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Introduction and Overview

Economic history has witnessed numerous excessive booms and busts in asset prices.

Frequently, the burst of such speculative asset price bubbles has challenged not only

the stability of the �nancial system, but has also been followed by severe economic

contractions. Therefore, boom and bust cycles in asset prices have long attracted

the attention of �nancial market participants, economists, and policymakers alike.

The past two decades have brought about two prime examples for such cycles: the

dot-com stock market bubble in the late 1990's and the U.S. housing market bubble

in the 2000's. The latter in particular has provided a forceful reminder about the

risks to �nancial stability and the adverse real economic consequences that may arise

from the sudden burst of an asset price bubble. Following the housing market's peak

in early 2006, falling house prices and a sharp increase in mortgage default rates

triggered the global �nancial crisis (GFC). By the end of 2007, this crisis spilled

over to the real economy which entered the longest and deepest recession since the

Great Depression of 1929.

Consequently, the GFC has contested the understanding of macro- and �nancial

economists of the risks inherent in asset markets, and of the linkages between the

�nancial system and the real economy. As a result, the crisis has sparked intense

debates about pre-crisis economic and �nancial policies, in particular with regard to

�nancial market regulation and the role of monetary policy in amplifying or damp-

ening asset price cycles. This dissertation consists of four chapters that empirically

address some of the challenges emphasized by the recent booms and busts in asset

prices, and thereby contributes to some of the initiated policy debates.

Speci�cally, the GFC has uncovered the failure of investors' internal risk models to

accurately capture the implied tail risks of serially dependent, negative asset returns.

The resulting underestimation of market risks has contributed to too low capital
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bu�ers held by investors. Following the crisis, the Basel Committee on Banking

Supervision has hence initiated a review of the internal risk models approach aiming

to ensure a more prudent capture of tail risk and capital adequacy in �nancial

stress situations (Basel Committee on Banking Supervision, 2009, 2016). Against

this background, Chapter 1 o�ers a new approach for improving models commonly

employed to describe and predict the evolution of �nancial market volatility and

market risk. Thereby, our approach allows to better capture tail risks and serial

dependency in speculative asset returns.

Furthermore, the GFC has highlighted the adverse real economic consequences

arising from a bursting asset price bubble. As a result, this has stimulated de-

bates on how to better contain emerging asset price bubbles and thereby promote

�nancial and economic stability in the future. A particular set of policies that has

since regained popularity are countercyclical macroprudential policies. Moreover,

the pre-crisis conduct of an asymmetric, �benign neglect� monetary policy approach

to emerging asset price bubbles is strongly debated. This approach builds on the

notion that a central bank cannot and should not attempt to constrain the boom,

but instead should only aim at promoting �nancial stability after the bust by cut-

ting interest rates. Challenging this view, proponents of an active role of monetary

policy have called on central banks to instead �lean against the wind� of asset price

bubbles by preemptively raising interest rates early after their emergence.

For the appropriate design and use of countercyclical �nancial market policies in

general, and a leaning against the wind monetary policy in particular, several im-

portant conditions must be ful�lled, though. First, policymakers must be able to

correctly assess that an observed asset price appreciation is indeed excessive and war-

rants policy action. This prerequisite of detecting asset price bubbles has long been

deemed impossible, especially when to be performed in real-time (Stiglitz, 1990;

Kohn, 2006). In contrast to this view, Chapter 2 argues that recently developed

econometric tests by Phillips et al. (2011, 2015) can be fruitfully combined to pro-

vide accurate real-time warning indicators about emerging asset price bubbles. To

warrant a monetary policy response, however, these bubble signals must, secondly,

contain predictive information for the central bank's real economic target variables.

Here, Chapter 3 shows that the most accurate real-time bubble indicators devel-

oped in Chapter 2 also provide valuable information for forecasting future output
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growth. Finally, in order to be able to lean against an emerging asset price bubble,

it is required that central banks can lower asset mispricing by raising interest rates.

Chapter 4 provides evidence that a monetary policy tightening indeed lowers stock

prices beyond what the policy-induced changes of their fundamental values imply.

The four chapters of this dissertation are based on four individual papers. In

the following, I brie�y summarize their main results and their contributions to the

literature.

Chapter 1: Risk Forecasting in (T)GARCH Models with Uncorrelated Dependent

Innovations

The �rst chapter is based on a joint paper with Helmut Herwartz and Moritz Sei-

del. In this study we explore whether model residuals from the class of (threshold)

generalized autoregressive conditional heteroskedasticity ((T)GARCH) models are

characterized by serial dependence, which could potentially be used to enhance con-

ventional risk forecasts. We �nd that these residuals are hardly independent and

identically distributed (IID), but instead show forms of higher order serial depen-

dence. This suggests that TGARCH models commonly employed for predicting

market risk of speculative asset returns do not use all available information for their

forecast. We propose two strategies to quantify the serial dependence structures

between model innovations, a nonparametric estimation approach and a �exible

modeling approach based on standardized copula distributions. We show that these

strategies more accurately describe the in-sample dependence patterns between con-

secutive innovations, and outperform conventional TGARCH model predictions for

the conditional Value-at-Risk (cVaR) and the conditional Expected Shortfall (cES)

at the relevant risk levels outlined by the Basel Committee on Banking Supervision

(2016).

Methodologically, we contribute to the literature on modeling univariate het-

eroskedastic time series by augmenting the commonly employed (T)GARCH model

class developed by Engle (1982), Bollerslev (1986), and Glosten et al. (1993) to

account for higher order serial dependence in the models' residuals. Since their in-

troduction, these models have been extended along various dimensions, for example

to describe other forms of non-linear behavior in the volatility process, or to allow

for leptokurtic, non-normal conditional distributions of (multivariate) model resid-

uals (e.g. Bollerslev, 1990). However, the assumption that the model innovations
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are IID has rarely been challenged. For instance, until now it has only been sug-

gested to implement conditional skewness (e.g. Harvey and Siddique, 1999) and

kurtosis (Brooks et al., 2005) in model innovations by conditioning their distribu-

tion on lagged returns and the estimated variance. Yet, none of the extensions prior

to our study has considered the standardized residuals to exhibit an explicit serial

dependence structure, i.e. a dependence of innovations on their own past. Finally,

our study also complements the work of Lee and Long (2009) who employ standard-

ized copula distributions to model the cross-sectional dependence in asset returns in

multivariate GARCH models.

