Stabilität translatierender Lösungen des graphischen Mittleren Krümmungsflusses unter unbeschränkten Störungen

Zur Erlangung des Grades eines Doktors im Fach Mathematik

am Fachbereich

Mathematik und Informatik der Freien Universität Berlin

vorgelegt von

Adrian Hammerschmidt

Berlin, 2012

Erstgutachter: PD. Dr. Felix Schulze

Zweitgutachter: Prof. Dr. Oliver Schnürer

Tag der Disputation: Mittwoch, 25.1.2012

Danksagung:

An dieser Stelle möchte ich mich herzlich bei Dr. Felix Schulze und Prof. Dr. Oliver C. Schnürer für die großartige Betreuung und freundliche Zusammenarbeit bei der Erstellung dieser Dissertation bedanken. Desweiteren gilt mein Dank Prof. Dr. Gerhard Huisken und Prof. Dr. Klaus Ecker, die mich mit zahlreichen Anregungen und Diskussionen unterstützt haben.

Zusammenfassung

Diese Arbeit beschäftigt sich mit Stabilitätsresultaten von translatierenden ganzen Graphen unter dem Mittleren Krümmungsfluss. Dabei ist U eine translatierende Lösung des graphischen Mittleren Krümmungsflusses, wenn U die Gleichung

$$\frac{\partial}{\partial t}U = s = \sqrt{1 + |DU|^2} \operatorname{div}\left(\frac{DU}{\sqrt{1 + |DU|^2}}\right)$$

für ein $s \in \mathbb{R}$ auf $\mathbb{R}^N \times \mathbb{R}$ löst. Die translatierende Lösung hat dann die Form U(z,t) = U(z,0) + st, behält also ihr Aussehen und translatiert in der Zeit mit Geschwindigkeit *s* in Richtung z^{n+1} -Achse. Die Stabilität solcher Lösungen, die zusätzlich rotationssymmetrisch sind, wurde bereits von Clutterbuck, Schnürer und Schulze in [1] bewiesen unter der Annahme, dass die Anfangsstörung u_0 asymptotisch zur translatierenden Lösung U zur Zeit t = 0 ist. Für den Fall einer stationär translatierenden Lösung (s = 0), also dem \mathbb{R}^N als Hyperebene im \mathbb{R}^{N+1} , wird ein analoges Resultat in [2] gezeigt. Stabilitätsresultate für Lösungen anderer Krümmungsflüsse wie den Gausskrümmungsfluss oder den Riccifluss wurden ebenfalls von Schulze und Schnürer untersucht.

In der vorliegenden Arbeit soll die Bedingung anfänglich asymptotisch zu einer translatierenden Lösung zu sein abgeschwächt werden. Dabei wird der Raum \mathbb{R}^N in zwei Richtungen aufgespalten, sodass wir $\mathbb{R}^N = \mathbb{R}^{n+m}$ und z = (x, y) mit $x \in \mathbb{R}^n$ und $y \in \mathbb{R}^m$ setzen. Außerdem wird die translatierende Lösung \hat{U} in \mathbb{R}^n auf \mathbb{R}^{n+m} durch $U(z,t) := \hat{U}(x,t)$ erweitert. Eine solche Lösung wird in der vorliegenden Arbeit translatierender Trog genannt und auf Stabilität untersucht. Die Bedingung der Asymptotik aus [1], [2] wird durch polynomial wachsende oder fallende Störungen in y-Richtung abgeschwächt, solange in x-Richtung die Störung asymptotisch zur translatierenden Lösung $U(\cdot, 0)$ ist. Genauer wird im Fall der mit Geschwindigkeit 0 translatierenden Lösung U(z, t) = 0 das folgende Theorem bewiesen:

THEOREM 2.1 (Stabilität des \mathbb{R}^N). Sei M_0^{n+m} eine Fläche im \mathbb{R}^{n+m+1} , gegeben als graph u_0 , wobei $u_0 : \mathbb{R}^{n+m} \to \mathbb{R}$ stetig ist und die Bedingung

$$|u_0(x,y)| \le C \frac{1+|y|^p}{1+|x|^q}$$

für alle $x \in \mathbb{R}^n$, $y \in \mathbb{R}^m$ und 0 , <math>q > p + 1 erfüllt. Sei $u(\cdot, t)$ eine Lösung in $C^{\infty}(\mathbb{R}^{n+m} \times (0, \infty)) \cap C^0(\mathbb{R}^{n+m} \times [0, \infty))$ des graphischen Mittleren Krümmungsflusses mit $u(\cdot, 0) = u_0(\cdot)$. Dann gilt

$$u(\cdot, t) \to 0$$
 für $t \to \infty$

lokal gleichmäßig in y und gleichmäßig in x. Außerdem erhalten wir für $n \neq q$ die Abschätzung

$$|u(x, y, t)| \le Ct^{\max\{\frac{p+1-n}{2}, \frac{p+1-q}{2}\}} (1+|y|^p)$$

und für n = q

$$|u(x, y, t)| \le Ct^{\frac{p+1-q}{2}} (\log(1+t^{\frac{q}{2}})+1)(1+|y|^p)$$

für alle $t \ge 1$ und alle $(x, y) \in \mathbb{R}^{n+m}$.

Im zweiten Teil der Arbeit wird dieses Resultat mit Einschränkungen auf den Fall einer echt translatierenden Lösung $U(\cdot, t) = U(\cdot, 0) + st$ mit s > 0 übertragen. Dabei sind die Beweismethoden unterschiedlich. Während für die Stabilität des \mathbb{R}^N Lösungen der Wärmeleitungsgleichung im \mathbb{R}^{N+1} als Barrieren dienen, werden im allgemeinen Fall (s > 0) Barrieren mithilfe der Konvergenzrate aus Theorem 2.1 konstruiert. Das führt zu dem folgenden Resultat:

THEOREM 3.5 (Stabilität der Troglösung). Sei $n \ge 2$. M_0^{n+m} sei eine Fläche im \mathbb{R}^{n+m+1} , die als Graph einer stetigen Funktion $u_0 : \mathbb{R}^{n+m} \to \mathbb{R}$ gegeben ist, sodass für alle $\epsilon > 0$ ein R > 0 unabhängig von y existiert, sodass

$$\sup_{x \in \mathbb{R}^n \setminus B_R(0)} |U(x, y, 0) - u_0(x, y)| < \epsilon$$

für alle $y \in \mathbb{R}^m$ gilt. Weiter existiere ein R_0 , sodass auf $B_{R_0}^n(0) \times \mathbb{R}^m$ die Ungleichungen

$$u_0(x,y) \le C(1+|y|^{p_1}), u_0(x,y) \ge -C(1+|y|^{p_2})$$

mit $p_1 < 2$ und $p_2 + 1 < n$ erfüllt sind. Dann existiert eine Lösung $u \in C^{\infty}(\mathbb{R}^{n+m} \times (0,\infty)) \cap C^0(\mathbb{R}^{n+m} \times [0,\infty))$ der Gleichung (1.2) mit $u(\cdot,0) = u_0$, für die

$$U(\cdot,t) - u(\cdot,t) \to 0$$

lokal gleichmäßig für $t \to \infty$ gilt.

Im Gegensatz zu Theorem 2.1, in dem jede Lösung, die die Anfangswerte u_0 annimmt, stabil ist, wird in Theorem 3.5 nur die Existenz einer stabilen Lösung mit Anfangswerten u_0 gezeigt. Die Lösung ist jedoch eindeutig, wenn die Bedingungen aus Theorem A.1 erfüllt sind.

Diese Lösung wird konstruiert, wobei als ein weiteres Resultat das klassische Anfangsund Randwertproblem für den graphischen Mittleren Krümmungsfluss mit translatierenden Randwerten gelöst wird.

THEOREM 3.9. Sei Ω ein beschränktes Gebiet im \mathbb{R}^N . Sei $\partial \Omega \in C^{2,\alpha}$, $H_{\partial \Omega} \geq 0$ und $\varphi \in C^{2,\alpha}(\partial \Omega)$, $u_0 \in C^{2,\alpha}(\overline{\Omega})$. Dann hat das Anfangs- und Randwertproblem

$$\begin{cases} u_t = \sqrt{1 + |Du|^2} \operatorname{div} \left(\frac{Du}{\sqrt{1 + |Du|^2}} \right) & \text{ in } \Omega \times [0, T), \\ u(\cdot, 0) = u_0 & \text{ in } \bar{\Omega}, \\ 1 = \sqrt{1 + |Du_0|^2} \operatorname{div} \left(\frac{Du_0}{\sqrt{1 + |Du_0|^2}} \right) & \text{ auf } \partial\Omega, \\ u(z, t) = \varphi(z) + t & \text{ auf } \partial\Omega \times [0, T) \end{cases}$$

eine eindeutige Lösung $u \in C^{2+\alpha,1+\alpha/2}(\overline{\Omega} \times [0,T))$, wobei auch $T = \infty$ zugelassen werden kann.

Bezeichne U_{φ} die eindeutige translatierende Lösung der Gleichung

$$\begin{cases} u_t = \sqrt{1 + |Du|^2} \operatorname{div} \left(\frac{Du}{\sqrt{1 + |Du|^2}} \right) & \text{in } \Omega \times \mathbb{R} \\ u(z, t) = \varphi(z) + t & \text{auf } \partial\Omega \times \mathbb{R} \end{cases}$$

mit $U_{\varphi}(z,t) = U_{\varphi,0}(z) + t$ für ein eindeutig bestimmtes $U_{\varphi,0} \in C^{2,\alpha}(\overline{\Omega})$. Dann gilt außerdem

$$u(z,t) - U_{\varphi}(z,t) \to 0$$

gleichmäßig in z für $t \to \infty$.

Eine komplette Klassifizierung von Funktionen, die unter dem graphischen Mittleren Krümmungsfluss für $t \to \infty$ zu einer translatierenden Lösung konvergieren, ist erstrebenswert. Beiträge hierzu werden im dritten Teil der Arbeit untersucht. Es wird eine notwendige Bedingung für Konvergenz gegen eine translatierende Lösung hergeleitet. Ferner wird in Theorem 4.6 ein allgemeines Konvergenzresultat bewiesen. Genauer wird das folgende Theorem gezeigt. Dabei bezeichnet $|A|^2$ die Norm und H die Spur der zweiten Fundamentalform und ν_{n+1} ist die n+1Komponente der unteren Normalen.

THEOREM 4.6. Sei $u(\cdot, t)$ eine Lösung des graphischen Mittleren Krümmungsflusses (1.2) auf $\mathbb{R}^n \times [0,\infty)$. Sei $M_t = \operatorname{graph} u(\cdot,t)$, U die mit Geschwindigkeit 1 translatierende Lösung wie oben und es gebe Konstanten $c_1, c_2 > 0$, sodass

$$U(x,0) - c_1 \le u_0(x) \le U(x,0) + c_2$$

für alle $x \in \mathbb{R}^n$. Ferner gelte

$$H - \nu_{n+1} > 0$$

 $\begin{aligned} & auf \ M_0 \ und \ \sup_{M_0} |\nabla A|^2 \leq c_3 \ so wie \ |A|^2(t) \leq c_0 \ f \ddot{u} r \ alle \ t \in [0,\infty). \\ & Dann \ gilt \ -H - \nu_{n+1} \to 0 \ lokal \ gleichmäßig \ f \ddot{u} r \ t \to \infty. \end{aligned}$

Die Gliederung dieser Arbeit ist wie folgt. Einleitend wird die Mittlere Krümmungsflussgleichung vorgestellt und in ihre graphische Form gebracht, sowie wichtige grundlegende Resultate aus der Theorie des Mittleren Krümmungsflusses zitiert. Der darauf folgende Teil der Arbeit beweist die Stabilität des $\mathbb{R}^{\tilde{N}}$ mithilfe von Lösungen der Wärmeleitungsgleichung und gibt explizit eine Konvergenzrate an. Darauf folgt der Beweis von Theorem 3.5. Dafür wird zunächst eine wichtige Proposition gezeigt, sowie Barrieren auf $(\mathbb{R}^n \setminus B^n_R(0)) \times \mathbb{R}^m$ und $B^n_R(0) \times \mathbb{R}^m$ konstruiert. Im Abschnitt "Konstruktion einer Lösung" wird das Theorem 3.9 bewiesen. Der letzte Teil der Arbeit enthält eine notwendige Bedingung für Konvergenz gegen eine translatierende Lösung sowie das Konvergenzresultat Theorem 4.6.

Im Appendix werden Vergleichs- und Maximumprinzipien nachgetragen und die Standardargumentation für Kurzzeitexistenz genauer dargelegt.

Inhaltsverzeichnis

Zusammenfassung	1
Kapitel 1. Einführung in den Mittleren Krümmungsfluss	7
Kapitel 2. Stabilität des \mathbb{R}^N unter polynomial wachsenden Störungen	11
Kapitel 3. Stabilität translatierender Tröge unter polynomial wachsenden	~-
Störungen	27
3.1. Konstruktion von Barrieren auf $(\mathbb{R}^n \setminus B^n_R(0)) \times \mathbb{R}^m$	30
3.2. Konstruktion einer Lösung	35
3.3. Konstruktion von Barrieren auf $B^n_R(0) \times \mathbb{R}^m$	42
3.4. Beweis der Stabilität translatierender Tröge	51
Kapitel 4. Konvergenzresultate für translatierende Lösungen	55
4.1. Obere und untere Schranken an Polynome	55
4.2. Konvergenzresultat für translatierende Lösungen	60
Anhang A. Existenzsatz und Maximumprinzipien	65
A.1. Vergleichssätze	65
A.2. Existenztheorie	66
A.3. Technische Abschätzungen	67
Literaturverzeichnis	69

KAPITEL 1

Einführung in den Mittleren Krümmungsfluss

In diesem Abschnitt wird der Mittlere Krümmungsfluss für eingebettete Hyperflächen im \mathbb{R}^{N+1} vorgestellt und in den Fall einer graphischen Parametrisierung der Hyperfläche überführt. Ferner werden Kurzzeitexitenz- und Eindeutigkeitssätze zitiert sowie die für Stabilität notwendige Langzeitexistenz im graphischen Fall. Außerdem wird das Skalierungsverhalten der Mittleren Krümmungsflussgleichung beleuchtet und ein Vergleichstheorem eingeführt. Zuletzt werden später benötigte Evolutionsgleichungen verschiedener Größen aufgelistet.

Wir betrachten eine Familie von glatten Einbettungen $F_t = F(\cdot, t) : M^N \to \mathbb{R}^{N+1}$ mit $M_t = F_t(M^N)$, wobei M^N eine N-dimensionale Mannigfaltigkeit ohne Rand ist. Die induzierte Metrik (g_{ij}) auf M_t ist dann durch $g_{ij} = \langle D_i F, D_j F \rangle_{\mathbb{R}^{N+1}}$ gegeben und die zweite Fundamentalform $A = (h_{ij})$ durch $h_{ij} = \langle D_i \nu, D_j F \rangle_{\mathbb{R}^{N+1}}$ wobei ν die äußere Normale an M_t ist.

Die Familie $(M_t)_{t \in I}$ erfüllt die Mittlere Krümmungsflussgleichung, wenn

(1.1)
$$\frac{\partial}{\partial t}F(p,t) = \vec{H}(F(p,t))$$

gilt, wobei $p \in M^N$, $t \in I$ und $\vec{H} = -H\nu$. Dabei bezeichnet H die Mittlere Krümmung der Mannigfaltigkeit im R^{N+1} und ν die äußere Normale. Die Mittlere Krümmung ist die Spur der zweiten Fundamentalform, also $H = g^{ij}h_{ij}$, wobei g^{ij} die inverse Metrik ist und wir über oben und unten stehende Indizes von 1 bis N summieren. Diese Summenkonvention wird im Verlauf der Arbeit beibehalten ohne erneut darauf hinzuweisen.

Für den Fall, dass M_t als ganzer Graph gegeben ist, das heißt es existiert eine Funktion $u_t : \mathbb{R}^N \to \mathbb{R}$ mit graph $u_t = M_t$, lässt sich die Gleichung (1.1) bis auf tangentielle Diffeomorphismen in die Form

(1.2)
$$\frac{\partial}{\partial t}u = \sqrt{1 + |Du|^2} \operatorname{div}_{\mathbb{R}^N} \left(\frac{Du}{\sqrt{1 + |Du|^2}}\right) = \left(\delta_{ij} - \frac{D_i u D_j u}{1 + |Du|^2}\right) D^i D^j u$$

umschreiben. Dies ist eine quasilineare parabolische Differentialgleichung zweiter Ordnung. Mit einer einfachen Abschätzung sehen wir eine wesentliche Eigenschaft dieser Gleichung. Es gilt

$$a_{ij}(Du)\xi^{i}\xi^{j} := \left(\delta_{ij} - \frac{D_{i}uD_{j}u}{1+|Du|^{2}}\right)\xi^{i}\xi^{j} = \left(|\xi|^{2} - \frac{\langle Du,\xi\rangle^{2}}{1+|Du|^{2}}\right)$$
$$\geq \left(1 - \frac{|Du|^{2}}{1+|Du|^{2}}\right)|\xi|^{2} = \frac{1}{1+|Du|^{2}}|\xi|^{2}$$

und damit ist $a_{ij} > 0$, also gleichmäßig parabolisch, wenn |Du| < c.

Wir wollen die graphische Mittlere Krümmungsflussgleichung (1.2) herleiten und tangentielle Diffeomorphismen genauer beschreiben. Ist graph $u_t = M_t$, so ist eine Parametrisierung von M_t durch

(1.3)
$$F(z,t) = (\tilde{F}(z,t), u(\tilde{F}(z,t),t))$$

gegeben, wobei $\tilde{F} : \mathbb{R}^N \times I \to \mathbb{R}^N$, $\tilde{F}(z,t) = \tilde{z}$, so gewählt ist, dass graph $u_t = M_t = F_t(M^N)$. Die untere Normale ν ist gegeben durch

$$\nu = \frac{1}{\sqrt{1 + |Du|^2}} \left(\begin{array}{c} Du\\ -1 \end{array}\right)$$

und die Mittlere Krümmung H durch

$$H = \operatorname{div}_{\mathbb{R}^N} \left(\frac{Du}{\sqrt{1+|Du|^2}} \right).$$

Multiplizieren wir Gleichung (1.1) mit ν so erhalten wir

(1.4)
$$\langle \frac{\partial}{\partial t} F, \nu \rangle = -H.$$

Differenzieren wir die Parametrisierung F in (1.3) nach t und multiplizieren mit ν so gilt

$$\begin{split} \langle \frac{\partial}{\partial t} F(z,t), \nu \rangle &= \frac{1}{\sqrt{1+|Du|^2}} \left\langle \left(\begin{array}{c} \frac{\partial}{\partial t} \tilde{F}(z,t) \\ Du \cdot \frac{\partial}{\partial t} \tilde{F}(z,t) + u_t \end{array} \right), \left(\begin{array}{c} Du \\ -1 \end{array} \right) \right\rangle \\ &= \frac{-u_t}{\sqrt{1+|Du|^2}} \end{split}$$

und mit (1.4) erhalten wir die Gleichung (1.2). Dabei haben wir nur verwendet, dass $\frac{\partial}{\partial t}F \cdot \nu = -H$ gilt. Sei folglich u eine glatte Lösung der Gleichung (1.2) und $\tilde{F}(\tilde{z},t) = (\tilde{z}, u(\tilde{z},t))$ mit $\tilde{z} \in \mathbb{R}^N$, so haben wir

(1.5)
$$\left(\frac{\partial}{\partial t}\tilde{F}(\tilde{z},t)\right)^{\perp} := \left\langle \left(\frac{\partial}{\partial t}\tilde{F}(\tilde{z},t)\right),\nu\right\rangle\nu = \vec{H}(\tilde{F}(\tilde{z},t))$$

Sei $\Phi(\cdot, t)$ eine Familie von tangentiellen Diffeomorphismen, das heißt sei $\Phi(\cdot, t)$ die Familie der Diffeomorphismen von M, die die Differentialgleichung

(1.6)
$$\frac{\partial}{\partial t} \Phi(z,t) = -\frac{\partial}{\partial \tilde{z}} \tilde{F}(\Phi(z,t),t)^{-1} \cdot \frac{\partial}{\partial t} \tilde{F}(\Phi(z,t),t)^{T}$$
$$\Phi(z,0) = z$$

erfüllt, wobe
i T die Tangentialprojektion bezeichne. Dann setzen wi
r $F(z,t)=\tilde{F}(\Phi(z,t),t)$ und rechnen

$$\begin{split} \frac{\partial}{\partial t}F(z,t) &= \frac{\partial}{\partial t}\tilde{F}(\Phi(z,t),t) + \frac{\partial}{\partial \tilde{z}}\tilde{F}(\Phi(z,t),t)\cdot\frac{\partial}{\partial t}\Phi(z,t)\\ &\stackrel{(1.6)}{=} \left(\frac{\partial}{\partial t}\tilde{F}(\Phi(z,t),t)\right)^{\perp}\\ &\stackrel{(1.5)}{=}\vec{H}(\tilde{F}(\Phi(z,t),t)) = \vec{H}(F(z,t)). \end{split}$$

Damit haben wir die Gleichungen (1.1) und (1.2) in einen Zusammenhang gestellt. Als nächstes möchten wir die Frage der Existenz und Eindeutigkeit einer Lösung des Problems (1.2) untersuchen. Ecker und Huisken beweisen in [3] innere Abschätzung an den Gradienten und die Krümmung der Mannigfaltigkeiten M_t und sind damit in der Lage das nachfolgende Theorem zu zeigen.

Sei $q \in M^N$ und $U_{r,q}$ bezeichne die Komponente von $F_0^{-1}(B_r^{N+1}(F_0(q)) \cap M_0^N)$, in der q enthalten ist. Dann erfüllt M_0 eine lokal gleichmäßige Lipschitz Bedingung, wenn es Zahlen $r_0 > 0$ und $C_0 < \infty$ gibt, sodass für jedes $q \in M^N$ das Bild $F_0(U_{r_0,q})$ als Graph einer Lipschitz stetigen Funktion über einer Hyperebene im \mathbb{R}^{N+1} mit Lipschitzkonstante kleiner als C_0 geschrieben werden kann.

THEOREM 1.1. Sei $F_0: M^N \to \mathbb{R}^{N+1}$ eine glatte Immersion und erfülle eine lokal gleichmäßige Lipschitz Bedingung. Dann hat das Anfangswertproblem

(1.7)
$$\frac{\partial}{\partial t}F(p,t) = \vec{H}(p,t)$$
$$F(p,0) = F_0(p)$$

eine Lösung F_t auf einem Zeitintervall $[0, T_0)$. F_t ist für t > 0 glatt und bei t = 0Hölder stetig in der Zeit mit Hölderexponent $\alpha = \frac{1}{2}$.

Im Fall von ganzen Graphen gilt sogar noch mehr.

THEOREM 1.2 (Langzeitexistenz für ganze Graphen). Sei $M_0 = F_0(\mathbb{R}^N)$ ein lokal Lipschitz stetiger ganzer Graph über \mathbb{R}^N , also $F_0(z) = (z, u_0(z))$ für eine lokal Lipschitz stetige Funktion $u_0 : \mathbb{R}^N \to \mathbb{R}$. Dann hat das Anfangswertproblem

$$\frac{\partial}{\partial t}F(p,t) = \vec{H}(p,t)$$
$$F(p,0) = F_0(p)$$

eine glatte Lösung $M_t = F_t(\mathbb{R}^N)$ für alle t > 0. Außerdem ist M_t ein ganzer Graph über \mathbb{R}^N .

Dieses Theorem sichert also, dass zu einem lokal Lipschitz stetigen u_0 eine Lösung der Gleichung (1.2) auf ganz \mathbb{R}^N für alle Zeiten existiert. Es ist daher möglich das Stabilitätsverhalten solcher Lösungen zu studieren.

Wir geben ein Beispiel für eine typische Lösung der Gleichung (1.1), die in endlicher Zeit zu einem Punkt zusammen schrumpft.

BEISPIEL 1.3. Sei $M_t = \partial B_{r(t)}^{N+1}$. Wegen der Invarianz der Mittleren Krümmung unter Isometrien des R^{N+1} und der Eindeutigkeit der Lösung, reduziert sich die Gleichung (1.1) zu einer gewöhnlichen Differentialgleichung für den Radius r(t) gegeben durch $\dot{r} = -\frac{N}{r}$. Mit dem Anfangswert r(0) = R erhalten wir als Lösung dieser Gleichung $r(t) = \sqrt{R^2 - 2Nt}$. Sphären schrumpfen also in der Zeit zu einem Punkt. Sphären mit großem Radius schrumpfen nur langsam $(H = \frac{N}{r})$ und werden im Verlauf dieser Arbeit zusammen mit dem Vergleichsprinzip, Lemma 1.4, angewendet.

Im Verlauf dieser Arbeit werden wir immer wieder ein wichtiges Vergleichsprinzip verwenden.

LEMMA 1.4. Seien $M_{1,t}$ und $M_{2,t}$ zwei glatte geschlossene Flächen im \mathbb{R}^{N+1} und Lösungen der Mittleren Krümmungsflussgleichung (1.1) für $0 \le t \le T$. Wenn $M_{1,t}$ und $M_{2,t}$ zur Zeit t = 0 disjunkt waren, so bleiben sie auf dem Intervall [0,T]disjunkt. BEWEIS. Der Beweis findet sich in [4] Lemma 3.2.

BEMERKUNG 1.5. Das Lemma ist auch dann noch gültig, wenn $M_{1,t}$ nicht kompakt ist oder sogar $M_{1,t}$ und $M_{2,t}$ nicht kompakt sind. Der Beweis benötigt nur, dass dist $\{M_{1,t}, M_{2,t}\} := \inf\{|z_1 - z_2| | z_1 \in M_{1,t}, z_2 \in M_{2,t}\}$ für jedes $t \ge 0$ angenommen wird. Der Beweis in diesen Fällen funktioniert analog.

BEMERKUNG 1.6. Subtrahieren wir zwei graphische Lösungen der Gleichung (1.2) voneinander, dann erhalten wir aufgrund der Quasilinearität im Allgemeinen keine neue Lösung der Gleichung (1.2). Dennoch erfüllt die Differenz zweier Lösungen wieder eine gleichmäßig parabolische Differentialgleichung solange a priori Gradientenschranken an die Lösungen gelten. Damit ist das parabolische Maximumprinzip anwendbar. Für Details verweisen wir auf Theorem 17.1 in [5].

Wir möchten als nächstes auf ein angenehmes und nützliches Skalierungsverhalten des graphischen Mittleren Krümmungsflusses aufmerksam machen. Sei dafür u(z,t) eine Lösung mit Anfangswerten $u(\cdot,0) = u_0$. Dann ist auch die skalierte Lösung $u_{\lambda}(z,t) := \frac{1}{\lambda}u(\lambda z, \lambda^2 t)$ mit $\lambda > 0$ oder $\lambda < 0$ wieder eine Lösung der Gleichung (1.2) zu den Anfangswerten $\frac{1}{\lambda}u_0(\lambda z)$. Es gilt nämlich

(1.8)
$$\frac{\partial}{\partial t}u_{\lambda}(z,t) = \frac{\partial}{\partial t}\left(\frac{1}{\lambda}u(\lambda z,\lambda^{2}t)\right) = \lambda\frac{\partial}{\partial t}u(\lambda z,\lambda^{2}t)$$

und

$$\left(\delta_{ij} - \frac{D_i u_{\lambda} D_j u_{\lambda}}{1 + |Du_{\lambda}|^2}\right) D^i D^j u_{\lambda}|_{(z,t)} = \lambda \left(\delta_{ij} - \frac{D_i u D_j u}{1 + |Du|^2}\right) D^i D^j u|_{(\lambda z, \lambda^2 t)}.$$

Zuletzt widmen wir uns einigen Evolutionsgleichungen, die später benötigt werden. Wir definieren $v := -\nu_{n+1}^{-1}$ und bezeichnen mit $d\mu_t = \mu_t(x)dx$ das Maß auf M_t , also $\mu_t = \sqrt{\det g_{ij}}$. Ferner ist $A = (h_{ij})$ wieder die zweite Fundamentalform und $\Delta_{M_t} := g^{ij} \nabla_i \nabla_j$ der Laplaceoperator auf der Fläche M_t .

LEMMA 1.7. Unter dem Mittleren Krümmungsfluss (1.1) gelten die folgenden Evolutionsgleichungen

$$\begin{split} &\left(\frac{\partial}{\partial t} - \Delta_{M_t}\right) v = -|A|^2 v - 2v^{-1} |\nabla v|^2, \\ &\left(\frac{\partial}{\partial t} - \Delta_{M_t}\right) |A|^2 = -2|\nabla A|^2 + 2|A|^4, \\ &\left(\frac{\partial}{\partial t} - \Delta_{M_t}\right) |\nabla A|^2 = -2|\nabla^2 A|^2 - c(n)|A|^2 |\nabla A|^2, \\ &\left(\frac{\partial}{\partial t} - \Delta_{M_t}\right) H = H|A|^2, \\ &\left(\frac{\partial}{\partial t} - \Delta_{M_t}\right) H = H|A|^2, \\ &\frac{\partial}{\partial t} g_{ij} = -2Hh_{ij}, \\ &\frac{\partial}{\partial t} \nu = \nabla H, \\ &\frac{\partial}{\partial t} \mu_t = -H^2 \mu_t. \end{split}$$

BEWEIS. Die Beweise dieser Evolutionsgleichungen stehen in [6] und [7].

KAPITEL 2

Stabilität des \mathbb{R}^N unter polynomial wachsenden Störungen

In diesem Abschnitt wird die Stabilität des \mathbb{R}^N unter dem Mittleren Krümmungsfluss bei polynomialen Störungen, also Theorem 2.1, bewiesen. Dafür wird ausgenutzt, dass eine mit \sqrt{t} multiplizierte, positive Lösung der Wärmeleitungsgleichung im \mathbb{R}^{N+1} eine Superlösung der Wärmeleitungsgleichung auf der Fläche M_t ist, die nach dem Mittleren Krümmungsfluss fließt (vgl. Lemma 2.12). Um die Stabilität des \mathbb{R}^N zu zeigen, genügt es also das Langzeitverhalten von Lösungen der Wärmeleitungsgleichung zu studieren, was in Lemma 2.3 getan wird.

Wir geben zunächst das zu beweisende Theorem an.

