution controlled by

a WFMS [53]. They specify both logical steps and information passing from one

participant to another. The work�ow speci�cations described by these program-

ming languages will be used as input to a WFMS for the work�ow instantiation

and execution. Currently, there are a number of industrial and scienti�c work�ow

languages available, such as BPEL [28], Yet Another Work�ow Language (YAWL)

[54] and Simple Conceptual Uni�ed Flow Language (SCUFL) [55]. However, since

the work�ow programming languages are usually verbose, graphical work�ow mod-

eling technologies are proposed to facilitate the work�ow modeling at a high level.

For example, BPMN is a standardized graphical representation for business pro-

cesses modeling [56]; it is possible to create not only business-oriented diagrams,

but also technical models for process execution. Besides BPMN, Uni�ed Modeling

Language (UML) activity diagram also can be used as a standard in the area of

organizational process modeling. The evaluation results [57] show that the activity

diagram of UML supports the majority of the patterns considered, including some

that are typically not supported by commercial WFMSs. These graphical work�ow

modeling tools bring a clear division that allows work�ow modeling engineers to

2.7. Imperative vs. Declarative Programming 29

focus on process requirements, and lets work�ow developers specify corresponding

implementation details with concrete programming languages.

Work�ow formal models provide a theoretical foundation to work�ow program-

ming languages and are capable of reducing ambiguity and opening possibilities for

veri�cation and analysis. Such models can be used to support the design of work�ow

languages and of their interpreters, compilers and optimizers as well as of debug-

gers, and to support the de�nition of veri�cation procedures, similar to those used

for verifying the correctness of complex business transactions [58]. Some prominent

work�ow formal models are Petri nets and calculi theory (e.g., π-calculus). Currently

there are many work�ow programming languages available, and some of them have

syntax and semantics based on these formal models. For example, BPMN is based

on Petri nets; XLANG is based on π-calculus. The thesis proposes a declarative

rule-based work�ow language for WsSWFs. To facilitate the evaluation, a formal

semantics of the language based on CTR is given in Chapter 5.

2.7 Imperative vs. Declarative Programming

A programming language is used to create programs that control the behavior of

a machine or to express algorithms precisely. There are basically two approaches

of programming: imperative and declarative. Imperative programming is character-

ized by a state and commands which modify the state. Declarative programming, on

the other hand, describes a proof that some truth holds. Imperative programming

can be further divided into procedural programming (e.g., FORTRAN, C) and ob-

ject oriented programming (e.g., C++, Java), and declarative programming can be

divided into logic programming (e.g., Prolog, Prova) and functional programming

(e.g., Haskell, Erlang).

It is worth noticing that a reasonable classi�cation of programming languages is

not the goal of this section. The goal of this section is to identify both advantages

and disadvantages of two di�erent programming paradigms, which can be used to

evaluate existing solutions to support an adaptive work�ow execution in Chapter 3.

The imperative programming paradigm explicitly describes the control �ow of

a program in terms of statements changing the program state, i.e., an imperative

program prescribes the execution of a task in terms of sequences of actions to be

taken. On the other hand, the declarative programming paradigm expresses what

a program should accomplish without prescribing how, i.e., a declarative program

expresses the logic of performing a task without explicitly describing its control �ow.

In what follows, a simple example of checking the elevation of a meteorological

station mentioned in the process of screening snow depth data (see Section 2.5.2)

is implemented in both imperative and declarative ways. In the experiment with a

purpose of establishing a snow depth model for the pastoral area of northern Xin-

jiang, all snow depth data must be from meteorological stations that have elevation

lower than 2000 meters.

The rule is �rst programmed in Java:

30 Chapter 2. Background

Listing 2.1: Example of Imperative Programming

1 int elevationCriticalvalue = 2000;

3 boolean checkElevation(String station){

4 double stationElevation = getStationElevation(station);

5 if(stationElevation < getDepthCriticalValue ())

6 return true;

7 else return false;

8 }

10 double getStationElevation(String s) {

11 if(s=='Fuhai ')

12 return 500.9;

13 else if(s=='Aletai ')

14 return 735.3;

15 else if(s=='Fuyun ')

16 return 823.6;

17 else if(s=='Qinghe ')

18 return 1218.2;

19 ...

20 }

22 double getDepthCriticalValue (){

23 return depthCriticalValue;

24 }

25 ...

The above program has three methods: (1) checkElevation(String station) checks

if the elevation of a meteorological station is valid; (2) getStationElevation(String

s) obtains the elevation of a given station; (3) getDepthCriticalValue() obtains the

critical value of the station elevation in the experiment. Each method speci�es every

step to �nal results. For example, the programmer gives the procedure of stepping

through all stations to obtain the elevation of a given station.

With declarative programming, the following programs in Prova [59] focus on

declarative problem representation, instead of programming problem solutions. Prova

is a declarative rule language, and it is also used in the proof-of-concept implemen-

tation of this thesis. More details will be found in Section 6.1.

Listing 2.2: Example of Declarative Programming

1 checkElevation(Station) :-

2 stationElevation(Station , Ele),

3 elevationCriticalvalue(ElevationCriticalvalue),

4 Ele < ElevationCriticalvalue.

6 % measure unit: meter

7 elevationCriticalvalue (2000).

9 % measure unit: meter

10 stationElevation('Fuhai ', 500.9).

11 stationElevation('Aletai ', 735.3).

12 stationElevation('Fuyun ', 823.6).

13 stationElevation('Qinghe ', 1218.2).

14 ...

16 Queries:

18 elevationCriticalValue(X)? The critical value of the station elevation.

2.8. Logic Program Overview 31

19 stationElevation(Stations ,X)? Elevations of all stations

20 stationElevation('Fuhai ',X)? Elevation of 'Fuhai ' station

21 checkElevation('Fuhai ')? The data of station 'Fuhai ' is valid?

22

Here, the �rst rule describes the logic of checking if the elevation of a meteorolog-

ical station is valid. The rule does not give the logic of stepping through all stations

when it obtains the elevation of a given station, and matching a given station is per-

formed by the Prova rule engine. It also uses fewer coding e�orts to implement more

queries than the Java program does. Besides the functions provided by the Java

program, the Prova program also can query elevations of all stations. Moreover, the

syntax is close to natural language and is also understandable to domain experts. If

there is a necessary to change the logic, these rules can be easily modi�ed without

extending the inference machine. However, it is often di�cult to modify imperative

programming languages since their logic is deeply buried in source programs.

Accordingly, the counterpart languages used to specify work�ows can also be

categorized into imperative and declarative work�ow languages, respectively. The

imperative work�ow languages explicitly describe every possible process behavior

with atomic design primitives. This kind of rigid approach couples modeling with

execution and does not �t �exible processes. On the contrary, declarative work�ow

programming eliminates the rigidness of computation by describing the outcome of

a work�ow, rather than specifying how to get the outcome. However, it is di�cult

to which one is better. They play well when they are used in their own �elds.

2.8 Logic Program Overview

Generally, a logic program is a �nite set of rules. Each rule r is of the form:

α1 ∨ ... ∨ αk : − β1, ..., βm, not βm+1, ... , not βn.

where α1, ..., αk, β1, ..., βn are atoms, and k ≥ 1, n ≥ m ≥ 0. The disjunction

of α1∨ ...∨αk is the head of r, and the conjunction of β1, ..., βm, not βm+1, ..., not βn
is the body of r. Let the set of the head literals be denoted by H(r) and the body

of r be denoted by B(r). Also, let the set of positive and negative body literals be

denoted by B+(r) and B−(r), respectively.

Furthermore, an atom is a formula p(t1, ..., tn), where p is a predicate symbol of

arity n (n≥0). A literal is either an atom or of the form not β where β is an atom.

Each argument of an atom ti is a term, which is either a variable or a function term

with a form of f(t1, ..., tk). f is a function symbol of arity k (k≥0), and each ti is a

term. A functional term with arity zero is a constant.

Based on di�erent classes of rules, there are di�erent types of logic programs:

propositional logic programs, Datalog logic programs, de�nite logic programs, strat-

i�ed logic programs, normal logic programs, extended logic programs, disjunctive

logic programs and combinations of classes, as shown in Figure 2.14 adapted from

[60].

32 Chapter 2. Background

Extended Disjunctive

Normal Disjunctive Extended

Stratified Disjunctive

Definite Disjunctive

Normal

Stratified

Definite

Datalog

Propositional

Figure 2.14: Classes of Logic Programs

A propositional logic program consists of simple propositional clauses. All literals

of a clause are propositional ones without variables, quanti�ers and functions, and

thus propositional logic programs provide limited expressive power.

As a lightweight declarative logic programming language, Datalog is often used

as a query language for deductive databases. Moreover, Datalog is function-free,

i.e., all functional terms appearing in a Datalog program are constants. In addition,

variables in the head of a rule must appear in its body. Note that Datalog has its

origins as a query language in database systems, and there are extensions that have

been made to Datalog [61, 62].

A de�nite logic program is a set of rules of the form:

α : −β1, β2, ..., βn. (n ≥ 0)

where α and β1, ..., βn are all positive atoms, i.e., B−(r) = ∅.
A �nite logic program goes beyond Datalog programs by allowing functions,

which provide the ability of handling �nite sets of constants, such as encoding lists,

trees and other common data structures.

However, unlimited function symbols may make common reasoning tasks un-

decidable even for rather simple programs. A natural decidable fragment of logic

2.8. Logic Program Overview 33

programming with functions are nonrecursive programs, in which no predicate de-

pends syntactically on itself [63]. In addition, there are decidable and expressive

fragments of logic programs with function symbols that have been identi�ed. In

a survey of the decidability results for Answer Set Programming (ASP) program-

ming with functions, Alviano et al. classify decidable ASP programs into three

groups: bottom-up commutable, top-down commutable and �nitely representable sta-

ble models [64]. Programs in the bottom-up commutable group allow for stable

model computation and query answering by searching over �nite ground programs.

Classes of programs in this group are ω-restricted [65], γ-restricted [66], �nite do-

main [67], arguments restricted [68] and �nitely ground programs [67]. Programs in

the second group are designed for query answering. They usually have an in�nite

number of answer sets and a �nite number of atoms must be identi�ed to guarantee

the decidability of answering a query. Programs in this group are FP2 programs

[69], positive and strati�ed �nitely recursive programs [70, 71], and �nitary programs

[72]. Programs in the third group are FDNC [73] and bidirectional programs [74],

which are characterized by in�nite stable models with a �nite representation in the

shape of a forest of trees.

De�nite logic programs in general are not expressive for general knowledge repre-

sentation, which involves decision and situational logic. This is because de�nite logic

programs exclude negation, an important feature for real knowledge representation

applications.

A normal logic program has a similar form with de�nite logic programs, but each

body literal can be either positive or negative:

α : − β1, ..., βm, not βm+1, ... , not βn. (n ≥ m ≥ 0)

Negation

Classical/Strong negation

(Open World Assumption)
¬ A

Negation as Failure (NaF)

(Closed World Assumption)
not A

Figure 2.15: Logic Program Negations

In general, there are two types of negations: Negation as Failure (NaF) and

classical negation, as shown in Figure 2.15. NaF is based on closed world assump-

tion, which assumes something is false if it cannot be proved to be true. In other

words, it transforms proving something false by proving its truth. This is useful for

representing normals and exceptions. The following example presents a set of Prova

rules, which describes that an animal is dead if it cannot �y. jack is proved to be

dead since the rule engine cannot prove �y(jack).

Listing 2.3: NaF Implemented in Prova

34 Chapter 2. Background

1 :- eval(died(jack)).

3 fly(X):- bird(X).

5 died(X):-

6 not(fly(X)),

7 println ([" Yes"]),

8 !.

9 died(X):-

10 println (["No"]).

12 bird(tweety).

13 rabbit(jack).

15 % NaF as implemented in Prova internal function.

16 not(A) :-

17 derive(A),

18 !,

19 fail ().

20 not([X|Args]).

The classical negation is based on open world assumption, which assumes some-

thing to be false, if it is explicitly proved to be false. In other words, the negation is

in the head of a rule. However, the classical negation might lead to logical con�icts

between rules.

The negation in normal logic programs is NaF, and a negative literal succeeds

when all attempts to prove the literal fail in a �nite amount of time.

However, although negation is needed in practical knowledge representation ap-

plications, it is a complex problem in deductive databases and logic programming,

since it may result in a computation that does not fail �nitely. The problem is

presented by the following example taken from [75].

Listing 2.4: Recursion Through Negation

1 :- eval(happy("Joe ")).

3 stressed(X):-

4 not(happy(X)),

5 not(works(X)).

7 works(X):-

8 normal(X).

10 normal(X):-

11 not(stressed(X)).

13 happy(X):-

14 not(works(X)),

15 !,

16 println ([" Happy "]).

17 happy(X):-

18 println ([" unhappy "]).

20 not([X|Args]) :-

21 derive ([X|Args]),

22 !,

23 fail ().

24 not([X|Args]).

2.9. Deductive, Abductive and Inductive Reasoning 35

When trying to derive happy(�Joe�), it needs to check not(works(�Joe�)) and for

this it is necessary to check normal(�Joe�) which implies to check stressed(�Joe�).

And then the derivation of happy(�Joe�) enters an in�nite loop. A key feature of this

kind of program is that there is a negation wrapped in a recursion, e.g., the derivation

of not(works(X)) involves checking happy(X) itself. For the purpose of solving this

problem, there are approaches that have been proposed: strati�ed semantics, stable

model semantics, well-founded semantics, etc.

Strati�cation is a constraint usually placed on logic programs to rule out negation

wrapped inside recursion. The predicates of strati�ed logic programs are placed into

strata so that one can compute over the strata [60]. A detailed de�nition of strati�ed

logic programs can be found in [76].

However, not all logic programs can be strati�ed. Stable Model Semantics (SMS)

addresses this issue by checking whether a candidate set of atoms is stable or not.

Informally, an interpretation I of a normal logic program P is a stable model of P

if I is the least Herbrand model of P.

If a logic program can be strati�ed, then it has a unique stable model, and

its strati�ed semantics and stable semantics coincide. In general, a normal logic

program may have zero, one or multiple stable models. In other words, SMS cannot

provide a stable model to every logic program; moreover, the computation of stable

models is NP-complete. To address the limitation of SMS, Well-Founded Semantics

(WFS) is invented.

Roughly speaking, WFS assigns value �unknown� to an atom, if it is de�ned by

unstrati�ed negation [63]. In WFS, a logic program has a unique model. Note that

if a logic program P can be strati�ed, then it has a unique minimal model, which is

also both a stable model and a total well-founded model. However, the disadvantage

of WFS is that it cannot distinguish between several stable models and no stable

model.

Disjunctive logic programs allow rules with disjunctions at their head and provide

a more natural and �exible knowledge representation. They may contain de�nite or

inde�nite information which re�ects human limitation in understanding the world

being modeled [77]. Logic programs which employ both types of negations are

called extended logic programs. In addition, there are combinations of such logic

programs, e.g., de�nite disjunctive, strati�ed disjunctive, normal disjunctive and

extended disjunctive logic programs, as shown in Figure 2.14. On one hand, these

combined logic programs increase the expressiveness to some extent, but on the

other hand, their complexity increases as well.

2.9 Deductive, Abductive and Inductive Reasoning

Reasoning a declarative logic program is the process of using existing knowledge to

draw conclusions, make predictions, or construct explanations [78]. There are three

di�erent types of reasoning: deduction, abduction and induction.

36 Chapter 2. Background

� Deductive reasoning [78] starts with the assertion of a general rule and pro-

ceeds to a guaranteed speci�c conclusion in terms of the rule (conclusion guar-

anteed). The conclusion must be true when the original assertions are true.

Deductive reasoning is often used for derivations of knowledge as conclusions

from given knowledge.

� Abductive reasoning [78] typically begins with an incomplete set of observa-

tions and proceeds to the likeliest possible explanation for the set (conclusion

likely). Abduction is the opposite of deduction regarding to the reasoning

direction: deduction starts from a set of premises and deduces a conclusion,

while abduction begins with a conclusion and proceeds to possible premises. It

is often used for goal-oriented planning, i.e., �nding premises that can proceed

to a given conclusion.

� Inductive reasoning [78] begins with observations that are speci�c and limited

in scope, and proceeds to a generalized conclusion that is likely, but not cer-

tain, in light of accumulated evidence (educated guess). One could say that

inductive reasoning moves from the speci�c to the general. It is often used

to learn patterns and regularities with a purpose of inducing a larger set of

conclusions.

This thesis focuses on describing domain-speci�c decision logic and conditional

reactive logic of the WsSWFs by declarative rules. The execution of such rules can

be regarded as drawing conclusions from given knowledge, i.e., deductive reasoning

with rules based on facts. More details can be found in Section 4.4.

2.10 Summary

This chapter presented background information about scienti�c work�ows and logic

programming in detail. After giving a brief introduction to scienti�c work�ows and

their life cycle, this chapter introduced a reference architecture for WFMSs. This

chapter also compared scienti�c work�ows with business work�ows, and explained

why business work�ow technologies can not be directly employed into scienti�c work-

�ows.

Furthermore, this chapter classi�ed work�ows into structured and unstructured

processes from the process structure perspective. In particular, this chapter intro-

duced the WsSWFs by means of several real-world use cases from di�erent domains.

Such WsSWFs containing knowledge-intensive tasks are the emphasis of this thesis.

Also, this chapter introduced the technologies related to the work�ow descrip-

tion, including work�ow formal models, work�ow programming languages, work-

�ow graphical modeling technologies and work�ow patterns. Two programming

approaches: imperative and declarative work�ow programming were detailed. Im-

perative programming prescribes performing a task in terms of sequences of actions

to be taken, and declarative programming expresses what a program should accom-

plish without prescribing how. In addition, di�erent forms of logic programs and

2.10. Summary 37

three di�erent types of reasoning: deduction, abduction and induction were brie�y

introduced.

In the next chapter, the state-of-the-art on di�erent solutions with a purpose of

improving the �exibility of both business and scienti�c work�ows is presented.

Chapter 3

Flexible Work�ow Compositions

Contents

3.1 Classic Work�ow Languages 39

3.2 Agent-Oriented Work�ow Compositions 41

3.3 Rule-Based Work�ow Languages 44

3.4 Main Scienti�c Work�ow Languages 46

3.5 E�orts on Weakly-Structured Work�ows 48

3.6 Semantic-Based Work�ow Compositions 49

3.6.1 Semantic Web Services . 50

3.6.2 Ontology-Based Work�ow Speci�cations 52

3.7 Summary . 55

With the development of the work�ow technologies, more and more e�orts have

been put into automating business and scienti�c processes. However, work�ow pro-

cesses in practice are complex and require a �exible design to represent their process

logic and decision logic. Moreover, although distributed execution environments

provide a huge amount of resources, their uncertainty and heterogeneity also bring

di�culties to an e�ective work�ow execution. To deal with these challenges, it is

necessary to provide not only an expressive work�ow description language, but also

sophisticated mechanisms to handle dynamic exceptions at runtime.

This chapter surveys existing solutions with a purpose of providing a �exible

work�ow composition and supporting an adaptive work�ow execution. Sections

3.1, 3.2 and 3.3 introduce classical work�ow languages, agent-oriented work�ow

compositions and rule-based work�ow languages, respectively. Section 3.4 describes

main scienti�c work�ow languages used in existing scienti�c SWFMSs. Section 3.5

outlines some preliminary e�orts on the weakly-structured work�ows. Section 3.6

introduces how semantic ontologies are used to describe distributed resources and

work�ows, and an analysis of the state-of-the-art is given in Section 3.7.

3.1 Classic Work�ow Languages

Classic work�ow languages are usually process-oriented and describe an executable

process involving both control and data �ows between participant services. Es-

pecially with the advent of SOA, such loosely-coupled paradigm of Web services

40 Chapter 3. Flexible Work�ow Compositions

greatly promotes the development of both business and scienti�c work�ows using

Web service computing and service-based work�ow technologies [79].

BPEL [28] is an XML-based language that supports the orchestration of Web

services into sophisticated services using a work�ow process. BPEL is based on

IBM's WSFL and Microsoft's XLANG speci�cation. Supported by a broad range of

well-known companies (e.g., Microsoft, IBM, SAP, Siebel, and Oracle), BPEL has

been regarded as the de-facto standard for orchestrating Web services for business

work�ows. Moreover, many well-designed tools, such as ActiveBPEL Designer, Or-

acle BPEL Process Manager, ActiveBPEL Engine, have been developed to support

it. A BPEL process connects a Web service through a partner link, which de�nes

the relationship between the BPEL process and the Web service. BPEL supports

recursive composition by describing the inbound and outbound process interfaces in

Web Services Description Language (WSDL), i.e., BPEL process itself is also a Web

service. However, such process-oriented work�ow composition languages su�er from

two main limitations with respect to modularity and �exibility [80]. On one hand,

crosscutting concerns (e.g., logging, persistence and security) are spread across the

work�ow speci�cation and intertwined with main process logic, making the work-

�ow speci�cation hard to understand, maintain, change and reuse. On the other

hand, the prede�ned process-oriented composition languages lack support for dy-

namic adaptation because of unexpected situations and failures at runtime, such as

the unavailability of a service, variations of the Quality of Service (QoS) properties

of a partner, or changes in regulations and collaboration conditions.

Aspect-Oriented Programming (AOP) is a new programming technique that

increases the modularity of a system by allowing the separation of crosscutting

concerns and changes [81]. In other words, crosscutting concerns and changes are

speci�ed in a modular way using aspects and are dynamically integrated into main

business logic at runtime. For the purpose of addressing the drawbacks of BPEL

mentioned above, an aspect-oriented extension to BPEL, also known as AO4BPEL

[80] is proposed. In the AO4BPEL, crosscutting concerns are separately modularized

and dynamically weaved into the main work�ow process logic to make it more �exible

and adaptable.

YAWL [54] is seen as an alternative to BPEL. Based on high-level Petri nets,

YAWL o�ers comprehensive support to the work�ow patterns elaborated by Van der

Aalst et al. YAWL supports dynamic adaptation of work�ow models through the no-

tion of worklets, i.e., each task is associated with a set of self-contained sub-processes

(i.e., worklets), by which a dynamic runtime selection can be made depending on

the context of a particular work instance. Like BPEL, the data handling in YAWL

relies on XML standards, like XPath and XQuery. However, YAWL and BPEL

usually coordinate activities wrapped inside a Web service and limit their use to

speci�c context, although Web services are common in a business scenario [82].

In general, these processes created by graph-based languages are usually suited

to describe the structured processes with stable logic. The biggest expectation to

these work�ows is to run e�ciently. Most of them are XML-based and focus on

service orchestration. In other words, the service composition is under control of a

3.2. Agent-Oriented Work�ow Compositions 41

central entity, and services are usually process-agnostic and can be reused in other

processes. Moreover, the �ow transition conditions provided by them are based

on Boolean expressions or simple rules and are not adequate to express complex

decision logic and conditional reaction logic.

3.2 Agent-Oriented Work�ow Compositions

In computer science, an agent is a computer system that is intelligent and au-

tonomous. Communities of agents support �exible cooperation and are usually used

to solve problems that are di�cult or impossible for an individual agent to solve,

also known as a Multi-Agent System (MAS). In general, an MAS provides high

scalability and can scale via distributed process execution. With the MAS frame-

work, it is also possible to provide additional reasoning intelligence inside an agent,

which can be invoked by the agent as decision procedures. Barker et al. [4] summa-

rize that the MAS framework o�ers a number of advantages over other techniques

used by existing projects focusing on the scienti�c work�ow composition: reasoning

models of individual agents; inter-operability via the communication between het-

erogeneous agents in a common language with agreed semantics; layered structure

via �lling the gap between the low level transport issues of an agent and its high

level rational processes; abstraction via distributed agents acting as stubs or proxies

to Web services; rapid prototyping via protocols providing executable speci�cations

of the coordination; compatibility via no alteration on external Web services.

Buhler et al. [83] present an approach to specify a work�ow as an MAS, which

can intelligently adapt to changing environmental conditions. Specially, they present

BPEL can be used as a speci�cation language for the initial social order of an MAS.

In other words, each agent uses a passive Web service as its external behavior. The

approach makes it easier to implement agents, but the centralized agents eliminate

the robustness and opportunistic behavior, which are landmark advantages of MASs.

Barker et al. [4, 84] capture scienti�c processes with Multi-Agent Protocol (MAP),

which allows typical features of scienti�c work�ow requirements to be understood

in terms of pure coordination and to be executed in an agent-based, decentralized,

peer-to-peer architecture. They present a motivating scienti�c work�ow taken from

Large Synoptic Survey Telescope (LSST) and show how the agent-based approach

is helpful to classify previously unknown objects. Each agent taking part in the in-

teraction adopts a role, by which the agent references a reasoning Web service that

implements all decision procedures required for that role type. Figure 3.1 adapted

from [84] presents the dependencies between the agents (shown as servers) and the

outside services. Wagner [85] proposes an approach that combines an agent with

the work�ow concepts for the purpose of improving the �exibility of the work�ow

execution. The basic principle behind the approach is that of hierarchical nested

subwork�ows, which are controlled by an overall structure-work�ow. An agent called

structure-agent is responsible for executing the structure-work�ow and its subwork-

�ows. The subwork�ows can be dynamically selected according to current circum-

42 Chapter 3. Flexible Work�ow Compositions

User

Scientist

Registry

Registry

Sever

Extraction

Astronomical

Databases

mySpace

Storage

Compute

Farm

Visualization

BCG

Analysis

Figure 3.1: Agent-Based Scienti�c Work�ow Composition

stances, newly modeled and integrated. However, the key technologies related to

the �exibility, such as how the agents are organized, are not mentioned. Lam et

al. [86] state that an MAS can be constructed to enact a set of given work�ows

while respecting the constraints of a given organization. They use Semantic Web

languages (i.e., OWL-DL [87] and Semantic Web Rule Language (SWRL) [88]) to

describe organizational and domain knowledge. Such knowledge can be used by the

agents to make intelligent decisions at runtime. Moreover, they describe business

organizations by de�ning roles, role classi�cation and norms together. However, the

norm-governed organization representation is not necessary for scienti�c work�ows.

The RbAF presented in this thesis provides a lightweight work�ow ontology to de-

scribe general work�ow concepts and their relationships. It focuses on describing

complex decision logic and controls the agent behavior by declarative rules. The

exception handling strategies employed by the RbAF is similar to the ones used

in [86], but the di�erences can be found in the user interaction-based exception

handling when certain exceptions cannot be handled by the agents automatically.

On the basis of natural language constructs (subject, predicate, object) and com-

munication patterns between actors (subjects), a new BPM methodology Subject-

oriented Business Process Management (S-BPM) is proposed to show how individ-

ual members of an organization could contribute to coherent and intelligible process

speci�cations [89]. The S-BPM puts the subject of a process at the center of atten-

3.2. Agent-Oriented Work�ow Compositions 43

Apply for

vacation

accepted

denied

Vacation

accepted

Vacation

Request

Approval

Approval

Denial

Employee

Employee
(Max Mustermann

Johannes Luther
Tobias Heinzinger

Uwe Hofmann)

Manager
(Nils Meyer)

Manager

Human Resource
(Elisabeth

Schwarzmeier)

Human Resource

Figure 3.2: Subjects and Communications in Holiday Application Process

tion and thus deals with business processes and their organizational environment

from a new perspective, meeting organizational requirements in a much better way

than traditional approaches [90]. The S-BPM provides a coherent procedural frame-

work to model an organization's business processes: its focus is the cooperation of all

stakeholders involved in the strategic, tactical, and operational issues, sharing their

knowledge in a networked structure [90]. A subject represents an agent performing

actions in a process, which can be either technical or human (e.g., a thread in an

IT system or a clerk). The process in a whole structures the internal behavior of

each subject and coordinates with other subjects to accomplish a goal. An example

adapted from [89] is shown in Figure 3.2. It shows a holiday application process,

which involves three subjects: employee, HR department and manager. Each party

exchanges messages with another party to process the application. Compared with

the RbAF presented in this thesis, the subject of S-BPM denotes a concept, but the

agent of this thesis is an instance. In other words, the RbAF can be seen as an im-

plementation of the S-BPM approach, where the subject is a rule-based agent, which

follows declarative rules to perform speci�c behavior. Moreover, instead of model-

ing organizational environment of a process, the RbAF focuses on the interactions

between distributed agents from a high level and aims to provide an agent-based,

�exible architecture to support the WsSWF execution.

To sum up, the aforementioned e�orts demonstrate the advantages of agent-

oriented architecture and support the �exible work�ow composition from a work�ow

44 Chapter 3. Flexible Work�ow Compositions

structure perspective. They usually focus on, such as coordination mechanisms,

organizational environment modeling and norm speci�cations. However, most of

them do not consider how to specify the internal behavior of an agent. This is

crucial if there are domain-speci�c knowledge-intensive activities that are involved

in a work�ow. Moreover, although there are bene�ts of the agent-oriented work-

�ow composition, it loses the strengths of the centralized work�ow execution, i.e.,

di�erent services can be composed e�ciently through a centralized �ow.

3.3 Rule-Based Work�ow Languages

The rule-based approaches can also support �exible service composition and model

the process logic with declarative rule languages. They have advantages, such as

allowing intuitive formal semantics by exploiting a limited set of primitives, direct

support for business and science policies, �exibility by alternative execution paths

in case of errors or unreachable solutions, adaptability by easy interaction and re-

traction of rules, and reusability by their property of being isolated from the process

context, which have entitled them as alternative declarative approaches for solving

complicated business logic and scienti�c problems [91].

As an initial attempt on this topic, some e�orts simply combine existing stan-

dard business work�ow languages with declarative rules, i.e., separating complex

decision-centric logic from standard work�ow logic in the aspect-oriented �avor.

Paschke et al. [40, 92] propose a heterogeneous service-oriented integration of rules

(decision rules and complex event processing reaction rules) into BPM to describe

business processes. The decision-centric activities can be semantically represented

by declarative rules and heterogeneously integrated into BPEL processes by invoking

and executing them as semantic inference services. Such kind of approach alleviates

the problem to some extent, but the adaptation is possible as long as they concern

the content of pre-identi�ed business rules that �t into the �xed work�ow logic (e.g.,

BPEL) [91].

There are also e�orts that dedicate to provide rule-based work�ow compositions.

Bae et al. [93] propose an ECA rule-based WFMS and execute business processes

using an active database. They classify a process �ow into several patterns (blocks),

each of which becomes an elementary unit of representing process models and identi-

fying ECA rules. The ECA rule-based behavior representation of each block type is

based on ACTA formalism. Lin et al. [94] propose a solution to support interorgani-

zational work�ow execution based on process agents and ECA rules. ECA rules are

used to control internal state transitions, and the process agents are used to control

external state transitions of tasks in local work�ows. Frincu et al. [5] look at scien-

ti�c work�ows from a distributed system perspective and argue that the rule-based

work�ow composition has advantages in handling issues with respect to scalability,

failure tolerance, data integrity and scheduling. They give an overview of typical

work�ow issues and solutions, and present a simple ECA rule-based work�ow lan-

guage intended for self-adaptation and auto-generation. The events are viewed as

3.3. Rule-Based Work�ow Languages 45

completed tasks and are placed on the left-hand-side of rules, and subsequent tasks

executed after the completed tasks are placed on the right-hand-side of rules. The

linking of the output of left-hand-side tasks with the input of the right-hand-side

tasks is accomplished by variables. Chen et al. [95] also use ECA rules to real-

ize the service composition. Besides an ECA rule-based work�ow formalization, an

automatic event composition algorithm is developed to ensure the correctness and

validness of the service composition at design time. Compared with [5], the ECA-

based work�ow in [95] is more sophisticated and a graphical process modeling tool

is given. Weigand et al. [91] propose a declarative rule-driven framework FARAO

for dynamic service composition. That is, Condition Action (CA) rules describe

data dependencies between services involved in the orchestration, and each CA rule

corresponds to a message sent by the orchestrator to invoke a service. CA rules are

also extended with business rules to steer the decisions in the orchestration. More-

over, they propose a service-oriented approach to business rule management, which

allows business rules are maintained and updated outside of the operational services.

Compared with FARAO, the task dependencies of scienti�c work�ows in this the-

sis are described by messaging reaction rules [40, 96], and domain decision-centric

policies are expressed by derivation rules that can also access external Semantic

Web data. In addition, this thesis combines the agent technology with declarative

rules and supports not only structured service orchestration, but also peer-to-peer

conversation-based interactions between distributed participants.

Some e�orts also strive to employ the bene�ts of the MASs into the rule-based

approach. Rule Responder [97, 98, 99] is a framework for specifying virtual orga-

nizations as a semantic MAS to support collaborative teams. Human members of

an organization are assisted by autonomous rule-based agents, which use Semantic

Web rules to describe aspects of their owner's derivation and reaction logic. The

solution presents a �exible and scalable framework to accomplish complex goals and

also provides a preliminary architecture of the RbAF of this thesis. There are still

some issues that need to be addressed when it comes to scienti�c work�ows, such

as service composition, user interaction and exception handling.

In general, there are di�erent types of rules, such as derivation rules, reaction

rules, integrity rules, deontic rules, transformation rules and facts [60]. The �rst

two types usually in�uence the operational and decision processes, and integrity

and deontic rules often act as constraints. For the purpose of providing a rule-based

work�ow language that involves both process structures and decision logic, it is

necessary to combine them and take their strengths. Paschke et al. [100] elabo-

rate a homogeneous integration approach, which combines derivation rules, reaction

rules and other rule types, such as integrity constraints into a general framework

of logical programming. The framework exploits the advantages of di�erent rules

and establishes a foundation for the declarative rule-based work�ow language of this

thesis.

To sum up, most existing e�orts mentioned above employ ECA rules to imple-

ment the work�ow composition. ECA rules following the form On Event If Con-

dition Do Action provide active real-time or just-in-time reactions to events and

46 Chapter 3. Flexible Work�ow Compositions

are right for detection and reaction to events in dynamic computing environments.

Moreover, ECA rules are usually de�ned with a global scope [96] and are suited to

represent reactive systems that actively detect or query internal and external events

in a global context and then trigger reactions. In contrast to these e�orts, this thesis

describes scienti�c work�ows by messaging reaction rules, which complement global

ECA rules by describing reactive logic that is available in certain local contexts (e.g.,

a work�ow, conversation protocol state or complex situation) and make it possible to

employ distributed agents to perform complex tasks. Moreover, the combination of

the process logic represented by the messaging reaction rules with the decision logic

implemented in terms of derivation rules provides an expressive logic to describe the

WsSWFs. Compared to the classic work�ow languages that provide simple qualify-

ing conditions, declarative rules are able to represent complex conditional decisions,

task/goals and reactions which are needed in scienti�c work�ows. However, it is

worth noticing that, although the rule-based work�ow languages have advantages

in the expressive work�ow composition, they usually do not provide good usability

as other work�ow languages supported by graphical work�ow designers.

3.4 Main Scienti�c Work�ow Languages

Scienti�c work�ows were proposed after business work�ows and have gained a lot

of attention to support scienti�c computations and experimenting. In the early

years of the scienti�c work�ow development, most e�orts focus on the work�ow

creation, reuse, provenance tracking, performance optimization and reliability [101].

A number of SWFMSs have been developed to facilitate scienti�c activities, such as

Kepler [22], Pegasus [25], Triana [25], Taverna [55] and Trails [23].

Kepler [22] is a work�ow system built on the Ptolemy II system for designing,

executing, reusing, evolving, archiving and sharing scienti�c work�ows. Kepler is a

data �ow-oriented work�ow development environment with an actor-oriented mod-

eling paradigm and uses XML-based Modeling Markup Language (MoML) as its

work�ow description language. The MoML allows a work�ow speci�cation that in-

cludes actors, directors, connections, ports and parameters. The actors represent

work�ow steps and are usually de�ned as place holders set prior to the work�ow

execution. They can communicate with other actors via input and output ports.

The work�ow execution is controlled by directors that orchestrate and mange ac-

tors to run work�ows. They give the execution semantics of actor dependencies, i.e.,

they de�ne when and how actors execute. Over 350 ready-to-use actors which act

as processing components in Kepler can be easily customized, connected to perform

an analysis, automate data management and integrate applications e�ciently. The

main focus areas of Kepler so far are ecology, geology, biology and astronomy.

Pegasus [25] is a framework that maps high-level scienti�c work�ow descriptions

onto low-level distributed resources. Pegasus abstract work�ows are represented in

a form of Directed Acyclic Graph in XML Format (DAX), which has syntax for

expressing jobs, arguments, �les, and dependencies. The DAX can be generated

3.4. Main Scienti�c Work�ow Languages 47

using a Java, Perl and Python Application Programming Interface (API). Such

DAX-based abstract work�ows can be mapped to executable work�ows with avail-

able cyber infrastructure resources and then be submitted to DAGMan (a work�ow

executor) for execution. Pegasus now can bridge existing cyber infrastructures to

coordinate multiple distributed resources. Moreover, Pegasus provides a �exible

structure for dealing with failures and recovering by retrying tasks. The main focus

areas of Kepler so far are astronomy, bioinformatics, earthquake science, gravita-

tional wave physics, ocean science and limnology.

Taverna [55] is an open-source, Grid-aware WFMS of myGrid project [2]. It

is implemented as an SOA and provides suite of tools to design, edit and execute

work�ows. A Taverna work�ow is a linked graph of processors, which represent

Web services or other executable components, each of which transforms a set of

data inputs into a set of data outputs. Taverna uses an XML-based work�ow lan-

guage called SCUFL for work�ow representation. The SCUFL is a data �ow-centric

work�ow composition language that de�nes a graph of data interactions between

di�erent processors. When combining processors into work�ows, users only need to

consider in terms of the data consumed and produced by logical services and con-

nect them together. A set of control links that specify running order dependencies

where direct data �ow is not required. Taverna is currently targeting a wide range

of areas within biology.

Triana [23] is an open source problem solving environment which is particu-

larly good at automating repetitive tasks. There is no explicit language to support

control constructs, and it employs an intuitive Graphical User Interface (GUI) for

scientists to create work�ows from Open Grid Services Architecture (OGSA) Grid

services with a minimum of e�ort or even no programming. In other words, loops

and execution branching are handled by components de�ned in XML �les. Users

can compose work�ows by dragging and dropping these programming components.

Besides the GUI, Triana has an underlying system, which consists of a collection of

interfaces that bind to di�erent types of middleware and services. The integration

allows Triana can represent any services or primitives exposed by such middleware,

and these tools can be interconnected to create mixed-component work�ows [102].

The main focus areas of Triana so far are astronomy and physics.

In addition, Askalon [103] provides a graphical editor for the UML-based mod-

eling of Grid work�ow applications and distributed and parallel programs. It takes

an XML-based language Abstract Grid Work�ow Language (AGWL) to describe

work�ows at a high level. Swift [26] uses a scripting language called SwiftScript,

which is designed for composing application programs into parallel applications that

can be executed on multicore processors, clusters, grids, clouds and supercomputers

[104].

In summary, these systems are mainly designed for structured compute or data-

intensive applications, and each system has its own application areas. For the pur-

pose of supporting an adaptive execution at runtime, most of them provide an

abstract work�ow description at a high level and hide underlying speci�c implemen-

tation details. They provide proprietary work�ow languages and support di�erent

48 Chapter 3. Flexible Work�ow Compositions

models of computation. Table 3.1 shows a summary of the main work�ow languages

employed in the existing SWFMSs. Moreover, they mainly allow single scientist to

compose and manipulate work�ows [39]. For example, in Kepler the actors take

their execution instructions from the director. In addition, none of these SWFMSs

provides features to specify human tasks in work�ows [3].

Table 3.1: Main Scienti�c Work�ow Languages

Name Work�ow Language Features

Kepler MoML
Data �ow-oriented; directors control

actors

Pegasus DAX
Mapping abstract work�ows (DAX) to

executable work�ows (DAG)

Tarverna SCUFL Data �ow-centric

Triana No explicit language
Component programming; data

�ow-oriented

ASKALON AGWL A high level work�ow abstraction

Swift SwiftScript Distributed parallel scripting

3.5 E�orts on Weakly-Structured Work�ows

There are also e�orts that try to support complex weakly-structured work�ows from

di�erent perspectives. Van Elst et al. [105] state that the weakly-structured work-

�ows are incomplete process models. Such work�ows have exploratory knowledge-

intensive activities and cannot be su�ciently modeled by classical, static process

models and work�ows. To support these work�ows, they propose a process-oriented

knowledge management approach that integrates process modeling and work�ow

enactment and facilitates active information support in dynamic changing environ-

ments. In this way, it is possible that the knowledge-intensive processes are started

with a partial model and are re�ned later during the execution. This approach is a

variant of the standard case-based reasoning with reuse and continuous adaptation

(and hopefully improvement) of knowledge-intensive processes in an organization

[105]. However, the knowledge-intensive tasks considered in this thesis usually in-

volve domain-speci�c decision logic, and this thesis describes and executes them by

providing a �exible rule-based agent-oriented framework.

Papavassiliou et al. [6] focus on the weakly-structured knowledge-intensive busi-

ness process modeling and present an approach for integrating BPM and knowledge

management. They state that the weakly-structured business processes are both

knowledge-intensive and weakly-structured. Such processes have central decision

steps that require personal judgment or access to much speci�c information. The

sequence of processing steps of a process may vary for speci�c instances, and com-

plex decisions are embedded into the process as black boxes. Also, they present a

work�ow modeling tool that can explicitly incorporate knowledge tasks and objects

3.6. Semantic-Based Work�ow Compositions 49

into business process models. However, their approach gives a theoretical framework

to enhance business process modeling with knowledge management activities, and

does not provide a proof-of-concept implementation.

DECLARE is a prototype of a WFMS that uses a constraint-based process

modeling language for the development of declarative models describing loosely-

structured processes [106]. DECLARE de�nes constraints on the execution orders

of loosely-structured processes, which can be completed in any order that accords

with the constraints. Compared with an over-specify imperative model, the declar-

ative model of DECLARE implicitly de�nes all possibilities that do not violate a

given constraint. Based on Linear Temporal Logic (LTL), DECLARE provides con-

straint templates to model constraints �init�, �1..*�, �response�, �responded existence�

and �responded absence�. In addition, by combining YAWL with DECLARE, it is

possible to support large processes containing mixtures of loosely-structured and

high-structured processes. In contrast to DECLARE, which focuses more on the

constraint-based work�ow structures, the rule-based work�ow speci�cation of this

thesis focuses more on describing complex domain-speci�c decision logic and condi-

tional reactive logic of the WsSWFs, which determine intelligent work�ow routings

at runtime. With the reactive event messaging between distributed agents, both

structured service orchestration and peer-to-peer conversation-based interactions

between distributed participants are supported. Moreover, LTL is often used for

abductive planning, while this thesis focuses on the execution of decision logic of

the WsSWFs, i.e. deductive reasoning with rules based on facts (The di�erences

between abduction and deduction can be found in Section 2.9).

As it can be noticed from the aforementioned e�orts, the weakly-structured

processes are more complex than the structured compute/data-intensive work�ows.

The existing e�orts mainly focus on declarative control �ow constraint representa-

tion and theoretical modeling, and do not consider (domain-speci�c) decision logic

in the weakly-structured processes. This thesis considers the weakly-structured pro-

cesses from the technical perspective and provides a rule-based work�ow language

not only for the �exible work�ow composition, but also for the expressive (domain-

speci�c) decision logic expression. Moreover, a distributed, multi-agent-based exe-

cution environment is provided to support the work�ow execution.

3.6 Semantic-Based Work�ow Compositions

For the purpose of realizing an adaptable execution of scienti�c work�ows, it is im-

portant to decouple the work�ow description from execution and support a dynamic

service binding at runtime. In other words, work�ow engines should dynamically dis-

cover available services in terms of the requirement description of a task. There are

two prerequisites to meet this goal: �rst, the tasks of a work�ow should be described

in an abstract way that is independent from underlying implementation technolo-

gies; second, the work�ow engine should be capable of understanding the abstract

task description and �nding the most appropriate one from available heterogeneous

50 Chapter 3. Flexible Work�ow Compositions

services. Therefore, it is crucial to give well-de�ned meanings to work�ow-related

concepts and enable the work�ow engines to process them intelligently.

Currently, Semantic Web is an active community engaging extending traditional

Web resources with additional metadata and semantic knowledge and allows knowl-

edge to be shared and reused across applications, enterprises, and community bound-

aries. Semantic Web technologies, such as Resource Description Framework (RDF),

SPARQL Protocol and RDF Query Language (SPARQL), Web Ontology Language

(OWL) enable people to create data stores on the Web, build ontologies, and write

rules for handling data. Ontologies are agreements about shared conceptualization,

and they are capable of specifying the concepts, relationships and other distinctions

that are relevant for modeling a domain of interest. They are structural frameworks

of organizing information and provide a foundation upon which machine under-

standable knowledge can be obtained. With the help of ontology technologies, the

semantic work�ow description includes not only syntactic structure that reveals

what type of inputs or outputs it expects to receive, but also semantic information

that describes more complex validation rules for both inputs and outputs [5]. This

section presents some solutions of extending the syntactic interface description of

traditional Web services with semantic information as well as several ontology-based

work�ow representations.

3.6.1 Semantic Web Services

Web services are software functions provided over the Web and support interactions

between di�erent machines connected through a network. As an implementation

of SOA, Web services are delivered over the Web using technologies such as XML,

WSDL, Simple Object Access Protocol (SOAP), and Universal Description Discov-

ery and Integration (UDDI). Moreover, Web services are platform independent.

Based on these XML-based standards, it is possible to integrate heterogeneous re-

sources over the Internet, thereby improving resource sharing. Web services are

also loosely-coupled. WSDL provides a resilient relationship between systems and

organizations, which brings the �exibility that a change in the underlying imple-

mentation of an application does not necessarily require a change in its de�nition.

However, the original Web service technology only standardizes syntactic speci-

�cation and communication and makes the Web service usage and integration need

to be inspected manually. With the combination of ontology and Web services,

semantic Web services provide an abstract description lacking in traditional Web

service description and enable users and software agents to manage Web services

automatically. This section presents some prominent e�orts aiming at semantically

describing Web services and introduces their strengths and weaknesses, respectively.

OWL for Services (OWL-S) [107] builds on OWL and describes the properties

and features of Web service in a machine-readable markup language. It provides

three essential types of knowledge about a service: ServicePro�le, ServiceModel and

ServiceGroundling. The ServicePro�le and ServiceModel are abstract representa-

tions of a Web service, while the ServiceGrounding deals with the mapping from

3.6. Semantic-Based Work�ow Compositions 51

an abstract service representation to a concrete speci�cation of the service descrip-

tion elements, such as WSDL. This approach is also known as a top-down approach,

which begins by identifying all of the relevant concepts, organizing them into a com-

pact, high-level taxonomy and system of axioms, and then proceeding from there

to more speci�c concepts and axioms [108]. OWL-S is the �rst speci�cation sub-

mitted to W3C in 2004 and has a�ected the development of semantic Web services.

However, it has not been widely applied because of its complexity and the top-down

approach which does not �t well with industrial developments of SOA [109].

WSDL-S [110] de�nes a mechanism to semantically annotate WSDL documents.

Unlike OWL-S, the WSDL-S extends WSDL with extra elements and attributes.

This approach is also known as a bottom-up service modeling, which begins with

domain speci�c concepts and then develops the ontology up or out from there [108].

Semantic annotations are not tied to any particular ontology representation language

and can be provided with di�erent languages, such as OWL and UML. Compared

with OWL-S, WSDL-S meets the practical situation better and can be easier applied.