Chapter 2: Detecting Asset Price Bubbles in Real-Time through Indicator Combi-

nations

This chapter assesses whether emerging asset price bubbles can be detected in real-

time. For this, I begin by evaluating the accuracy of existing early warning indicators

for stock price bubbles. I apply these indicators to U.S. stock market data and

highlight the considerable signal heterogeneity across all indicators, with frequent

false positive signals during normal times and instable signals during the 1990's dot-

com bubble. To improve signal accuracy, I then propose two strategies to combine

signals from all individual indicators in real-time. First, I put forward a simple

counting approach that requires the number of simultaneous bubble signals from all

indicators to exceed a speci�ed threshold. Second, I develop a combination indicator

based on the multiple testing procedure of Romano and Wolf (2005) that controls the

overall size of such a joint test. Through simulations, I show that both combination

strategies provide more accurate real-time signals for the emergence and collapse of

asset price bubbles than the individual indicators.

Thereby, this study contributes to a literature that aims at monitoring asset prices

for the emergence of bubbles. For long, the literature has identi�ed bubble periods as

pronounced price deviations from an (HP-)�ltered trend (e.g. Assenmacher-Wesche

and Gerlach, 2010). Recently, however, Phillips et al. (2011, 2015) have proposed

to recursively test both asset prices and their fundamental (dividend) series for

explosive roots, hence extending the early work of Diba and Grossman (1988) and

Evans (1991) to the real-time dimension. In this study, I show that the exact

speci�cation of the Phillips et al. (2011, 2015) indicators is crucial for their accuracy

of detecting bubbles. In particular, it matters whether individual price and dividend
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series or the price-to-dividend ratio are tested for explosive roots. Furthermore, I

illustrate that all available individual indicators are sensitive to the number, duration

and timing of bubbles in the sample. By combining individual signals, this sensitivity

is markedly reduced and real-time bubble detection is considerably enhanced.

Chapter 3: Predicting Output with Real-Time Bubble Indicators

This chapter, based on joint work with Dirk Ulbricht, assesses whether the real-time

bubble indicators developed in Chapter 2 contain valuable information for predict-

ing real economic activity. Applied to U.S. stock and housing market data and

added to an autoregressive (AR) model for output growth, we �nd that several bub-

ble indicators strongly improve the forecasts from the AR model. Moreover, these

bubble-augmented AR models are also highly competitive in providing accurate

forecasts against a large set of 216 models based on macroeconomic and �nancial

predictors commonly used to forecast real economic activity. In addition, we note

that the best predictive bubble indicators also provide the most plausible bubble

signals, providing further evidence that these indicators are capable of detecting

true bubble episodes in real-time.

Our study contributes to an extensive literature that aims at identifying lead-

ing indicators for future output growth (see Stock and Watson, 2003). Next to

macroeconomic variables, asset prices, and particularly stock prices, have long been

employed to predict real economic variables and in�ation. In univariate settings,

however, their predictive value has frequently been found to be low, especially dur-

ing the Great Moderation from the mid 1980's to the GFC (Stock and Watson,

2003; Rossi and Sekhposyan, 2010). In contrast, we �nd that asset price booms

are consistently linked to higher output growth in the short-term, with a possible

reversion in the long-run. Thus, our results suggest that it may be particularly the

excessive boom and bust phases in asset prices that carry pronounced real economic

e�ects. This can be explained by the presence of a stronger �nancial accelerator

mechanism during those times, which links rising asset prices to higher investment,

consumption, and, ultimately, output as suggested by Kiyotaki and Moore (1997),

Holmstrom and Tirole (1997), Bernanke et al. (1999), and Martin and Ventura

(2012).
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Chapter 4: Monetary Policy and Mispricing in Stock Markets

This chapter, based on joint work with Kerstin Bernoth, investigates the role of

monetary policy in misaligning stock prices from their fundamental value. Using

a structural vector autoregressive (SVAR) model, we decompose the estimated re-

sponse of stock prices to a monetary policy shock into a change of expected future

dividends and a change in the equity risk premium. We �nd that only about one

third of the overall impact response of stock prices can be accounted for by these

two sources, which suggests a strong and systematic overreaction of stock markets

to monetary policy shocks. This result lends support to the proponents of an ac-

tive LATW monetary policy: By raising interest rates, the central bank can indeed

lower a mispricing component in stock prices. However, this comes at the cost of

dampening real economic activity and is hence only recommendable to an in�ation-

targeting central bank when a perceived excessive asset price boom is accompanied

by economic growth and in�ation above the bank's targets.

Our results challenge the theoretical predictions and empirical �ndings of previ-

ous literature studying the link between monetary policy and stock mispricing. In

contrast to our results, Galí (2014) argues that a monetary policy tightening should,

in fact, increase the growth rate of a rational asset price bubble. Galí and Gam-

betti (2015) provide empirical support for this hypothesis, �nding that stock prices

increase in response to a contractionary monetary policy shock. We show, however,

that their results only hold under the restrictive identifying assumption that the

central bank does not respond to exogenous changes in stock prices on impact. In-

stead, the �ndings reverse when allowing monetary policy to respond to stock price

shocks instantaneously. To achieve identi�cation of the structural shocks under this

less restrictive assumption, we combine zero and sign restrictions following a recent

contribution by Arias et al. (2014). While our results are at odds with the predic-

tions of a rational bubble framework, they can be explained by mispricing arising

from false subjective expectations of irrational investors as in Brunnermeier and Jul-

liard (2008). Finally, our study complements the existing empirical literature on the

e�ects of monetary policy on stock prices (e.g. Rigobon and Sack, 2004; Bjørnland

and Leitemo, 2009) and deepens the understanding of the underlying sources for

stock price changes by extending the framework of Bernanke and Kuttner (2005) to

allow for the presence of a mispricing component.
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CHAPTER 1