THEOREM 2.1 (Stabilität des \mathbb{R}^N). Sei M_0^{n+m} eine Fläche im \mathbb{R}^{n+m+1} , gegeben als graph u_0 , wobei $u_0 : \mathbb{R}^{n+m} \to \mathbb{R}$ stetig ist und die Bedingung

$$|u_0(x,y)| \le C \frac{1+|y|^p}{1+|x|^q}$$

für alle $x \in \mathbb{R}^n$, $y \in \mathbb{R}^m$ und 0 , <math>q > p + 1 erfüllt. Sei $u(\cdot, t)$ eine Lösung in $C^{\infty}(\mathbb{R}^{n+m} \times (0, \infty)) \cap C^0(\mathbb{R}^{n+m} \times [0, \infty))$ des graphischen Mittleren Krümmungsflusses (1.2) mit $u(\cdot, 0) = u_0(\cdot)$. Dann gilt

$$u(\cdot,t) \to 0$$
 für $t \to \infty$

lokal gleichmäßig in y und gleichmäßig in x. Außerdem erhalten wir für $n \neq q$ die Abschätzung

$$|u(x, y, t)| \le Ct^{\max\{\frac{p+1-n}{2}, \frac{p+1-q}{2}\}} (1+|y|^p)$$

 $und \ f \ddot{u} r \ n = q$

$$|u(x,y,t)| \le Ct^{\frac{p+1-q}{2}} (\log(1+t^{\frac{q}{2}})+1)(1+|y|^p)$$

für alle $t \ge 1$ und alle $(x, y) \in \mathbb{R}^{n+m}$.

BEMERKUNG 2.2. i) Nehmen wir an, dass u_0 lokal Lipschitz stetig ist. Dann liefert Theorem 1.2 die Existenz einer Lösung der Gleichung (1.2) zu diesen Anfangswerten. Auch wenn u_0 nur stetig ist, existiert eine Lösung. Sie kann so konstruiert werden wie das in Abschnit 3.2 getan wird.

ii) Die Bedingung

$$|u_0(x,y)| \le C \frac{1+|y|^p}{1+|x|^q}$$

besagt polynomialen Abfall mit Potenz q in x-Richtung und polynomiales Wachstum mit Potenz p in y-Richtung (siehe Abbildung 2.1 a)). Da p < q, existiert insbesondere zu jedem $\epsilon > 0$ ein Radius r(y), sodass $|u_0(x,y)| < \epsilon$ für

ABBILDUNG 2.1. a) Eine mögliche Wahl von u_0 b) sublineares Öffnen

alle $y \in \mathbb{R}^m$ und alle $x \in \mathbb{R}^n \setminus B^n_{r(y)}$, wobei $r : \mathbb{R}^m \to \mathbb{R}$ eine Funktion in y ist, die sublinear in |y| wächst, das heißt

$$\frac{|r(y)|}{|y|} \to 0$$

für |y| → ∞. Anders gesagt, die Menge {(x, y) ∈ ℝ^{n+m}| |u₀(x, y)| > ε} öffnet sich höchstens sublinear in y-Richtung (siehe Abbildung 2.1 b)).
iii) Die Bedingung 0

Die Mittlere Krümmungsflussgleichung (1.1) lässt sich in die Form

$$\frac{\partial}{\partial t}Z = \Delta_{M_t}Z$$

für $Z \in M_t$ umschreiben. Dabei ist die Gleichung komponentenweise zu verstehen. Es gilt nämlich für jeden Basisvektor $e_{\alpha} \operatorname{des} \mathbb{R}^{N+1}$ die Gleichung $\Delta_{M_t} Z_{\alpha} = \left\langle \vec{H}, e_{\alpha} \right\rangle$. Diese Umformung legt den Verdacht nahe, dass sich der Mittlere Krümmungsfluss wie eine Wärmeleitungsgleichung verhält. Wenn wir Stabilität des \mathbb{R}^N unter dem Mittleren Krümmungsfluss untersuchen wollen, ist es folglich ratsam zunächst einmal Stabilität des \mathbb{R}^N unter der Wärmeleitungsgleichung zu betrachten.

LEMMA 2.3.
$$Sei |\Phi_0(x,y)| \le c \frac{1+|y|^p}{1+|x|^q} \ f \ddot{u} r \ x \in \mathbb{R}^n, \ y \in \mathbb{R}^{m'}, \ ein \ c > 0 \ und \ p, q \in \mathbb{R}^{n'}$$

 $\mathbb{N} \ mit \ p < n \ und \ q > p. \ Dann \ erfüllt \ \Phi(x, y, t) = (4\pi t)^{-\frac{n+m'}{2}} \int_{\mathbb{R}^{n+m'}} e^{\frac{-|(x,y)-z|^2}{4t}} \Phi_0(z) \ dz$ die Wärmeleitungsgleichung und $\Phi(x, y, t) \to 0$ für $t \to \infty$ lokal gleichmäßig. Genauer ergibt sich die Konvergenzrate aus der Abschätzung

$$|\Phi(x, y, t)| \le Ct^{-\frac{\min\{n-p, q-p\}}{2}} (1+|y|^p)$$

für $n \neq q$ und

$$|\Phi(x, y, t)| \le Ct^{\frac{p-q}{2}} (\log(1 + t^{\frac{q}{2}}) + 1)(1 + |y|^p)$$

für n = q und $t \ge 1$.

BEWEIS. In den nachfolgenden Rechnungen ist es übersichtlicher neu auftretende Konstanten nicht umzubenennen.

Mithilfe der Darstellungsformel schließen wir, dass Φ die Wärmeleitungsgleichung mit $\Phi(x, y, 0) = \Phi_0(x, y)$ löst. Wir betrachten also Φ für $t \to \infty$. Mit einer Transformation und $z = (z_1, z_2) \in \mathbb{R}^{n+m'}$ erhalten wir

Sei nun |y| > 1 und $t \ge 1$, dann haben wir

$$\begin{split} A &\leq \int_{\mathbb{R}^{m'}} e^{-\frac{|z_2|^2}{4t}} \left(1 + 2^p |y|^p + 2^p |z_2|^p\right) dz_2 \\ &\leq \int_{\mathbb{R}^{m'}} e^{-\frac{|z_2|^2}{4t}} \left(|y|^p (1 + 2^p + 2^p |z_2|^p)\right) dz_2 \\ &= |y|^p t^{\frac{m'}{2}} \int_{\mathbb{R}^{m'}} e^{-\frac{|z_2|^2}{4}} \left(1 + 2^p + 2^p |\sqrt{t}z_2|^p\right) dz_2 \\ &\leq |y|^p t^{\frac{m'}{2}} \int_{\mathbb{R}^{m'}} e^{-\frac{|z_2|^2}{4}} \left(t^{\frac{p}{2}} (1 + 2^p + 2^p |z_2|^p)\right) dz_2 \\ &= C|y|^p t^{\frac{m'+p}{2}} \end{split}$$

und für $|y| \leq 1$

$$A \leq \int_{\mathbb{R}^{m'}} e^{-\frac{|z_2|^2}{4t}} (1+2^p+2^p|z_2|^p) dz_2$$

= $t^{\frac{m'}{2}} \int_{\mathbb{R}^{m'}} e^{-\frac{|z_2|^2}{4}} (1+2^p+2^p|\sqrt{t}z_2|^p) dz_2$
 $\leq Ct^{\frac{m'+p}{2}}.$

Insgesamt haben wir also für alle y die Abschätzung

$$A \le Ct^{\frac{m'+p}{2}}(1+|y|^p).$$

Wir schätzen nun das Integral B ab. Durch Aufsplitten erhalten wir

$$B \leq \underbrace{\int_{\mathbb{R}^n \setminus B_{\sqrt{t}}(x)} e^{-\frac{|z_1|^2}{4t}} \frac{1}{1+|x-z_1|^q} \, dz_1}_{=:B_1} + \underbrace{\int_{B_{\sqrt{t}}(x)} e^{-\frac{|z_1|^2}{4t}} \frac{1}{1+|x-z_1|^q} \, dz_1}_{=:B_2}.$$

Wir betrachten zunächst B_1 .

$$B_{1} \leq \int_{\mathbb{R}^{n} \setminus B_{\sqrt{t}}(x)} e^{-\frac{|z_{1}|^{2}}{4t}} \frac{1}{1+t^{\frac{q}{2}}} dz_{1} = t^{\frac{n}{2}} \int_{\mathbb{R}^{n} \setminus B_{1}(x)} e^{-\frac{|z_{1}|^{2}}{4}} \frac{1}{1+t^{\frac{q}{2}}} dz_{1}$$
$$= t^{\frac{n-q}{2}} \int_{\mathbb{R}^{n} \setminus B_{1}(x)} e^{-\frac{|z_{1}|^{2}}{4}} \frac{1}{t^{-\frac{q}{2}}+1} dz_{1} \leq t^{\frac{n-q}{2}} \int_{\mathbb{R}^{n} \setminus B_{1}(x)} e^{-\frac{|z_{1}|^{2}}{4}} dz_{1}$$
$$\leq Ct^{\frac{n-q}{2}}.$$

Wir bemerken

$$B_2 \le \int_{B_{\sqrt{t}}(x)} \frac{1}{1 + |x - z_1|^q} \, dz_1.$$

14 2. STABILITÄT DES \mathbb{R}^N UNTER POLYNOMIAL WACHSENDEN STÖRUNGEN

Wir wählen $0 < \delta < 1$ und damit $B_{\delta}(x) \subset B_{\sqrt{t}}(x)$, dann gilt für $q \neq n$

$$\begin{split} B_{2} &\leq \int_{0}^{\delta} \int_{\partial B_{s}(x)} \frac{1}{1+|x-z_{1}|^{q}} \, dS(z_{1}) ds + \int_{\delta}^{\sqrt{t}} \int_{\partial B_{s}(x)} \frac{1}{1+|x-z_{1}|^{q}} \, dS(z_{1}) ds \\ &\leq \int_{B_{\delta}(x)} 1 \, dz_{1} + \int_{\delta}^{\sqrt{t}} \int_{\partial B_{s}(x)} \frac{1}{1+s^{q}} \, dS(z_{1}) ds \\ &= |B_{\delta}| + C \int_{\delta}^{\sqrt{t}} \frac{s^{n-1}}{1+s^{q}} \, ds \leq |B_{\delta}| + C \int_{\delta}^{\sqrt{t}} s^{n-1-q} \, ds \\ &\leq |B_{\delta}| + C \left[\frac{1}{n-q} s^{n-q} \right]_{\delta}^{\sqrt{t}} = C + C \left(\frac{1}{n-q} t^{\frac{n-q}{2}} - \frac{1}{n-q} \delta^{n-q} \right) \\ &\leq C + C \frac{1}{|n-q|} t^{\frac{n-q}{2}} \\ &\leq C(1+t^{\frac{n-q}{2}}). \end{split}$$

Für n = q können wir B_2 direkt abschätzen.

$$B_2 \leq C \int_0^{\sqrt{t}} \frac{s^{q-1}}{1+s^q} \, ds = \frac{C}{q} \int_0^{\sqrt{t}} \frac{\partial}{\partial s} \log(1+s^q) \, ds$$
$$= C \log(1+t^{\frac{q}{2}}).$$

Insgesamt haben wir also Bim Fall $n\neq q$ abgeschätzt durch

$$B \le Ct^{\frac{n-q}{2}} + C(1+t^{\frac{n-q}{2}}) \le C(1+t^{\frac{n-q}{2}}).$$

Damit gilt für $n \neq q$

$$\begin{split} |\Phi(x,y,t)| &\leq Ct^{-\frac{n+m'}{2}}t^{\frac{m'+p}{2}}(1+|y|^p)(t^{\frac{n-q}{2}}+1) \\ &= Ct^{\frac{-n-m'+m'+p+n-q}{2}}(1+|y|^p) + Ct^{\frac{-n-m'+m'+p}{2}}(1+|y|^p) \\ &\leq C(t^{\frac{p-q}{2}}+t^{\frac{p-n}{2}})(1+|y|^p) \\ &\leq Ct^{\max\{\frac{p-q}{2},\frac{p-n}{2}\}}(1+|y|^p). \end{split}$$

Im Fall n = q erhalten wir

$$\begin{aligned} |\Phi(x,y,t)| &\leq Ct^{-\frac{n+m'}{2}} t^{\frac{m'+p}{2}} (1+|y|^p) (\log(1+t^{\frac{q}{2}})+1) t^{\frac{n-q}{2}} \\ &= Ct^{\frac{-n-m'+m'+p+n-q}{2}} (\log(1+t^{\frac{q}{2}})+1) (1+|y|^p) \\ &= Ct^{\frac{p-q}{2}} (\log(1+t^{\frac{q}{2}})+1) (1+|y|^p). \end{aligned}$$

Aus diesen Abschätzungen folgt die in ylokal gleichmäßige und in x gleichmäßige Konvergenz. $\hfill \Box$

BEMERKUNG 2.4. i) Betrachten wir im obigen Lemma 2.3 statt Φ die Funktion $\sqrt{t}\Phi$, dann benötigen wir im Fall $n \neq q$ für die Konvergenz $\sqrt{t}\Phi \rightarrow 0$, dass $p < n - 1, n \geq 2$ und q > p + 1. Dies folgt direkt aus dem Beweis des Lemmas und wird später benötigt.

ii) Betrachten wir Anfangswerte u_0 , die über einem Kegel konstant sind, so können wir höchstens Konvergenz gegen eine von Null verschiedene Konstante erwarten. Wählen wir über \mathbb{R}^2 nämlich eine geglätte Version der charakteristischen Funktion über dem ersten und dritten Quadranten $\chi_{1,3}$ und nehmen an, dass

15

diese gegen Null konvergiert, $\chi_{1,3}(z,t) \to 0$ für $t \to \infty$. Dann muss die Funktion $1 - \chi_{1,3}$, die ebenfalls Lösung der Wärmeleitungsgleichung ist, gegen 1 konvergieren. Diese neue Funktion ist aber die um 90° gedrehte alte Funktion und müsste daher ebenfalls gegen Null konvergieren. Unterteilen wir den ersten und dritten Quadranten in k Teilkegel gleicher Größe und bezeichnen wir mit χ_1 die geglättete charakteristische Funktionen über einem dieser Kegel, dann erhalten wir $\chi_{1,3}$ durch k-faches aufsummieren der Funktion χ_1 und deren k Drehungen um den Winkel $\frac{90}{k}^{\circ}$. Da die Wärmeleitungsgleichung linear ist, erhalten wir den gleichen Widerspruch. Aus diesem Widerspruch folgern wir, dass Funktionen über einem Kegel nicht gegen Null konvergieren können und die Bedingung des sublinearen Öffnens in y-Richtung der Menge $\{(x, y) \in \mathbb{R}^{n+m} \mid |u_0(x, y)| > \epsilon\}$ in diesem Sinne scharf ist.

Wir wollen im Beweis von Theorem 2.1 ein kompaktes Maximumprinzip anwenden und müssen daher sicher stellen, dass wir das trotz unserer nicht kompakten Flächen auch dürfen. Dafür benötigen wir, dass das polynomiale Verhalten in xund y-Richtung unter der Wärmeleitungsgleichung und der Mittleren Krümmungsflussgleichung erhalten bleibt.

LEMMA 2.5. Sei $\Phi(\cdot, t)$ die durch die Darstellungsformel gegebene Lösung der Wärmeleitungsgleichung im $\mathbb{R}^{n+m'}$ mit Anfangswerten

$$\Phi_0(x,y) = c \frac{1+|y|^p}{1+|x|^q}$$

für p, q > 0, dann gilt für alle $t \ge 1$

$$c_1 \frac{(1+|y|^p)}{t^{\frac{q}{2}}(1+|x|^q)} \le \Phi(x,y,t) \le c_2 \frac{(1+|y|^p)}{(1+|x|^q)}$$

für Konstanten $c_1, c_2 > 0$, die nur von n, m', c abhängen.

BEWEIS. Wegen der Darstellungsformel der Wärmeleitungsgleichung ist für unsere Anfangswerte die Darstellung der Lösung zur Zeit t gegeben durch

$$\Phi(x,y,t) = C(n,m')t^{-\frac{n+m'}{2}} \int_{\mathbb{R}^{n+m'}} e^{-\frac{|z_2|^2}{4t}} (1+|y-z_2|^p) \frac{e^{-\frac{|z_1|^2}{4t}}}{1+|x-z_1|^q} dz_1 dz_2$$
$$= C(n,m')t^{-\frac{n+m'}{2}} \int_{\mathbb{R}^{m'}} e^{-\frac{|z_2|^2}{4t}} (1+|y-z_2|^p) \int_{\mathbb{R}^n} \frac{e^{-\frac{|z_1|^2}{4t}}}{1+|x-z_1|^q} dz_1 dz_2$$

und wir schätzen ab

$$\begin{split} \Phi(x,y,t) &\geq C(n,m')t^{-\frac{n+m'}{2}} \\ &\int_{|y-z_2| > |y|} e^{-\frac{|z_2|^2}{4t}} (1+|y-z_2|^p) \int_{\mathbb{R}^n} \frac{e^{-\frac{|z_1|^2}{4t}}}{1+2^q |x|^q + 2^q |z_1|^q} \, dz_1 dz_2 \\ &\geq \frac{C(n,m')}{t^{\frac{n+m'}{2}}} \int_{|y-z_2| > |y|} e^{-\frac{|z_2|^2}{4t}} (1+|y|^p) \int_{\mathbb{R}^n} \frac{e^{-\frac{|z_1|^2}{4t}}}{1+2^q |x|^q + 2^q |z_1|^q} \, dz_1 dz_2 \\ &\geq \frac{C(n,m')(1+|y|^p)}{t^{\frac{n+m'}{2}}} \int_{\mathbb{R}^n \times \{|y-z_2| > |y|\}} \frac{e^{-\frac{|z|^2}{4t}}}{1+2^q |x|^q + 2^q |z_1|^q} \, dz_1 dz_2. \end{split}$$

Wir bemerken zunächst, dass die Menge $\{|y-z_2| > |y|\}$ nicht leer ist. Bezeichnen wir mit $\mathbb{R}_+^{m'}$ den Halbraum, in dem y nicht enthalten ist und für den $\partial \mathbb{R}_+^{m'} \perp y$ gilt, dann gilt

 $\mathbb{R}^{m'}_+ \subset \{|y-z_2| > |y|\}$. Nehmen wir an, dass |x| < 1 und $t \ge 1$, dann

$$\begin{split} \Phi(x,y,t) &\geq C(n,m')t^{-\frac{n+m'}{2}}(1+|y|^p) \int_{\mathbb{R}^n \times \mathbb{R}_+^{m'}} \frac{e^{-\frac{|z|^2}{4t}}}{1+2^q|x|^q+2^q|z_1|^q} \, dz_1 dz_2 \\ &= C(n,m')(1+|y|^p) \int_{\mathbb{R}^n \times \mathbb{R}_+^{m'}} \frac{e^{-\frac{|z|^2}{4}}}{1+2^q|x|^q+2^qt^{\frac{q}{2}}|z_1|^q} \, dz_1 dz_2 \\ &\geq C(n,m')t^{-\frac{q}{2}}(1+|y|^p). \end{split}$$

Nehmen wir nun an, dass $|x| \ge 1$ und $t \ge 1$, dann folgern wir

$$\begin{split} \Phi(x,y,t) &\geq C(n,m')t^{-\frac{n+m'}{2}}(1+|y|^p) \int_{\mathbb{R}^n \times \mathbb{R}_+^{m'}} \frac{e^{-\frac{|z|^2}{4t}}}{1+2^q|x|^q+2^q|z_1|^q} \, dz_1 dz_2 \\ &\geq C(n,m')t^{-\frac{n+m'}{2}}(1+|y|^p) \int_{\mathbb{R}^n \times \mathbb{R}_+^{m'}} \frac{e^{-\frac{|z|^2}{4t}}}{|x|^q(1+2^q+2^q|z_1|^q)} \, dz_1 dz_2 \\ &\geq C(n,m')(1+|y|^p) \int_{\mathbb{R}^n \times \mathbb{R}_+^{m'}} \frac{e^{-\frac{|z|^2}{4}}}{|x|^q(1+2^q+2^qt^{\frac{q}{2}}|z_1|^q)} \, dz_1 dz_2 \\ &\geq C(n,m')t^{-\frac{q}{2}} \frac{(1+|y|^p)}{|x|^q} \end{split}$$

und wir erhalten insgesamt

$$\Phi(x, y, t) \ge C(n, m') \frac{(1+|y|^p)}{t^{\frac{q}{2}}(1+|x|^q)}.$$

Die Abschätzung nach oben erhält man analog, wird jedoch im Verlauf der Arbeit nicht weiter benötigt. $\hfill\square$

Wir folgen nun einer Idee aus [6], Proposition 2.2, um zu zeigen, dass polynomiales Verhalten in x- und y-Richtung unter dem Mittleren Krümmungsfluss erhalten bleibt.

LEMMA 2.6. Für $\eta \in C^{\infty}(\mathbb{R}^{N+1})$ mit $\eta > 0$ und $p \in \mathbb{R}$ gilt

$$\left(\frac{\partial}{\partial t} - \Delta_{M_t}\right)\eta^p = p\eta^{p-1} \left(\frac{\partial}{\partial t} - \Delta_{M_t}\right)\eta - p(p-1)\eta^{p-2}|\nabla\eta|^2.$$

Außerdem haben wir für $u, v, w \in C^{\infty}(\mathbb{R}^{N+1})$

$$\left(\frac{\partial}{\partial t} - \Delta_{M_t}\right)(uvw) = vw\left(\frac{\partial}{\partial t} - \Delta_{M_t}\right)u + wu\left(\frac{\partial}{\partial t} - \Delta_{M_t}\right)v + vu\left(\frac{\partial}{\partial t} - \Delta_{M_t}\right)w - 2w\left\langle\nabla u, \nabla v\right\rangle - 2u\left\langle\nabla w, \nabla v\right\rangle - 2v\left\langle\nabla w, \nabla u\right\rangle.$$

BEWEIS. Wir haben

$$\left(\frac{\partial}{\partial t} - \Delta_{M_t}\right)\eta^p = p\eta^{p-1}\frac{\partial}{\partial t}\eta - g^{ij}\nabla_i\left(p\eta^{p-1}\nabla_j\eta\right)$$
$$= p\eta^{p-1}\frac{\partial}{\partial t}\eta - p\eta^{p-1}g^{ij}\nabla_i\nabla_j\eta - p(p-1)\eta^{p-2}g^{ij}\nabla_i\eta\nabla_j\eta$$
$$= p\eta^{p-1}\left(\frac{\partial}{\partial t} - \Delta_{M_t}\right)\eta - p(p-1)\eta^{p-2}|\nabla\eta|^2.$$

Ebenso einfach berechnen wir die zweite Gleichung. Wir bestimmen zunächst eine Formel für zwei Funktionen.

$$\begin{pmatrix} \frac{\partial}{\partial t} - \Delta_{M_t} \end{pmatrix} (\eta v) = v \frac{\partial}{\partial t} \eta + \eta \frac{\partial}{\partial t} v - g^{ij} \nabla_i (v \nabla_j \eta + \eta \nabla_j v)$$

$$= v \frac{\partial}{\partial t} \eta + \eta \frac{\partial}{\partial t} v - v g^{ij} \nabla_i \nabla_j \eta - \eta g^{ij} \nabla_i \nabla_j v - 2g^{ij} \nabla_i \eta \nabla_j v$$

$$= v \left(\frac{\partial}{\partial t} - \Delta_{M_t} \right) \eta + \eta \left(\frac{\partial}{\partial t} - \Delta_{M_t} \right) v - 2 \langle \nabla \eta, \nabla v \rangle .$$

Für drei Funktionen setzen wir $\eta = uw$ und erhalten

$$\begin{pmatrix} \frac{\partial}{\partial t} - \Delta_{M_t} \end{pmatrix} (uvw) = \left[v \left(\frac{\partial}{\partial t} - \Delta_{M_t} \right) u + u \left(\frac{\partial}{\partial t} - \Delta_{M_t} \right) v - 2 \langle \nabla u, \nabla v \rangle \right] w \\ + uv \left(\frac{\partial}{\partial t} - \Delta_{M_t} \right) w - 2u \langle \nabla w, \nabla v \rangle - 2v \langle \nabla w, \nabla u \rangle .$$

Daraus folgt die zweite Behauptung.

Sei nun $Z\in M^{n+m}_t$ und M^{n+m}_t sei eine glatte im \mathbb{R}^{n+m+1} eingebettete Lösung des graphischen Mittleren Krümmungsflusses. Dann gilt

$$Z|^{2} = |\Pi^{x}(Z)|^{2} + |\Pi^{y}(Z)|^{2} + u_{Z}^{2},$$

wobei Π^x die Projektion auf die ersten *n* Komponenten und Π^y die Projektion auf die darauffolgenden *m* Komponenten seien und u_Z durch $u_Z := \langle Z, e_{n+m+1} \rangle$ definiert wird.

Ferner lässt sich leicht berechnen, dass $\left(\frac{\partial}{\partial t} - \Delta_{M_t}\right) |Z|^2 = -2(n+m)$ gilt. Wir bemerken noch, dass eine Orthonormalbasis $\{\tau_k\}_{k=1}^{n+m}$ des Tangentialraums $T_p M_t$ für $p \in M_t$ zu einer Orthonormalbasis des \mathbb{R}^{n+m+1} durch $\{\tau_k\}_{k=1}^{n+m+1}$ mit $\tau_{n+m+1} = \nu$ erweitert werden kann.

LEMMA 2.7. Mit den obigen Bezeichnungen erhalten wir die folgenden Abschätzungen

$$-2n \le \left(\frac{\partial}{\partial t} - \Delta_{M_t}\right) (1 + |\Pi^x(Z)|^2) \le 2 - 2n$$
$$-2m \le \left(\frac{\partial}{\partial t} - \Delta_{M_t}\right) (1 + |\Pi^y(Z)|^2) \le 2 - 2m,$$

BEWEIS. Es gilt

$$\begin{split} \frac{\partial}{\partial t}(1+|\Pi^x(Z)|^2) &= 2\left\langle \Pi^x\left(\frac{\partial}{\partial t}Z\right),\Pi^x(Z)\right\rangle \\ &= -2H\left\langle \Pi^x(\nu),\Pi^x(Z)\right\rangle \end{split}$$

und

$$\Delta(1 + |\Pi^{x}(Z)|^{2}) = g^{ij} \nabla_{i} \left(2 \langle \Pi^{x} (\nabla_{j}Z), \Pi^{x}(Z) \rangle \right)$$

$$= 2g^{ij} \left(\langle \Pi^{x} (\nabla_{i}\nabla_{j}Z), \Pi^{x}(Z) \rangle + \langle \Pi^{x} (\nabla_{j}Z), \Pi^{x} (\nabla_{i}Z) \rangle \right)$$

$$\leq -2H \langle \Pi^{x}(\nu), \Pi^{x}(Z) \rangle + 2n,$$

wobei wir in der letzen Ungleichung benutzt haben, dass in einer Orthonormalbasis $\{\tau_k\}_{k=1}^{n+m+1}$ wie oben die Gleichheit

$$\sum_{i,j=1}^{n+m} g^{ij} \Pi^x(\nabla_i Z) \Pi^x(\nabla_j Z) = \sum_{i=1}^{n+m} |\Pi^x(\tau_i)|^2$$

und die Abschätzung

$$\sum_{i=1}^{n+m} |\Pi^{x}(\tau_{i})|^{2} \leq \sum_{i=1}^{n+m+1} |\Pi^{x}(\tau_{i})|^{2} = \sum_{i=1}^{n+m+1} \left| \sum_{j=1}^{n+m+1} \Pi^{x}(\langle e_{j}, \tau_{i} \rangle e_{j}) \right|^{2}$$
$$= \sum_{i=1}^{n+m+1} \left| \sum_{j=1}^{n} \langle e_{j}, \tau_{i} \rangle e_{j} \right|^{2} = \sum_{i=1}^{n+m+1} \sum_{j=1}^{n} \langle e_{j}, \tau_{i} \rangle^{2}$$
$$= \sum_{j=1}^{n} \sum_{i=1}^{n+m+1} \langle e_{j}, \tau_{i} \rangle^{2} = \sum_{j=1}^{n} 1 = n$$

gelten. Insgesamt erhalten wir

$$-2n \le \left(\frac{\partial}{\partial t} - \Delta_{M_t}\right) \left(1 + |\Pi^x(Z)|^2\right)$$

und

$$-2m \le \left(\frac{\partial}{\partial t} - \Delta_{M_t}\right) \left(1 + |\Pi^y(Z)|^2\right)$$

ergibt sich analog unter Berücksichtigung der entsprechenden Dimension. Wir wissen, dass die Beziehung

$$|\Pi^x(Z)|^2 = |Z|^2 - |\Pi^y(Z)|^2 - u_Z^2$$

erfüllt ist. Wegen

$$\left(\frac{d}{dt} - \Delta^{M_t}\right) u_Z = \left\langle \frac{\partial}{\partial t} Z, e_{n+m+1} \right\rangle - g^{ij} \nabla_i \left\langle \nabla_j Z, e_{n+m+1} \right\rangle$$
$$= -H \langle \nu, e_{n+m+1} \rangle + g^{ij} h_{ij} \langle \nu, e_{n+m+1} \rangle$$
$$= 0,$$

schließen wir mit Lemma 2.6

$$\left(\frac{d}{dt} - \Delta^{M_t}\right) u_Z^2 = -2|\nabla u_Z|^2.$$

Mit $|\nabla u_Z|^2 \leq 1$ rechnen wir

$$\left(\frac{\partial}{\partial t} - \Delta_{M_t}\right) (1 + |Z|^2 - |\Pi^y(Z)|^2 - u_Z^2) \le -2(n+m) + 2|\nabla u_Z|^2 + 2m \le 2 - 2n$$

Daraus ergibt sich die obere Abschätzung und die obere Abschätzung für $(1 + |\Pi^y(Z)|^2)$ folgt erneut analog unter Berücksichtigung der entsprechenden Dimension.

LEMMA 2.8. Sei mit den obigen Bezeichnungen und für ein $p \ge 0$ auf M_0 die Bedingung

$$u_Z^2 \le c_0 (1 + |\Pi^y(Z)|^2)^p$$

erfüllt, dann gilt

$$u_Z^2 \le c_0 (1 + |\Pi^y(Z)|^2 + (2m + 4p)t)^p$$

auf M_t für alle $t \ge 0$.