Based onWSDL-S, Semantic Annotations for WSDL and XML Schema (SAWSDL)

[111] de�nes mechanisms by which semantic annotations can be added to WSDL

components. SAWSDL does not specify a language for representing semantic mod-

els. Instead, it allows concepts de�ned either within or outside the WSDL document

to be referenced by the WSDL components as annotations. Such semantic annota-

tions expressed in formal languages can help disambiguate the description of Web

services during automatic discovery and composition of Web services. Similar to

WSDL-S, it also adopts the bottom-up approach.

Web Service Modeling Ontology (WSMO) [112] provides solutions to describe

all relevant aspects of Semantic Web services with the top-bottom approach. Taking

Web Service Modeling Framework (WSMF) [113] as a starting point, WSMO reuses

its four di�erent main elements for describing semantic Web services: ontologies

providing the terminology used by other WSMO elements, Web service descriptions

de�ning the functional and behavioral aspects of a Web service, goals representing

user desires, and mediators handling interoperability problems between di�erent

WSMO elements.

Semantic Web Services Framework (SWSF) [114], which includes Semantic Web

Services Language (SWSL) [115] and Semantic Web Services Ontology (SWSO)

[116]. SWSL is used to specify formal characterizations of Web service concepts

and descriptions of individual services. SWSO presents a conceptual model by

which Web services can be described and a formal characterization of the model. In

contrast to WSMO, SWSL focuses more on extending the functionality of its rule

language [114].

WSMO-Lite [117] identi�es a simple vocabulary for semantic descriptions of ser-

vices and �lls the SAWSDL annotations with concrete semantic service descriptions.

A conceptual model for Web service descriptions includes: information model de-

scriptions de�ning a data model for input, output, and fault messages as well as for

the data relevant to the other aspects of the service description; functional descrip-

tions de�ne service functionality, nonfunctional descriptions, such as price, QoS;

52 Chapter 3. Flexible Work�ow Compositions

behavioral descriptions de�ning external and internal behavior; and technical de-

scriptions de�ning messaging details, such as message serializations, communication

protocols and physical service access points.

With more and more distributed computing technologies depending on loosely

coupled distributed services, dynamic service provider and service consumer rela-

tionships, there is an increasing demand for automated management and monitoring

of service contracts like Service Level Agreementss (SLAs). In addition to semantic

service interface descriptions, Rule-Based Service Level Agreement (RBSLA) allows

representing non-functional properties of Web services for IT service management

[118, 119]. Based on SLAs, RBSLA also allows for semantic mediation of information

�ow in cross-organizational business process models.

The speci�cations mentioned above have been used in real world applications,

some even have been submitted to W3C and have become member submissions.

However, their applications are currently limited to prototypes due to their com-

plexities. Moreover, Web services are not the only resources that are used in sci-

enti�c work�ows. Due to the diversity between the scienti�c disciplines, di�erent

resources are often involved in scienti�c work�ow execution, such as mathemati-

cal, data analysis tools (e.g., R, MATLAB). Also, there are tools that work with

Semantic Web technologies, such as rule engines, ontology reasoners and SPARQL

query engines; it is necessary to integrate these resources into work�ows in order to

perform domain-speci�c knowledge-intensive tasks.

3.6.2 Ontology-Based Work�ow Speci�cations

Semantic Web services describe Web services with common vocabularies and facil-

itate e�cient integration of distributed heterogeneous Web services. They enable

work�ows to be declaratively described instead of giving concrete implementation

details and leave the work�ow engines more space to select appropriate available

services at runtime in terms of the requirements.

In addition, there are research e�orts trying to provide �exible work�ow rep-

resentations based on service ontologies. Lee et al. [120] introduce a �ve-step

process of building a ubiquitous service ontology, ranging from scenario-based ubiq-

uitous smart space modeling, building domain ontology, de�ning the speci�cation

of services, building service ontology to using services. The services are abstractly

described by a speci�cation, which is further adapted to OWL-S to build a service

ontology. The most appropriate service could be discovered based on the service

ontology and a failed service can be replaced with an alternative available service

that has the same e�ect. Qin et al. [121] present a semantic scienti�c work�ow

composition by separating data semantics and data representation as well as Ac-

tivity Function and Activity Type, respectively. The upper ontology developed in

the paper de�nes three main concepts: Function, Data, and Data Representation, as

shown in Figure 3.3 [121]. The Function is a super class of both generic and domain-

speci�c functions which are implemented by Web services, executables, Java classes,

etc. The Data represents any kind of work�ow data and can also be specialized into

3.6. Semantic-Based Work�ow Compositions 53

DataRepresentation

Function Data

GenericFunction

MeteorlogyFunction

DataConversion

MeteorologyData

GenericData

hasInput

Property

hasOutput

isRepresentedAs

Subclass

Figure 3.3: The Upper Ontology of AWDL

domain data. The Data Representation describes storage-related information about

Data, that is, how data is stored in computer systems. An algorithm is also given

to map semantic scienti�c work�ow representations into syntactic work�ow repre-

sentations.

Pinheiro da Silva et al. [122] present a scientist-centered tool that enables scien-

tists to encode their domain knowledge (e.g., data and methods) into a Work�ow-

Driven Ontology (WDO), which is then used to generate abstract work�ows. Based

on the WDO metamodel, scientists are allowed to identify concepts from their do-

mains and classify them into raw data, derived data and methods (which represent

the concepts related to tool functionalities, services, algorithms or anything used

to access and transform data). The abstract work�ows are generated via a work-

�ow generation algorithm, which takes target data given by users and recursively

searches for WDO methods that specify the target data as their outputs, until all

data components used by a method become raw data. Scientists then assess the

generated work�ows and revise the concepts and relationships de�ned in the WDO

ontology if necessary. The highlight of this work is that it builds work�ows in terms

of domain ontologies (i.e., WDOs) and is more acceptable by scientists.

Moreover, inspired by the spirit of the semantic Web services, some e�orts strive

to expand the existing Web service ontologies to provide a semantic declarative

process-oriented representation. For instance, OWL-S also views a work�ow as

an atomic process or a composite process from the functional perspective [107]. An

atomic process is a set of actions that a service can perform by engaging it in a single

interaction. A composite process can be decomposed into other (non-composite or

composite) processes in terms of control constructs, such as sequence, if-then-else,

split + join, choice, condition and iterate. The composite process is a speci�cation

54 Chapter 3. Flexible Work�ow Compositions

of behavior, and the client executes it by sending and receiving a series of messages.

For each atomic process, there must be a grounding that describes where the inputs

come from and where the outputs go. A simple process, on the other hand, provides

an abstraction view on both atomic and composite processes. The top level of

OWL-S process ontology is shown in Figure 3.4 [107]. Besides the control �ows, the

OWL-S also supports data �ow in terms of a consumer-pull conversion as well as

parameter bindings.

Process

Perform

Participant

xsd:string

Simple Process

Atomic Process
CompositeProcess

xsd:boolean

Control Construct

Sequence Split Split-Join Any Order Choice

&exper;#Condition

Result

Parameter

Input

Output

Local

hasPrecondition

hasResult

hasParameter

hasInput

hasLocal

hasOutput

process

hasParticipant

name

expandsTo

collapsesTo

invokable

composedOf

realizedBy

realizes

disjointWith

disjointWith

unionOf

ObjectProperty

DataProperty

SubClassProperty

Figure 3.4: Top Level of OWL-S Process Ontology

However, OWL-S focuses on modeling a work�ow that is internal to a single

service, i.e., the steps speci�ed in a process always interact with a service [123].

OWL for Work�ows and Services (OWL-WS) [124] is an extended version of OWL-S

invented by the NextGrid project [125]. It enforces OWL-S and allows di�erent steps

in a process to interact with di�erent services, i.e., a grounding can be composed of

components referring di�erent services to describe more realistic and complicated

3.7. Summary 55

processes. However, the application of both OWL-S and OWL-WS have not been

prevalent because of lacking of tools to support the development [126].

Additionally, Process Speci�cation Language (PSL) can be used for the repre-

sentation of manufacturing, engineering and business processes [127]. The process

representation is based on a set of logic terms speci�ed in an ontology, which de-

scribes the process components and their relations. The ontology has been published

as an ISO standard 18629. Furthermore, it has a formal logic-based semantics us-

ing temporal situation calculus which supports both projection (i.e. deduction) as

well as planning. The whole layering of PSL is highly expressive. However, PSL

is a representation language that provides semantic and computational information

for each work�ow element, rather than a programming language that supports the

work�ow execution. Moreover, it o�ers advanced features that are not necessary for

the WsSWFs, such as process planning.

To sum up, the semantic Web technologies bring work�ows with semantic sup-

port for the abstract work�ow composition and dynamic service discovery. However,

the ontology-based work�ow modeling is a kind of process representation, and it can-

not specify complex decision logic and �exible mechanisms to cope with uncertain

situations at runtime. In general, they are mainly designed for automatic service

invocation and abstract work�ow composition based on their semantic description,

and it is complicated to employ ontologies to express work�ow tasks and their de-

pendencies.

3.7 Summary

This chapter presented a review of di�erent solutions for �exible work�ow composi-

tion. As it stated above, most e�orts focus on business processes and aim to provide

e�cient processes to customers. The classical work�ow languages are e�ective for

process-oriented processes, but they have static logic and are mainly executed in a

central manner. The existing SWFMSs mainly focus on structured compute/data-

intensive processes; their work�ow execution is controlled by a centralized engine to

meet the requirements of scienti�c data management; they have proprietary work-

�ow languages and cannot specify the weakly-structured knowledge-intensive work-

�ows. The ontology-based work�ow representations enrich the work�ow elements

with semantic information and support dynamic service discovery and the work�ow

composition at a high level; but they are not expressive to specify complex decision

logic and �exible mechanisms to cope with uncertain situations. Moreover, although

there are e�orts that have been made to support the weakly-structured processes,

they mainly focus on declarative control �ow constraint representation and theo-

retical modeling, and do not provide an expressive (domain-speci�c) decision logic

description for the work�ows.

Table 3.2 summarizes the strengths and weaknesses of di�erent �exible work-

�ow composition approaches mentioned in this chapter. The rule-based approaches

encode policies as declarative rules and have advantages in describing scienti�c

56 Chapter 3. Flexible Work�ow Compositions

Table 3.2: Comparison of Flexible Work�ow Composition Solutions

Name Advantages Disadvantages

Classic Work�ow

Languages

E�cient service composition;

agnostic and reusable

services

Block-structured; rigid logic

Agent-oriented

Composition

Flexible cooperation,

coordination, and

negotiation

Limited agent behavior

description; the decentralized

execution

Rule-based Languages

Intuitive formal semantics;

direct support for business

and science policies;

�exibility; adaptability;

reusability

Bad usability

Main scienti�c

work�ow languages

Focus on structured

compute/data-intensive

processes

Proprietary work�ow

languages; cannot specify

human tasks

Weakly-structured

Work�ows

Focus more on the work�ow

structure

Domain-speci�c decision

logic is not considered

Semantic-based

Composition

High level resource

description

Limited process

representation

processes. Besides the advantages mentioned in Section 3.3, the logic-based rule

languages also have strengths, such as automated rule chaining by resolution and

variable uni�cation, a compact and comprehensive human and machine-oriented rep-

resentation and high levels of automation of �exibility to adapt to rapidly changing

requirements, relatively easy for end users to write rules and hence rapidly engi-

neer and maintain rule-based decision and reactive logic. Moreover, compared with

the centralized work�ow execution, the agent-based frameworks have demonstrated

their powerful �exibility in work�ows requiring interactions between di�erent par-

ticipants.

This thesis proposes a rule-based work�ow language to describe the WsSWFs and

implements a distributed agent-based system, RAWLS, as the work�ow execution

environment. The combination of declarative rules with the agents not only provides

an expressive declarative rule-based work�ow speci�cation, but also supports an

adaptive work�ow execution.

In what follows, Chapter 4 presents the conceptual framework, RbAF, to support

the WsSWFs. Chapter 5 introduces a formal semantics of the declarative rule-based

work�ow language, and the prototype system, RAWLS, is given in Chapter 6.

Part II

Conceptual Framework

Chapter 4

Rule-Based Agent-Oriented

Framework

Contents

4.1 Hierarchy of the Rule-Based Work�ow Speci�cation 62

4.2 Upper-Level Work�ow Ontology 62

4.3 Declarative Work�ow Speci�cation 64

4.3.1 Reaction Rules . 64

4.3.2 Event-Driven Work�ow Execution 67

4.3.3 CEP-Based Work�ow Pattern Modeling 68

4.4 Domain Decision-Centric Logic Description 72

4.4.1 Derivation Rules . 72

4.4.2 Semantic Web Data Query 75

4.5 Integrating Orchestration with Choreography 78

4.6 Human Interaction . 80

4.7 Exception Handling . 82

4.8 Summary . 83

More and more e�orts have reached a consensus that scienti�c work�ows re-

quire a �exible design for the purpose of representing complicated process logic and

adapting to dynamic changes at runtime. In the current state-of-the-art, partial

solutions for the issues mentioned in Chapter 3 have been proposed. However, some

core issues related to the WsSWF execution (see Section 1.2) are still unsolved.

This chapter presents a conceptual work�ow framework, called RbAF, which not

only provides a declarative rule-based work�ow language combining messaging re-

action rules and derivation rules, but also employs multiple inference agents as the

work�ow execution environment.

On one hand, an agent in computer science is de�ned by Wooldridge [128] as

follows:

�An agent is a computer system that is situated in some environment, and that

is capable of autonomous action in this environment in order to meet its design

objectives.�

Besides the autonomy, an agent also has abilities, like perceiving their environ-

ments and automatically responding to changes (reactivity), starting new actions

60 Chapter 4. Rule-Based Agent-Oriented Framework

on their own to pursue their own or given objects (proactivity), and engaging in

conversations with other agents in cooperative ways (social ability) [128].

On the other hand, the rule-based programming can not only describe the process

behavior in a declarative manner, but also support a compact and comprehensive

logical domain knowledge representation with automated reasoning. One interesting

application of the rule-based programming is that it can be directly used as the basis

for describing the agent behavior.

Centralized Workflow Engine

(Agent)

Reaction Rules: reaction logic

triggered on the basis of detected

complex events

 on Message

 if Condition

 do Task

Derivation Rules: Complex decision

logic

 if Condition

 then Conclusion

Messaging Reaction Rules:

conversation-based reaction and (local)

logic

 sending Message to Agent

Task

Agent

Service
Role

Data

Workflow Ontology

Task2

Task3

Task4

Task5

Task1 Agent1

Agent4

Agent5

Agent21

Agent22 Agent23

Collaboration

Human

Agent

message

message

message

message

message

message

message

message

Rule-based decision logic

description

Semantic Web Data

Exception

Handling

Agent

message

Figure 4.1: Rule-Based Agent-Oriented Scienti�c Work�ow Framework

Figure 4.1 shows the overall architecture of the RbAF, which is characterized as

providing support to the WsSWFs in two levels:

� the work�ow de�nition: a work�ow is described via the composition of a

group of abstract tasks, each of which describes certain scienti�c goal and is

independent of any speci�c implementation. A task can be either a primitive

task or a composite task that de�nes the execution order of a set of sub-tasks

(aka. a sub-work�ow or sub-process).

� the work�ow execution: during the work�ow execution, each abstract task is

allocated to an agent, which decides on its own to execute the task. The task

execution can lead to one or more results, and the agent may return the task

results to the original requester or send the results to other agents to perform

subsequent tasks. That is, such agents can negotiate and collaborate with

each other on performing complex tasks.

The RbAF employs two main rule types to represent WsSWFs: messaging re-

action rules and derivation rules. More precisely, the work�ow composition is de-

scribed by messaging reaction rules, which describe (abstract) processes in terms of

61

message-driven conversations between agents. In other words, the task dependen-

cies are described by the order of sending and receiving messages between agents.

Derivation rules, which are often used for derivations of knowledge as conclusions

from given knowledge, are mainly used to describe knowledge-intensive decision-

centric steps in work�ows. With the combination of these declarative rules, the

RbAF provides a declarative rule-based approach to describe the WsSWFs.

For the purpose of enriching the work�ow description with semantics, an upper-

level ontological work�ow metadata model (work�ow ontology) is given to de�ne

general work�ow concepts and their relationships. The upper-level work�ow ontol-

ogy provides a well-modularized schema and allows the general work�ow concepts

to be further specialized with domain-speci�c ontologies. With the work�ow ontol-

ogy, it is possible to automatically �nd alternative resources (e.g., agents), thereby

allowing the work�ow execution to resume if a resource is unavailable at runtime.

In addition, the RbAF provides access to external Semantic Web data (e.g., domain

vocabularies and ontologies) and reduces the e�ort required to achieve the similar

logic by declarative rules.

The RbAF combines two ways of the work�ow execution: orchestration and

choreography. That is, a centralized work�ow engine (also an agent) takes con-

trol of the execution of a scienti�c work�ow and completes it via the composition of

distributed agents, which are not aware of the whole complex work�ow (aka. orches-

tration). Moreover, messaging reaction rules describe interactions between multiple

participants, making it possible to build choreography work�ows which focus on

collaboration and message exchange between multiple participants.

The RbAF integrates human users into the WsSWFs. For the tasks that need to

be performed by human users, the RbAF can transfer the work�ow control to human

users who are responsible for them. To do so, a Human Agent (HA) manages the

life cycle of the human tasks and provides a Web interface for scientists to operate

on the tasks, thereby supporting user interaction with the work�ow system.

The RbAF also provides an escalated aspect-oriented, event-driven exception

handling at runtime. That is, the exceptions are usually handled separately by an

Exception Handling Agent (EHA) by replacing the failed sub-process dynamically.

Once an exception cannot be handled automatically by the EHA, the exception will

be escalated to human users to make a decision or provide the required resources.

These exceptions handled by the EHA and human users are also known as expected

and unexpected exceptions, respectively.

Note that this thesis focuses on specifying scienti�c work�ows with declara-

tive rules and providing a �exible agent-oriented work�ow execution environment.

Typical MAS topics, such as coordination mechanisms, organizational environment

modeling and norms in MASs mentioned in Section 3.2 are out of the scope of this

thesis.

62 Chapter 4. Rule-Based Agent-Oriented Framework

Scientific Workflows

Rule-based Agents

Reactive & Inference Logic

Ontologies

Metadata & Terminologies

Figure 4.2: Hierarchy of Rule-Based Work�ow Description

4.1 Hierarchy of the Rule-Based Work�ow Speci�cation

Following the spirit of the Semantic Web stack [129], the rule-based work�ow lan-

guage presents a similar hierarchical knowledge structure, as shown in Figure 4.2.

The RbAF builds scienti�c work�ows hierarchically, and each layer is built on

top of another. Metadata and terminologies (concepts) at the bottom layer de�ne

general concepts in scienti�c work�ows. Ontologies describe logical relationships

between the concepts, and they can be further specialized with domain-speci�c

ontologies (see Section 4.2). On top of the ontologies, declarative rules describe

the reactive and decision logic of a work�ow. The simple terms of rules can be

assigned with concepts de�ned in these ontologies, thereby providing a lightweight

combination between rules and ontologies. Scienti�c work�ows are further described

by the agents, whose behavior is programmed with declarative rules.

4.2 Upper-Level Work�ow Ontology

The upper-level work�ow ontology de�nes a hierarchy of semantically linked general

work�ow concepts and their logical relationships, as shown in Figure 4.3. The

following are the general concepts involved in the work�ow ontology:

� Data is a super class of any kind of work�ow data, which can be used or

generated by tasks in scienti�c work�ows.

� Agent is an entity that is considered reactive and social. In the RbAF, an

agent is either a software component or a user.

� Task is an abstract activity performed by agents to reach a certain goal. A

task could be either primitive or composite. Each primitive task is an elemen-

4.2. Upper-Level Work�ow Ontology 63

tary unit, and a composite task modularizes the execution order of a set of

(primitive or composite) tasks, also known as a sub-process.

� Role is a meaningful collection of tasks performed by one or more agents. A

role is responsible for the tasks it encompasses. The roles can be hierarchically

composed and are assigned to the agents.

performedBy

re
sp
on
si
bl
e

Role

Task AgentData

hasInput

hasOutput

plays

&xsd;#anyURI

dataType

xsd:booleanxsd:int

priority available

ObjectProperty

DatatypeProperty

Figure 4.3: Upper-Level Work�ow Ontology

Besides the work�ow concepts, the properties of these concepts are de�ned as

follows:

� hasInput and hasOutput. A task has inputs and outputs, which are data, i.e.,

hasInput(Task, Data) and hasOutput(Task, Data).

� dataType. Every data has a type speci�ed using a Uniform Resource Identi�er

(URI) that is a speci�cation of a class (or an XML Schema datatype) that the

data value belongs to.

� plays. Each agent always plays certain roles, which describe the responsibility

of the agent, i.e., plays(Agent, Role).

� responsible. The relationship responsible(Role, Task) speci�es a task for which

the role is responsible.

� performedBy. A task is performed by one or more agents, i.e., performedBy(Task,

Agent).

� available. The agent status is denoted by a property available, which can be

available and unavailable. In the RbAF, only available agents can be employed

to perform a task. Moreover, during the work�ow execution, the agent status

can be modi�ed by the agents automatically.

� priority. Each agent has a property priority that controls if it can be selected

�rst. During the work�ow execution, one agent that is available and has the

highest priority is selected.

64 Chapter 4. Rule-Based Agent-Oriented Framework

In speci�c applications, these general concepts and relationships de�ned in the

upper-level work�ow ontology can be further specialized with domain-speci�c on-

tologies. For example, in the process of protein prediction result analysis (see Section

2.5), the process inputs up:Protein and up:Concept can be de�ned by the concepts

of UniProt core vocabulary [130].

During work�ow execution, the work�ow ontology can be accessed by any of the

agents as the shared common knowledge. One task can be dynamically allocated to

a responsible agent in terms of the work�ow ontology. Moreover, it is also possible to

automatically �nd alternative resources (e.g., agents), thereby allowing the work�ow

execution to resume if a resource is unavailable at runtime. More details about

exception handling can be found in Section 4.7.

Compared with the related e�orts mentioned in Section 3.6.2, the work�ow on-

tology of this thesis simply de�nes the basic information of a task (e.g., task name),

instead of describing the composition of a composite task. That is, a composite task

(sub-process) is de�ned the same as the primitive tasks in the work�ow ontology,

which makes it possible to hierarchically integrate the composite tasks into other

processes. In this thesis, the RbAF describes the work�ow composition by more

�exible and understandable messaging reaction rules, and more details can be found

in the following section.

4.3 Declarative Work�ow Speci�cation

Existing e�orts have shown that the control-�ow dependencies of a work�ow can

be described by rule-based languages, e.g., ECA rules, which strictly follow the On

Event If Condition Do Action paradigm. They are usually de�ned in a global scope

and react on internal events of the reactive system, such as changes (updates) in an

active database [131, 40]. However, in a distributed environment with independent

system nodes, event processing not only requires noti�cation and communication

mechanisms, but also needs to be done in a local context, e.g., in a conversation

or a work�ow. In this thesis, the RbAF describes the work�ow composition by

messaging reaction rules, which de�ne (abstract) processes in terms of message-

driven conversations between parties and describe their associated interactions via

asynchronously sending and receiving event messages.

4.3.1 Reaction Rules

Messaging reaction rules involve both receiving and sending messages between dis-

tributed agents. This section describes how reaction rules are used to detect external

event messages.

Reaction rules are (behavioral or action) rules that react to occurred events

(external events or changed conditions) by executing actions [132]. In the RbAF,

an agent follows the sense-reason-act pattern of reaction rules and interacts with

external environment via conversation-based messaging reaction rules. A reaction

4.3. Declarative Work�ow Speci�cation 65

rule de�nes an event template, some of whose parameters are variables, and the

event template matches single events by replacing the variables with values.

Reaction rules are the collection of reactive rules, which specify and program

reactive systems in a declarative manner, and the most general form of a reaction

rule consists of the following parts [132]:

de�ne reaction rule reaction_rule

on [event]

if [condition]

then [conclusion]

do [action]

after [post− condition]

else [elseconclusion]

elseDo [else/alternativeaction]

A reaction rule consists of parts of the event or situation processing (e.g., de-

tection, computation), condition veri�cation, action invocation and post-condition

veri�cation, where the condition and (especially) the post-condition parts are op-

tional [132]. Depending on the parts of the general syntax, reaction rules can be

specialized into di�erent types:

� Derivation (Deduction) rules (if-then). Derivation rules can derive new knowl-

edge from other knowledge by an inference or mathematical calculation. They

are often used to answer a query or search to accomplish a goal (e.g., in a

decision process).

� Production rules (if-do). A production rule performs actions if a stated con-

dition is true. Production rules are often used to perform actions in certain

situations, which are often considered as a set of conditional tests.

� Trigger rules (on-do). A trigger rule performs actions whenever a stated event

occurs. Trigger rules are rarely used, since they can act as production rules

by implementing the event detection as the condition restrictions.

� ECA rules (on-if-do). ECA rules have an explicit event part compared with

production rules. They can be extended with post-conditions after the condi-

tion part or be condensed to trigger rules.

In the RbAF, the messages (events) passing between distributed agents are asso-

ciated with a conversation identi�er to re�ect the process execution. This is crucial

to keep all tasks of a process instance running in one conversation, especially for

processes that involve the synchronization of tasks running in parallel. For exam-

ple, Figure 4.4 shows a simple work�ow A that begins with two parallel tasks: add

and minus, which perform addition and subtraction operations, respectively. They

are synchronized by a multiply task that multiplies the results of add and minus.

The synchronization of add and minus can only occur when both of them have

completed. Suppose that two instances of the work�ow A instance1 and instance2

66 Chapter 4. Rule-Based Agent-Oriented Framework

Agent1 Agent2

Agent3

Start

End

Task: minus(d1, d2, r2)

Workflow A: calculation(d1, d2, Result)

Task: add(d1, d2, r1)

instance1: (2, 3)

instance2: (1, 3)

instance1: add(2, 3, 5)

instance2: add(1, 3, 4)

instance2: minus(1, 3, -2)

instance1: minus(2, 3, -1)

Task: multiply(r1, r2, result)

Possible (workflow) results:

 multiply(5, -1, -5) √

 multiply(4, -2, -8) √

 multiply(5, -2, -10) ×

 multiply(4, -1, -4) ×

Figure 4.4: Multiple Work�ow Instances

are started concurrently, i.e., there is a possibility that two add instances and two

minus instances are running at the same time. If the messages are not associated

with a conversation identi�er, the synchronizer may use the results from di�erent

work�ow instances for the multiplication. For example, the synchronizer may take

the addition result of the instance1 and the subtraction result of the instance2 for

the subsequent multiplication.

The conversation identi�er is also helpful to implement advanced synchronization

work�ow patterns, which need to distinguish di�erent work�ow instances. More

details can be found in Section 7.1. Besides the conversation identi�er, a message

passing two agents also includes the following information:

� Protocol de�nes the protocol of message passing.

� Sender and Receiver denote the source and destination of the message, re-

spectively.

� Performative describes the pragmatic context in which the message is sent,

e.g., FIPA Agent Communication Language (ACL) [133]. The message context

gives meaning to the message.

� Content denotes the payload of the message.

The action part of a reaction rules describes the procedure of processing events

(or performing tasks). The actions of performing a task could be adding/retract-

ing knowledge, variable assignment, messaging activities (i.e., message sending and

receiving), and execution of (external) functions. In contrast to global ECA rules,

messaging reaction rules support performing complex actions locally within certain

contexts. In other words, message sending and receiving activities can be embedded

into the action part of reaction rules to employ distributed agents to perform com-

4.3. Declarative Work�ow Speci�cation 67

plex tasks, making it possible to implement a rule-based branching work�ow logic

and support the distributed work�ow execution.

4.3.2 Event-Driven Work�ow Execution

In the RbAF, the agents act as hosts to distributed resources, and the interactions

between distributed agents are represented by messaging reaction rules. That is, an

agent receives a request of performing a task, processes the request by using internal

or external resources, then returns the results to the requester or sends the results

to other agents. In other words, the work�ow execution is driven by sending and

receiving messages between agents, and thus the RbAF can also be referred to as

an Event-Driven Architecture (EDA).

The event-driven RbAF is in line with the data-driven scienti�c work�ow ex-

ecution. This is because the EDA provides an appropriate model for active data

sharing based on the production and consumption of events [134]. In the RbAF, the

data passing between tasks is regarded as event messaging between agents. In other

words, the event messages carry data sharing between tasks. Figure 4.5 presents the

event-driven work�ow execution of an abstract work�ow. The �rst task Task1 of the

work�ow is triggered by an event e1, which carries the data required by Task1. After

Task1 completes or generates required data, events e2 and e3 are sent to trigger

subsequent tasks Task2 and Task3, respectively. The tasks Task2 and Task3 run

in parallel, which generate e4 and e5 to announce their completions. The work�ow

completes when both Task2 and Task3 are completed.

Task1

Task2

Task3

e1

e2

e3

e4

e5

AND split

connector

AND join

connector

V V

Figure 4.5: Event-Driven Work�ow Execution

In general, an event carries a list of primitive data types, such as string, int and

double. If the data passing between tasks is large, a logical pointer indicating the

way to access the data can be delivered as an event. Before processing the data, the

data receiver needs to dereference the logical pointer and retrieve the actual data

identi�ed by the logical pointer. This solution is also known as a handle-oriented

approach [22], which avoids unnecessary transfers, especially when the work�ow

execution is controlled by a third-party agent (e.g., the execution of two or more

tasks is controlled by a centralized work�ow engine).

68 Chapter 4. Rule-Based Agent-Oriented Framework

4.3.3 CEP-Based Work�ow Pattern Modeling

As mentioned in Section 2.6, work�ow patterns refer to recurring work�ow processes.

From di�erent perspectives, the Work�ow Patterns Initiative [52] has delivered four

types of work�ow patterns related to the development of work�ow applications,

i.e., control-�ow patterns, data patterns, resource patterns and exception handling

patterns. This section presents how the rule-based CEP technologies are used to

represent the control-�ow patterns.

In this thesis, the RbAF presents an event-driven work�ow execution and models

the work�ow composition by messaging reaction rules, which specify and program

reactive systems in a declarative manner, and in particular, they provide the ability

to reason over events, actions and their e�ects, and allow detecting events and

responding to them automatically. The work�ow modeling based on the event-

driven execution is also known as Event-driven Process Chains (EPCs), which is

a business process model language for the representation of temporal and logical

dependencies between activities in a business process [135].

Following the EPC, the RbAF de�nes a process with a set of activities that

comprises three di�erent types of elements connected by control �ow edges: tasks,

event messages and connectors. See Figure 4.5 as an example. The tasks represent

activities in a process. The event messages are generated to trigger a task execution

and the connectors that control the �ow of a process (aka. gateways). There

are three kinds of connectors: AND, XOR and OR. They can be used as either

split (one incoming, multiple outgoing branches) or join (multiple incoming, one

outgoing branch) connectors. Figure 4.5 shows an AND split connector, which

means after Task1 all subsequent tasks Task2 and Task3 are triggered to be executed

concurrently, and an AND join connector, which means both Task2 and Task3 have

to be completed. More details about such connectors can also be found in Section

5.1.

As aforementioned, the detection of an event corresponds to a reaction rule. An

AND split connector can be implemented by sending parallel messages and detecting

them by corresponding reaction rules later. Other complex split connectors can be

implemented by imposing conditions on reaction rules triggering subsequent tasks.

For example, the following example implements the XOR split connector after the

ant identi�cation (see Figure 2.10).

de�ne reactive rule identDone

on identDone(Cid,AntDesc,Result)

if not(isIdentFailed(AntDesc,Result))

do nothing.

de�ne reactive rule identDone

on identDone(Cid,AntDesc,Result)

if isIdentFailed(AntDesc,Result)

do humanIdent(Cid,AntDesc).

4.3. Declarative Work�ow Speci�cation 69

Here, not denotes NaF, i.e., not(isIdentFailed(AntDesc, Result)) succeeds when

all attempts to prove isIdentFailed(AntDesc, Result) fail. Depending on the identi-

�cation result, only one subsequent branch is activated. The implementation of the

XOR split connector can be further used to implement the Exclusive Choice pat-

tern, which is one of the control-�ow patterns delivered by the Work�ow Patterns

Initiative. Similarly for the implementation of the Multi-Choice pattern [136].

The RbAF employs the rule-based CEP technologies to implement the join

connectors. The rule-based CEP exploits the reaction rule technologies for event

processing and often supports situation detection, pre- and post-conditions, and

(transactional) action logic (complex actions) [92, 137]. In general, CEP aims at

achieving actionable, situational knowledge from distributed systems in real-time or

quasi-real-time [138, 139]. Instead of supporting a comprehensive CEP operators

of event algebras, the RbAF does not impose real-time constraint on reaction time

(aka. an any-time reaction rule system), and only supports a part of necessary

operators involved in scienti�c work�ows.

Each composite event consisting of multiple base events is usually described by

an event pattern, which contains event templates, relational operators and variables

[140]. The following are the relational operators used by the RbAF to de�ne complex

event patterns:

� (e1∆e2)(t). The composite event de�ned by this operator occurs when both e1
and e2 are detected; this pattern is also known as a conjunction event pattern.

� (e1Oe2)(t) The composite event de�ned by this operator occurs either e1 or e2
is detected; this pattern is also known as a disjunction event pattern.

� ANY (m, e1, e2, ..., en)(t)(1 < m < n). The composite event de�ned by this

operator occurs when m events out of n are detected.

Note that each base event ei in the complex event patterns mentioned above

could be either atomic event or composite event.

Recording

e1

Triggering

Composite Event

Clearing Base

Events

Event Pattern

Detection
e2

e3

detected
Base

Event

Matching

Figure 4.6: Process of Implementing the AND Join Connector

The detection of the conjunction event pattern implements the AND join con-

nector, which requires all incoming branches to be completed. The agent responsible

for a subsequent task needs to receive all base events indicating that the incoming

tasks are successfully executed. Figure 4.6 shows the process of implementing the

70 Chapter 4. Rule-Based Agent-Oriented Framework

AND join connector. Whenever a base event indicating the completion of an in-

coming task occurs, it is �rstly recorded as an event fact in the knowledge base and

then checks if the conjunction event pattern is detected or not. The reasoning if the

conjunction event pattern is detected is implemented by a derivation rule, which is

proved to be true when all base events are in the knowledge base. As soon as the

complex event pattern is detected, the complex event is triggered. After that, the

base facts are removed from the knowledge base, as shown in Figure 4.6.

Since the base event detection here is event-driven, this kind of complex event

pattern detection is also known as forward chaining event-driven reasoning. As

a concrete example, Figure 4.7 shows a process of detecting a composite event e,

which requires all base events e1, e2 and e3 to be successfully proved, i.e., e is

e1∆e2∆e3. The detection of base events e1, e2, and e3 is described by three reaction

rules, as shown as follows. The derivation rule check(e) describes the detection of

the composite event e and is evaluated whenever a base event occurs. Note that

consequent ← antecedent is the basic form of derivation rules (see Section 4.4.1

for more details).

de�ne reactive rule detect_e1
on e1
do ins(e1), check(e).

de�ne reactive rule detect_e2
on e2
do ins(e2), check(e).

de�ne reactive rule detect_e3
on e3
do ins(e3), check(e).

check(e)← e1, e2, e3, trigger(e), del(e1), del(e2), del(e3).

Suppose that e1 is detected �rst, it is immediately recorded as an event fact in

the knowledge base. Since e2, and e3 have not been detected, the execution of the

derivation rule check(e) fails at the moment. The reasoning of the rule check(e)

for the second time is triggered when another base event is detected. The dash

line denotes that the second check(e) reasoning happens when any of e2 and e3 is

detected, rather than happens immediately. The derivation rule check(e) can only

succeed when all base events are detected, then the composite event e is triggered,

and the base events are removed from the knowledge base. The implementation of

AND join connector can be further used to implement the Synchronization pattern

delivered by the Work�ow Patterns Initiative [136].

The detection of the disjunctive event pattern implements the XOR join con-

nector. The XOR join connector can have either local or non-local semantics [141].

The non-local XOR join connector expects only one incoming task to be successfully

4.3. Declarative Work�ow Speci�cation 71

e1 ∆ e2 ∆ e3

Event Pattern Reasoning

e1 ∆ e2 ∆ e3

e1 ∆ e2 ∆ e3

e1

e1

e1

e3

e2

e3

Event facts

Event facts

Event facts
Event facts

Event Pattern Reasoning

Event Pattern Reasoning

execute

execute

execute

wait for other events

wait for other events

clearTriggering

Composite Event e

Figure 4.7: Example of an AND Join Connector Implementation

executed. The thread of control is passed to the subsequent branch when the �rst

incoming branch has been enabled. Subsequent enablements of incoming branches

do not result in the thread of control being passed on. On the contrary, the local

XOR join connector propagates each incoming process token without ever blocking.

Depending on two di�erent situations, the non-local and local XOR join connectors

can be used to implement the Structured Discriminator pattern and the Multiple

Merge pattern delivered by the Work�ow Patterns Initiative [136], respectively.

The di�erence between non-local and local XOR join connectors lies in if the

subsequent incoming branches are blocked or not after the �rst incoming branch

has been enabled. There are two solutions to implement them. One solution is to

control the occurrence of the composite event. According to the occurrence times

of the composite event, the composite event can be triggered once or more. The

other solution is to control the consumption of the composite event. The subsequent

task can consume the composite event once or multiple times. The RbAF adopts

the latter to implement the XOR join connector. The implementation of the XOR

join connector has the same process as the AND join connector, and the di�erence

can be found in the derivation rules that are used to detect the disjunctive event

pattern, i.e., there are multiple derivation rules used to describe di�erent situations

that the disjunctive event pattern can be detected, one for each base event.

The OR join connector usually has non-local semantics and synchronizes all

incoming branches that are active. In other words, the non-local OR join connector

needs to detect which branches are still active, and which will never be active. But

the detection is usually di�cult if the incoming branches involve cyclic processes that

could never be completed. The RbAF addresses this issue by attaching a timeout to

the event pattern detection, which waits for a pre-speci�ed time and then consumes

events that are there, as shown in Figure 4.8. The OR join connector is usually used

72 Chapter 4. Rule-Based Agent-Oriented Framework

Recording

e1

Triggering

Composite Event

Clearing

Base Events

Event Pattern

Detection
e2

e3

e.g., after 60s

all base

events are

detected
Base

Event

Matching

Figure 4.8: Process of Implementing the OR Join Connector

to implement the Structured Synchronizing Merge pattern delivered by the Work�ow

Patterns Initiative [136].

The ANY event pattern can also be implemented in the similar way as the

XOR join connector implementation, and the only di�erence can be found in the

derivation rules that are used to detect the ANY event pattern, i.e., the base events

required to be detected must be explicitly speci�ed.

To sum up, the RbAF employs the rule-based CEP technologies to implement the

control-�ow patterns. Moreover, declarative derivation rules provide the ability to

reason over events and make it possible to implement advanced control-�ow patterns.

More details about a work�ow pattern-based evaluation can be found in Section 7.1.

4.4 Domain Decision-Centric Logic Description

4.4.1 Derivation Rules

Knowledge representation focuses on methods for describing the world in terms of

high-level, abstracted models which can be used to build intelligent applications, i.e.,

it provides methods to �nd implicit consequences of explicitly represented knowledge

[60]. It is a broad research area, including language and graphical representations,

ontology engineering, etc. The RbAF of this thesis does not attempt to support dif-

ferent ways of domain knowledge representation but focuses on representing domain

decision logic by logical derivation rules (aka. deductive rules).

Derivation rules follow an if(antecedent)-then(consequent) style and derive new

information from existing data. They are formulas of the form q ← p, where p is

antecedent speci�ed, and q is the conclusion deduced. The reasoning of derivation

rules can be both forward and backward (aka. forward and backward reasoning,

respectively). The forward reasoning starts with available data and uses inference

rules to extract more data until a goal is reached. An inference engine using forward

chaining searches inference rules until it �nds one where the antecedent (if clause)

is known to be true. The backward reasoning starts with a list of goals and works

backwards to see if the data supports any of these goals available. An inference

engine using backward chaining would search inference rules until it �nds one which

has a consequent (then clause) that matches a desired goal.

The common deductive computational model of logic programming uses the

4.4. Domain Decision-Centric Logic Description 73

backward reasoning (goal-driven) resolution to instantiate the program clauses via

goals and uses uni�cation to determine the program clauses to be selected and the

variables to be substituted by terms [60]. The RbAF also uses the backward reason-

ing to implement domain decision-centric activities, which are usually represented as

decision goals. For each decision goal, an inference engine checks if this goal is sat-

is�ed or not. This way of derivation is also known as backward chaining goal-driven

reasoning. Di�erent with the backward deductive derivation, the way of complex

event pattern detection introduced in Section 4.3.3 is known as forward chaining

event-driven reasoning. In other words, a complex event pattern is detected as soon

as the base events required for the pattern are detected.

Domain Decision Logic

Derivation

Rules
Fact

Mathematical

Calculation
Inference Derived Fact Base Fact

based on

used in

used to

derive

derived

using

Figure 4.9: Domain Knowledge-Intensive Decision with Derivation Rules

Figure 4.9 shows the derivation model adapted from [142]. The domain logic

consists of derivation rules and facts. The facts are further classi�ed into base

facts that are given in a speci�c domain, and derived facts that are created from

existing ones. One can use derivation rules and facts to drive implicit facts (i.e.,

the derived facts). In the RbAF, the facts describe information, including events,

(object-oriented) object instances, class individuals (of ontology classes), norms,

constraints, states, conditions, actions, data (e.g., relational, XML), etc. A deriva-

tion is either a mathematical calculation that generates a derived fact according to

a speci�ed mathematical algorithm or an inference that creates the derived facts

using logical induction.

Derivation rules focus on declarative problem representation and go beyond typ-

ical restricted expressiveness of simple gateways in process execution models. More-

over, they are more understandable and allow domain experts to express complex

scienti�c rules in their own terms. For example, the following Prova program imple-

ments the policies of screening snow depth data in the experiment of building a snow

depth model in the pastoral area of northern Xinjiang (in China) (see Section 2.5.2).

74 Chapter 4. Rule-Based Agent-Oriented Framework

The �rst part of the program (Line 1-26) presents the rules of identifying deep frost

layer, dry snow, thaw, temperature, snow depth and elevation, respectively. For

example, the rule checkDepth speci�es that the snow depth must be thicker than

its critical value, i.e., DepthCriticalvalue. MonthAvgTemp < 10, Depth > 0.5 and

Depth < 10 are mathematical calculations implementing logical expressions. The

second part of the program (Line 29-41) presents some facts that are used in the

snow data screening. For example, the fact �depthCriticalvalue(3.0).� denotes the

critical snow depth of this experiment is 3.0 centimeters.

Listing 4.1: Snow Depth Sample Screening Implemented in Prova

1 deepFrostLayer(Station , Year , Month , Depth , MonthAvgTemp):-

2 MonthAvgTemp < 10,

3 Depth > 0.5,

4 Depth < 10.

6 drySnow(Tb36V , Tb18V):-

7 Tb36V > 195.0 ,

8 Tb36V < 225.0 ,

9 Tb18V < 255.5.

11 thaw(Month , DayMaxT):-

12 Month = 3,

13 DayMaxT >= 6.

15 checkTemperature(Temp) :-

16 tempCriticalValue(TempCriticalValue),

17 Temp < TempCriticalValue.

19 checkDepth(Depth) :-

20 depthCriticalValue(DepthCriticalValue),

21 Depth >= DepthCriticalValue.

23 checkElevation(Station) :-

24 stationElevation(Station , Ele),

25 elevationCriticalvalue(ElevationCriticalvalue),

26 Ele < ElevationCriticalvalue.

28 % measure unit: meter

29 depthCriticalValue (3.0).

31 % measure unit: celsius

32 tempCriticalValue (6).

34 % measure unit: meter

35 elevationCriticalvalue (2000).

37 % measure unit: meter

38 stationElevation('Fuhai ', 500.9).

39 stationElevation('Aletai ', 735.3).

40 stationElevation('Fuyun ', 823.6).

41 stationElevation('Qinghe ', 1218.2).

42 ...

Derivation rules provide a natural way of domain decision-centric logic repre-

sentation and also support easy adaption, changes and extensions. Compared to

imperative programs, in which the logic is deeply buried, such declarative rules can

be easily adapted to other similar experiments. For example, the above rules can

4.4. Domain Decision-Centric Logic Description 75

be easily adapted to another similar experiment of building a snow depth model in

Qinghai Province of China [42].

4.4.2 Semantic Web Data Query

Derivation rules are usually built on the facts that specify propositions taken to

be true in a domain. For example, facts stationElevation('Fuhai', 500.9) and mon-

thAvgTemp('Fuhai', 2004, 01, -20.9) indicate the elevation of Fuhai meteorological

station is 500.9 meters, and its average temperature in January of 2004 is -20.9

�. This section presents how existing Semantic Web data can be reused in domain

knowledge representation.

With the development of Semantic Web technologies, Semantic Web applica-

tions are being developed for many aspects of scienti�c research, from experimental

data management, discovery and retrieval, to analytic work�ows, hypothesis devel-

opment and testing, to research publishing and dissemination [143]. Currently, there

are domain speci�c glossaries, taxonomies and Semantic Web ontologies available

on the Internet [13]. In particular, the applications of Semantic Web technologies in

the life science domain have got good achievement and are one step ahead of other

research domains. Supported by international workshop SWAT4LS [144], which

provides a venue to present and discuss the bene�ts and limits of the adoption of

Semantic Web technologies in the life sciences domain, there are e�orts that focus

on publishing scienti�c data using Semantic Web technologies. For example, Iden-

ti�ers.org [145] is a system providing resolvable persistent URIs that can be used

to identify data for the scienti�c community. The European Bioinfomatics Institute

(EBI) [146] provides freely available data from life science experiments covering the

full spectrum of molecular biology. In a bid to support Semantic Web technologies,

the EBI has published a new RDF platform [147] to access bioinformatics resources

in 2013. COEUS [148] is a Semantic Web application framework targeting quick

creation of new biomedical applications. Such Semantic Web data provides a com-

mon, comprehensible foundation for resources of di�erent scienti�c domains, and it

is wise to reuse it rather than waste e�orts to achieve similar logic by declarative

rules from scratch.

Semantic Web data is usually in the form of vocabularies or ontologies. As W3C

explained, there is no clear division between vocabularies and ontologies. The trend

is to use the word �ontology� for more complex, and possibly formal collections of

terms, whereas �vocabulary� is used when such strict formalism is not necessar-

ily used or only in a loose sense [129]. An ontology is an explicit speci�cation of

a conceptualization, which represents a set of objects and their relations in a do-

main [149]. The vocabularies, ontologies and rules can all be employed to represent

domain-speci�c logic. Moreover, they are expressible in each other to some extent.

For example, derivation rules can express the concepts and relationships encoded

by semantic vocabularies and ontologies, e.g., A ⊆ B in OWL can be encoded

as A(x) → B(x). However, although there are overlaps between ontologies and

rules, they cannot replace each other. The ontology-based knowledge representation

76 Chapter 4. Rule-Based Agent-Oriented Framework

depends on the expressiveness of DL. They are good at representing schema level

knowledge and even asserting the existence of unknown individuals, but they can-

not specify arbitrary relationships between instances (individuals). The rule-based

knowledge representation takes the perspective of LP and represents domain policies

in a clear logical way. However, declarative rules also have limitations, e.g., they

cannot express the existence of unknown/unnamed individuals. For the purpose of

exploiting the bene�ts of both rules and ontologies, there are e�orts attempting to

combine them as a uni�ed logic, such as [150, 151, 152]. However, these e�orts are

still under the way. Di�erent with these e�orts, the RbAF adopts a lightweight

solution to integrate existing Semantic Web data into declarative rules, rather than

provides domain experts with a complex uni�ed logic. That is, the RbAF builds

declarative rules on top of ontologies and enables rules to access existing Semantic

Web data as external codes. To do so, the RbAF provides three ways to access

domain data encoded by Semantic Web technologies, also shown in Figure 4.10.