Risk Forecasting in (T)GARCH Models with Uncor-

related Dependent Innovations1

1.1 Introduction

In �nancial practice and particularly in risk management, GARCH models have be-

come a standard econometric tool for modeling the volatility dynamics of �nancial

returns and for ex ante prediction of risk measures such as the conditional Value-at-

Risk (cVaR), or the conditional Expected Shortfall (cES).2 Since their introduction

by Engle (1982) and Bollerslev (1986), various GARCH extensions accounting for

asymmetries and/or non-linear behavior in the volatility process have been made,

and generally improved the understanding of the second order dynamics of �nan-

cial time series. In particular the extension proposed in Glosten et al. (1993) has

been widely applied for modeling stock return volatility which is known to respond

stronger to bad news (i.e. negative returns) than to good news. Henceforth, we refer

to this model as the threshold GARCH (TGARCH) model. Apart from issues re-

lated to volatility dynamics, the assumption of conditional normality in the models'

standardized residuals has been questioned. Leptokurtic, non-normal conditional

1This chapter is based on a paper with Helmut Herwartz and Moritz Seidel which was published
in Quantitative Finance, Vol. 17(1), 2017, 121�137, available at http://dx.doi.org/10.1080/
14697688.2016.1184303. The views expressed in this chapter are ours and should not be at-
tributed to the Deutsche Bundesbank or its sta�. We thank Christian Conrad, Matthias Fengler,
Christian Hafner, Helmut Lütkepohl, Timo Teräsvirta, and two anonymous referees, as well as
participants at the IAAE Annual Meeting 2014, London for helpful comments and suggestions.

2See Angelidis and Degiannakis (2007) for an overview of GARCH cVaR- and McNeil and Frey
(2000), and Zhu and Galbraith (2011) for two examples for GARCH cES forecast models.
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distributions have been shown to improve both the GARCH implied approximation

of empirical returns (see e.g. Bollerslev, 1990), as well as in-sample and out-of-

sample forecasts of volatility and other risk measures (see Zhu and Galbraith (2011)

for an overview of this literature).

In empirical work it has become a widespread convention to assume that TGARCH

model innovations are identically and independently distributed (IID) with zero

mean and unit variance. Hence, applied models proceed under the framework of

the so-called strong GARCH form. While theoretical treatments of semi-strong

GARCH models (Lee and Hansen, 1994; Escanciano, 2009; Linton et al., 2010) have

shown consistency and asymptotic normality of quasi maximum likelihood (QML)

estimators under weaker (mixing) properties of the underlying innovation process,

the empirical scope of semi-strong GARCH models has been rarely addressed. For

instance, until now it has only been suggested to implement conditional skewness

(Hansen, 1994; Harvey and Siddique, 1999) and kurtosis (Brooks et al., 2005) in

GARCH model innovations by conditioning their distribution on lagged returns and

the estimated variance. To the best of our knowledge, however, none of the avail-

able extensions of the basic GARCH model considers the standardized residuals

to exhibit an explicit serial dependence structure, i.e. a dependence of subsequent

innovations in higher moments.

In this paper we uncover if TGARCH residuals are indeed IID, or show some form

of higher order dependence. For the vast majority of a cross-section of 18 stock mar-

kets we �nd that the IID assumption is rejected by empirical innovation estimates.

Instead, successive residuals from estimated univariate TGARCHmodels show forms

of higher order dependence beyond zero correlation, and thus may carry predictive

content for common risk measures. To exploit this potential predictive content, we

thus aim to quantify the serial dependence structures between model innovations.

For this, we propose two approaches. On the one hand, we employ nonparametric

estimates of the conditional distributions of consecutive innovation estimates. On

the other hand, we follow a suggestion in Herwartz (2013) and consider a �exible

class of standardized copula distributions introduced to multivariate GARCH models

by Lee and Long (2009). This work also relates to Chen and Fan (2006) who suggest

the use of copula distributions for modeling dependence in univariate time-series and

highlight their use for risk forecasting.

2
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For a practical application, we evaluate to what degree these dependencies can be

exploited for risk forecasting. In 1996, the Basel Committee for Banking Supervi-

sion suggested the calculation of a 1% Value-at-Risk (VaR) as the standard method

for measuring market risk in �nancial institutions (Basel Committee on Banking

Supervision, 2005). Moreover, to prevent �nancial institutions from underestimat-

ing market risks, the Basel Committee de�ned rules on backtesting methods for

internal risk models and implemented a system of multiplication factors for penal-

izing those models that fail the backtesting criteria.3 Despite its prominent use in

risk management, VaR has been criticized for several drawbacks. Owing to (i) its

failure in capturing the entire tail risk beyond the nominal level, and (ii) the incen-

tives it provides for �nancial institutions to take on tail risks, the Basel Committee

recommends to replace the VaR by the expected shortfall (ES) as the new standard

risk measure (Basel Committee on Banking Supervision, 2016). In particular, ES

re�nes tail risk evaluation. Moreover, to cover a larger range of extreme events it

is intended to raise the nominal 1% benchmark risk level to 2.5%. These two risk

levels are in the focus of our analysis.

Therefore, we conduct a large scale out-of-sample forecasting analysis to uncover

if serial dependence in TGARCH implied model residuals can be fruitfully exploited

for ex ante prediction of the cVaR and the cES. Speci�cally, we compare the pre-

dictive performance of nonparametric and copula based treatments of serial depen-

dence patterns with two avenues of risk prediction that rely on the assumption

of IID TGARCH innovations: Common estimates obtained from the conditionally

Gaussian TGARCH model, and rival predictors where TGARCH innovations are

presumed to stem from a leptokurtic IID standardized Student-t distribution. To

preview some results, we �nd that consecutive standardized TGARCH innovations

exhibit a dependence structure that di�ers from both conditional normality and

independence, and can generally be best described either nonparametrically, or by

means of standardized Clayton or Gumbel copulae with leptokurtic marginal distri-

butions. Exploiting serial dependence patterns, cVaR and cES predictions strongly

outperform risk forecasts from TGARCH models that build upon the assumption of

IID innovations. This leads to more precise cVaR predictions at all risk levels, but es-