BEWEIS. Wir definieren die Testfunktion $\eta_y(Z):=1+|\Pi^y(Z)|^2+(2m+4p)t$ und berechnen mit Lemma 2.7

$$\left(\frac{\partial}{\partial t} - \Delta_{M_t}\right)\eta_y \ge -2m + 2m + 4p = 4p.$$

Ferner gilt wegen $\nabla_i\eta_y=2\,\langle\Pi^y(\nabla_iZ),\Pi^y(Z)\rangle$ die Abschätzung

$$|\nabla \eta_y|^2 \le 4\eta_y$$

Damit rechnen wir

$$\left(\frac{\partial}{\partial t} - \Delta_{M_t}\right) u_Z^2 \eta_y^{-p} = -2\eta_y^{-p} |\nabla u_Z|^2 + u_Z^2 \left(-p\eta_y^{-p-1}\left(\frac{\partial}{\partial t} - \Delta_{M_t}\right)\eta_y \right. \\ \left. - p(p+1)\eta_y^{-p-2} |\nabla \eta_y|^2 \right) - 2\left\langle \nabla u_Z^2, \nabla \eta_y^{-p} \right\rangle \\ \leq -2\eta_y^{-p} |\nabla u_Z|^2 - 4p^2 u_Z^2 \eta_y^{-p-1} - p(p+1)u_Z^2 \eta_y^{-p-2} |\nabla \eta_y|^2 \\ \left. + 2\eta_y^{-p} |\nabla u_Z|^2 + 2p^2 u_Z^2 \eta_y^{-p-2} |\nabla \eta_y|^2 \right. \\ \leq -4p^2 u_Z^2 \eta_y^{-p-1} + p^2 u_Z^2 \eta_y^{-p-2} |\nabla \eta_y|^2 - pu_Z^2 \eta_y^{-p-2} |\nabla \eta_y|^2 \\ \leq -4p^2 u_Z^2 \eta_y^{-p-1} + 4p^2 u_Z^2 \eta_y^{-p-1} \\ = 0.$$

Mit dem Maximumprinzip Korollar 1.1 aus [6] schließen wir

$$\sup_{M_t} (u_Z^2 \eta_y^{-p}) \le \sup_{M_0} (u_Z^2 \eta_y^{-p}) \le c_0 (1 + |\Pi^y(Z)|^2)^p (1 + |\Pi^y(Z)|^2)^{-p} = c_0$$

und daraus folgt die Behauptung.

LEMMA 2.9. Sei mit den obigen Bezeichnungen und für ein $q \ge 0$ mit 2q+3 < n auf M_0 die Bedingung

$$u_Z^2 \leq c_0 (1 + |\Pi^x(Z)|^2)^{-q}$$

erfüllt, dann gilt

$$u_Z^2 \le c_0 (1 + |\Pi^x(Z)|^2 + (2n - 4q - 6)t)^{-q}$$

auf M_t für alle $t \ge 0$.

Wenn 2q + 3 > n mit $q \ge 0$ und auf M_0 die Bedingung

$$u_Z^2 \le c_0 (1 + |\Pi^x(Z)|^2)^{-q}$$

erfüllt ist, dann gilt

$$u_Z^2 \le c_0 (7 + 4q - 2n)^{q(t+1)} \left(1 + |\Pi^x(Z)|^2\right)^{-q}$$

auf M_t für alle $t \ge 0$.

19

20 2. STABILITÄT DES \mathbb{R}^N UNTER POLYNOMIAL WACHSENDEN STÖRUNGEN

BEWEIS. Wir definieren die Testfunktion $\eta_x(Z):=1+|\Pi^x(Z)|^2+(2n-4q-6)t$ und berechnen mit Lemma 2.7

$$\left(\frac{\partial}{\partial t} - \Delta_{M_t}\right)\eta_x \le 2 - 2n + 2n - 4q - 6 = -4q - 4.$$

Ferner gilt wegen $\nabla_i \eta_x = 2 \langle \Pi^x(\nabla_i Z), \Pi^x(Z) \rangle$ die Abschätzung

$$|\nabla \eta_x|^2 \le 4\eta_x$$

Damit rechnen wir

$$\begin{pmatrix} \frac{\partial}{\partial t} - \Delta_{M_t} \end{pmatrix} u_Z^2 \eta_x^q = -2\eta_x^q |\nabla u_Z|^2 + u_Z^2 \left(q\eta_x^{q-1} \left(\frac{\partial}{\partial t} - \Delta_{M_t} \right) \eta_x \right. \\ \left. - q(q-1)\eta_x^{q-2} |\nabla \eta_x|^2 \right) - 2 \left\langle \nabla u_Z^2, \nabla \eta_x^q \right\rangle \\ \leq -2\eta_x^q |\nabla u_Z|^2 - (4q+4)qu_Z^2 \eta_x^{q-1} - q(q-1)u_Z^2 \eta_x^{q-2} |\nabla \eta_x|^2 \\ \left. + 2\eta_x^q |\nabla u_Z|^2 + 2q^2 u_Z^2 \eta_x^{q-2} |\nabla \eta_x|^2 \\ \leq -(4q+4)qu_Z^2 \eta_x^{q-1} + q^2 u_Z^2 \eta_x^{q-2} |\nabla \eta_x|^2 + qu_Z^2 \eta_x^{q-2} |\nabla \eta_x|^2 \\ \leq -(4q+4)qu_Z^2 \eta_x^{q-1} + 4q^2 u_Z^2 \eta_x^{q-1} + 4qu_Z^2 \eta_x^{q-1} \\ = 0.$$

Mit dem Maximumprinzip Korollar 1.1 aus [6] schließen wir

$$\sup_{M_t} (u_Z^2 \eta_x^q) \le \sup_{M_0} (u_Z^2 \eta_x^q) \le \sup_{M_0} c_0 (1 + |\Pi^x(Z)|^2)^{-q} (1 + |\Pi^x(Z)|^2)^q = c_0$$

und daraus folgt die erste Behauptung.

Gelte nun 2q + 3 > n. Dann definieren wir für $t \in [i, i + 1]$ Testfunktionen

$$\eta_{x,i}(Z) = 1 + |\Pi^x(Z)|^2 + (2n - 6 - 4q)(t - i) + 6 + 4q - 2n.$$

Es gilt dann

$$\left(\frac{\partial}{\partial t} - \Delta_{M_t}\right)\eta_{x,i} \le 2 - 2n + 2n - 6 - 4q = -4 - 4q$$

und $\eta_{x,i} > 0$ für $t \in [i, i+1]$. Analog zu obiger Rechnung erhalten wir

$$\left(\frac{\partial}{\partial t} - \Delta_{M_t}\right) u_Z^2 \eta_{x,i}^q \le 0.$$

Es folgt mit dem Maximumprinzip Korollar 1.1 aus [6] für $t \in [0, 1]$

$$\sup_{M_t} (u_Z^2 \eta_{x,0}^q) \leq \sup_{M_0} (u_Z^2 \eta_{x,0}^q) \leq \sup_{M_0} c_0 (1 + |\Pi^x(Z)|^2)^{-q} (7 + 4q - 2n + |\Pi^x(Z)|^2)^q \leq c_0 (7 + 4q - 2n)^q$$

und damit auf M_t

$$u_Z^2 \le c_0 (7 + 4q - 2n)^q (1 + |\Pi^x(Z)|^2)^{-q}$$

für $t \in [0, 1]$. Insbesondere gilt diese Abschätzung auf M_1 . Wir wenden nun erneut dieselbe Argumentation auf dem Intervall [1, 2] an und erhalten

$$u_Z^2 \le c_0 (7 + 4q - 2n)^{2q} (1 + |\Pi^x(Z)|^2)^{-q}.$$

Durch Iteration folgt die zweite Behauptung, wobe
iidurch tabgeschätzt wurde, d
a $i \leq t.$ $\hfill \Box$

PROPOSITION 2.10. Sei $M_t^{n+m} \subset \mathbb{R}^{n+m}$ wieder eine eingebettete, glatte Lösung des Mittleren Krümmungsflusses. Seien $p, q \geq 0$ und gelte n > 8q + 3. Auf M_0 sei die Bedingung

$$u_Z^2 \le c_0 \frac{(1+|\Pi^y(Z)|^2)^p}{(1+|\Pi^x(Z)|^2)^q}$$

erfüllt, dann gilt auf M_t

$$u_Z^2 \le c_0 \frac{(1+|\Pi^y(Z)|^2 + (2m+16p)t)^p}{(1+|\Pi^x(Z)|^2 + (2n-16q-6)t)^q}$$

für alle $t \geq 0$.

Gelte n < 8q + 3 und auf M_0

$$u_Z^2 \le c_0 \frac{(1+|\Pi^y(Z)|^2)^p}{(1+|\Pi^x(Z)|^2)^q},$$

dann gilt auf M_t

$$u_Z^2 \le c_0 \frac{(7+16q-2n)^{q(t+1)}(1+2m+16p)^{pt}(1+|\Pi^y(Z)|^2+(2m+16p)t)^p}{(1+|\Pi^x(Z)|^2)^q}$$

für alle $t \ge 0$.

BEWEIS. Es gelte zunächst n > 8q + 3. Wir führen zunächst die Abkürzung $\Box := \left(\frac{\partial}{\partial t} - \Delta_{M_t}\right)$ ein. Dann definieren wir

$$\eta_y(Z) := 1 + |\Pi^y(Z)|^2 + (2m + 16p)t,$$

$$\eta_x(Z) := 1 + |\Pi^x(Z)|^2 + (2n - 16q - 6)t.$$

Es gilt

$$\Box \eta_y(Z) \ge 16p,$$

$$\Box \eta_x(Z) \le -16q - 4$$

Nun berechnen wir mit Lemma 2.6 die Evolutionsgleichung von $u_Z^2 \eta_x^q \eta_y^{-p}$.

$$\Box (u_Z^2 \eta_x^q \eta_y^{-p}) = -2\eta_x^q \eta_y^{-p} |\nabla u_Z|^2 + u_Z^2 \eta_x^q \Box \eta_y^{-p} + u_Z^2 \eta_y^{-p} \Box \eta_x^q - 2u_Z^2 \left\langle \nabla \eta_x^q, \nabla \eta_y^{-p} \right\rangle - 2\eta_y^{-p} \left\langle \nabla \eta_x^q, \nabla u_Z^2 \right\rangle - 2\eta_x^q \left\langle \nabla u_Z^2, \nabla \eta_y^{-p} \right\rangle.$$

Wir nummerieren die Terme der rechten Seite von 1 bis 6 durch. Den ersten Term lassen wir unverändert. Der zweite Term wird wie folgt abgeschätzt

$$\begin{split} u_{Z}^{2}\eta_{x}^{q} \Box \eta_{y}^{-p} &= u_{Z}^{2}\eta_{x}^{q} \left(-p\eta_{y}^{-p-1} \Box \eta_{y} - p(p+1)\eta_{y}^{-p-2} |\nabla \eta_{y}|^{2} \right) \\ &\leq -16p^{2}u_{Z}^{2}\eta_{x}^{q}\eta_{y}^{-p-1} - p(p+1)u_{Z}^{2}\eta_{x}^{q}\eta_{y}^{-p-2} |\nabla \eta_{y}|^{2} \end{split}$$

Der dritte Term erfüllt

$$u_{Z}^{2}\eta_{y}^{-p}\Box\eta_{x}^{q} = u_{Z}^{2}\eta_{y}^{-p} \left(q\eta_{x}^{q-1}\Box\eta_{x} - q(q-1)\eta_{x}^{q-2}|\nabla\eta_{x}|^{2}\right)$$

$$\leq -(16q+4)qu_{Z}^{2}\eta_{x}^{q-1}\eta_{y}^{-p} - q(q-1)u_{Z}^{2}\eta_{x}^{q-2}\eta_{y}^{-p}|\nabla\eta_{x}|^{2}.$$

Die restlichen drei Terme werden mit der Cauchy Schwarz und der Youngschen Ungleichung folgendermaßen abgeschätzt:

$$\begin{aligned} -2u_Z^2 \left< \nabla \eta_x^q, \nabla \eta_y^{-p} \right> &= 2u_Z^2 q \eta_x^{q-1} p \eta_y^{-p-1} \left< \nabla \eta_x, \nabla \eta_y \right> \\ &\leq q^2 u_Z^2 \eta_x^{q-2} \eta_y^{-p} |\nabla \eta_x|^2 + p^2 u_Z^2 \eta_x^q \eta_y^{-p-2} |\nabla \eta_y|^2, \end{aligned}$$

22 2. STABILITÄT DES \mathbb{R}^N UNTER POLYNOMIAL WACHSENDEN STÖRUNGEN

$$-2\eta_y^{-p} \left\langle \nabla \eta_x^q, \nabla u_Z^2 \right\rangle = -4\eta_y^{-p} u_Z q \eta_x^{q-1} \left\langle \nabla \eta_x, \nabla u_Z \right\rangle$$
$$\leq \eta_y^{-p} \eta_x^q |\nabla u_Z|^2 + 4q^2 u_Z^2 \eta_x^{q-2} \eta_y^{-p} |\nabla \eta_x|^2$$

und

$$-2\eta_x^q \left\langle \nabla \eta_y^{-p}, \nabla u_Z^2 \right\rangle = 4\eta_x^q u_Z p \eta_y^{-p-1} \left\langle \nabla \eta_y, \nabla u_Z \right\rangle$$
$$\leq \eta_x^q \eta_y^{-p} |\nabla u_Z|^2 + 4p^2 u_Z^2 \eta_y^{-p-2} \eta_x^q |\nabla \eta_y|^2.$$

Insgesamt erhalten wir

$$\begin{split} \Box(u_Z^2\eta_x^q\eta_y^{-p}) &\leq -16p^2u_Z^2\eta_x^q\eta_y^{-p-1} - pu_Z^2\eta_x^q\eta_y^{-p-2}|\nabla\eta_y|^2 - (16q+4)qu_Z^2\eta_x^{q-1}\eta_y^{-p} \\ &+ 4p^2u_Z^2\eta_y^{-p-2}\eta_x^q|\nabla\eta_y|^2 + 4q^2u_Z^2\eta_x^{q-2}\eta_y^{-p}|\nabla\eta_x|^2 + qu_Z^2\eta_x^{q-2}\eta_y^{-p}|\nabla\eta_x|^2. \end{split}$$

Mit den Abschätzungen $|\nabla \eta_x|^2 \leq 4\eta_x$ und $|\nabla \eta_y|^2 \leq 4\eta_y$ folgt

$$\Box(u_Z^2\eta_x^q\eta_y^{-p}) \le 0.$$

Mit Korollar 1.1 aus [6] folgern wir die erste Behauptung. Gelte nun n < 8q + 3. Dann definieren wir für $t \in [i, i + 1]$ Testfunktionen

$$\eta_{x,i}(Z) = 1 + |\Pi^x(Z)|^2 + (2n - 16q - 6)(t - i) + 6 + 16q - 2n.$$

Es gilt dann

$$\left(\frac{\partial}{\partial t} - \Delta_{M_t}\right)\eta_{x,i} \le -4 - 16q$$

und $\eta_{x,i} > 0$ für $t \in [i, i+1]$. Analog zu obiger Rechnung erhalten wir

$$\left(\frac{\partial}{\partial t} - \Delta_{M_t}\right) \left(u_Z^2 \eta_{x,i}^q \eta_y^{-p}\right) \le 0.$$

Es folgt mit dem Maximumprinzip Korollar 1.1 aus [6] für $t \in [0,1]$

$$\begin{split} \sup_{M_t} &(u_Z^2 \eta_{x,0}^q \eta_y^{-p}) \\ &\leq \frac{c_0 (1+|\Pi^y(Z)|^2)^p}{(1+|\Pi^x(Z)|^2)^q} \cdot \frac{\left(1+|\Pi^x(Z)|^2+16q+6-2n\right)^q}{(1+|\Pi^y(Z)|^2)^p} \\ &\leq c_0 (7+16q-2n)^q \end{split}$$

und damit auf ${\cal M}_t$

$$u_Z^2 \le \frac{c_0(7+16q-2n)^q(1+|\Pi^y(Z)|^2+(2m+16p)t)^p}{(1+|\Pi^x(Z)|^2)^q}$$

für $t \in [0, 1]$. Insbesondere gilt auf M_1 die Abschätzung

$$u_Z^2 \le \frac{c_0(7+16q-2n)^q(1+2m+16p)^p(1+|\Pi^y(Z)|^2)^p}{(1+|\Pi^x(Z)|^2)^q}.$$

Wir wenden nun erneut dieselbe Argumentation auf dem Intervall [1,2] an und erhalten auf M_t für $t \in [1,2]$ die Abschätzung

$$u_Z^2 \le \frac{c_0(7+16q-2n)^{2q}(1+2m+16p)^p(1+|\Pi^y(Z)|^2+(2m+16p)(t-1))^p}{(1+|\Pi^x(Z)|^2)^q}.$$

Durch Iteration folgt die zweite Behauptung, wobe
iidurch tabgeschätzt wurde, d
a $i \leq t.$ $\hfill \Box$

Mit dieser Proposition haben wir gezeigt, dass das in x- abfallende und in y-Richtung wachsende Verhalten von u_0 aus Theorem 2.1 unter dem graphischen Mittleren Krümmungsfluss erhalten bleibt.

BEMERKUNG 2.11. Eine genaue Betrachtung des Beweises von Proposition 2.10 liefert: Seien $p, q \ge 0$ und $n, m \in \mathbb{N}$ beliebig. Gelte auf $M_0^{n+m} \subset \mathbb{R}^{n+m+1}$

$$u_Z^2 \le c_0 (1 + |\Pi^y(Z)|^2)^p (1 + |\Pi^x(Z)|^2)^q$$

und sei M_t eine Lösung der Gleichung (1.1). Dann gilt auf M_t

$$u_Z^2 \le c_0 [1 + |\Pi^y(Z)|^2 + (2m + 16p)t]^p \cdot [1 + |\Pi^x(Z)|^2 + (2n + 16q)t]^q$$

für alle $t \ge 0$.

Wir wollen nun die Wärmeleitungsgleichung und den Mittleren Krümmungsfluss miteinander verknüpfen. Wir haben bereits gesehen, dass die Mittlere Krümmunsflussgleichung bezüglich des Laplace Operators auf der Fläche M_t als eine Wärmeleitungsgleichung geschrieben werden kann. Eine stärkere Beziehung schafft die folgende nützliche Beobachtung von Professor Huisken. Dabei wird insbesondere die differentielle Harnack Ungleichung verwendet, die ursprünglich von Li und Yau in [8] bewiesen wurde. Hamilton beweist in [9] eine Matrixversion dieser Ungleichung. In [10] werden die Ungleichungen lokal bewiesen und insbesondere für vollständige nicht kompakte Mannigfaltigkeiten.

LEMMA 2.12 (Huisken). Sei $\{M_t^N\}_t \subset \mathbb{R}^{N+1}$ eine Familie von Hyperflächen und Lösungen des Mittleren Krümmungsflusses. Sei Φ eine positive Lösung der Wärmeleitungsgleichung im \mathbb{R}^{N+1} , dann gilt für $\Psi := \sqrt{t}\Phi$ mit $t \in (0, \infty)$

$$\left(\frac{d}{dt} - \Delta^{M_t}\right)\Psi \ge 0.$$

BEWEIS. Nach Voraussetzung erfüllt Φ die Wärmeleitungsgleichung im \mathbb{R}^{N+1} , also

$$\frac{\partial}{\partial t}\Phi - \Delta^{\mathbb{R}^{N+1}}\Phi = 0.$$

Wir schränken Φ auf die Fläche M_t^N ein, dann gilt

$$\begin{split} &\frac{d}{dt}\Phi = \frac{\partial}{\partial t}\Phi + \left\langle \vec{H}, D\Phi \right\rangle \\ &\Delta^{M_t}\Phi = \Delta^{\mathbb{R}^{N+1}}\Phi - D^2\Phi(\nu,\nu) + \left\langle \vec{H}, D\Phi \right\rangle, \end{split}$$

woraus sich

(2.1)
$$\left(\frac{d}{dt} - \Delta^{M_t}\right) \Phi = D^2 \Phi(\nu, \nu)$$

ergibt. Wir wollen nun die Li-Yau Harnack Ungleichung in der Matrixversion (vgl. [10] Theorem 1.2 und Bemerkung 1.2) auf die Mannigfaltigkeit $(\mathbb{R}^{N+1}, \langle \cdot, \cdot \rangle)$ mit Φ anwenden. Die Ungleichung besagt

$$D_{\alpha}D_{\beta}\Phi - \frac{D_{\alpha}\Phi D_{\beta}\Phi}{\Phi} + \frac{\Phi}{2t}\delta_{\alpha\beta} \ge 0,$$

für eine positive Lösung der Wärmeleitungsgleichung
 $\Phi.$ Angewendet auf unseren Fall erhalten wir

$$D^2 \Phi(\nu, \nu) \ge \frac{\langle D\Phi, \nu \rangle^2}{\Phi} - \frac{\Phi}{2t}.$$

24 2. STABILITÄT DES \mathbb{R}^N UNTER POLYNOMIAL WACHSENDEN STÖRUNGEN

Setzen wir das in (2.1) ein, so ergibt sich

$$\left(\frac{d}{dt} - \Delta^{M_t}\right) \Phi \ge \frac{\langle D\Phi, \nu \rangle^2}{\Phi} - \frac{\Phi}{2t}.$$

Damit erhalten wir für Ψ

$$\left(\frac{d}{dt} - \Delta^{M_t}\right)\Psi = \frac{1}{2\sqrt{t}}\Phi + \sqrt{t}\left(\frac{d}{dt} - \Delta^{M_t}\right)\Phi$$
$$\geq \frac{1}{2\sqrt{t}}\Phi + \sqrt{t}\left(\frac{\langle D\Phi, \nu \rangle^2}{\Phi} - \frac{\Phi}{2t}\right) = \sqrt{t}\frac{\langle D\Phi, \nu \rangle^2}{\Phi}$$
$$\geq 0.$$

Im folgenden Beweis verwenden wir die Notation

$$y := (y_1, \dots, y_{m+1}) = (\hat{y}, y_{m+1})$$

BEWEIS DES THEOREM 2.1. Wir folgen einer Idee aus dem Appendix in [2]. Wir definieren $\eta = (0, ..., 0, 1) \in \mathbb{R}^{n+m+1}$ und setzen $u^Z = \langle \eta, Z \rangle_{\mathbb{R}^{N+1}}$, wobei $Z \in M^{n+m} \subset \mathbb{R}^{n+m+1}$ liegt. Die Funktion u^Z ist damit die Höhenfunktion der Mannigfaltigkeit $M_t = \operatorname{graph} u(\cdot, t)$. Es gilt

$$\left(\frac{d}{dt} - \Delta^{M_t}\right) u^Z = \bar{g}_{\alpha\beta} \frac{\partial}{\partial t} Z^\alpha \eta^\beta - g^{ij} \nabla_i (\bar{g}_{\alpha\beta} \nabla_j Z^\alpha \eta^\beta)$$
$$= -H \bar{g}_{\alpha\beta} \nu^\alpha \eta^\beta + g^{ij} \bar{g}_{\alpha\beta} h_{ij} \nu^\alpha \eta^\beta$$
$$= 0.$$

wobei lateinische Buchstaben für die Summation auf der Fläche stehen und griechische für die Summation im umgebenden Raum. Analog bezeichnet \bar{g} die Metrik im umgebenden Raum also das normale Skalarprodukt auf \mathbb{R}^{n+m+1} und g die Metrik auf der Fläche.

Wie in Lemma 2.3 definieren wir eine Lösung der Wärmeleitungsgleichung mit Anfangswerten

$$\psi_0(x,y) = \frac{1+|y|^{p+\alpha}}{1+|x|^{q-\beta}}$$

im \mathbb{R}^{n+m+1} mit $x \in \mathbb{R}^n$, $y \in \mathbb{R}^{m+1}$ durch

$$\psi(x,y,t) = (4\pi t)^{-\frac{n+m+1}{2}} \int_{\mathbb{R}^{n+m+1}} e^{-\frac{|z-(x,y)|^2}{4t}} \frac{1+|z_2|^{p+\alpha}}{1+|z_1|^{q-\beta}} dz_1 dz_2$$

für ein $\alpha > 0$ so klein, dass $p + \alpha < n - 1$ und ein $\beta > 0$ klein, sodass $q - \beta > p + 1$. Dann erfüllt nach Lemma 2.12 die Funktion $\Psi := \sqrt{t}\psi$ die Ungleichung

$$\left(\frac{d}{dt} - \Delta^{M_t}\right) \Psi \ge 0.$$

Nach Bemerkung 2.4 ii) und Lemma 2.3 gilt $\Psi \to 0$ lokal gleichmäßig auf \mathbb{R}^{n+m+1} für $t \to \infty$, wobei hier m' = m+1 gewählt wurde.

Wählen wir große Sphären als Barrieren, dann existiert für jedes T > 0 und jedes $\epsilon > 0$ ein $r(\hat{y})$ wie in Bemerkung 2.2 i), sodass

$$u^Z(Z,t) < \frac{\epsilon}{2}$$

auf graph $u(\cdot,t)|_{\mathbb{R}^{n+m}\setminus\mathcal{A}}$ für $t \in [0,T]$, $\mathcal{A} := \bigcup_{\hat{y}\in\mathbb{R}^m} B^n_{r(\hat{y})} \times \{\hat{y}\}$ und $r(\hat{y})$ wächst sublinear in $|\hat{y}|$. Sei $t_0 > 0$ fest und klein, wähle dann c > 0 so, dass

$$c\Psi(Z, t_0) + \epsilon - u^Z(Z, t_0) \ge 0$$

auf graph $u(\cdot, t_0)|_{\mathcal{A}}$. Dieses c existiert wegen Lemma A.4 im Appendix. Der Vergleich mit Sphären liefert

$$c\Psi(Z,t) + \epsilon - u^Z(Z,t) \ge \frac{\epsilon}{2}$$

für t in einem beschränkten Zeitintervall und $Z \in \operatorname{graph} u(\cdot, t)|_{\mathbb{R}^{n+m}\setminus\mathcal{A}}$, wobei $r(\hat{y})$ groß genug gewählt wird. Beachte, dass dann ein Minimum von $c\Psi + \epsilon - u^Z$, das kleiner als $\frac{\epsilon}{2}$ ist, nur auf einer kompakten Menge angenommen werden kann, da Ψ in y-Richtung schneller wächst und in x-Richtung langsamer fällt als u und da polynomiales Verhalten nach Proposition 2.10 und Lemma 2.5 erhalten bleibt. Weil

$$\left(\frac{d}{dt} - \Delta^{M_t}\right) (c\Psi + \epsilon - u^Z) \ge 0,$$

liefert das kompakte Maximumprinzip, dass $c\Psi + \epsilon - u^Z \ge 0$ für alle $t \ge t_0$. Da $\Psi \to 0$ lokal gleichmäßig für $t \to \infty$, können wir schließen, dass

$$\limsup_{t \to \infty} \sup_{z \in \mathbb{R}^{n+m}} u(z, t) \le 2\epsilon.$$

Analog erhalten wir die Abschätzung

$$\liminf_{t \to \infty} \inf_{z \in \mathbb{R}^{n+m}} u(z,t) \ge -2\epsilon$$

Wir lassen nun $\epsilon \to 0$, womit Theorem 2.1 bewiesen wäre.

25

Wir beweisen nun noch den Spezialfall n = 1, der wegen p + 1 < n nicht im Theorem 2.1 enthalten ist.

PROPOSITION 2.13. Set n = 1. Set M_0^{1+m} eine Fläche im \mathbb{R}^{1+m+1} , gegeben als graph $u_0, u_0 : \mathbb{R}^{1+m} \to \mathbb{R}$ mit

$$|u_0(x,y)| \le C \frac{1}{1+|x|^q}$$

für alle $x \in \mathbb{R}$, $y \in \mathbb{R}^m$ und q > 1. Sei $u(\cdot, t)$ eine Lösung des graphischen Mittleren Krümmungsflusses (1.2) mit $u(\cdot, 0) = u_0(\cdot)$. Dann gilt

$$u(\cdot,t) \to 0$$

lokal gleichmäßig für $t \to \infty$.

BEMERKUNG 2.14. Wählen wir m = N - 1, erhalten wir die Stabilität des \mathbb{R}^N unter endlichen Störungen, wobei nur in einer Richtung gefordert wird, dass die Anfangsstörung asymptotisch gegen Null konvergiert.

BEWEIS. Wir bemerken zunächst, dass $\sup_{\mathbb{R}^{1+m}} |u_0| \leq C$. Außerdem existiert zu jedem $\epsilon > 0$ ein r > 0, sodass

$$\sup_{(-\infty,-r)\cup(r,\infty)\times\mathbb{R}^m}|u_0(x,y)|<\epsilon.$$

Wir definieren also eine Barriere B_0^+ durch

$$B_0^+(x,y) = c_1 e^{-|x|^2} + e^{-|x|^2}$$

und wählen die Konstante $c_1 > 0$, sodass $B_0^+ - u_0 > 0$. Analog definieren wir eine Barriere B_0^- und wählen eine Konstante $c_2 > 0$, sodass $B_0^-(x, y) - u_0(x, y) = -c_2 e^{-|x|^2} - \epsilon - u_0(x, y) < 0$.

 $-c_2e^{-|x|^2} - \epsilon - u_0(x, y) < 0.$ Seien nun $B^{\pm}(z, t)$ und u(z, t) mit z = (x, y) Lösungen des graphischen Mittleren Krümmungsflusses mit Anfangswerten B_0^{\pm} beziehungsweise u_0 . Dann erfüllen B^{\pm} und u die Voraussetzungen des Theorems A.1 und wir schließen

$$B^{-}(z,t) \le u(z,t) \le B^{+}(z,t)$$

für alle $z \in \mathbb{R}^{1+m}$ und alle $t \in [0, \infty)$. Da $B^{\pm}(x, y, t)$ unabhängig von y ist, genügt es $B^{\pm}(x, y, t)$ für festes y zu betrachten. Nach Theorem A.3 im Appendix aus [2] wissen wir aber, dass $B^{\pm}(x, y, t) \to \pm \epsilon$ für $t \to \infty$. Da ϵ beliebig war, folgt die Behauptung.

KAPITEL 3

Stabilität translatierender Tröge unter polynomial wachsenden Störungen

Im Folgenden wollen wir Lösungen des graphischen Mittleren Krümmungsflusses (1.2) auf \mathbb{R}^{n+m} betrachten, die in der Zeit mit konstanter Geschwindigkeit translatieren. Genauer betrachten wir eine konvexe, in x rotationssymmetrische, translatierende, ganze Lösung U auf \mathbb{R}^{n+m} . Die Existenz von konvexen, mit Geschwindigkeit 1 translatierenden, rotationssymmetrischen ganzen Lösungen des graphischen Mittleren Krümmungsflusses auf \mathbb{R}^n wurde in [11] für den Fall n = 2 bewiesen. Die Autoren von [1] bemerken, dass dieser Beweis auch in beliebigen Dimensionen anwendbar ist. Wir nennen diese Lösung \hat{U} und definieren

$$U(x, y, t) := U(x, t) = U(x, 0) + t,$$

wobei hier die Geschwindigkeit $\equiv 1$ gesetzt wurde. Über eine Skalierung wie in (1.8) lässt sich jede positive konstante Geschwindigkeit erreichen. Lassen wir auch negative Skalierungsfaktoren zu, dann erhalten wir auch negative konstante Translationsgeschwindigkeiten. Im vorherigen Kapitel haben wir translatierende Lösungen mit Geschwindigkeit 0 untersucht.

Wir fassen unsere Bemerkungen in dem folgenden Lemma zusammen.