RDF

Rules

RDFS / OWL

Reasoner

Typed

Terms

Figure 4.10: Semantic Web Data Query

Querying Vocabularies with SPARQL

RDF is a data model for the description of Web resources. The model denotes an

RDF graph, where both data and relationships are represented by URIs. In other

words, an RDF graph is a set of triples with a form of (subject, predicate, object).

SPARQL is the standard query language for this model. For example, the following

SPARQL query retrieves all proteins of fruit �y.

Listing 4.2: Example of SPARQL Query (1)

1 PREFIX up:<http :// purl.uniprot.org/core/>

2 SELECT ?protein

3 WHERE

4 {

4.4. Domain Decision-Centric Logic Description 77

5 ?protein a up:Protein .

6 ?protein up:organism ?organism .

7 ?organism up:commonName ?name .

8 FILTER regex(?name , "Fruit fly", "i")

9 }

Since the SPARQL draft was �rstly released in 2004, it had become an o�cial

W3C Recommendation in 2008. The latest SPARQL 1.1 was released in March

of 2013, which has new features, including sub-queries, value assignment, path ex-

pressions, aggregations, etc. However, SPARQL has some challenges [153]: (1) due

to the open world semantics of RDF, RDF databases are inherently incomplete;

(2) SPARQL cannot get complete answers when it queries the vocabularies with

prede�ned semantics (e.g., ontologies in Resource Description Framework Schema

(RDFS) or OWL) (see Listing 4.4); (3) the normative SPARQL assumes that the

RDF data resides in a single repository and the queries have full access, but in

reality, SPARQL has to work at Web scale to accommodate Linked Data.

Incorporating Ontologies as Typed Rules

Compared with RDF, RDFS is a simple ontology language that allows individuals

sharing properties to be classi�ed into classes. The individuals of a class are re-

ferred to as instances of that class. RDFS de�nes the relationship between instances

and classes with a special URI rdf:type. For example, the triple �<uniprot:Q15653

rdf:type up:Protein>� de�nes that Q15653 is a protein (Note that the namespace

pre�x bindings are omitted for clarity). OWL extends RDFS with more complex

statements about individuals, classes and properties. Both of them can describe

a set of individual objects sharing properties. However, users need to enumerate

all individuals of a class when they encode the knowledge represented by the class

with declarative rules. To overcome this problem, the RbAF incorporates domain

ontologies (classes to be more precise) as typed rules, i.e., the variables in rules can

be typed with concepts de�ned in external ontologies. This solution greatly reduces

rules that need to be formulated and also improves the �exibility and accuracy of

domain knowledge representation. For example, the inputs of the protein prediction

analysis process must be a protein and a GO term (see Section 2.5.2). However,

for a cell, there may be thousands of proteins and GO terms, it is troublesome to

use declare rules to validate them one by one. With this solution, the only thing

needs to be done is to declare the type of two inputs as up:Protein and up:Concepts,

respectively, which are already de�ned in the UniProt core ontology [154].

Reasoning Ontologies with Reasoners

Besides incorporating ontologies as typed rules, the RbAF also can reason complex

ontologies, i.e., RDFS and OWL. In addition to classes, RDFS de�nes restric-

tions on properties. For example, rdfs:domain and rdfs:range restrict the domain

of subject and the range of object of a property, respectively. Especially OWL

further extends RDFS with more expressiveness, including the de�nition of class

78 Chapter 4. Rule-Based Agent-Oriented Framework

relations, constraints and cardinalities, equivalences between classes, properties of

properties, etc. As mentioned in querying vocabularies with SPARQL, SPARQL

usually aims to data in the form of RDF triples and cannot get complete an-

swers when it queries the vocabularies with prede�ned semantics. For the complex

queries that need to consider prede�ned semantics, it is necessary to employ on-

tology reasoners. For example, the following SPARQL-DL query based on OWL

reasoner HermiT [155] retrieves the types of a genomic DNA identi�ed by a URI:

<http://purl.uniprot.org/embl/AE014297>.

Listing 4.3: Example of SPARQL-DL Query

1 PREFIX embl: <http :// purl.uniprot.org/embl/>

2 SELECT ?x WHERE

3 {

4 Type(embl:AE014297 , ?x)

5 }

7 Results:

8 ?x = http ://www.w3.org /2002/07/ owl#Thing

9 ?x = http :// purl.uniprot.org/core/Genomic_DNA

10 ?x = http :// purl.uniprot.org/core/Molecule

11 ?x = http :// purl.uniprot.org/core/DNA

The results show that embl:AE014297 is a kind of up:DNA, up:Molecule and

owl:Thing. The SPARQL-DL [156] query language is a distinct subset of SPARQL;

it is settled on top of the OWL API and allows to mix TBox, RBox, and ABox

queries. The RbAF uses the SPARQL-DL query engine to reason complex on-

tologies, more details can be found in Section 6.4. However, when the query is

re-formulated as a SPARQL query, the result denotes that embl:AE014297 is only

a kind of up:Genomic_DNA, as shown in the following SPARQL query. That is

because there is no triple in the ontology directly de�ning that embl:AE014297 is

the subclass of up:DNA and owl:Thing.

Listing 4.4: Example of SPARQL Query (2)

1 PREFIX embl: <http :// purl.uniprot.org/embl/>

2 SELECT ?x

3 WHERE

4 {

5 embl:AE014297 a ?x .

6 }

8 Results:

9 ?x = http :// purl.uniprot.org/core/Genomic_DNA

4.5 Integrating Orchestration with Choreography

In general, there are two ways of the work�ow composition: orchestration and chore-

ography. Typical work�ows are often executed in a central manner on a single ma-

chine, where di�erent services are composed and coordinated e�ciently through a

controller to accomplish a complex goal [7, 157, 86]. Such work�ows can also be re-

garded as complex services and integrated hierarchically into other work�ows. This

<http://purl.uniprot.org/embl/AE014297>

4.5. Integrating Orchestration with Choreography 79

execution manner is also known as orchestration. The service orchestration has ad-

vantages, such as services can be freely designed to be process-agnostic and reusable;

the work�ow execution is managed by the centralized work�ow engine. However,

due to the centralized work�ow execution, the service orchestration su�ers from the

weaknesses, such as the consumption of network bandwidth, degradation of perfor-

mance and single-points of failure caused by redundant data transfers [158, 159].

Compared with the service orchestration, choreography is another way of service

composition, which focuses on collaboration and message exchange between multi-

ple participants [157].

Agent21

Agent22 Agent23

Agent1

Agent3

Agent41

Agent42

Task1

Task3

Task2

Main

Process

Orchestration Engine

Choreography Agents

Task4

Choreography

Agents

Collaborative

Sub-Process

Figure 4.11: Integrating Orchestration with Choreography

The RbAF extends the range of work�ow applications by combining the orches-

tration with choreography-style execution, as shown in Figure 4.11. That is, on one

hand, a centralized work�ow engine (an agent) takes control of the execution of

a work�ow and completes it via the composition of distributed agents (Note that

the tasks here are conceptually the same as the services of the traditional work�ow

systems. Both of them are basic elements of a work�ow). The involved agents re-

ceive task assignments from the work�ow engine and return results to the work�ow

engine after completing them. They do not need to know in which process they

are embedded, and the task assignment and process execution are managed by the

centralized work�ow engine.

On the other hand, distributed agents can communicate via messaging reaction

rules, which enables them to build conversation-based interactions and choreography

work�ows. That is, the choreography interaction �ows between distributed agents

are de�ned by the order of sending and receiving messages, which are associated

with conversation identi�ers to re�ect the process execution. Each agent involved

in a choreography work�ow knows exactly when to execute its operations and with

80 Chapter 4. Rule-Based Agent-Oriented Framework

whom to interact.

The agents of the RbAF are usually loosely coupled and implemented based on

their di�erent functionalities. As a way for coordination, the RbAF uses the work-

�ow ontology (see Section 4.2) to allocate tasks to agents. The work�ow ontology

describes the agent responsibilities in completing certain tasks. With the work�ow

ontology, one task can be dynamically allocated to a responsible agent, whose local

knowledge base is deemed to be best suited for performing it.

4.6 Human Interaction

Although the vision of scienti�c work�ows aims to automate scienti�c processes, in

reality, scientists are still required to conduct manual tasks or make complicated de-

cisions at runtime. Some e�orts have been made to support user interaction in work-

�ows, such as BPEL4People [160] and WS-HumanTask [161]. Both of them make

it possible to wrap human behavior into Web Services, and the scienti�c work�ow

systems that can invoke Web Services also can integrate human users in work�ows.

However, these systems support only synchronous Web service invocations and do

not allow specifying callback operations [3].

The RbAF also allows human operations in the WsSWFs. For the tasks that

need to be performed by human users, a Human Agent (HA) is employed to receive

human task requests, process human operations and then return the results to task

requesters. Figure 4.12 shows the process of human interaction.

A
g

e
n

t In
te

rfa
c
e

Task

Definition

User

Operation

Processor

U
s
e

r In
te

rfa
c
e

Sending Request

Receiving

Response

Agent
Human Agent

Domain Expert

task request

(cid)

task response

(cid)

...

Listener

Figure 4.12: Integrating Humans into Scienti�c Work�ows

The HA manages the life cycle of human tasks. Typically the process of per-

forming a human task is triggered when the HA receives a human task request on its

(agent) interface from other agents. The agent interface has an agent lifetime scope

and it is active while the HA runs. Afterwards, the HA stores the tasks and sets

their states as pending. Human tasks of the RbAF have two statuses, namely pend-

4.6. Human Interaction 81

ing and done. They are initialized as pending when they are received and updated

to done after they are completed by human users.

Following Web Services Human Task (WS-HumanTask) [161], a human task of

the RbAF is described by a set of general properties, as shown in the following

template.

<HumanTask>

<cid><!-- conversation identifier --></cid>

<type><!-- unexpected exceptions or human tasks --></type>

<payload><!-- task description --></payload>

<workflow><!-- workflow name --></workflow>

<receivedAt><!-- task received time --></receivedAt>

<solution><!-- task solution --></solution>

<solver><!-- task solver --></solver>

<solvedAt><!-- task solved time --></solvedAt>

<status><!-- task status --></status>

</HumanTask>

The human task properties are conversation identi�er, human task type, task

description, work�ow name, received time, task solution, solver, solved time and

status. Note that due to the focus of this thesis is on the integration of human

users into scienti�c work�ows, the RbAF does not give a comprehensive human

task speci�cation but only de�nes some important properties of human tasks.

The RbAF has two types of human tasks: human tasks themselves and un-

expected exceptions. Once an exception cannot be handled automatically by the

rule-based agents, the exception will be escalated to human users to make a de-

cision or provide the required resources. This kind of exception is also called an

unexpected exception and considered as a human task. More details can be found

in the next section.

Users operate on human tasks assigned to them via a friendly menu-based Web

interface. After completing a human task (e.g., make a decision), they submit their

decisions via the interface to a user operation processor, which encapsulates human

operations into event messages and sends them back to the task requester to resume

the work�ow execution (i.e., callback). Meanwhile, the human task status is updated

from pending to done.

However, what users need are not only integrating users into the work�ow execu-

tion, but also asynchronous interaction with the work�ow system, especially when

performing long running activities, such as discussions and exhaustive knowledge

searches. The RbAF addresses this problem via an asynchronous messaging style

between a human task requester (agent) and the HA, as shown in Figure 4.12: the

human task requester has a pair of messaging reaction rule activities, i.e., one send-

ing activity which sends a human task request to the HA and the other receiving

activity waits for the answer from HA. After the request is sent, the receiving ac-

tivity freezes the current context of the work�ow execution and creates a temporal

reaction to wait for the results from the HA. This receiving activity is a reaction

rule which has an event template that describes the desired answers from users.

82 Chapter 4. Rule-Based Agent-Oriented Framework

The data from the received results is bound to the template variables as usual in

logic programming. The binding usually includes backtracking to several variable

bindings for the purpose of receiving possible human answers. Once the matching

results are received, the reaction rule is triggered to activate subsequent activities.

Note that the human task request and its results are associated with the same con-

versation identi�er, which ensures that the work�ow resumes as though it had never

been interrupted. In other words, the conversation identi�er ensures that the results

are precisely returned to the original human task requester.

4.7 Exception Handling

Di�erent strategies have been proposed to handle work�ow exceptions at runtime,

ranging from simple policies (e.g., retry, checkpoint/restart [162], replication [163])

to sophisticated exception handling involving human users. The RbAF provides two

ways to handle work�ow exceptions at runtime:

� Dynamic exceptional activity replacement : the dynamic replacement refers to

treatments of an exception by dynamically replacing an exceptional activity

with an alternative owning the same e�ect. The logic programming has inher-

ent advantages in specifying alternative execution paths in case a particular

execution path fails. Moreover, based on the work�ow ontology, it is also pos-

sible to reallocate a task to alternative agents with the same e�ect, and its

successors know nothing about the replacement. Since this strategy handles

exceptions automatically, it is also known as automatic exception handling and

the exceptions are referred to as expected exceptions.

� Human interaction: Besides the expected exceptions, there are exceptions that

cannot be handled automatically by the rule-based agents. For example, no

resources available (e.g., no agent is available to perform a task). Based on

the asynchronous user interaction, human users are allowed to handle these

exceptions by providing missing resources. Compared with the automatic

exception handling, this approach is also known manual exception handling

and the exceptions are referred to as unexpected exceptions.

The exception handling logic is often needed in many places of a work�ow, and

runs the risk of cutting across the process and making work�ow maintenance more

di�cult. Following the AOP paradigm, the RbAF separates the exception handling

logic from main work�ow processes and encapsulates it in an Exception Handling

Agent (EHA). More precisely, the EHA is responsible for handling the expected

exceptions by �nding alternative counterparts with the same e�ect and replacing

the failed sub-process dynamically. The expected exceptions will be escalated to

the unexpected exceptions and handled by the HA if they cannot be handled by the

EHA automatically. Human users can make a decision or provide required resources

to deal with the unexpected exceptions.

4.8. Summary 83

Exception Handling Agent

agentException

(failed/unavailable)

e1

Returning

Alternative Agent

Receiving Request

found

not found

Finding

Alternative Agent

Requesting

Human Interaction

Receiving

Human Reply

Missing Resource

Preparation

Updating Workflow

Ontology

Sending Reply

e2

noAgentAvailable

Human Agent

XOR

Figure 4.13: Exception Handling in Event-Driven Scienti�c Work�ows

Figure 4.13 presents a process of dealing with the work�ow exceptions at runtime.

If an agent responsible for a task is unavailable or failed, then an exception message

e1 (unavailableAgent or failedAgent) is generated and sent to the EHA to �nd an

alternative agent via reasoning the work�ow ontology. The task is then allocated

to the alternative agent once found. If there is no alternative agent available, then

the EHA generates an escalation exception message e2 (noAgent exception), and

the control is passed to the HA to ask human users for help. Human users usually

handle these exceptions by preparing missing resources and then notify the EHA to

�nd a responsible agent again.

Another type of the expected exceptions is in�nite loop, which is caused by

endless communication between two or more agents. An in�nite loop can be detected

if a message is repeatedly sent more than a certain limit. More details will be found

in Section 6.6.

4.8 Summary

This chapter introduced a rule-based, agent-oriented framework�RbAF, which ex-

ploits the bene�ts of both the declarative programming with rules and the agent

technology to support the WsSWFs.

Messaging reaction rules specify work�ow processes in terms of message-driven

conversations between parties and describe their associated interactions via asyn-

chronously sending and receiving event messages. They not only inherit the features

of active global ECA rules, but also complement them by performing actions locally

within a context. In other words, the complex subgoals of reaction rules are allowed

to be proved by a group of distributed agents. Moreover, the rule-based complex

84 Chapter 4. Rule-Based Agent-Oriented Framework

event pattern computation can model complex work�ow connectors (or gateways),

thereby modeling complex work�ow patterns.

The domain-speci�c decision logic in work�ows is expressed by exploiting the

bene�ts of both LP and DL. On one hand, logic programming with derivation

rules is understandable to scientists and also much easier to be modi�ed if there

are changes. On the other hand, the RbAF provides three ways to access domain

data encoded by Semantic Web technologies: querying simple vocabularies with

SPARQL, incorporating ontologies as typed rules and reasoning complex ontologies

with reasoners. This lightweight combination of rules and ontologies not only reduces

rules that need to be formulated, but also improves the �exibility and accuracy of

domain knowledge representation.

Meanwhile, the RbAF extends the range of work�ow applications by combining

two ways of the work�ow composition: orchestration and choreography. Distributed

agents can be simply composed into a centralized work�ow to execute part of a

work�ow, and also can build conversation-based interactions between multiple par-

ticipants via messaging reaction rules.

The RbAF also integrates human users to perform manual operations and sup-

ports the asynchronous human user interaction. In addition, based on the work�ow

ontology, the RbAF supports both automatic and manual exception handling during

the work�ow execution.

In the next chapter, a formal semantics of the rule-based work�ow language is

presented.

Chapter 5

Formal Work�ow Representation

Contents

5.1 Work�ow Model . 85

5.2 CTR Overview . 87

5.3 Work�ow Representation Using CTR 91

5.3.1 Work�ow Representation . 91

5.3.2 Multiple Instances . 94

5.3.3 Reactive Logic Representation 94

5.4 Communication between Processes 96

5.5 Complex Event Processing . 97

5.6 Exception Handling . 100

5.7 Summary . 102

Currently there are rule-based work�ow languages that support �exible service

composition and model the process logic with declarative rules. However, most of

them only provide static syntactical process descriptions without precise formal se-

mantics. The formal semantics of a work�ow language helps in understanding what

a work�ow is doing. Without a formal semantics, work�ow engines implementing

a language can easily produce slightly di�erent results. For the purpose of reduc-

ing ambiguity and opening possibilities for veri�cation and analysis, this chapter

presents a CTR-based formal semantics of the rule-based work�ow language pre-

sented in this thesis.

This chapter is organized as follows: Section 5.1 introduces a general work�ow

model. Section 5.2 provides an overview of CTR as the main underlying formalism.

Section 5.3 explains how CTR is used to represent work�ow processes. Sections 5.4,

5.5 and 5.6 present the communication between processes, the complex work�ow

pattern modeling with the rule-based CEP technologies and the exception handling,

respectively. Section 5.7 introduces the related e�orts and summarizes this chapter.

5.1 Work�ow Model

Before presenting the formal semantics of the logic-based work�ow language, this

section introduces a general work�ow model to help readers understand how a work-

�ow is composed, as shown in Figure 5.1.

86 Chapter 5. Formal Work�ow Representation

XORT1

T2

T3

T4

T5

T6

T7

T8

T9 T10

V

V V

AND split

connector

AND split

connector

AND join

connector

XOR join

connector

Figure 5.1: A General Work�ow Process Model

Work�ows can be viewed from di�erent perspectives [164]. From a control-�ow

perspective, a work�ow process consists of a group of tasks (denoted by rounded

rectangles in Figure 5.1) de�ned in terms of business or scienti�c rules. The recur-

ring features of these rules are also known as control-�ow patterns. A well-known

collection of control-�ow patterns is proposed by the Work�ow Patterns Initiative

[52, 136]. Figure 5.1 contains three general control-�ow patterns: sequence, parallel

and iterative, which are common in the real-world applications. In the sequence

pattern, a task is enabled only after the completion of a preceding task. For exam-

ple, T 2 and T 4 in Figure 5.1. As for the parallel pattern, it refers to a point (split

connector) where a single branch splits into multiple parallel branches. In other

words, a split connector usually has one incoming and multiple outgoing branches.

A split connector can be further divided into more advanced ones, such as AND,

XOR and OR split connectors. After an AND split connector, all subsequent (out-

going) branches are executed concurrently. For example, after T 1, two subsequent

tasks T 2 and T 3 are started to be executed concurrently. An XOR split connector

describes a point in a process where a decision is made precisely to select one of the

subsequent branches to execute. An OR-parallel split connector imposes conditions

on each outgoing branch. Only the subsequent branches (one or more) that meet the

conditions are executed. Moreover, the parallel pattern is usually associated with

a join connector, where two or more branches are joined into a single subsequent

branch. In other words, each join connector usually has multiple incoming and one

outgoing branch. A join connector can also be divided into AND, XOR and OR

join connectors. An AND join connector de�nes a synchronizer that requires all

incoming branches to be completed. For example, each of T 5, T 6 and T 7 has to

be completed before T 8 can be executed. An XOR join connector can have either

non-local or local semantics [141]. A non-local XOR join connector expects only one

incoming task to be successfully executed. The thread of control is passed to sub-

sequent branches when the �rst incoming branch has been enabled. The non-local

XOR join connector works well if incoming branches are mutually exclusive (i.e.,

only one incoming branch is activated). However, if more than one incoming branch

5.2. CTR Overview 87

is activated, the non-local XOR join connector needs to block subsequent incoming

branches after the thread of control is passed to the subsequent branch after the �rst

incoming branch is enabled. The subsequent enablements of incoming branches do

not result in the thread of control being passed on. For example, after T 1, two

subsequent tasks T 4 and T 8 will be executed concurrently. Suppose the XOR join

connector in Figure 5.1 is non-local, T 9 is executed when one of T 4 and T 8 has

completed. Completion of the other task is ignored and does not result in execut-

ing T 9 again. A local XOR join connector propagates each incoming process token

without ever blocking. For example, suppose the XOR join connector in Figure 5.1

is local, T 9 is executed after each completion of T 4 and T 8. In other words, T 9 is

executed twice. Depending on di�erent situations, they can be used to implement

the Structured Discriminator pattern and the Multiple Merge pattern proposed by

the Work�ow Patterns Initiative [136], respectively. The OR join connector usually

has non-local semantics and synchronizes all incoming branches that are active; it

is usually used to implement the Structured Synchronizing Merge pattern [136].

Using di�erent split and join connectors of the general parallel pattern can gen-

erate more advanced work�ow patterns, such as a process starting with an OR split

connector that �rst enables one or more subsequent branches and then ending with

an OR join connector. The process is completed when all concurrently activated

branches have completed.

An iterative pattern consists of a start node, an end node and an iteration edge

that directs from the start node to the end node, such as T3 and T9 shown in Figure

5.1. The iterative pattern also includes a condition that speci�es when the iteration

is needed. Depending on the place of the condition, being either at the start or

end nodes, the iterative pattern is divided into the classic while...do pre-test loop

construct and the repeat...until post-test loop construct.

While the scienti�c work�ow composition in Figure 5.1 visually emphasizes pro-

cessing steps, the actual computation is often data-driven [19]. In other words, from

a data �ow perspective, what passes between work�ow steps is not just control, but

also data �owing from one task to another [19]. A task may require a data object as

an input and produce another data object as an output, which could be used as an

input by its successor. Therefore, it is also important to capture data dependencies

and enable work�ow engines to �nd suitable resources automatically for each task.

5.2 CTR Overview

Transaction Logic (TR) is a general logic that accounts for state changes in deductive

databases, logic programs and arbitrary logical theories in a clean and declarative

way [165]. In deductive databases with updates, each state represents a database,

and database transactions are considered as a series of updates, which cause transi-

tions from one state to another, thereby changing databases.

As a �rst-order logic language, TR has logical connectives ∧ (classical conjunc-

tion), ∨ (classical disjunction), ¬ (classical negation), ∀ (universal quanti�cation)

88 Chapter 5. Formal Work�ow Representation

and ∃ (existential quanti�cation). For the purpose of combining transactions se-

quentially, TR extends the �rst-order logic with a new connector of sequential com-

position, denoted as: ⊗ (aka. serial conjunction). The resulting logic formulas are

called transaction formulas which are recursively de�ned as follows [166]:

An atomic transaction formula is an expression of the form p(t1, ..., tn), where

p is a predicate symbol, and t1, ..., tn are terms. A term is either a variable or a

function term with a form of f(t1, ..., tk). A functional term with arity zero is a

constant. Furthermore, if ψ and φ are transaction formulas, then so are the following

expressions:

� φ ∧ ψ: both φ and ψ must be executed along the same path;

� φ ∨ ψ: execute φ or ψ non-deterministically;

� ¬ φ: execute in any way provided that this will not be a valid execution of φ;

� φ⊗ ψ: �rst execute φ, then execute ψ;

� (∀X) φ and (∃X) ψ, where X is variable.

TR accounts not only for the update orders, but also for other important fea-

tures in areas, such as transaction and subroutine de�nition, deterministic and non-

deterministic actions, static and dynamic constraints, hypothetical and retrospective

transactions, and a wide class of tests and conditions on actions [167, 165]. Like

procedural languages, TR enables users to combine simple actions into complex ones

in a greater variety of ways. Moreover, users are allowed to specify loose constraints

that a transaction must satisfy. In other words, sequences of actions and constraints

that can be arbitrarily mixed, and in this way, procedural and declarative knowl-

edge are seamlessly integrated [165]. For example, ¬ (a ⊗ b ⊗ c) means that the

sequence a ⊗ b ⊗ c is not allowed.

As in the �rst-order logic, TR includes a Horn-like fragment that has both a

declarative and a procedural semantics [165]. Horn rules are formulas of the form

p ← ψ, which can be seen as a convenient abbreviation for the formula p ∨ ¬ ψ.
Here, p is an atomic formula, and ψ is any TR formula. The rule also has a

procedural interpretation, which means that �to execute p, it is su�cient to execute

ψ�. The predicate symbol p here acts as the name of the procedure, and ψ acts

as the procedure body or de�nition, which may be any TR formula (e.g., a ← a1
⊗ a2 ⊗ ... ⊗ an). Note that, for notational convenience, a rule p(X) ← ψ is an

abbreviation of ∀X[p(X) ← ψ], ∃ ψ is an abbreviation for ¬∀¬ψ. Thus, quanti�ers
∀ and ∃ are not explicitly considered in what follows.

TR has its own model theory and sound-and-complete proof theory [165]. The

model-theoretic semantics of TR is based on paths, i.e., sequences of database states,

rather than states themselves. To de�ne truth on paths, each path is assigned a �rst-

order formula, which speci�es the formula atoms that are true on the path [165]. In

other words, all formulas, atomic or complex, which are true on a path represent

actions (i.e., updates or queries) that take place along the path. For example, the

5.2. CTR Overview 89

path D, D + {a}, D + {a, b} satis�es the formula ins:a ⊗ ins:b, since it represents

an insertion of a followed by an insertion of b. Here D denotes a state. The proof-

theoretic semantics of TR can verify the procedure that causes state transitions,

and more details about the TR proof theory can be found in [166].

For the purpose of supporting the commutation between concurrent processes,

CTR further extends TR with two logical operators: concurrent conjunction | and
the modality of atomicity � for specifying atomic actions [167]. The resulting trans-

action formulas and their semantics are described as follows:

� φ | ψ: φ and ψ are executed concurrently;

� � φ: the execution of φ should not be interleaved with other transactions.

The concurrent processes in CTR execute in an interleaved fashion and can

communicate and synchronize themselves, thereby increasing the �exibility, perfor-

mance, and power of the language. Since CTR is built upon TR, the statements in

what follows about TR are also hold for CTR, unless explicitly speci�ed.

In CTR, two oracles encapsulate the elementary database operations: data oracle

and transition oracle. Such oracles come with a set of database states, upon which

they can operate. Each database state can be seen as a set of data items, which can

be accessed by the oracles.

Both oracles are mappings: the data oracle, Od(D), which maps from the

database states to sets of �rst-order formulas, i.e., Od(D) presents queries related

to a particular state D ; the transition oracle, Ot(D1, D2), which maps pairs of

the states to sets of ground atomic formulas, i.e., these transition oracles repre-

sented by ground atomic formulas cause database state changes. For example, if

a ∈ Ot(D1, D2), then a is an elementary update that changes state D1 to D2.

Such oracles provide a semantics for the data items, and by using di�erent data ac-

cess primitives, CTR can accommodate di�erent database semantics [167]. A formal

semantics of the rule-based work�ow language used for supporting the WsSWFs can

be found in the following sections of this chapter.

CTR programs support concurrent processes, where each process produces a

sequence of elementary database operations, and these concurrent processes interact

and communicate via the database. For example, the following transaction base

de�nes two processes: processA and processB [167].

processA←taskA1⊗send(ch1, startB2)⊗taskA2⊗receive(ch2, startA3)⊗taskA3

processB←taskB1⊗receive(ch1,startB2)⊗taskB2⊗send(ch2, startA3)⊗taskB3

The concurrent transaction processA | processB executes processA and pro-

cessB concurrently while synchronizing the execution of their tasks by sending and

receiving messages. More precisely, taskB2 cannot execute until taskA1 is �nished,

and taskA3 cannot execute until taskB2 is �nished. A task in this example can be

either an update or a query to the database. Both the tasks and communicating

predicates send and receive are elementary database operations, which cause the

transitions of database states.

90 Chapter 5. Formal Work�ow Representation

The model-theoretic semantics of CTR is based on multi-paths or m-paths, which

are generalized from the notion of TR paths. Formally, an m-path is a �nite sequence

of paths, where each path presents a period of continuous execution. For example, if

D1, D2, ... D8 are database states, then 〈D1D2D3, D4D5, D6D7D8〉 is an m-path.

If the m-path represents the execution history of a process φ, then it means that

φ has three periods of continuous execution and suspends twice during the whole

execution. Corresponding to the logical connectives ⊗, | and �, there are three

operators on m-paths: concatenation, interleaving and reduction.

Suppose that m-paths τ =〈k1, ..., kn〉 and τ ′ = 〈k′1, ..., k′m〉 represent the

execution of φ and φ′, respectively.

� the concatenation of m-paths τ and τ ′, i.e., τ • τ ′, represents the serial

execution of φ and φ′, i.e., φ⊗ φ′; τ • τ ′ = 〈k1, ..., kn, k′1, ..., k′m〉.

� the interleaving of m-paths τ and τ ′, i.e., τ ‖ τ ′, represents the concurrent

execution of φ and φ′, i.e., φ | φ′. If n = 2 and m = 3, then the interleaved

new m-path may be 〈k1, k′1, k2, k′2, k′3〉 or 〈k1, k2, k′1, k′2, k′3〉. It is worth
noticing that the new interleaved m-path keeps the orders of path fragments

of the original m-paths.

� suppose τ =〈k1, k2, k3〉 represents the execution of φ. If paths k1 and k2,

k2 and k3 can be concatenated, then φ is able to execute continuously along

path τ ′ = 〈k1k2k3〉, i.e., τ reduces τ ′. The idea is that if φ is suspended and

re-awakened in state k1 or k2, it can also execute continuously.

To de�ne truth on m-paths, each m-path is assigned a �rst-order formula, which

speci�es the formula atoms that are true on the m-path [167]. In other words,

a transaction formula, which is true on an m-path represents actions that take

place along the m-path. The proof theory of CTR has an e�cient SLD-style proof

procedure, and more details can be found in [167].

To sum up, CTR is a formal uni�ed logical framework that integrates concur-

rency, communication and updates. On one hand, CTR is capable of combining

element database updates and queries into complex database transactions. On

the other hand, CTR supports both synchronous and asynchronous communica-

tion between processes. The communication paradigm within CTR is inspired by

π-calculus, but CTR provides a more �exible concurrency than π-calculus which

requires a hand-shake before the communication [167]. Moreover, the RbAF pro-

posed in this thesis employsmessaging reaction rules to describe (abstract) processes

in terms of message-driven conversations between agents and uses derivation rules

to describe knowledge-intensive decision-centric steps in work�ows. CTR provides

the logical foundations for both state changes and interaction between concurrent

processes in a logic programming language and is close to the rule-based work�ow

language of the RbAF. This is also the reason why logical CTR is employed as a

theoretical basis for the declarative rule-based description of the WsSWFs.

5.3. Work�ow Representation Using CTR 91

5.3 Work�ow Representation Using CTR

5.3.1 Work�ow Representation

Dé�nition 1 (Scienti�c Work�ow) A scienti�c work�ow is a collection of coor-

dinated tasks composed to accomplish complex goals, and it is represented as a CTR

Horn goal.

In CTR, a Horn goal that is de�ned recursively as follows:

� an atomic formula is a CTR Horn goal;
� if ψ and φ are CTR Horn goals, then so are the expressions: ψ ⊗ φ, ψ | φ,
ψ ∨ φ;

� � ψ, where ψ is a CTR Horn goal.

The tasks in the RbAF could be primitive tasks or composite tasks. A primitive

task is an elementary unit of a work�ow, and a composite task de�nes the execution

order of a set of tasks (aka. a sub-work�ow or a sub-process).

Dé�nition 2 (Primitive Task) The primitive task corresponds to an atomic ac-

tivity of a work�ow, and it is represented in CTR as an atomic formula.

A primitive task represented by an atomic formula has the following format:

p(arg1, ..., argn).

Here, predicate p denotes the name of a task, and arg1, ..., argn (n > 1) are

task arguments that are the same as the terms de�ned in the �rst-order logic.

Since this chapter focuses on representing complex work�ows using CTR, the

details of task arguments are omitted. For brevity, a primitive task atom is often

abbreviated as p(X), where X denotes all arguments that p takes.

The states in the CTR-based work�ow modeling are regarded as datasets. Each

state is a set of data items that represent current work�ow status. More precisely,

if D is a state, the data oracle Od(D) which corresponds to queries to a particular

state. The transition oracle is de�ned as a task that consumes data to accomplish

certain goals. This thesis assumes that a task must have at least one input. For-

mally, for a task having both input(s) and output(s), task(̄i, ō) ∈ Ot(D1, D2) i�

D2 = D1 ∪ {ō} − {̄i}. Here, ī and ō represent the input(s) and output(s) of

the task, respectively. For a task having only input(s), task(̄i) ∈ Ot(D1, D2) i�

D2 = D1 − {̄i}.
A primitive task can change the work�ow state and act as a query to present

a particular work�ow state. In terms of di�erent situations, a primitive can be

an update-task and a query-task, respectively. A work�ow language that programs

state-changing actions is helpful to pass data between tasks. For example, a query

task can check if its precedent tasks are completed or the required data for its

execution is available. The RbAF considers data passing as event messages, more

details about the CEP-based work�ow representation can be found in Section 5.5.

92 Chapter 5. Formal Work�ow Representation

The execution of primitive tasks can be guarded by conditional statements, i.e.,

preconditions and post-conditions in work�ows. For example, the following formula

denotes that the protein prediction analysis can be executed if the user input is a

protein.

isProtein(Protein)⊗ proteinAnnotaionAnalysis(Protein,GOTerms)

Here, the atom isProtein(Protein) checks if the user input is a protein or not.

Di�erent with simple Boolean expressions, such condition evaluation usually involves

complex decision logic based on domain-speci�c knowledge.

Dé�nition 3 (Composite Task) A composite task (aka. a sub-work�ow or sub-

process) is the composition of a set of tasks, and it is de�ned as a CTR Horn rule

with a form p ← φ, where p is an atomic formula, and φ is a CTR Horn goal.

Since CTR Horn rules de�ne the composition of a work�ow, they are also known

as work�ow formation rules in this thesis. The head of a work�ow formation rule

is a predicate, which corresponds to a composite task only. As the primitive task,

the name of the predicate denotes the name of the composite task. The body of the

work�ow formation rule recursively gives the de�nition of the composite task. For

example, the process of ant identi�cation is represented as:

identProcess(Cid,AntDesc)← allocation(AntDesc,Agent)⊗
ident(Cid,Agent,AntDesc,Result)⊗
identDone(Cid,AntDesc,Result)

The identi�cation starts with a task allocation, which assigns the identi�cation

task to an agent. After the identi�cation task ident is done, an event identDone is

triggered to denote the end of the identi�cation. The reactive logic representation

in CTR can be found in Section 5.3.3.

The connectives ⊗, | and ∨ used to specify a CTR Horn goal have the following

semantics in this thesis:

� φ⊗ ψ: execute task ψ after task φ. Model-theoretically, φ⊗ ψ is satis�ed (or

is true) on an m-path τ if and only if φ and ψ are true on some m-paths τ1,

τ2 whose concatenation τ1 • τ2 reduces to τ , i.e., τ1 • τ2 = τ .

� φ | ψ: tasks ψ and φ are executed concurrently. Model-theoretically, φ | ψ is

true on an m-path τ if and only if φ and ψ are true on some m-paths τ1, τ2
whose interleaving reduces to τ , i.e., τ1 ‖ τ2 = τ .

� φ ∨ ψ: represents a nondeterministic task, which means �execute task φ or

execute task ψ�. Model-theoretically, φ∨ψ is true on an m-path τ if and only

if either φ or ψ is true over on τ .

⊗, |, and ∨ are binary connectives, which compose two tasks into a composite

one. Besides them, ¬ is a unary connective, and the satisfaction of ¬φ is de�ned

5.3. Work�ow Representation Using CTR 93

as: ¬φ is true on any m-path τ if and only if task φ is not true on the m-path τ . ¬
plays an important role to express decision logic of scienti�c work�ows. �φ means

the execution of task φ must not interleave with other concurrently running tasks.

The satisfaction of �φ is true on any m-path τ if and only if τ is a path. Since � is

often used to specify atomic actions that are rarely used in scienti�c work�ows, it is

not considered in this thesis. In addition, it is worth noticing that, the body of CTR

Horn rules does not include the classical connective ∧, which is usually expressed

as a constraint in TR [165].

Dé�nition 4 (Optional Task) Optional tasks are the ones that may not be di-

rectly needed for building work�ows (since they do not a�ect work�ow results), but

they allow for necessary variation and make work�ows more �exible. An optional

task is presented as a composite nondeterministic task as: ψ ∨ state.

Here, the state is a special propositional constant, which is true on paths of

length 1, i.e., on database states. This means that ψ ∨ state is always evaluated to

be true, even if task ψ is not executed.

Dé�nition 5 (Iteration Task) Iteration tasks are the ones which are executed re-

peatedly during a work�ow. In general, three distinct forms of repetition can be

identi�ed: arbitrary cycles, recursion and structured loop [136].

Arbitrary cycles mean that the work�ow tasks should have more than one entry

or exit point. CTR can represent arbitrary cycles by reaction rules, which specify the

conditions under which actions can be done. Moreover, events triggering reaction

rules may from multiple sources. More details about the reactive logic representation

in CTR will be found in Section 5.3.3.

A recursive task means that it can invoke itself during its execution or an ances-

tor in terms of the overall decomposition structure with which it is associated [136].

In order to ensure that the recursion does not lead to in�nite self-referencing decom-

position, a recursive task in this thesis is represented by a pair of CTR Horn rules:

one describes a recursive task in terms of itself, the other describes a termination

condition to ensure that the overall process will eventually complete normally.

ψ(T)← ϕ⊗ ψ(U)⊗ φ
ψ(T)← (�¬ϕ)⊗ state

This above example illustrates a recursive task ψ(T). It contains itself ψ and

means if ϕ is true in the current state, then another instance of ψ(U) is started.

Otherwise, the recursion process is completed. Here, �¬ϕ is interpreted as �other-

wise�. �ϕ means that the execution of ϕ is necessary at the present state (Necessity

means that ϕ is executable along every path leaving the present state) [165]. The

negation �¬� here is of the NaF variety; i.e., it is based on the perfect-model se-

mantics and only locally-strati�ed logic programs are considered [165] (More details

about strati�ed logic programs can be found in Section 2.8). In what follows, the

negation ¬ has the same interpretation as here, unless explicitly speci�ed.

94 Chapter 5. Formal Work�ow Representation

A structure loop has either a pre-test or post-test condition associated with

it that is either evaluated at the beginning or the end of the loop to determine

whether it should continue [136]. There are two general forms of this pattern�a

while loop which equates to the classic while...do pre-test loop construct used in

programming languages, and a repeat loop which equates to the repeat...until post-

test loop construct. Both of them can be represented as recursive tasks in a simple,

declarative way. For example, the standard while...do construct can be represented

as follows:
while_ϕ_φ← ϕ⊗ φ(U)⊗ while_ϕ_φ
while_ϕ_φ← (�¬ϕ)⊗ state

Similarly for the representation of repeat...until.

5.3.2 Multiple Instances

Multiple instance patterns describe situations where there are multiple threads of

execution active in a process which relate to the same activity [136]. In scienti�c

work�ows, multiple instances are usually helpful to improve e�ciency if a group of

data items can be processed in parallel.

With CTR, it is possible to create multiple concurrent instances of an activity

or sub-process. The following example adapted from [168] demonstrates multiple

instances of processor are running in parallel. Each item processed by a processor is

initially in the �in basket�, represented by database relation item. After the item is

processed, it is stored in the �out basket�, represented by database relation basket.

The �rst rule de�nes a process of retrieving an item from the �in basket�, creating a

new task instances to process it and then inserting the item in the �out basket�. The

recursion of the simulate rule allows multiple instances of the processor running in

parallel.

simulate← getItem(W)⊗ [simulate | processor(W)⊗ putItem(W)]

simulate← item.empty

getItem(W)← �[item(W)⊗ del.item(W)]

putItem(W)← ins.basket(W)

5.3.3 Reactive Logic Representation

To support the WsSWF execution, the RbAF employs messaging reaction rules to

describe interactions between distributed agents. Messaging reaction rules concern

message-driven conversations between agents, and sending and receiving event mes-

sages are associated with the conversation identi�ers to re�ect the process execution.

This section shows how messaging reaction rules can be represented in CTR.

Bonner et al. [169] generally show how active rules can be represented as trans-

action bases in TR. Such active rules usually determine what actions are performed

if a given event occurs and a stated condition holds, and thus such active rules

are also known as ECA rules. ECA rules are typically de�ned with a global scope

(global state) and react on internal events of the reactive system, such as changes

5.3. Work�ow Representation Using CTR 95

(updates) in the active database. Instead of active ECA rules, the RbAF employs

messaging reaction rules to describe the work�ow composition. Messaging reactive

rules are not only capable of capturing global event occurrences as ECA rules, but

also capable of performing complex actions locally in a particular context. In other

words, they allow a complex process to be performed by distributed agents and are

more suitable to specify the work�ow logic.

In the CTR-based work�ow representation, sending a message can be represented

by an activity, which sends a message to itself or other agents. The sending activity

can be simply represented as a task in the body of a CTR Horn rule. Receiving

a message, i.e., the reactive logic, is described by reaction rules. As mentioned in

Section 4.3.1, reaction rules are a collection of the reactive rules. Depending on the

parts of the general syntax, reaction rules can be specialized into di�erent types:

derivation rules, production rules (if-do), trigger rules (on-do), and ECA rules (on-

if-do). For example, the actions after the ant identi�cation are presented by two

ECA rules as follows:

de�ne reactive rule identDone

on identDone(Cid,AntDesc,Result)

if isIdentFailed(AntDesc,Result)

do humanIdent(Cid,AntDesc).

de�ne reactive rule identDone

on identDone(Cid,AntDesc,Result)

if not(isIdentFailed(AntDesc,Result))

do state.

CTR provides a complete formalization (including a model and a proof theory)

for the behavior of the system, and it also has one underlying notation and semantics,

which can describe behavior procedurally in detail, or declaratively at a high level

[169]. The above reaction rules can be represented in CTR as follows:

...

identProcess(cid,AntDesc)← allocation(AntDesc,Agent)⊗
ident(cid,Agent,AntDesc,Result)⊗
identDone(cid,AntDesc,Result)

identDone(Cid,AntDesc,Result)← identFailed(AntDesc,Result)⊗
humanIdent(Cid,AntDesc)

identDone(Cid,AntDesc,Result)← (�¬ identFailed(AntDesc,Result))⊗ state
...

The ant identi�cation process ends with an event identDone following the identi-

�cation task ident. The event identDone is de�ned by a pair of rules used to process

the event. That is, the event identDone is invoked after the identi�cation and trig-

gers a nondeterministic action depending on the identi�cation results: escalating to

human taxonomists or ending normally.

96 Chapter 5. Formal Work�ow Representation

5.4 Communication between Processes

In the RbAF, each agent not only manages a process to perform one or more tasks,

but also coordinates (communicates) with other agents via sending and receiving

event messages to complete certain goals. Unlike other deductive database lan-

guages, CTR integrates concurrency, communication and database updates in a

logical framework [167].

CTR provides a di�erent semantics for the communication between the agents.

During the communication, a state is a set of communication channels. Each agent

manages a communication channel, and the communication between the agents can

be regarded as sending and receiving synchronization messages across channels.

Each channel has a set of messages, i.e., a pool of messages. The data oracle de�nes

a binary predicate, peek, which is used to specify queries related to a message in a

channel. Formally, peed(q,msg) ∈ Od(D) i� the channel in D has the message

msg. Here, D is a state. The transition oracle de�nes two binary predicates: send

and receive. send(cid, receiver, msg) denotes sending a message msg to an agent

receiver, and receive(cid, sender, msg) denotes receiving a message msg from an

agent sender (Note that some parameters of the event message are omitted for

clarity). Formally, send(cid, receiver, msg) ∈ Ot(D1, D2) i� the message pool

managed by the agent sender has msg, and D2 is obtained from D1 by removing

msg from the sender. Likewise, receive(cid, sender, msg) ∈ Ot(D1, D2) i� D2 is

obtained from D1 by adding msg to the message pool managed by the receiver.

In RbAF, the data passing between tasks is regarded as event messaging between

agents. One agent sends a message, and another receives it. In such situations, event

messages act as a �data carrier� during the communication. Returning to the ant

treatment use case, the communication process between the �eldworker and the

taxonomist is represented as follows:

�eldworkerProcess← antDescription⊗ receive(Cid, Taxonomist, Report)
antDescription← description(AntDesc)⊗ send(Cid, Taxonomist, AntDesc)

taxonomistProcess← receive(Cid, F ieldWorker,AntDesc)⊗
identProcess(Cid,AntDesc)⊗ archive(Cid,Result)⊗
treatment(Result, T reatment)⊗ report(Cid,Result)

...

archive(Cid,Result)← send(Cid,Curator,Result)

report(Cid,Result)← createReport(Result, Report)⊗
send(Cid, F ieldWorker,Report)

The processes �eldworkerProcess and taxonomistProcess manage the behavior

of the �eldworker and the taxonomist, respectively. They run concurrently via

communication with each other. The �eldworker �rst sends the ant description to an

ant taxonomist. Thereafter, it waits for a report of ant identi�cation and treatment

5.5. Complex Event Processing 97

from the taxonomist. The identi�cation task starts when the taxonomist receives

the ant description. The taxonomist identi�es it, �nds an appropriate treatment

scheme, generates a report and then sends it to the �eldworker and the two processes

complete.

5.5 Complex Event Processing

Reaction rules specify under which conditions a task can execute, and these condi-

tions determine intelligent routings at runtime. In this thesis, the RbAF considers

the data passing between tasks as event messaging and employs the rule-based CEP

technologies to represent composite events, thereby implementing complex work�ow

patterns (see 4.3.3).

A composite event is the combination of several base events. Each composite

event is usually described by an event pattern, which contains event templates,

relational operators and variables. However, the rule-based CEP is goal-driven and

the check of a given event pattern is always performed at the time when the goal

is set [170]. In order to address this limitation, this section adapts an event-driven,

backward chaining approach proposed by Anicic et al. [170] to detect complex event

patterns. The approach enables both logic-based (backward chaining) and data-

driven (forward chaining) complex event detection.