3When failing to employ a satisfactory internal risk model, the bank faces higher capital require-
ments as enforced by the multiplication factors. This reduces the funds available for lending or
investing, and thereby these factors introduce an incentive to maintain a satisfactory risk model.
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pecially at the 1%-level, which is most relevant according to the current rules of the

Basel framework. Furthermore, cES forecasts derived from matching dependence

patterns with copula distributions are shown to be more conservative than fore-

casts relying on the IID assumption. In line with this �nding, we demonstrate that

the former improve the overall forecasting accuracy, and provide sizeable economic

gains for a regulating institution compared with predictions derived from quantiles

of standardized Student−t distributions. Overall, the forecast combination models

employing copula distributions and nonparametric density estimates perform best

at the relevant 1% and 2.5% nominal risk levels. Since our data set comprises times

of strong market disruptions induced by the global �nancial crisis, we show that our

method works especially well during periods of stress which need to be considered

for cES prediction according to the revised Basel market risk framework.

The arguments in the remainder of this paper are illustrated by stylized features

of empirical data. The next section introduces the considered cross section of 18

stock indices, and states the TGARCH(1,1,1) model that we employ for volatility

estimation, extraction of model innovations and volatility forecasting. Subsequently,

section 1.3 sketches a class of standardized copula distributions that we consider

suitable to describe empirical serial dependence patterns of TGARCH innovations.

Section 1.4 addresses the cVaR and cES forecasting in the framework of the proposed

model class, nonparametric estimation of conditional distributions, and the applied

backtesting procedures. Section 1.5 discusses our results. Section 1.6 concludes.

1.2 Dependence in GARCH innovations

In this section we introduce the cross section of stock markets and state the TGARCH

model. We then argue that the typical assumption of IID innovations is likely at

odds with stylized facts of empirical data.

1.2.1 Data and the TGARCH model

We analyze return patterns for a cross section of 18 stock market indices. For each

of these indices about 2,300 daily observations cover the time period from May 1st,
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2003 until April 30th, 2012.4 The TGARCH(1,1,1) model introduced by Glosten

et al. (1993) accounts for asymmetries in the volatility response and is used as a �lter

to obtain the implied model innovations.5 Conditional on the information available

at time t − 1, denoted Ωt−1, �rst and second order return characteristics are given

as

rt = µt + σtξt, (1.1)

σ2
t = γ0 + β1σ

2
t−1 + γ1(rt−1 − µt−1)2

+ γ−1 (rt−1 − µt−1)2I(rt−1 − µt−1 < 0), t = 1, . . . , T, (1.2)

where I(.) is an indicator function, and T indicates the available sample size con-

ditional on presample values. Moreover, σ2
t is the conditional variance of the daily

log-returns rt, µt is the conditional mean, and γ0, γ1, γ
−
1 and β1 denote the vari-

ance response parameters. Focusing on the analysis of daily stock returns, we follow

common practice and assume µt = 0 in (1.1) and, thus, rt = σtξt.

The TGARCH-model innovations ξt in (1.1) are typically assumed to be IID. For

purposes of (Q)ML estimation the Gaussian assumption is common, i.e.

ξt = rt/σt
iid∼ N(0, 1). (1.3)

The IID assumption in (1.3) embeds rt within the class of strong GARCH processes.

In the class of semi-strong GARCH models that we will employ, ξt is required to be

strictly stationary and ergodic such that E[ξt|Ωt−1] = 0 and Var[ξt|Ωt−1] = 1 (scaled

martingale di�erence sequence, sMDS ).6 Hamadeh and Zakoïan (2011) justify QML

estimation of semi-strong TGARCH models presuming that model innovations take

the form of an sMDS process.

4Stock price data have been obtained from Yahoo!Finance (�nance.yahoo.com) except for the
DJIA 30 which has been drawn from the Federal Reserve Bank of St. Louis, Economic Research
(http://research.stlouisfed.org/fred2/).

5Based on the conditional standard deviation σt, Zakoian (1994) proposed a similar threshold
GARCH speci�cation.

6The distinction of strong, semi-strong and weak forms of the GARCHmodel has become prominent
in the framework of temporal aggregation of GARCH processes. Drost and Nijman (1993) have
shown that only the weak form of GARCH models is closed under temporal aggregation.
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In this work we argue that consecutive empirical (T)GARCH innovations are at

odds with the typically imposed IID assumption.7 Combined with the assumption

µt = 0, the TGARCH model can be regarded as a �lter approach to isolate model

implied innovations. In consequence, �ltered innovations may show remaining de-

pendence from neglecting non-zero conditional expectations (µt 6= 0) or applying a

false/inappropriate volatility model. Against this background, we provide statistical

evidence on the full sample (Table 1.B.1) and on subsamples (Tables 1.B.2 and 1.B.3)

showing that the suggested �lter (µt = 0, TGARCH(1,1,1)) is su�cient to obtain

innovations which are in line with the typical �rst and second order assumptions.

The set of analyzed stock market indices and full sample parameter estimates for

the TGARCH(1,1,1) models are shown in Table 1.B.1. Signi�cant leverage e�ects

(γ−1 > 0) can be diagnosed for all markets. In consequence, it appears justi�ed

to concentrate on this particular variant of conditionally heteroskedastic processes.

Further, the parsimonious speci�cation of just one GARCH and ARCH term is

supported by the BIC criterion for all markets (not shown). Table 1.B.1 also doc-

uments diagnostics testing the TGARCH(1,1,1) residuals against serial correlation

by means of the LB statistic of Ljung and Box (1978) and against remaining het-

eroskedasticity by means of the Lagrange Multiplier (LM) statistic of Lundbergh

and Teräsvirta (2002).8 The potential of serial correlation can be neglected, since

p-values of the LB statistics with 20 lags (LB(20)) are well above �ve percent for

almost all markets. While for some markets the LM statistics appear to hint at some

degree of remaining heteroskedasticity with �ve percent signi�cance, we notice that

extending the TGARCH model orders we do not obtain more favorable diagnostic

outcomes. These results also hold for a rolling window subsample analysis of 1,000

days repeated at every 100 days of the sample (see Tables 1.B.2 and 1.B.3).9 We

conclude that the TGARCH(1,1,1) is largely su�cient to remove dependence in the

residuals' �rst and second order moments, but acknowledge that in individual cases

higher lag orders or other models might provide an even better �lter.