LEMMA 3.1 (Existenz eines translatierenden Trogs U). Es existiert eine konvexe, in x rotationssymmetrische, translatierende, ganze Lösung U des graphischen mittleren Krümmungsflusses (1.2) auf \mathbb{R}^{n+m} .

BEWEIS. Die Existenz wurde bereits oben diskutiert. Dass U auch wirklich die genannten Eigenschaften aufweist, wollen wir nun zeigen. Es gilt ganz allgemein für eine Lösung \hat{U} der Gleichung (1.2), dass $U(x, y, t) := \hat{U}(x, t)$ wieder eine Lösung der Gleichung (1.2) ist. Wir haben nämlich

$$\begin{split} \frac{\partial}{\partial t}U(x,y,t) &= \frac{\partial}{\partial t}\hat{U}(x,t),\\ \frac{\partial}{\partial x_i}U(x,y,t) &= \frac{\partial}{\partial x_i}\hat{U}(x,t),\\ \frac{\partial}{\partial y_k}U(x,y,t) &= 0,\\ \frac{\partial^2 U}{\partial x_i\partial y_k} &= \frac{\partial^2 \hat{U}}{\partial x_i\partial y_k} = \frac{\partial^2 U}{\partial y_k\partial y_l} = 0,\\ \frac{\partial^2 U}{\partial x_i\partial x_j} &= \frac{\partial^2 \hat{U}}{\partial x_i\partial x_j} \end{split}$$

für i, j = 1...n und k, l = 1...m. Damit gilt

$$\begin{split} \sqrt{1+|DU|^2} &= \sqrt{1+\left|D\hat{U}\right|^2},\\ \operatorname{div}_{\mathbb{R}^{n+m}} \left(\frac{DU}{\sqrt{1+|DU|^2}}\right) &= \sum_{\alpha,\beta=1}^{n+m} \left(\delta_{\alpha\beta} - \frac{D_{\alpha}UD_{\beta}U}{1+|DU|^2}\right) D^{\alpha}D^{\beta}U\\ &= \sum_{i,j=1}^n \left(\delta_{ij} - \frac{D_i\hat{U}D_j\hat{U}}{1+|D\hat{U}|^2}\right) D^iD^j\hat{U}\\ &= \operatorname{div}_{\mathbb{R}^n} \left(\frac{D\hat{U}}{\sqrt{1+\left|D\hat{U}\right|^2}}\right) \end{split}$$

und U ist Lösung des graphischen Mittleren Krümmungsflusses. Wir zeigen nun, dass U konvex ist. Für $z, \bar{z} \in \mathbb{R}^{n+m}$ mit $z = (x, y) \neq \bar{z} = (\bar{x}, \bar{y})$ und $\tau \in (0, 1)$ erhalten wir nämlich

$$\begin{aligned} U(\tau z + (1 - \tau)\bar{z}, t) &= U(\tau x + (1 - \tau)\bar{x}, \tau y + (1 - \tau)\bar{y}, t) \\ &= \hat{U}(\tau x + (1 - \tau)\bar{x}, t) \leq \tau \hat{U}(x, t) + (1 - \tau)\hat{U}(\bar{x}, t) \\ &= \tau U(x, y, t) + (1 - \tau)U(\bar{x}, \bar{y}, t). \end{aligned}$$

Die Gleichheit ergibt sich für den Fall $x = \bar{x}$, was einem Weg in Trogrichtung entspricht.

Die Rotationssymmetrie in der x-Komponente folgt aus der Definition von U und der Rotationssymmetrie von \hat{U} .

Wir kommen nun zu einem ersten Hilfs- und Stabilitätsresultat.

PROPOSITION 3.2. Set $u_0 : \mathbb{R}^{n+m} \to \mathbb{R}$ stetig und es existiere ein d > 0, sodass $|U(x, y, 0) - u_0(x, y)| \le d.$

Existiere ferner für alle $\epsilon > 0$ ein R unabhängig von y, sodass

$$\sup_{x \in \mathbb{R}^n \setminus B_R^n(0)} |U(x, y, 0) - u_0(x, y)| < \epsilon$$

für jedes $y \in \mathbb{R}^m$. Dann existiert eine Funktion $u \in C^{\infty}(\mathbb{R}^{n+m} \times (0,\infty)) \cap C^0(\mathbb{R}^{n+m} \times [0,\infty))$, die graphische Lösung des Mittleren Krümmungsflusses mit $u(\cdot,0) = u_0$ ist. Außerdem gilt für jede Lösung $u \in C^{\infty}(\mathbb{R}^{n+m} \times (0,\infty)) \cap C^0(\mathbb{R}^{n+m} \times [0,\infty))$ mit Anfangswerten u_0 , dass für $t \to \infty$

$$U(x, y, t) - u(x, y, t) \to 0$$

gleichmäßig auf \mathbb{R}^{n+m} konvergiert.

Bevor wir diese Proposition beweisen konstruieren wir Barrieren, die wir für den Beweis benötigen. Wir definieren stetige Funktionen $\hat{B}_0^{\pm} : \mathbb{R}^n \to \mathbb{R}$ durch $\hat{B}_0^{\pm}(x) = \hat{U}(x,0) \pm c_1 e^{-c_2|x|^2}$ für positive Konstanten c_1, c_2 . Nach Konstruktion dieser Funktion gilt $|\hat{B}_0^{\pm}(x) - \hat{U}(x,0)| \leq d$ für ein d > 0. Wir wenden nun Theorem 3.1 aus [1] an, um die Existenz einer Lösung $\hat{B}^{\pm} \in C^{\infty}(\mathbb{R}^n \times (0,\infty)) \cap C^0(\mathbb{R}^n \times [0,\infty))$ des graphischen Mittleren Krümmungsflusses mit Anfangsdaten $\hat{B}^{\pm}(x,0) = \hat{B}_0^{\pm}$ zu folgern.

ABBILDUNG 3.1. Trogwellen B_0^+ und B_0^-

Die kanonischen Fortsetzungen dieser Funktionen auf \mathbb{R}^{n+m} werden uns später als Barrieren dienen. Analog zu der Definition von U definieren wir also nun Funktionen $B^{\pm}: \mathbb{R}^{n+m} \times [0,\infty) \to \mathbb{R}$ durch

$$B^{\pm}(x,y,t) = \hat{B}^{\pm}(x,t),$$

für $x \in \mathbb{R}^n$ und $y \in \mathbb{R}^m$ (siehe Abbildung 3.1). Wie im Beweis von Lemma 3.1 ist B^{\pm} wieder eine Lösung des graphischen Mittleren Krümmungsflusses (1.2).

LEMMA 3.3. Als Störungen von U sind B^{\pm} stabil unter (1.2), das heißt

$$B^{\pm}(z,t) - U(z,t) \rightarrow 0$$

gleichmäßig in z für $t \to \infty$.

BEWEIS. $B^{\pm}(x, y, 0) = \hat{B}^{\pm}(x, 0) = \hat{U}(x, 0) \pm c_1 e^{-c_2|x|^2}$ ist also unabhängig von $y \in \mathbb{R}^m$. Der Graph von B^{\pm} sieht folglich für jedes feste y gleich aus und hat in y-Richtung keine Krümmung, das heißt $H[B^{\pm}](x, y_1) = H[B^{\pm}](x, y_2)$ für alle $y_1, y_2 \in \mathbb{R}^m$. Es genügt also zu betrachten, was mit $\hat{U}(x, 0) \pm c_1 e^{-c_2|x|^2}$ unter (1.2) passiert. Das Haupttheorem aus [1] sagt uns aber, dass

$$\hat{B}^{\pm}(x,t) - \hat{U}(x,t) \to 0$$

für alle $x \in \mathbb{R}^n$, wenn $t \to \infty$. Das bedeutet aber nach obigem Argument, dass $B^{\pm}(x, y, t) - U(x, y, t) \to 0$ für alle $(x, y) \in \mathbb{R}^{n+m}$, wenn $t \to \infty$. Damit folgt die Behauptung.

BEWEIS DER PROPOSITION 3.2. Für den Beweis der Existenz einer Lösung $u \in C^{\infty}(\mathbb{R}^{n+m} \times (0,\infty)) \cap C^{0}(\mathbb{R}^{n+m} \times [0,\infty))$ mit Anfangswerten u_{0} verweisen wir auf Abschnitt 3.2. Dabei können die in dem Beweis auftretenden Barrieren W_{R}^{\pm} ignoriert werden.

Für $t \to \infty$ wollen wir nun

$$u(z,t) - U(z,t) \rightarrow 0$$

gleichmäßig auf \mathbb{R}^{n+m} zeigen. Sei $\epsilon > 0$ beliebig aber fest. Da $|U(z,0) - u_0(z)| \le d$ gilt, wählen wir c_1^+ , c_2^+ und c_1^- , c_2^- so, dass

$$B^{-}(z,0) - \epsilon < u_0(z) < B^{+}(z,0) + \epsilon$$

erfüllt ist. B^{\pm} und u erfüllen die Voraussetzungen aus Theorem A.1 und wir können

$$B^{-}(z,t) - \epsilon \le u(z,t) \le B^{+}(z,t) + \epsilon$$

für alle t > 0 folgern, also insbesondere

$$B^-(z,t) - U(z,t) - \epsilon \leq u(z,t) - U(z,t) \leq B^+(z,t) - U(z,t) + \epsilon$$
für alle $t > 0$. Da aber $B^{\pm}(z,t) - U(z,t) \to 0$ für $t \to \infty$, folgt

$$-\epsilon \leq \lim_{t \to 0} (u(z,t) - U(z,t)) \leq \epsilon$$

Wir lassen ϵ gegen Null laufen und erhalten die Behauptung.

BEMERKUNG 3.4. In [2] wird die Stabilität für selbstähnliche Lösungen aus Kegeln unter endlichen Störungen gezeigt. Nennen wir eine solche selbstähnliche Lösung $\hat{k}(x,t)$, dann gilt die Proposition 3.2 mit den gleichen Bedingungen auch für Kegeltröge $k(x, y, t) = \hat{k}(x, t)$ anstelle der translatierenden Lösung U. Der Beweis verläuft analog.

Wir möchten an dieser Stelle das Haupttheorem vorstellen, das in diesem Kapitel bewiesen werden soll. Wir verwenden dabei die obige Notation. Es ist übersichtlich das Resultat hier vorzustellen um dem Leser eine Orientierung zu verschaffen und einen Hinweis darauf zu geben, warum die nachfolgenden Konstruktionen erforderlich sind.

THEOREM 3.5 (Stabilität der Troglösung). Sei $n \geq 2$. M_0^{n+m} sei eine Fläche im \mathbb{R}^{n+m+1} , die als Graph einer stetigen Funktion $u_0 : \mathbb{R}^{n+m} \to \mathbb{R}$ gegeben ist, sodass für alle $\epsilon > 0$ ein R > 0 unabhängig von y existiert, sodass

$$\sup_{x \in \mathbb{R}^n \setminus B_R(0)} |U(x, y, 0) - u_0(x, y)| < \epsilon$$

für alle $y \in \mathbb{R}^m$ gilt. Weiter existiere ein R_0 , sodass auf $B_{R_0}^n(0) \times \mathbb{R}^m$ die Ungleichungen

$$u_0(x,y) \le C(1+|y|^{p_1}),$$

 $u_0(x,y) \ge -C(1+|y|^{p_2})$

mit $p_1 < 2$ und $p_2 + 1 < n$ erfüllt sind. Dann existiert eine Lösung $u \in C^{\infty}(\mathbb{R}^{n+m} \times (0,\infty)) \cap C^0(\mathbb{R}^{n+m} \times [0,\infty))$ der Gleichung (1.2) mit $u(\cdot,0) = u_0$, für die

$$U(\cdot, t) - u(\cdot, t) \to 0$$

lokal gleichmäßig für $t \to \infty$ gilt.

3.1. Konstruktion von Barrieren auf $(\mathbb{R}^n \setminus B^n_R(0)) \times \mathbb{R}^m$

In diesem Abschnitt konstruieren wir Barrieren W_R^{\pm} auf $(\mathbb{R}^n \setminus B_R^n(0)) \times \mathbb{R}^m$. Die Konstruktion solcher Barrieren im \mathbb{R}^n findet sich in [1] unter Lemma 2.3 und wird hier lediglich ausgearbeitet.

Die Barrieren sollen für $t \to \infty$ asymptotisch zu der translatierenden Lösung \hat{U}

sein. Die asymptotische Entwicklung von \hat{U} für $r\to\infty$ findet sich in [1] und ist gegeben durch

(3.1)
$$\hat{U}(r,t) = t + \frac{r^2}{2(n-1)} - \ln(r) + O(r^{-1}).$$

In der asymptotischen Entwicklung tritt eine Konstante auf, die wir durch Verschiebung ohne Einschränkung als Null annehmen dürfen.

Für eine mit Geschwindigkeit 1 translatierende Lösung V der Gleichung (1.2) können wir V(x,t) = V(x,0) + t schreiben. Nehmen wir außerdem an, dass V rotationssymmetrisch in x ist, also $\tilde{V}(r) = V(x,0)$ mit r = |x|, dann lässt sich die Gleichung (1.2) in die gewöhnliche Differentialgleichung

$$1 = \frac{V''}{1+V'^2} + (n-1)\frac{V'}{r}$$

umschreiben, wobei wir $V(r) = \tilde{V}(r)$ gesetzt haben. Dabei bezeichnet ' eine Ableitung nach r. Setzen wir $\varphi = V'$, so ergibt sich

$$\varphi' = (1 + \varphi^2) \left(1 - (n-1)\frac{\varphi}{r}\right).$$

Es gilt folgendes Lemma.

LEMMA 3.6. Für jedes R > 0 und jedes $\varphi_0 \in \mathbb{R}$ hat das Randwertproblem

$$\varphi'(r) = \left(1 + \varphi^2\right) \left(1 - (n-1)\frac{\varphi}{r}\right)$$
$$\varphi(R) = \varphi_0$$

eine eindeutige Lösung $\varphi \in C^{\infty}([R,\infty),\mathbb{R})$. Außerdem hat φ für $r \to \infty$ die asymptotische Entwicklung

$$\varphi(r) = \frac{r}{n-1} - \frac{1}{r} + O(r^{-2}).$$

BEWEIS. Der Beweis findet sich in [1], Lemma 2.1.

LEMMA 3.7. Sei $n \geq 2$. Für jedes R > 0 existieren rotationssymmetrische graphische Lösungen des Mittleren Krümmungsflusses $W_R^+, W_R^- : (\mathbb{R}^n \setminus B_R) \times [0, \infty) \rightarrow \mathbb{R}$, die mit Geschwindigkeit 1 translatieren und die folgende asymptotische Entwicklung für $r \rightarrow \infty$ erfüllen;

$$W_R^{\pm}(r,t) = t + \frac{r^2}{2(n-1)} - \ln r + O(r^{-1}) + C^{\pm}.$$

Außerdem bildet die abgeschlossene Vereinigung dieser Graphen eine vollständige, nicht konvexe Lösung des Mittleren Krümmungsflusses (1.1).

BEWEIS. Erneut folgen wir ausführlich dem Beweis in [1] Lemma 2.3. Wir betrachten eine Hyperfläche im \mathbb{R}^{n+1} , die invariant unter Rotationen um die e_{n+1} -Achse ist. Außerdem nehmen wir an, dass diese Fläche mit Geschwindigkeit 1 in Richtung der e_{n+1} -Achse translatiert. Wir können diese Fläche an Punkten, an denen der Tangentialraum nicht orthogonal zu e_{n+1} ist, lokal als rotierter Graph einer Funktion h über der e_{n+1} -Achse repräsentieren, etwa

$$\bigcup_{x^{n+1}} \left(h(x^{n+1}, t) \cdot \mathbb{S}^{n-1} \right) \times \{x^{n+1}\} \subset \mathbb{R}^n \times \mathbb{R}.$$

		L	
		L	
		L	
_	-		

Es gilt $h(x^{n+1},t) = h(x^{n+1}-t,0)$. Wir wollen x^n mithilfe der Funktion h ausdrücken und durch Einsetzen in (1.2) eine gewöhnliche Differentialgleichung für h herleiten. In der Nähe von Punkten mit $x^n > 0$ machen wir den lokalen Ansatz

$$v := x^n = \sqrt{h^2(x^{n+1}, t) - \sum_{j=1}^{n-1} (x^j)^2}.$$

Zur Vereinfachung nennen wir die letzte Komponente x^{n+1} wieder x^n und setzen $\hat{x}=(x^1,...,x^{n-1}).$ Wir wollen v in

$$\left(\delta_{ij} - \frac{D_i v D_j v}{1 + |Dv|^2}\right) D^i D^j v$$

einsetzen, also in (1.2). Dafür berechnen wir zunächst für k,l=1,...,n-1

$$D_{k}v = -\frac{x^{k}}{v},$$

$$D_{kl}^{2}v = -\frac{x^{k}x^{l}}{v^{3}} - \frac{\delta^{kl}}{v},$$

$$D_{n}v = \frac{hh'}{v},$$

$$D_{nn}^{2}v = \frac{hh'' + (h')^{2}}{v} - \frac{h^{2}(h')^{2}}{v^{3}},$$

$$D_{kn}^{2}v = \frac{x^{k}hh'}{v^{3}}.$$

Weiter haben wir

$$\begin{split} \Delta v &= -\frac{|\hat{x}|^2}{v^3} - \frac{n-1}{v} + \frac{hh'' + (h')^2}{v} - \frac{h^2(h')^2}{v^3},\\ D_{ij}^2 v D^i v D^j v &= -\frac{|\hat{x}|^4}{v^5} - \frac{|\hat{x}|^2}{v^3} + \frac{h^3(h')^2 h'' + h^2(h')^4}{v^3} - \frac{h^4(h')^4}{v^5} - 2\frac{|\hat{x}|^2 h^2(h')^2}{v^5},\\ 1 + |Dv|^2 &= \frac{1}{v^2} \left(v^2 + |\hat{x}|^2 + h^2(h')^2\right) = \frac{h^2}{v^2} \left(1 + (h')^2\right),\\ \dot{v} &= \frac{h\dot{h}}{v}. \end{split}$$

Daraus und wegen $v^2 = h^2 - |\hat{x}|^2$ erhalten wir

$$\begin{split} \dot{h} &= \frac{v}{h} \left(\Delta v - \frac{D_{ij}^2 v D^i v D^j v}{1 + |Dv|^2} \right) \\ &= \frac{v}{h} \left(-\frac{|\hat{x}|^2}{v^3} - \frac{n-1}{v} + \frac{hh'' + (h')^2}{v} - \frac{h^2(h')^2}{v^3} + \frac{h^2(h')^2}{h^2(1 + (h')^2)} \left(\frac{|\hat{x}|^4}{v^5} + \frac{|\hat{x}|^2}{v^3} - \frac{h^3(h')^2h'' + h^2(h')^4}{v^3} + \frac{h^4(h')^4}{v^5} + \frac{2|\hat{x}|^2h^2(h')^2}{v^5} \right) \right) \\ &= -\frac{|\hat{x}|^2}{v^2h} - \frac{n-1}{h} + \frac{hh'' + (h')^2}{h} - \frac{h(h')^2}{v^2} \\ &+ \frac{1}{1 + (h')^2} \left(\frac{|\hat{x}|^4}{v^2h^3} + \frac{|\hat{x}|^2}{h^3} - h''(h')^2 - \frac{(h')^4}{h} + \frac{h(h')^4}{v^2} + \frac{2|\hat{x}|^2(h')^2}{v^2h} \right) \\ &= h'' - \frac{h''(h')^2}{1 + (h')^2} + \frac{(h')^2}{h} - \frac{(h')^{2h}}{v^2} - \frac{(h')^4}{h(1 + (h')^2)} + \frac{(h')^{4h}}{v^2(1 + (h')^2)} + \frac{2(h')^2|\hat{x}|^2}{hv^2(1 + (h')^2)} \\ &- \frac{|\hat{x}|^2}{hv^2} - \frac{n-1}{h} + \frac{|\hat{x}|^4}{h^3v^2(1 + (h')^2)} + \frac{|\hat{x}|^2}{h^3(1 + (h')^2)} \\ &= \frac{h''}{(1 + (h')^2)} - \frac{n-1}{h} + \frac{(h')^2h^2(1 + (h')^2)}{h^3v^2(1 + (h')^2)} \\ &= \frac{h''}{(1 + (h')^2)} - \frac{n-1}{h} + \frac{(h')^2h^4 - (h')^2h^2|\hat{x}|^2 + (h')^4h^4 - (h')^4h^2|\hat{x}|^2 - (h')^2h^4}{h^3v^2(1 + (h')^2)} \\ &+ \frac{-(h')^4h^4 - (h')^4h^4 + (h')^{4h}^2|\hat{x}|^2 - (h')^2h^2|\hat{x}|^2 + (h')^4h^4 + 2(h')^2h^2|\hat{x}|^2}{h^3v^2(1 + (h')^2)} \\ &+ \frac{-h^2|\hat{x}|^2 - (h')^2h^2|\hat{x}|^2 + |\hat{x}|^4 + h^2|\hat{x}|^2 - |\hat{x}|^4}{h^3v^2(1 + (h')^2)} \\ &= \frac{h''}{(1 + (h')^2)} - \frac{n-1}{h}. \end{split}$$

Hierbei bezeichnet ' eine Ableitung in x^{n+1} -Richtung. Für den Rest des Beweises unterdrücken wir das Zeitargument.

Wir wählen ein festes $y_0 \in \mathbb{R}$ und schreiben für unsere Ansatzfunktion h die Anfangswerte $h'(y_0) = 0$ und $h(y_0) = R$ vor. Dies entspricht einem Minimum in y_0 $(h''(y_0) > 0)$, das in \mathbb{R}^n -Richtung R = |x| weit vom Ursprung entfernt ist. Wir erhalten also eine strikt konvexe Lösung h der gewöhnlichen Differentialgleichung

$$-h' = \frac{h''}{(1+(h')^2)} - \frac{n-1}{h} \Leftrightarrow h'' = \left(\frac{n-1}{h} - h'\right)(1+(h')^2)$$

in einem kleinen Intervall um y_0 . Die *t*-Abhängigkeit wurde dabei aufgrund des Ansatzes $h(x^{n+1},t) = h(x^{n+1}-t,0)$ unterdrückt. Kehren wir nun zu unserem ursprünglichen Koordinatensystem zurück, so können unter Verwendung von Lemma 3.6 beide Enden nach unendlich fortgesetzt werden. Dabei erhalten wir das räumlich asymptotische Verhalten aus Lemma 3.6, das dem unser translatierenden Lösung \hat{U} des graphischen Mittleren Krümmungsflusses entspricht. Den oberen Teil bezeichnen wir dabei mit W_R^- und den unteren mit W_R^+ . Die beiden Teile können sich
wegen der zugrundeliegenden gewöhnlichen Differentialgleichung nicht überschneiden. Wir führen nun die Zeitabhängigkeit wie folgt ein

$$W_{R}^{\pm}(x,t) := W_{R}^{\pm}(x) + t.$$

Damit folgt auch das geforderte zeitlich asymptotische Verhalten.

BEMERKUNG 3.8. Wir können zu rotationssymmetrischen Lösungen \hat{U} der Gleichung (1.2), die mit beliebiger Geschwindigkeit s > 0 translatieren ebenfalls Barrieren W_R^{\pm} zu jedem R > 0 finden. Dies kann durch skalieren erreicht werden oder indem man die Beweise der Lemmata 3.6 und 3.7 für solche Lösungen wiederholt.

Wir stellen nun einige Eigenschaften der Barrieren W_R^{\pm} zusammen und fügen eine Abbildung 3.2 hinzu.

ABBILDUNG 3.2. Trog mit Barrieren W_R^{\pm}

- (1) $|DW_R^{\pm}(x,t)| \to \infty$ für $|x| \searrow R$.
- (2) Es existieren Konstanten c^+, c^- , sodass

$$W_R^-(x,t) - c^- < U(x,t) < W_R^+(x,t) + c^+.$$
(3)
$$\lim_{|x| \to \infty} W_R^{\pm}(x,t) \pm c^{\pm} - U(x,t) = 0.$$

Wir wollen nur den Fall W_R^+ behandeln. Für W_R^- verläuft die Argumentation ähnlich. Nach der Konstruktion von W_R^+ gilt (1) für alle t. Außerdem haben W_R^+ und U das gleiche asymptotische Verhalten. Für (2) und (3) wollen wir zeigen, dass $f(x,t) := W_R^+(x,t) - U(x,t)$ streng monoton fallend in |x| ist. Wir setzen r = |x| und $\tilde{f}(r,t) := f(|x|,t)$. Dann gilt $Df(x) = \frac{\partial}{\partial r} \tilde{f}(r) \frac{x}{|x|}$ und wir folgern

$$\frac{\partial}{\partial r}\tilde{f}(r,t) = \left\langle DW_R^+(r,t), \frac{x}{r} \right\rangle - \left\langle DU(r,t), \frac{x}{r} \right\rangle.$$

Dabei ist der letzte Term beschränkt und der erste geht gegen $-\infty$ für $r \to R$. Wir erhalten also die strenge Monotonie für genügend kleine |x| - R > 0. Für den Rest argumentieren wir wie folgt. Wenn f nicht monoton wäre, könnten wir W_R^+ für ein |x| > R vertikal verschieben, sodass sowohl W_R^+ und U als auch ihre ersten räumlichen Ableitungen übereinstimmen. Dies widerspricht der Eindeutigkeit der zugrunde liegenden gewöhnlichen Differentialgleichung.

Wir setzen diese Barrieren auf $(\mathbb{R}^n \setminus B_R(0)) \times \mathbb{R}^m$ in kanonischer Weise fort und nennen die neuen Barrieren wieder W_R^{\pm} , wenn es zu keinen Missverständnissen kommen kann. Ansonsten gilt die Notation

$$W_R^{\pm}(x, y, t) = \hat{W}_R^{\pm}(x, t).$$

3.2. Konstruktion einer Lösung

In diesem Abschnitt wird zu gegebenem u_0 eine Lösung u der Gleichung (1.2) konstruiert, die die Barrieren W_R^{\pm} für ein $R > R_0$ respektiert. Dabei wird das klassische Dirichlet Problem für den graphischen Mittleren Krümmungsfluss mit translatierenden Randwerten bewiesen, also Theorem 3.9.

Für $n \geq 2$ erhalten wir für jedes R > 0 analog zu Lemma 3.7 Funktionen $W_R^{\pm} : (\mathbb{R}^n \setminus B_R^n) \times \mathbb{R}^m \times [0, \infty) \to \mathbb{R}$, die mit Geschwindigkeit *s* translatieren, rotationssymmetrisch in *x* sind und graphische Lösungen der Mittleren Krümmungsflussgleichung (1.2). Allerdings können wir mit Korollar A.2 nicht schließen, dass W_R^{\pm} Barrieren für eine Lösung *u* mit Anfangswerten u_0 sind. Diese negative Eigenschaft ist der Tatsache geschuldet, dass aufgrund der Nicht-Kompaktheit des Definitionsgebietes $(\mathbb{R}^n \setminus B_R^n) \times \mathbb{R}^m$ die Bedingung

$$W_R^- < u < W_R^+$$

auf $\partial B_R^n(0) \times \mathbb{R}^m \times [0, T]$ nicht erfüllt zu sein braucht. Für $|y| \to \infty$ kann der Gradient einer Lösung u am Streifenrand $\partial B_R^n(0) \times \mathbb{R}^m \times [0, T]$ unendlich groß werden und damit den Rand der Barriere berühren. Dieser Umstand konnte leider nicht behoben werden, was es erforderlich macht eine Lösung u zu gegebenen Anfangswerten u_0 zu konstruieren, die für $t \in [0, \infty)$ die Bedingung

$$W_R^-(z,t) \le u(z,t) \le W_R^+(z,t)$$

für alle $z \in (\mathbb{R}^n \setminus B_R^n) \times \mathbb{R}^m$ und ein $R > R_0$ erfüllt.

Bevor wir zu gegebenem stetigen u_0 eine Lösung u des graphischen Mittleren Krümmungsflusses (1.2) auf ganz \mathbb{R}^N konstruieren, wollen wir zunächst das allgemeine Anfangs- und Randwertproblem des graphischen Mittleren Krümmungsflusses für translatierende Randwerte lösen.

THEOREM 3.9. Sei Ω ein beschränktes Gebiet im \mathbb{R}^N . Sei $\partial \Omega \in C^{2,\alpha}$, $H_{\partial\Omega} \geq 0$ und $\varphi \in C^{2,\alpha}(\partial\Omega)$, $u_0 \in C^{2,\alpha}(\bar{\Omega})$. Dann hat das Anfangs- und Randwertproblem

(3.2)
$$\begin{cases} u_t = \sqrt{1 + |Du|^2} \operatorname{div} \left(\frac{Du}{\sqrt{1 + |Du|^2}}\right) & \text{in } \Omega \times [0, T), \\ u(\cdot, 0) = u_0 & \text{in } \bar{\Omega}, \\ 1 = \sqrt{1 + |Du_0|^2} \operatorname{div} \left(\frac{Du_0}{\sqrt{1 + |Du_0|^2}}\right) & \text{auf } \partial\Omega, \\ u(z, t) = \varphi(z) + t & \text{auf } \partial\Omega \times [0, T) \end{cases}$$

eine eindeutige Lösung $u \in C^{2+\alpha,1+\alpha/2}(\overline{\Omega} \times [0,T))$, wobei auch $T = \infty$ zugelassen werden kann.

Bezeichne U_{φ} die eindeutige translatierende Lösung der Gleichung

$$\begin{cases} u_t = \sqrt{1 + |Du|^2} \operatorname{div} \left(\frac{Du}{\sqrt{1 + |Du|^2}} \right) & \text{in } \Omega \times \mathbb{R} \\ u(z, t) = \varphi(z) + t & \text{auf } \partial\Omega \times \mathbb{R} \end{cases}$$

mit $U_{\varphi}(z,t) = U_{\varphi,0}(z) + t$ für ein eindeutig bestimmtes $U_{\varphi,0} \in C^{2,\alpha}(\overline{\Omega})$. Dann gilt außerdem

$$u(z,t) - U_{\varphi}(z,t) \to 0$$

gleichmäßig in z für $t \to \infty$.

BEWEIS. Existenz- und Eindeutigkeitstheorie für quasilineare parabolische Differentialgleichungen liefert uns Kurzzeitexistenz einer Lösung u auf $\overline{\Omega} \times [0, T)$ (siehe Appendix). Um zu zeigen, dass $T = \infty$ gilt, beweisen wir zunächst innere Gradientenabschätzungen.