Since the RbAF imposes no constraints on the reaction time with regard to the

event processing (aka. an any-time reaction rule system), there is no need to process

some particular events in real-time (e.g., sequence events, concurrent events [170]).

This section only represents the composite events mentioned in Section 4.3.3 based

on TR, rather than provides a comprehensive complex event pattern representation

involved in the real-time CEP.

Conjunction of Events An event pattern based on the conjunction of events

requires all base events are detected. For example, ce1 ← e1 ∧ e2 ∧ e3 de�nes that

a composite event ce1 occurs when all base events e1, e2 and e3 are detected. The

detection of conjunction events corresponds to the AND join connector. They can

be directly mapped a CTR serial conjunction of base events, as shown follows:

receive(cid, sender1, e1) :- insert(e1)⊗ checkCE
receive(cid, sender1, e1) :- (�¬checkCE)⊗ state
receive(cid, sender2, e2) :- insert(e2)⊗ checkCE
receive(cid, sender2, e2) :- (�¬checkCE)⊗ state
receive(cid, sender3, e3) :- insert(e3)⊗ checkCE
receive(cid, sender3, e3) :- (�¬checkCE)⊗ state

checkCE ← e1 ⊗ e2 ⊗ e3⊗
ce1⊗
delete(e1)⊗ delete(e2)⊗ delete(e3)

There are two types of rules in the above example: forward chaining rules used

for detecting the base events and backward chaining rules used for reasoning the

98 Chapter 5. Formal Work�ow Representation

complex event pattern. To make a di�erence, the notations :- and ← in the above

rules denote the forward base event detection and the backward complex event pattern

reasoning, respectively. The �rst six receive rules represent the base event detection,

and base events e1, e2 and e3 are inserted into the database when they are detected.

Then the checkCE rule checks if these base events already exist in the database. This

is done by the subgoals of the checkCE rule e1, e2 and e3 that act the same as the

data oracle peek. The composite event ce1 occurs if all base events are detected (i.e.,

all base events have been inserted into the database). After that, the base events

e1, e2 and e3 are removed from the database. Note that the base events are always

successfully inserted into the database even if the execution of the checkCE rule fails

(represented by �¬checkCE). This is really important because the occurred base

events should be in the database during a complex event pattern detection. Suppose

that base events e1 and e2 are detected before e3, the execution of the checkCE rule

fails, but e1 and e2 have been both successfully inserted into the database. When

e3 is detected, the third rule inserts event e3 into the database, and then triggers

composite event ce1.

Disjunction of Events An event pattern based on the disjunction of events

is satis�ed when any base event is detected. The detection of disjunction events

corresponds to the XOR join connector. For example, ce2 ← e1 ∨ e2 ∨ e3 de�nes

that composite event ce2 occurs when any of base events e1, e2 and e3 is detected.

In this work, the detection of a disjunction event pattern is represented as follows:

receive(cid, sender1, e1) :- insert(e1)⊗ checkCE
receive(cid, sender1, e1) :- (�¬checkCE)⊗ state
receive(cid, sender2, e2) :- insert(e2)⊗ checkCE
receive(cid, sender2, e2) :- (�¬checkCE)⊗ state
receive(cid, sender3, e3) :- insert(e3)⊗ checkCE
receive(cid, sender3, e3) :- (�¬checkCE)⊗ state

checkCE ← e1 ⊗ ce2 ⊗ delete(e1)
checkCE ← e2 ⊗ ce2 ⊗ delete(e2)
checkCE ← e3 ⊗ ce2 ⊗ delete(e3)

Compared with the conjunction event pattern mentioned above, there are three

backward chaining checkCE rules used to detect the disjunction of events. It means

that when either base event e1, e2 or e3 is detected, then one rule checkCE succeeds

and the composite event ce2 occurs. Remember that the XOR join connector can

have either local or non-local semantics (see Section 5.1). If base events e1, e2 and e3
are mutually exclusive, composite event ce2 precisely occurs once when one of base

events e1, e2 or e3 is detected. In the RbAF, the composite event consumption is

controlled by its consumers. If base events e1, e2 and e3 are not mutually exclusive,

then composite event ce2 may occur more than once, and its consumer will decide

to consume it or not (see Section 4.3.3).

Advanced Event Patterns The conjunction and disjunction are standard

operators to describe complex event patterns. They are often used to represent the

5.5. Complex Event Processing 99

gateways acted as join connectors in work�ows. With the event-driven, backward

chaining approach, it is also possible to represent more complex join connectors in

work�ows. For example, the following rules represent a complex event ce3, which

occurs when base events e1 and e2 are detected, and event e3 is optional.

receive(cid, sender1, e1) :- insert(e1)⊗ checkCE
receive(cid, sender1, e1) :- (�¬checkCE)⊗ state
receive(cid, sender2, e2) :- insert(e2)⊗ checkCE
receive(cid, sender2, e2) :- (�¬checkCE)⊗ state
receive(cid, sender3, e3) :- insert(e3)⊗ checkCE
receive(cid, sender3, e3) :- (�¬checkCE)⊗ state
checkCE ← e1 ⊗ e2 ⊗ e3⊗

ce3⊗
delete(e1)⊗ delete(e2)⊗ delete(e3)

checkCE ← e1 ⊗ e2⊗
ce3⊗
delete(e1)⊗ delete(e2)

Moreover, in the aforementioned examples, the base events that need to be joined

are determined in advance. However, sometimes only the number of events required

to be joined is known. For example, suppose that multiple parallel instances of a

task (say n) are created within a work�ow. Once k (k ≤ n) task instances have

completed, the subsequent task is triggered. The following rule implements an

advanced disjunction event pattern, where a complex event ce4 occurs when any

two of base events e1, e2 and e3 are detected.

receive(cid, sender1, e1) :- insert(e1)⊗ checkCE
receive(cid, sender1, e1) :- (�¬checkCE)⊗ state
receive(cid, sender2, e2) :- insert(e2)⊗ checkCE
receive(cid, sender2, e2) :- (�¬checkCE)⊗ state
receive(cid, sender3, e3) :- insert(e3)⊗ checkCE
receive(cid, sender3, e3) :- (�¬checkCE)⊗ state

checkCE ← e1 ⊗ e2 ⊗ ce4⊗
delete(e1)⊗ delete(e2)

checkCE ← e1 ⊗ e3 ⊗ ce4⊗
delete(e1)⊗ delete(e3)

checkCE ← e2 ⊗ e3 ⊗ ce4⊗
delete(e2)⊗ delete(e3)

There are three checkCE rules used to detect any two of the events e1, e2 and

e3. In general, the number of checkCE rules used to detect this static partial join

pattern depends on a combination computation:(
n

k

)
=

n!

k!(n− k)!
(k ≤ n)

100 Chapter 5. Formal Work�ow Representation

Compared with the event-driven, backward chaining complex event detection

[170], the RbAF also implements the CEP in a logical declarative way. The di�erence

is that, the RbAF keeps the occurred base events in the database and directly

detects complex event patterns whenever a base event is detected. Moreover, the

rule-based CEP of the RbAF can represent more advanced event patterns, as shown

in the above section. In addition, it is worth noticing that the decision conditions

represented by the CEP are not limited to what have explained in this section.

Since the RbAF describes work�ow decision logic by derivation rules and supports

access to external domain ontologies, it is possible to explore inherent semantic-

based relationships between events to make sophisticated work�ows.

5.6 Exception Handling

In general, CTR also supports an exception handler with an if-then-else structure

as follows:

ψ ← φ⊗ state
ψ ← (�¬φ)⊗ eHandler

This example describes task φ is part of a composite task ψ. If φ succeeds, it

does nothing. Otherwise, a designated error-handling routine eHandler is triggered.

In this way, task ψ can complete even if there is an exception.

The RbAF supports both automatic and manual exception handling (see Section

4.7). The former one is performed by the EHA (i.e., eHanderAgent in the following

CTR formulas), which is employed whenever an exception occurs, as shown follows:

eHandler← send(Cid, errorHandlerAgent, Ex)

⊗receive(Cid, eHandlerAgent, Sol)

Here, Ex and Sol denote the exception and its solution, respectively. During

the automatic exception handling, the eHanderAgent queries the public work�ow

ontology to �nd alternative counterparts with the same e�ect and replace failed

ones dynamically. Once an exception cannot be handled by the eHanderAgent, the

exception will be escalated to human users to make a decision or provide required

resources, i.e., passing the exception to the HA (i.e., humanAgent in the following

CTR formulas). In this case, the HA manages the life cycle of these exceptions and

provides a friendly user interface for humans to operate on the exceptions.

Based on the messaging constructs introduced in Section 5.4, the communication

between the EHA and the HA (Figure 4.13) can be represented by two concurrent

processes, as shown follows:

automateEHandler← receive(Cid, From,Ex)⊗
automateEHProcess(Ex, Sol)⊗ send(Cid, From, Sol)

5.6. Exception Handling 101

automateEHProcess(Ex, Sol)← handleException(Ex, Sol)⊗ state
automateEHProcess(Ex, Sol)← (�¬handleException(Ex, Sol))⊗

human_handler(Ex)

human_handler(Ex)← send(Cid, humanAgent, Ex)

⊗receive(Cid, humanAgent, Sol)

humanEHandler← receive(Cid, eHandlerAgent, Ex)

⊗humanDecision(Ex, Sol)⊗ send(Cid, eHandlerAgent, Sol)

It shows that the eHanderAgent sends an exception to the humanAgent if it

cannot handle it. The rule human_handler(Ex) uses a pair of sending and receiving

activities to communicate with the humanAgent (i.e., the HA). It is locally used

within the rule automateEHandler, i.e., the rule human_handler is only applied if

the automatic exception handling fails.

Note that exception handling of this thesis follows the spirit of aspect-oriented

programming, and the work�ow exceptions are externally handled in the eHan-

derAgent or humanAgent. In other words, the logic of exception handling is not

intertwined with work�ow processes but is encapsulated in eHanderAgent and hu-

manAgent.

As a summary, a comprehensive CTR-based representation of the ant identi�-

cation and treatment process is shown as follows:

�eldworkerProcess← antDescription⊗ receive(Cid, Taxonomist, Report)
antDescription← description(AntDesc)⊗ send(Cid, Taxonomist, AntDesc)

taxonomistProcess← receive(Cid, F ieldWorker,AntDesc)⊗
identProcess(Cid,AntDesc)⊗ archive(Cid,Result)⊗
treatment(Result, T reatment)⊗ report(Cid,Result)

identProcess(Cid,AntDesc)← allocation(AntDesc,Agent)⊗
ident(Cid,Agent,AntDesc,Result)⊗
identDone(Cid,AntDesc,Result)

identDone(Cid,AntDesc,Result)← identFailed(AntDesc,Result)⊗
humanIdent(Cid,AntDesc)

identDone(Cid,AntDesc,Result)← (�¬ identFailed(AntDesc,Result))⊗ state

archive(Cid,Result)← send(Cid,Curator,Result)

humanIdent(Cid,AntDesc)← send(Cid,Human,AntDesc)⊗
receive(Cid,Human,Result)

report(Cid,Result)← createReport(Result, Report)⊗
send(Cid, F ieldWorker,Report)

102 Chapter 5. Formal Work�ow Representation

humanProcess← receive(Cid, From,AntDesc)⊗ humanIdent
⊗send(Cid, From,Result)

curatorProcess← receive(Cid, Taxonomist, Result)⊗
archiveResult(Cid, Taxonomist, Result)

5.7 Summary

Most work�ow languages are procedural (e.g., BPEL, AO4BPEL and YAWL), as

presented in Section 3.1. The work�ow formal models, such as Petri Nets and calculi

theory (e.g., π-calculus) are mathematical work�ow representations and provide

theoretical foundations to these work�ow programming languages. Although there

are rule-based work�ow languages that support �exible service composition and

model the process logic with declarative rules, most of them only provide static

syntactical process descriptions without precise declarative formal semantics.

The WsSWFs considered in this thesis not only involve interactions between mul-

tiple participants, but also have complicated logic to express scienti�c policies and

cater to dynamic execution environments. That is why CTR is employed as a theo-

retical basis for the rule-based work�ow language of the RbAF. Some e�orts also try

to provide a logical framework for modeling �exible work�ows: Roman et al. intro-

duce a CTR-based logical model for process speci�cation, contracting for services,

service enactment, and reasoning [171]. With the help of CTR, the model speci�es

constraints as part of service contracts. Compared with this work, the model in [171]

focuses on both process speci�cation and service contracting. This thesis, however,

not only explicitly considers the abstract representation of WsSWFs, but also pro-

vides a proof-of-concept implementation for it (see next chapter). DECLARE is a

prototype of a WFMS that uses a constraint-based process modeling language for

the development of declarative models describing loosely-structured processes [106].

Based on LTL, DECLARE provides constraint templates to model constraints, such

as �init�, �1..*�, �response�, �responded existence�. However, LTL is often used for

abductive planning, while this thesis focuses on the execution of decision logic of

the WsSWFs, i.e. deductive reasoning with rules based on facts.

This chapter introduced a CTR-based formal semantics of the rule-based work-

�ow language presented in this thesis and especially introduced reactive work�ow

logic, communications between sub-processes and domain-speci�c decision logic with

a purpose of supporting the WsSWFs. CTR not only provides a logical framework

for the work�ow execution, but also accommodates underlying semantics to describe

the system behavior declaratively at a high level.

Part III

Evaluation

Chapter 6

Proof-of-Concepts

Contents

6.1 Prova . 105

6.2 The Work�ow Ontology . 106

6.3 Mapping the CTR-Based Work�ow Logic to Prova 108

6.4 Domain Logic Expression in Prova 113

6.5 Enterprise Service Bus Mule 116

6.5.1 Prova Agent Deployment . 117

6.5.2 Mule ESB as Communication Middleware 119

6.5.3 Translations between Reaction RuleML and Prova 120

6.6 Exception Handling . 122

6.7 User Client . 124

6.7.1 Work�ow Submission . 124

6.7.2 Exception Management . 125

6.7.3 Human Task Management . 126

6.7.4 RDF Data Management . 127

6.8 Summary . 127

Based on the conceptual framework, RbAF, presented in Chapter 4 and the for-

mal semantics of the declarative rule-based work�ow language introduced in Chapter

5, this chapter introduces a proof-of-concept implementation of them, the RAWLS.

6.1 Prova

Prova [59], derived from Mandarax [172] Java-based inference system, is both a

Semantic Web rule language and a highly expressive distributed rule engine. On

one hand, Prova combines di�erent rule types and provides an expressive, hybrid,

declarative and compact rule programming language. Prova supports rule-based

work�ows and business processes by the following syntactic and semantic Prova

instruments [173]:

� reactive messaging ;

� inherent non-determinism for de�ning process divergences;

106 Chapter 6. Proof-of-Concepts

� concurrency support, including partitioned and non-partitioned thread pools;

� built-in predicate spawn for running tasks;

� process join;

� predicate join;

� reaction groups combining event processing with work�ows;

� support for dynamic event channels;

� guards

Prova has a tight integration of Java and Semantic Web technologies. Prova com-

bines imperative, declarative and functional programming styles by using a Prolog

syntax that allows calling external procedural attachments (e.g., Java methods).

Also, Prova follows the spirit of W3C Semantic Web initiative and allows using ex-

ternal ontologies as a type system for declarative rules. With these combinations, it

is possible that Prova can access external data sources via query languages, such as

SQL, SPARQL and XQuery. As a programming language, Prova is also provided as

an Eclipse plugin and supports programming Prova rules within Eclipse Integrated

Development Environment (IDE).

On the other hand, Prova is an economic and e�cient, JVM-based rule engine

that supports the execution of declarative decision rules, complex reaction rule-

based work�ows, rule-based CEP in a runtime production environment. Moreover,

it is designed to work in distributed Enterprise Service Bus (ESB) and OSGi envi-

ronments.

The latest version of Prova 3.2.1 was published in January of 2013. This chapter

shows how Prova is adapted to specify the agent behavior in the RbAF, thereby

describing the WsSWFs.

6.2 The Work�ow Ontology

The upper-level work�ow ontology of the RbAF provides general concepts of the

work�ow de�nition (see Section 4.2) and can be further specialized with domain-

speci�c ontologies. This thesis designs the work�ow ontology with Protege [174]�a

famous ontology editor to design domain models and knowledge-based applications

with ontologies.

Figure 6.1 shows a work�ow ontology of the protein prediction result analysis.

All tasks (i.e., obtainReliableGOTerms and proteinPredictionAnalysis) involved in

the process are de�ned as the instances of the class Task. The tasks are performed

by the agents. However, for the purpose of increasing system �exibility, the agents

are not speci�ed at work�ow design time but are determined at runtime by the

responsibilities of their roles. For example, the role reliableGOTermProcessor is

responsible for the task obtainReliableGOTerms, which can be performed by both

6.2. The Work�ow Ontology 107

agents reliableGOTermAgentA and reliableGOTermAgentB, which play the role re-

liableGOTermProcessor.

Agent

reliableGOTermAgentA proteinPredictionAnalysisAgent

Task

obtainReliableGOTerms

proteinPredicitonAnalysis

Data

Role

reliableGOTermProcessor proteinPredictionAnalyzer

responsible
responsible

plays plays

property

is-a

hasInput

protein^^up:Protein
result^^xsd:string

hasInput

reliableGOTerms^^sswf2013:ProvaList

hasOutput

predictedGOTerm^^up:Concept

hasInput hasOutput

reliableGOTermAgentB

plays"true"^^xsd:boolean

availability

priority

1^^xsd:int

availability

priority
0^^xsd:int

"true"^^xsd:boolean

0^^xsd:int

priority

"true"^^xsd:boolean

availability

Figure 6.1: Protein Prediction Analysis Work�ow Ontology

The tasks have inputs and outputs that are data. The data type is speci�ed by

a URI, which denotes a speci�cation of a class (or an XML Schema datatype) that

the data value belongs to. For example, the obtainReliableGOTerms task has an

input data protein, whose type is up:Protein (denoted by �protein^^up:Protein� in

Figure 6.1) de�ned in the UniProt core ontology [154].

The agent status and priority are useful for �nding the most appropriate avail-

able agents. The status of an agent (i.e., the agent availability) could be true or false.

Each agent has three levels of priority: 0 (the highest priority), 1 and 2 (the lowest

priority). As shown in Figure 6.1, both agents reliableGOTermAgentA and reliable-

GOTermAgentB are available, and the former has a higher priority than the latter.

Therefore, the following SPARQL query of �nding the most appropriate available

agent for the task obtainReliableGOTerms will get the agent reliableGOTermAgentA

to perform it.

Listing 6.1: Finding an Agent for a Task

1 PREFIX : <http ://www.corporate -semantic -web.de/sswf2013#>

108 Chapter 6. Proof-of-Concepts

2 PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema#>

3 SELECT ?agent

4 WHERE {

5 ?role :responsible ?task .

6 ?agent :plays ?role .

7 ?agent :available "true "^^ xsd:boolean .

8 ?agent :priority ?priority .

9 FILTER regex(str(?task), 'obtainReliableGOTerms ')

10 }

11 ORDER BY DESC(? priority)

12 LIMIT 1

The agent status is also helpful to handle dynamic exceptions by �nding alterna-

tive agents to replace exceptional ones. More details about the exception handling

can be found in Section 6.6.

6.3 Mapping the CTR-Based Work�ow Logic to Prova

Chapter 5 presents the CTR-based formal semantics of the declarative rule-based

work�ow language of the RbAF. This section presents its implementation by map-

ping the CTR-based work�ow logic to Prova rules.

The CTR-based work�ow logic is a set of CTR Horn rules that de�nes the

composition of a work�ow. As mentioned in Section 5.3, the body of a CTR Horn

rule represents a CTR Horn goal with forms of: ψ ⊗ φ, ψ | φ, ψ ∨ φ, where ψ
and φ are CTR Horn goals. Prova is built upon Prolog, and a serial Horn rule

p(X) ← ψ(Y) ⊗ φ(Z) can be directly translated into a Prova rule with a form:

p(X) :- ψ(Y), φ(Z). This is simply done by replacing serial connector ⊗ with a

comma �,�, and ψ(Y) and φ(Z) act as serial subgoals of the rule.

Furthermore, a nondeterministic composite task can be simply implemented by

a set of Prova rules. For example, p(X) ← ψ(Y) ∨ φ(Z) can be implemented by:

(1) p(X) :- cond1, ψ(Y).; (2) p(X) :- cond2, φ(Z). cond1 and cond2 denote the

conditions under which to select ψ(Y) or φ(Z).

The optional tasks and if-then-else statements can be translated into a set of

Prova rules similarly. For an optional task, the propositional constant state is trans-

lated to a condition without subsequent goals, i.e., task p(X) ← ψ(Y) ∨ state

can be implemented by: (1) p(X) :- cond1, ψ(Y).; (2) p(X) :- cond2. The if-then-

else statements, which are imposed by two opposite conditions, can be implemented

by: (1) p(X) :- cond, ψ(Y).; (2) p(X) :- not(cond), φ(Z). not denotes NaF, and

not(cond) succeeds when all attempts to prove cond fail. The implementation of the

concurrent tasks is based on Prova reactive event messaging and will be introduced

later in this section.

The recursive tasks represented by CTR can be translated into a pair of Prova

rules: one describes a recursive task in terms of itself, the other describes a ter-

mination condition to make the task complete normally. For example, the classic

loop while...do can be implemented by two Prova rules: (1) while_ϕ_φ :- ϕ, φ(U),

while_ϕ_φ.; (2) while_ϕ_φ :- not(ϕ). not(ϕ) denotes the termination condition

of the loop. Similarly for the repeat...until loop.

6.3. Mapping the CTR-Based Work�ow Logic to Prova 109

The communication between processes is implemented by the following Prova

constructs of sending and receiving one or more context-dependent event messages:

Listing 6.2: Prova Constructs of Messaging Reaction Rules

1 sendMsg(XID , Protocol , Agent , Performative , Payload|Context)

2 rcvMsg(XID , Protocol , From , Performative , Payload|Context)

3 rcvMult(XID , Protocol , From , Performative , Payload|Context)

Here, XID is the conversation identi�er of a message. Protocol de�nes the com-

munication protocol. Agent and From denote the destination and source of the

message, respectively. Performative describes the pragmatic context in which the

message is sent. A standard nomenclature of the performative is, e.g., the FIPA

ACL [133]. And Payload|Context denotes the actual content of the message.

The task dependencies of a work�ow can be directly implemented by messaging

reaction rules of Prova. There are two types of Prova reaction rules: inline and

global reaction rules. The inline reaction rules usually locate in the body of a rule

and act as its sub-goals. They can be restricted to accept just one message, a

speci�ed number of messages, or be limited by a timeout, which can be employed to

implement the non-local XOR join connector, local XOR join connector and OR join

connector, respectively (For more details about such connectors, see Sections 4.3.3

and 5.5). For example, the logic after the ant identi�cation can be implemented by

the following Prova rules. An inline reaction rule used to handle the identi�cation

result (Line 3) is waiting for an event message of pre-de�ned type �answer� on the

async protocol. It can accept only one incoming message. For more details about

receiving multiple messages or the message receiving limited by a timeout, see [173].

Listing 6.3: Example of Prova Inline Reaction Rules

1 identProcess(XID , From , AntDesc , Result) :-

2 ...,

3 rcvMsg(XID ,async ,Agent ,answer ,identDone(AntDesc , Result)),

4 bound(Result),

5 processResult(XID , AntDesc , Result).

7 processResult(XID , From , AntDesc , Result) :-

8 not(isIdentFailed(Result)).

10 processResult(XID , From , AntDesc , Result) :-

11 isIdentFailed(Result),

12 sendMsg(XID , async , humanAgent , ident(AntDesc)),

13 rcvMsg(XID , async , humanAgent , ident(Result)),

14

The global reaction rules look exactly like Prova rules, but their semantics are

more aligned with message (event)-driven reactive rules. A global reaction rule has

a rule base lifetime scope, i.e., it is active while the rule base runs on a Prova engine

(agent), and it is ready to receive any number of messages arriving at the agent. For

example, the logic of waiting for external identi�cation requests can be implemented

by a global reaction rule as follows:

Listing 6.4: Example of Prova Global Reaction Rules

110 Chapter 6. Proof-of-Concepts

1 rcvMsg(XID ,async ,Agent ,request , antIdent ([inArgs|Paras], outArgs(Res))) :-

2 antIdentAllocation(XID ,Paras , Res),

3

Prova reactive messaging can be used to implement the concurrent tasks repre-

sented by CTR. Prova has four internal protocols for reactive messaging: self, task,

async, and swing (Note that the swing protocol is not used in the RAWLS) [173].

An inline reaction rule rcvMsg itself is executed on the main thread, but it creates

an inline reaction waiting for a reply according to its protocol. The self protocol

indicates that the thread waiting for a reply is the main thread, and this protocol

ensures sequential processing of received messages. The task protocol indicates that

the thread waiting for a reply is randomly taken from a task thread pool, which is

used for running tasks achieving maximum throughput. The async protocol makes

good use of the conversation identi�er, and the thread waiting for a reply is chosen

in terms of the conversation identi�er associated with event messages. This means

that the messages belonging to one conversation are always processed on the same

thread (see Listing 6.3). This is also a preferred way to handle long-going conver-

sations. In addition, Prova has an esb protocol used for passing messages among

components of an ESB, which is used as a container for Prova agents. Prova agents

can be deployed locally on one ESB server or multiple ESB servers in di�erent loca-

tions. In other words, the esb protocol allows one Prova agent to send a message to

another Prova agent on a local or remote machine. For more details about using an

ESB as the communication middleware, see Section 6.5. In Prova, all task, async,

and esb protocols can be used to implement parallel and concurrent processes.

The following Prova example shows two tasks are executed in parallel.

Listing 6.5: Parallel Task Implemented in Prova

1 split_process(XID) :-

2 fork_a_b(XID).

4 fork_a_b(XID) :-

5 % Task a

6 sendMsg(XID ,esb ,agent1 ,request ,a(Ins , Outs)),

7 rcvMsg(XID ,esb ,agent1 ,answer , a(Ins , Outs)).

8 fork_a_b(XID) :-

9 % Task b

10 sendMsg(XID ,esb ,agent2 ,request , b(Ins , Outs)),

11 rcvMsg(XID ,esb ,agent2 ,answer , b(Ins , Outs)).

In the above example, tasks a and b are started with sending messages sent to

agent1 and agent2, respectively. The Prova event messaging predicate rcvMsg (Line

7) does not block the current thread but waits for the task results asynchronously,

while keeping all current data in a transparent created closure. In other words,

task b can be immediately started after task a is started without waiting for the

completion of task a. A concurrent process can also be implemented in a similar way,

and an example will be found in Section 7.4.3, which presents the implementation

of the ant identi�cation and treatment involving interactions between distributed

agents.

6.3. Mapping the CTR-Based Work�ow Logic to Prova 111

The event-driven computation of complex event patterns is also implemented by

Prova reactive messaging. In Prolog, the updates are not undone during backtrack-

ing. For instance, a Prolog rule �p :- assert(event(a)), fail.� asserts event(a) into

the knowledge base even though the prove of p fails. Although it is a limitation

to implement some CTR-based applications that require undoing the updates dur-

ing backtracking, for the event-driven computation of complex event patterns (see

Section 5.5), this is useful since occurred base events need to be stored even if a

complex event pattern is not matched. Based on it, two CTR rules used to detect a

base event can be implemented by one Prova rule. For example, the following Prova

rules implement the conjunction of events a, b and c:

Listing 6.6: Complex Event Pattern Computation Implemented in Prova

1 detect(XID) :-

2 rcvMsg(XID ,async ,From ,inform , e(a)), assert(e(a)), check(XID , ce1).

3 detect(XID) :-

4 rcvMsg(XID ,async ,From ,inform , e(b)), assert(e(b)), check(XID , ce1).

5 detect(XID) :-

6 rcvMsg(XID ,async ,From ,inform , e(c)), assert(e(c)), check(XID , ce1).

8 check(XID , ce1) :-

9 e(a), e(b), e(c), sendMsg(XID , async , 0, inform , ce1),

10 retract(e(a)), retract(e(b)), retract(e(c)).

Here, assert(e(a)), assert(e(b)) and assert(e(c)) implement the semantics of re-

ceiving messages by recording the base events into the knowledge base. They are

removed from the knowledge base after the complex event ce1 occurs (Line 10).

Note that events a, b and c are simpli�ed for clarity.

Similar to the implementation of the event-driven computation of event patterns,

Prova itself is also capable of grouping more than one inline reaction using a logical

operator and allowing detected composite events to be further processed. In other

words, an exit channel intercepts internal messages sent by multiple event channels

when a complex event pattern is successfully detected. Prova provides two logical

reaction groups: @and, which requires all event channels to be successfully proved,

and @or, which requires either of the event channels to be successfully proved. For

example, the above example can also be implemented by the Prova logical reaction

group: @and :

Listing 6.7: Example of Prova Reaction Group

1 split_process(XID) :-

2 detect(XID).

4 detect(XID) :-

5 % Task a

6 @group(g1)

7 rcvMsg(XID ,async ,From ,inform , e(a)).

8 detect(XID) :-

9 @group(g1)

10 rcvMsg(XID ,async ,From ,inform , e(b)).

11 detect(XID) :-

12 @group(g1)

13 rcvMsg(XID ,async ,From ,inform , e(c)).

112 Chapter 6. Proof-of-Concepts

15 detect(XID) :-

16 @and(g1)

17 rcvMsg(XID ,esb ,From ,and ,Events),

18 println ([" The evens a, b, and c are detected: ",Events ," "]).

However, Prova does not support �exible joins that are used to implement more

advanced work�ow patterns directly, such as partial joins. Based on the semantics of

the event-driven computation of complex event patterns (see Section 5.5), a partial

join can be implemented in a similar way with the example mentioned in Listing

6.6. The following example shows that a complex event ce occurs when any two

of base events a, b and c are detected. Whenever a base event is detected, the

event is recorded into the knowledge base, and then the evaluation of complex event

detection is started.

Listing 6.8: Example of Partial Join Implemented in Prova

1 partial_join_process(XID) :-

2 detect(XID),

3 println ([" Two of the events a, b and c are detected ."]).

5 detect(XID) :-

6 rcvMsg(XID ,async ,From ,inform , e(a)), assert(e(a)), checkCE(XID).

7 detect(XID) :-

8 rcvMsg(XID ,async ,From ,inform , e(b)), assert(e(b)), checkCE(XID).

9 detect(XID) :-

10 rcvMsg(XID ,async ,From ,inform , e(c)), assert(e(c)), checkCE(XID).

12 checkCE(XID) :-

13 e(a), e(b), sendMsg(XID , async , 0, inform , ce),

14 retract(e(a)), retract(e(b))).

16 checkCE(XID) :-

17 e(a), e(c), sendMsg(XID , async , 0, inform , ce),

18 retract(e(a)), retract(e(c)).

20 checkCE(XID) :-

21 e(b), e(c), sendMsg(XID , async , 0, inform , ce),

22 retract(e(b)), retract(e(c)).

In this example, three rules are used to detect two of three base events. However,

the rules used to detect a partial join grow rapidly as the number of base events

increases (see Section 5.5).

To sum up, the translation from the CTR-based work�ow logic to Prova is shown

in Table 6.1. It is worth noticing that the translation does not strictly follow the

semantics of the CTR-based work�ow logic to maintain work�ow state updates,

although it is possible to accommodate it by updating the knowledge base. This

is because, in the RbAF, event messages passing between agents are associated

with a conversation identi�er to re�ect the states of work�ow execution, i.e., event

messages are always local to speci�c conversation states. Moreover, this solution

reduces domain experts' e�orts to program state changes manually and also brings

the �exibility by implementing them if necessary.

For the purpose of seamlessly connecting distributed Prova agents, enabling them

to exchange data, ESB Mule [175] is employed as the communication middleware.

6.4. Domain Logic Expression in Prova 113

For more details, see Section 6.5.

Table 6.1: Mapping CTR-Based Work�ow Representation to Prova Rules

Work�ow Element
CTR-based Work�ow

Representation
Prova

Work�ow CTR Horn goal Prova goal

Sub-process CTR Horn rule Prova rule

Sequential task Serial conjunction (⊗) Serial subgoals of a Prova

rule

Nondeterministic task Classic disjunction (∨) Prova rules with conditions

Concurrent task Concurrent conjunction (|) Concurrent reactive

messaging

Task dependency Messaging activities Reactive Messaging

Complex gateway

(Join connector)
The rule-based CEP

Event-driven computation of

event patterns

6.4 Domain Logic Expression in Prova

As an expressive rule language, Prova is capable of backward-reasoning logic pro-

gramming to formalize decision logic in terms of derivation rules. In particular, with

the combination of forward-directed messaging reaction rules, it is possible to employ

distributed agents to prove derivation rules (see Listing 6.3 as an example, which

uses distributed agents to identify newly discovered ants). In addition, the RbAF

provides di�erent ways of accessing domain-speci�c data encoded by Semantic Web

technologies and their implementation is presented in this section.

Reusing and integrating existing domain-speci�c data can avoid redundancy in

the knowledge base of Prova agents and improve the �exibility and accuracy of

domain knowledge representation. For example, Figure 6.2 shows up:Protein and

up:Concept de�ned in UniProt core vocabulary [130], and they are integrated in the

process of protein prediction result analysis to express the process inputs. According

to the vocabulary, an agent also can know other related information about a protein,

such as organism, mnemonic.

Following the spirit of the W3C Semantic Web initiative, Prova provides a tight

combination with Semantic Web technologies to integrate external Semantic Web

data. In order to query RDF data, Prova provides SPARQL operators based on

OpenRDF Sesame [176], which is an open source Java framework for storage and

querying of RDF data. Sesame o�ers an easy-to use API that supports the leverage

of RDF data in applications. In particular, it can run in a standalone server mode

with multiple applications connecting to it. Based on the tight integration with

Java, Prova embeds Sesame Java API into declarative rules and outsources storage

114 Chapter 6. Proof-of-Concepts

up:Taxon

up:mnemonic

up:Protein

up:created

xsd:intu
p
:cita

tio
n

up:o
rgan

ism

up:version

xsd:string

xsd:date

up:Citation

...

up:Concept

rdfs:subClassOf

owl:Class

Figure 6.2: Domain Ontology: UniProt Core Vocabulary

and querying of RDF data to a Sesame server. Such solution not only reduces the

complexity of Prova, but also improves the �exibility of SPARQL querying. The

Sesame employed by the RAWLS is 2.7.9 published in December of 2013, which

implements the SPARQL 1.1 speci�cation.

There are four Prova built-in predicates that encapsulate the Sesame API to

query RDF data: sparql_connect/2, sparql_select/3, sparql_ask/3 and sparql_disconnect/1.

The following Prova example shows a query of �nding all available agents from

the work�ow ontology stored in a Sesame repository at: http://localhost:8080/

openrdf-sesame/repositories/sswf (Line 2). The predicates sparql_connect/2

(Line 3) and sparql_disconnect/1 (Line 5) are used to connect and disconnect the

repository, respectively. The predicate sparql_select/3 (Line 16) performs the query

and stores the results as the facts of the predicate sparql_results (Line 17), which

are identi�ed by an identi�er queryId.

Listing 6.9: SPARQL Query in Prova

1 availableAgents(Agent):-

2 URL = "http :// localhost :8080/ openrdf -sesame/repositories/sswf",

3 sparql_connect(Connection , URL),

4 queryAvailableAgents(Connection),

5 sparql_disconnect(Connection).

7 queryAvailableAgents(Connection) :-

8 QueryString = '

9 PREFIX : <http ://www.corporate -semantic -web.de/sswf2013#>

10 PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

11 SELECT ?agent WHERE {

12 ?agent a :Agent .

13 ?agent :available "false "^^xsd:boolean .

14 }

15 ',

16 sparql_select(Connection , QueryString , queryId),

17 sparql_results(queryId , Agent),

http://localhost:8080/openrdf-sesame/repositories/sswf
http://localhost:8080/openrdf-sesame/repositories/sswf

6.4. Domain Logic Expression in Prova 115

18 fail ().

20 queryAvailableAgents(_).

Besides the SPARQL query, the RAWLS also extends Prova to implement SPARQL

1.1 Update [177], which is an extension to the SPARQL query language. The Sesame

update API is encapsulated into Prova built-in predicate sparql_update/4. SPARQL

update can be used to update the status of Prova agents during the work�ow exe-

cution. More details can be found in Section 6.6.

For the ontology reasoning, the RAWLS extends Prova to incorporate SPARQL-

DL query engine [156]. The SPARQL-DL query language is a subset of SPARQL and

is explicitly tailored to ontology-speci�c requests related to OWL; it uses SPARQL

syntax and is more expressive than existing DL query languages by allowing mixed

TBox, RBox, and ABox queries [178]. Figure 6.3 shows the architecture of the

SPARQL-DL query engine adapted from derivo GmbH [156].

The SPARQL-DL query engine is settled on top of the OWL API. The latest

implementation of SPARQL-DL API (1.0.0) developed by derivo GmbH in 2011

is fully compatible with OWL 2 and can be regarded as an interface to every on-

tology reasoner supporting OWL API [156]. In this thesis, the RAWLS employs

HermiT [155], which is a Java-based OWL reasoner, to be a real reasoner behind

the SPARQL-DL query engine to reason domain ontologies.

Semantic

Application

SPARQL-DL

OWL API 3

Reasoner

OWL API 3

Figure 6.3: SPARQL-DL Query Engine

Similar to the implementation of SPARQL queries, the RAWLS extends Prova to

provide similar built-in predicates to use the SPARQL-DL API: sparqldl_create/2,

sparqldl_select/3 and sparqldl_ask/3. For example, in the use case of protein pre-

diction result analysis mentioned in Section 2.5.2, the prediction of a protein is

considered correct if the protein has some reliable GO terms that lie on a path in

the gene ontology tree from the root to a leaf that visits the predicted GO term

[47]. For each GO term, the Gene Ontology Consortium provides an ontology to

describe it and its relationships with other terms. Therefore, the protein prediction

result analysis can be converted into a question: if the predicted GO term is the

subclass of any reliable GO term of the protein. The question can be represented

as a SPARQL-DL query as follows (Line 5-10).

Listing 6.10: SPARQL-DL Query in Prova

1 analysis(ReliableGOTerms , PredictedGOTerm , Result):-

2 Onto = de.fub.csw.protein.prediction.DataProcessor.getOnto(PredictedGOTerm),

3 sparqldl_create(Engine , Onto),

4 element(GOTerm , ReliableGOTerms),

116 Chapter 6. Proof-of-Concepts

5 QueryString = '

6 PREFIX : <http ://www.geneontology.org/go#>

7 ASK {

8 SubClassOf (: $PredictedGOTerm , :$ReliableGOTerm)

9 }

10 ',

11 sparqldl_ask(Engine , QueryString , queryId),

12 Result = "yes",

13 !.

15 analysis(ReliableGOTerms , PredictedGOTerm , Result):-

16 Result = "no".

18 askQuery(Engine , QueryString , Result):-

19 sparqldl_ask(Engine , QueryString , queryId),

20 sparqldl_results(queryId),

21 Result = "yes",

22 !.

24 askQuery(Engine , QueryString , Result):-

25 Result = "no".

The SPARQL-DL query �SubClassOf(:$PredictedGOTerm, :$ReliableGOTerm)�

asks whether class PredictedGOTerm is the subclass of ReliableGOTerm (Line 8). It

is a TBox query and returns true if PredictedGOTerm is a child of ReliableGOTerm

or equivalent to ReliableGOTerm in the hierarchy tree. Note that Prova can not

directly concatenate strings with variables by �+� operator, the variables Predicted-

GOTerm and ReliableGOTerm are attached with �$� at the beginning for clarity.

In practice, Prova uses its builtin concat/2(i, io) to concatenate two or more strings

[173].

In addition, Prova has a typed logic approach which allows using external on-

tologies as a type system of the rules. In other words, Prova variables can be typed

with concepts de�ned in external ontologies. The RAWLS implements the integra-

tion of external ontologies as typed rules by the SPARQL-DL query engine. As

shown in Listing 6.9, the variable Agent is initiated to all available agents de�ned in

the work�ow ontology. Based on the query identi�er queryId, the available agents

can be accessed everywhere in the knowledge base.

6.5 Enterprise Service Bus Mule

Mule [175] is a lightweight Java-based ESB and integration platform that allows

developers to connect applications together quickly and easily, enabling them to

exchange data. As an ESB, Mule acts as a transit system for carrying data between

applications and enables easy integration of heterogeneous systems. In addition,

Mule ESB has features, like �exible service mediation by separating business logic

from protocols and message formats, message routing based on content or complex

rules, heterogeneous data transformation, synchronous and asynchronous event han-

dling, lightweight service orchestration, and service creation and hosting [175].

The default model used by Mule to process a request is based on a Staged Event-

Driven Architecture (SEDA) [179], which decomposes a complex application into a

6.5. Enterprise Service Bus Mule 117

Message Source

Receives message and

places it in a queue

Queue

Holds message until it

can be processed

Main Application flow

Pulls message from

queue for processing

Receiver Thread Main Application Thread

Figure 6.4: Mule Application Flow

set of stages connected by queues. Figure 6.4 adapted from [175] gives the process of

a Mule application at the simplest level: a Mule application accepts one request(i.e.,

a message) at a time, processing received messages in the order they are received.

A message source is often the �rst building block of a �ow, which receives messages

from one or more external sources, thus triggering a �ow instance. The messages can

be from multiple transport channels (such as HTTP, Java Message Service (JMS)).

Incoming messages are placed into a queue, which holds messages until they can be

processed by an application �ow. A message is processed when it reaches the head

of the queue. Typically an inbound endpoint serves as a message source, and it waits

for messages from external sources and passes them to the rest of the �ow. Also,

an outbound endpoint is often the last building block and passes data out of a �ow.

A Mule application can return processing results to the source of original message

(aka. a request-response pattern) or other third parties (aka. a one-way exchange

pattern in which a message processor does not provide any response to the original

sender), thereby forming complex Mule applications. Besides the endpoints, other

message processors such as message �lters, data transformers, components and �ow

controls can also be placed into Mule application �ows to process messages [175].

Mule ESB has two versions: Community and Enterprise. Mule ESB Enterprise

is the enterprise-class version of Mule ESB, with additional features and capabilities

that are ideal for production deployments that have advanced requirements for per-

formance, high availability, resiliency, or technical support. Mule ESB Community

is developed under Common Public Attribution License (CPAL) [175] and is free for

use in development and pre-production. In this thesis, the RAWLS employs Mule

ESB Community to connect distributed Prova agents.

6.5.1 Prova Agent Deployment

As an application integration platform, Mule ESB allows deploying Prova agents as

distributed rule inference services and enables their coordination and cooperation.

However, for the purpose of providing an expressive, �exible work�ow speci�cation,

the interactions between Prova agents in this RAWLS are actually speci�ed by

declarative rules rather than the control �ows provided by Mule. In this RAWLS,

118 Chapter 6. Proof-of-Concepts

each Prova agent processes external events by a Mule �ow (see Figure 6.4). As a

concrete example, the following code de�nes the event processing �ow of a Prova

agent, which acts as a work�ow engine.

Listing 6.11: Prova Event Processing Flow

1 <jms:activemq -connector name=" jmsConnector"

2 specification ="1.1" brokerURL ="vm:// localhost" />

4 <jms:endpoint name=" semantic_SWF_Engine" topic="ee"

5 connector -ref=" jmsConnector" />

6 <flow name=" Worklfow">

7 <jms:inbound -endpoint ref=" semantic_SWF_Engine">

8 <properties ><spring:entry key=" rulebase"

9 value="${app.home}/rules/semantic_swf_engine/semantic_swf_engine.prova"/>

10 </properties >

11 </jms:inbound -endpoint >

12 <component class="ws.prova.mule.impl.ProvaUMOImpl" />

13 </flow >

The message source of the �ow is implemented as a global JMS endpoint se-

mantic_SWF_Engine that can handle all messages arrived at this endpoint (Line

4-5). The endpoint is associated with the path of a Prova rule base, as shown in

its properties (Line 8-10). The second building block of the �ow is a customized

Java component (ws.prova.mule.impl.ProvaUMOImpl) (Line 12) that manages the

life cycle of a Prova agent. The Java component not only initializes the Prova

agent, but also implements both the logic of adding messages received on the source

JMS endpoints to Prova agent communicator queue and the action of dispatching

messages to other Prova agents.

+initialize() : void

+send(in receiver : string, in payload : ProvaList) : void

+getAgentName() : string

+receive(in payload : ProvaList) : void

+setFlowConstruct(in fc : FlowConstruct) : void

+onCall(in eventContext : MuleEventContext) : Object

-agentName : string

-fc : FlowConstruct

-comm : ProvaCommunicator

ws.prova.mule.impl.ProvaUMOImpl

+onCall(in eventContext : MuleEventContext) : Object

<<interface>>

org.mule.api.lifecycle.Callable +send(in receiver : string, in payload : ProvaList) : void

+getAgentName() : string

+receive(in payload : ProvaList) : void

<<interface>>

ProvaAgent

+initialize() : void

<<interface>>

org.mule.api.lifecycle.Initialisable+setFlowConstruct(in fc : FlowConstruct) : void

<<interface>>

org.mule.api.construct.FlowConstructAware

Figure 6.5: Class Diagram of ProvaUMOImpl

The Java component implements four interfaces to manage the Prova agent life

cycle, as shown in Figure 6.5. The initialize() method is executed when the Java

6.5. Enterprise Service Bus Mule 119

component is called to initialize a Prova agent. It is customized to create an instance

of ProvaCommunicatorImpl, which manages the communicator queue of the Prova

agent. The Prova agent has a name and a rule base that speci�es its behavior. They

are speci�ed in the properties of the source JMS endpoint and can be used by the

Java component to initialize the Prova agent. Obtaining the properties of the rule

base of a Prova agent endpoint can be done by the setFlowConstruct(FlowConstruct

fc) method of the interface FlowConstructAware. The onCall(MuleEventContext

eventContext) method of the interface Callable implements the logic of processing

messages arriving at the source JMS endpoint. Each message passed between Prova

agents is in the form of a Prova list�a compound term for holding and manipulating

groups of objects [173]. In order to enable Prova to process a message, the related

translations are �rstly done in this method if necessary (see Section 6.5.3 for more

details). Afterwards, the message is added to the Prova agent communicator queue

to process. Another interface implemented by the Java component is ProvaAgent,

whose method send(String receiver, ProvaList payload) is called when the Prova

agent sends a message to another Prova agent. The send method uses a Mule client

to send messages programmatically. An in�nite loop detector and the translation

from the Prova list to HTML (if a message will be sent to human users) are also

implemented in this method, see Sections 6.5.3 and 6.6 for more details, respectively.

6.5.2 Mule ESB as Communication Middleware

Mule ESB also supports the SOA paradigm, and it connects applications and acts

the same way as the classical work�ow languages (see Section 3.1) from the work�ow

composition perspective. In the RAWLS, Mule ESB is mainly used as an integration

platform for connecting distributed Prova agents. The interactions between Prova

agents are controlled by declarative rules, rather than the Mule control �ows that

specify message routing among message processors. Figure 6.6 shows the Mule-based

system architecture of the RAWLS.

Prova agents deployed on Mule ESB are distributed inference services, each of

which runs a local rule base that implements reaction and decision logic of the agent.

Such agents react to incoming event messages in terms of the reaction rule-based

work�ow logic and also provide access to external applications and data sources,

such as Web services, Java object representations, Semantic Web data, relational

databases. In the RAWLS, the JMS transport protocol is used for the communi-

cation between distributed Prova agents, and Apache ActiveMQ [180], which is an

open source message broker, is used to manage JMS messages.