7A natural extension of our work is to evaluate higher order dependence of innovations at even
longer lags. Addressing such dependence structures through our proposed modeling approach,
however, increases the computational demands exponentially. We hence restrict the analysis to
the bivariate case of consecutive innovations.

8While the applied LM statistic is robust against non-Gaussian innovations ξt, potential outliers
of standardized returns might give rise to biased LM statistics.

9We further note that the TGARCH model is selected over the GARCH model by the BIC at all
iterations except for the SSEC index.
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1.2.2 Higher-order dependence of uncorrelated innovations

As a �rst indication of higher-order dependence of consecutive innovations, Fig-

ure 1.2.1 displays scatter diagrams of the T > 2,000 estimated model residuals ξ̂t
and ξ̂t+1 for four stock market indices. From the clustering of observations in the

bottom left corners (upper right for NIKKEI), it appears that the assumptions of

both a joint normal distribution and independence are questionable. In contrast

to an IID setting, there seems to prevail a remaining dependence structure charac-

terized by a clustering of subsequently negative (positive for NIKKEI) innovations.

Hence, empirical TGARCH residuals appear to be characterized by joint lower or

upper tail dependence.

Following the graphical insights from Figure 1.2.1, we continue with explicitly

testing for the higher moment dependence. For this purpose we concentrate on

means of third and fourth order co-moments determined for the vectors of cross-

products υt =
(

(ξ̂2
t+1ξ̂t), (ξ̂t+1ξ̂

2
t )
)′

and ψt =
(

(ξ̂2
t+1ξ̂

2
t − 1), (ξ̂3

t+1ξ̂t), (ξ̂t+1ξ̂
3
t )
)′
, t =

1, 2, . . . , T − 1.10 Note that in case of IID innovations one has E[υt] = 02 and

E[ψt] = 03, where 0J is a J-dimensional zero vector. Patterns of dependence of

consecutive innovations may show up in third or fourth order co-moments such that

E[υt] 6= 02 or E[ψt] 6= 03. We test the null hypotheses E[υt] = 02 and E[ψt] = 03 by

means of the following moment based test statistics, respectively,

λ
(3)
iid = T ῡ′ (Cov[υt])

−1 ῡ
d→ χ2(2) and λ(4)

iid = T ψ̄′ (Cov[ψt])
−1 ψ̄

d→ χ2(3), (1.4)

where ῡ = (1/T )
∑T

t=1 υt and ψ̄ = (1/T )
∑T

t=1 ψt. Covariances Cov[υt] and Cov[ψt]

are determined by means of Monte Carlo techniques using simulated sequences of

Gaussian innovations.11

Table 1.B.4 documents test statistics λ(3)
iid and λ

(4)
iid along with respective p-values.

Overall, empirical estimates of TGARCH innovations hardly accord with the com-

monly held IID assumption. At the �ve percent signi�cance level, we �nd that nine

10Being aware of more general tests of the null hypothesis of independence, as for instance, the test
by Broock et al. (1996) )(BDS test), we concentrate on moment based statistics that directly
target dependence among consecutive innovations.

11To determine the covariance of υt and ψt we draw 5,000 replications of Gaussian processes of
length T . For the simulation of leptokurtic innovation distributions we draw IID processes of
Student−t distributed random variables with ten degrees of freedom which are standardized by
their empirical standard deviations.
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Figure 1.2.1: Standardized TGARCH(1,1,1) residuals (ξt vs. ξt+1) for four indices

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

DAX

ξt

ξ  t+
1

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

DJIA

ξt

ξ  t+
1

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

FTSE

ξt

ξ  t+
1

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

NIKKEI

ξt

ξ  t+
1

Notes: The �gure shows the standardized TGARCH(1,1,1) residuals (ξt vs. ξt+1) for four indices
from QML estimation. Solid lines indicate the absolute unit levels.

and 14 stock market indices (out of 18) are characterized by third and fourth order

dependence, respectively.

In empirical work, TGARCH innovations are often found to be characterized by

excess kurtosis. Thus, we also estimate Cov[υt] and Cov[ψt] by means of simulated

standardized Student t−distributed random variables with ten degrees of freedom.

Moreover, the determination of higher order co-moments by means of empirical

TGARCH innovations may be �awed by potential outliers. To account for such
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e�ects we also determine the co-moments entering the dependence statistics in (1.4)

from trimmed innovations. For the trimming we replace estimates ξ̂t which are above

(below) the 99% (1%) quantile of the unconditional distribution by these respective

quantiles. Along these lines and using standardized t(10) innovations for Monte

Carlo (MC) diagnostics, third and fourth order dependence remains as a signi�cant

data characteristic in �ve and 17 markets, respectively. In comparison with patterns

of coskewness, fourth order codependence appears to be more evident for empirical

TGARCH innovations. Hence, we focus on symmetric marginal distributions in the

following analysis.12

In summary, graphical displays and diagnostic tests highlight that empirical

TGARCH innovations are likely at odds with the commonly held IID assumption.

Thus, in terms of the involved conditional and unconditional distribution functions

(CDFs) we likely have F (ξt+1|ξt) 6= F (ξt+1). With this empirical diagnosis at hand,

it is of immediate interest if such dependence patterns can be exploited to improve

common TGARCH based predictions of conditional risk. To model serial depen-

dence of TGARCH innovations we pursue two strategies. On the one hand we

design a huge class of structured parametric models, and on the other hand we

follow an unstructured nonparametric approach.

1.3 The copula-TGARCH model

While the dependence in higher order co-moments might be easily diagnosed by

means of dependence diagnostics λ(3)
iid and λ(4)

iid in (1.4), these statistics are not in-

formative about how to arrive at (parametric) conditional ex ante risk predictors.