Da $u_0 \in C^{2,\alpha}(\overline{\Omega})$, existient $\sup_{\overline{\Omega}} u_0 =: d$. Ferner wissen wir aufgrund der Folge-

rung 3.5.3 aus [12], dass es zu φ eine eindeutige translatierende Lösung $U_{\varphi}(z,t) = U_{\varphi,0}(z) + t$ in $C^{2,\alpha}(\bar{\Omega})$ gibt. Es existieren also Konstanten $C^{\pm}(d)$, sodass

$$U_{\varphi}(\cdot, 0) - C^{-} < u(\cdot, 0) < U_{\varphi}(\cdot, 0) + C^{+}.$$

Mit der Bemerkung 1.6 folgern wir die Ungleichung für all
et>0und erhalten somit a priori Oszillationsschranken der Form

(3.3)
$$\begin{cases} \sup_{\bar{\Omega}} u(\cdot,t) &\leq C^{+}(\|u_{0}\|_{C^{0}(\bar{\Omega})}) + t \\ \inf_{\bar{\Omega}} u(\cdot,t) &\geq -C^{-}(\|u_{0}\|_{C^{0}(\bar{\Omega})}) + t \end{cases}$$

für alle t > 0. Im Intervall [0, T) ist u(z, t) in z und t also gleichmäßig beschränkt. Wir verwenden die zeitlich inneren Abschätzungen aus [13] in der Form, wie sie in [1], Theorem B.2, zitiert werden, und erhalten damit innere Gradientenschranken an u für alle t > 0. Um Gradientenschranken am Rand zu erhalten machen wir den Ansatz

$$\delta^{\pm}(z,t) = w^{\pm}(z) + t$$

Da $H_{\partial\Omega} \geq 0$, wissen wir aus der Minimalflächentheorie (vgl. [5], Kapitel 16), dass es eine Barriere $w^+(z)$ gibt, die $\varphi = w^+$ auf $\partial\Omega$, $u_0 \leq w^+$ in $\Omega_a := \{z \in \Omega : \operatorname{dist}(z,\partial\Omega) < a\}$ für eina > 0klein genug und $-Aw^+ := \operatorname{div}\left(\frac{Dw^+}{\sqrt{1+|Dw^+|^2}}\right) \leq 0$ erfüllt. Damit haben wir

$$\frac{\partial}{\partial t}\delta^+(z,t) + \sqrt{1 + |D\delta^+|^2(z,t)}A\delta^+(z,t) = 1 + \sqrt{1 + |Dw^+|^2(z)}Aw^+(z) > 0.$$

Für eine untere Barriere gehen wir analog vor, nehmen diesmal jedoch nicht die Barriere der Minimalflächengleichung sondern die für eine vorgeschriebene Mittlere Krümmung. Wir hätten gerne

$$Aw^- \le -\frac{1}{\sqrt{1+|Dw^-|^2}} \Leftrightarrow \operatorname{div}\left(\frac{Dw^-}{\sqrt{1+|Dw^-|^2}}\right) \ge \frac{1}{\sqrt{1+|Dw^-|^2}}.$$

Dafür betrachten wir die Gleichung

$$Af = \frac{1}{\sqrt{1 + |Df|^2}}$$

 Da $H_{\partial\Omega}\geq 0,$ folgern wir aus Satz 3.2.8 in [12] die Existenz von globalen Barrieren, insbesondere einer unteren Barriere w^- mit $\varphi = w^-$ auf $\partial \Omega$, $u_0 \ge w^-$ in Ω_a und $\operatorname{div}\left(\frac{Dw^{-}}{\sqrt{1+|Dw^{-}|^{2}}}\right) \geq \frac{1}{\sqrt{1+|Dw^{-}|^{2}}}.$ Damit haben wir

$$\begin{split} \frac{\partial}{\partial t} \delta^{-}(z,t) &+ \sqrt{1 + |D\delta^{-}|^{2}(z,t)} A \delta^{-}(z,t) = 1 + \sqrt{1 + |Dw^{-}|^{2}(z)} A w^{-}(z) \\ &\leq 1 + \frac{-\sqrt{1 + |Dw^{-}|^{2}}}{\sqrt{1 + |Dw^{-}|^{2}}} \leq 0. \end{split}$$

Außerdem können wir $\delta^- \leq u_0 \leq \delta^+$ in Ω_a erreichen und wegen (3.3) gilt die Abschätzung

$$\delta^{-}(z,t) \le u(z,t) \le \delta^{+}(z,t)$$

auf $(\partial \Omega_a \cap \Omega) \times [0,T)$. Mit dem parabolischen Vergleichsprinzip für quasilineare Differentialgleichungen schließen wir

$$\delta^{-}(z,t) \le u(z,t) \le \delta^{+}(z,t)$$

für alle t > 0. Damit existiert eine Konstante, die nur von φ , u_0 und $\partial \Omega$ abhängt, sodass |Du| < c gleichmäßig auf $\partial\Omega \times [0,T]$. Da $v(x,t) := \sqrt{1+|Du|^2(x,t)}$ eine parabolische Differentialgleichung erfüllt, auf die das Maximumprinzip angewendet werden kann (vgl. [14] Lemma 1.2), schließen wir, dass $\sup_{\Omega \times [0,T]} |Du|$ durch eine Kon-

stante beschränkt werden kann, die nur von c und sup $|Du_0|$ abhängt. Daraus folgt

die Langzeitexistenz wie üblich. Sei nämlich T das maximale Zeitintervall, auf dem eine Lösung existiert. Dann wissen wir aufgrund der obigen a priori Abschätzungen, dass die Lösung auf das abgeschlossene Intervall [0, T] fortgesetzt werden kann. Da wir eine $C^{2+\alpha,1+\alpha/2}$ Lösung auf $\overline{\Omega}$ haben, sind die Kompatibilitätsbedingungen bei t = T erfüllt. Wir wenden erneut die Kurzzeitexistenz an und erhalten eine Lösung auf dem Intervall $[0, T + \epsilon)$ für ein kleines $\epsilon > 0$, was der Maximalität von T widerspricht.

Wir wollen nun noch die Konvergenz zeigen. Dabei folgen wir der Argumentation in [1] Lemma 4.2. Für $\delta > 0$ betrachten wir $f := u - U_{\varphi}$ auf

$$\Omega_t := \{ z \in \Omega : u(z,t) - U_{\varphi}(z,t) > \delta \}$$

und wollen $u(z,t) \leq U_{\varphi}(z,t) + \delta$ zeigen. Eine untere Schranke erhalten wir analog. Wir nehmen an, dass $\Omega_t \neq \emptyset$ für alle t > 0. Es gilt $f(z,t) \equiv 0$ für alle $z \in \partial \Omega$. Also kann ein von Null verschiedenes Maximum von f nur im Innern angenommen werden. Die Differenz zweier Lösungen der Gleichung (1.2) erfüllt eine lineare Differentialgleichung, die gleichmäßig parabolisch ist, wenn |Du| und $|DU_{\varphi}|$ beschränkt sind (vgl. [5] Theorem 17.1). Dass $|Du| \leq C$ haben wir bereits geschen. Wegen $|DU_{\varphi}(z,t)| = |DU_{\varphi,0}(z)|$ erhalten wir aus der elliptischen quasilinearen Theorie $|DU_{\varphi}| \leq C$. Nach dem starken Maximumprinzip folgern wir, dass max f(z,t) in der

Zeit streng monoton fallend ist. Wir definieren

$$f_k : \Omega \times [-t_k, \infty) \to \mathbb{R}$$
$$f_k(z, t) := f(z, t + t_k)$$

für eine Zeitenfolge $t_k \to \infty$. Dann konvergiert eine Teilfolge (f_{k_m}) in der $C^{2,1}$ -Norm zu einer Grenzfunktion $f_{\infty} : \Omega \times \mathbb{R} \to \mathbb{R}$ und $f_{\infty} + U_{\varphi}$ ist wieder eine Lösung des graphischen Mittleren Krümmungsflusses (1.2). Da $\max_{\Omega}(u - U_{\varphi})$ in Ω_t strikt gegen eine positive Konstante *d* fällt, folgern wir über das Maximumprinzip

$$\delta \le d \le \max_{\Omega} (u - U_{\varphi})(x, t) \le \max_{\Omega} (u - U_{\varphi})(x, T)$$

für alle t > T. Damit ist $\sup_{\Omega} f_{\infty}(\cdot, t)$ Zeit unabhängig und nicht kleiner als δ . Da $\Omega_t \neq \emptyset$, wird ein Maximum für jede Zeit t irgendwo in Ω angenommen. Das starke Maximumprinzip impliziert, dass f_{∞} überall in Ω nicht kleiner als δ ist. Das ist ein Widerspruch zu den Randwerten von f_{∞} .

Wir wollen diese Lösung des Dirichletproblems mit translatierenden Randwerten ausnutzen um eine Lösung auf ganz \mathbb{R}^N zu erhalten. Dazu betrachten wir im Folgenden das nachstehende Problem. Sei U wie in Lemma 3.1. Sei R > 0, dann wählen wir $\epsilon = \frac{1}{R}$ und glätten u_0 durch

$$(u_0)_{\epsilon}(z) = \frac{1}{\epsilon^N} \int_{\mathbb{R}^N} \mu\left(\frac{z-\bar{z}}{\epsilon}\right) u_0(\bar{z}) \, d\bar{z},$$

wobei $\mu \in C_c^{\infty}(\mathbb{R}^N)$, $\mu \ge 0$ und $\int_{\mathbb{R}^N} \mu = 1$. Damit gilt $(u_0)_{\epsilon} \in C^{\infty}(\mathbb{R}^N)$. Es existiert nun eine Abschneidefunktion $\eta \in C^{\infty}(\mathbb{R}^N)$ mit den Eigenschaften: i) $0 \le \eta \le 1$,

- $1) \circ \underline{-} \eta \underline{-} 1,$
- ii) $\eta \equiv 1$ auf $B_1(0)$ und $\eta \equiv 0$ auf $B_3(0) \setminus B_2(0)$,
- iii) und $|D\eta| \leq 4$.

Wir setzen

$$(u_0)_{\epsilon,R}(z) = \eta\left(\frac{z}{R}\right)(u_0)_{\epsilon}(z) + \left(1 - \eta\left(\frac{z}{R}\right)\right)U(z,0)$$

und betrachten das Anfangs- und Randwertproblem

(3.4)
$$\begin{cases} \frac{\partial}{\partial t} u^{R} = \sqrt{1 + |Du^{R}|^{2}} \operatorname{div}_{\mathbb{R}^{N}} \left(\frac{Du^{R}}{\sqrt{1 + |Du^{R}|^{2}}} \right) & \text{in } B_{3R}(0) \times [0, T) \\ u^{R}(z, t) = U(z, t) & \text{auf } \partial B_{3R} \times [0, T) \\ u^{R}(z, 0) = (u_{0})_{\epsilon, R}(z) & \text{in } B_{3R}. \end{cases}$$

Wir bemerken, dass $\lim_{R\to\infty} (u_0)_{\epsilon,R}(z) = u_0(z)$ für alle $z \in \mathbb{R}^N$ gilt. Wegen Theorem 3.9 hat das Anfangs- und Randwertproblem (3.4) für $u_0 \in C^0(B_{3R}(0))$ eine eindeutige Lösung $u^R \in C^{\infty}(B_{3R}(0) \times (0, \infty)) \cap C^0(B_{3R}(0) \times [0, \infty))$, wobei die höhere Regularität aus den inneren Abschätzungen aus [3] und der Randregularität von u^R folgt.

Das nachfolgende Lemma zeigt, wie man Gradientenschranken an u^R unabhängig von R auf einem kleineren Gebiet B_{R_0} für alle $R > R_0$ erhält. Wir folgen dabei der Argumentation des Beweises von Theorem 5.1 aus [3].

LEMMA 3.10. Es existiert ein $R_1 > 0$, sodass für alle $R > R_1 > 2R_0 > 0$ eine glatte Lösungen u^R des graphischen Mittleren Krümmungsflusses (1.2) auf $B_R(0) \times [0,T]$ mit $u^R(z,t) = \varphi(z)$ auf $\partial B_R(0) \times [0,T]$ und $\varphi \in C^{\infty}(\partial B_R)$ die Abschätzung

$$\sup_{B_{2R_0} \times [0,T]} |u^R| \le C_0$$

erfüllt, wobe
i $C_0=C_0(n,R_0,T,\sup_{B_{R_1}}|u_0^R|)$ unabhängig von R ist. Außerdem gilt

$$\sup_{B_{\frac{3}{2}R_0} \times [0,T]} |Du^R| \le C_1$$

mit $C_1 = C_1(n, R_0, C_0, \sup_{B_{2R_0}} |Du_0^R|)$ und für jedes $\epsilon > 0$

$$\sup_{B_{R_0} \times [\epsilon, T]} |D^m u^R| \le C_m$$

mit $C_m = C_m(m, n, \epsilon, R_0, C_0, C_1).$

BEWEIS. Sei $R_0 > 0$. Definiere $R_1(R_0) := \sqrt{4R_0^2 + 2nT}$ und bemerke, dass $R_1 \ge 2R_0$ gilt. Definiere

$$a^+ := (0, \sup_{B_{R_1}} u_0^R + R_1 + 1) \in \mathbb{R}^{N+1}.$$

Setze $M_t^R = \operatorname{graph} u^R(\cdot, t)$. Für $R > R_1$ gilt dann nach Definition

$$M_0^R \cap B_{R_1}^{N+1}(a^+) = \emptyset$$

und

$$\partial M_t^R \cap B_{R_1}^{N+1}(a^+) = \emptyset$$

für alle $t \in [0, T]$. Der Vergleichsatz 1.4 mit Sphären liefert

$$M_t^R \cap B_{2R_0}^{N+1}(a^+) = \emptyset$$

für alle $t \in [0, T]$. Wir bemerken, dass $B_{r(t)}$ unter dem Mittleren Krümmungsfluss (1.1) in der Zeit schrumpft wie $r(t) = \sqrt{R_1^2 - 2nt}$ (vgl. Beispiel 1.3). Wir haben also

$$r(0) = R_1$$

$$r(T) = \sqrt{R_1^2 - 2nT} = \sqrt{4R_0^2 + 2nT - 2nT} = 2R_0.$$

Es folgt

$$\sup_{B_{2R_0}\times[0,T]} u^R \le \tilde{C}_0.$$

Wir erhalten für $a^- := (0, \inf_{B_{R_1}} u_0^R - R_1 - 1) \in \mathbb{R}^{N+1}$ und $B_{R_1}^{N+1}(a^-)$ eine untere Schranke und damit

$$\sup_{B_{2R_0} \times [0,T]} |u^R| \le C_0,$$

wobe
i $C_0 = C_0(n, R_0, T, \sup_{B_{R_1}} |u_0^R|)$ unabhängig von R ist.
Wir wenden nun die Gradientenschranken des Theorem 2.3 aus [3] an und erhalten

$$\sup_{B_{\frac{3}{2}R_0} \times [0,T]} |Du^R| \le C_1$$

mit $C_1 = C_1(n, R_0, C_0, \sup_{B_{2R_0}} |Du_0^R|).$

Wir wählen Koordinaten, in denen h_{ij} diagonal ist und rechnen

$$\begin{split} |A|^2 &= g^{ik} g^{jl} h_{ij} h_{kl} = \sum_{i,l} h_{ii} h_{ll} (g^{il})^2 \\ &\geq \frac{1}{(1+|Du|^2)^2} \sum_{i,l} h_{ii} h_{ll} \delta_{il} = \frac{1}{(1+|Du|^2)^2} \sum_i (h_{ii})^2 \\ &\geq \frac{1}{(1+|Du|^2)^3} \sup_{i,j} |D_{ij}u|^2, \end{split}$$

wobei benutzt wurde, dass $(1 + |Du|^2)^{-1}$ der kleinste Eigenwert von g^{ij} ist. Mit Schranken an $|A|^2$ erhalten wir also Schranken an $|D^2u|$. Eine analoge Rechnung lässt sich für höhere Ableitungen durchführen.

Mit Korollar 3.5 ii) aus [3] erhalten wir Schranken an $|\nabla^m A|^2$ und damit nach obiger Argumentation für jedes $\epsilon > 0$

$$\sup_{B_{R_0} \times [\epsilon, T]} |D^m u^R| \le C_m$$

$$n, \epsilon, R_0, C_0, C_1).$$

mit $C_m = C_m(m, n, \epsilon, R_0, C_0, C_1).$

Wir haben also nun gesehen, wie wir für das Problem (3.4) unabhängig von R Gradientenschranken erhalten können. Wir wollen diese Schranken benutzen um eine ganze Lösung des graphischen Mittleren Krümmungsflusses (1.2) auf R^N zu konstruieren.

PROPOSITION 3.11 (Anwendung Arzelà Ascoli). Seien R_1 , $R_0 > 0$ mit $R_1 > 2R_0$ gegeben. Für alle $k \in \mathbb{N}$ mit $k > R_1 > 2R_0$ seien $u^k : B_k(0) \times [0,T] \to \mathbb{R}$ glatte Lösungen des graphischen Mittleren Krümmungsflusses (1.2) mit $u^k \in C_{loc}^0$. Dann existiert eine Diagonalfolge $(u^k)_{k \in \mathbb{N}}$ mit $u^k \to u : \mathbb{R}^N \times (0,T] \to \mathbb{R}$ und u ist wiederum glatte Lösung der Gleichung (1.2).

BEWEIS. Lemma 3.10 liefert

$$\sup_{z \in B_{R_0}(0)} |u^k(z,t)| \le C_0$$

für alle $k > R_1 > 2R_0$ und alle $t \in [0,T]$ und C_0 ist unabhängig von k, sowie

$$\sup_{z \in B_{R_0}(0)} |Du^k(z,t)| \le C_1$$

für alle $k>R_1>2R_0$ und alle $t\in[0,T]$ und C_1 ist unabhängig von k. Außerdem gilt

$$\sup_{B_{R_0}\times[\epsilon,T]} |D^m u^R| \le C_m$$

für alle $k > R_1 > 2R_0$ und alle $\epsilon > 0$, wobei C_m unabhänig von k ist. Wir folgern also die gleichmäßig gleichgradige Stetigkeit der u^k mit

$$|u^{k}(z_{1},t) - u^{k}(z_{2},t)| \leq \sup_{w \in B_{R_{0}}(0)} |Du^{k}(w)||z_{1} - z_{2}| \leq C_{1}|z_{1} - z_{2}|.$$

Wir betrachten u^k für $k > R_1 > 2R_0$ auf $B_{R_0}(0)$ und schließen mit Arzelà Ascoli auf die Existenz einer auf $B_{R_0}(0)$ konvergenten Teilfolge u^{k_l} mit $u^{k_l} \to u$ auf $B_{R_0}(0) \times [\frac{1}{R_0}, T]$ für $l \to \infty$. Wir legen ein Folgenglied beiseite. Es wird später das erste unserer Diagonalfolge. Nun betrachten wir u^{k_l} auf $B_{2R_0}(0)$. Für l so groß, dass $k_l > 2R_1 > 4R_0$ gilt, erhalten wir auf $B_{2R_0}(0)$ mit Lemma 3.10 erneut Gradientenschranken

$$\sup_{(z,t)\in B_{2R_0}(0)\times[0,T]} |D^m u^{k_l}(z,t)| \le \hat{C}\left(n,T,2R_0,\sup_{B_{2R_1}} |u_0^{k_l}|,\sup_{B_{4R_0}} |Du_0^{k_l}|\right)$$

für m = 0, 1 und

$$\sup_{(z,t)\in B_{2R_0}(0)\times[\epsilon,T]} |D^m u^{k_l}(z,t)| \le C(n,m,R_0,\hat{C})$$

für jedes $\epsilon > 0$ und $m \ge 2$. Wir können noch einmal Arzelà Ascoli anwenden und erhalten Teilfolgenkonvergenz gegen ein \tilde{u} . Wegen der Eindeutigkeit des Grenzwertes gilt $u = \tilde{u}$ auf $B_{R_0}(0)$. Erneut legen wir ein Folgenglied dieser Teilfolge beiseite. Es wird das zweite Folgenglied unserer Diagonalfolge. Wir wählen schließlich eine Diagonalfolge und erhalten Konvergenz auf immer größeren Gebieten, wobei der Grenzwert immer mit dem auf kleineren Gebieten übereinstimmt. Also können wir die lokal gleichmäßige Konvergenz der nun wieder u^k genannten Diagonalfolge gegen eine Funktion $u : \mathbb{R}^N \times (0, T] \to \mathbb{R}$ auf \mathbb{R}^N folgern. Wenden wir Arzelà Ascoli auf die höheren Ableitungen von u^k an, können wir über die Konvergenz der höheren Ableitungen die Regularität von u folgern und damit auch, dass u die Gleichung (1.2) erfüllt.

<u>Konstruktion der Lösung</u>: Wie zu Beginn dieses Abschnitts erwähnt, wollen wir nun das Theorem 3.9 und Proposition 3.11 auf unseren Fall anwenden und eine Lösung u des graphischen Mittleren Krümmungflusses (1.2) zu gegebenen Anfangswerten u_0 konstruieren, die die Barrieren W_R^{\pm} für ein $R > R_0$ respektiert.

Dazu sei ein u_0 gegeben, das die Bedingungen des Theorems 3.5 erfüllt. Sei $\epsilon > 0$ gegeben, dann existiert nach Annahme ein $R > R_0$ unabhängig von y, sodass

$$\sup_{x \in \mathbb{R}^n \setminus B_R(0)} |U(x, y, 0) - u_0(x, y)| < \epsilon.$$

Dazu wählen wir Barrieren W_R^{\pm} wie wir sie in Lemma 3.7 konstruiert haben. Ferner seien W_R^{\pm} bereits so verschoben, dass

$$W_R^-(\cdot,0) \le u_0 \le W_R^+(\cdot,0)$$

und

$$W_R^-(\cdot,0) \le U(\cdot,0) \le W_R^+(\cdot,0)$$

gilt.

Wir wählen r > 0 ausreichend groß (r > R) und bezeichnen mit u^r eine Lösung des Problems (3.4).

Damit haben wir für t = 0

$$W_{R}^{-}(\cdot,0) \le u_{0}^{r} \le W_{R}^{+}(\cdot,0)$$

auf $\mathscr{A} := B_r^N(0) \cap ((\mathbb{R}^n \setminus B_R^n(0)) \times \mathbb{R}^m)$. Wegen den inneren Abschätzungen aus [3] haben wir Gradientenschranken für u^r auf $B_r^N(0) \times [\epsilon, \infty)$ für ein beliebiges $\epsilon > 0$ und wissen daher, dass u^r die Barrieren W_R^{\pm} auf $B_r^N(0) \cap (\partial B_R^n(0) \times \mathbb{R}^m)$ nicht berühren kann. Nach Konstruktion von W^{\pm} und u^r gilt

$$W_R^-(\cdot,t) \le u^r(\cdot,t) \le W_R^+(\cdot,t)$$

auf $\partial B_r^N(0)$ für all
e $t\geq 0.$ Mit dem Vergleichsprinzip Korollar A.2 folgt die Ungleichung

$$W_R^-(\cdot, t) \le u^r(\cdot, t) \le W_R^+(\cdot, t)$$

dann für alle t > 0 und jedes r > R auf ganz $B_r^N(0)$. Wegen der Stetigkeit von u_0 existieren Konstanten C^+, C^- , die von r und $|u_0|_{C^0(B_r^N)}$ abhängen, sodass

$$U(\cdot, 0) - C^{-} \le u^{r}(\cdot, 0) \le U(\cdot, 0) + C^{+}.$$

Dies funktioniert für jedes fester>R. Mit dem Vergleichsprinzip Theorem A.1 folgern wir für alle $0\leq t< T$

$$U(\cdot,t) - C^{-} \le u^{r}(\cdot,t) \le U(\cdot,t) + C^{+}$$

auf $B_r^N(0)$. Damit haben wir gleichmäßige Oszillationsschranken an u^r auf $B_r^N(0) \times [0,T)$ gefunden und mit den zeitlich inneren Abschätzungen aus [13] in der Form, wie sie in [1], Theorem B.2, zitiert werden, erhalten wir Gradienten- und höhere Ableitungsschranken im Inneren an u^r für alle t > 0, die auf einem kleineren Ball in B_r^N unabhängig von r sind. Proposition 3.11 liefert schließlich eine Lösung u der Gleichung (1.2) auf $\mathbb{R}^N \times [0, \infty)$, die

$$W_R^-(z,t) \le u(z,t) \le W_R^+(z,t)$$

für alle $(z,t) \in ((\mathbb{R}^n \setminus B^n_R(0)) \times \mathbb{R}^m) \times [0,\infty)$ erfüllt.

Es bleibt noch zu zeigen, dass für die konstruierte Lösung u auch wirklich $u(\cdot, 0) = u_0$ gilt. Dies wird über ein lokales Argument in [13] Theorem 5.2 gezeigt.

3.3. Konstruktion von Barrieren auf $B_R^n(0) \times \mathbb{R}^m$

In diesem Abschnitt werden mithilfe des Theorems 2.1 Barrieren auf $B_R^n(0) \times \mathbb{R}^m$ konstruiert. Hierbei wird insbesondere die Konvergenzrate ausgenutzt und mit der Geschwindigkeit der translatierenden Lösung verglichen.

Im Folgenden gehen wir zunächst davon aus, dass U(z,t) = U(z,0) + st und u_0 die Bedingungen

(1) für alle $\epsilon > 0$ existiert ein R > 0 unabhängig von y, sodass

$$\sup_{x \in \mathbb{R}^n \setminus B_R(0)} |U(x, y, 0) - u_0(x, y)| < \epsilon$$

für alle $y \in \mathbb{R}^m$ gilt und

(2) es existiere ein $R_0 > 0$, sodass auf $B_{R_0}^n(0) \times \mathbb{R}^m$ die Ungleichungen

$$u_0(x,y) \le C_1(1+|y|^{p_1}), u_0(x,y) \ge -C_2(1+|y|^{p_2})$$

mit festen $p_1 < 2, p_2 + 1 < n$

erfüllt sind. Außerdem translatiere U so langsam, dass

$$s = \frac{1}{t_0}$$

erfüllt ist und $t_0 > 1$ später bestimmt wird. Ferner nehmen wir an, dass u die wie in Abschnitt 3.2 konstruierte Lösung zu u_0 ist.

3.3.1. Konstruktion unterer Barrieren. Wir wollen untere Barrieren konstruieren und interessieren uns daher zunächst nur für die Abschätzung

$$\iota_0(x,y) \ge -C_2(1+|y|^{p_2})$$

Wir haben also bereits u_0 gegeben und damit n und p_2 . Wir definieren eine Funktion $B_{0,0}^-: \mathbb{R}^{n+m} \to \mathbb{R}$ durch

$$B_{0,0}^{-}(x,y) = \frac{-C_3(1+|y|^{p_2+\alpha})}{1+|x|^q}$$

für alle $x \in \mathbb{R}^n$, $y \in \mathbb{R}^m$ und wählen q > n sowie $\alpha > 0$ so klein, dass immer noch $p_2 + 1 + \alpha < n$ gilt. C_3 wird dadurch bestimmt, dass die Ungleichung

$$B_{0,0}^{-}(z) + 1 \le u_0(z)$$

für alle $z \in \mathbb{R}^{n+m}$ erfüllt sein soll. Wir fordern insbesondere $C_3 > 1$. Ohne Einschränkung können wir C_3 so groß wählen, dass

(3.5)
$$B_{0,0}^{-}(z) + 1 < W_{R}^{-}(z,0)$$

für alle $z \in (\mathbb{R}^n \setminus B_R) \times \mathbb{R}^m$ und für das $R > R_0$, zu welchem die Barrieren W_R^{\pm} gewählt wurden. Sei $B_0^- : \mathbb{R}^{n+m} \times [0, \infty) \to \mathbb{R}$ eine auf $\mathbb{R}^{n+m} \times (0, \infty)$ glatte Lösung des graphischen Mittleren Krümmungsflusses (1.2) mit

$$B_0^-(\cdot,0) = B_{0,0}^-$$

Wir wollen das kompakte Maximumprinzip auf dem Gebiet $B_R^n(0) \times \mathbb{R}^m$ auf die Funktionen u und $B_0^- + 1$ anwenden. Dafür benötigen wir, dass ein Minimum von $u - (B_0^- + 1)$ nur auf einer kompakten Menge angenommen werden kann. Wegen der Konstruktion von u wissen wir, dass

$$W_R^-(z,t) \le u(z,t) \le W_R^+(z,t)$$

für alle $(z,t) \in ((\mathbb{R}^n \setminus B^n_R(0)) \times \mathbb{R}^m) \times [0,\infty)$. Wir erhalten also am Rand $\partial B^n_R(0) \times \mathbb{R}^m$ bereits

$$B_0^-(\cdot,t) + 1 \le u(\cdot,t)$$

für alle $t \in [0, t_0]$ mit einem $t_0 > 0$, das später bestimmt wird. Da der Graph von $B_{0,0}^-$ in y-Richtung schneller fällt als der von u_0 , kann ein Minimum von $u_0 - (B_{0,0}^- + 1)$ nur auf einer kompakten Menge in $B_R^n(0) \times \mathbb{R}^m$ angenommen werden. Außerdem existiert eine Sphäre $\mathbb{S}_{\tilde{R}_0}$ mit Radius $\tilde{R}_0 := \sqrt{R^2 + 2(n + m + 1)t_0}$ und Mittelpunkt $(0, y_0)$ für ein möglicherweise sehr großes $|y_0|$, sodass die Sphäre zwischen u_0 und $B_{0,0}^- + 1$ liegt (vgl. Abbildung 3.3). Wegen Beispiel 1.3 wissen wir, dass der Radius der Sphäre in der Zeit nach der Vorschrift $R(t) = \sqrt{\tilde{R}_0^2 - 2(n + m + 1)t}$ schrumpft und daher gilt $R(t_0) = R$. Da das Vergleichsprinzip jeweils auf $\mathbb{S}_{R(t)}$, graph $u(\cdot, t)$ und $\mathbb{S}_{R(t)}, B_0^-(\cdot, t) + 1$ angewendet werden kann und \tilde{R}_0 so gewählt werden kann, dass $\tilde{R}_0(|y_0|) \to \infty$ für $|y_0| \to \infty$ gilt, kann ein Minimum von $u - (B_0^- + 1)$ auf $(B_R^n(0) \times \mathbb{R}^m) \times [0, t_0]$ nur auf einer kompakten Menge angenommen werden. Wir wollen die Konvergenzrate aus Theorem 2.1 auf B_0^- anwenden. Dafür bemerken wir zunächst, dass nach Voraussetzung $q > n > p_2 + 1 + \alpha$ gilt und damit

$$\gamma := \min\left\{\frac{n - (p_2 + 1 + \alpha)}{2}, \frac{q - (p_2 + 1 + \alpha)}{2}\right\} = \frac{n - (p_2 + 1 + \alpha)}{2}.$$

ABBILDUNG 3.3. Querschnitt bei $y = y_0$ für großes $|y_0|$.

