5. Summary

The antiapoptotic Bcl-x_L protein plays a key role in the control of apoptosis and in the pathogenesis of a variety of malignant diseases. The influence of the 5’-noncoding region of the bcl-x gene and the influence of the 5’–nontranslated region of the bcl-x mRNA on the expression of the bcl–x gene has been investigated in this work.

Previously unknown parts of the human bcl-x gene were sequenced and the sequence of the hitherto unidentified complete human bcl-x mRNA-sequence was determined. Identification and detection of mono- and bicistronic spliceforms of the bcl-x mRNA in several human cell lines and mapping of different transcription start sites in the 5’–NCR of the human bcl-x gene helped identify different mechanisms for the control of bcl-x gene expression.

The position of several transcription start-sites and the location of the major promoter activity in the 5’-noncoding region of the human bcl-x gene support the hypothesis that the selection of certain transcription start sites and transcriptional activity are controlled by downstream promoter elements.

Functional analysis revealed that the 5’-nontranslated region of the human bcl-x mRNA contains an internal ribosome entry site (IRES) which facilitates the translation of this particular mRNA by a CAP-independent mechanism. These results lead to the conclusion that the expression of the human bcl–x gene is significantly controlled at the level of translation. This constitutes the first example of an apoptosis control gene regulated by IRES-mediated initiation of translation.

Transient expression of antisense and anti-antisense RNA which correspond to the 5’–nontranslated region of different bcl-x mRNA forms enabled the identification of the preferentially translated bcl-x mRNA form. In addition, these experiments show for the first time that CAP-independent translation of the bcl-x mRNA can be competitively inhibited by the expression of truncated RNAs containing only the translational control sequences.

A cellular bcl-x antisense RNA that shows no influence on the bcl-x gene expression was identified and detected in several human cell-lines. The low concentration of this antisense RNA and the existence of two bicistronic bcl-x mRNAs support the hy-
pothesis that the cellular bcl-x antisense mRNA may have a catalytic function in trans-splicing.

Finally, determining the equilibrium concentration of a protein in a certain tissue or cell type from the total concentration of its mRNA variants is not acceptable if the mRNA variants are translated differentially.