The RAWLS employs a Web-based user client to manage work�ow applications.

Users can inspect available work�ows and invoke a work�ow by sending a request to

the work�ow engine. The user client also hosts the HA which allows human users to

perform human tasks and deal with exceptions via the communication with a HA

proxy and the EHA, respectively. The HA proxy is also a Prova agent that acts as

an intermediary between human task requesters and the HA. More details about

the HA proxy can be found in Section 6.7.3. The work�ow engine, the human agent

120 Chapter 6. Proof-of-Concepts

Workflow engine

Mule ESB
(event messaging)

Mule ESB
(event messaging)

Human agent proxy Exception handling agent

Prova agentProva agent Prova agent

Web Sevice

Ontologies

(RDFS, OWL) Java Objects

Prova agent

Databases

HTTP/JMS endpoint

Reaction RuleML transformer Reaction RuleML transformer

HTTP/JMS endpoint HTTP/JMS endpoint

Reaction RuleML transformer

JMS endpoint JMS endpoint
JMS endpoint

JMS endpoint

Workflow Application Client Human agent

Servlet

Reaction RuleML message

Public agents

Internal agents

Figure 6.6: Mule-Based Work�ow Architecture

(HA) proxy and the EHA are the agents that can communicate with the user client.

Besides a JMS endpoint to communicate with other Prova agents, such agents also

have an HTTP endpoint to interact with the user client. Therefore, they are also

known as public agents, and the other agents are called internal agents, as shown in

Figure 6.6.

6.5.3 Translations between Reaction RuleML and Prova

To communicate with the external user client, the RAWLS employs Reaction RuleML,

the current de-facto standard language for reactive Web rules, to represent messages

passing between the public agents and the user client. Reaction RuleML [181] is

a general, practical, compact and user-friendly XML-serialized language and rule

interchange format for the family of reaction rules [182, 137]. It speci�es knowledge

in a way that is understandable to non-computer domain experts. For the commu-

nication between distributed rule-based (agent) systems, Reaction RuleML provides

a general message syntax:

<Message directive="<!-- pragmatic context -->">

<oid> <!-- conversation ID--> </oid>

<protocol> <!-- transport protocol --> </protocol>

<sender> <!-- sender agent/service --> </sender>

<receiver> <!-- receiver agent/service --> </receiver>

<content> <!-- message payload --> </content>

6.5. Enterprise Service Bus Mule 121

</Message>

In the context of these Reaction RuleML messages, agents can interchange events

(e.g., queries and answers) as well as complete rule bases (rule set modules), e.g. for

remote parallel task processing [182]. The agents can be engaged in long running

asynchronous conversations and nested sub-conversations and use a conversation

identi�er to manage the conversation state. The protocol is used to de�ne the

message passing and coordination protocol. The directive attribute corresponds

to the pragmatic instruction, i.e., the pragmatic characterization of the message

context characterizing the meaning of the message, e.g., the FIPA ACL primitive

[133]. The following example shows a request (directive=�query�) to invoke the

process of protein prediction result analysis. It describes the sender (i.e., User) and

the receiver (i.e., semantic_SWF_Engine) of the message and the message payload

that speci�es two inputs of the work�ow: Q9VAN0 and GO:0006564. The inputs are

described as constants, which are embedded within the element <Ind></Ind>. The

output of the work�ow is represented by a variable Result, which is embedded within

the element <Var></Var>. More details about Reaction RuleML see [182, 137].

Listing 6.12: A Work�ow Request in Reaction RuleML

1 <RuleML xmlns ="http :// ruleml.org/spec">

2 <Message mode=" outbound" directive =" query">

3 <oid ><Var >XID </Var ></oid >

4 <protocol ><Ind >esb </Ind ></protocol >

5 <sender ><Ind >User </Ind ></sender >

6 <receiver ><Ind >semantic_SWF_Engine </Ind ></receiver >

7 <content >

8 <Atom >

9 <Rel >proteinPredicitonAnalysisProcess </Rel >

10 <Expr >

11 <Fun >inArgs </Fun >

12 <Ind type="java.lang.String">Q9VAN0 </Ind >

13 <Ind type="java.lang.String">GO :0006564 </Ind >

14 </Expr >

15 <Expr >

16 <Fun >outArgs </Fun >

17 <Var type="java.lang.String">Result </Var >

18 </Expr >

19 </Atom >

20 </content >

21 </Message >

22 </RuleML >

In the RAWLS, the messages passing between Prova agents are encapsulated as

a compound term called Prova list. For example, the above work�ow request can

be represented in the form of Prova list as:

[httpEndpoint:1,esb,httpEndpoint,query,[proteinPredicitonAnalysisProcess,

[inArgs,Q9VAN0,GO:0006564],[outArgs,Result]]].

To perform translations between Reaction RuleML and Prova messages, the

RAWLS provides two translator services. The translation from the Prova message

(Prova list) to Reaction RuleML is performed before sending the message to the

122 Chapter 6. Proof-of-Concepts

user client, i.e., in the method send(String receiver, ProvaList payload) (see Section

6.5.1). It is done by serializing simple terms (variables and constants) and complex

terms (lists) of a Prova list [183]. The opposite translation is performed after a

public Prova agent receives a request from the user client, i.e., in the method on-

Call(MuleEventContext context) (see Section 6.5.1). It is done via an XSLT sheet

which translates Reaction RuleML to a Prova list [183].

6.6 Exception Handling

The RAWLS supports both automatic and manual exception handling. Their im-

plementation is presented in Listing 6.13.

The rule-based languages have inherent advantages in specifying alternative ex-

ception paths by backtracking and CUT, which controls backtracking. For example,

two getResponsibleAgents rules (Line 34-50) are used to �nd an available agent for

a task. If the �rst rule is completed normally, the CUT (!) at the end of the rule

inhibits backtracking to the second getResponsibleAgents rule. However, if no agent

is found, the subgoal sparql_results (queryID, FullAgentName) cannot be evaluated

to be true (Line 39). In this case, the second rule will be executed, and a noAgen-

tAvailable exception occurs.

Similarly, the RAWLS speci�es di�erent execution paths to perform tasks. In the

RAWLS, Prova agents are responsible for performing work�ow tasks. The work�ow

engine allocates a task to an agent by sending a request to the agent and then

waits for an acknowledgement sent back to it. If the agent is unavailable, the

work�ow engine generates an unavailableAgent exception and sends the exception

to the EHA to deal with. The second processMessage rule (Line 8-11) shows a

process to deal with the unavailableAgent exception. The process is started with

updating the status of the exceptional agent to false. It is done by the Prova built-

in predicate sparql_update which encapsulates the Sesame API (see Section 6.4) to

update the work�ow ontology stored in the Sesame repository (Line 24-31). The

searching of an alternative agent is performed after the status of the exceptional

agent is updated to false. However, if no agent is available, the unavailableAgent

exception is escalated to a noAgentAvailable exception (Line 46-50), which is handled

by sending the exception to the HA and asking human users for help (Line 14-21).

In general, the noAgentAvailable exception is caused by lacking of available agents

or wrong con�gurations. Human users can provide missing agents or correct wrong

con�gurations and then notify the work�ow engine to try to �nd a responsible agent

again. More details about human interaction can be found in the following section.

Similarly for the failedAgent exception, which occurs when an agent fails to perform

a task (Line 2-5).

Listing 6.13: Exception Handling Implemented in Prova

1 % deal with the 'failedAgent ' exception

2 processMessage(XID ,From ,Performative , failedAgent(TaskName , TaskID , Agent)):-

3 updateAgentAvailability(Agent),

4 getResponsibleAgents(XID , TaskID , TaskName , NewAgent),

6.6. Exception Handling 123

5 sendMsg(XID , esb , From , "answer", [TaskID , NewAgent]).

7 % deal with the 'unavailableAgent ' exception

8 processMessage(XID ,From ,Performative , unavailableAgent(TaskName , TaskID , Agent)):-

9 updateAgentAvailability(Agent),

10 getResponsibleAgents(XID , TaskID , TaskName , NewAgent),

11 sendMsg(XID , esb , From , "answer", [TaskID , NewAgent]).

13 % deal with the 'noAgentAvailable ' exception

14 processMessage(XID ,From ,Performative , noAgentAvailable(TaskName , TaskID)):-

15 WorkflowName = de.fub.csw.TaskManagementCenter.getWfName(XID),

16 sendMsg(XID , esb , humanAgent , "request",

17 noAgentAvailable(WorkflowName , TaskName)),

18 rcvMsg(XID ,esb , humanAgent , "answer", modified(ontology)),

19 println ([" The workflow ontology has been updated by user ."]),

20 getResponsibleAgents(XID , TaskID , TaskName , NewAgent),

21 sendMsg(XID , esb , From , "answer", [TaskID , NewAgent]).

23 % update the status of an agent

24 updateAgentAvailability(Agent):-

25 URL = de.fub.csw.constant.StringConstants.SEMANTIC_DATA_REPOSITORY_URL ,

26 semanticDataConnection(URL , Connection),

27 UpdateString = de.fub.csw.constant.StringConstants.updateAgent(Agent),

28 BASE_URL = de.fub.csw.constant.StringConstants.WF_ONTOLOGY_BASE_URL ,

29 sparql_update(Connection , UpdateString , BASE_URL , updateID),

30 % remove the results from the knowledge base

31 retract(sparql_results(updateID)).

33 % find an available agent

34 getResponsibleAgents(XID , TaskID , TaskName , Agent) :-

35 URL = de.fub.csw.constant.StringConstants.SEMANTIC_DATA_REPOSITORY_URL ,

36 semanticDataConnection(URL , Connection),

37 QueryString = de.fub.csw.constant.StringConstants.queryAgentByTask(TaskName),

38 sparql_select(Connection , QueryString , queryID),

39 sparql_results(queryID , FullAgentName),

40 % remove the results from the knowledge base

41 retract(sparql_results(queryID ,_)),

42 getLocalName(FullAgentName , Agent),

43 !.

45 % no agent is available

46 getResponsibleAgents(XID , TaskID , TaskName , Agent) :-

47 println ([" Exception: no available agent for task: ", TaskName]),

48 sendMsg(XID ,esb ,exceptionHandlingAgent , "request",

49 noAgentAvailable(TaskName , TaskID)),

50 rcvMsg(XID , esb , exceptionHandlingAgent , "answer", [TaskID , Agent]).

Another type of the expected exceptions is caused by endless communication

between two or more agents, also known as an in�nite loop. The RAWLS imple-

ments the communication between distributed Prova agents by passing messages

and employs Mule ESB to connect such agents. In other words, all messages pass-

ing between the agents go through Mule ESB. By default, an in�nite loop happens

in the RAWLS if a message is repeatedly sent over 100 times in a work�ow. A

message counter is implemented in the method send(String receiver, ProvaList pay-

load) of the Java component (see Section 6.5.1), which manages the life cycle of a

Prova agent. In case an in�nite loop is detected in a work�ow, the work�ow will be

terminated and the exception will be sent to human users simultaneously. Note that

the number of repeated messages used to detect an in�nite loop can be con�gured

124 Chapter 6. Proof-of-Concepts

for speci�c work�ow applications that have special requirements.

6.7 User Client

The RAWLS user client is a Web-based portal, which allows human users to inspect

and invoke deployed work�ows, perform human tasks, check exceptions occurred

at work�ow runtime and manage RDF data used in work�ows. Moreover, it also

hosts the HA, which manages the life cycle of the human tasks and the unexpected

exceptions. The overall architecture of the RAWLS user client is shown in Figure

6.7.

Tomcat Web Server

Exception / Human Task

Receiver (Java Servlet)

ExceptionsExceptionsHuman TasksHuman Tasks

Human agent

User Operation

Processor

Workflow Submission

Exception Management

Human Task Submission

RDF Data Management

HTML Form Generator

(Java Servlet)

Workflows

(Reaction RuleML IDL)

Workflows

(Reaction RuleML IDL)

Reaction RuleML

Translator

User client

Prova Agent

Prova Agent Public Prova

Agent

Prova Agent

Reaction RuleML

Reaction RuleML

Figure 6.7: Human Interaction Client

6.7.1 Work�ow Submission

The RAWLS employs Reaction RuleML Interface Description Language (IDL) [184],

a sub-language of Reaction RuleML, to describe functional properties of deployed

work�ows. Reaction RuleML IDL describes the functions of available work�ows to-

gether with their term modes and type declarations. The models are the declarations

of intended input or output constellations of the predicate terms with the following

semantics:

� �+� The term is intended to be input

� �−� The term is intended to be output

� �?� The term is unde�ned/arbitrary (input or output)

6.7. User Client 125

For example, the process of protein predication result analysis can be described

by Reaction RuleML IDL as follows:

<signature>

<label>

<Expr>

<Fun uri="dc:description"/>

<Ind>Protein prediction results analysis.</Ind>

</Expr>

</label>

<Fun per="value">proteinPredicitonAnalysisProcess</Fun>

<Expr>

<Fun meta="Workflow input(s)">inArgs</Fun>

<Var mode="+" type = "java.lang.String" default="Q9VAN0">Protein</Var>

<Var mode="+" type = "java.lang.String" default="GO:0006564">GOTerm</Var>

</Expr>

<Expr>

<Fun>outArgs</Fun>

<Var mode="-" type="java://java.lang.String">Result</Var>

</Expr>

</signature>

In the RAWLS user client, the deployed work�ows are shown in a drop-down list

by parsing a Reaction RuleML IDL document, which stores all deployed work�ows,

as shown in Figure 6.7. After users select a work�ow from the drop-down list, an

HTML form is generated in terms of the work�ow description in Reaction RuleML

IDL. The HTML form renders a user-friendly input form for creating a work�ow

request, making it easier to specify a work�ow request. After human users submit

the form with required values, a work�ow request is sent to the work�ow engine to

invoke the work�ow.

Note that the messages sent between the RAWLS and its user client are in a

form of Reaction RuleML. In other words, a work�ow request has to be packed

in a Reaction RuleML message. Since Reaction RuleML IDL is a sub-language of

Reaction RuleML, it can be easily translated into Reaction RuleML messages by

replacing mode and type declarations with speci�c values given by human users.

6.7.2 Exception Management

Exceptions of the RAWLS can be either expected or unexpected. The expected ex-

ceptions are handled by the agents automatically. More precisely, the expected

exceptions are failedAgent, unavailableAgent and in�niteLoop in this thesis. For ex-

ample, the following unavailableAgent exception shows that agent taxonomistAgent

responsible for task antIdenti�cation is unavailable.

<RuleML>

<Message mode="outbound" directive="inform">

<oid><Ind>httpEndpoint:1</Ind></oid>

<protocol><Ind>esb</Ind></protocol>

<sender><Ind>exceptionHandlingAgent</Ind></sender>

<receiver><Ind>humanAgent</Ind></receiver>

<content>

<Atom>

<Rel>antIdentificationProcess</Rel>

126 Chapter 6. Proof-of-Concepts

<Expr>

<Fun>unavailableAgent</Fun>

<Ind type="java.lang.String">antIdentification</Ind>

<Ind type="java.lang.String">taxonomistAgent</Ind>

</Expr>

</Atom>

</content>

</Message

</RuleML>

During the work�ow execution, the EHA informs the HA to store such expected

exceptions locally in Reaction RuleML and facilitates human users to �x them during

the downtime. For the unexpected exceptions (e.g., no agent is available), they are

often regarded as human tasks and manually handled by human users. More details

can be found in the next section.

6.7.3 Human Task Management

In the RAWLS, the HA uses a Java servlet to receive messages from Mule ESB. The

messages can be either the work�ow exceptions or the human task requests. On one

side, a Prova agent sends a human task request to the servlet and then waits for the

task results from the HA. On the other side, the servlet stores the request into HA

local repositories after receiving it.

The RAWLS also employs Reaction RuleML messages to specify human task

requests and results. That is, the human task requests and results are transported

in Reaction RuleML messages, and the translation between Reaction RuleML and

the Prova message (Prova list) is performed before human task requests are sent

and human task results are received, respectively, as shown in Section 6.5.3.

Like the asynchronous communication between distributed Prova agents, the

RAWLS supports asynchronous interaction between human task requesters and the

HA. That is, the Java servlet that receives human task requests is not responsible

for sending the results back but stores the requests locally. Human users can in-

spect human task requests, provide solutions in Reaction RuleML and send them

back (i.e., callback) immediately or later. The user operations are processed by a

processor, which updates the task information (e.g., status, completion time, solver,

solution, etc.) and then sends the results to the task requesters.

The activities of sending and receiving messages of human task requesters are

processed by the threads taken from the conversation thread pool of Prova, which

provides a thread according to the conversation identi�er carried by the human

task requests and results. After a human task request is sent, the requester agent

preserves the current rule context, and when the results of a matching human task

arrive, the requester resumes as though it had never been interrupted.

In the RbAF, human task requesters can be any Prova agent, and they do not

interact with the HA directly, but via a HA proxy. The user client interacts with

human task requesters via HTTP protocols, i.e., a requester (agent) sends a human

task request to the servlet of the user client and then waits for the task results

on its public HTTP endpoint. It means that each agent interacting with the user

6.8. Summary 127

Human

Agent

Proxy

H
TTP

 en
d

p
o

in
t

Human

Task

Requester

Human

Agent

JM
S en

d
p

o
in

t

Reaction RuleML
Message (request)

Reaction RuleML
Message (response)

Prova message
(request)

Prova message
(response)

JM
S en

d
p

o
in

t

Figure 6.8: Human Agent Proxy

client should have a public HTTP endpoint. However, the number of public HTTP

endpoints will grow rapidly as the number of the agents interacting with the user

client increases. To deal with the problem, the HA proxy is proposed to act as an

intermediary between human task requesters and the user client, as shown in Figure

6.8.

With the HA proxy, all human task requests sent by an internal Prova agent are

�rst sent to the HA proxy, which then forwards the requests to the user client, and

vice versa. The HA proxy has two inbound endpoints: JMS and HTTP. It receives

the human task requests on the JMS endpoint from internal Prova agents, and waits

for the task results from the HA on its public HTTP endpoint. In this way, only one

public HTTP endpoint is used, and the user client only needs to know the HTTP

endpoint address of the HA proxy.

6.7.4 RDF Data Management

Besides the Java API, Sesame also provides a browser client supporting RDF data

management. To facilitate human users to manage RDF data, the Sesame browser

client is integrated as a part of user client to manage the work�ow ontology and

other domain-speci�c ontologies, as shown in Figure 6.7. More details about the

Sesame browser client can be found in [176].

6.8 Summary

This chapter presented a prototypical system, called RAWLS, to support the de-

scription and execution of the WsSWFs.

This thesis employs Prova, both a Semantic Web rule language and a distributed

rule engine, to specify and execute the WsSWFs. Prova combines di�erent rule types

and is an expressive, hybrid, declarative and compact rule programming language.

128 Chapter 6. Proof-of-Concepts

This chapter �rst detailed the mapping from the CTR-based WsSWF representation

to Prova rules, thereby implementing the reactive work�ow logic. With the combina-

tion of messaging reaction rules and derivation rules, the RAWLS not only supports

the implementation of distributed work�ow logic, but also provides high expressive

power for domain-speci�c decision logic. To integrate domain-speci�c data encoded

by Semantic Web technologies, the RAWLS extends Prova to integrate OpenRDF

Sesame Java API and outsources storage and querying of RDF data to an external

Sesame server. In addition, the SPARQL-API query engine built on OWL API

provides an expressive DL query language and allows ontology reasoners supporting

OWL API to be easily con�gured in the RAWLS.

To support the interactions between Prova agents, Mule ESB is employed to

seamlessly connect such distributed rule-based agents. The interactions between

Prova agents are actually speci�ed by declarative rules rather than the control �ows

provided by Mule. In addition, a Web-based client is provided to enable human

users to invoke work�ows and manage human tasks and work�ow exceptions. The

messages sent between the user client and internal Prova agents are represented by

the de-facto standard reactive rule language Reaction RuleML. A detailed evalua-

tion of the rule-based work�ow speci�cation and the e�ciency of RAWLS will be

presented in the next chapter.

Chapter 7

Evaluation

Contents

7.1 Work�ow Pattern-Based Expressiveness Evaluation 129

7.1.1 Control-Flow Patterns . 130

7.1.2 Data Patterns . 143

7.1.3 Scienti�c Work�ow Patterns 148

7.2 Evaluation of the Domain Knowledge Representation . . . 150

7.2.1 LP-based Knowledge Representation Evaluation 150

7.2.2 DL-based Knowledge Representation Evaluation 152

7.3 Computational Model-Based Empirical Evaluation 156

7.4 Use Case-Based Experimental Evaluation 158

7.4.1 Protein Prediction Result Analysis 159

7.4.2 Snow Depth Data Screening 163

7.4.3 Ant Identi�cation and Treatment 165

7.5 System Performance Evaluation 169

7.5.1 Message Passing Overhead 169

7.5.2 System Concurrency . 170

7.6 Summary . 171

This chapter evaluates the RbAF and the RAWLS from di�erent perspectives.

Section 7.1 compares the rule-based work�ow speci�cation of the RAWLS with

other three prominent SWFMSs in terms of both control-�ow patterns and data

patterns. Section 7.2 evaluates the expressive power and complexity of domain

knowledge representation from both LP and DL perspectives. Section 7.3 evaluates

the RAWLS in terms of typical properties of computational models. Section 7.4

experimentally analyzes the performance and demonstrates the expressive power of

the domain knowledge representation in the RbAF with three real-world WsSWF

use cases. Section 7.5 evaluates the performance of the RAWLS.

7.1 Work�ow Pattern-Based Expressiveness Evaluation

Work�ow patterns are recurrent solutions in the development of process-oriented ap-

plications. From di�erent perspectives, the Work�ow Patterns Initiative [52] have

130 Chapter 7. Evaluation

delivered four types of work�ow patterns related to the development of work�ow ap-

plications, i.e., control �ow patterns, data patterns, resource patterns and exception

handling patterns. Such patterns are the formal ways of describing work�ow recur-

rent solutions and provide a comprehensive benchmark to compare process modeling

languages. In terms of the control-�ow and data patterns, this section compares the

rule-based work�ow speci�cation of the RAWLS with the work�ow languages of

other three prominent SWFMSs: Kepler, Taverna, and Triana to evaluate the level

of solving di�erent types of tasks. A brief introduction to the work�ow languages

of Kepler, Taverna, and Triana, see Section 3.4.

Note that the work�ow patterns delivered by the Work�ow Patterns Initiative

are originally for business work�ows and this section only considers the patterns

that are important for scienti�c work�ows. Additionally, this section considers four

new scienti�c work�ow patterns identi�ed in [185].

7.1.1 Control-Flow Patterns

The Work�ow Patterns Initiative [52] delivered original 20 Work�ow Control-�ow

Patterns (WCPs) in 2003 [186]. In the latest release [136], the number of the control-

�ow patterns has been increased to 43 for the purpose of describing more advanced

scenarios. To make a clear comparison, the numbering and de�nition of control-�ow

patterns in this section follows the Work�ow Patterns Initiative.

This section does not consider the control-�ow patterns that involve cancellation

and force completion of a work�ow activity (WCP-19, 20, 25, 26, 27, 29, 32, 35).

This is because canceling a task (a process) or rolling back to original states is not

supported in the RbAF. Such work�ow patterns are also not supported by other

three SWFMSs, i.e., Kepler, Taverna and Triana.

7.1.1.1 Basic Control-Flow Patterns

WCP-01 Sequence - A task in a process is enabled after the completion of a

preceding task in the same process [136].

Like the process-oriented work�ow languages, Prova implements a complex se-

quential task by a Prova rule, where each sub-task is interpreted as a sub-goal to

evaluate the rule. Prova executes sequentially one sub-goal after another starting

with the topmost one. In other words, all sub-goals of a Prova rule are executed

sequentially. Moreover, based on messaging reaction rules, the sub-goals of a Prova

rule can be executed by multiple distributed agents.

WCP-02 Parallel Split - A branch is diverged into two or more parallel

branches, each of which execute concurrently [136].

Prova can implement a split connector by simply creating a predicate with mul-

tiple clauses (branches). Based on Prova reactive messaging, the tasks in di�erent

branches can be performed in parallel. See Listing 6.5 as an example.

WCP-03 Synchronization - The convergence of two or more branches into a

single subsequent branch such that the thread of control is passed to the subsequent

7.1. Work�ow Pattern-Based Expressiveness Evaluation 131

branch when all input branches have been enabled [136].

The RAWLS can implement the synchronization pattern based on the event-

driven computation of complex event patterns, see Listing 6.6 as an example. Prova

also can implement this pattern by the logical reaction group: @and, which requires

all event channels to be successfully proved. The following example shows a synchro-

nization of two parallel threads of executing tasks a and b. The predicate fork_a_b

creates three reactions. The �rst two reactions start tasks a and b by sending mes-

sages to agents agent1 and agent2, respectively. Note that their sub-reactions (Line

8 and 13) are decorated with the @group(g1) and are concurrently waiting for the

results from the agents agent1 and agent2. The third fork_a_b reaction includes

a composite sub-reaction corresponding to the AND join operator (@and(g1), Line

15) to synchronize tasks a and b.

Listing 7.1: Synchronization Implemented in Prova

1 split_process(XID) :-

2 fork_a_b(XID).

4 fork_a_b(XID) :-

5 % Task a

6 sendMsg(XID ,esb ,agent1 ,request , a(Ins1 , Outs1)),

7 @group(g1)

8 rcvMsg(XID ,esb ,agent1 ,answer , a(Ins1 , Outs1)).

9 fork_a_b(XID) :-

10 % Task b

11 sendMsg(XID ,esb ,agent2 ,request , b(Ins2 , Outs2)),

12 @group(g1)

13 rcvMsg(XID ,esb ,agent2 ,answer , b(Ins2 , Outs2)).

14 fork_a_b(XID) :-

15 @and(g1)

16 rcvMsg(XID ,esb ,From ,and , Events),

17 println ([" Tasks a and b are completed: ", Events , " "]).

WCP-04 Exclusive Choice - The divergence of a branch into two or more

branches such that when the incoming branch is enabled, the thread of control is

immediately passed to precisely one of the outgoing branches based on a mechanism

that can select one of the outgoing branches [136].

Prova speci�es multiple branches by simply creating a predicate with a set of

clauses. However, when it implements the Exclusive Choice pattern, each clause

needs to specify a precondition as its �rst sub-goal to enable a branch. Moreover,

Prova needs to attach a CUT to each branch to ensure that only one branch is

enabled. The following example shows a process of executing task a or b exclusively.

Prova reaches a CUT (!) if X =< Y succeeds, and the CUT(!) inhibits backtracking

to the second rule. But if X =< Y fails, then Prova goes onto the second rule

instead.

Note that this example only de�nes a simple Boolean expression to select sub-

sequent branches as the classic work�ow languages. The rule-based work�ow de-

scription of the RAWLS not only describes multiple alternative branches, but also

provides high expressive power to describe complex domain-speci�c decision logic in

terms of derivation rules (see Section 4.4).

132 Chapter 7. Evaluation

Listing 7.2: Exclusive Choice and Simple Merge Implemented in Prova

1 split_process(X,Y,XID) :-

2 fork_a_b(X,Y,XID),

3 println ([" Two exclusive branches are merged here "]).

5 fork_a_b(X,Y,XID) :-

6 % Task a

7 X =< Y,

8 !,

9 execute(a).

10 fork_a_b(X,Y,XID) :-

11 % Task b

12 X>Y,

13 !,

14 execute(b).

WCP-05 Simple Merge - The convergence of two or more branches into a

single subsequent branch such that each enablement of an incoming branch results

in the thread of control being passed to the subsequent branch [136].

The Simple Merge pattern de�nes a merge of two or more branches without

synchronization. Moreover, it assumes that such branches are mutually exclusive.

In Prova, multiple branches created by a predicate are automatically merged after

the predicate, as shown in the above example of the Exclusive Choice pattern (Line

3).

7.1.1.2 Advanced Branching and Synchronization Patterns

WCP-06 Multi-Choice - The divergence of a branch into two or more branches

such that when the incoming branch is enabled, the thread of control is immediately

passed to one or more of the outgoing branches based on a mechanism that selects

one or more outgoing branches [136].

As aforementioned, Prova can specify multiple branches by simply creating a

predicate with a set of clauses. To implement the Multi-Choice pattern, each clause

has to employ a precondition as its �rst sub-goal. If the condition is satis�ed,

the corresponding branch is enabled. For example, the predicate fork_a_b_c in

following example triggers tasks a, b and c on the basis of evaluating conditions

condition_1, condition_2 and condition_3. Moreover, unlike Kepler, Triana and

Taverna, Prova can represent a default branch by a not operator, which denotes NaF.

In this example, there are two split_process rules, which include a pair of exclusive

conditions represented by a not operator. If none of fork_a_b_c clause is proved

true (i.e., the �rst split_process rule cannot be proved), the second split_process

rule specifying a default path will be executed.

Listing 7.3: Multi Choice and Structured Synchronizing Merge Implemented in

Prova

1 split_process(X,Y,XID) :-

2 fork_a_b_c(X,Y,XID).

4 split_process(X,Y,XID) :-

5 not(fork_a_b_c(X,Y,XID)),

7.1. Work�ow Pattern-Based Expressiveness Evaluation 133

6 println ([" The default path is enabled ."]).

8 fork_a_b_c(X,Y,XID) :-

9 % Task a

10 condition_1(X,Y),

11 sendMsg(XID ,esb ,agent1 ,request ,a(Ins1 , Outs1)),

12 @group(g1)

13 rcvMsg(XID ,esb ,agent1 ,answer ,a(Ins1 , Outs1)).

14 fork_a_b_c(X,Y,XID) :-

15 % Task b

16 condition_2(X,Y),

17 sendMsg(XID ,esb ,agent2 ,request ,b(Ins2 , Outs2)),

18 @group(g1)

19 rcvMsg(XID ,esb ,agent2 ,answer ,b(Ins2 , Outs2)).

20 fork_a_b_c(X,Y,XID) :-

21 % Task c

22 condition_3(X,Y),

23 sendMsg(XID ,esb ,agent3 ,request ,c(Ins3 , Outs3)),

24 @group(g1)

25 rcvMsg(XID ,esb ,agent3 ,answer ,c(Ins3 , Outs3)).

26 fork_a_b_c(X,Y,XID) :-

27 @and(g1) @timeout (10000)

28 rcvMsg(XID ,esb ,From ,and ,Events),

29 println ([" The merged branches are: ", Events , " "]).

WCP-07 Structured Synchronizing Merge - Unlike the Synchronizing pat-

tern (WCP-03), the Structured Synchronizing Merge occurs in a structured context,

i.e. there must be a single Multi-Choice construct earlier in the process model with

which the Structured Synchronizing Merge is associated, and it must merge all of

the branches emanating from Multi-Choice [136].

Both the Synchronization pattern (WCP-03) and this pattern synchronize mul-

tiple branches into a single subsequent branch. The di�erence is that the former

requires all branches have to complete, no matter they have been activated or not.

But the latter one only synchronizes the branches that have been activated, and

it means that the join connector of this pattern must be aware of which branches

are active. Prova implements this pattern by attaching a timeout to the compos-

ite reaction corresponding to the AND operator. As shown in the above example,

the join waits for a pre-speci�ed time (ten seconds) and then consumes all events

detected so far in its payload (Line 29-31).

WCP-08 Multiple Merge - The convergence of two or more branches into a

single subsequent branch such that each enablement of an incoming branch results

in the thread of control being passed to the subsequent branch [136].

The di�erence between Simple Merge (WCP-05) and Multiple Merge is that in

the former only one incoming branch is active, but there may be more than one

incoming branch being active simultaneously in the latter. Each enablement of an

active incoming branch causes the execution of the subsequent branch. Like the

implementation of Simple Merge, Multiple Merge can also be implemented in the

same way.

WCP-09 Structured Discriminator - The convergence of two or more branches

into a single subsequent branch following a corresponding divergence earlier in the

process model such that the thread of control is passed to the subsequent branch

134 Chapter 7. Evaluation

when the �rst incoming branch has been enabled. Subsequent enablements of in-

coming branches do not result in the thread of control being passed on [136].

Prova implements the Synchronization pattern by the logical reaction group:

@or, which requires either of the event channels to be successfully proved. The

following example shows a process which waits for the results of either task a or b.

The predicate fork_a_b creates three reactions. The �rst two reactions start tasks

a and b by sending the task requests to agents agent1 and agent2, respectively. Note

that the sub-reactions of �rst two fork_a_b rules (Line 8 and 13) are decorated with

the @group(g1). They are concurrently waiting for the results from agents agent1

and agent2. Unlike the Synchronization pattern (WCP-03), the third fork_a_b rule

is a reaction corresponding to the non-local XOR join operator (@or(g1), Line 15)

to wait for the results of either task a or b. When either of them is completed, the

whole group terminates, and the other task execution is ignored.

Listing 7.4: Structured Discriminator Implemented in Prova

1 split_process(XID) :-

2 fork_a_b(XID).

4 fork_a_b(XID) :-

5 % Task a

6 sendMsg(XID ,esb ,agent1 ,request ,a(Ins1 , Outs1)),

7 @group(g1)

8 rcvMsg(XID ,esb ,agent1 ,answer , a(Ins1 , Outs1)).

9 fork_a_b(XID) :-

10 % Task b

11 sendMsg(XID ,esb ,agent2 ,request , b(Ins2 , Outs2)),

12 @group(g1)

13 rcvMsg(XID ,esb ,agent2 ,answer , b(Ins2 , Outs2)).

14 fork_a_b(XID) :-

15 @or(g1)

16 rcvMsg(XID ,esb ,From ,or,Events),

17 println ([" Task a or b is completed: ", Events , " "]).

WCP-28 Blocking Discriminator - Compared to Structured Discriminator,

the Blocking Discriminator construct resets when all active incoming branches have

been enabled once for the same process instance. Subsequent enablements of incom-

ing branches are blocked until the discriminator construct has reset [136].

Prova does not support this pattern since it can not block a thread to process

just a speci�c message. However, as explained in Section 4.3.1, reaction rules are

associated with a conversation identi�er to re�ect the process execution and ensure

that all tasks of a process instance running in one conversion. In other words, the

join connector of this pattern can work well, even if incoming branches of di�erent

process instances are enabled.

WCP-30 Structured Partial Join - The convergence of two or more branches

(say m) into a single subsequent branch following a corresponding divergence earlier

in the process model such that the thread of control is passed to the subsequent

branch when n of the incoming branches have been enabled where n is less than m.

Subsequent enablements of incoming branches do not result in the thread of control

being passed on [136].

7.1. Work�ow Pattern-Based Expressiveness Evaluation 135

Prova can implement the Synchronization pattern (WCP-03) and the Structured

Discriminator pattern (WCP-09) by the reaction groups that implement the AND

and non-local XOR join operators, respectively. However, it does not support a

partial join directly. Based on the semantics of the event-driven computation of

complex event patterns (see Section 5.5), a partial join can be implemented in

another similar way, see the example in Listing 6.8.

WCP-31 Blocking Partial Join - The convergence of two or more branches

(say m) into a single subsequent branch following one or more corresponding diver-

gences earlier in the process model. The thread of control is passed to the subsequent

branch when n of the incoming branches has been enabled (where 2 = n < m). The

join construct resets when all active incoming branches have been enabled once

for the same process instance. Subsequent enablements of incoming branches are

blocked until the join has reset [136].

Prova does not support this pattern since it does not block a thread to process

just a speci�c message as the Blocking Discriminator pattern (WCP-28).

WCP-33 Generalized And-Join - The convergence of two or more branches

into a single subsequent branch such that the thread of control is passed to the

subsequent branch when all input branches have been enabled. Additional triggers

received on one or more branches between �rings of the join persist and are retained

for future �rings [136].

The di�erence between this pattern and the Synchronization pattern (WCP-03)

is that the former only allows each branch to receive one trigger after activation,

whereas the latter allows each branch to retain additional triggers for future �rings.

As explained in Section 4.3.1, reaction rules are associated with a conversation

identi�er to re�ect the process execution and keep all tasks of a process instance

running in one conversion. The join connector of this pattern can identify di�erent

branches in terms of their conversation identi�ers, thereby ensuring the branches in

one conversation are joined.

WCP-37 Local Synchronizing Merge - The convergence of two or more

branches which diverged earlier in the process into a single subsequent branch such

that the thread of control is passed to the subsequent branch when each active

incoming branch has been enabled. Determination of how many branches require

synchronization is made on the basis of information locally available to the merge

construct [136].

This pattern is supported by the RAWLS. Based on the semantics of the event-

driven computation of complex event patterns, determination of which branches

require synchronization is described by a set of derivation rules (see Section 5.5).

Such derivation rules can make a decision according to current available information.

WCP-38 General Synchronizing Merge - The convergence of two or more

branches which diverged earlier in the process into a single subsequent branch such

that the thread of control is passed to the subsequent branch when either (1) each

active incoming branch has been enabled or (2) it is not possible that any branch

that has not yet been enabled will be enabled at any future time [136].

Like Structured Synchronizing Merge (WCP-07), Prova also can implement this

136 Chapter 7. Evaluation

pattern by attaching a timeout to the composite reaction corresponding to the AND

join operator, and the join waits for a pre-speci�ed time and then consumes all events

recorded so far in its payload.

WCP-41 Thread Merge - At a given point in a process, a nominated number

of execution threads in a single branch of the same process instance should be merged

together into a single thread of execution [136].

Like Structured Partial Join (WCP-30), the partial join of this pattern can be

implemented according to the semantics of the event-driven computation of complex

event patterns.

WCP-42 Thread Split - At a given point in a process, a nominated number

of execution threads can be initiated in a single branch of the same process instance

[136].

Like Parallel Split (WCP-02), Prova can implement Thread Split by simply cre-

ating a predicate with multiple clauses.

7.1.1.3 Multiple Instance Patterns

WCP-12 Multiple Instances without Synchronization - Within a given pro-

cess instance, multiple instances of a task can be created. These instances are inde-

pendent of each other and run concurrently. There is no requirement to synchronize

them upon completion [136].

The RAWLS drives the work�ow execution by passing event messages: whenever

an agent receives a task request (message), a new task instance is created. Multiple

instances of a task can be created by sending several requests to an agent responsible

for the task.

WCP-13 Multiple Instances with a Priori Design-Time Knowledge -

Di�erent with the previous pattern (WCP-12), the required number of instances of

this pattern is known at design time. Moreover, it is necessary to synchronize the

task instances at completion before any subsequent tasks can be triggered [136].

Like the Synchronization pattern (WCP-03), Prova can implement this pattern

by sending multiple task requests to an agent and synchronize them at completion.

The following example shows that two instances of task a running in agent agent1

are synchronized by the logical reaction group: @and.

Listing 7.5: Multiple Instances with a Priori Design-Time Knowledge Implemented

in Prova

1 split_process(XID) :-

2 fork_a_b(XID).

4 fork_a_b(XID) :-

5 % Task a

6 sendMsg(XID ,esb ,agent1 ,request ,a(Ins1 , Outs1)),

7 @group(g1)

8 rcvMsg(XID ,esb ,agent1 ,answer , a(Ins1 , Outs1)).

9 fork_a_b(XID) :-

10 % Task a

11 sendMsg(XID ,esb ,agent1 ,request , a(Ins2 , Outs2)),

12 @group(g1)

7.1. Work�ow Pattern-Based Expressiveness Evaluation 137

13 rcvMsg(XID ,esb ,agent1 ,answer , a(Ins2 , Outs2)).

14 fork_a_b(XID) :-

15 @and(g1)

16 rcvMsg(XID ,esb ,From ,and ,Events),

17 println ([" Tasks a and b are completed: ",Events ," "]).

WCP-14 Multiple Instances with a Priori Runtime Knowledge - Dif-

ferent with the previous pattern (WCP-13), the required number of instances of

this pattern may depend on a number of runtime factors, including state data, re-

source availability and inter-process communications, but it is known before the task

instances must be created [136].

Prova does not support this pattern. Although Prova can dynamically create

multiple instances by a loop facility (e.g., for/2 (i,io)) according to current circum-

stances, the instances created dynamically cannot be synchronized at completion.

WCP-15 Multiple Instances without a Priori Runtime Knowledge -

Di�erent with the previous pattern (WCP-14), this pattern further requires to add

additional instances at any time [136].

Prova does not support this pattern, because the instances created dynamically

cannot be synchronized at completion.

WCP-34 Static Partial Join for Multiple Instances - Similar with other

partial join patterns, this pattern requires partial instances of a task to complete in

order for enabling subsequent tasks [136].

Like Structured Partial Join (WCP-30), the partial join of this pattern can be

implemented according to the semantics of the event-driven computation of complex

event patterns [136].

WCP-36 Dynamic Partial Join for Multiple Instances - Di�erent with

the pattern WCP-34, the required number of instances of this pattern may depend

on a number of runtime factors [136].

Prova does not support this pattern, because the instances created dynamically

cannot be synchronized at completion.

7.1.1.4 State-based Patterns

WCP-16 Deferred Choice - A point in a process where one of several branches is

chosen based on interaction with the operating environment. Prior to the decision,

all branches represent possible future courses of execution [136].

The RAWLS supports asynchronous human interaction, which makes it possible

to integrate human dynamic decision to the work�ow execution, thereby supporting

dynamic execution path selection at runtime. Moreover, derivation rules provide an

expressive decision logic description and allow agents to make a decision according to

individual circumstances. For example, there may be more than one agent available

for a task, and only the available agent with the highest priority is dynamically

selected.

WCP-17 Interleaved Parallel Routing - A set of tasks has a partial ordering

de�ning the requirements with respect to the order in which they must be executed.

Each task in the set must be executed once and they can be completed in any order

138 Chapter 7. Evaluation

that accords with the partial order. However, as an additional requirement, no two

tasks can be executed at the same time [136].

Unlike Taverna, Triana and Kepler, which do not impose the existence of a

complete order among tasks [185], Prova needs to explicitly specify the control �ow

in a work�ow. To implement this pattern, it is necessary to de�ne all possible

execution paths. For example, suppose that a process involves tasks a, b and c;

task a must be done before the task b; task c can be performed at any time; only

one of these tasks can be performed at any time during the process execution.

When this process is implemented by Prova, it is necessary to design two possible

execution paths of this process, i.e., a → b → c and c → a → b. It is not di�cult

to specify di�erent possibilities if there are a few tasks. However, the number of

possible execution paths grows rapidly as the number of the involved tasks increases.

Therefore, this pattern is not directly supported.

WCP-18 Milestone - A task is only enabled when the process instance (of

which it is part) is in a speci�c state (typically a parallel branch). The state is

assumed to be a speci�c execution point (also known as a milestone) in the process

model [136].

None of Taverna, Triana and Kepler supports the milestone pattern. However,

the RAWLS speci�es control �ows of a work�ow by active reaction rules. A milestone

can be implemented by sending a message to one agent to indicate that a particular

state required to enable a task is reached.

WCP-39 Critical Section - Two or more connected subgraphs of a process

model are identi�ed as �critical sections�. At runtime for a given process instance,

only tasks in one of these �critical sections� can be active at any given time. Once

execution of the tasks in one �critical sections� commences, it must complete before

another �critical sections� can commence [136].

This pattern is not supported by the RAWLS.

WCP-40 Interleaved Routing - Each member of a set of tasks must be

executed once. They can be executed in any order, but no two tasks can be executed

at the same time [136].

This pattern is not supported, because control �ows of a work�ow need to be

explicitly speci�ed in the RAWLS. It is possible to specify di�erent possible execu-

tion paths if there are a few tasks in this pattern. However, the number of possible

execution paths grows rapidly as the number of the involved tasks increases.

7.1.1.5 Iteration Patterns

WCP-10 Arbitrary Cycles - The ability to represent cycles in a process model

that have more than one entry or exit point. It must be possible for individual entry

and exit points to be associated with distinct branches [136].

In the RAWLS, an agent responsible for a task can be triggered by one or

more messages from external environments (i.e., entry points). The reaction to

such external messages is described by reaction rules, which specify event templates

describing the required information to trigger the task. In addition, an agent can

7.1. Work�ow Pattern-Based Expressiveness Evaluation 139

also send messages to one or more agents (i.e., exit points). The multiple entry and

exit points make it possible to implement arbitrary cycles.

WCP-22 Recursion - The ability of a task to invoke itself during its execution

or an ancestor in terms of the overall decomposition structure with which it is

associated [136].

Prova can implement the Recursion pattern with a pair of Prova rules: one

describes a recursive task in terms of itself, the other describes a termination condi-

tion to make the overall process complete normally. The following example shows a

recursion task size(List, Size) which calculates the length of a Prova list�the size

of a list equals to the size of its tail plus one (Line 3, 4 and 5), and the size of an

empty list is zero (Line 2).

Listing 7.6: Recursion Implemented in Prova

1 % size if a list

2 size ([] ,0).

3 size([H|T],N) :-

4 size(T,N1),

5 N = N1 + 1.

WCP-21 Structured Loop - The ability to execute a task or sub-process

repeatedly. The loop has either a pre-test or post-test condition associated with it

that is either evaluated at the beginning or the end of the loop to determine whether

it should continue. The looping structure has a single entry and exit point [136].

Prova relies on recursion to implement Structured Loop. The following Prova

example implements a while...do loop, which prints a star each time while N is not

zero. The CUT(!) in the �rst rule prevents the backtracking to the second rule if N

is zero.

Listing 7.7: Recursion (while...do) Implemented in Prova

1 :- eval(print_stars (5)).

2 print_stars (0):- !.

3 print_stars(N):-

4 print (["*"]) ,

5 N1 = N -1,

6 print_stars(N1).

Similarly, the following Prova example implements a repeat...until loop associ-

ated with a post-test condition. It prints a star each time until N is bigger than

�ve. Note that the CUT(!) prevents backtracking, and the predicate fail() forces

print_stars to fail.

Listing 7.8: Recursion (repeat...until) Implemented in Prova

1 :- eval(print_stars (0)).

2 % control condition

3 print_stars(N):-

4 N > 5,

5 !,

6 fail ().

8 % loop

9 print_stars(N):-

140 Chapter 7. Evaluation

10 print (["*"]) ,

11 N1 = N + 1,

12 print_stars(N1).

7.1.1.6 Termination Patterns

WCP-11 Implicit Termination - A given process (or sub-process) instance should

terminate when there are no remaining work items that are able to be done either

now or at any time in the future and the process instance is not in deadlock. There

is an objective means of determining that the process instance has successfully

completed [136].

In the RAWLS, the work�ow execution terminates after the work�ow results are

successfully sent to the RAWLS user client.

WCP-43 Explicit Termination - A given process (or sub-process) instance

should terminate when it reaches a nominated state. Typically this is denoted by a

speci�c end node. When this end node is reached, any remaining work in the process

instance is canceled and the overall process instance is recorded as having completed

successfully, regardless of whether there are any tasks in progress or remaining to

be executed [136].

The RAWLS does not support Explicit Termination.

7.1.1.7 Trigger Patterns

WCP-23 Transient Trigger - The ability for a task instance to be triggered by

a signal from another part of the process or from the external environment. These

triggers are transient in nature and are lost if not acted on immediately by the

receiving task. A trigger can only be utilized if there is a task instance waiting for

it at the time it is received [136].