Es wird nötig sein eine genaue Abschätzung der Konvergenzrate zu erhalten. Hätten wir eine Anfangsfunktion der Form

$$w_0(x,y) = \frac{a+b|y|^{p_2+c}}{1+|x|^q}$$

mit den wie oben gewählten p_2 und q, dann interessieren wir uns explizit dafür, wie die Konstanten a, b in die Abschätzung der Konvergenzrate eingehen. Dafür betrachten wir noch einmal den Beweis des Lemmas 2.3. Wir bemerken, dass es nur nötig ist den Term A genauer abzuschätzen. Wir setzen $p_3 := p_2 + \alpha$. Wir erhalten

$$A \le t^{\frac{m+p_3}{2}} \int_{\mathbb{R}^m} e^{\frac{-|z_2|^2}{4}} (a+2^{p_3}b|y|^{p_3}+2^{p_3}b|z_2|^{p_3}) \, dz_2$$

für alle $t \ge 1$ und $y \in \mathbb{R}^m$ mit m = m'. Insgesamt erhalten wir dann für eine Lösung w der Gleichung (1.2) die Abschätzung

$$(3.6) |w(x,y,t)| \leq t^{-\gamma}c(n,m,q) \int_{\mathbb{R}^m} e^{\frac{-|z_2|^2}{4}} (a+2^{p_3}b|y|^{p_3}+2^{p_3}b|z_2|^{p_3}) dz_2 = t^{-\gamma} \underbrace{c(n,m,q) \int_{\mathbb{R}^m} e^{\frac{-|z_2|^2}{4}} (a+2^{p_3}b|z_2|^{p_3}) dz_2}_{:=\hat{c}_0(n,m,q,a,b,p_3)} + \underbrace{c(n,m,q,p_3) \int_{\mathbb{R}^m} e^{\frac{-|z_2|^2}{4}} dz_2}_{\tilde{c}_0(n,m,q,p_3)} \cdot bt^{-\gamma}|y|^{p_3} = t^{-\gamma}\hat{c}_0 + \tilde{c}_0 bt^{-\gamma}|y|^{p_3}$$

für alle $t \ge 1$ und alle $y \in \mathbb{R}^m$. Wir sehen sofort, dass \hat{c}_0 in b monoton fällt und gegen eine positive Konstante konvergiert, wenn $b \to 0$ und alle anderen Variablen festgehalten werden. Der zweite Term konvergiert in y lokal gleichmäßig gegen Null,

wenn $b \to 0$ und alle anderen Variablen festgehalten werden. Wir wenden die Abschätzung (3.6) auf B_0^- an und erhalten für ein später bestimmtes $t_0 > 1$ groß genug die Abschätzung

$$|B_0^-(x,y,t_0)| \le t_0^{-\gamma} \hat{c}_0 + \tilde{c}_0 C_3 t_0^{-\gamma} |y|^{p_3},$$

wobei in diesem Fall noch $a = b = C_3$ gilt. Ferner wird t_0 nun dadurch bestimmt, dass

(3.7)
$$\frac{C_3}{1+R^q} - t_0^{-\gamma} \hat{c}_0 > st_0 = 1$$

und

(3.8)
$$t_0^{-\gamma} \tilde{c}_0 < 2^{-1} \frac{1}{1 + R^q}$$

erfüllt sein sollen. Dabei ist $R>R_0$ das, welches zu Beginn des Abschnitts 3.3 durch $\epsilon>0$ festgelegt wurde.

Wir wissen, dass $U(z, t_0) = U(z, 0) + 1$ bei t_0 um 1 nach oben translatiert ist. Gleichzeitig zeigen die Abschätzungen (3.7) und (3.8), dass für alle $(x, y) \in B_R^n \times \mathbb{R}^m$ die Differenz

$$(3.9) \quad B_0^-(x,y,t_0) - B_{0,0}^-(x,y) \ge -t_0^{-\gamma} \hat{c}_0 - t_0^{-\gamma} \tilde{c}_0 C_3 |y|^{p_3} + \frac{C_3(1+|y|^{p_3})}{1+|x|^q} \\ > \frac{C_3}{1+R^q} - t_0^{-\gamma} \hat{c}_0 + \left(\frac{1}{1+R^q} - t_0^{-\gamma} \tilde{c}_0\right) C_3 |y|^{p_3} \\ > 1$$

größer als 1 ist. Dies ermöglicht es eine neue untere Barriere zu konstruieren. Wir definieren eine weitere Funktion $B_{1,0}^-: \mathbb{R}^{n+m} \to \mathbb{R}$ durch

$$B_{1,0}^{-}(x,y) = \frac{-C_3 - 2^{-1}C_3|y|^{p_3}}{1 + |x|^q}$$

für alle $x\in\mathbb{R}^n,\,y\in\mathbb{R}^m$ und q wie zuvor. Man bemerke die Verbesserung im Faktor vor $|y|^{p_3}$. Wir erhalten für $(x,y)\in B^n_R\times\mathbb{R}^m$

$$\begin{split} u(x,y,t_0) &> B_0^-(x,y,t_0) + 1 \\ &\geq -t_0^{-\gamma} \hat{c}_0 - t_0^{-\gamma} \tilde{c}_0 C_3 |y|^{p_3} + \frac{C_3(1+|y|^{p_3})}{1+|x|^q} + B_{0,0}^-(x,y) + 1 \\ &= -t_0^{-\gamma} \hat{c}_0 - t_0^{-\gamma} \tilde{c}_0 C_3 |y|^{p_3} + 1 \\ &\stackrel{(3.7),(3.8)}{\geq} 2 - \frac{C_3 + 2^{-1} C_3 |y|^{p_3}}{1+R^q} \\ &\geq 2 - \frac{C_3 + 2^{-1} C_3 |y|^{p_3}}{1+|x|^q} \\ &= 2 + B_{1,0}^-(x,y). \end{split}$$

Wir wollen die Ungleichung für alle $z \in \mathbb{R}^{n+m}$ garantieren. Dafür zeigen wir $B_{1,0}^-(x,y)+2 < W_R^-(x,y,t_0)$ für $(x,y) \in (\mathbb{R}^n \setminus B_R^n) \times \mathbb{R}^m$. Wegen $W_R^-(z,t_0) \leq u(z,t_0)$ folgt dann die gewünschte Ungleichung. Da $B_{1,0}^-(x,y)+2 \rightarrow 2$ für $|x| \rightarrow \infty$ und $W_R^-(x,y,t_0) \rightarrow \infty$ für $|x| \rightarrow \infty$ genügt es den Fall y = 0 zu betrachten. Wir wollen

$$B_{1,0}^{-}(x,0) + 2 = 2 - \frac{C_3}{1+|x|^q} < W_R^{-}(x,0,t_0)$$

zeigen, was in Betracht der Translationsgeschwindigkeit von $W^-_{\!R}$ gleichbedeutend ist mit der Forderung

$$1 - \frac{C_3}{1 + |x|^q} < W_R^-(x, 0, 0).$$

Dies gilt aber wegen (3.5), womit wir

$$B_{1,0}^{-}(z) + 2 < u(z,t_0)$$

für alle $z\in\mathbb{R}^{n+m}$ gezeigt hätten. Se
i $B_1^-:\mathbb{R}^{n+m}\times[0,\infty)\to\mathbb{R}$ eine auf $\mathbb{R}^{n+m}\times(0,\infty)$ glatte Lösung des graphischen Mittleren Krümmungsflusses (1.2) mit

$$B_1^-(\cdot, 0) = B_{1,0}^-.$$

Wie in der Argumentation der unteren Barriere B_0^- schließen wir mit dem kompakten Maximumprinzip, dass für alle $t \in [t_0, 2t_0]$ die Ungleichung

$$B_1^-(\cdot, t - t_0) + 2 \le u(\cdot, t)$$

auf $B_R^n(0) \times \mathbb{R}^m$ erfüllt ist. Wir wenden erneut die Konvergenzabschätzung (3.6) auf B_1^- mit $a = C_3$ und $b = 2^{-1}C_3$ an und erhalten

$$\begin{split} |B_1^-(x,y,t_0)| &\leq t_0^{-\gamma} \underbrace{c(n,m,q) \int_{\mathbb{R}^m} e^{\frac{-|z_2|^2}{4}} (C_3 + 2^{p_3 - 1} C_3 |z_2|^{p_3}) \, dz_2}_{:= \hat{c}_1(n,m,q,a,b,p_3)} \\ &+ \tilde{c}_0 t_0^{-\gamma} 2^{-1} C_3 |y|^{p_3} \\ &\leq t_0^{-\gamma} \hat{c}_1 + \tilde{c}_0 t_0^{-\gamma} 2^{-1} C_3 |y|^{p_3}. \end{split}$$

Da $\tilde{c}_0 t_0^{-\gamma}<1$, ist der Faktor vor $|y|^{p_3}$ erneut kleiner geworden. Außerdem haben wir $\hat{c}_1\leq\hat{c}_0.$ Wir schließen also erneut

$$B_{1}^{-}(x,y,t_{0}) - B_{1,0}^{-}(x,y) > -t_{0}^{-\gamma}\hat{c}_{1} - t_{0}^{-\gamma}\tilde{c}_{0}2^{-1}C_{3}|y|^{p_{3}} + \frac{C_{3}}{1+R^{q}} + \frac{2^{-1}C_{3}|y|^{p_{3}}}{1+R^{q}}$$
$$> \frac{C_{3}}{1+R^{q}} - t_{0}^{-\gamma}\hat{c}_{1} + C_{3}2^{-1}\left(\frac{1}{1+R^{q}} - t_{0}^{-\gamma}\tilde{c}_{0}\right)|y|^{p_{3}}$$
$$> 1$$

für alle $(x,y) \in B_R^n \times \mathbb{R}^m$. Wir definieren eine weitere Funktion $B_{2,0}^- : \mathbb{R}^{n+m} \to \mathbb{R}$ durch

$$B_{2,0}^{-}(x,y) = \frac{-C_3 - 2^{-2}C_3|y|^{p_3}}{1 + |x|^q}$$

ABBILDUNG 3.4. Iterationsprozess der Barrieren B_i^- , Querschnitt bei y = 0.

für alle $x\in\mathbb{R}^n,\,y\in\mathbb{R}^m$ und q wie zuvor. Wir erhalten für $(x,y)\in B^n_R\times\mathbb{R}^m$ $u(x,y,2t_0)>B^-_1(x,y,t_0)+2$

$$\geq -t_0^{-\gamma} \hat{c}_1 - t_0^{-\gamma} \tilde{c}_0 2^{-1} C_3 |y|^{p_3} + \frac{C_3 (1 + 2^{-1} |y|^{p_3})}{1 + |x|^q} + B_{1,0}^-(x, y) + 2$$

$$= -t_0^{-\gamma} \hat{c}_1 - t_0^{-\gamma} \tilde{c}_0 C_3 2^{-1} |y|^{p_3} + 2$$

$$\stackrel{(3.7),(3.8)}{\geq} 3 - \frac{C_3 + 2^{-2} C_3 |y|^{p_3}}{1 + R^q}$$

$$\geq 3 - \frac{C_3 + 2^{-2} C_3 |y|^{p_3}}{1 + |x|^q}$$

$$= 3 + B_{2,0}^-(x, y).$$

Ziel ist es, Barrieren B_i^- zu definieren, die obige Argumentation iterativ anzuwenden und zu folgern, dass der Faktor 2^{-i} für $i\to\infty$ gegen Null konvergiert. Die Konstruktion der Barrieren B_0^- und B_1^- wird in Abbildung 3.4 dargestellt.

Wir fassen unsere Überlegungen in der folgenden Proposition zusammen.

PROPOSITION 3.12. Es existiert eine Folge von Funktionen

$$B_i^-: \mathbb{R}^{n+m} \times [0,\infty) \to \mathbb{R}$$

mit $i \in \mathbb{N} \cup \{0\}$ mit folgenden Eigenschaften:

 i) Jedes B_i[−] ist Lösung des graphischen Mittleren Krümmungsflusses auf dem Intervall [0,∞),

47

ii) $B_i^-(z,t-it_0)+(i+1) \le u(z,t)$ für alle $z \in (B_R^n(0) \times \mathbb{R}^m)$ und $t \in [it_0,(i+1)t_0]$, iii) $\lim_{i \to \infty} |B_i^-(x,y,t_0)| \le C_4$ lokal gleichmäßig in y für eine Konstante $C_4 > 0$.

BEWEIS. Nach Konstruktion der B_i^- sind die Funktionen Lösungen des graphischen Mittleren Krümmungsflusses auf dem Intervall $[0,\infty)$ mit den Anfangsbedingungen

$$B_i^-(x,y,0) = \frac{-C_3 - 2^{-i}C_3|y|^{p_3}}{1+|x|^q}.$$

Die Behauptung ii) wurde für B_0^- in der Konstruktionsbeschreibung bereits bewiesen. Für allgemeine B_i^- verläuft die Argumentation analog, wobei die B_i^- für alle $(x,y)\in B_R^n\times\mathbb{R}^m$ die Abschätzung

$$B_i^-(x, y, t_0) - B_{i,0}^-(x, y) > st_0 = 1$$

erfüllen. Die dritte Behauptung folgt aus der Abschätzung

$$|B_i^-(x,y,t_0)| \le t_0^{-\gamma} \hat{c}_i + \tilde{c}_0 t_0^{-\gamma} 2^{-i} C_3 |y|^{p_3}$$

Aus (3.6) folgern wir, dass $\hat{c}_i \searrow C_4$ für $i \to \infty$ und eine Konstante $C_4 > 0$.

3.3.2. Konstruktion oberer Barrieren. Um die Idee für eine obere Barriere besser präsentieren zu können nehmen wir zunächst an, dass u_0 in y-Richtung weniger als linear wachsen darf, also $p_1 < 1$.

Wir konstruieren eine obere Barriere B^+ auf $B^n_R(0) \times \mathbb{R}^m$. Dazu definieren wir

$$B_0^+(x,y) = c_2|y|$$

für eine Konstante $c_2 > 0$ und betrachten die selbstähnliche Lösung der graphischen Mittleren Krümmungsflussgleichung zu diesen Anfangswerten auf \mathbb{R}^{n+m} . Wir erinnern zuvor an das Skalierungsverhalten von selbstähnlichen Lösungen. Sei $B^+(x, y, t)$ eine Lösung mit Anfangswerten $B^+(\cdot, 0) = B_0^+$. Dann ist auch die skalierte Lösung $B_{\lambda}^+(x, y, t) := \frac{1}{\lambda}B^+(\lambda x, \lambda y, \lambda^2 t)$ wieder eine Lösung der Gleichung (1.2) wie in der Einleitung beschrieben. Im Fall von Kegeln gilt sogar

$$B_{\lambda}^{+}(x,y,0) = \frac{1}{\lambda}B^{+}(\lambda x,\lambda y,0) = \frac{c_2}{\lambda}|\lambda y| = c_2|y|.$$

Daraus und der Eindeutigkeit von Lösungen der Gleichung (1.2) (vergl. [15]) folgt $B_{\lambda}^{+}(\cdot,t) = B^{+}(\cdot,t)$. Wählen wir $\lambda = \frac{1}{\sqrt{t}}$ so erhalten wir

(3.10)
$$B^{+}(x,y,t) = \sqrt{t}B^{+}(\frac{x}{\sqrt{t}},\frac{y}{\sqrt{t}},1).$$

Dieser Gleichheit entnehmen wir, dass selbstähnliche Lösungen lokal flach werden und sich in der Zeit mit Geschwindigkeit $\approx \frac{c}{2\sqrt{t}}$ in Richtung der e_{N+1} -Achse aufwärts bewegen. Wir bemerken noch, dass das Verhalten in der Zeit der Lösung $B^+(\cdot,t)$ nur von y abhängt und für jedes feste x gleich ist. Dies erlaubt es die Barriere auf das Gebiet $B_R^n(0) \times \mathbb{R}^m$ einzuschränken.

Die Idee diesen Kegeltrog als Barriere zu verwenden besteht darin ihn anfänglich über u_0 zu setzen und dann zu gegebener Zeit immer wieder nach oben zu verschieben, siehe Abbildung 3.5. Wir können das kompakte Maximumprinzip anwenden, weil ein Minimum von $B^+ - u$ nur auf einer kompakten Menge und im Innern von $B_R^n(0) \times \mathbb{R}^m$ angenommen werden kann. Ein Mimimum am Rand kann aufgrund der Barrieren W_R^{\pm} nicht angenommen werden. B^+ wächst in y-Richtung schneller als u und wir erhalten eine untere Schranke für das Verhalten von B^+ in

48

y-Richtung, indem wir von unten mit riesigen Sphären vergleichen. Das Verhalten von u_0 in x- und y-Richtung bleibt wegen Bemerkung 2.11 unter dem graphischen Mittleren Krümmungsfluss erhalten. Damit kann ein Minimum von $B^+ - u$ im Unendlichen ausgeschlossen werden. Für $t \to \infty$ wird $B^+(\cdot, t)$ lokal gleichmäßig flach. Durch "Zurückziehen in der Zeit" erhalten wir im Grenzwert $t \to \infty$ eine Grenzfunktion, die festen Abstand zur Troglösung hat. Mithilfe von Proposition 3.2 beweisen wir dann Theorem 3.5.

Abbildung 3.5. Barriere B^+

Wir bemerken, dass um die Beweisidee durchzuführen lediglich die Bedingung erfüllt sein muss, dass die obere Barriere auf $B_R^n \times \mathbb{R}^m$ lokal flach wird. Finden wir eine Barriere, die dies erfüllt, dann lässt sich die obige Argumentation anwenden. Im nächsten Kapitel wird in Lemma 4.1 gezeigt, dass für Lösungen w des graphischen Mittleren Krümmungsflusses mit Anfangswerten der Form $w_0(y) = \rho |y|^{1+\gamma}$ mit $0 < \gamma < 1$ und $\gamma, \rho \in \mathbb{R}, y \in \mathbb{R}^m$ eine obere Bariere existiert, die lokal flach wird. Aus der Abschätzung (4.1) in Lemma 4.1, nämlich

$$w(y,t) \le \hat{C}_0(1+t)^{\frac{1+\gamma}{2}} + U_{(1+t)^{\frac{\gamma-1}{2}}}(y,0),$$

sehen wir, dass sich die obere Schranke an w mit Geschwindigkeit $\hat{C}_0 \frac{1+\gamma}{2} (1+t)^{\frac{\gamma-1}{2}}$ entlang der e_{N+1} -Achse aufwärts bewegt und für $t \to \infty$ lokal flach wird. Wir bemerken, dass diese obere Schranke ausreicht um das Theorem 3.5 für $p_1 < 2$ zu beweisen.

Wir führen die gleiche Argumentation wie im Fall B^+ für die Barriere w durch. Wir können nicht direkt mit der oberen Schranke an w vergleichen, weil das keine Lösung der Gleichung (1.2) mehr ist und damit kein Vergleichsprinzip mehr gilt. Es genügt jedoch mit w zu vergleichen und dann die obere Schranke an w zu benutzen. Wir bemerken noch, dass wegen eines Vergleichs mit riesigen Sphären eine untere Barriere an die Asymptotik von w_0 existiert. Wir erweitern w auf \mathbb{R}^{n+m} ohne Umbenennung wie folgt

$$w(x, y, t) = w(y, t).$$

Wir fassen die Ergebnisse im folgenden Lemma zusammen.

LEMMA 3.13. Für alle $z \in B_R^n(0) \times \mathbb{R}^m$ gilt

$$u(z,t) \le C_2^+ + t_0^{-1}t + (1+t)^{\frac{1-\gamma}{2}}U\left(\frac{y}{(1+t)^{\frac{1-\gamma}{2}}},0\right)$$

mit $t \in [0,\infty)$, einer geeigneten Konstante $C_2^+ > 0$ und $t_0 > 0$ wie zuvor.

BEWEIS. Sei w wie oben eine Lösung der Gleichung (1.2) mit $w_0(x, y) = \rho |y|^{1+\gamma}$ für ein geeignetes ρ und ein $0 < \gamma < 1$, sodass $1 + \gamma > p_1$. Wir zeigen zunächst, dass wir das kompakte Maximumprinzip auf

$$w(z,t) + c - u(z,t)$$

für t in einem geeigneten Intervall und eine Konstante c > 0 im Bereich $B_R^n(0) \times \mathbb{R}^m$ anwenden können. Die Konstante c sei so gewählt, dass für t = 0 auf $B_R^n(0) \times \mathbb{R}^m$

$$w(z,0) + c - u(z,0) > 0$$

gilt. Dies ist möglich, weil $w(\cdot, 0)$ in y-Richtung schneller wächst als u_0 . Nach Bemerkung 2.11 bleibt das Wachstum von u_0 in x- und y-Richtung für alle t > 0erhalten. Der Vergleich mit riesigen Sphären liefert eine untere Schranke an w, die zeigt, dass das polynomiale Verhalten von w_0 in y-Richtung für w erhalten bleibt. Außerdem hängt das Verhalten von w(x, y, t) nur von y ab und wir können daher die Barriere w auf das Gebiet $B_R^n(0) \times \mathbb{R}^m$ einschränken. Nach Konstruktion der Lösung u gilt

$$W_R^-(z,t) \le u(z,t) \le W_R^+(z,t)$$

für alle $(z,t) \in ((\mathbb{R}^n \setminus B_R^n(0)) \times \mathbb{R}^m) \times [0,\infty)$. Also kann ein Minimum der Funktion w(z,t) + c - u(z,t) für alle $t \in [0,t_0]$ für genügend großes c nicht auf $\partial B_R^n(0) \times \mathbb{R}^m$ angenommen werden. Da $p_1 < 1 + \gamma$ wird ein Minimum von w(z,t) + c - u(z,t) also auf einer kompakten Menge in $(B_R^n(0) \times \mathbb{R}^m) \times [0,t_0]$ angenommen und wir können das kompakte Maximumprinzip anwenden um

$$u(z,t) \le c + w(z,t)$$

für alle $(z,t) \in (B_R^n(0) \times \mathbb{R}^m) \times [0,t_0]$ zu folgern. Wegen (4.1) gilt

$$w(x, y, t) \le \hat{C}_0(1+t)^{\frac{1+\gamma}{2}} + U_{(1+t)^{\frac{\gamma-1}{2}}}(y, 0)$$

für alle $(x, y, t) \in (B_R(0) \times \mathbb{R}^m) \times [0, \infty)$. Für $t \to \infty$ wird w in y lokal gleichmäßig flach. Das Verhalten von w(x, 0, t) in e_{N+1} -Richtung wird durch $\hat{C}_0(1+t)^{\frac{1+\gamma}{2}}$ bestimmt. Der Trog U und die Barrieren W_R^{\pm} translatieren jedoch mit Geschwindigkeit t_0^{-1} , was es nötig macht die obere Barriere c+w nach einer gewissen Zeit nach oben zu verschieben. Wir möchten dieses Verschieben kontinuierlich in der Zeit vornehmen. Bisher haben wir

$$u(z,t) \le c + w(z,t)$$

für alle $(z,t) \in (B_R^n(0) \times \mathbb{R}^m) \times [0,t_0]$ gezeigt. Mit der gleichen Argumentation, mit der diese Abschätzung bewiesen wurde, erhalten wir

$$u(z,t) \le c_1 + c + w(z,t)$$

für alle $(z,t) \in (B_R^n(0) \times \mathbb{R}^m) \times [t_0, 2t_0]$, wobei $c_1 > 0$. Durch wiederholtes Anwenden dieser Argumentation würden wir Abschätzungen auf den Intervallen $[it_0, (i+1)t_0]$ für alle $i \in \mathbb{N}$ erhalten. Statt jedoch immer neue Konstanten c_i zu wählen, wobei leicht einzusehen ist, dass $\sup_i c_i < \infty,$ können wir für eine möglicherweise große Konstante C_2^+ und alle $t \ge 0$

$$u(x, y, t) \le C_2^+ + t_0^{-1}t + U_{(1+t)^{\frac{\gamma-1}{2}}}(y, 0)$$

auf $B_{R}^{n}(0) \times \mathbb{R}^{m}$ abschätzen. Damit erhalten wir die gewünschte Behauptung.

3.4. Beweis der Stabilität translatierender Tröge

Wir wollen nun das Theorem 3.5 beweisen.

BEWEIS DES THEOREMS 3.5: Es genügt eine skalierte Version des Theorems zu beweisen, in der U_1 mit einer Geschwindigkeit *s* klein genug ($s = t_0^{-1}$) translatiert. Nehmen wir an, wir hätten das bereits gezeigt, dann folgt das Resultat über folgende Argumentation: Skaliere U, sodass

$$U_1(z,t) = \frac{1}{s}U(sz,s^2t) = \frac{1}{s}U(sz,0) + st = U_1(z,0) + st.$$

 U_1 ist nun wieder eine translatierende Lösung der Gleichung (1.2). Wir skalieren u_0 in analoger Weise und erhalten

$$u_{1,0}(z) = \frac{1}{s}u_0(sz).$$

Die Anfangswerte $u_{1,0}$ erfüllen

$$u_{1,0}(z) - U_1(z,0) = \frac{1}{s} \left(u_0(sz) - U(sz,0) \right)$$

und damit existiert zu jedem $\epsilon_1 > 0$ ein $R_1 = \frac{R}{s}$, sodass

$$\sup_{x \in \mathbb{R}^n \setminus B_{R_1}(0)} |U_1(x, y, 0) - u_{1,0}(x, y)| < \frac{\epsilon}{s} < \epsilon_1$$

für alle $y \in \mathbb{R}^m$ gilt.

Auf $B^n_{\underline{R}_0}(0) \times \mathbb{R}^m$ erfüllt $u_{1,0}$ die Ungleichungen

$$u_{1,0}(x,y) \le C_1(1+|y|^{p_1}), u_{1,0}(x,y) \ge -C_2(1+|y|^{p_2})$$

mit $p_1 < 2, p_2 + 1 < n$ und neuen Konstanten C_1, C_2 . Ferner wählen wir s so, dass

$$s = t_0^{-1}$$

erfüllt ist, wobei t_0 das aus Abschnitt 3.3.1 ist. Wir haben angenommen, dass Theorem 3.5 für $s = t_0^{-1}$ bereits gezeigt wurde. Es existiert also eine Lösung u_1 mit $u_1(\cdot, 0) = u_{1,0}$ und $u_1 - U_1 \rightarrow 0$ für $t \rightarrow \infty$ lokal gleichmäßig in y. Skalieren wir nun u_1 , etwa

$$u(z,t) := s \cdot u_1\left(\frac{z}{s}, \frac{t}{s^2}\right),$$

so gilt $u(z,0) = su_1(\frac{z}{s},0) = s\frac{1}{s}u_0(z) = u_0(z)$. Außerdem haben wir

$$u(z,t) - U(z,t) = s\left(u_1\left(\frac{z}{s}, \frac{t}{s^2}\right) - U_1\left(\frac{z}{s}, \frac{t}{s^2}\right)\right) \to 0$$

für $t \to \infty$ lokal gleichmäßig in y und damit die Konvergenz der ursprünglichen unskalierten Lösung u zu gegebenem u_0 .

Wir müssen das Theorem also für langsam translatierende Tröge beweisen. Wir nehmen also nun an, dass

$$U(z,t) = U(z,0) + t_0^{-1}t$$

gilt.

Nach Konstruktion unserer Lösung u wissen wir bereits

$$W_R^-(z,t) \le u(z,t) \le W_R^+(z,t)$$

für alle $z \in (\mathbb{R}^n \setminus B^n_R(0)) \times \mathbb{R}^m$ und ein $R > R_0$. Außerdem haben wir nach Konstruktion unser Barrieren

$$B^{+}(z,t) := C_{2}^{+} + t_{0}^{-1}t + (1+t)^{\frac{1-\gamma}{2}}U\left(\frac{y}{(1+t)^{\frac{1-\gamma}{2}}}, 0\right)$$

aus Lemma 3.13 und B_i^- aus Proposition 3.12,

$$B_i^-(z, t - it_0) + (i + 1) \le u(z, t) \le B^+(z, t)$$

für $z \in B_R^n(0) \times \mathbb{R}^m$ und $t \in [it_0, (i+1)t_0]$. Hierfür haben wir $s = t_0^{-1}$ verwendet, andernfalls existieren die unteren Barrieren B_i^- eventuell gar nicht. Wir definieren nun

$$w_k(z,t) := u(z,t+t_k) - U(z,t+t_k)$$

für eine Folge $t_k \to \infty$. Für w_k gelten lokal gleichmäßige Oszillationsschranken. Aufgrund der inneren Gradientenabschätzungen aus [3] und [13] konvergiert eine Teilfolge in jeder $C^{l,\frac{1}{2}}$ -Norm lokal gleichmäßig gegen eine Grenzfunktion w_{∞} : $\mathbb{R}^N \times \mathbb{R} \to \mathbb{R}$ und $w_{\infty} + U$ ist wieder eine Lösung von (1.2). Da U(0,0) = 0 und $U_{\epsilon}(x, y, 0) \to 0$ lokal gleichmäßig in x und gleichmäßig in y für $\epsilon \to 0$, gilt

$$\limsup_{t \to \infty} \left(B^+(z,t) - U(z,t) \right) = \\ \limsup_{t \to \infty} \left(C_2^+ - U(z,0) + (1+t)^{\frac{1-\gamma}{2}} U\left(\frac{y}{(1+t)^{\frac{1-\gamma}{2}}}, 0\right) \right) \le C$$

lokal gleichmäßig in y. Setzen wir $t = (i + 1)t_0$ so erhalten wir

$$\limsup_{i \to \infty} \left(B_i^-(x, y, t_0) + (i+1) - U(x, y, (i+1)t_0) \right)$$
$$= \limsup_{i \to \infty} \left(B_i^-(x, y, t_0) - U(x, y, 0) \right) \le C$$

lokal gleichmäßig in y. Folglich gilt für w_{∞}

$$(3.11) |w_{\infty}(z,t)| < d$$

für alle $t \in (-\infty, \infty)$ mit einer Konstanten d > 0. Sei nun $\epsilon > 0$ gegeben. Dann gibt es wegen der Barrieren W_R^{\pm} Konstanten $c_1, c_2 > 0$, sodass

(3.12)
$$w^{\infty}(x, y, t) < c_1 e^{-c_2|x|^2} + \epsilon$$

für alle $(x, y) \in \mathbb{R}^{n+m}$ und alle $t \in \mathbb{R}$. Die Lösung $w_{\infty} + U$ erfüllt also wegen (3.11) und (3.12) die Voraussetzungen der Proposition 3.2.