Furthermore, the heterogeneity of empirical co-moments displayed in Table 1.B.4

(third order co-moments of either sign, distinct signi�cance patterns for third and

fourth order co-moments) raises doubts that a full parametric framework can indeed

accurately describe all forms of higher order dependence. Therefore, we opt for a

�exible semi-parametric modeling framework that allows to capture varying forms

of higher order dependence and to predict the conditional risk in asset returns.

12This result also holds in the sub-sample analysis. Evidence for coskewness in sub-samples is
indicated for seven markets, while strong codependence in fourth order moments is present in
twelve markets. Extending lag orders of the TGARCH speci�cation does not remove these
dependence patterns.

9



Chapter 1 Risk Forecasting with Uncorrelated Dependent Innovations

In this section we outline a model class that has been advocated in Herwartz (2013)

to improve the performance of linear autoregressions in macroeconomic forecasting.

In particular, we employ the model class of standardized copula distributions which

allow a �exible and data driven evaluation of nonlinear relationships and, thus, the

embedding of general dependence patterns F (ξt+1|ξt) 6= F (ξt+1). For this, we pro-

ceed in two steps. First, we outline the candidate standardized copula distributions

used to describe empirical dependence patterns in the data and to improve risk fore-

casts. We also describe how to draw samples from these distributions that ful�ll

the sMDS property as required for TGARCH innovations. Second, we then sketch

a data driven adaptive approach to select a particular distribution from this large

model class that describes the empirical dependencies best. Monte Carlo techniques

prove useful to quantify model implied serial dependence patterns and to match

particular model speci�cations to empirical data.

1.3.1 Standardized copula implied dependence structures

1.3.1.1 Standardized copula distributions

A priori the space of potential serial dependence patterns appears overly large to

de�ne a particular parametric model nesting the most promising nonlinear model

approaches. Instead, we opt for a modeling approach that allows to �exibly trans-

late heterogeneous empirical dependence structures into the two dimensional space

of (ξt+1, ξt). The standardized copula distributions introduced by Lee and Long

(2009) embed a such rich dependence structure. Before we specify the copula dis-

tributions considered in the empirical analysis, we describe their general form and

how we can obtain random samples that meet the sMDS requirements. Henceforth

vt = (ξt+1, ξt)
′ denotes a vector of consecutive TGARCH innovations which ful�ll

the sMDS property with unit variance by construction, i.e. E[ξt+1|Ωt] = 0 and

Var[ξt+1|Ωt] = 1. To draw samples of vt, we proceed along the following three steps:

1. Generate serially correlated processes w from parametric copulae:

Let

w ∼ Cδ(G1(w1),G2(w2), . . . ,GT+1(wT+1)), E[w] = 0, Cov[w] = Σ, (1.5)

10



Chapter 1 Risk Forecasting with Uncorrelated Dependent Innovations

denote a (T + 1)-dimensional vector of copula distributed random variables

where Gt(.), and Cδ(.) denote marginal distribution functions and a copula

function with parameter δ that controls the strength of dependence, respec-

tively.13 The covariance matrix Σ in (1.5) is positive de�nite and its diagonal

elements (marginal variances) are unity.

For large T , random vectors w can be composed by drawing from conditional

copula distributions. For this purpose we sequentially draw serially dependent

realizations wt+1 of the random innovations from the conditional copula distri-

butions implied by (1.5) conditional on wt that is available from the t-th draw.

We implement this by transformations of the p-values ut and ut+1 to wt and

wt+1 respectively, according to the marginal distribution, e.g. wt = G−1
t (ut).

The procedure is initiated by drawing u−1000 from the uniform distribution.

To immunize the simulation chain from initial conditions, we discard the �rst

1,000 draws.14 Removing serial correlation from {wt}Tt=1 requires a consistent

estimate for the covariance matrix Σ. Therefore, we draw S = 1,000 sam-

ples of w, each of size T = 2,000 and use the average empirical covariance

matrix estimate as an approximation of Σ. With su�ciently large S the co-

variance structure implied by a particular distributional model is estimated

consistently.15

2. Extract serially uncorrelated innovations:

Let C denote a lower triangular Cholesky factor such that Σ = CC ′. Then, the

coe�cients on and left from the diagonal of C provide a weighting scheme to

transform �rst order correlated data wt in w to serially uncorrelated variables

13Copulae have become an established framework to model dependence structures of vector valued
random variables (see Cherubini et al. (2004) or Nelsen (2006) for textbook treatments). Re-
cently, Chen and Fan (2006) have proposed a copula approach to formalize general dependence
patterns of successive univariate time series variables.

14Sampling from conditional copulae follows Cherubini et al. (2004), and is accomplished by
means of the Matlab function `copularnd' adapted to draw only ut+1, conditional on ut, t =
−1000, . . . , T .

15Increasing the number of draws S beyond 1,000 does not change the approximation of bivariate
distributions as described below in section 1.3.2.
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w̃t. For instance, from the last row of C we get the following weighting scheme

w̃t =

T0∑
i=0

cT,T−iwt−i, (1.6)

where T −T0 is some cut-o� threshold, and cT,T−i indicate typical elements in

the last row of C. By construction, the process w̃t is serially uncorrelated but

is likely at odds with the sMDS assumption made for innovations in GARCH

speci�cations of the semi-strong form.

3. Convert to a sMDS sequence:

To convert the series w̃t to a sMDS sequence, we employ two regression designs

to determine the expectation of either w̃t or w̃2
t conditional on most recent time

series information. Speci�cally, the following regressions are estimated for each

of the S = 1,000 samples with T = 2,000 observations:

w̃t = β1,0 +
5∑
i=1

4∑
j=1

β1,i,jw̃
j
t−i + ω1,t, (1.7)

w̃2
t = β2,0 +

5∑
i=1

4∑
j=1

β2,i,jw̃
j
t−i + ω2,t. (1.8)

Using the estimated parameters β̂k,i,j averaged across all samples S, we obtain

the conditional expectations m̂t = E[w̃t|Ωt−1] and ŝt = E[w̃2
t |Ωt−1] from the

auxiliary predictive regressions (1.7) and (1.8). Then, innovation sequences

that accord with the martingale assumption read as

ξt =
w̃t − m̂t√
ŝt − m̂2

t

, t = 1, 2, . . . , T + 1. (1.9)

From the random variables de�ned in (1.9) we determine bivariate tuples

that are considered to comprise consecutive GARCH innovations, i.e. vt =

(ξt+1, ξt)
′.16

16We �nd that the obtained ξt ful�ll the requirements E[ξt+1|Ωt] = 0 and Var[ξt+1|Ωt] = 1. In
addition, we �nd correlation close to one between ξt and w̃t. Hence, we conclude that the w̃t
show only minor deviations from sMDS patterns already.