Transient Trigger requires that signals should be processed as soon as they are

received. Prova can implement the Transient Trigger pattern by a pair of sequential

reactions: the �rst reaction waits for a message indicating that it is ready to receive

a transient trigger, and the second reaction waits for the transient trigger from the

external environment. The trigger (event) processing can be started as soon as the

transient trigger is received. If the transient trigger is received before the task is

ready, it will be lost. The following example shows a process to handle transient

alarm signals. The handling is ready when a message monitor(ready) is received

(Line 2). Fireplugs are opened (Line 7) as soon as an alarm signal is received (Line

5). However, it will be lost if the process is not ready to receive alarm signals. Note

that the alarm signal detection has a di�erent conversation identi�er XID1 because

the alarm signals are usually from the external sensors.

Listing 7.9: Transient Trigger Implemented in Prova

1 handle_alarm(XID):-

2 rcvMsg(XID ,Protocol ,From ,request , monitor(ready)),

3 println ([" Ready for receiving alarm signals ."]),

7.1. Work�ow Pattern-Based Expressiveness Evaluation 141

5 rcvMsg(XID1 ,Protocol ,From ,request ,alarm(Sensor)),

6 println (["An alarm signal is received from Sensor "]),

7 open(fireplugs).

WCP-24 Persistent Trigger - The ability for a task to be triggered by a signal

from another part of the process or from the external environment. These triggers

are persistent in form and are retained by the process until they can be acted on by

the receiving task [136].

The RAWLS supports Persistent Trigger. Di�erent with Transient Trigger, the

persistent triggers (events) are inherently durable in nature, ensuring that they are

not lost in transit and are bu�ered until they can be handled. The RAWLS presents

an event-driven work�ow execution, i.e., a task is started when an agent receives

a task request (event) from other agents or from the external environment (e.g.,

the RAWLS user client). Moreover, reaction rules used to specify control �ows are

associated with a conversation identi�er to re�ect the process execution, thereby

enabling Prova agents to deal with di�erent process instances accurately.

Summary

The results of control-�ow pattern-based evaluation are summarized in Table 7.1,

including the evaluation results regarding to Kepler, Taverna and Triana from [185].

�+� denotes that a pattern is directly supported. If a pattern is not supported, it is

rated to �-�.

The evaluation considers 35 control-�ow patterns delivered by the Work�ow Pat-

terns Initiative, except the patterns that involve cancellation and force completion

of a work�ow activity (WCP-19, 20, 25, 26, 27, 29, 32, 35). The results show that

the RAWLS supports 26 patterns, which are much more than Kepler which supports

18; Taverna which supports 10 patterns; Triana which supports 13 patterns. To be

more speci�c, the rule-based work�ow speci�cation of the RAWLS also supports

the basic work�ow patterns (i.e., WCP-01�05 in the table) as Kepler, Taverna and

Triana. With respect to the advanced patterns, it has superiority over other three

systems, especially to the advanced branching and synchronization patterns (i.e.,

WCP-06�09, 28�33, 37�38, 41, 42), the state-based patterns (i.e., WCP-16�18, 39�

40) and the trigger patterns (i.e., WCP-23 and 24). The advanced branching and

synchronization patterns characterize more complex branching and merging con-

cepts in work�ows. For example, Structured Discriminator (WCP-09) requires a

join connector to select one branch from two or more branches and ignore others.

None of Kepler, Taverna and Triana supports it, because they are not able to reset

the join construct when exactly one piece of data is received [185]. Prova well sup-

ports this pattern via the reaction group, @or, which requires either of the event

channels to be successfully proved. Based on the semantics of the event-driven com-

putation of complex event patterns (see Section 5.5), the RAWLS also supports the

partial join, thereby supporting the patterns WCP-30, 34 and 41. The state-based

patterns are the ones, in which decisions are made according to data associated

with current execution, including the status of activities as well as process-relevant

142 Chapter 7. Evaluation

working data. The RAWLS not only integrates human dynamic decisions, but also

provides an expressive decision logic description, thereby supporting the patterns

WCP-16 and 18 that are not supported by other three systems. Moreover, with

the bene�ts of Prova reactive event messaging, the RAWLS supports two trigger

patterns: Transient Trigger (WCP-23) and Persisten Trigger(WCP-24).

Table 7.1: Control-Flow Pattern-Based Comparison

Control Flow Patterns Kepler Taverna Triana RAWLS
WCP-01. Sequence + + + +
WCP-02. Parallel Split + + + +
WCP-03. Synchronization + + + +
WCP-04. Exclusive Choice + - + +
WCP-05. Simple Merge + + + +
WCP-06. Multi-Choice + + + +
WCP-07. Structured Synchronizing Merge - - - +
WCP-08. Multi-Merge + + + +
WCP-09. Structured Discriminator - - - +
WCP-10. Arbitrary Cycles + - + +
WCP-11. Implicit Termination + + + +
WCP-12. Multiple Instances without Synchro-
nization

+ + + +

WCP-13. Multiple Instances with a Priori Design-
Time Knowledge

- - - +

WCP-14. Multiple Instances with a Priori Run-
time Knowledge

- - - -

WCP-15. Multiple Instances without a Priori
Runtime Knowledge

- - - -

WCP-16. Deferred Choice - - - +
WCP-17. Interleaved Parallel Routing + - - -
WCP-18. Milestone - - - +
WCP-21. Structured Loop + - + +
WCP-22. Recursion - - - +
WCP-23. Transient Trigger - - - +
WCP-24. Persistent Trigger + + + +
WCP-28. Blocking Discriminator - - - -
WCP-30. Structured Partial Join - - - +
WCP-31. Blocking Partial Join - - - -
WCP-33. Generalized AND-Join + + + +
WCP-34. Static Partial Join for Multiple In-
stances

- - - +

WCP-36. Dynamic Partial Join for Multiple In-
stances

- - - -

WCP-37. Local Synchronizing Merge - - - +
WCP-38. General Synchronizing Merge - - - +
WCP-39. Critical Section - - - -
WCP-40. Interleaved Routing + - - -
WCP-41. Thread Merge + - - +
WCP-42. Thread Split + - - +
WCP-43. Explicit Termination + - - -

7.1. Work�ow Pattern-Based Expressiveness Evaluation 143

7.1.2 Data Patterns

Work�ow Data Patterns (WDPs) captures various ways in which data is represented

and utilized in work�ows [187]. Like the control-�ow-based evaluation, the number-

ing and de�nition of data patterns in this section also follows the Work�ow Patterns

Initiative for the clarity.

7.1.2.1 Data Visibility

Data visibility patterns describe the ways of data elements are de�ned and utilized.

In other words, they de�ne a scope in which data elements are accessible.

WDP-01 Task Data - Data elements can be de�ned by tasks which are acces-

sible only within the context of individual execution instances of that task [187].

The RAWLS supports the Task Data pattern, since it is a basic requirement for

every work�ow system, and variables de�ned in a primitive task can be accessed

during the task execution.

WDP-04 Multiple Instance Data - Tasks which are able to execute multiple

times within a single case can de�ne data elements which are speci�c to an individual

execution instance [187].

The RAWLS supports multiple concurrent instances of an activity or sub-process,

and each instance can have di�erent datasets or varying parameter settings. For ex-

ample, two instances of task a are provided with di�erent inputs (see Listing 7.5).

WDP-08 Environment Data - Data elements which exist in the external

operating environment are able to be accessed by components of processes during

execution [187].

Prova employed by the RAWLS can access external data via query languages. It

not only provides access to relational databases via SQL, but also supports access

to Semantic Web Data available on the Internet (see Section 4.4.2).

The RAWLS does not support the data visibility patterns WDP-02 Block Data,

WDP-03 Scope Data, WDP-05 Case Data, WDP-06 Folder Data andWDP-07Work-

�ow Data, which de�ne shared data in a subprocess, a subset of tasks, a process

instance (a case), multiple process instances (multiple cases), all components of a

process, respectively. This is because, in the RAWLS, the agents communicate each

other by sending and receiving messages, data is local in a task or agent. Data

shared by a set of tasks cannot be de�ned, unless the tasks are locally in one agent,

and the shared data is globally de�ned. For more details of such patterns, see [187].

7.1.2.2 Internal Data Interaction

WDP-09 Task to Task - The ability to communicate data elements between one

task instance and another within the same case [187].

In the RAWLS, the agents communicate each other by sending and receiving

messages, i.e., passing data between from one task to another. Based on messaging

reaction rules, both control �ows and data �ows can be speci�ed and implemented.

144 Chapter 7. Evaluation

WDP-10 Block Task to Sub-Work�ow Decomposition - The ability to

pass data elements from a block task instance to the corresponding subprocess that

de�nes its implementation [187].

WDP-11 Sub-Work�ow Decomposition to Block Task - The ability to

pass data elements from the underlying subprocess back to the corresponding block

task [187].

Messaging reaction rules can not only capture global ECA rules, but also main-

tain local conversation states to perform complex tasks in a sub-process. Like the

Task to Task pattern (WDP-09), the pattern WDP-10 can be implemented by send-

ing a message (data) to an agent which manages the sub-process implementing a

block task. At completion, the agent can send the results back to the requester

(WDP-11).

WDP-12 To Multiple Instance Task - The ability to pass data elements

from a preceding task instance to a subsequent task which is able to support multiple

execution instances [187].

The RAWLS creates a task instance as soon as required data is received. As

shown in Listing 7.5, two distinct messages are sent to agent agent1 to create two

instances of task a.

WDP-13 From Multiple Instance Task - The ability to pass data elements

from a task which supports multiple execution instances to a subsequent task [187].

Since the RAWLS supports the synchronization of multiple task instances at

completion before any subsequent tasks can be triggered (WCP-13), it also supports

the result synchronization of multiple task instances. As shown in Listing 7.5, the

results of two instances of task a are collected in the variable Events.

WDP-14 Case to Case - The passing of data elements from one case of a

process during its execution to another case that is executing concurrently [187].

The RAWLS does not support this pattern.

7.1.2.3 External Data Interaction

WDP-15 (WDP-19, WDP-23) Task (Case/Work�ow) to Environment -

Push Oriented - The ability of a task (a case or a process environment) to pass

data elements to resources or services in the operational environment [187].

Prova combines declarative with imperative programming styles and allows call-

ing external procedural attachments (e.g., Java methods) in declarative rules. There-

fore, it is possible for a task (a case or a process environment) to pass data to the

external environment.

WDP-16 (WDP-20, WDP-24) Environment to Task (Case/Work�ow)

- Pull Oriented - The ability of a task (a case or a process environment) to request

data elements from resources or services in the operational environment [187].

Prova can implement such patterns by accessing external data with query lan-

guages, such as SQL, SPARQL.

WDP-17 (WDP-21, WDP-25) Environment to Task (Case/Work�ow)

- Push Oriented - The ability of a task (a case or a process environment) to receive

7.1. Work�ow Pattern-Based Expressiveness Evaluation 145

and utilize data elements passed to it from services and resources in the operating

environment on an unscheduled basis [187].

The agents of the RAWLS are reactive, and the detection of external environ-

ments is implemented by reaction rules, which react to occurred events (external

events or changed conditions) by executing certain actions (see Section 4.3.1). These

patterns are not supported by Kepler, Taverna and Triana.

WDP-18 (WDP-22, WDP-26) Task (Case/Work�ow) to Environment

- Push Oriented - The ability of a task (a case or a process environment) to

receive and respond to requests for data elements from services and resources in the

operational environment [187].

Besides perceiving external environments, the agents of the RAWLS can react

to the events from the external environment. Moreover, a group of agents can

collaborate in cooperative ways to deal with external events. These patterns are not

supported by Kepler, Taverna and Triana.

7.1.2.4 Data Transfer Patterns

WDP-27 (WDP-28) Data Transfer by Value - Incoming (Outgoing) - The

ability of a process component to receive incoming data elements by value (pass

data elements to subsequent components as values) avoiding the need to have shared

names or common address space with the component(s) from which it receives them

[187].

In the RAWLS, data passing between agents is implemented via sending and

receiving event messages. The payload of a message contains data values, on which

receivers (agents) can operate.

WDP-29 Data Transfer - Copy In/Copy Out - The ability of a process

component to copy the values of a set of data elements from an external source

(either within or outside the process environment) into its address space at the

commencement of execution and to copy their �nal values back at completion [187].

Based on the data patterns WDP-08 and WDP-15 (WDP-19, WDP-23), the

agents of the RAWLS can copy data from the external environment and copy back

any changes to this data at the time of task completion.

WDP-30 Data Transfer by Reference - Unlocked - The ability to com-

municate data elements between process components by utilizing a reference to the

location of the data element in some mutually accessible location. No concurrency

restriction is applied to the shared data element [187].

In the RAWLS, the payload of the event messages between agents can be either

simple data values or data references if the data is large.

WDP-31 Data Transfer by Reference - With Lock - Di�erent with the

previous pattern (WDP-30), concurrency restrictions are implied with the receiving

component receiving the privilege of read-only or dedicated access to the data ele-

ment. The required lock is declaratively speci�ed as part of the data passing request

[187].

This pattern is not supported since the lock cannot be speci�ed.

146 Chapter 7. Evaluation

WDP-32, WDP-33 Data Transformation - Input/Output - The ability

to apply a transformation function to a data element prior to it being passed to a

process component or passed out of a process component [187].

Prova does not directly support the data transformation. However, the RAWLS

integrates distributed agents by Mule ESB, which supports converting data from one

format to another [175]. For example, a work�ow request is translated into a Prova

list before the work�ow engine (i.e., a Prova agent) processes it; at the work�ow

completion, the work�ow output in a Prova list is translated back to a user friendly

format.

7.1.2.5 Data-Based Routing

WDP-34 (WDP-36) Task Precondition (Postcondition) - Data Existence

- Data-based preconditions (postconditions) can be speci�ed for tasks based on the

presence of data elements at the time of execution (at the time of task completion).

The preconditions (postconditions) can utilize any data elements available to the

task with which they are associated. A task can only proceed if the associated

precondition (postconditions) evaluates positively [187].

Like other three scienti�c work�ow systems, the RAWLS starts a task if re-

quired inputs are available. Moreover, it is also possible for the agents to impose

postconditions at task completion to check if the outputs are generated.

WDP-35 (WDP-37) Task Precondition (Postcondition) - Data Value -

Di�erent with the previous two data patterns, the preconditions and postconditions

of the current two patterns are speci�ed based on the value of speci�c parameters

at the time of execution [187].

Like the previous two data patterns based on data existence, the RAWLS also

supports data value-based speci�cation of preconditions and postconditions. More-

over, derivation rules provide high expressive power to describe complex domain-

speci�c decision logic.

WDP-38 Event-Based Task Trigger - The ability for an external event to

initiate a task and to pass data elements to it [187].

The RAWLS presents an event-driven work�ow execution and supports the trig-

ger patterns (WCP-23, WCP-24). Therefore, this pattern is also supported by the

RAWLS.

WDP-39 Data-Based Task Trigger - Data-based task triggers provide the

ability to trigger a speci�c task when an expression based on data elements in the

process instance evaluates as true. Any data element accessible within a process

instance can be used as part of a data-based trigger expression [187].

The RAWLS speci�es the task dependencies of a work�ow by reaction rules,

which perform actions in terms of occurred events. A data-based task trigger can

also be implemented by a reaction rule, which is associated with a data element-

based expression to start a task. The task is triggered as soon as the expression is

evaluated to be true.

WDP-40 Data-Based Routing - Data-based routing provides the ability to

7.1. Work�ow Pattern-Based Expressiveness Evaluation 147

alter the control-�ow within a case based on the evaluation of data-based expressions

[187].

The implementation of Data-Based Routing has been shown in the control-�ow

patterns Exclusive Choice (WCP-04) and Multiple Choice (WCP-06). As seen in

Listings 7.2 and 7.3, the variables X and Y attached to the split construct determine

the selection of outgoing branches.

Table 7.2: Data Pattern-Based Comparison

Data Patterns Kepler Taverna Triana RAWLS
WDP-01. Task Data + + + +
WDP-02. Block Data - - - -
WDP-03. Scope Data - - - -
WDP-04. Multiple Instance Data + + + +
WDP-05. Case Data - - - -
WDP-06. Folder Data - - - -
WDP-07. Work�ow Data - - - -
WDP-08. Environment Data + + + +
WDP-09. Task to Task + + + +
WDP-10. Block Task to Sub-Work�ow Decomposi-
tion

+ + + +

WDP-11. Sub-Work�ow Decomposition to Block
Task

+ + + +

WDP-12. To Multiple Instance Task + + + +
WDP-13. From Multiple Instance Task - - - +
WDP-14. Case to Case - - - -
WDP-15. Task to Environment - Push-Oriented + + + +
WDP-16. Environment to Task - Pull-Oriented + + + +
WDP-17. Environment to Task - Push-Oriented - - - +
WDP-18. Task to Environment - Pull-Oriented - - - +
WDP-19. Case to Environment - Push-Oriented + + + +
WDP-20. Environment to Case - Pull-Oriented + + + +
WDP-21. Environment to Case - Push-Oriented - - - +
WDP-22. Case to Environment - Pull-Oriented - - - +
WDP-23. Work�ow to Environment - Push-Oriented + + + +
WDP-24. Environment to Work�ow - Pull-Oriented + + + +
WDP-25. Environment to Work�ow - Push-Oriented - - - +
WDP-26. Work�ow to Environment - Pull-Oriented - - - +
WDP-27. Data Transfer by Value - Incoming + + + +
WDP-28. Data Transfer by Value - Outgoing + + + +
WDP-29. Data Transfer - Copy In/Copy Out + + + +
WDP-30. Data Transfer by Reference - Unlocked + + + +
WDP-31. Data Transfer by Reference - With Lock - - - -
WDP-32. Data Transformation - Input - - - +
WDP-33. Data Transformation - Output - - - +
WDP-34. Task Precondition - Data Existence + + + +
WDP-35. Task Precondition - Data Value - - - +
WDP-36. Task Postcondition - Data Existence - - - +
WDP-37. Task Postcondition - Data Value - - - +
WDP-38. Event-based Task Trigger - - - +
WDP-39. Data-based Task Trigger - - - +
WDP-40. Data-based Routing + - + +

148 Chapter 7. Evaluation

7.1.2.6 Summary

The results of data pattern-based evaluation are summarized in Table 7.2, including

the evaluation results regarding to Kepler, Taverna and Triana from [185]. �+�

denotes that a pattern is directly supported. If a pattern is not supported, it is

rated to �-�.

The evaluation considers all 40 data patterns delivered by the Work�ow Patterns

Initiative. The results show that the RAWLS supports 33 patterns, which are much

more than Kepler which supports 19; Taverna which supports 18 patterns; Triana

which supports 19 patterns.

To be more speci�c, the RAWLS employs messaging reaction rules to describe

agent interactions by sending and receiving messages, and data is local in a task or

agent and data shared by a set of tasks cannot be de�ned. Therefore, the data visi-

bility patterns which involve data sharing between tasks or cases are not supported

(WDP-02, 03, 05, 06 and 07). Based on messaging reaction rules, the RAWLS sup-

ports all external data interaction patterns, especially the ones which receive and

respond to requests for data elements from the external environment (WDP-17�25).

However, in Kepler, Taverna and Triana, since only the tasks of a work�ow can

start a connection with external environment, they are not reactive to support such

patterns. Moreover, with the agent-oriented execution framework and derivation

rules, it is possible to provide complex domain-speci�c preconditions and postcon-

ditions to perform tasks, thereby supporting the patterns WDP-34�37. In addition,

based on Mule ESB, two data transformation patterns (WDP-32 and 33) are also

supported by the RAWLS.

7.1.3 Scienti�c Work�ow Patterns

The work�ow patterns delivered by the Work�ow Patterns Initiative are originally

for business work�ows and this section considers four new scienti�c work�ow pat-

terns identi�ed in [185].

SWP-01 Dynamic Input Size - The ability to consume n data elements from

the same input channel, where n is determined at runtime on the basis of the value

received from another input channel [185].

This pattern can be considered as the dynamic version of WCP-41 Tread Merge,

and the number of tokens from the same input channel required to execute a task is

determined at runtime [185]. However, the RAWLS does not support this pattern.

Although the partial join is supported by the RAWLS, the logic of the partial join is

prede�ned and the number of tokens required to be received can not be dynamically

determined.

SWP-02 Dynamic Token Replication - The ability to generate n copies of

a data element d received in input, where the number n is determined at runtime

on the basis of the value received from another input channel [185].

In the RAWLS, whenever an agent receives a task request, a new task instance

is created. This pattern can be implemented by the iteration patterns (see Section

7.1. Work�ow Pattern-Based Expressiveness Evaluation 149

7.1.1.5), which can dynamically generate multiple copies of a data element and

process them one by one. Therefore, the RAWLS supports this pattern.

SWP-03 Dynamic Balancing of Input Tokens - The ability to replicate

a data element received from an input channel in order to balance the number of

tokens received from another input channel [185].

The key of implementing this pattern is to balance the data elements produced

by two or more tasks with di�erent production rates. To implement this pattern,

all data elements are stored locally the one, which has the highest production rate.

Such data elements are updated whenever their latest ones are received. When the

data element that has the highest production rate is received, it is sent to execute

another task together with those data elements stored locally.

SWP-04 Cartesian Product of Input Tokens - The ability to compute the

cartesian product of the data values contained into two or more channels connected

to the same task, so that this task can be executed on each possible combination of

inputs [185].

This pattern is supported by the RAWLS. Prova provides a builtin element/2

(io,i), which extracts one element each time from a list, and combining data pro-

duced by di�erent tasks can be implemented by using two or more element builtins.

For example, the combination of two lists: L = [1, 2, 3] and M = [9, 8, 7] can be

simply implemented as follows:

Listing 7.10: Combination of Two Lists

1 listCombination ():-

2 L = [1, 2, 3],

3 M = [9, 8, 7],

4 element(L1, L),

5 element(M1, M),

6 println (["(",L1 ,",", M1 ,")"]).

8 %This program returns:

9 %(1 ,9),(1 ,8),(1,7),(2,9),(2,8) ,(2,7) ,(3,9) ,(3,8),(3,7)

The above evaluation results are summarized in Table 7.3, including the evalu-

ation results regarding to Kepler, Taverna and Triana from [185]. �+� denotes that

a pattern is directly supported. If a pattern is not supported, it is rated to �-�. �±�
denotes that a pattern is partially supported.

Table 7.3: Scienti�c Work�ow Pattern-Based Comparison

Data Patterns Kepler Taverna Triana RAWLS
1. Dynamic Input Size + - - -
2. Dynamic Token Duplication + - - +
3. Dynamic Input Balancing - ± ± +
4. Cartesian Product of Input Tokens - + - +

150 Chapter 7. Evaluation

7.2 Evaluation of the Domain Knowledge Representa-
tion

The RbAF exploits the bene�ts of both DL and LP to express (domain-speci�c)

decision logic in work�ows, i.e., integrating existing Semantic Web data into declar-

ative rules (see Section 4.4). Although the DL-based ontologies and LP rules are

expressible in each other to some extent, a uni�ed logic based on DL and LP is still

on the way. This section evaluates the expressive power of the domain knowledge

representation in the RbAF from both LP and DL perspectives in Sections 7.2.1

and 7.2.2, respectively.

7.2.1 LP-based Knowledge Representation Evaluation

Di�erent scienti�c work�ow applications usually involve di�erent decision logic.

They may deal with entirely di�erent datasets and access various resources in their

implementation. In order to describe scienti�c work�ows, di�erent forms of logic

programs may be used either separately or in combination. However, the expressive

power of a logic program is highly related to its complexity. To be useful in practical

applications it is necessary to trade expressivity for complexity. This section dis-

cusses which kind of logic program can provide modest expressivity and complexity

to describe the decision logic involved in the WsSWFs, and how Prova supports it.

As mentioned in Section 2.8, there are di�erent forms of logic programs and

their combinations, which vary in expressivity power and complexity, as shown in

Figure 2.14. Plain Datalog programs can express useful queries of relational algebra,

e.g., the queries represented by SQL select-from-where, but they are function-free.

De�nite logic programs support functions, but they exclude negative information

and default statements. Normal logic programs allow negation (NaF to be more

precisely) in their bodies. The head of a rule of a normal logic program must be an

atom. There are also extended logic programs, which support both NaF and classical

negation. Each de�nite, normal and extended logic program can be a propositional

and Datalog program. In addition, there are extensions that have been made to

such logic programs, e.g., to allow disjunctions as heads of rules.

Scienti�c knowledge representation usually involves non-monotonic reasoning,

i.e., propositions derived from a knowledge base may be changed by adding or re-

moving its clauses. Moreover, scienti�c knowledge representation usually needs to

describe exceptions, which do not conform to general rules. Among aforementioned

logic programs, the most suited for scienti�c knowledge representation is normal

logic programs. A normal logic program inherits the expressiveness of propositional

and �nite logic programs. Also, normal logic programs support NaF and provide

a simple and practical formalism for expressing defaults and exceptions, and other

forms of non-monotonic reasoning. Disjunctive normal logic programs extend nor-

mal logic programs by adding disjunction in the rule heads. However, computing

answer sets of disjunctive normal logic programs are hard (Full disjunctive logic

programs under SMS is π11-complete [188]) and there are also few solid and e�cient

7.2. Evaluation of the Domain Knowledge Representation 151

implementations. Extended logic programs support both NaF and classical nega-

tion, however, the classical negation might lead to logical con�icts between rules.

Therefore, normal logic programs have modest expressiveness to describe scienti�c

policies and can be regarded as general logic programs to specify (domain-speci�c)

decision logic in the WsSWFs.

However, there are two problems that need to be considered when using normal

logic programs: recursion-through-negation and undecidability when using function

symbols with no restrictions (see Section 2.8). The former can be solved by checking

if a logic program can be strati�ed or not, and Prova can be used to execute strati�ed

programs directly. Moreover, NaF is safe only when the test goal is ground. As

known in the example in Listing 2.3, jack is dead since it cannot �y. But for a goal

that queries all dead animals, i.e., :- eval(died(X))., Prova returns nothing. The

reason is that the call to not(�y(X)) does not return the animals that are dead. It

fails because there is at least an animal (i.e., tweety) can �y. Therefore, domain

experts need to use NaF with ground goals. This is can be done by Prova bound

built-in, which is capable of testing if arguments supplied to a rule are bound. More

speci�c examples can be found in Section 7.4.

But for using function symbols with no restrictions, the problem becomes com-

plex. As mentioned in Section 2.8, using function symbols in logic programs makes

reasoning tasks undecidable in general cases. To overcome this issue, there are so-

lutions that have been proposed to impose restrictions on the program syntax to

guarantee the decidability of reasoning tasks (see Section 2.8). A decidable frag-

ment mentioned is nonrecursive logic programs [63]. However, the restriction (i.e.,

nonrecursive) is strong and causes a loss of expressive power to express recursion

relations.

This thesis follows the spirits of γ-restricted and FP2 programs to guarantee the

decidability of the decision logic in the WsSWFs.

γ-restricted programs [66, 64]. A normal logic program is γ-restricted if for

any rule r de�ning predicate p, each variable occurring in r is initiated by means of

an occurrence of a predicate q in B+(r) such that γ(q) < γ(p). In other words, the

feasible ground instances of r are determined by predicates from lower levels than

the one of p. A detailed de�nition of γ-restricted programs can be found in [66].

For example, the following program P1 adapted from [64] is a γ-restricted pro-

gram:

r(1). r(2). q(X) :- r(X), p(X). p(X) :- q(X), not p(X).

The program can be �nitely instantiated: �rst, the rule q(X) :- r(X), p(X). can

be �nitely instantiated by r(X), which is de�ned by �nite facts. Then the rule

p(X) :- q(X), not p(X) is �nitely instantiated because q(X) is in its body. A level

mapping γ could be γ(r) = 1, γ(q) = 2, γ(p) = 3.

The restriction of the γ-restricted programs ensures the decidability of ground-

ing reasoning (i.e., checking the presence of speci�c ground atoms among the conse-

quences of a program) and computability of non-ground reasoning (i.e., computing

all answers to non-ground queries) [64]. Hence, both ground and non-ground rea-

soning over the above program P1 is decidable.

152 Chapter 7. Evaluation

FP2 programs [69, 64]. The de�nition of an FP2 program is based on two key

concepts: recursion patterns and call-safeness. A recursion pattern π is a function

mapping each predicate p to a subset of its arguments, and such arguments either

strictly decrease or almost never get larger at each recursion. A program is call-safe

with respect to a recursion pattern π if variables appearing in negative subgoals or

in an argument of a subgoal selected by π are initialized by previous resolved goals.

Furthermore, a normal logic program belongs to FP2 if there is a recursion pattern

π such that the program is call-safe with respect to π. A detailed de�nition of FP2

programs can be found in [69].

For example, the following program P2 for appending lists belongs to FP2:

append([], L, L). append([H|T], L, [H|LT]) :- append(T, L, LT).

A recursion pattern π can be obtained by mapping append on all of their ar-

guments, i.e. πappend = {1, 2, 3}; in addition, two rules are call-safe because the

variables H, T, L and LT occur in the selected arguments.

FP2 programs have decidable ground reasoning, but its non-ground reasoning is

uncomputable [64].

Both γ-restricted and FP2 programs are designed for normal logic programs. In

other words, if the decision logic in the WsSWFs is also a γ-restricted program or

an FP2 program, its reasoning is decidable. In terms of the classi�cation in [64] (see

Section 2.8), γ-restricted and FP2 programs are in the bottom-up computable and

top-down computable groups, respectively. Programs in the bottom-up commutable

group allow for stable model computation and query answering by searching over

�nite ground programs. Programs in the top-down computable group are designed

for query answering, and the programs usually have an in�nite number of answer

sets and a �nite number of atoms must be identi�ed to guarantee the decidability

of answering a query. This also means that γ-restricted and FP2 programs can be

used to test the decidability of decision logic if there exists a �nite ground program

or not, respectively.

It is worth noticing that, if a logic program is γ-restricted or FP2, its reasoning is

decidable. However, not all decidable logic programs are either γ-restricted or FP2

logic programs. As mentioned in Section 2.8, there are other decidable logic pro-

grams, but they are out of the scope of this thesis because they are more expressive

and complicated and are not originally designed for normal logic programs.

7.2.2 DL-based Knowledge Representation Evaluation

DL is mainly used for formal description of concepts, roles and their relations,

and is also known as the basis for many widely used ontology languages. Since

di�erent scienti�c work�ow applications involve di�erent domain ontologies, this

section presents the complexity of ontologies that have di�erent expressive power,

and discusses if the RAWLS provides an expressive query to them.

Domain ontologies involved in this work can be represented in RDFS and OWL.

RDFS is built on top of RDF and provides well de�ned meanings for RDF vocab-

ularies. RDFS de�nes classes, properties and relations by using subClassOf, Class,

7.2. Evaluation of the Domain Knowledge Representation 153

Property, subPropertyOf, Resource, range, domain, etc. Reasoning RDFS data is

an entailment process from one (source) RDF graph to another target RDF graph

by means of a set of rules that de�nes the semantics of RDFS. According to the

results from [189], the entailment for RDFS is decidable, NP-complete, and in P if

the target graph does not contain blank nodes.

RDFS enriches the data model represented by RDF and provides support for

describing simple ontologies. However, RDFS cannot express: range restrictions,

disjointness of classes, Boolean combinations of classes, cardinality restrictions and

special characteristics of properties. OWL is another ontology format, but it is more

expressive than RDFS and provides a larger vocabulary to express the relationships

between things. The main facilities that OWL can express over RDFS are object

property relations between classes, constraints on properties, equivalences between

classes, properties of properties and Boolean combinations of classes and constraints.

However, it is impossible to compute all interesting logical conclusions from an OWL

ontology since the OWL reasoning could be exponential or even undecidable. To

address this issue, OWL 1.0 provides three increasingly expressive sub-languages:

OWL Lite, OWL DL and OWL Full [190]:

� OWL Lite is the least expressive sub-language of OWL and supports those

users primarily needing a classi�cation hierarchy and simple constraints; it

corresponds to the SHIF(D) description logic.

� OWL DL is more expressive than OWL Lite while retaining computational

completeness and decidability (because it is based on the decidable Description

Logic); OWL DL includes all OWL language constructs, but such constructs

can be used only under certain restrictions; it corresponds to the SHION(D)

description logic.

� OWL Full is meant for users who want maximum expressiveness and syntactic

freedom with no computational guarantees.

The semantics of OWL Lite and OWL DL are based on DL, and thus both

of them are decidable. With regard to the computational complexity, OWL Lite

entailment is known to be complete for EXPTIME, while the entailment for OWL

DL is known to be complete for NEXPTIME. OWL Full entailment is known to be

undecidable.

OWL 2 [191] is a subsequent compatible revision to its previous versions (aka.

OWL 1) and became a W3C Recommendation in October 2009. OWL 2 provides

an increased expressive power, such as quali�ed cardinality restrictions, property

chain inclusion axioms and re�exive, irre�exive and asymmetric object properties.

The detailed di�erences between OWL 2 and OWL 1 can be found in [191]. Like its

previous versions, OWL 2 also de�nes three tractable sub-languages (aka. pro�les)

that o�er di�erent advantages depending on speci�c applications [192]:

� OWL 2 EL is particularly useful in applications employing ontologies that

contain large numbers of properties and/or classes; it captures the expressive

power used by such ontologies.

154 Chapter 7. Evaluation

� OWL 2 QL aims at applications that use large volumes of instance data, and

enables easier access and query to data stored in databases; in OWL 2 QL,

conjunctive query answering can be implemented using conventional relational

database systems.

� OWL 2 RL aims at applications that require scalable reasoning without

sacri�cing too much expressive power; it is designed to accommodate OWL 2

applications that can trade the full expressivity of the language for e�ciency,

as well as RDF(S) applications that need some added expressivity.

OWL Full

OWL 2 (SROIQ)

Undecidable

2NEXPTIME-

complete

NEXPTIME-complete

EXPTIME-complete

PTIME-complete

AC
0

OWL 1 DL (SHOIN)

OWL 1 Lite (SHIF)

OWL 2 RL (Horn) OWL 2 EL (EL++)

OWL 2 QL (DL-Lite)

Figure 7.1: Expressiveness and Complexity of OWL Family

Each of the pro�les trades o� di�erent aspects of OWL expressive power in return

for di�erent computational and/or implementational bene�ts. The basic reasoning

problems of OWL 2 EL can be performed in polynomial time with respect to the

size of the ontology. The OWL 2 QL enables a tight integration with relational

database systems. It is designed so that sound and complete query answering is in

LOGSPACE (more precisely, AC0) with respect to the size of the data. In other

words, it has the same complexity as Datalog. OWL 2 RL reasoning systems can be

implemented using rule-based reasoning engines, as a mapping to logic programs.

In the OWL 2 RL fragment, the ontology consistency, class expression satis�ability,

class expression subsumption, instance checking and conjunctive query answering

problems can be solved in polynomial time.

OWL 2 itself is based on the SROIQ description logic, and its reasoning com-

plexity is 2NEXPTIME-complete. To sum sup, the expressive power and complexity

of the OWL family are summarized in Figure 7.1 [193].

The SPARQL-API query engine employed by the RAWLS is built on OWL API

and fully aligned with the OWL 2. It uses SPARQL syntax and is more expres-

sive than existing DL query languages by allowing mixed TBox, RBox and ABox

7.2. Evaluation of the Domain Knowledge Representation 155

queries (see Section 6.4). Moreover, it acts as a SPARQL-DL interface to every

reasoner supporting OWL API 3, such as Pellet [194], RacerPro [195], FaCT++

[196] and HermiT [155]. In other words, such reasoners can be easily con�gured as a

main ontology reasoner in terms of speci�c requirements. Some prominent reasoners

providing the implementation of OWL API are as follows:

� Pellet [194] is a Java-based capable OWL-DL reasoner that supports reasoning

with the full expressivity of OWL-DL and has been extended to support the

OWL 2 speci�cation.

� The RacerPro system [195] is an optimized tableau reasoner for SHIQ(D).

RacerPro is a commercial reasoner, but free trials and research licenses are

available.

� FaCT++ [196] is a tableaux reasoner written in C++ which supports the full

OWL 2 DL pro�le.

� JFact [197] is a Java implementation of the FaCT++ reasoner with extended

datatype support.

� HermiT [155] is a Java-based OWL reasoner for the Description Logic SHOIQ+.

� Chainsaw [198] is a metareasoner which computes ontology modules �rst and

then delegates the processing of the modules to an existing OWL 2 DL rea-

soner. Currently Chainsaw has FaCT++ as the delegate reasoner and supports

the same expressivity as FaCT++.

All of these reasoners support OWL 2 and are available as open source software

(except RacerPro). A summary of their features is shown in Table 7.4.

Table 7.4: Comparison of Reasoners Implementing OWL API

Pellet RacerPro FaCT++ HermiT Chainsaw JFact

OWL-DL

Support
Yes Yes Yes Yes Yes Yes

OWL 2

Support
Yes Yes Yes Yes Yes Yes

Supported

Expressivity
SROIQ(D) SROIQ(D) SROIQ(D) SROIQ+ SROIQ(D) SROIQ(D)

Algorithm Tableau Tableau Tableau
Hyper-

tableau

AD/sub-

reasoner
Tableau

License
Open/closed-

source

Closed-

source

Open-

source

Open-

source

Open-

source

Open-

source

The RAWLS employs HermiT, which is based on hypertableau calculus, to be

a real reasoner behind the SPARQL-DL query engine to reason domain ontologies.

According to the W3C OWL 2 compliance test suite for ontology reasoners [199],

HermiT passes all test cases of OWL 2 DL and OWL 2 EL that are applicable under

156 Chapter 7. Evaluation

Direct Semantics [200]. Also, according to the test results performed by the ORE

2013 reasoner competition [201], HermiT performs better than other reasoners im-

plementing OWL API on three standard reasoning tasks: classi�cation, consistency

and concept satis�ability. Note that, as it aforementioned, di�erent work�ow appli-

cations may need di�erent domain ontologies. Based on the �exible SPARQL-DL

query engine, users can choose any ontology reasoner implementing OWL API in

terms of speci�c requirements of their work�ow applications.

7.3 Computational Model-Based Empirical Evaluation

This thesis presents a distributed rule-based multi-agent system, called RAWLS, for

the WsSWFs. This section evaluates the RAWLS in terms of typical properties of

computational models.

Cycles in execution graph: Cycles are common during the process modeling

when individual activities or groups of activities need to be repeated. Based on

the control-�ow pattern evaluation in Section 7.1.1.1, the RAWLS supports three

distinct types of the repetition: Arbitrary Cycles (WCP-10), Structured Loop (WCP-

21), and Recursion (WCP-22). Among the tested work�ow systems, the RAWLS

is only one that supports Recursion, which is implemented by a pair of declarative

rules: one describes a recursive task in terms of itself, and the other one speci�es

the termination condition. Structure Loop includes repetitions based on dedicated

programmatic constructs while...do and repeat...until statements. Prova engine can

implement them based on recursive rules. Moreover, based on messaging reactions

rules, an agent can not only receive event messages from multiple sources, but also

send event messages to multiple destinations, thereby implementing Arbitrary Cy-

cles. The Arbitrary Cycles pattern brings the �exibility to the work�ow description,

but it also poses a risk to create an in�nite loop and make a work�ow get stuck. To

overcome this problem, the RAWLS employs an in�nite loop detector in Mule ESB

to count messages passing between the agents, and an in�nite loop happens if a

message is repeatedly sent over a speci�ed number of times (e.g., 100) in a work�ow

(see Section 6.6). However, the drawback of this solution is that, a normal loop

may be detected as in�nite if the number of normal loop is more than the number

of duplicate messages used to detect an in�nite loop. To address this issue, users

need to con�gure the detector to set the number of duplicate messages of detecting

an in�nite loop.

Deterministic or non-deterministic: Work�ows can be implemented as de-

terministic or nondeterministic models. A deterministic model is when one choice

is allowed from each place or transition in the work�ow, and a nondeterministic

model is where there may be choices for each transition or place and conditions are

placed on the edges to allow for the determination of which edge the token should

choose [202]. In this work, the work�ow execution is often nondeterministic. This is

because the RAWLS focuses on the WsSWFs and provides an abstract distributed

multi-agent model to represent scienti�c work�ows. On one hand, the distributed

7.3. Computational Model-Based Empirical Evaluation 157

execution environment provides a number of resources. But on the other hand, it

also brings problems if the required resources are unavailable. Therefore, the phys-

ical details of resources on which the tasks are performed in this thesis are only

known at runtime. Alternative resources with the same e�ect can be dynamically

chosen if one resource is unavailable. Moreover, for the work�ows, whose execution

is based on the latest available information (e.g., current weather), the execution of

one instance of such processes might be di�erent from another.

Consistency: In general, a language is consistent if it does not contain a con-

tradiction. In other words, a language is consistent if there exists an interpretation

that satis�es all formulas in the language. Static analysis techniques for consistency

checking of work�ows can analyze the control �ow of individual tasks as well as the

consistency of how data of the work�ow is represented, collected and utilized [203].

Control �ow inconsistencies are often caused by unsatis�ed conditions or deadlocks

that lead to complete failure of the work�ow execution. Data inconsistencies are

often caused by contradictory data between work�ow (task) inputs and work�ow

(task) description. The work�ow execution in this work supports access to external

data via query languages and also allows for calling external procedural attachments

(e.g., Java methods). Moreover, human users are allowed to conduct manual tasks

or handle the unexpected exceptions. All these factors may make the work�ow ex-

ecution inconsistent. Since this thesis focuses on the work�ow execution phase, in

the RAWLS, some basic inconsistencies are often handled as dynamic exceptions

at runtime, i.e., they can be solved by intelligent agents by �nding alternative ex-

ecution paths. Also, the RAWLS supports the in�nite loop detection by counting

duplicate messages passing between distributed Prova agents. If some inconsisten-

cies still cannot be solved, human users are allowed to revise work�ows or provide

missing resources.

Parallel and concurrent execution: Concurrency is another signi�cant prop-

erty of computational models and increases the �exibility, performance and power

of programming languages. Concurrency means that two or more computations

happen within the same time frame, and they also may interact with each other.

The work�ow language of this work is based on CTR, which is a deductive database

language that integrates concurrency, communication and database updates in a

complete logic framework. Prova engine can implement the concurrent execution

by concurrent rule processing. In other words, two or more processes executing

concurrently can synchronize their execution by passing event messages between

distributed agents. Section 7.4.3 will present the implementation of the ant iden-

ti�cation and treatment, which involves interactions between distributed agents to

complete the process.

Parallelism is related to concurrency but distinct from concurrency. Parallel

execution means that two or more computations happen simultaneously. Such com-

putations are performed on separate processors of a multi-processor machine or

di�erent machines in a network. The RAWLS of this work o�ers a rule-based, dis-

tributed agent system for the WsSWFs. Based on the evaluation in Section 7.1.1.1,

the RAWLS supports the Parallel Split pattern (WCP-02), which splits a branch

158 Chapter 7. Evaluation

into two or more parallel sub-branches. Such sub-branches can be performed on

either di�erent threads in one agent or multiple distributed agents. In addition,

the RAWLS supports even more sophisticated parallel execution based on the con-

ditions imposed on parallel sub-branches, such as Exclusive Choice (WCP-04) and

Multi-Choice (WCP-06).

Distributed computation (data/knowledge): Distributed computation not

only supports easy collaboration with organizations, but also o�ers advantages, such

as high reliability and availability, high performance and local self-su�ciency. The

RAWLS o�ers a rule-based platform for distributed agent programming. Prova rule

engines are deployed as distributed inference services on Mule ESB. They have a

local knowledge base and also dynamic access to external data sources and object

representations.

Moreover, the interactions between distributed agents are implemented by mes-

saging reaction rules. Such agents can be involved in completing a complex process

by receiving task assignments and sending the results back. They are process-

agnostic and know nothing about the process they are embedded in. Moreover,

they can build choreography work�ows via messaging reaction rules. Messaging re-

action rules are associated with conversation identi�ers, which make all tasks of a

process to be performed in one conversation.

Synchronous or asynchronous communication: The RAWLS supports

asynchronous communication between distributed agents. In this work, messaging

reaction rules describe abstract message-driven conversations between distributed

agents and represent their associated interactions via sending and receiving event

messages. In other words, when an agent (requester) sends a request to another

agent, say agent a, it also uses a receiving activity to wait for the answer. The

receiving activity does not consume any resources but acts as a stub to allow the

agent a to call back, thereby achieving asynchronous communication. The requester

can choose to synchronize with the agent a immediately or go on doing its business

and synchronizing later. This is crucial when the agents are engaged in long running

conversations.

The RAWLS also can support synchronous communication by Mule ESB syn-

chronous protocols, e.g., HTTP. The synchronous communication is often used be-

tween the Web-based user client and the work�ow engine via HTTP. However, since

scienti�c work�ows often contain long running activates, the RAWLS employs the

AJAX technology to implement an asynchronous interaction with its user client.

7.4 Use Case-Based Experimental Evaluation

Sections 7.2.1 and 7.2.2 evaluate the expressive power of the domain knowledge

representation in the RbAF from a theoretical respective. Di�erent logic programs

and ontologies are examined to analyze their expressive power. To experimentally

analyze the performance and demonstrate the expressive power of the domain knowl-

edge representation in the RbAF, this section presents the implementation of three

7.4. Use Case-Based Experimental Evaluation 159

WsSWF use cases mentioned in Section 2.5.2.

The implementation of such real-world use cases is based on the prototype system

RAWLS. A detailed description of these use cases can be found in Section 2.5.2.

Note that the rule engine Prova employed in the RAWLS not only allows for

calling external procedural attachments (e.g., Java methods), but also provides ac-

cess to external data via query languages. Moreover, human users are allowed to

involve in the work�ow execution to perform manual tasks or handle unexpected

exceptions. Such uncontrollable factors may bring uncertainties to the work�ow ex-

ecution and make work�ows undecidable. For clarity, the evaluation of this section

assumes that these factors are well-functioning and terminate in a �nite amount of

time.

7.4.1 Protein Prediction Result Analysis

The following Prova code shows the logic of an agent to analyze the protein pre-

diction results. A main task in the logic is to analyze if any reliable GO term of

a protein lies on a path in the gene ontology of a predicted GO term (see Section

2.5.2). Note that the overall process also contains tasks, such as obtaining protein

annotation and selecting reliable GO terms implemented by accessing Web services

provided by Quick GO, their implementation is omitted here for simplicity.

Listing 7.11: Protein Prediction Result Analysis

1 processMessage(XID ,From ,Primitive , proteinPredicitonAnalysis(

2 inArgs(PredictedGOTerm , ReliableGOTerms), outArgs(Result))):-

3 bound(PredictedGOTerm),

4 validatePredictedGOTerm(XID , From , PredictedGOTerm),

5 analysis(ReliableGOTerms , PredictedGOTerm , Result),

6 sendMsg(XID ,esb ,From , "answer", [inArgs(PredictedGOTerm , ReliableGOTerms),

7 outArgs(Result)]).

9 validatePredictedGOTerm(XID , From , PredictedGOTerm):-

10 semanticDataConnection ("http :// beta.sparql.uniprot.org/", Connection),

11 println (["==> Connected ."]),

12 PredictedGOTerm1 = PredictedGOTerm.substring (3),

13 QueryString = '

14 PREFIX up:<http :// purl.uniprot.org/core/>

15 PREFIX uniprot:<http :// purl.uniprot.org/uniprot/>

16 ASK{

17 <http :// purl.uniprot.org/go/$PredictedGOTerm > a up:Concept.

18 }',

19 sparql_ask(Connection , QueryString , QueryId1),

20 sparql_results(QueryId1),

21 !.

23 validatePredictedGOTerm(XID , From , PredictedGOTerm) :-

24 Result = "PredictedGOTerm is not correct.",

25 sendMsg(XID ,esb ,From , "answer", [inArgs(Protein), outArgs(Result)]),

26 fail ().