Wir wollen nun noch $w_{\infty} \equiv 0$ zeigen. Dazu wählen wir eine Barriere W^+ wie im Beweis von Proposition 3.2, also eine Lösung zu den Anfangswerten $W^+(x, y, 0) =$ $U(x, y, 0) + c_1 e^{-c_2 |x|^2}$. Wegen Lemma 3.3 wissen wir, dass $W^+ \to U$ für $t \to \infty$. Es gilt wegen (3.12) und weil $c_1, c_2 > 0$ so gewählt wurden,

(3.13)
$$W^+(\cdot,0) + \epsilon - U(\cdot,0) - w_{\infty}(z,0) = c_1 e^{-c_2|x|^2} + \epsilon - w_{\infty}(x,y,0) > 0$$

für alle $(x, y) \in \mathbb{R}^N$. Wir definieren $W_T^+(\cdot, t) := W^+(\cdot, t + T)$ und analog U_T . Es gilt

$$\lim_{T \to \infty} \left(W_T^+(\cdot, t) - U_T(\cdot, t) \right) = 0.$$

Ferner haben wir wegen (3.12)

$$W_T^+(\cdot, -T) + \epsilon - U_T(\cdot, -T) - w_\infty(\cdot, t) > 0$$

für alle $t \in \mathbb{R}$ also auch für t = -T. Mit Theorem A.1 gilt

$$W_T^+(\cdot,t) + \epsilon - U_T(\cdot,t) - w_\infty(z,t) \ge 0$$

für alle $t \in [-T, \infty)$. Und schließlich können wir folgern

$$0 \leq \lim_{T \to \infty} \left(W_T^+(\cdot, t) + \epsilon - U_T(\cdot, t) - w_\infty(z, t) \right)$$

= $\epsilon - w_\infty(z, t).$

Analog schließen wir mit einer unteren Barriere W^- , Lösung der Gleichung (1.2) mit Anfangswerten $W^-(x, y, 0) := U(x, y, 0) - c_1 e^{-c_2|x|^2}$, dass

$$w_{\infty}(\cdot, t) \ge -\epsilon$$

für alle $t \in (-\infty, \infty)$. Lassen wir $\epsilon \to 0$, dann gilt $w_{\infty} \equiv 0$. Da wir diese Argumente für jede Zeitenfolge $t_k \to \infty$ anwenden können, ist der Grenzwert unabhängig von der Folge und die Behauptung folgt.

KAPITEL 4

Konvergenzresultate für translatierende Lösungen

4.1. Obere und untere Schranken an Polynome

In diesem Abschnitt wollen wir das Verhalten anfänglich polynomialer Funktionen unter dem graphischen Mittleren Krümmungsfluss (1.2) charakterisieren. Dabei bezeichne U die konvexe, rotationssymmetrische, mit Geschwindigkeit 1 translatierende Lösung des graphischen Mittleren Krümmungsflusses (1.2). Weiter sei mit U_{ϵ} gemäß der Skalierung (1.8) aus der Einleitung die konvexe, rotationssymmetrische, mit Geschwindigkeit ϵ translatierende Lösung bezeichnet. Zur Erinnerung

$$U_{\epsilon}(x,t) = \frac{1}{\epsilon}U(\epsilon x, \epsilon^2 t).$$

LEMMA 4.1. (1) Sei $w_0(x) := \rho |x|^{1+\gamma}$ für $x \in \mathbb{R}^n$, $n \ge 2$, $\rho > 0$ und ein $0 < \gamma < 1$. Sei w eine Lösung der Gleichung (1.2) mit Anfangswerten w_0 und sei U wie oben. Dann gilt

(4.1)
$$w(x,t) \le \hat{C}_0(1+t)^{\frac{1+\gamma}{2}} + U_{(1+t)^{\frac{\gamma-1}{2}}}(x,0)$$

für alle $(x,t) \in \mathbb{R}^n \times [0,\infty)$ mit einer Konstanten

$$\hat{C}_0 := \hat{C}(\rho, \gamma, n, a, \hat{K}) > 0,$$

wobei a > 0 und $\hat{K} > 0$ Konstanten sind, die nur von w_0 und n abhängen.

(2) Sei $w_0(x) := \rho |x|^{2+\gamma}$ für $x \in \mathbb{R}^n$, $n \ge 2$, $\rho > 0$ und ein $0 < \gamma$. Sei w eine Lösung der Gleichung (1.2) mit Anfangswerten w_0 und sei U wie oben. Dann gilt

(4.2)
$$U_{\mu_0^{-1}(1+t)^{\frac{\gamma}{2}}}(x,0) + \tilde{c}_0(1+t)^{\frac{2+\gamma}{2}} - \mu_0^{-1}(1+t)^{\frac{\gamma}{2}} - c \le w(x,t)$$

für alle $(x,t) \in \mathbb{R}^n \times [0,\infty)$, mit

$$\mu_0 = \left(C_0\left(1+\frac{2}{\gamma}\right)\right)^{\frac{\gamma}{2}}$$

und Konstanten

$$\tilde{c}_0 = \tilde{c}_0(\rho, \gamma, n) = \left(C_0\left(1 + \frac{2}{\gamma}\right)\right)^{-\frac{1}{2}} \frac{2}{2+\gamma} > 0, c = c(K, \mu_0, \rho, a, \gamma) > 0, K = K(n, w_0) > 0, a = a(n, w_0) > 0.$$

BEWEIS. (1)

Weil U für $|x| \to \infty$ etwa wie $\frac{1}{2(n-1)}|x|^2 - \ln(|x|)$ wächst (vgl. (3.1)), existiert ein $C_0 > 0$ und ein Radius a > 0, sodass

$$w_0(x) = \rho |x|^{1+\gamma} \le C_0 + U(x,0)$$

auf $\mathbb{R}^n \setminus B_a(0)$. Wir definieren $K := \sup_{B_a(0)} |w_0(x) - U(x,0)|$, dann gilt

$$v_0(x) \le C_0 + K + U(x,0)$$

auf ganz \mathbb{R}^n . Das \mathbb{C}_0 wird später genauer bestimmt.

u

Skalieren wir die translatierende Lösung zu U_ϵ wie oben, dann existiert ebenfalls ein $C_\epsilon>0,$ sodass

$$w_0(x) \le C_{\epsilon} + \frac{1}{\epsilon}U(\epsilon x, 0)$$

auf $\mathbb{R}^n \setminus B_{\frac{a}{\epsilon}}(0)$. Wir definieren $K_{\epsilon} := \sup_{B_{\frac{a}{\epsilon}}(0)} |w_0(x) - \frac{1}{\epsilon}U(\epsilon x, 0)|$ und erhalten

$$w_0(x) \le C_{\epsilon} + K_{\epsilon} + \frac{1}{\epsilon}U(\epsilon x, 0)$$

auf ganz \mathbb{R}^n . Wir schätzen K_{ϵ} durch

$$K_{\epsilon} = \sup_{\substack{B_{\frac{a}{\epsilon}}(0)}} \left| \rho |x|^{1+\gamma} - \frac{1}{\epsilon} U(\epsilon x, 0) \right|$$
$$\leq \rho \left(\frac{a}{\epsilon}\right)^{1+\gamma} + \epsilon^{-1} \sup_{\substack{B_{\frac{a}{\epsilon}}(0)}} |U(\epsilon x, 0)|$$
$$= \rho \left(\frac{a}{\epsilon}\right)^{1+\gamma} + \epsilon^{-1} \hat{K}$$

mit $\hat{K} := \sup_{B_a(0)} |U(x,0)|$ ab und erhalten

$$w_0(x) \le C_{\epsilon} + \rho\left(\frac{a}{\epsilon}\right)^{1+\gamma} + \epsilon^{-1}\hat{K} + \frac{1}{\epsilon}U(\epsilon x, 0)$$

auf ganz \mathbb{R}^n .

Die Frage ist nun, wie C_{ϵ} skaliert? Das heißt, in welchem Zusammenhang stehen C_{ϵ} und C_0 ?

Wir wollen diese Frage beantworten und reduzieren das Problem der Skalierung aufgrund der Rotationssymmetrie der Funktionen w_0 und $U(\cdot, 0)$ auf eine Dimension. Der Leserlichkeit halber setzen wir $\lambda(n) := \frac{1}{2(n-1)}$. Wir betrachten also Funktionen $g(x) := \lambda x^2 - x^{1+\gamma}, h(x) := \rho x^{1+\gamma}$ und $g_{\epsilon}(x) := \frac{\lambda}{\epsilon} (\epsilon x)^2 - \frac{1}{\epsilon} (\epsilon x)^{1+\gamma} = \lambda \epsilon x^2 - \epsilon^{\gamma} x^{1+\gamma}$ auf \mathbb{R}_+ . Wir definieren f(x) := h(x) - g(x). Es gilt

$$f'(x) = (\rho + 1)(1 + \gamma)x^{\gamma} - 2\lambda x$$

und an einem Extrempunkt

$$0 = (\rho+1)(1+\gamma)x^{\gamma} - 2\lambda x \quad \Leftrightarrow \quad x = \left(\frac{(\rho+1)(\gamma+1)}{2\lambda}\right)^{\frac{1}{1-\gamma}} =: x_0.$$

Da

$$f''(x_0) = (\rho+1)(1+\gamma)\gamma x_0^{\gamma-1} - 2\lambda = (\rho+1)(1+\gamma)\gamma \left(\frac{(\rho+1)(\gamma+1)}{2\lambda}\right)^{\frac{\gamma-1}{1-\gamma}} - 2\lambda = 2\lambda\gamma - 2\lambda = 2\lambda(\gamma-1) < 0,$$

entspricht dies einem lokalen Maximum und $f(x_0) = C_0$ entspricht der Verschiebung von g in e_2 -Richtung, sodass $f - C_0 \leq 0$ auf \mathbb{R}_+ . Damit hängt C_0 von n, γ und ρ ab. Betrachten wir als nächstes $f_{\epsilon}(x) := h(x) - g_{\epsilon}(x)$. Es gilt

$$f'_{\epsilon}(x) = (\rho + \epsilon^{\gamma})(1 + \gamma)x^{\gamma} - 2\lambda\epsilon x$$

und an einem Extrempunkt

$$0 = (\rho + \epsilon^{\gamma})(1 + \gamma)x^{\gamma} - 2\lambda\epsilon x \quad \Leftrightarrow \quad x = \left(\frac{(\rho + \epsilon^{\gamma})(\gamma + 1)}{2\lambda\epsilon}\right)^{\frac{1}{1 - \gamma}} =: x_{0(\epsilon)}.$$

Ferner liegt bei $x_{0(\epsilon)}$ wegen

$$f_{\epsilon}''(x_{0(\epsilon)}) = (\rho + \epsilon^{\gamma})\gamma(1 + \gamma) \left(\frac{(\rho + \epsilon^{\gamma})(1 + \gamma)}{2\lambda\epsilon}\right)^{\frac{-(1 - \gamma)}{1 - \gamma}} - 2\lambda\epsilon = 2\lambda\epsilon(\gamma - 1) < 0$$

ein lokales Maximum vor. Erneut entspricht $f_\epsilon(x_{0(\epsilon)}) = C_\epsilon$ der Verschiebung von g_ϵ in e_2 -Richtung, sodass $f_\epsilon - C_\epsilon \leq 0$ auf \mathbb{R}_+ . Mit $\epsilon^\gamma \leq 1$ rechnen wir

$$\begin{split} C_{\epsilon} &= f_{\epsilon}(x_{0(\epsilon)}) = (\rho + \epsilon^{\gamma}) \left(\frac{(\rho + \epsilon^{\gamma})(1 + \gamma)}{2\lambda\epsilon} \right)^{\frac{1+\gamma}{1-\gamma}} - \lambda\epsilon \left(\frac{(\rho + \epsilon^{\gamma})(1 + \gamma)}{2\lambda\epsilon} \right)^{\frac{2}{1-\gamma}} \\ &\stackrel{\epsilon^{\gamma} \leq 1}{\leq} \epsilon^{\frac{1+\gamma}{\gamma-1}} (\rho + 1) \left(\frac{(\rho + 1)(1 + \gamma)}{2\lambda} \right)^{\frac{1+\gamma}{1-\gamma}} - \epsilon^{1+\frac{2}{\gamma-1}} \lambda \left(\frac{(\rho + \epsilon^{\gamma})(1 + \gamma)}{2\lambda} \right)^{\frac{2}{1-\gamma}} \\ &\leq \epsilon^{\frac{1+\gamma}{\gamma-1}} \left[(\rho + 1) \left(\frac{(\rho + 1)(1 + \gamma)}{2\lambda} \right)^{\frac{1+\gamma}{1-\gamma}} - \lambda \left(\frac{(\rho + 1)(1 + \gamma)}{2\lambda} \right)^{\frac{2}{1-\gamma}} \\ &\quad + \lambda \left(\frac{(\rho + 1)(1 + \gamma)}{2\lambda} \right)^{\frac{2}{1-\gamma}} - \lambda \left(\frac{\rho(1 + \gamma)}{2\lambda} \right)^{\frac{2}{1-\gamma}} \right] \\ &= \epsilon^{\frac{1+\gamma}{\gamma-1}} \left(f(x_0) + c(\lambda, \rho, \gamma) \right) \\ &= \epsilon^{\frac{1+\gamma}{\gamma-1}} \left(C_0 + c(\lambda, \rho, \gamma) \right). \end{split}$$

Wir haben nun C_{ϵ} bestimmt. Dabei haben wir eine Funktion g_{ϵ} verwendet, die für $|x| \to \infty$ langsamer wächst als U_{ϵ} . Folglich erhalten wir

$$w_0(x) \le \epsilon^{\frac{1+\gamma}{\gamma-1}} (C_0 + c) + \rho \left(\frac{a}{\epsilon}\right)^{1+\gamma} + \epsilon^{-1} \hat{K} + U_\epsilon(x, 0).$$

Wegen des Theorems A.1, gilt

$$w(x,t) \le \epsilon^{\frac{1+\gamma}{\gamma-1}} (C_0 + c) + \rho \left(\frac{a}{\epsilon}\right)^{1+\gamma} + \epsilon^{-1} \hat{K} + U_{\epsilon}(x,t).$$

für alle $t\geq 0$ und alle $\epsilon>0.$ Wir setzen $\epsilon=(1+t)^{\frac{\gamma-1}{2}}$ und erhalten

$$\begin{split} w(x,t) &\leq (1+t)^{\frac{1+\gamma}{2}} (C_0 + c) + \rho a^{1+\gamma} (1+t)^{\frac{1-\gamma^2}{2}} \\ &\quad + \hat{K} (1+t)^{\frac{1-\gamma}{2}} + U_{(1+t)^{\frac{\gamma-1}{2}}} (x,0) + (1+t)^{\frac{1+\gamma}{2}} \\ &\quad = (C_0 + c + 1) (1+t)^{\frac{1+\gamma}{2}} + \rho a^{1+\gamma} (1+t)^{\frac{1-\gamma^2}{2}} \\ &\quad + \hat{K} (1+t)^{\frac{1-\gamma}{2}} + U_{(1+t)^{\frac{\gamma-1}{2}}} (x,0) \,. \end{split}$$

Wir bemerken, dass die rechte Seite keine Lösung der Gleichung (1.2) mehr ist aber dennoch eine obere Schranke für w. Wir wollen die Abschätzung übersichtlicher

machen und schätzen erneut ab um

$$w(x,t) \le \left(C_0 + c + 1 + \rho a^{1+\gamma} + \hat{K}\right) (1+t)^{\frac{1+\gamma}{2}} + U_{(1+t)^{\frac{\gamma-1}{2}}}(x,0)$$
$$= \hat{C}_0 (1+t)^{\frac{1+\gamma}{2}} + U_{(1+t)^{\frac{\gamma-1}{2}}}(x,0)$$

mit einer Konstante

$$\hat{C}_0 := C_0 + c + 1 + \rho a^{1+\gamma} + \hat{K}$$

zu erhalten. Damit folgt die erste Behauptung.

(2)

Als nächstes möchten wir eine analoge Argumentation für Funktionen $w_0(x) := \rho |x|^{2+\gamma}$ durchführen. Wie in den obigen Schritten berechnet man den Zusammenhang zwischen C_{ϵ} und C_0 über die Funktionen $g(x) := \lambda x^2$, $h(x) := \rho x^{2+\gamma}$ und $g_{\epsilon}(x) := \frac{\lambda}{\epsilon} (\epsilon x)^2 = \lambda \epsilon x^2$ auf \mathbb{R}_+ . Wir definieren wieder f(x) := g(x) - h(x) und $f_{\epsilon}(x) := g_{\epsilon}(x) - h(x)$. Ähnlich wie in den obigen Rechnungen erhalten wir

$$C_{\epsilon} = \epsilon^{\frac{2+\gamma}{\gamma}} C_0.$$

Es gilt folglich

$$U_{\epsilon}(x,0) - \epsilon^{\frac{2+\gamma}{\gamma}} C_0 - K\epsilon^{-1} - \rho \left(\frac{a}{\epsilon}\right)^{2+\gamma} \le \rho |x|^{2+\gamma} = w_0(x)$$

auf ganz \mathbb{R}^n .

Wegen des Theorems A.1 gilt

$$U_{\epsilon}(x,t) - \epsilon^{\frac{2+\gamma}{\gamma}} C_0 - K\epsilon^{-1} - \rho \left(\frac{a}{\epsilon}\right)^{2+\gamma} \le w(x,t).$$

für alle $t \ge 0$ und alle $\epsilon > 0$. Diesmal wollen wir jedoch $\epsilon \to \infty$ betrachten und setzen daher $\epsilon = \frac{1}{\mu}(1+t)^{\alpha}$ für ein $\mu > 0$ und $\alpha > 0$. Damit erhalten wir

$$\begin{split} w(x,t) &\geq U_{\mu^{-1}(1+t)^{\alpha}}(x,0) + \mu^{-1}(1+t)^{\alpha}t - \mu^{-\frac{2+\gamma}{\gamma}}C_{0}(1+t)^{\alpha\frac{2+\gamma}{\gamma}} \\ &- K\mu(1+t)^{-\alpha} - \rho(a\mu)^{2+\gamma}(1+t)^{-\alpha(2+\gamma)} \\ &\geq U_{\mu^{-1}(1+t)^{\alpha}}(x,0) + \mu^{-1}(1+t)^{\alpha}t - \mu^{-\frac{2+\gamma}{\gamma}}C_{0}(1+t)^{\alpha\frac{2+\gamma}{\gamma}} - K\mu - \rho(a\mu)^{2+\gamma} \\ &= U_{\mu^{-1}(1+t)^{\alpha}}(x,0) + \mu^{-1}(1+t)^{\alpha}t - \mu^{-\frac{2+\gamma}{\gamma}}C_{0}(1+t)^{\alpha\frac{2+\gamma}{\gamma}} - c(K,\mu,\rho,a,\gamma). \end{split}$$

Wir wählen $\alpha = \frac{\gamma}{2}$ und folgern

$$\begin{split} w(x,t) &\geq U_{\mu^{-1}(1+t)^{\frac{\gamma}{2}}}(x,0) + \mu^{-1}(1+t)^{\frac{\gamma}{2}}t - \mu^{-\frac{2+\gamma}{\gamma}}C_0(1+t)^{\frac{2+\gamma}{2}} - c \\ &= U_{\mu^{-1}(1+t)^{\frac{\gamma}{2}}}(x,0) + \left(\mu^{-1} - \mu^{-\frac{2+\gamma}{\gamma}}C_0\right)(1+t)^{\frac{2+\gamma}{2}} - \mu^{-1}(1+t)^{\frac{\gamma}{2}} - c. \end{split}$$

Wähle also μ so, dass

$$\frac{1}{\mu} > \frac{C_0}{\mu^{1+\frac{2}{\gamma}}}$$

gilt. Umformen ergibt $\mu > C_0^{\frac{\gamma}{2}}$. Wollen wir μ so wählen, dass $\frac{1}{\mu} - \mu^{-\frac{2+\gamma}{\gamma}}C_0$ ein Maximum annimmt, so müssen wir $\mu = \left(C_0\left(1+\frac{2}{\gamma}\right)\right)^{\frac{\gamma}{2}} =: \mu_0$ setzen. Dann erhalten wir die Abschätzung

$$U_{\mu_0^{-1}(1+t)^{\frac{\gamma}{2}}}(x,0) + \tilde{c}_0(1+t)^{\frac{2+\gamma}{2}} - \mu_0^{-1}(1+t)^{\frac{\gamma}{2}} - c(K,\mu_0,\rho,a,\gamma) \le w(x,t)$$

 mit

$$\tilde{c}_0 = \left(C_0\left(1+\frac{2}{\gamma}\right)\right)^{-\frac{1}{2}}\frac{2}{2+\gamma}$$

und damit die zweite Behauptung.

BEMERKUNG 4.2. i) Eine genaue Betrachtung des Beweises liefert eine exaktere obere Abschätzung an $w(\cdot, t)$ mit $w_0(x) = \rho |x|^{1+\gamma}$, nämlich

$$w(x,t) \le (C_0 + c + 1) (1+t)^{\frac{1+\gamma}{2}} + \rho a^{1+\gamma} (1+t)^{\frac{1-\gamma^2}{2}} + \hat{K}(1+t)^{\frac{1-\gamma}{2}} + U_{(1+t)^{\frac{\gamma-1}{2}}}(x,0).$$

Außerdem erhalten wir eine exaktere untere Abschätzung an $w(\cdot, t)$ mit $w_0(x) = \rho |x|^{2+\gamma}$, nämlich

$$U_{\mu_0^{-1}(1+t)^{\frac{\gamma}{2}}}(x,0) + \tilde{c}_0(1+t)^{\frac{2+\gamma}{2}} - \mu_0^{-1}(1+t)^{\frac{\gamma}{2}} - K\mu_0(1+t)^{-\frac{\gamma}{2}} - \rho(a\mu_0)^{2+\gamma}(1+t)^{-\frac{\gamma(2+\gamma)}{2}} \le w(x,t).$$

- ii) Die obere Abschätzung sollte mit den polynomialen Wachstumsschranken aus [6] verglichen werden. Die zusätzliche Information besteht darin, dass in dieser Arbeit die obere Barriere lokal flach wird.
- iii) Die polynomialen Wachstumsabschätzungen aus [6] ergeben unter den Voraussetzungen aus (2) eine Abschätzung $w(x,t) \leq c(1+|x|^{2+\gamma}+t^{\frac{2+\gamma}{2}})$. Aus (4.2) erhalten wir eine untere Abschätzung, die sich mit der gleichen Potenz in t entlang der e_{n+1} -Achse aufwärts bewegt wie die obere Abschätzung und außerdem gegen die e_{n+1} -Achse zusammenklappt. Das charakterisiert das Verhalten polynomialer Lösungen unter dem Mittleren Krümmungsfluss recht gut.
- iv) Um die Abschätzungen zu erhalten haben wir die Existenz einer translatierenden Lösung und die Kenntnis deren Asymptotik, das parabolische Skalierungsverhalten und ein Vergleichsprinzip verwendet. Diese Methode lässt sich folglich auf andere geometrische Flüsse, für die diese Voraussetzungen erfüllt sind, übertragen.

Aus dem Lemma folgt eine notwendige Bedingung dafür, dass eine Startfunktion unter dem graphischen Mittleren Krümmungsfluss gegen eine translatierende Lösung U konvergieren kann.

KOROLLAR 4.3. Eine Lösung w des graphischen Mittleren Krümmungsflusses mit $w(x,0) \ge \rho |x|^{2+\alpha}$ oder $w(x,0) \le \rho |x|^{2-\alpha}$ kann für jedes $\alpha > 0$ und $\rho > 0$, $\alpha, \rho \in \mathbb{R}$ nicht zu einer mit positiver Geschwindigkeit translatierenden Lösung konvergieren.

BEWEIS. Wir beweisen zunächst die Behauptung für eine Lösung w mit $w(x,0) \ge \rho |x|^{2+\alpha}$. Sei \hat{w} eine Lösung des graphischen Mittleren Krümmungsflusses mit $\hat{w}(x,0) = \rho |x|^{2+\alpha}$. Wegen dem Vergleichsprinzip A.1 gilt

$$\hat{w}(x,t) \le w(x,t)$$

für alle $(x,t) \in \mathbb{R}^n \times [0,\infty)$. Wegen der Abschätzung (4.2) angewandt mit $\gamma = \alpha$ und μ_0 , \tilde{c}_0 wie in Lemma 4.1 erhalten wir

$$U_{\frac{1}{\mu_0}(1+t)^{\frac{\alpha}{2}}}(x,0) + \tilde{c}_0(1+t)^{\frac{2+\alpha}{2}} - \frac{1}{\mu_0}(1+t)^{\frac{\alpha}{2}} - c \le \hat{w}(x,t) \le w(x,t).$$

59

 \square

An der Stelle x = 0 haben wir

$$\tilde{c}_0(1+t)^{\frac{2+\alpha}{2}} - \frac{1}{\mu_0}(1+t)^{\frac{\alpha}{2}} - c \le w(0,t),$$

wodurch die Konvergenz gegen eine translatierende Lösung verhindert wird. Umgekehrt folgt für $w(x,0) = \rho |x|^{2-\alpha}$ aus der Abschätzung (4.1) mit $0 < \gamma = 1-\alpha$ durch analoge Argumentation die zweite Behauptung.

Wir dürfen in den oben angeführten Fällen also keine Konvergenz gegen eine translatierende Lösung des graphischen Mittleren Krümmungsflusses erwarten. Wir wollen als nächstes der Frage nachgehen, ob wir im Fall einer quadratisch wachsenden Anfangsfunktion Konvergenz erwarten dürfen.

KOROLLAR 4.4. Sei $w_0(x) := \frac{1}{2(n-1)}|x|^2$ für $x \in \mathbb{R}^n$. Sei w eine Lösung der Gleichung (1.2) mit Anfangswerten w_0 und sei U die rotationssymmetrische, mit Geschwindigkeit 1 translatierende Lösung des graphischen Mittleren Krümmungsflusses. Dann gilt

$$U(x,0) + t - c \le w(x,t) \le c + \frac{1}{2(n-1)}|x|^2 + \frac{n+2}{n-1}t$$

für alle $(x,t) \in \mathbb{R}^n \times [0,\infty)$.

BEWEIS. Aus Proposition 2.2 in [6] folgt für w

$$w(x,t) \le c + \frac{1}{2(n-1)}|x|^2 + \frac{2n+4(2-1)}{2(n-1)}t$$

und damit die obere Abschätzung. Die untere Abschätzung folgt aus der Asymptotik von U und dem Vergleichsprinzip A.1.

4.2. Konvergenzresultat für translatierende Lösungen

Damit wissen wir zwar, dass eine Lösung mit den Anfangswerten w_0 zwischen zwei unterschiedlich schnell translatierenden Lösungen liegt, aber um ein Konvergenzresultat zu erhalten müssen wir noch weiter einschränken und betrachten solche Anfangswerte, die zwischen zwei mit gleicher Geschwindigkeit translatierenden Lösungen liegen, etwa

$$U(x,t) - c_1 \le w_0 \le U(x,t) + c_2$$

für Konstanten $c_1, c_2 > 0$.

Als Vorbereitung für das nächste Theorem benötigen wir folgendes Lemma.

LEMMA 4.5. Sei $F_0: M^n \to \mathbb{R}^{n+1}$ eine glatte isometrische Immersion einer vollständigen Mannigfaltigkeit mit $n \ge 1$. Sei $M_t = F_t(M^n)$ eine glatte Lösung der Gleichung (1.1). Seien $c_0, c_1 > 0$ Konstanten und sei $|A|^2(t) \le c_0$ für alle $t \in [0, \infty)$ und $\sup_{M_0} |\nabla A|^2 \le c_1$. Definiere $f := H - \nu_{n+1}$, wobei ν die äußere Normale und H die Mittlere Krümmung bezeichne. Gelte $f \ge 0$ auf $F_0(M^n) = M_0$. Dann gilt $f \ge 0$ auf $M_t = F_t(M^n)$ für alle $t \in [0, \infty)$.

BEWEIS. Da $|A|^2(t) \le c_0$ für alle $t \in [0, \infty)$, gilt für jedes $\epsilon > 0$ wegen Theorem 3.7 aus [3], dass $|\nabla A|^2$ und $|\nabla^2 A|^2$ beschränkt sind für alle $t \in [\epsilon, \infty)$ auf ganz M_t .

Wir folgen nun der Argumentation aus [3] Korollar 4.4. Wir wollen das Maximumprinzip Theorem A.3 aus dem Appendix anwenden und müssen dafür die Voraussetzungen prüfen. Dafür rechnen wir zunächst die Evolutionsgleichung von f aus. Mit den aus Lemma 1.7 bekannten Evolutionsgleichungen für ν und H erhalten wir für Basisvektoren τ^k des Tangentialraums an M_t

$$\begin{split} \left(\frac{\partial}{\partial t} - \Delta_{M_t}\right) f &= H|A|^2 - \langle \nabla H, e_{n+1} \rangle + g^{ij} \nabla_i \langle h_{jk} \tau^k, e_{n+1} \rangle \\ &= H|A|^2 - \langle \nabla H, e_{n+1} \rangle - g^{ij} h_{jk} h_i^k \nu_{n+1} + g^{ij} \langle \nabla_i h_{jk} \tau^k, e_{n+1} \rangle \\ &\stackrel{Codazzi}{=} (H - \nu_{n+1})|A|^2 - \langle \nabla H, e_{n+1} \rangle + g^{ij} \langle \nabla_k h_{ij} \tau^k, e_{n+1} \rangle \\ &= (H - \nu_{n+1})|A|^2 = f|A|^2. \end{split}$$

Aus den Gauss Codazzi Gleichungen erhalten wir $R_{ij} = Hh_{ij} - g^{kl}h_{ik}h_{jl}$ und damit

$$\operatorname{Ric} \ge -(n+1)|A|^2 > -(n+1)c_0.$$

Mit dem Bishop-Cheeger-Gromov Volumenvergleichssatz (vgl. [16], S.269, Lemma 35) sehen wir

$$\operatorname{vol}(B_r(p)) \le \frac{c(n)}{2\sqrt{|k|}} e^{(n-1)\sqrt{|k|}r}$$

mit $k = \frac{n-1}{(n+1)c_0}$. Damit ist die Volumenwachstumsbedingung erfüllt. Weiter rechnen wir

$$|\nabla f|^2 \le 4|\nabla H|^2 + 4|\nabla \nu_{n+1}|^2 = 4|\nabla H|^2 + 4|A|^2 \le 4|\nabla H|^2 + 4c_0.$$

Es gilt $|\nabla H|^2 \leq n |\nabla A|^2$ (vgl. [7], Lemma 2.2). Mit den Gradientenschranken $|\nabla A|^2 \leq t^{-1}c$ aus [3], Theorem 3.7, erhalten wir für ein geeignetes $\alpha_2 > 0$ und ein kleines $\delta > 0$ zusammen mit der Volumenwachstumsbedingung

$$\int_{\delta}^{T} \left(\int_{M} \exp(-\alpha_{2}^{2} r^{t}(p, y)^{2}) |\nabla f|^{2}(y) \, d\mu_{t} \right) \, dt < \infty$$

Berechnen wir die Evolutionsgleichung von $e^{-at}|\nabla A|^2$ für ein später gewähltes a>0, dann erhalten wir

$$\left(\frac{\partial}{\partial t} - \Delta_{M_t}\right) e^{-at} |\nabla A|^2 \le -ae^{-at} |\nabla A|^2 - 2e^{-at} |\nabla^2 A|^2 + c(n)|A|^2 |\nabla A|^2 e^{-at} \le (c(n)c_0 - a)e^{-at} |\nabla A|^2 \le 0$$

für a groß genug. Mit dem Maximumprinzip Korollar 1.1 aus [6] schließen wir

$$e^{-at} |\nabla A|^2 \le \sup_{M_t} e^{-at} |\nabla A|^2 \le \sup_{M_0} |\nabla A|^2 = c_1.$$

Wir haben also $|\nabla A|^2(t) \leq c_1 e^{at}$ und damit schließen wir für ein geeignetes α_2

$$\int_0^\delta \left(\int_M \exp(-\alpha_2^2 r^t(p, y)^2) |\nabla f|^2(y) \, d\mu_t \right) \, dt < \infty.$$

Zuletzt bemerken wir, dass

$$\left|\frac{\partial}{\partial t}g_{ij}\right| = 2|H||A| \le 2\sqrt{n}|A|^2 \le 2\sqrt{n}c_0$$

für alle $t \in [0, \infty)$ gilt. Wir haben nun alle Bedingungen geprüft um das Ecker Huisken Maximumprinzip anwenden zu können. Daraus folgt die Behauptung.