12
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While the conditional �rst and second order moments of elements in vt are iden-

tical over alternative copulae, their conditional quantiles are model-speci�c, since

each copula is characterized by a distinct conditional CDF. Depending on the actual

choice of G, Cδ, δ and rotations of Cδ, the above procedure allows to obtain a large

set of standardized copula distributions describing a �exible class of conditional

distributions Fj(ξt+1|ξt), j = 1, 2, . . . , J .

1.3.1.2 A model class based on standardized copula distributions

The set of copulae employed in this study consists of three Archimedean families,

namely the Clayton (CCδ ), Gumbel (CGδ ) and Frank (CFδ ) copula. With arguments

ut = Gt(wt), these read, respectively, as

CCδ (ut, ut+1) = max
[
(u−δt + u−δt+1 − 1)−

1
δ , 0
]
, δ > 0, (1.10)

CGδ (ut, ut+1) = exp
(
−
[
(− lnut)

δ + (− lnut+1)δ
] 1
δ

)
, δ > 1, and (1.11)

CFδ (ut, ut+1) = −1

δ
ln

(
1 +

(exp(−δut)− 1)(exp(−δut+1)− 1)

exp(−δ)− 1

)
, δ > 0. (1.12)

In addition to the speci�cations in (1.10) to (1.12), we consider one rotation of each

copula to increase the space of possible tail dependencies. Random variables from

rotated copulae are obtained by replacing ut+1 by 1 − ut+1 in (1.10)�(1.12). The

rotations in part revert the dependence patterns of their unrotated counterparts.17

To further improve the �exibility in matching residual sequences with copula in-

novations, we enlarge the model space along two additional dimensions. First, we

consider a set of parameters δ for each (rotated) copula such that, prior to stan-

dardization, the strength of dependence (measured by means of Kendall's τ) is

controlled. The target values for τ are τ • = {0.010, 0.020, ..., 0.060, 0.075, 0.100,

0.150, ..., 0.750}.18 Second, we allow for �ve alternative marginal distributions.

Since the marginals in (1.10)�(1.12) refer to sequential draws from a univariate

17Figures 1.A.3 and 1.A.4 in the appendix show exemplary scatter diagrams for random draws of the
bivariate Gaussian and Archimedean copulae (Figure 1.A.3: unrotated, Figure 1.A.4: rotated).
The rotated Clayton copula and the unrotated Frank and Gumbel copulae are characterized by
patterns of lower tail dependence. It can consequently be argued that these speci�cations likely
provide the best distributional description of TGARCH residuals for the stock indices displayed
in Figure 1.2.1.

18For the relation between δ and τ of the three copula families, see Cherubini et al. (2004).
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uncorrelated innovation process, we presume Gt(.) = Gt+1(.). Allowing for distin-

guished degrees of conditional leptokurtosis, we consider marginals stemming from

the Gaussian or standardized Student t-distributions with ν = 5, 10, 15, 20 degrees

of freedom. Note that for the empirical analysis of daily stock returns estimated

innovation processes are often characterized by degrees of freedom between �ve and

twelve (see, e.g., Table 1.B.1). All in all, distinguishing between alternative degrees

of dependence, rotations and marginal distributions for the Clayton, Frank and

Gumbel family, we obtain J = 635 distinct distributional models, including the IID

Gaussian and standardized Student-t distributions of IID TGARCH innovations.

1.3.2 Copula matching

In light of a large class of candidate models Fj(ξt+1|ξt), j = 1, 2, . . . , J , model choice

is an essential step to exploit implied higher order dependence patterns of ξt for

risk prediction. We refrain from direct estimation of the model parameters of the

TGARCH model in (1.1) and (1.2) jointly with the dependence parameter of the

Copula distribution in (1.5) for the following reasons: First, to our knowledge (non-

linear) maximum likelihood as proposed by Lee and Long (2009) or a multi-step es-

timation procedure has not been established theoretically in the present framework

of serially dependent, sMDS model innovations. Second, in our iterative out-of-

sample forecasting applications, a repeated assessment of TGARCH likelihoods at

each point in the sample would imply an overly large computational burden. Third,

the model space outlined above is very large such that each model may su�er from

misspeci�cation in local time windows. Finally, to allow for structural variations

one may a priori opt for an estimation/calibration approach that can be most easily

implemented adaptively.

To determine the best distributional description of the estimated model residuals

by a particular standardized copula distribution, denoted Fj∗(ξt+1|ξt), we contrast
their discretized empirical distribution against the counterparts of simulated copulae

innovations by means of a distance measure. This reads as

D(j) =
∑
m

∑
n

(
H

(j)
(m,n) − ĥ(m,n)

)2

H
(j)
(m,n)

, (1.13)
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where ĥ(m,n) and H
(j)
(m,n) are two-dimensional frequency estimates characterizing the

empirical distribution of consecutive empirical TGARCH innovations and a partic-

ular simulated standardized copula distribution, respectively. To determine ĥ(m,n)

and H(j)
(m,n) we employ a bivariate grid consisting of 12× 12 = 144 cells. Speci�cally,

ĥ(m,n) is estimated as

ĥ(m,n) =
1

T − 1

T−1∑
t=1

I((am ≤ ξ̂t+1 < am+1)(an ≤ ξ̂t < an+1)), (1.14)

where ξ̂t are the standardized TGARCH innovations, ξ̂t = rt/σ̂t, and am, an, are

from the grid vector a = (−1000,−2.5,−2.0, . . . , 2.5, 1000)′ and m,n = 1, . . . , 12.