28 analysis(ReliableGOTerms , PredictedGOTerm , Result):-

29 Onto = de.fub.csw.protein.prediction.DataProcessor.getOnto(PredictedGOTerm),

30 sparqldl_create(Engine , Onto),

31 element(GOTerm , ReliableGOTerms),

32 QueryString = '

160 Chapter 7. Evaluation

33 PREFIX : <http ://www.geneontology.org/go#>

34 ASK {

35 SubClassOf (: $PredictedGOTerm , :$GOTerm)

36 }

37 ',

38 askQuery(Engine , QueryString , Result),

39 Result = "yes",

40 !.

42 analysis(ReliableGOTerms , PredictedGOTerm , Result):-

43 Result = "no".

45 askQuery(Engine , QueryString , Result):-

46 sparqldl_ask(Engine , QueryString , QueryId),

47 sparqldl_results(QueryId),

48 Result = "yes",

49 !.

51 askQuery(Engine , QueryString , Result):-

52 Result = "no".

Processing the analysis request is implemented by a Prova rule processMessage

(Line 1-7). The analysis request contains a predicted GO term of a protein and

the reliable GO terms of the protein as its inputs. The predicate validatePredict-

edGOTerm checks if the predicted GO term is valid (Line 4). The validatePre-

dictedGOTerm rule employs a SPARQL query (Line 13-18) to check if the given

predicted GO term is an instance of the Concept de�ned in Uniprot core vocabu-

lary [130] (i.e., <http://purl.uniprot.org/go/$PredictedGOTerm> a up:Concept, see

Line 17). The query is performed by accessing the Uniprot SPARQL endpoint

(http://purl.uniprot.org/uniprot/) via the Sesame API. If the given predi-

cated GO term is invalid, an error message will be sent back to users (Line 23-26).

The prediction result analysis is conducted by analyzing if any reliable GO term

of the protein is the parent class of the predicated GO term. Each GO term has

a gene ontology that describes its relationships with other terms. The reasoning

of the gene ontology of the predicted GO term is performed by the SPARQL-DL

query engine on top of HermiT reasoner. The SPARQL-DL query asks whether

class PredictedGOTerm is the subclass of ReliableGOTerm (Line 35), i.e., if class

ReliableGOTerm is the parent class of PredictedGOTerm. It is a TBox query and

returns true if PredictedGOTerm is a child of ReliableGOTerm or equivalent to

ReliableGOTerm in the hierarchy tree. Note that the variables used in SPARQL

and SPARQL-DL queries are attached with �$� at the beginning for clarity (Lines

17 and 35), since Prova can not directly concatenate strings with variables by �+�

operator. In practice, Prova uses its builtin concat/2(i, io) to concatenate two or

more strings [173].

From the LP perspective, the predicate element(GOTerm, ReliableGOTerms)

in the �rst analysis rule iteratively gets a GO term from the list of reliable GO

terms until one GO term is found as the parent class of the predicated GO term.

If no GO term is found, the second analysis rule will be checked, and the variable

Result is initiated to �no� (Line 42-43). The predicate is �nitely recursive since the

reliable GO terms of a protein are countable, thereby guaranteeing the decidability

http://purl.uniprot.org/uniprot/

7.4. Use Case-Based Experimental Evaluation 161

of the analysis. Therefore, the rule processMessage is decidable. Additionally, the

CUT(!) in the �rst analysis rule stops analyzing other GO terms if the required

one is found and improves e�ciency of the analysis. Note that the above logic also

involves access to external data queries, which may cause failure in the execution

of the process and make the work�ow undecidable. Following the assumption at

the beginning of this section, such uncontrollable factors are assumed to be well

functioning and terminate in a �nite amount of time.

As shown in Listing 7.11, the main part of the implementation is iteratively

reasoning the gene ontology of a predicted GO term to check if one reliable GO term

of the protein is found as the parent class of the predicted GO term. According

to the description of the Gene ontology Consortium, a gene ontology describes a

hierarchy of GO terms and provides an expressivity of AC 1. In other words, the

time of reasoning a gene ontology depends on its size.

0

5

10

15

20

25

30

0 10 20 30 40

R
e

a
s
o
n

in
g

 T
im

e
 (

m
s
)

Classes Size (N)

(a) Prediction Results of Fruit Fly

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70

R
e

as
o

n
in

g
Ti

m
e

 (
m

s)

Classes Size (N)

(b) Prediction Results of Human

Figure 7.2: Complexity of Gene Ontology

To test the complexity of reasoning a gene ontology, the protein prediction results

(i.e., GO terms) of fruit fry (drosophila melanogaster, to be more precisely) and

human (homo sapiens, to be more precisely) are selected. The test takes 42 and

551 prediction results of two species, respectively generated by NetCo�ee [49] in an

experiment. Moreover, for each gene ontology of a predicted GO term, GO term

GO:0008150 (representing a biological process) and the predicted GO term are the

parent class and subclass of all other classes in the gene ontology, respectively, thus

SubClassOf(:$PredictedGOTerm, :GO:0008150) is selected as a representative query

to test a gene ontology. The test is performed on a Windows machine with a quad-

core CPU and 2GB of RAM, and the test results are shown in Figure 7.2 (a) and

(b), respectively.

In Figure 7.2 (a) and (b), the number of classes declared (i.e., the number of

GO terms) in a gene ontology is plotted along the horizontal axis. The values of

1
AL stands for Attribute Language and is a minimal DL language.

162 Chapter 7. Evaluation

(a) Prediction Results of Fruit Fly

(b) Prediction Results of Human

Figure 7.3: Gene Ontology Reasoning Analysis

reasoning time are plotted on the vertical axis. Based on the scatter diagram of

Figure 7.2, there is a de�nite relationship between the class size and the reasoning

time, indicating that as the number of GO terms of a gene ontology increases, the

time used to reason the gene ontology also increases. This is easy to understand,

since there are more classes in a gene ontology, a reasoner needs more time to check

if the predicted GO term is the subclass of such classes.

7.4. Use Case-Based Experimental Evaluation 163

The gene ontology reasoning in the analysis to both prediction results of two

species is summarized in Figure 7.3 (a) and (b), respectively. It shows how both the

class size of a gene ontology (X) and the reasoning times (Y) a�ect the analysis of

a prediction result, more precisely, the overall gene ontology reasoning time in the

analysis (Z). As it shown in Figure 7.3, the overall gene ontology reasoning time in

each analysis depends on both the size of the gene ontology of a predicted GO term

and how many times the ontology is reasoned. The more classes a gene ontology has

and more it is reasoned, the longer the analysis takes. Moreover, it can be noticed

that all prediction analysis instances of two species �nish in a �nite amount of time,

i.e., the above logic program is decidable.

7.4.2 Snow Depth Data Screening

One advantage of declarative rule-based logic programming is that it simpli�es the

development of applications where rule-based knowledge is used for decision making.

The following Prova rules implement the criteria of screening the snow depth data in

the experiment with a purpose of establishing a snow depth model for the pastoral

area of northern Xinjiang (see Section 2.5.2).

Listing 7.12: Snow Depth Data Screening

1 processMessage(XID ,From ,Primitive , snowSampleIdentification(inArgs(File),

2 outArgs(Result))):-

3 screenSamples(File , Result),

4 sendMsg(XID ,esb ,From , "answer", [snowSampleIdentification ,

5 inArgs(File), outArgs(Result)]).

7 screenSamples(File , Result):-

8 findall(R,screening(File , R), RS),

9 Result = de.fub.csw.snow.model.SampleProcessing.processResults(RS).

11 screening(File , Result):-

12 fopen(File ,Reader),

13 read_enum(Reader ,Line),

14 List = de.fub.csw.snow.model.SampleProcessing.getSampleItems(Line),

15 Station = List.get(0),

16 Year = List.get(1),

17 Month = List.get(2),

18 Day = List.get(3),

19 DayMaxTemp = List.get(4),

20 Tb36V = List.get(5),

21 Tb18V = List.get(6),

22 Depth = List.get(7),

23 MonthAvgTemp = List.get(8),

24 sampleValidation(sample(Station , Year , Month , Day ,

25 DayMaxTemp , Tb36V , Tb18V , Depth , MonthAvgTemp), R),

26 R = 'true ',

27 concat ([Line , " ", R], Result).

29 sampleValidation(sample(Station , Year , Month , Day ,

30 DayMaxTemp , Tb36V , Tb18V , Depth , MonthAvgTemp), Result):-

31 bound(Depth),

32 checkDepth(Depth),

33 bound(Month), bound(DayMaxTemp),

34 not(thaw(Month , DayMaxTemp)),

35 bound(Tb36V), bound(Tb18V),

164 Chapter 7. Evaluation

36 drySnow(Tb36V , Tb18V),

37 bound(Station),

38 bound(Year),

39 bound(MonthAvgTemp),

40 not(frostLayer(Station , Year , Month , Depth , MonthAvgTemp)),

41 checkElevation(Station),

42 Result = 'true ',

43 !.

45 sampleValidation(sample(Station , Year , Month , Day ,

46 DayMaxTemp , Tb36V , Tb18V , Depth , MonthAvgTemp), Result):-

47 Result = 'false '.

49 frostLayer(Station , Year , Month , Depth , MonthAvgTemp):-

50 MonthAvgTemp < 10,

51 Depth > 0.5,

52 Depth < 10.

54 drySnow(Tb36V , Tb18V):-

55 Tb36V > 195.0 ,

56 Tb36V < 225.0 ,

57 Tb18V < 255.5.

59 thaw(Month , DayMaxT):-

60 Month = 3,

61 DayMaxT > 6.

63 checkTemperature(Temp) :-

64 tempMetric(TempMetric),

65 Temp < TempMetric.

67 checkDepth(Depth) :-

68 depthMetric(DepthMetric),

69 Depth >= DepthMetric.

71 checkElevation(Station) :-

72 stationElevation(Station , Ele),

73 elevationMetric(EleMetric),

74 Ele < EleMetric.

76 depthMetric (3.0).

77 tempMetric (6).

78 elevationMetric (2000).

80 stationElevation('Fuhai ', 500.9).

81 stationElevation('Aletai ', 735.3).

82 stationElevation('Fuyun ', 823.6).

83 stationElevation('Qinghe ', 1218.2).

84 ...

Unlike the process of analyzing protein prediction results, this process does not

involve external ontology reasoning but only implements the criteria for screen-

ing snow depth data by declarative rules. The process is also implemented by a

Prova rule processMessage (Line 1-5) to screen snow depth data. It is started with

reading a �le that stores the samples of snow depth. This is done by the Prova

predicate fopen(File, Reader) that opens the �le and returns a Bu�eredReader

(i.e., Reader) (Line 12), which can read a document line by line. The predicate

read_enum(Reader, Line) enumerates the lines of the �le, and it produces inde-

7.4. Use Case-Based Experimental Evaluation 165

pendent solutions, one for each line. Each line of the �le stores a sample of snow

depth, and the Java method getSampleItems(Line) processes each line and stores

the parameters of a sample into a Java list (Line 14). After that, the variables

denoting the parameters of a sample are initialized based on the list (15-23). Like

Prova predicate element/3, read_enum(Reader, Line) is decidable since the samples

in the �le are always countable.

Two rules of sampleValidation implement the criteria of screening snow depth

data (Line 29-47). The subgoal not(thaw(Month, DayMaxTemp)) in the �rst rule

denotes that a valid sample must not be thaw (Line 34). It is proved if thaw(Month,

DayMaxTemp) fails. As mentioned in Section 7.2.1, NaF is safe only when the test

goal is ground. The reasoning of not(thaw(Month, DayMaxTemp)) is safe because

the arguments Month and DayMaxTemp are initiated by reading the �le storing

the samples, and the Prova bound builtin guarantees them to be bound (Line 33).

In other words, bound(Month) fails if Month is a free variable. Similarly for the

subgoal not(frostLayer(Station, Year, Month, Depth, MonthAvgTemp)), which de-

scribes that the snow must not be covered by deep frost (Line 40). The rule drysnow

involves three mathematical expressions, and the bound builtin ensures the variable

involved in the rule to be bound, and furthermore guarantees the decidability of the

rule reasoning. Similarly for other rules, such as thaw, checkTemperature, checkDepth

and checkElevation.

The Prova predicate �ndall(R,screening(File, R), RS) accumulates all solutions

of the goal screening(File, Result) (i.e., the screening results) in the variable RS

(Line 8), which is further processed by a Java method processResults(RS) (Line 9)

and then sent back to users (Line 4-5). Since the external procedural attachments

are decidable in terms of the assumption, then the rule screenSamples (Line 7-9) is

decidable and so is the rule processMessage.

7.4.3 Ant Identi�cation and Treatment

The ant identi�cation and treatment process shown in Figure 2.10 involves the

collaboration between �eldworker, taxonomist and curator, and its main process

is presented as follows. The predicate executeTask (Line 3, 9) is responsible for

performing a task and involves task allocation and invocation (that are omitted

for simplicity). The rcvMsg predicate right after the predicate executeTask is used

to asynchronously receive the task results. As shown in the implementation, the

tasks antIdent, archive and treatment are performed sequentially (Line 3, 9 and 11-

12). Note that the archive task does not have any output and its subsequent task

treatment does not need to wait for its completion.

Listing 7.13: Main Process of Ant Identi�cation and Treatment

1 workflow(XID , From , "antIdentProcess", [inArgs|Paras], outArgs(Res , Treatment)) :-

2 bound(Paras),

3 executeTask(XID , 'antIdent ', [inArgs|Paras], outArgs(Res)),

4 rcvMsg(XID , esb , Agent , "answer", ['antIdent ',

5 [inArgs|Paras], outArgs(Res)]),

6 bound(Res),

166 Chapter 7. Evaluation

7 processResult(XID , From , Paras , Res),

9 executeTask(XID , 'archive ',[inArgs|Paras]),

11 sendMsg(XID , esb , From , "answer", ['treatment ', Res , Treatment]),

12 rcvMsg(XID , esb , Agent , "answer", ['treatment ', Treatment]),

14 sendMsg(XID , esb , From , "answer",

15 [" antIdentProcess", [inArgs|Paras], outArgs(Res , Treatment)]).

17 processResult(XID , From , Paras , Res), :-

18 not(isIdentFailed(Res)), !.

20 processResult(XID , From , Paras , Res), :-

21 isIdentFailed(Res),

22 sendMsg(XID , esb , humanAgentProxy , "request", [antIdent ,

23 antIdentProcess , [inArgs|Paras], outArgs(Res)]),

24 rcvMsg(XID , esb , humanAgentProxy , "answer", [antIdent , HumanReply]),

26 sendMsg(XID , esb , From , "answer", [" antIdentProcess",

27 [inArgs|Paras], outArgs(HumanReply)]).

29 isIdentFailed(failed).

The work�ow execution after the identi�cation is determined by two processRe-

sult rules (Line 17-27). If the identi�cation fails, the request will be escalated to a hu-

man task and ask domain experts for help (Line 20-27). Nothing happens if the iden-

ti�cation is successful, and the work�ow execution moves forward (Line 17-18). This

exclusive choice is implemented by isIdentFailed(Res) and not(isIdentFailed(Res)).

not(isIdentFailed(Res)) is safe because the predicate bound(Res) (Line 6) guarantees

the variable Res to be bound before reasoning not(isIdentFailed(Res)).

The execution of the above process is controlled by a centralized work�ow engine,

which allocates tasks to agents and manages data passing between them. Among

the tasks, the antIdent task is performed by a master agent, which manages a group

of agents to perform the identi�cation. The logic of the master agent is presented as

follows. It starts with assigning the antIdent task to an appropriate agent (worker)

in terms of the location, where the ant is discovered. After that, the master agent

forwards the identi�cation request to the worker agent and then waits for the results

from it (Line 9-10).

Listing 7.14: Ant Identi�cation Management

1 processMessage(XID ,From ,Primitive , antIdent ([inArgs|Paras], outArgs(Res))):-

2 antIdentAllocation(XID ,Paras , Res),

3 sendMsg(XID ,esb ,From , "answer", [antIdent , [inArgs|Paras], outArgs(Res)]).

5 antIdentAllocation(XID , Paras , Res):-

6 last(Location ,Paras),

7 allocate(Location , Agent),

8 !,

9 sendMsg(XID ,esb , Agent , "request", antIdent(Paras , Res)),

10 rcvMsg(XID , esb , Agent , "answer", antIdent(Res)).

12 antIdentAllocation(XID , Paras , Res):-

13 Res = "failed ".

7.4. Use Case-Based Experimental Evaluation 167

15 allocate (" Germany", antIdentAgentGermany).

16 allocate ("UK", antIdentAgentUK).

17 allocate (" Poland", antIdentAgentPoland).

18 ...

The predicate last(Location,Paras) (Line 6) obtains the last element of the given

Para list to initialize the variable Location. The Para list is provided by a �eld-

worker, who has to describe the discovered ant and specify the location of discovered

ants as the last element of the list. The predicate last is implemented as follows:

Listing 7.15: Obtaining the Last Element of a Prova List

1 last(L,[L]).

2 last(L,[H|T]) :-

3 last(L,T).

It is an FP2 program. A recursion pattern π can be obtained by mapping

last on their second argument, i.e., πlast = {2}. Both rules are call-safe, because

in each of them all variables of the rule occur either in the selected argument or

in the rule body with respect to π.(see De�nition 5.4 of [69]). In other words, a

goal last(L, List) is call-safe with regard to π i� List is bound. The Prova builtin

bound(Paras) in Listing 7.13 (Line 2) guarantees the variable Paras to be bound,

and thus last(Location,Paras) is decidable. The subgoal allocate(Location, Agent)

(Line 7) denotes a query of �nding a worker agent in terms of the given location.

The query is performed by matching the allocate rules and goals with uni�cation.

It can be regarded as a simple Datalog program, and thus it is decidable.

The following Prova code presents the speci�c logic of ant identi�cation imple-

mentation in a worker agent. The identi�cation is successful if the body feature, nest

structure and food preference of an ant can be matched to the facts in the knowl-

edge base. Note that the facts in the knowledge base are summarized in terms of

the description in [43]. The rule antIdent(Res, Paras) does not involve negation and

function, and can be regarded as a decidable Datalog program. If the identi�cation

fails, the variable Res will be initialized to failed (Line 11-13).

Listing 7.16: Ant Identi�cation

1 processMessage(XID ,From ,Primitive , antIdent(Paras , Res)):-

2 antIdent(Res , Paras),

3 sendMsg(XID ,esb ,From , "answer", antIdent(Res , Paras)).

5 antIdent(Res , [Nest , Node , Color , Thorax , Seg , Club ,

6 Des , HColor , S, Worker , Length , Food , Location]) :-

7 bodyFeature(X, Node , Color , Thorax , Seg , Club , Des , HColor , S, Worker , Length),

8 nest(Res ,Nest),

9 food(Res , Food), !.

11 antIdent(Res , [Nest , Node , Color , Thorax , Seg , Club ,

12 Des , HColor , S, Worker , Length , Food , Location]) :-

13 Res = "failed ".

15 % facts

16 node(argentineAnt , one).

17 node(littleBlackAnt , two).

168 Chapter 7. Evaluation

19 color(argentineAnt , lightbrown).

20 color(littleBlackAnt , black).

22 thorax(argentineAnt , uneven).

23 thorax(littleBlackAnt , uneven).

25 antennae(argentineAnt ,twelve ,zero).

26 antennae(littleBlackAnt ,twelve ,three).

28 hair(argentineAnt , sparse , _).

29 hair(littleBlackAnt , _, _).

31 stinger(argentineAnt , no).

32 stinger(littleBlackAnt , indeterminate).

34 worker(argentineAnt , monomorphic).

35 worker(littleBlackAnt , monomorphic).

37 length(argentineAnt , 0.125 ,0.125).

38 length(littleBlackAnt , 0.0625 ,0.0625).

40 nest(argentineAnt , moist).

41 nest(littleBlackAnt , fineSoil).

43 food(argentineAnt , sweets).

44 food(argentineAnt , proteins).

45 food(littleBlackAnt , grease).

46 food(littleBlackAnt , vegetable).

47 food(littleBlackAnt , insects).

49 % rules

50 bodyFeature(Res , Node , Color , Thorax , Seg , Club , Des , HColor , S, Worker , Length) :-

51 node(Res , Node),

52 color(Res , Color),

53 thorax(Res , Thorax),

54 antennae(Res , Seg , Club),

55 hair(Res , Des , HColor),

56 stinger(Res , S),

57 worker(Res , Worker),

58 length(Res , Min1 , Max1),

59 Length >= Min1 ,

60 Length <= Max1.

The following code presents the logic of �nding ant treatments. However, the

treatments will be sent to the �eldworkers, who often know nothing about the knowl-

edge encoded by declarative rules. To overcome this issue, a webpage providing the

ant description and the ant treatments will be sent back to the �eldworkers. Finding

the webpage is implemented by proving the subgoal treatment(Ant, Treatment) with

uni�cation. Like allocate(Location, Agent), it is decidable.

Listing 7.17: Finding Ant Treatments

1 processMessage(XID ,From ,Primitive , treatment(Ant , Treatment)):-

2 treatment(Ant , Treatment),

3 !,

4 sendMsg(XID ,esb ,From , "answer", treatment(Treatment)).

6 processMessage(XID ,From ,Primitive , treatment(Ant , Treatment)):-

7 sendMsg(XID ,esb ,From , "answer", treatment (" unknown ")).

7.5. System Performance Evaluation 169

9 treatment(argentineAnt , "http ://en.wikipedia.org/wiki/Argentine_ant ").

10 treatment(littleBlackAnt , "http ://en.wikipedia.org/wiki/Little_black_ant ").

11 ...

To sum up, di�erent work�ows have di�erent forms of logic, and it is impossible

to evaluate the presented rule-based work�ow language by analyzing every real-world

work�ow. The expressiveness and decidability of other work�ows can be analyzed

similarly with the same way presented in this section. Prova itself is undecidable

because it has unrestricted functions and external procedural attachments. But

users can use the Prova features, such as the bound builtin, to make decidable

logic programs (e.g., FP2 programs), thereby guaranteeing the decidability of their

decision logic (see Section 7.4.2).

7.5 System Performance Evaluation

The implementation of the RAWLS is based on Mule ESB, which integrates dis-

tributed rule-based agents to create sophisticated work�ows. The communication

between such distributed Prova agents is based on JMS transport protocol. This

section evaluates the message passing overhead during the communication and the

system concurrency.

7.5.1 Message Passing Overhead

In the RAWLS, Mule ESB integrates distributed Prova agents and uses JMS trans-

port protocol for their communication. The JMS messages are managed by Apache

ActiveMQ, which is an open source message broker.

To evaluate the communication overhead of the RAWLS, a set of work�ows con-

sisting of di�erent number of tasks is selected to simulate di�erent communication

complexity. In the RAWLS, the work�ow engine can allocate a task to either one

agent or a group of agents. For simplicity, the experiment of this section assumes

that a task is performed by one agent, which communicates twice with the work�ow

engine, namely, the work�ow engine sends a task request (message) to the agent,

which sends the task results (message) back to the work�ow engine afterwards.

Moreover, since the event messages passing between distributed Prova agents of the

RAWLS carry either primitive data types or the logical pointers of large data (see

Section 4.3.2), the experiment assumes that the size of each message passing be-

tween the agents is 2Kb, and that each agent takes a constant time (0.01 seconds)

to perform each task in the experiment. The communication overhead of a work�ow

is then calculated as follows:

Tcomm = Twf −N ∗ 0.01

Here, N denotes the number of tasks in the work�ow; Twf denotes the work�ow

execution time; and Tcomm denotes the message passing overhead of the work�ow

execution. Note that, the execution time of each task (i.e., 0.01 seconds) is deducted

170 Chapter 7. Evaluation

from the work�ow execution time and has nothing to do with the calculation of the

message passing overhead.

Moreover, since the execution of a work�ow may involve the agents deployed

across a WAN, the simulation work�ows are performed separately on a WAN and

a LAN, respectively in the experiment. The work�ow execution is managed by a

Windows machine (one quad-core CPU and 2GB of RAM) located at Free University

of Berlin. To simulate the resources on a LAN and a WAN, a Linux server (two

single-core CPUs and 2 GB of RAM) located at Free University of Berlin and a server

(two single-core CPUs and 2 GB of RAM) located at Lanzhou University (China)

are employed, respectively to deploy the agents used to perform the work�ow tasks.

The experiment simulation data and results are summarized in Table 7.5.

Table 7.5: Data Sets of Communication Overhead Evaluation

Number

of tasks

(N)

Messaging

times (N)

Work�ow

execution

time

(LAN) (s)

Communication

overhead

(LAN) (s)

Work�ow

execution

Time

(WAN) (s)

Communication

overhead

(WAN) (s)

25 50 0.723 0.473 27.31 27.205

50 100 1.3 0.8 55.552 55.322

100 200 2.421 1.421 112.123 111.643

250 500 5.701 3.201 286.482 285.252

500 1000 10.551 5.551 571.232 568.752

1000 2000 39.8 29.8 1000.638 995.658

As shown in Table 7.5, the communication overhead increases as the number of

messages passing between agents increases. Moreover, the communication overhead

during the work�ow execution is much low if a work�ow is executed on the LAN. A

work�ow consisting of 1000 tasks takes only 29.8 seconds on the message passing,

and the same work�ow executed on the WAN, which takes 995.658 seconds. In other

words, the communication overhead for each task in the LAN and the WAN is about

0.0298 and 0.996 seconds, respectively, which are low compared to the real-world

work�ow execution itself.

Note that the communication overhead in a real-world environment is more

complicated than in the simulation experiment of this section. In a real-world en-

vironment the communication overhead is often a�ected by other factors, such as

network bandwidth.

7.5.2 System Concurrency

Mule ESB has an SEDA architecture, which decomposes a complex, event-driven

application into a set of stages connected by event queues. SEDA not only decouples

event and thread scheduling from application logic, but also avoids the high overhead

associated with thread-based concurrency models [179]. This section evaluates the

7.6. Summary 171

concurrency of the RAWLS, i.e., how the RAWLS scales with varying number of

work�ow requests.

In the evaluation, the average response time of all work�ows is used as a metric

to evaluate the concurrency of the RAWLS. Here, the response time refers to the

amount of time taken by the RAWLS to process a work�ow request, i.e., the work�ow

execution time. Two work�ows which take 3.3 and 301.8 seconds, respectively are

selected to represent work�ows with short and long response time. During the

experiment, they are continuously called by di�erent number of work�ow requests,

and corresponding response time (i.e., the work�ow execution time) is recorded.

The experiment results are shown in Figure 7.4 (a) and (b), respectively.

0

5

10

15

20

25

30

35

40

45

10 20 30 50 100 200 300 400 500

A
v
e

ra
g

e
 R

e
s
p

o
n

s
e

 T
im

e
 (

s
)

Number of Concurrent Workfow Requests (N)

(a) The Work�ow with Short Response Time

0

500

1000

1500

2000

2500

3000

3500

4000

10 20 30 50 100 200 300 400 500

A
v
e

ra
g
e
 R

e
s
p
o
n
s
e
 T

im
e
 (

s
)

Number of Concurrent Workfow Requests (N)

(b) The Work�ow with Long Response Time

Figure 7.4: Concurrency with Increasing Number of Work�ow Requests

As shown in Figure 7.4 (a) and (b), with the number of concurrent work�ow

requests increases, the average response time increases slightly. In other words, the

RbAF is capable of not only processing multiple concurrent work�ow requests, but

also having good elasticity and scalability. For the work�ow that has a long response

time (301.8 seconds), after the number of concurrent requests is more than 300, the

average response time grows faster. This is because at this point the performance

of the RAWLS begins to saturate, in turn, leads to a decline in the throughput.

Because of the limit of the test instrument (a Linux machine with two single-

core CPUs and 2 GB of RAM), concurrent work�ow requests more than 500 are not

considered in the experiment. But the RAWLS can handle more work�ow requests

by adding more processing power in practice.

7.6 Summary

This chapter presented a detailed evaluation of the RAWLS from di�erent per-

spectives. First, based on the work�ow pattern-based evaluation, the rule-based

work�ow language of the RAWLS showed a higher expressivity than other three

prominent scienti�c work�ow systems. Besides the basic control-�ow patterns, in

172 Chapter 7. Evaluation

particular, the RAWLS has superiority over other three systems to support the ad-

vanced branching and synchronization patterns, the state-based patterns and the

trigger patterns. With respect to the data patterns, the RAWLS supports all ex-

ternal data interaction patterns thanks to messaging reaction rules. Moreover, with

the combination of messaging reaction rules and derivation rules, the RAWLS can

easily specify preconditions and postconditions associated with work�ow tasks.

In the RAWLS, the (domain-speci�c) decision logic of the WsSWFs is mainly

expressed by both derivation rules and Semantic Web ontologies. Based on the

evaluation from the LP perspective, the results showed that the general (domain-

speci�c) decision logic of the WsSWFs can be represented by normal logic programs,

which support NaF and are more expressive than propositional and de�nite logic

programs. From the DL perspective, the SPARQL-DL query engine integrated in

the RAWLS provides an expressive DL query language and acts as an interface to

every ontology reasoner that supports OWL API. The RAWLS employs HermiT,

which is a Java-based OWL reasoner for the DL SHOIQ+, to be a real reasoner

behind the SPARQL-DL query engine to reason domain ontologies.

This chapter also evaluated the RAWLS in terms of typical properties of compu-

tational models. The RAWLS supports most of the properties, including di�erent

forms of execution cycles, non-deterministic execution branches, parallel and con-

current execution, distributed computation and asynchronous (synchronous) com-

munication. The only limitation is that the RAWLS does not provide mechanisms

to check the work�ow consistency at design time but handles some basic inconsisten-

cies as dynamic exceptions at runtime. An experimental evaluation based on three

real-world WsSWF use cases was also given to analyze the performance and demon-

strate the expressive power of the domain knowledge representation in the RbAF.

Moreover, the system performance evaluation at the end of this chapter showed that

the Mule-based RAWLS has low message passing overhead and supports e�ective

concurrency.

Part IV

Conclusion

Chapter 8

Conclusion and Outlook

Contents

8.1 Summary . 175

8.2 Outlook . 176

Scienti�c work�ows accelerate the pace of scienti�c experiments in di�erent dis-

ciplines and have attracted a great deal of interest to liberate scientists from tedious

and time-consuming operations in their experiments. Driven by the explicit bene-

�ts of automating large-scale and complex scienti�c processes, many research e�orts

have been put into orchestrated and structured scienti�c work�ows, which have

�xed logic and are executed frequently with di�erent datasets or varying parame-

ters. Instead of focusing on such e�ciency-critical structured processes, this thesis

explicitly considered the WsSWFs, which require high expressiveness with respect

to both processes and decision activities depending on domain-speci�c knowledge.

They are more error-prone and have manual tasks that need to be conducted by

human users.

For the purpose of supporting the WsSWFs, this thesis presented a rule-based,

agent-oriented framework RbAF, which combines the declarative programming us-

ing rules with the agent technology to support them.

8.1 Summary

The main contribution of this thesis is a rule-based, agent-oriented framework that

addresses the requirements of the WsSWFs. The corresponding solutions are sum-

marized as follows:

(i) Declarative rule-based scienti�c work�ow language combining mes-

saging reaction rules and derivation rules: messaging reaction rules spec-

ify work�ow processes in terms of message-driven conversations between par-

ties and describe their associated interactions via sending and receiving event

messages asynchronously. In particular, with the combination of messaging

reaction rules and derivation rules, it is possible to reason over events, actions

and their e�ects. In addition, a CTR-based formal semantics which precisely

de�nes the rule-based work�ow language is presented. Based on the work�ow

pattern-based evaluation, the RbAF shows higher expressive power than other

three considered scienti�c work�ow systems.

176 Chapter 8. Conclusion and Outlook

(ii) Expressive (domain-speci�c) decision logic description combining

LP and DL: on one hand, the RbAF represents domain-speci�c knowledge

by derivation rules, which are more expressive than typical simple gateways.

Generally, di�erent work�ows have di�erent logic. The evaluation results from

the logic programming perspective show that, general (domain-speci�c) deci-

sion logic can be represented by normal logic programs which support NaF

and are more expressive than propositional and �nite logic programs. On the

other hand, the RbAF provides di�erent �exible ways to access domain data

encoded by Semantic Web technologies: outsourcing RDF data storage and

querying to an extensible and con�gurable framework; initializing the work-

�ow variables with concepts de�ned in external ontologies; reasoning domain

ontologies with an expressive DL query language using SPARQL syntax.
(iii) Distributed inference agents as an adaptive work�ow execution en-

vironment: the RbAF employs distributed inference agents as the work�ow

execution environment. Distributed agents are deployed as inference services

on Mule ESB, and each agent has a local knowledge base and also provides

dynamic access to external data sources and object representations. Moreover,

the RbAF combines two ways of the work�ow composition: orchestration and

choreography, which support both centralized work�ow execution and peer-to-

peer conversation-based interactions. As to the work�ow exception handling,

�rst, declarative rules have inherent advantages in specifying alternative exe-

cution paths. The RbAF can replace exceptional resources by reasoning the

work�ow ontology which structures all resources that are used in the work-

�ow execution. Moreover, the asynchronous human interaction enables human

users to deal with unexpected exceptions at runtime.
(iv) Asynchronous human interaction: the RbAF implements the interactions

between distributed agents via asynchronously sending and receiving event

messages. The asynchronous communication between agents bene�ts long

running conversations and nested sub-conversations, where the requesters do

not have to waste resources for waiting for a reply. Moreover, the conversa-

tion identi�ers carried by event messages keep all tasks of a process instance

running in one conversation. To support asynchronous human interaction, a

human agent managing the life cycle of human tasks is employed. On one

side, a human task requester freezes the current execution context and asyn-

chronously waits for the results from the human agent. On the other side,

scientists operate on human tasks when they are available and call back the

requester to resume its execution.

8.2 Outlook

The rule-based work�ow speci�cation of this thesis has the advantages of �exibility

and expressiveness, but it also brings di�culties to the work�ow modeling. Scienti�c

work�ows are normally composed by scientists themselves�experts in their speci�c

domains, who are responsible of both work�ows modeling and domain decision ex-

8.2. Outlook 177

pression. A common solution to this problem is providing graphical user interfaces

to facilitate domain experts to compose scienti�c work�ows through dragging and

dropping work�ow components. However, the �exibility and expressive power of

declarative rules are weakened in this way. A better solution would be reducing the

complexity of rule-based work�ow speci�cations by providing a powerful work�ow

editor with advanced capabilities to ease the work�ow de�nition, such as syntax

highlighting, context sensitive content assist, syntax error indicator, code comple-

tion and template navigation. As a programming language, Prova employed in the

RAWLS has an editor that can be provided as an Eclipse plugin and supports pro-

gramming Prova rules within Eclipse IDE. However, the current version of Prova

editor only supports simple syntax highlighting and error indicator, and much more

needs to be done to improve user experience.

Provenance is also another important requirement of scienti�c work�ows. Al-

though the RbAF provides an expressive work�ow description and supports a �exible

work�ow execution, the work�ow provenance is not supported. Provenance provides

human users with an explanation of the work�ow execution and ensures work�ows

can be reproduced and extended. However, provenance is a broad standalone topic

in itself, and this thesis does not consider it as a main research question. In the

RAWLS, only the work�ow exceptions are recorded at runtime. Although most

of them can be handled by the rule-based agents automatically, they are useful

for users to improve the work�ow system during the downtime. Open Provenance

Model (OPM) is a generic provenance model and provides an interchangeable for-

mat between heterogeneous provenance systems. Since OPM was devised, there

are existing SWFMSs that have enhanced their provenance sub-systems to support

OPM. The RbAF describes task dependencies by messaging reaction rules, and it is

possible to employ OPM to record provenance information at a task level, although

some e�orts are required. However, the WsSWFs involves complex domain-speci�c

decision logic and searching solutions of a goal is often performed by uni�cation

and backtracking. It is therefore necessary to record the derivation history of such

decision logic and visually present decision procedures to domain experts.

Part V

Appendix

Appendix A

Zusammenfassung

Bestehende Lösungen für Geschäftsabläufe sowie wissenschaftliche Work�ows konzentrieren
sich hauptsächlich auf die orchestrierte und vorstrukturierte Ausführung rechenintensiver
und datenorientierter Aufgaben. Im Gegensatz hierzu werden in der vorliegenden Arbeit
ausdrücklich schwach strukturierte wissenschaftliche Work�ows (WsSWFs) betrachtet, diese
benötigen nicht nur eine aussagekräftige Prozess und (domänenspezi�sche) Spezi�kation der
zugrundeliegenden Entscheidungslogik. Vielmehr erfordern sie auch �exible Ausführungs-
pfade und menschliche Interaktion.

Das Hauptforschungsproblem in dieser Arbeit ist die Kombination von regelbasierter
Wissensrepräsentation mit Agenten-Technologie zum Zweck der Unterstützung der Aus-
führung von WsSWFs aus technischer Sicht, und ein regelbasiertes Agenten-orientiertes
Framework (RbAF) wird vorgeschlagen.

Die erste Herausforderung besteht darin, Arbeitsabläufe durch deklarative Regeln zu
beschreiben. Diese Arbeit verwendet Messaging Reaction Rules, die über globale Ereignis-
Bedingung-Aktion (ECA) Regeln hinausgehen und die lokale Durchführung komplexer Ak-
tionen in bestimmten Kontexten unterstützen. Die zweite Herausforderung besteht in der
Beschreibung (domänenspezi�scher) Entscheidungslogik in Work�ows. Diese Arbeit be-
handelt das Problem durch die Kombination von Logik-Programmierung (LP) und De-
scription Logic (DL). Die dritte Herausforderung ist es, die von den WsSWFs erforderliche
Flexibilität zu unterstützen. Das RbAF setzt verteilte regelbasierte Agenten als Work�ow-
Ausführungsumgebung ein und unterstützt asynchrone Interaktion zwischen verteilten Agen-
ten. Darüber hinaus kombiniert das RbAF zwei Möglichkeiten der Work�ow-Komposition:
Orchestrierung und Choreographie. Ein weiterer Mechanismus ist die �exible Ausnahmebe-
handlung zur Laufzeit auf Basis einer Work�ow-Ontologie zur Strukturierung der Work�ow-
Ressourcen. Eine weitere Herausforderung, die in dieser Arbeit aufgegri�en wurde, ist die
Integration von menschlichen Benutzern in die Work�ow-Ausführung. Das in dieser Arbeit
entwickelte Framework de�niert neben autonomen Agenten einen menschlichen Agenten zur
Verwaltung des Lebenszyklus der menschlichen Aufgaben in Form einer Web-Schnittstelle
für die Interaktion von Wissenschaftlern mit dem System.

In dieser Arbeit wurde das RbAF aus verschiedenen Perspektiven evaluiert. Es konn-
te gezeigt werden, dass die regelbasierte Spezi�kation von Work�ows im Vergleich zu drei
bekanntenWork�owsystemen die De�nition ausdrucksstärkerer Work�ow-Muster ermöglicht.
In Bezug auf die Repräsentation von Domänenwissen zeigen die Ergebnisse der Analyse,
dass allgemeine (domänenspezi�sche) Entscheidungslogik in den WsSWFs durch normale
Logikprogramme repräsentiert werden kann. Eine ausdrucksstarke Abfragesprache für DL
wurde eingesetzt, und verschiedene Reasoner können leicht im RbAF kon�guriert werden.
Im Sinne einer empirischen Evaluation unterstützt das RbAF die meisten der typischen
Eigenschaften von Rechenmodellen. Eine experimentelle Auswertung basierend auf drei
realen Anwendungsfällen für WsSWFs wurde ebenfalls durchgeführt, um die Performanz
zu analysieren und die Ausdruckskraft der Repräsentation von Domänenwissen im RbAF
zu demonstrieren. Zusammenfassend lässt sich sagen, dass das RbAF sowohl die aus-
druckstarke Beschreibung sowie eine �exible Ausführung wissenschaftlicher Work�ows un-
terstützt, und somit die Anforderungen an WsSWFs (auÿer Herkunft) erfüllt.

Appendix B

About the Author

Zhili Zhao received his master degree in Computer Science from Lanzhou University in 2009.
Supported by China Scholarship Council (2010-2014), he joined in Corporate Semantic Web
group of Freie Universität Berlin led by Prof. Dr. Adrian Paschke in 2010. His research
interests include scienti�c work�ow management, business process management, knowledge
representation, logic programming and Semantic Web.

Bibliography

[1] I. J. Taylor, E. Deelman, D. B. Gannon, and M. Shields, Work�ows for e-Science: Scienti�c
Work�ows for Grids. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2006. 1

[2] �Taverna Work�ow Management System.� http://www.taverna.org.uk/. Accessed: 2010-
12-15. 1, 13, 47

[3] M. Sonntag, D. Karastoyanova, and E. Deelman, �Bridging the Gap between Business and
Scienti�c Work�ows,� in Proceedings of the IEEE 6th International Conference on e-Science,
Brisbane, Australia, December 7-10, 2010, pp. 206�213, IEEE Computer Society, December
2010. 1, 3, 48, 80

[4] A. Barker and R. G. Mann, �Flexible Service Composition,� in Cooperative Information
Agents X, 10th International Workshop, CIA 2006, Edinburgh, UK, September 11-13, 2006,
Proceedings (M. Klusch, M. Rovatsos, and T. R. Payne, eds.), vol. 4149 of LNCS, pp. 446�460,
Springer, 2006. 2, 41

[5] M. Frincu and C. Craciun, Dynamic and Adaptive Rule-Based Work�ow Engine for Scienti�c
Problems in Distributed Environments, ch. 10, pp. 227�251. CRC Press, 2010. 2, 44, 45, 50

[6] G. Papavassiliou, G. Mentzas, and A. Abecker, �Integrating Knowledge Modelling In Business
Process Management,� in ECIS, pp. 851�861, 2002. 2, 48

[7] K. Görlach, M. Sonntag, D. Karastoyanova, F. Leymann, and M. Reiter, Conventional Work-
�ow Technology for Scienti�c Simulation, pp. 323�352. Guide to e-Science, Springer-Verlag,
März 2011. 3, 78

[8] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood, T. Carver, K. Glover,
M. R. Pocock, A. Wipat, and P. Li, �Taverna: A Tool for the Composition and Enactment
of Bioinformatics Work�ows,� Bioinformatics, vol. 20, pp. 3045�3054, Nov. 2004. 3, 14

[9] �Design Science Research in Information Systems and Technology .� http://www.desrist.
org/desrist/. Accessed: 2012-02-08. 3

[10] V. K. Vaishnavi and W. Kuechler, Jr., Design Science Research Methods and Patterns:
Innovating Information and Communication Technology, ch. 2. Auerbach Publications, 2007.
3

[11] U. Yildiz, A. Guabtni, and A. H. H. Ngu, �Business versus Scienti�c Work�ows: A Compara-
tive Study,� in Proceedings of the 2009 Congress on Services - I, SERVICES '09, (Washington,
DC, USA), pp. 340�343, IEEE Computer Society, 2009. 11

[12] T. Pothoven, �Work�ow Usage in the Healthcare Environment,� April 2010. 11

[13] D. Roure and C. Goble, �Supporting e-Science Using Semantic Web Technologies � The
Semantic Grid,� in Semantic e-Science (H. Chen, Y. Wang, and K.-H. Cheung, eds.), vol. 11
of Annals of Information Systems, pp. 1�28, Springer US, 2010. 12, 75

[14] I. Foster, Y. Zhao, I. Raicu, and S. Lu, �Cloud Computing and Grid Computing 360-Degree
Compared,� 2008 Grid Computing Environments Workshop, pp. 1�10, Nov. 2008. 12

[15] J. Qin and T. Fahringer, Scienti�c Work�ows�Programming, Optimization, and Synthesis
with ASKALON and AWDL, ch. 1, pp. 3�13. Springer Berlin Heidelberg, 2012. 13

[16] M. K. Anand, Managing Scienti�c Work�ow Provenance. PhD thesis, UNIVERSITY OF
CALIFORNIA, 2010. 13

[17] J. Kästnera and E. Arnold, When can a Computer Simulation act as Substitute for an Ex-
periment? A Case-Study from Chemisty. University of Stuttgart, 2011. 13

[18] R. Tolosana-Calasanz, J. A. Bañares, O. F. Rana, P. Álvarez, J. Ezpeleta, and A. Hoheisel,
�Adaptive Exception Handling for Scienti�c Work�ows,� Concurrency and Computation:
Practice & Experience, vol. 22, pp. 617�642, Apr. 2010. 14, 16, 20

http://www.taverna.org.uk/
http://www.desrist.org/desrist/
http://www.desrist.org/desrist/

186 Bibliography

[19] B. Ludäscher, M. Weske, T. McPhillips, and S. Bowers, �Scienti�c Work�ows: Business as
Usual?,� in Proceedings of the 7th International Conference on Business Process Management
(BPM) (U. Dayal, J. Eder, J. Koehler, and H. Reijers, eds.), LNCS 5701, (Ulm, Germany),
2009. 14, 16, 17, 18, 87

[20] A. Haller, E. Oren, and S. Petkov, �Survey of Work�ow Management Systems,� 2005. 14

[21] C. Lin, S. Lu, X. Fei, A. Chebotko, D. Pai, Z. Lai, F. Fotouhi, and J. Hua, �A Reference
Architecture for Scienti�c Work�ow Management Systems and the VIEW SOA Solution,�
IEEE Transactions on Services Computing, vol. 2, no. 1, pp. 79�92, 2009. 14, 15

[22] I. Altintas, B. Ludaescher, S. Klasky, and M. A. Vouk, �Introduction to Scienti�c Work�ow
Management and the Kepler System,� in Proceedings of the 2006 ACM/IEEE conference on
Supercomputing, SC '06, (New York, NY, USA), ACM, 2006. 14, 46, 67

[23] S. Majithia, M. Shields, I. Taylor, and I. Wang, �Triana: A Graphical Web Service Compo-
sition and Execution Toolkit,� in Proceedings of the IEEE International Conference on Web
Services, ICWS '04, (Washington, DC, USA), pp. 514�521, IEEE Computer Society, 2004.
14, 46, 47

[24] S. P. Callahan, J. Freire, E. Santos, C. E. Scheidegger, C. T. Silva, and H. T. Vo, �VisTrails:
Visualization Meets Data Management,� in Proceedings of the ACM SIGMOD International
Conference on Management of Data, Chicago, Illinois, USA, June 27-29, 2006 (S. Chaud-
huri, V. Hristidis, and N. Polyzotis, eds.), pp. 745�747, ACM, 2006. 15

[25] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi, G. B.
Berriman, J. Good, A. Laity, J. C. Jacob, and D. S. Katz, �Pegasus: A Framework for
Mapping Complex Scienti�c Work�ows onto Distributed Systems,� Scienti�c Programming,
vol. 13, pp. 219�237, July 2005. 15, 46

[26] Y. Zhao, M. Hategan, B. Cli�ord, I. T. Foster, G. von Laszewski, V. Nefedova, I. Raicu,
T. Stef-Praun, and M. Wilde, �Swift: Fast, Reliable, Loosely Coupled Parallel Computation,�
in 2007 IEEE International Conference on Services Computing - Workshops (SCW 2007),
9-13 July 2007, Salt Lake City, Utah, USA, pp. 199�206, IEEE Computer Society, 2007. 15,
47

[27] A. Barker and J. Hemert, �Scienti�c Work�ow: A Survey and Research Directions,� in
Parallel Processing and Applied Mathematics (R. Wyrzykowski, J. Dongarra, K. Karczewski,
and J. Wasniewski, eds.), vol. 4967 of Lecture Notes in Computer Science, pp. 746�753,
Springer Berlin Heidelberg, 2008. 15