Das nachfolgende Konvergenzresultat beruht auf einer Idee und Testfunktion, die dem Autor von Professor Ecker vorgeschlagen wurde.

THEOREM 4.6. Sei $u(\cdot, t)$ eine Lösung des graphischen Mittleren Krümmungsflusses (1.2) auf $\mathbb{R}^n \times [0, \infty)$. Sei $M_t = \operatorname{graph} u(\cdot, t)$, U die mit Geschwindigkeit 1 translatierende Lösung wie oben und es gebe Konstanten $c_1, c_2 > 0$, sodass

$$U(x,0) - c_1 \le u_0(x) \le U(x,0) + c_2$$

für alle $x \in \mathbb{R}^n$. Ferner gelte

$$H - \nu_{n+1} > 0$$

 $\begin{array}{l} \textit{auf } M_0 \textit{ und } \sup_{M_0} |\nabla A|^2 \leq c_3 \textit{ sowie } |A|^2(t) \leq c_0 \textit{ für alle } t \in [0,\infty). \\ \textit{Dann gilt } -H - \nu_{n+1} \rightarrow 0 \textit{ lokal gleichmäßig für } t \rightarrow \infty. \end{array}$

BEWEIS. Wir bemerken zunächst, dass wegen des Vergleichsprinzips A.1 die Bedingung $U(x,0)-c_1\leq u_0\leq U(x,0)+c_2$ erhalten bleibt, dass also

$$U(x,t) - c_1 \le u(x,t) \le U(x,t) + c_2$$

für alle $(x,t) \in \mathbb{R}^n \times [0,\infty)$ gilt.

Wir betrachten die Funktion $e^{t-X_{n+1}}$ für $X \in M_t \subset \mathbb{R}^{n+1}$ und berechnen deren Evolutionsgleichung. Es gilt

$$\frac{\partial}{\partial t}e^{t-X_{n+1}} = e^{t-X_{n+1}} \left(1 - \frac{\partial}{\partial t}X_{n+1}\right)$$
$$\Delta_{M_t}e^{t-X_{n+1}} = g^{ij}\nabla_i \left(-e^{t-X_{n+1}}\nabla_j X_{n+1}\right)$$
$$= e^{t-X_{n+1}} \left(|\nabla^{M_t}X_{n+1}|^2 - \Delta_{M_t}X_{n+1}\right)$$

und daraus ergibt sich

(4.3)
$$\left(\frac{\partial}{\partial t} - \Delta_{M_t}\right) e^{t - X_{n+1}} = e^{t - X_{n+1}} (1 - |\nabla^{M_t} X_{n+1}|^2) = e^{t - X_{n+1}} \nu_{n+1}^2,$$

da

$$|\nabla^{M_t} X_{n+1}|^2 = |(DX_{n+1})^T|^2 = |e_{n+1} - \langle e_{n+1}, \nu \rangle \nu|^2 = 1 - \nu_{n+1}^2.$$

Da $\partial M_t = \emptyset$ und $d\mu_t$, $e^{t-X_{n+1}}$ differenzierbar in der Zeit sind und $e^{t-X_{n+1}}$ in X_{n+1} schnell genug abfällt, schließen wir

$$\begin{split} \frac{\partial}{\partial t} \int_{M_t} e^{t-X_{n+1}} \, d\mu_t &= \int_{M_t} \frac{\partial}{\partial t} \left(e^{t-X_{n+1}} \right) \, d\mu_t - \int_{M_t} e^{t-X_{n+1}} H^2 \, d\mu_t \\ &= \int_{M_t} \left(\frac{\partial}{\partial t} - \Delta_{M_t} \right) \left(e^{t-X_{n+1}} \right) \, d\mu_t - \int_{M_t} e^{t-X_{n+1}} H^2 \, d\mu_t \\ &= \int_{M_t} e^{t-X_{n+1}} \left(\nu_{n+1}^2 - H^2 \right) \, d\mu_t. \end{split}$$

Integrieren wir diese Gleichung im Intervall [0, T] so ergibt sich (4.4)

$$\int_{M_t} e^{t-X_{n+1}} d\mu_T - \int_{M_0} e^{-X_{n+1}} d\mu_0 = \int_0^T \int_{M_t} e^{t-X_{n+1}} (-\nu_{n+1} - H)(H - \nu_{n+1}) d\mu_t dt.$$

Auf einer mit Geschwindigkeit 1 translatierenden Lösung der Gleichung (1.2) gilt $-\nu_{n+1} - H = 0$, da

$$1 = u_t = vH = -\nu_{n+1}^{-1}H.$$

Wir schätzen die linke Seite aus (4.4) ab und verwenden die Bezeichnung $X = (\hat{X}, X_{n+1}).$

$$\int_{M_T} e^{T - X_{n+1}} d\mu_T - \int_{M_0} e^{-X_{n+1}} d\mu_0 \le \int_{M_T} e^{T - U(\hat{X}, 0) - T + c_1} d\mu_T - c$$
$$= \int_{M_T} e^{-U(\hat{X}, 0) + c_1} d\mu_T - c.$$

Das ist ein beschränktes Integral, da wie im Beweis von Lemma 4.5 vol_{M_T} $(B_r) \leq c_i e^{c_j r}$ beschränkt werden kann und U wie r^2 wächst. Wir lassen $T \to \infty$ und erhalten

$$\int_0^\infty \int_{M_t} e^{t - X_{n+1}} (-\nu_{n+1} - H) (H - \nu_{n+1}) \, d\mu_t \, dt \le C.$$

Da $X_{n+1} \leq U(\hat{X}, 0) + t + c_2$, gilt $e^{t-X_{n+1}} > c$ auf $B_1^n(0)$ für alle t > 0 und eine positive Konstante c. Aus Lemma 4.5 wissen wir, dass $H - \nu_{n+1} > 0$ erhalten bleibt. Wegen Lemma A.5 existiert eine Teilfolge $t_k \to \infty$ für $k \to \infty$, für die

$$\int_{M_t} e^{t - X_{n+1}} (-\nu_{n+1} - H) (H - \nu_{n+1}) \, d\mu_t \to 0.$$

In Betracht der Schranken an $|A|^2$ und $|\nabla^m A|^2$ haben wir Schranken an

$$\nabla \left(e^{t - X_{n+1}} (H^2 - \nu_{n+1}^2) \right) \le e^{t - X_{n+1}} \left(|\nabla X_{n+1}| (H^2 + 1) + 2|H| |\nabla H| + |\nabla \nu_{n+1}| \right).$$

Wir folgern, dass $-\nu_{n+1}-H\to 0$ lokal gleichmäßig in X gilt. Wenn wir außerdem noch

$$\left|\frac{\partial}{\partial t}\int_{M_t} e^{t-X_{n+1}}(\nu_{n+1}^2 - H^2)\,d\mu_t\right| \le c$$

für t>0zeigen können, dürfen wir die lokal gleichmäßige Konvergenz für jede Folge schließen. Es gilt

$$\begin{split} \left| \frac{\partial}{\partial t} \int_{M_t} e^{t - X_{n+1}} (\nu_{n+1}^2 - H^2) \, d\mu_t \right| &\stackrel{(4.3)}{\leq} \left| \int e^{t - X_{n+1}} \left[(1 - \Delta X_{n+1}) (\nu_{n+1}^2 - H^2) \right. \\ &\left. + 2\nu_{n+1} \frac{\partial}{\partial t} \nu_{n+1} - 2H \frac{\partial}{\partial t} H - (\nu_{n+1}^2 - H^2) H^2 \right] d\mu_t \right| \\ &\leq \int e^{t - X_{n+1}} \left[|1 - \Delta X_{n+1}| (1 + H^2) + 2|\nabla H| + 2|H| |\Delta H| + 2H^2 |A|^2 + H^2 + H^4 \right] d\mu_t \\ &\leq c \int e^{t - X_{n+1}} \left[1 + |A|^2 + |A|^3 + |A|^4 + |\nabla A|^2 + |\nabla^2 A|^2 \right] d\mu_t < \infty. \end{split}$$

Damit haben wir die lokale Konvergenz von $-\nu_{n+1} - H \to 0$ für jede Zeitenfolge $(t_k)_{k \in \mathbb{N}}$ gezeigt. \Box

BEMERKUNG 4.7. Die Aussage des Theorems 4.6 lässt sich folgendermaßen präzisieren.

i) Für jede Zeitenfolge $(t_i)_{i \in \mathbb{N}}$ mit $t_i \to \infty$ für $i \to \infty$ existiert eine Teilfolge $(t_{i_j})_{j \in \mathbb{N}}$ und eine mit Geschwindigkeit 1 translatierende Lösung \tilde{U} , sodass

$$u(\cdot, t_{i_j}) - U(\cdot, t_{i_j}) \to 0$$

für $j \to \infty$. Dabei ist \tilde{U} nicht notwendigerweise die rotationssymmetrische, konvexe Lösung U des graphischen Mittleren Krümmungsflusses (1.2), aber es gilt

$$U(x,0) - c_1 \le U(x,0) \le U(x,0) + c_2.$$

ii) Nehmen wir an, dass u_0 rotationssymmetrisch ist. Dann können wir eine Lösung u des graphischen Mittleren Krümmungsflusses (1.2) konstruieren, die die Anfangsdaten u_0 annimmt und für alle t > 0 rotationssymmetrisch bleibt. Die Konstrution verläuft dabei ähnlich wie in Theorem 3.1 aus [1]. Ist es möglich $|\nabla^m A|^2$ -Schranken für alle $t \ge 0$ und alle $m \in \mathbb{N}$ zu erhalten, so ist die Lösung u zu u_0 wegen Theorem 5.2 aus [17] eindeutig. In diesem Fall ist \tilde{U} eine rotationssymmetrische, konvexe Lösung U des graphischen Mittleren Krümmungsflusses (1.2) mit

$$U(x,0) - c_1 \le \tilde{U}(x,0) \le U(x,0) + c_2.$$

64

ANHANG A

Existenzsatz und Maximumprinzipien

A.1. Vergleichssätze

In diesem Appendix werden dem Leser einige Vergleichssätze und Maximumprinzipien in Erinnerung gerufen, die in der Arbeit verwendet wurden. Desweiteren wird ausführlicher auf die Standardtheorie für Existenzbeweise eingegangen.

In [18] beweisen die Autoren ein Vergleichsprinzip für Viskositätslösungen, das auf den graphischen Mittleren Krümmungsfluss angewendet werden kann. Wir werden das Theorem hier zitieren wie wir es benötigen (vergl. Appendix in [1]).

THEOREM A.1. Seien $u_1, u_2 : \mathbb{R}^N \times [0,T] \to \mathbb{R}$ Lösungen des graphischen Mittleren Krümmungsflusses, die höchstens polynomial wachsen, das heißt

$$\frac{u_i(x,t)}{1+|x|^l} \to 0 \quad \text{ für } |x| \to \infty, \text{ gleichmäßig in } t \text{ und für ein } l \in \mathbb{N}.$$

Sei entweder $u_1(\cdot, 0)$ oder $u_2(\cdot, 0)$ lokal Lipschitz stetiq und erfüllt

$$|Du_i(x,0)| \le C(1+|x|^{\nu})$$
 für fast alle $x \in \mathbb{R}^N$

wobei $\nu < (1 + \sqrt{5})/2$. Wenn $u_1(x, 0) \le u_2(x, 0)$, dann gilt $u_1 \le u_2$ in $\mathbb{R}^N \times [0, T]$.

Außerdem werden wir eine Version dieses Theorems benötigen.

KOROLLAR A.2. Erfüllen u_1, u_2 die Bedingungen aus Theorem A.1 auf $(\mathbb{R}^n \setminus B^n_R(0)) \times \mathbb{R}^m$ und gelte zusätzlich

 $u_1 < u_2$

auf $\partial B^n_B(0) \times \mathbb{R}^m \times [0,T]$, dann erhalten wir

 $u_1 \leq u_2$

auf $\mathbb{R}^n \setminus B^n_B(0) \times \mathbb{R}^m \times [0, T].$

BEWEIS. Der Beweis verläuft analog zum Beweis des Theorems A.1, wobei wir zusätzlich die Randbedingung fordern müssen. $\hfill \Box$

Ferner verweisen wir auf das nicht kompakte Maximumprinzip von Ecker und Huisken aus [3]. Sei dafür M^n eine vollständige, nicht kompakte Riemannsche Mannigfaltigkeit mit zeitabhängiger Metrik $g(t) = \{g_{ij}(t)\}$ für $t \in [0,T)$. Mit $B_r^t(p)$ bezeichnen wir den geodätischen Ball mit Radius r zur Zeit t um den Punkt pund mit $r^t(p, y)$ bezeichnen wir die Distanzfunktion auf M zwischen p und y mit $p, y \in M^n$.

THEOREM A.3. Erfülle $(M^n, g(t))$ die Volumenwachstumsbedingung

$$\operatorname{vol}^t(B_r^t(p)) \le e^{k+kr^2}$$

für ein gleichmäßiges k > 0 und einen Punkt $p \in M^n$ für alle $t \in [0,T]$. Sei f eine Funktion auf $M^n \times [0,T)$, die glatt auf $M^n \times (0,T]$ und stetig auf $M^n \times [0,T]$ ist. Erfüllen f und g(t) die Bedingungen

- $\begin{array}{ll} i) \begin{array}{l} \frac{\partial}{\partial t}f &\leq & \Delta^{t}f + a\nabla f + bf, \ \text{wobei} \ \ die \ \ Funktion \ b \ \ die \ \ Bedingung \\ \sup_{M^{n} \times [0,T]} |b| &\leq \alpha_{0} \ f\ddot{u}r \ ein \ \alpha_{0} < \infty \ und \ das \ Vektorfeld \ a \ die \ Bedingung \ \sup_{M^{n} \times [0,T]} |a| \leq \alpha_{1} \ \ f\ddot{u}r \ ein \ \alpha_{1} < \infty \ erf\ddot{u}llen, \end{array}$
- ii) $f(p,0) \leq 0$ für alle $p \in M^n$,
- $\label{eq:iii} iii) \ \int_0^T (\int_M \exp(-\alpha_2^2 r^t(p,y)^2) |\nabla f|^2(y) \, d\mu_t) \, dt < \infty \ \text{für ein} \ \alpha_2 > 0,$
- $iv) \sup_{M^n \times [0,T]} \left| \frac{\partial}{\partial t} g_{ij} \right| \leq \alpha_3 \text{ für ein } \alpha_3 < \infty.$

Dann gilt $f \leq 0$ auf $M^n \times [0, T]$.

Beweis. Dieses Theorem wird in [3] bewiesen.

A.2. Existenztheorie

In diesem Abschnitt folgen wir der Vorlesung "Introduction into Mean Curvature Flow" von Professor G. Huisken, die an der FU Berlin 2010 gehalten wurde. Wir definieren zunächst einige Banachräume und Normen. Sei

$$E := \{ \Phi \in C^{2+\alpha, 1+\alpha/2}(\Omega \times [0, T)) \}$$

und

$$F := \{ (f,g,h) \in C^{0+\alpha,0+\alpha/2}(\Omega \times [0,T)) \times C^{2+\alpha,1+\alpha/2}(\partial \Omega \times [0,T)) \times C^{2,\alpha}(\bar{\Omega}) \}.$$

Für eine genaue Definition von $C^{2+\alpha,1+\alpha/2}$ verweisen wir auf Kapitel 4 in [19]. Wir bemerken, dass E ein Banachraum ist und definieren eine Norm auf F durch

$$\|(f,g,h)\|_F := \|f\|_{C^{0+\alpha,0+\alpha/2}} + \|g\|_{C^{2+\alpha,1+\alpha/2}} + \|h\|_{C^{2,\alpha}},$$

wodurch Fzu einem Banachraum wird. Wir definieren nun den Operator $T:E \to F$ durch

$$Tu := \left(\frac{\partial}{\partial t}u - a_{ij}(Du)D_iD_ju, \ u|_{\partial\Omega\times[0,T)}, \ u|_{t=0}\right)$$

mit $a_{ij}(p) = \delta_{ij} - \frac{p_i p_j}{1+|p|^2}$ wie in (1.2). Ziel ist es, den inversen Funktionensatz anzuwenden. Dabei genügt es jedoch nicht um $\bar{u}(z,t) = u_0(z) + t$ zu linearisieren. Stattdessen ist es erforderlich zunächst eine Lösung der linearen Gleichung

$$\begin{cases} \frac{\partial}{\partial t}u_1 &= a_{ij}(Du_0)D_iD_ju_1\\ u_1(z,t)|_{\partial\Omega} &= \varphi(z) + t\\ a_{ij}(Du_0)D_iD_ju_1|_{\partial\Omega\times\{0\}} &= 1\\ u_1(z,0) &= u_0(z) \end{cases}$$

zu suchen. Existenz
theorie für lineare parabolische Differentialgleichungen zweiter Ordnung (vergl. Theorem 5.3 in [20]) sichert die Existenz
 einer solchen Lösung u_1 . Wir linearisieren nun um u_1 . Berechne also

$$\frac{\partial}{\partial \epsilon}|_{\epsilon=0} \left(\frac{\partial}{\partial t} (u_1 + \epsilon h) - a_{ij} (D(u_1 + \epsilon h)) D_i D_j (u_1 + \epsilon h) \right) =: L_{u_1} h.$$

66

Es gilt

$$\begin{aligned} &\frac{\partial}{\partial \epsilon}|_{\epsilon=0} a_{ij}(D(u_1+\epsilon h))D_iD_j(u_1+\epsilon h) \\ &= \frac{\partial}{\partial \epsilon}|_{\epsilon=0} \left[\Delta(u_1+\epsilon h) - \frac{(D_iu_1+\epsilon D_ih)(D_ju_1+\epsilon D_jh)}{1+|Du_1+\epsilon Dh|^2} D_iD_j(u_1+\epsilon h) \right] \\ &= \Delta h - \left(\frac{(D_ihD_ju_1+D_iu_1D_jh)(1+|Du_1|^2)}{(1+|Du_1|^2)^2} - \frac{2D_lu_1D_lhD_iu_1D_ju_1}{(1+|Du_1|^2)^2} \right) D_iD_ju_1 \\ &- \frac{D_iu_1D_ju_1}{1+|Du_1|^2} D_iD_jh \\ &= \left(\delta_{ij} - \frac{D_iu_1D_ju_1}{1+|Du_1|^2} \right) D_iD_jh - \frac{D_ihD_ju_1+D_jhD_iu_1}{1+|Du_1|^2} D_iD_ju_1 \\ &+ \frac{2D_lu_1D_lhD_iu_1D_ju_1}{(1+|Du_1|^2)^2} D_iD_ju_1 \\ &= a_{ij}(Du_1)D_iD_jh + \frac{2\langle Du_1, Dh \rangle D_iu_1D_ju_1}{(1+|Du_1|^2)^2} D_iD_ju_1 - \frac{2D_ju_1D_lD_ju_1}{1+|Du_1|^2} D_lh \\ &= a_{ij}(Du_1)D_iD_jh + \underbrace{\left(\frac{2D_iu_1D_ju_1D_ju_1D_ju_1}{(1+|Du_1|^2)^2} - \frac{2D_ju_1D_lD_ju_1}{1+|Du_1|^2} \right)}_{:=b^l} D_lh \end{aligned}$$

Da $u_1 \in C^{2+\alpha,1+\alpha/2}$, haben wir $a^{ij}, b^l \in C^{0+\alpha,0+\alpha/2}$. Außerdem ist a^{ij} elliptisch und damit erfüllt L_{u_1} die Voraussetzungen der linearen Schauder Theorie. Wir folgern, dass L invertierbar in einer Umgebung von $a_{ij}(Du_1)D_iD_ju_1$ ist. Es gilt:

$$DT_{u_1}u = \left(\frac{\partial}{\partial t}u - L_{u_1}(Du, D^2u), u_{\partial\Omega\times[0,T)}, u|_{t=0}\right)$$

ist ein linearer Homöomorphismus von E nach F. Damit ist der inverse Funktionensatz anwendbar. Um eine Lösung der Gleichung (3.2) zu finden müssen wir also nun noch $(0, \varphi + t, u_0)$ in die Umgebung von Tu_1 bekommen, in der die Invertierbarkeit gegeben ist. Also betrachten wir

$$\begin{split} \|(0,\varphi+t,u_0) - Tu_1\|_F \\ &= \left\| \frac{\partial}{\partial t} u_1 - a^{ij} (Du_1) D_i D_j u_1 \right\| + \underbrace{\|\varphi+t - u_1|_{\partial\Omega \times [0,T)}\|}_{=0} + \underbrace{\|u_0 - u_1|_{t=0}\|}_{=0} \\ &= \left\| (a^{ij} (Du_0) - a^{ij} (Du_1)) D_i D_j u_1 \right\|_{C^{0+\alpha,0+\alpha/2}}. \end{split}$$

Da aber $u_1 \to u_0$ in $C^{2+\alpha,1+\alpha/2}$ für $t \to 0$, gilt $a^{ij}(Du_0) - a^{ij}(Du_1) \to 0$ für $t \to 0$ und wir erhalten für jedes $\epsilon > 0$

$$||(0, \varphi + t, u_0) - Tu_1||_F < \epsilon$$

solange nur t klein genug gewählt wurde. Damit haben wir die Kurzzeitexistenz für eine Lösung der Gleichung (3.2) gezeigt.

A.3. Technische Abschätzungen

Wir tragen ein technisches Lemma nach, das im Beweis von Theorem 2.1 benutzt wurde. Die Notation bezieht sich auf diesen Abschnitt. LEMMA A.4. Set $x \in \mathbb{R}^n$, $y \in \mathbb{R}^m$ und set $\Psi = \sqrt{t}\psi$, wobet

$$\psi(x,y,y^{n+1},t) = (4\pi t)^{-\frac{n+m+1}{2}} \int_{\mathbb{R}^{n+m+1}} e^{-\frac{|z-(x,y,y^{n+1})|^2}{4t}} \cdot \frac{1+|z_2|^{p+\alpha}}{1+|z_1|^{q-\beta}} dz$$

für α , β , q, p > 0 mit $p + \alpha < n - 1$ und $q - \beta > p + 1$ eine Lösung der Wärmeleitungsgleichung auf \mathbb{R}^{n+m+1} sei. Erfülle $u : \mathbb{R}^{n+m} \times [0,T) \to \mathbb{R}$ die graphische Mittlere Krümmungsflussgleichung (1.2) mit

$$|u(x, y, 0)| \le \frac{C_2(1+|y|^p)}{1+|x|^q}$$

Dann existiert für jedes $\epsilon > 0$ ein c > 0 und ein kleines $t_0 \in [0,T)$, sodass

$$c\Psi(\tilde{Z},t_0) + \epsilon - u^Z(\tilde{Z},t_0) > 0$$

gilt, wobei $\tilde{Z} = (x, y, y^{n+1})$ und $y^{n+1} = u(x, y, t_0)$.

BEWEIS. Wir schätzen die Funktion $c\Psi(\tilde{Z},t_0) + \epsilon - u^{\tilde{Z}}(\tilde{Z},t_0)$ mit Hilfe des Lemmas 2.5 folgendermaßen ab.

$$\begin{split} c\sqrt{t_0}(4\pi t_0)^{-\frac{n+m+1}{2}} &\int_{\mathbb{R}^{n+m+1}} e^{-\frac{|z-(x,y,y^{n+1})|^2}{4t_0}} \cdot \frac{1+|z_2|^{p+\alpha}}{1+|z_1|^{q-\beta}} \, dz + \epsilon - u(x,y,t_0) \\ &\geq ct_0^{\frac{-q+\beta+1}{2}} c_1 \frac{1+|(y,y^{n+1})|^{p+\alpha}}{1+|x|^{q-\beta}} + \epsilon - u(x,y,t_0) \\ &\geq ct_0^{\frac{-q+\beta+1}{2}} c_1 \frac{1+|(y,y^{n+1})|^{p+\alpha}}{1+|x|^{q-\beta}} + \epsilon - C\left(\frac{1+|y|^p}{1+|x|^q} + C(t_0,p,q)\right) \\ &> 0, \end{split}$$

wenn c groß genug gewählt wurde. Hierbei wurde in der vorletzten Abschätzung Proposition 2.10 verwendet. Die Proposition liefert ebenfalls, dass die Konstante $C(t_0, p, q)$ beliebig klein wird, wenn $t_0 \to 0$. In Abhängigkeit von dem gegebenen $\epsilon > 0$ wählen wir also t_0 klein genug.

LEMMA A.5. Set $f : \mathbb{R} \to \mathbb{R}$ eine stetige und auf $[0, \infty)$ integrierbare Funktion mit $f \ge 0$. Dann existiert eine Folge $t_k \to \infty$ mit $f(t_k) \to 0$.

BEWEIS. Da f integrierbar ist gilt

$$\int_0^\infty f(t) \, dt < c$$

für eine positive Konstante c. Wir beweisen das Lemma per Widerspruch. Wir nehmen an es existiert ein $\epsilon > 0$, sodass für jede Folge $(t_k)_{k \in \mathbb{N}}$ die Abschätzung $f(t_k) > \epsilon$ gilt. Hieraus folgt: Es existiert ein T > 0, sodass für alle $t \geq T$ die Ungleichung $f(t) > \epsilon$ erfüllt ist. Dies ist aber ein Widerspruch zur Integrierbarkeit der Funktion f.

Wir beweisen die Implikation, die es erlaubt hat den Widerspruch zu folgern. Wir tun dies per Kontraposition. Wir nehmen also an, dass für alle T > 0 ein t > Texistiert, sodass $f(t) \leq \epsilon$. Dann wählen wir T = 1. Es existiert nun ein $t_1 > T$ mit $f(t_1) \leq \epsilon$. Wir wählen ein neues $T = 1 + t_1$. Dann existiert ein $t_2 > T$ mit $f(t_2) \leq \epsilon$. Wir erhalten sukzessive eine Folge $(t_k)_{k \in \mathbb{N}}$ mit $f(t_k) \leq \epsilon$. Damit ist die Kontraposition bewiesen.

Literaturverzeichnis

- Julie Clutterbuck, Oliver C. Schnürer, and Felix Schulze. Stability of translating solutions to mean curvature flow. *Calc. Var. Partial Differential Equati*ons, 29(3):281–293, 2007.
- [2] Julie Clutterbuck and Oliver C. Schnürer. Stability of mean convex cones under mean curvature flow. preprint, 2008.
- [3] Klaus Ecker and Gerhard Huisken. Interior estimates for hypersurfaces moving by mean curvature. *Invent. Math.*, 105(3):547–569, 1991.
- [4] Gerhard Huisken. Contracting convex hypersurfaces in Riemannian manifolds by their mean curvature. *Invent. Math.*, 84(3):463–480, 1986.
- [5] David Gilbarg and Neil S. Trudinger. Elliptic partial differential equations of second order, volume 224 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, second edition, 1983.
- Klaus Ecker and Gerhard Huisken. Mean curvature evolution of entire graphs. Ann. of Math. (2), 130(3):453–471, 1989.
- [7] Gerhard Huisken. Flow by mean curvature of convex surfaces into spheres. J. Differential Geom., 20(1):237–266, 1984.
- [8] Peter Li and Shing-Tung Yau. On the parabolic kernel of the Schrödinger operator. Acta Math., 156(3-4):153–201, 1986.
- [9] Richard S. Hamilton. A matrix Harnack estimate for the heat equation. Comm. Anal. Geom., 1(1):113–126, 1993.
- [10] Junfang Li and Xiangjin Xu. Differential Harnack inequalities on Riemannian manifolds I : linear heat equation. arXiv:0901.3849v1, 2009.
- [11] Steven J. Altschuler and Lang F. Wu. Translating surfaces of the nonparametric mean curvature flow with prescribed contact angle. *Calc. Var. Partial Differential Equations*, 2(1):101–111, 1994.
- [12] Thomas Marquardt. Randwertprobleme für Hyperflächen vorgeschriebener, anisotropischer Mittlerer Krümmung. Master's thesis, Technische Universität Dresden, Albert Einstein Institut Golm, 2008.
- [13] Ben Andrews and Julie Clutterbuck. Time-interior gradient estimates for quasilinear parabolic equations. *Indiana Univ. Math. J.*, 58(1):351–380, 2009.
- [14] Gerhard Huisken. Nonparametric mean curvature evolution with boundary conditions. J. Differential Equations, 77(2):369–378, 1989.
- [15] Nikolaos Stavrou. Selfsimilar solutions to the mean curvature flow. J. Reine Angew. Math., 499:189–198, 1998.
- [16] Peter Petersen. Riemannian geometry, volume 171 of Graduate Texts in Mathematics. Springer, New York, second edition, 2006.
- [17] Paul Appleby. Mean curvature flow of hypersurfaces asymptotic to minimal cones. 2010. PhD Thesis.
Literaturverzeichnis

- [18] Guy Barles, Samuel Biton, Mariane Bourgoing, and Olivier Ley. Uniqueness results for quasilinear parabolic equations through viscosity solutions' methods. *Calc. Var. Partial Differential Equations*, 18(2):159–179, 2003.
- [19] Gary M. Lieberman. Second order parabolic differential equations. World Scientific Publishing Co. Inc., River Edge, NJ, 1996.
- [20] O. A. Ladyženskaja, V. A. Solonnikov, and N. N. Ural'ceva. *Linear and quasilinear equations of parabolic type*. Translated from the Russian by S. Smith. Translations of Mathematical Monographs, Vol. 23. American Mathematical Society, Providence, R.I., 1967.

70