[28] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu, D. Roller,
D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana, �Business Process Execution Lan-
guage for Web Services Version 1.1,� tech. rep., BEA, IBM, Microsoft, SAP, Siebel, 2003.
16, 28, 40

[29] R. Barga and D. Gannon, �Scienti�c versus Business Work�ows,� in Work�ows for e-Science
(I. J. Taylor, E. Deelman, D. B. Gannon, and M. Shields, eds.), pp. 9�16, Springer London,
2007. 16, 18

[30] M. Sonntag, D. Karastoyanova, and F. Leymann, �The Missing Features of Work�ow Systems
for Scienti�c Computations,� in Proceedings of the 3rd Grid Work�ow Workshop (GWW),
Software Engineering Conference, GI-Edition Lecture Notes in Informatics (LNI), P-160,
pp. 209�216, Gesellschaft für Informatik e.V. (GI), February 2010. 17

[31] S. Perera and D. Gannon, �Enabling Web Service Extensions for Scienti�c Work�ows,� 2006
Workshop on Work�ows in Support of LargeScale Science, pp. 1�10, 2006. 17

[32] A. Malinova and S. Gocheva-Iliev, �Using the Business Process Execution Language for
Managing Scienti�c Processes,� Information Technologies and Knowledge, vol. 2, pp. 257�
261, 2008. 17

[33] D. Karastoyanova, �On Scienti�c Experiments and Flexible Service Compositions,� in From
Active Data Management to Event-Based Systems and More (K. Sachs, I. Petrov, and
P. Guerrero, eds.), vol. 6462 of Lecture Notes in Computer Science, pp. 175�194, Springer
Berlin/Heidelberg, 2010. 17

Bibliography 187

[34] J. Rollinger, H. Stuppner, and T. Langer, �Virtual Screening for the Discovery of Bioactive
Natural Products,� in Natural Compounds as Drugs Volume I (F. Petersen and R. Amstutz,
eds.), vol. 65 of Progress in Drug Research, pp. 211�249, Birkhäuser Basel, 2008. 18

[35] V. K. Kasam, In Silico Drug Discovery on Computational Grid for Finding Novel Drugs
Against Neglected Diseases. PhD thesis, University of Bonn, 2009. 18

[36] E. Santos, D. Koop, H. T. Vo, E. W. Anderson, J. Freire, and C. Silva, �Using Work�ow
Medleys to Streamline Exploratory Tasks,� in Proceedings of the 21st International Confer-
ence on Scienti�c and Statistical Database Management, SSDBM 2009, (Berlin, Heidelberg),
pp. 292�301, Springer-Verlag, 2009. 20

[37] M. Caeiro-Rodriguez, T. Priol, and Z. Németh, �Dynamicity in Scienti�c Work�ows,� Tech.
Rep. TR-0162, Institute on Grid Information, Resource and Work�ow Monitoring Services,
CoreGRID - Network of Excellence, August 2008. 20, 26

[38] D. Collins, J. Montagnat, A. Zijdenbos, A. Evans, and D. Arnold, �Automated Estimation
of Brain Volume in Multiple Sclerosis with BICCR,� in Information Processing in Medical
Imaging (M. Insana and R. Leahy, eds.), vol. 2082 of Lecture Notes in Computer Science,
pp. 141�147, Springer Berlin Heidelberg, 2001. 21

[39] S. Lu and J. Zhang, �Collaborative Scienti�c Work�ows,� IEEE International Conference on
Web Services, vol. 0, pp. 527�534, 2009. 21, 48

[40] A. Paschke, �A Semantic Rule and Event Driven Approach for Agile Decision-Centric
Business Process Management,� in Towards a Service-Based Internet (W. Abramowicz,
I. Llorente, M. Surridge, A. Zisman, and J. Vayssiére, eds.), vol. 6994 of Lecture Notes
in Computer Science, pp. 254�267, Springer Berlin Heidelberg, 2011. 22, 44, 45, 64

[41] H. Yu, Q. Feng, X. Zhang, X. Zhang, and T. Liang, �An Approach for Monitoring Snow Depth
Based on AMSR-E Data in the Pastoral Area of Northern Xinjiang,� Acta Prataculturae
Sinica, 2009. 22

[42] H. Yu, X. Zhang, W. Wang, Q. Feng, and T. Liang, �Monitoring Model and Accuracy Eval-
uation of Snow Depth in Qinghai Province Based on AMSR-E Data,� Arid Zone Research,
vol. 2, pp. 255�261, 2011. 23, 75

[43] B. E. Science, Ant Identi�cation Guide. Bayer Environmental Science, 2010. 23, 167

[44] R. Nair and B. Rost, �Protein Subcellular Localization Prediction Using Arti�cial Intelligence
Technology,� in Functional Proteomics (J. Thompson, M. Ue�ng, and C. Schae�er-Reiss,
eds.), vol. 484 of Methods in Molecular Biology, pp. 435�463, Humana Press, 2008. 23

[45] B. Rost, J. Liu, R. Nair, K. Wrzeszczynski, and Y. Ofran, �Automatic Prediction of Protein
Function,� Cellular and Molecular Life Sciences CMLS, vol. 60, no. 12, pp. 2637�2650, 2003.
23

[46] �The Gene Ontology.� http://www.geneontology.org/. Accessed: 2013-11-28. 23

[47] R. Sharan, S. Suthram, R. M. Kelley, T. Kuhn, S. McCuine, P. Uetz, T. Sittler, R. M. Karp,
and T. Ideker, �Conserved Patterns of Protein Interaction in Multiple Species,� Proceedings
of the National Academy of Sciences of the United States of America, vol. 102, pp. 1974�1979,
2005. 24, 115

[48] �A Fast Browser for Gene Ontology Terms and Annotations.� http://www.ebi.ac.uk/

QuickGO/. Accessed: 2013-12-11. 24

[49] J. Hu, B. Kehr, and K. Reinert, �NetCo�ee: A Fast and Accurate Global Alignment Ap-
proach to Identify Functionally Conserved Proteins in Multiple Networks,� Bioinformatics,
pp. 540�548, Dec. 2013. 24, 161

[50] C. Lee, B. Michel, E. Deelman, and J. Blythe, �From Event-Driven Work�ows Towards a Pos-
teriori Computing,� in Future Generation Grids (V. Getov, D. Laforenza, and A. Reinefeld,
eds.), pp. 3�28, Springer US, 2006. 25

[51] B. Cantalupo, L. Giammarino, N. Matskanis, M. Surridge, and F. Silvestri, �Semantic Work-
�ow Representation and Samples,� tech. rep., University of Southampton IT Innovation Cen-
tre, 2005. 27

http://www.geneontology.org/
http://www.ebi.ac.uk/QuickGO/
http://www.ebi.ac.uk/QuickGO/

188 Bibliography

[52] �Work�ow Patterns.� http://www.workflowpatterns.com/. Accessed: 2012-03-23. 28, 68,
86, 129, 130

[53] M. Weske, G. Vossen, and F. Puhlmann, �Work�ow and Service Composition Languages,� in
Handbook on Architectures of Information Systems (P. Bernus, K. Mertins, and G. Schmidt,
eds.), International Handbooks on Information Systems, pp. 369�390, Springer Berlin Hei-
delberg, 2006. 28

[54] W. van der Aalst and A. ter Hofstede, �YAWL: Yet Another Work�ow Language,� Informa-
tion Systems, pp. 245 � 275, 2005. 28, 40

[55] T. Oinn, M. Greenwood, M. Addis, M. N. Alpdemir, J. Ferris, K. Glover, C. Goble,
A. Goderis, D. Hull, D. Marvin, P. Li, P. Lord, M. R. Pocock, M. Senger, R. Stevens,
A. Wipat, and C. Wroe, �Taverna: Lessons in Creating a Work�ow Environment for the Life
Sciences: Research Articles,� Concurrency and Computation: Practice & Experience, vol. 18,
pp. 1067�1100, Aug. 2006. 28, 46, 47

[56] T. Allweyer, BPMN 2.0: Introduction to the Standard for Business Process Modeling. Books
on Demand GmbH, 2010. 28

[57] M. Dumas and A. Hofstede, �UML Activity Diagrams as a Work�ow Speci�cation Language,�
in UML 2001 � The Uni�ed Modeling Language. Modeling Languages, Concepts, and Tools
(M. Gogolla and C. Kobryn, eds.), vol. 2185 of Lecture Notes in Computer Science, pp. 76�90,
Springer Berlin Heidelberg, 2001. 28

[58] J. Sroka, J. Hidders, P. Missier, and C. Goble, �A Formal Semantics for the Taverna 2
Work�ow Model,� Journal of Computer and System Sciences, vol. 76, no. 6, pp. 490 � 508,
2010. 29

[59] �Prova Rule Language.� https://prova.ws/. Accessed: 2010-10-26. 30, 105

[60] A. Paschke, �Rules and Logic Programming for the Web,� in Reasoning Web. Semantic Tech-
nologies for the Web of Data (A. Polleres, C. d'Amato, M. Arenas, S. Handschuh, P. Kroner,
S. Ossowski, and P. Patel-Schneider, eds.), vol. 6848 of Lecture Notes in Computer Science,
pp. 326�381, Springer Berlin Heidelberg, 2011. 31, 35, 45, 72, 73

[61] T. Eiter, G. Gottlob, and H. Mannila, �Disjunctive Datalog,� ACM Transactions on Database
Systems, vol. 22, pp. 364�418, Sept. 1997. 32

[62] A. Calì, G. Gottlob, and T. Lukasiewicz, �A General Datalog-Based Framework for Tractable
Query Answering over Ontologies,� Web Semantics: Science, Services and Agents on the
World Wide Web, vol. 14, no. 0, pp. 57 � 83, 2012. Special Issue on Dealing with the
Messiness of the Web of Data. 32

[63] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov, �Complexity and Expressive Power of
Logic Programming,� ACM Computing Surveys, vol. 33, pp. 374�425, Sept. 2001. 33, 35, 151

[64] M. Alviano, F. Calimeri, Faber Wolfgang, G. Ianni, and N. Leone, �Function Symbols in
ASP: Overview and Perspectives,� in Nonmonotonic reasoning. Essays celebrating its 30th
anniversary. Papers from the conference (NonMon30), Lexington, KY, USA, October 22�25,
2010., pp. 1�24, London: College Publications, 2011. 33, 151, 152

[65] T. Syrjänen, �Omega-Restricted Logic Programs,� in Logic Programming and Nonmotonic
Reasoning (T. Eiter, W. Faber, and M. Truszczy«ski, eds.), vol. 2173 of Lecture Notes in
Computer Science, pp. 267�280, Springer Berlin Heidelberg, 2001. 33

[66] M. Gebser, T. Schaub, and S. Thiele, �GrinGo: A New Grounder for Answer Set Pro-
gramming,� in Logic Programming and Nonmonotonic Reasoning (C. Baral, G. Brewka, and
J. Schlipf, eds.), vol. 4483 of Lecture Notes in Computer Science, pp. 266�271, Springer Berlin
Heidelberg, 2007. 33, 151

[67] F. Calimeri, S. Cozza, G. Ianni, and N. Leone, �Computable Functions in ASP: Theory
and Implementation,� in Logic Programming (M. Garcia de la Banda and E. Pontelli, eds.),
vol. 5366 of Lecture Notes in Computer Science, pp. 407�424, Springer Berlin Heidelberg,
2008. 33

[68] Y. Lierler and V. Lifschitz, �One More Decidable Class of Finitely Ground Programs,� in
Logic Programming (P. Hill and D. Warren, eds.), vol. 5649 of Lecture Notes in Computer
Science, pp. 489�493, Springer Berlin Heidelberg, 2009. 33

http://www.workflowpatterns.com/
https://prova.ws/

Bibliography 189

[69] S. Baselice and P. a. Bonatti, �A Decidable Subclass of Finitary Programs,� Theory and
Practice of Logic Programming, vol. 10, pp. 481�496, July 2010. 33, 152, 167

[70] F. Calimeri, S. Cozza, G. Ianni, and N. Leone, �Magic Sets for the Bottom-Up Evaluation of
Finitely Recursive Programs,� in Logic Programming and Nonmonotonic Reasoning (E. Er-
dem, F. Lin, and T. Schaub, eds.), vol. 5753 of Lecture Notes in Computer Science, pp. 71�86,
Springer Berlin Heidelberg, 2009. 33

[71] M. Alviano, W. Faber, and N. Leone, �Disjunctive ASP with Functions: Decidable Queries
and E�ective Computation,� Theory and Practice of Logic Programming, vol. 10, pp. 497�
512, July 2010. 33

[72] P. A. Bonatti, �Reasoning with In�nite Stable Models,� Arti�cial Intelligence, vol. 156, no. 1,
pp. 75 � 111, 2004. 33

[73] M. imkus and T. Eiter, �FDNC: Decidable Non-monotonic Disjunctive Logic Programs with
Function Symbols,� in Logic for Programming, Arti�cial Intelligence, and Reasoning (N. Der-
showitz and A. Voronkov, eds.), vol. 4790 of Lecture Notes in Computer Science, pp. 514�530,
Springer Berlin Heidelberg, 2007. 33

[74] T. Eiter and M. �imkus, �Bidirectional Answer Set Programs with Function Symbols,� in
Proceedings of the 21st International Jont Conference on Arti�cal Intelligence, IJCAI'09,
(San Francisco, CA, USA), pp. 765�771, Morgan Kaufmann Publishers Inc., 2009. 33

[75] V. P. Luong, �Between Well-Founded Semantics and Stable Model Semantics.,� in IDEAS,
pp. 270�278, 1999. 34

[76] K. R. Apt, H. A. Blair, and A. Walker, Foundations of Deductive Databases and Logic
Programming, ch. 2, pp. 89�148. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 1988. 35

[77] W. Lu and U. Furbach, �Disjunctive Logic Program = Horn Program + Control Program,�
in Logics in Arti�cial Intelligence (J. Dix, L. n. Cerro, and U. Furbach, eds.), vol. 1489 of
Lecture Notes in Computer Science, pp. 33�46, Springer Berlin Heidelberg, 1998. 35

[78] �Deductive, Inductive and Abductive Reasoning.� http://butte.edu/departments/cas/

tipsheets/thinking/reasoning.html. Accessed: 2014-06-15. 35, 36

[79] W. Tan and M. Zhou, Business and Scienti�c Work�ows: A Web Service-Oriented Approach.
IEEE Press Series on Systems Science and Engineering, Wiley, 2013. 40

[80] A. Char� and M. Mezini, �AO4BPEL: An Aspect-Oriented Extension to BPEL,� World Wide
Web, vol. 10, pp. 309�344, 2007. 40

[81] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and J. Irwin,
�Aspect-Oriented Programming,� in ECOOP'97 � Object-Oriented Programming (M. Ak³it
and S. Matsuoka, eds.), vol. 1241 of Lecture Notes in Computer Science, pp. 220�242, Springer
Berlin Heidelberg, 1997. 40

[82] R. Davide and T. Elisa, �What Your Next Work�ow Language Should Look Like,� in Pro-
ceedings of the 2nd International Workshop on Coordination and Organization, 2006. 40

[83] P. A. Buhler and J. M. Vidal, �Adaptive Work�ow = Web Services + Agents,� in Proceedings
of the International Conference on Web Services, pp. 131�137, CSREA Press, 2003. 41

[84] A. Barker and R. G. Mann, �Agent-Based Scienti�c Work�ow Composition,� in Astronomical
Data Analysis Software and Systems XV ASP Conference Series (C. Gabriel, C. Arviset,
D. Ponz, and E. Solano, eds.), vol. 351, pp. 485�488, 2006. 41

[85] T. Wagner, �Agentwork�ows for Flexible Work�ow Execution,� in Proceedings of the Inter-
national Workshop on Petri Nets and Software Engineering (L. Cabac, M. Duvigneau, and
D. Moldt, eds.), vol. 851 of CEUR Workshop Proceedings, pp. 199�214, CEUR-WS.org, 2012.
41

[86] J. Lam, F. Guerin, W. Vasconcelos, and T. J. Norman, �Building Multi-agent Systems for
Work�ow Enactment and Exception Handling,� in Proceedings of the 5th international con-
ference on Coordination, organizations, institutions, and norms in agent systems, COIN'09,
(Berlin, Heidelberg), pp. 53�69, Springer-Verlag, 2010. 42, 78

http://butte.edu/departments/cas/tipsheets/thinking/reasoning.html
http://butte.edu/departments/cas/tipsheets/thinking/reasoning.html

190 Bibliography

[87] I. Horrocks and P. F. Patel-Schneider, �Reducing OWL Entailment to Description Logic
Satis�ability,� in Journal of Web Semantics, pp. 17�29, Springer, 2003. 42

[88] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean, �SWRL: A
Semantic Web Rule Language Combining OWL and RuleML,� tech. rep., World Wide Web
Consortium, May 2004. 42

[89] A. Fleischmann and C. Stary, �Whom to Talk to? A Stakeholder Perspective on Business
Process Development,� Universal Access in the Information Society, vol. 11, no. 2, pp. 125�
150, 2012. 42, 43

[90] A. Fleischmann, W. Schmidt, C. Stary, S. Obermeier, and E. Börger, Subject-Oriented Busi-
ness Process Management. Springer, 2012. 43

[91] H. Weigand, W.-j. V. D. Heuvel, and M. Hiel, �Rule-Based Service Composition and Service-
Oriented Business Rule Management,� Business, pp. 1�12, 2008. 44, 45

[92] A. Paschke and K. Teymourian, �Rule-Based Business Process Execution with BPEL+,� in
Proceedings of I-KNOW and I-SEMANTICS 2009 (A. Paschke, H. Weigand, W. Behrendt,
K. Tochtermann, and T. Pellegrini, eds.), (Graz, Austria), pp. 588�601, Verlag der Technis-
chen Universität Graz, September 2009. 44, 69

[93] J. Bae, H. Bae, S.-H. Kang, and Y. Kim, �Automatic Control of Work�ow Processes Us-
ing ECA Rules,� IEEE Transactions on Knowledge and Data Engineering, vol. 16, no. 8,
pp. 1010�1023, 2004. 44

[94] D. Lin, H. Sheng, and T. Ishida, �Interorganizational Work�ow Execution Based on Process
Agents and ECA Rules,� IEICE - Transactions on Information and Systems, vol. E90-D,
pp. 1335�1342, Sept. 2007. 44

[95] L. Chen, M. Li, and J. Cao, �A Rule-Based Work�ow Approach for Service Composition,�
in Proceedings of the Third international conference on Parallel and Distributed Processing
and Applications, ISPA'05, (Berlin, Heidelberg), pp. 1036�1046, Springer-Verlag, 2005. 45

[96] A. Paschke and A. Kozlenkov, �A Rule-Based Middleware for Business Process Execution,�
in Proceedings of Multi-Conference Information Systems, 2008. 45, 46

[97] H. Boley and A. Paschke, �Rule Responder Agents Framework and Instantiations,� in Se-
mantic Agent Systems (A. Elçi, M. Koné, and M. Orgun, eds.), vol. 344 of Studies in Com-
putational Intelligence, pp. 3�23, Springer Berlin/Heidelberg, 2011. 45

[98] A. Paschke, �Rule Responder HCLS eScience Infrastructure,� in Proceedings of the 3rd Inter-
national Conference on the Pragmatic Web: Innovating the Interactive Society, ICPW '08,
(New York, NY, USA), pp. 59�67, ACM, 2008. 45

[99] A. Paschke and H. Boley, �Rule Responder: Rule-Based Agents for the Semantic-Pragmatic
Web,� International Journal on Arti�cial Intelligence Tools, vol. 20, no. 6, pp. 1043�1081,
2011. 45

[100] A. Paschke, A. Kozlenkov, and H. Boley, �A Homogenous Reaction Rules Language for Com-
plex Event Processing,� in International Workshop on Event Drive Architecture for Complex
Event Process, 2007. 45

[101] Y. Gil, E. Deelman, M. H. Ellisman, T. Fahringer, G. Fox, D. Gannon, C. A. Goble, M. Livny,
L. Moreau, and J. Myers, �Examining the Challenges of Scienti�c Work�ows,� IEEE Com-
puter, vol. 40, no. 12, pp. 24�32, 2007. 46

[102] I. Taylor, M. Shields, I. Wang, and A. Harrison, �The Triana Work�ow Environment: Archi-
tecture and Applications,� in Work�ows for e-Science (I. Taylor, E. Deelman, D. Gannon,
and M. Shields, eds.), pp. 320�339, Springer London, 2007. 47

[103] T. Fahringer, R. Prodan, R. Duan, J. Hofer, F. Nadeem, F. Nerieri, S. Podlipnig, J. Qin,
M. Siddiqui, H.-L. Truong, A. Villazon, and M. Wieczorek, �ASKALON: A Development
and Grid Computing Environment for Scienti�c Work�ows,� in Work�ows for e-Science
(I. J. Taylor, E. Deelman, D. B. Gannon, and M. Shields, eds.), pp. 450�471, Springer, 2007.
47

Bibliography 191

[104] M. Wilde, M. Hategan, J. M. Wozniak, B. Cli�ord, D. S. Katz, and I. Foster, �Swift: A
Language for Distributed Parallel Scripting,� Parallel Computing, vol. 37, pp. 633�652, Sept.
2011. 47

[105] L. van Elst, F.-R. Ascho�, A. Bernardi, and S. Schwarz, �Weakly-Structured Work�ows for
Knowledge-Intensive Tasks: an Experimental Evaluation,� in Proceedings of the Twelfth In-
ternational Workshop on Enabling Technologies: Infrastructure for Collaborative Enterprises,
pp. 340�345, June 2003. 48

[106] M. Pesic, H. Schonenberg, and W. van der Aalst, �DECLARE: Full Support for Loosely-
Structured Processes,� in Proceedings of the 11th IEEE International Enterprise Distributed
Object Computing Conference, pp. 287�298, Washington, DC, USA: IEEE Computer Society,
2007. 49, 102

[107] �OWL-S: Semantic Markup for Web Services.� http://www.w3.org/Submission/OWL-S/. Ac-
cessed: 2012-03-18. 50, 53, 54

[108] I. Niles and A. Pease, �Origins of the IEEE Standard Upper Ontology,� in Working Notes of
the IJCAI-2001 Workshop on the IEEE Standard Upper Ontology, pp. 4�10, 2001. 51

[109] T. Vitvar, J. Kopecky, J. Viskova, and D. Fensel, �WSMO-Lite Annotations for Web
Services,� in Proceedings of the 5th European Semantic Web Conference (M. Hauswirth,
M. Koubarakis, and S. Bechhofer, eds.), LNCS, (Berlin, Heidelberg), Springer Verlag, June
2008. 51

[110] �Web Service Semantics - WSDL-S.� http://www.w3.org/Submission/WSDL-S/. Accessed:
2012-03-18. 51

[111] �Semantic Annotations for WSDL.� http://www.w3.org/2002/ws/sawsdl/. Accessed: 2012-
03-18. 51

[112] �Web Service Modeling Ontology.� http://www.w3.org/Submission/WSMO/. Accessed: 2012-
03-18. 51

[113] D. Fensel and C. Bussler, �The Web Service Modeling Framework WSMF,� Electronic Com-
merce Research and Applications, vol. 1, no. 2, pp. 113 � 137, 2002. 51

[114] �Semantic Web Services Framework (SWSF) Overview.� http://www.w3.org/Submission/

SWSF/. Accessed: 2012-03-18. 51

[115] �Semantic Web Services Language.� http://www.w3.org/Submission/SWSF-SWSL/. Ac-
cessed: 2012-03-18. 51

[116] �Semantic Web Services Ontology.� http://www.w3.org/Submission/SWSF-SWSO/. Accessed:
2012-03-18. 51

[117] �WSMO-Lite: Lightweight Semantic Descriptions for Services on the Web.� http://www.w3.
org/Submission/WSMO-Lite/. Accessed: 2012-03-18. 51

[118] A. Paschke, Rule Based Service Level Agreements: RBSLA; Knowledge Representation for
Automated E-contract, SLA and Policy Management. PhD thesis, Technical University Mu-
nich, 2007. 52

[119] A. Paschke and M. Bichler, �Knowledge Representation Concepts for Automated SLA Man-
agement,� Decision Support Systems, vol. 46, pp. 187�205, Dec. 2008. 52

[120] M. Lee, S. S. Park, and J.-W. Lee, �Ontology-Based Service Layering for Facilitating Alter-
native Service Discovery,� in Proceedings of the 2nd international conference on Ubiquitous
information management and communication, ICUIMC '08, (New York, NY, USA), pp. 465�
470, ACM, 2008. 52

[121] J. Qin and T. Fahringer, Scienti�c Work�ows�Programming, Optimization, and Synthesis
with ASKALON and AWDL, ch. 7, pp. 115�134. Springer Berlin Heidelberg, 2012. 52

[122] P. Pinheiro da Silva, L. Salayandia, and A. Q. Gates, �WDO-It! A Tool for Building Scien-
ti�c Work�ows from Ontologies,� tech. rep., University of Texas at El Paso, El Paso, TX,
September 2007. 53

[123] N. Matskanis, M. Surridg, J. Ferris, and B. Cantalupo, �Adaptive Work�ow Technology,�
tech. rep., University of Southampton IT Innovation Centre, 2006. 54

http://www.w3.org/Submission/OWL-S/
http://www.w3.org/Submission/WSDL-S/
http://www.w3.org/2002/ws/sawsdl/
http://www.w3.org/Submission/WSMO/
http://www.w3.org/Submission/SWSF/
http://www.w3.org/Submission/SWSF/
http://www.w3.org/Submission/SWSF-SWSL/
http://www.w3.org/Submission/SWSF-SWSO/
http://www.w3.org/Submission/WSMO-Lite/
http://www.w3.org/Submission/WSMO-Lite/

192 Bibliography

[124] S. Beco, B. Cantalupo, L. Giammarino, N. Matskanis, and M. Surridge, �OWL-WS: A
Work�ow Ontology for Dynamic Grid Service Composition,� in Proceedings of the First
International Conference on e-Science and Grid Computing, vol. 46, pp. 148�155, July 2005.
54

[125] �NextGRID.� http://www.it-innovation.soton.ac.uk/projects/nextgrid. Accessed:
2014-7-24. 54

[126] W. Ren, G. Chen, Z. Yang, J. Zhou, J.-B. Zhang, C. P. Low, D. Chen, and C. Sun, �Se-
mantic Enhanced Rule Driven Work�ow Execution in Collaborative Virtual Enterprise,� in
10th International Conference on Control, Automation, Robotics and Vision, ICARCV 2008,
Hanoi, Vietnam, 17-20 December 2008, Proceedings, pp. 910�915, IEEE, 2008. 55

[127] M. Grüninger and C. Menzel, �The Process Speci�cation Language (PSL) Theory and Ap-
plications,� AI Magazine, vol. 24, pp. 63�74, Sept. 2003. 55

[128] Wooldridge, Michael, An Introduction to MultiAgent Systems. Wiley Publishing, 2nd ed.,
2009. 59, 60

[129] �Semantic Web.� http://www.w3.org/standards/semanticweb/. Accessed: 2011-08-11. 62,
75

[130] �UniProt Core Vocabulary.� http://www.uniprot.org/core/. Accessed: 2014-01-08. 64,
113, 160

[131] A. Paschke and A. Kozlenkov, �Rule-Based Event Processing and Reaction Rules,� in Rule
Interchange and Applications (G. Governatori, J. Hall, and A. Paschke, eds.), vol. 5858 of
Lecture Notes in Computer Science, pp. 53�66, Springer Berlin Heidelberg, 2009. 64

[132] A. Paschke and H. Boley, �Rules Capturing Events and Reactivity,� in Handbook of Research
on Emerging Rule-Based Languages and Technologies (A. Giurca, D. Gasevic, and K. Taveter,
eds.), pp. 215�252, IGI Publishing, May 2009. 64, 65

[133] �Agent Communication Language Speci�cations.� http://www.fipa.org/repository/

aclspecs.html. Accessed: 2012-06-17. 66, 109, 121

[134] L. Vargas, J. Bacon, and K. Moody, �Event-Driven Database Information Sharing,� in Pro-
ceedings of the 25th British national conference on Databases: Sharing Data, Information
and Knowledge, BNCOD '08, (Berlin, Heidelberg), pp. 113�125, Springer-Verlag, 2008. 67

[135] J. Mendling, �Event-Driven Process Chains (EPC),� in Metrics for Process Models, vol. 6
of Lecture Notes in Business Information Processing, pp. 17�57, Springer Berlin Heidelberg,
2009. 68

[136] N. Russell, Arthur, W. M. P. van der Aalst, and N. Mulyar, �Work�ow Control-Flow Pat-
terns: A Revised View,� tech. rep., BPMcenter.org, 2006. 69, 70, 71, 72, 86, 87, 93, 94, 130,
131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141

[137] A. Paschke, �Reaction RuleML 1.0 for Rules, Events and Actions in Semantic Complex Event
Processing,� in Proceedings of the 8th International Web Rule Symposium, LNCS, Springer,
2014. 69, 120, 121

[138] D. Luckham, The Power of Events: An Introduction to Complex Event Processing in Dis-
tributed Enterprise Systems. Addison-Wesley Longman, Amsterdam, 2002. 69

[139] C. B�adic�a, L. Braubach, and A. Paschke, �Rule-Based Distributed and Agent Systems,� in
Rule-Based Reasoning, Programming, and Applications (N. Bassiliades, G. Governatori, and
A. Paschke, eds.), vol. 6826 of Lecture Notes in Computer Science, pp. 3�28, Springer Berlin
Heidelberg, 2011. 69

[140] D. Luckham, W. R. Schulte, J. Adkins, P. Bizarro, H.-A. Jacobsen, A. Mavashev, B. M.
Michelson, P. Niblett, and D. Tucker, �Event Processing Glossary - Version 2.0,� tech. rep.,
Event Processing Technical Society, 2011. 69

[141] E. Kindler, �On the Semantics of EPCs: Resolving the Vicious Circle,� Data & Knowledge
Engineering, vol. 56, no. 1, pp. 23 � 40, 2006. 70, 86

[142] D. Hay, �De�ning Business Rules � What Are They Really.� Final Report, 2000. 73

http://www.it-innovation.soton.ac.uk/projects/nextgrid
http://www.w3.org/standards/semanticweb/
http://www.uniprot.org/core/
http://www.fipa.org/repository/aclspecs.html
http://www.fipa.org/repository/aclspecs.html

Bibliography 193

[143] A. Carusi, T. Clark, and M. S. Marshall, �Web Semantics in Action: Web 3.0 in e-Science,�
in IEEE International Conference on E-Science Workshops, 2009. 75

[144] �International Workshop on Semantic Web Applications and Tools for the Life Sciences.�
http://www.swat4ls.org/. Accessed: 2013-11-03. 75

[145] �Identi�ers.org.� http://identifiers.org/. Accessed: 2013-11-18. 75

[146] �The European Bioinformatics Institute.� http://www.ebi.ac.uk. Accessed: 2013-11-18. 75

[147] �EBI RDF Platform.� http://www.ebi.ac.uk/rdf/. Accessed: 2013-11-18. 75

[148] �COEUS: Streamlined Back-end Framework for Rapid Semantic Web Application Develop-
ment.� http://bioinformatics.ua.pt/coeus/. Accessed: 2013-11-18. 75

[149] T. R. Gruber, �Toward Principles for the Design of Ontologies Used for Knowledge Sharing,�
International Journal of Human-Computer Studies, vol. 43, pp. 907�928, Dec. 1995. 75

[150] B. N. Grosof, I. Horrocks, R. Volz, and S. Decker, �Description Logic Programs: Combining
Logic Programs with Description Logic,� in Proceedings of the 12th International Conference
on World Wide Web, WWW '03, (New York, NY, USA), pp. 48�57, ACM, 2003. 76

[151] M. Krötzsch, Description Logic Rules. PhD thesis, Karlsruher Institut für Technologie, 2010.
76

[152] D. Carral Martínez and P. Hitzler, �Extending Description Logic Rules,� in The Seman-
tic Web: Research and Applications (E. Simperl, P. Cimiano, A. Polleres, O. Corcho, and
V. Presutti, eds.), vol. 7295 of Lecture Notes in Computer Science, pp. 345�359, Springer
Berlin Heidelberg, 2012. 76

[153] M. Arenas and J. Pérez, �Querying Semantic Web Data with SPARQL,� in Proceedings of the
Thirtieth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems,
PODS '11, (New York, NY, USA), pp. 305�316, ACM, 2011. 77

[154] �UniProt Core Ontology.� http://www.uniprot.org/core/. Accessed: 2013-11-18. 77, 107

[155] R. Shearer, B. Motik, and I. Horrocks, �HermiT: A Highly-E�cient OWL Reasoner,� in Pro-
ceedings of the 5th International Workshop on OWL: Experiences and Directions (OWLED
2008 EU) (A. Ruttenberg, U. Sattler, and C. Dolbear, eds.), (Karlsruhe, Germany), October
26�27 2008. 78, 115, 155

[156] �SPARQL-DL API.� http://www.derivo.de/ressourcen/sparql-dl-api.html. Accessed:
2014-02-06. 78, 115

[157] A. Karande, M. Karande, and B. B. Meshram, �Choreography and Orchestration Using
Business Process Execution Language for SOA with Web Services,� International Journal of
Computer Science Issues, vol. 8, no. 2, pp. 224�232, 2011. 78, 79

[158] W. Jaradat, A. Dearle, and A. Barker, �A Data�ow Language for Decentralised Orchestration
of Web Service Work�ows,� in SERVICES, pp. 13�20, 2013. 79

[159] T. Fleuren, J. Gotze, and P. Muller, �Work�ow Skeletons: Increasing Scalability of Scienti�c
Work�ows by Combining Orchestration and Choreography,� European Conference on Web
Services, vol. 0, pp. 99�106, 2011. 79

[160] D. Ings, L. Clément, D. König, V. Mehta, R. Mueller, R. Rangaswamy, M. Rowley, and
I. Trickovic, �WS-BPEL Extension for People (BPEL4People) Speci�cation Version 1.1,�
tech. rep., OASIS, August 2010. 80

[161] �Web Services Human Task (WS-HumanTask) Speci�cation Version 1.1.� http://docs.

oasis-open.org/bpel4people/ws-humantask-1.1.html. Accessed: 2011-08-13. 80, 81

[162] P. Mouallem, D. Crawl, I. Altintas, M. Vouk, and U. Yildiz, �A Fault-Tolerance Architecture
for Kepler-Based Distributed Scienti�c Work�ows,� in Proceedings of the 22nd international
conference on Scienti�c and statistical database management, SSDBM'10, (Berlin, Heidel-
berg), pp. 452�460, Springer-Verlag, 2010. 82

[163] J. H. Abawajy, �Fault-Tolerant Scheduling Policy for Grid Computing Systems,� Parallel
and Distributed Processing Symposium, International, vol. 14, p. 238b, 2004. 82

http://www.swat4ls.org/
http://identifiers.org/
http://www.ebi.ac.uk
http://www.ebi.ac.uk/rdf/
http://bioinformatics.ua.pt/coeus/
http://www.uniprot.org/core/
http://www.derivo.de/ressourcen/sparql-dl-api.html
http://docs.oasis-open.org/bpel4people/ws-humantask-1.1.html
http://docs.oasis-open.org/bpel4people/ws-humantask-1.1.html

194 Bibliography

[164] S. Jablonski and C. Bussler, Work�ow Management Systems: Modelling Concepts, Architec-
ture and Implementation. ITCP Computer Science Series, International Thomson Publishing
Services, 1996. 86

[165] A. J. Bonner and M. Kifer, �An Overview of Transaction Logic,� Theoretical Computer
Science, vol. 133, no. 2, pp. 205�265, 1994. 87, 88, 93

[166] A. J. Bonner and M. Kifer, �Transaction Logic Programming. (or, A Logic of Procedural
and Declarative Knowledge),� tech. rep., Computer Systems Research Institute, University
of Toronto, 1995. 88, 89

[167] A. J. Bonner and M. Kifer, �Concurrency and Communication in Transaction Logic.,� in
Proceedings of the Joint International Conference and Symposium on Logic Programming,
pp. 142�156, 1996. 88, 89, 90, 96

[168] A. F. Sleghel, �An Optimizing Interpreter for Concurrent Transaction Logic,� Master's thesis,
University of Toronto, 2000. 94

[169] A. J. Bonner, M. Kifer, and M. Consens, �Database Programming in Transaction Logic,�
in Proceedings of the Fourth International Workshop on Database Programming Languages,
pp. 309�337, 1993. 94, 95

[170] D. Anicic, P. Fodor, R. Stuhmer, and N. Stojanovic, �Event-Driven Approach for Logic-
Based Complex Event Processing,� in Proceedings of the 2009 International Conference on
Computational Science and Engineering - Volume 01, CSE '09, (Washington, DC, USA),
pp. 56�63, IEEE Computer Society, 2009. 97, 100

[171] D. Roman, M. Kifer, and D. Fensel, �WSMO Choreography: From Abstract State Machines
to Concurrent Transaction Logic,� in Proceedings of the 5th European Semantic Web Con-
ference (M. Hauswirth, M. Koubarakis, and S. Bechhofer, eds.), LNCS, (Berlin, Heidelberg),
Springer Verlag, June 2008. 102

[172] �The Mandarax Project.� http://mandarax.sourceforge.net/overview.html. Accessed:
2011-10-15. 105

[173] A. Kozlenkov, �Prova Rule Language Version 3.0 User's Guide,� tech. rep., 2010. 105, 109,
110, 116, 119, 160

[174] �A Free, Open-Source Ontology Editor and Framework for Building Intelligent Systems.�
http://protege.stanford.edu. Accessed: 2012-05-14. 106

[175] �Mule ESB.� http://www.mulesoft.com/. Accessed: 2012-09-30. 112, 116, 117, 146

[176] �OpenRDF Sesame.� http://www.openrdf.org/. Accessed: 2014-01-06. 113, 127

[177] �SPARQL 1.1 Update.� http://www.w3.org/TR/sparql11-update/. Accessed: 2014-01-13.
115

[178] E. Sirin and B. Parsia, �SPARQL-DL: SPARQL Query for OWL-DL,� in Proceedings of the
3rd OWL Experiences and Directions Workshop, 2007. 115

[179] M. Welsh, D. E. Culler, and E. A. Brewer, �SEDA: An Architecture for Well-Conditioned,
Scalable Internet Services,� in Proceedings of the Eighteenth Symposium on Operating Sys-
tems Principles, pp. 230�243, 2001. 116, 170

[180] �Apache ActiveMQ.� http://activemq.apache.org/. Accessed: 2011-03-11. 119

[181] �Reaction RuleML.� http://ruleml.org/reaction/. Accessed: 2011-11-13. 120

[182] A. Paschke, H. Boley, Z. Zhao, K. Teymourian, and T. Athan, �Reaction RuleML 1.0:
Standardized Semantic Reaction Rules,� in Rules on the Web: Research and Applications,
vol. 7438 of Lecture Notes in Computer Science, pp. 100�119, Springer Berlin Heidelberg,
2012. 120, 121

[183] T. Osmun, D. Smith, H. Boley, A. Paschke, and Z. Zhao, Rule Responder Guide. RuleML
Inc., 2011. 122

[184] A. Paschke, H. Boley, A. Kozlenkov, and B. L. Craig, �Rule responder: RuleML-Based Agents
for Distributed Collaboration on the Pragmatic Web,� in Proceedings of the 2nd International
Conference on the Pragmatic Web, pp. 17�28, 2007. 124

http://mandarax.sourceforge.net/overview.html
http://protege.stanford.edu
http://www.mulesoft.com/
http://www.openrdf.org/
http://www.w3.org/TR/sparql11-update/
http://activemq.apache.org/
http://ruleml.org/reaction/

Bibliography 195

[185] S. Migliorini, M. Gambini, M. La Rosa, and A. H. ter Hofstede, �Pattern-Based Evaluation
of Scienti�c Work�ow Management Systems,� tech. rep., University of Verona, 2011. 130,
138, 141, 148, 149

[186] W. M. P. Van Der Aalst, A. H. M. Ter Hofstede, B. Kiepuszewski, and A. P. Barros, �Work-
�ow Patterns,� Distributed and Parallel Databases, vol. 14, pp. 5�51, July 2003. 130

[187] N. Russell, A. H. M. ter Hofstede, D. Edmond, and W. M. P. van der Aalst, �Work�ow
Data Patterns: Identi�cation, Representation and Tool Support,� in Proceedings of the 24th
International Conference on Conceptual Modeling, ER'05, (Berlin, Heidelberg), pp. 353�368,
Springer-Verlag, 2005. 143, 144, 145, 146, 147

[188] T. Eiter and G. Gottlob, �On the Computational Cost of Disjunctive Logic Programming:
Propositional Case,� Annals of Mathematics and Arti�cial Intelligence, vol. 15, no. 3-4,
pp. 289�323, 1995. 150

[189] H. J. ter Horst, �Completeness, Decidability and Complexity of Entailment for RDF Schema
and a Semantic Extension Involving the OWL Vocabulary,� Web Semantics: Science, Ser-
vices and Agents on the World Wide Web, vol. 3, pp. 79�115, Oct. 2005. 153

[190] �OWL Web Ontology Language Overview.� http://www.w3.org/TR/owl-features/. Ac-
cessed: 2012-04-21. 153

[191] �OWL 2 Web Ontology Language Document Overview (Second Edition).� http://www.w3.
org/TR/owl2-overview/. Accessed: 2013-12-04. 153

[192] �OWL 2 Web Ontology Language Pro�les (Second Edition).� http://www.w3.org/TR/

owl2-profiles/. Accessed: 2013-12-04. 153

[193] U. Straccia, �Fuzzy Logic, Annotation Domains and Semantic Web Languages,� in Scalable
Uncertainty Management (S. Benferhat and J. Grant, eds.), vol. 6929 of Lecture Notes in
Computer Science, pp. 2�21, Springer Berlin Heidelberg, 2011. 154

[194] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz, �Pellet: A Practical OWL-DL
Reasoner,� Web Semantics: Science, Services and Agents on the World Wide Web, vol. 5,
no. 2, pp. 51 � 53, 2007. Software Engineering and the Semantic Web. 155

[195] V. Haarslev, R. Möller, and M. Wessel, �Querying the Semantic Web with Racer + nRQL,�
in Proceedings of the KI-2004 International Workshop on Applications of Description Logics,
2004. 155

[196] D. Tsarkov and I. Horrocks, �FaCT++ Description Logic Reasoner: System Description,� in
Proceedings of the Third International Joint Conference on Automated Reasoning, IJCAR'06,
(Berlin, Heidelberg), pp. 292�297, Springer-Verlag, 2006. 155

[197] �JFact DL Reasoner.� http://jfact.sourceforge.net/. Accessed: 2014-02-21. 155

[198] D. Tsarkov and I. Palmisano, �Chainsaw: a Metareasoner for Large Ontologies.,� in ORE
(I. Horrocks, M. Yatskevich, and E. Jiménez-Ruiz, eds.), vol. 858 of CEUR Workshop Pro-
ceedings, CEUR-WS.org, 2012. 155

[199] �W3C OWL Test Case.� http://www.geneontology.org/. Accessed: 2013-12-03. 155

[200] �OWL 2 Web Ontology Language Direct Semantics (Second Edition).� http://www.w3.org/
TR/owl2-direct-semantics/. Accessed: 2014-02-10. 156

[201] R. S. Gonçalves, S. Bail, E. Jiménez-Ruiz, N. Matentzoglu, B. Parsia, B. Glimm, and
Y. Kazakov, �OWL Reasoner Evaluation (ORE) Workshop 2013 Results: Short Report.,� in
ORE (S. Bail, B. Glimm, R. S. Gonçalves, E. Jiménez-Ruiz, Y. Kazakov, N. Matentzoglu,
and B. Parsia, eds.), vol. 1015 of CEUR Workshop Proceedings, pp. 1�18, CEUR-WS.org,
2013. 156

[202] M. A. Bryant, �Representing Meaningful Provenance in Scienti�c Work�ow Systems,� Mas-
ter's thesis, University of Wyoming, 2007. 156

[203] G. Weiler, A. Poetzsch-He�ter, and S. Kiefer, �Consistency Checking for Work�ows with an
Ontology-Based Data Perspective,� in DEXA (S. S. Bhowmick, J. Küng, and R. Wagner,
eds.), vol. 5690 of Lecture Notes in Computer Science, pp. 98�113, Springer, 2009. 157

http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-profiles/
http://www.w3.org/TR/owl2-profiles/
http://jfact.sourceforge.net/
http://www.geneontology.org/
http://www.w3.org/TR/owl2-direct-semantics/
http://www.w3.org/TR/owl2-direct-semantics/

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Problem Statement
	Research Questions
	Research Methodology
	Thesis Contributions
	Literature Connections
	Thesis Outline

	I Background and State-of-the-Art
	Background
	Scientific Workflows
	Scientific Workflow Life Cycle
	Workflow Management Systems
	Scientific vs. Business Workflows
	Weakly-Structured Scientific Workflows
	Structured vs. Unstructured Processes
	WsSWF Examples
	WsSWF Features
	WsSWF Main Requirements

	Workflow Description-Related Technologies
	Imperative vs. Declarative Programming
	Logic Program Overview
	Deductive, Abductive and Inductive Reasoning
	Summary

	Flexible Workflow Compositions
	Classic Workflow Languages
	Agent-Oriented Workflow Compositions
	Rule-Based Workflow Languages
	Main Scientific Workflow Languages
	Efforts on Weakly-Structured Workflows
	Semantic-Based Workflow Compositions
	Semantic Web Services
	Ontology-Based Workflow Specifications

	Summary

	II Conceptual Framework
	Rule-Based Agent-Oriented Framework
	Hierarchy of the Rule-Based Workflow Specification
	Upper-Level Workflow Ontology
	Declarative Workflow Specification
	Reaction Rules
	Event-Driven Workflow Execution
	CEP-Based Workflow Pattern Modeling

	Domain Decision-Centric Logic Description
	Derivation Rules
	Semantic Web Data Query

	Integrating Orchestration with Choreography
	Human Interaction
	Exception Handling
	Summary

	Formal Workflow Representation
	Workflow Model
	CTR Overview
	Workflow Representation Using CTR
	Workflow Representation
	Multiple Instances
	Reactive Logic Representation

	Communication between Processes
	Complex Event Processing
	Exception Handling
	Summary

	III Evaluation
	Proof-of-Concepts
	Prova
	The Workflow Ontology
	Mapping the CTR-Based Workflow Logic to Prova
	Domain Logic Expression in Prova
	Enterprise Service Bus Mule
	Prova Agent Deployment
	Mule ESB as Communication Middleware
	Translations between Reaction RuleML and Prova

	Exception Handling
	User Client
	Workflow Submission
	Exception Management
	Human Task Management
	RDF Data Management

	Summary

	Evaluation
	Workflow Pattern-Based Expressiveness Evaluation
	Control-Flow Patterns
	Data Patterns
	Scientific Workflow Patterns

	Evaluation of the Domain Knowledge Representation
	LP-based Knowledge Representation Evaluation
	DL-based Knowledge Representation Evaluation

	Computational Model-Based Empirical Evaluation
	Use Case-Based Experimental Evaluation
	Protein Prediction Result Analysis
	Snow Depth Data Screening
	Ant Identification and Treatment

	System Performance Evaluation
	Message Passing Overhead
	System Concurrency

	Summary

	IV Conclusion
	Conclusion and Outlook
	Summary
	Outlook

	V Appendix
	Zusammenfassung
	About the Author
	Bibliography