To obtain a reliable approximation of the distribution of selected copulae, S =

1,000 samples of length T = 2,000 are drawn from each parameterized (rotated)

copula, and H(j)
(m,n) is determined as an average estimate

H
(j)
(m,n) =

1

S

S∑
s=1

h
(j,s)
(m,n), (1.15)

with h(j,s)
(m,n) =

1

T − 1

T−1∑
t=1

I((am ≤ ξ
(j,s)
t < am+1)(an ≤ ξ

(j,s)
t+1 < an+1)).

The minimization of D(j) in (1.13) obtains a particular member of the class of

standardized and discretized copula distributions H(j∗), j∗ = arg min
j
D(j), which

corresponds to a respective distribution Fj∗(ξt+1|ξt). This distribution is employed in

the out-of-sample forecasting exercises to determine risk predictors. Illustrating the

potential of the employed model class in approximating the distributional patterns of

empirical stock return indices, Table 1.B.5 documents in-sample distance statistics

for the cross section of estimated TGARCH innovation processes.

From Table 1.B.5 we observe the common result that under an IID setting lep-

tokurtic distributions (standardized Student-t) o�er a closer �t to empirical data in

comparison with the Gaussian distribution. In addition, for each market there is

at least one and generally several dependent distributions that outperform the IID

patterns markedly. In particular, these are the Clayton copula with t(10) marginal

distribution and the Gumbel copula with t(5) and t(10) marginals which �t the

data best in eight, two, and three cases, respectively. Overall, a member of the
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Clayton family provides the best �t in ten cases, while the Gumbel �ts best for

seven markets.19 Supporting the selection of the marginal distributions, the results

in Table 1.B.5 closely mirror the estimated degrees of freedom as documented in Ta-

ble 1.B.1. Moreover, Figure 1.3.2 shows distance measures between the best �tting

rotated Clayton copula (with t(10) marginals) and TGARCH(1,1,1) innovations for

four stock market indices.20 For each market this measure allows for a unique iden-

ti�cation of the distance-minimizing distribution. In summary, we conclude that

the (rotated) Clayton copula obtains most accurate approximations of the serial

dependence structure that underlies consecutive TGARCH innovations.

1.4 A large scale comparison of risk predictors

The previous section has shown that standardized copula distributions o�er a promis-

ing framework to �exibly capture the higher order dependence structure between

consecutive TGARCH model innovations. Thus, we now assess whether these de-

pendence structures can be fruitfully exploited for one-step pseudo-out-of-sample

forecasts of popular risk measures for asset returns. Therefore, this section formally

describes the conditional one-step ahead ex ante risk measures (cVaR and cES) and

the evaluation criteria that will be of core interest for the empirical analysis. To dis-

entangle in-sample and (pseudo) out-of-sample time series observations, time indices

t and forecast origins τ are distinguished henceforth. Moreover, Ωτ is shorthand to

summarize the time series information available in time τ , τ = W,W + 1, . . . , T − 1,

and T is the total number of return quotes per market (see Table 1.B.1). With

a slight abuse of the (in-sample) time indexation in (1.2), the sample informa-

tion used to determine risk forecasts consists of stock returns {rt}τt=τ−W+1, where

W is the length of (rolling) estimation windows. At each forecast origin τ , the

TGARCH(1,1,1) model is re-estimated, and one-step ahead risk forecasts for the

cVaR and the cES are made.

19As expected from Figures 1.A.3 and 1.A.4, we �nd that the best �ts are generally provided by
the rotated Clayton copula with a medium dependence parameter τ of about 0.20 to 0.25. For
Gumbel, the unrotated copula is preferred with stronger dependence τ of 0.55 to 0.60. These
results are stable across markets.

20The empirical �ndings are robust for all stock markets and the four indices have been selected
for illustrative purposes only.
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Figure 1.3.2: Distance between discretized distributions from the rotated Clayton
copula (with t(10) marginals) and of TGARCH(1,1,1) residuals for
four stock indices
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Notes: The �gure shows the distance between discretized distributions from the Clayton copula
(with t(10) marginals) across di�erent dependence parameters τ and of TGARCH(1,1,1) residuals
for four stock indices. `Rotation 1' refers to the `unrotated' copula innovations, whereas `Rotation
2' refers to the copula where ut+1 has been replaced by 1−ut+1 (see equations (1.10)-(1.12)). The
solid horizontal line indicates the distance between the Gaussian and residuals' distributions.

For this, we employ seven rival models: First, we provide benchmark forecasts

from two models that rely on the assumption of IID model innovations following a

Gaussian or leptokurtic standardized Student−t distribution. Second, we employ

two predictive models that aim to exploit the dependence between consecutive model

residuals either by means of a nonparametric estimation of their distribution or

by �tting their distribution to one of the copula counterparts from the large set

of candidate distributions Fj(ξt+1|ξt), j = 1, 2, . . . , J . Finally, we also assess the

performance of three forecast combinations of the above described four individual
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forecasts. The nonparametric estimation and the copula matching are repeated at

each forecast origin after re-estimating the TGARCH. By this, we also implicitly

allow for time-varying distributions and dependence patterns.

1.4.1 Ex ante risk measures

Conditional on Ωτ , the cVaR at level α is de�ned as the (negative) quantile qα for

which the probability of the one period-ahead return being less than qα is at most

α. We distinguish nominal coverage levels α = 0.01, 0.025 and α = 0.05. Formally,

a �rst order approximation of the cVaR reads as

cVaR•α(rτ+1|Ωτ ) = −F−1
•,α(rτ+1|Ωτ ) = −q•α(rτ+1|Ωτ )

= −σ̂τ+1q
•
α(ξτ+1|Ωτ ) ≈ −σ̂τ+1q

•
α(ξτ+1|ξτ ), (1.16)

where F−1
•,α(rτ+1|Ωτ ) denotes the inverse of the conditional CDF (cCDF) of returns

rτ+1. Henceforth, '•' is used to indicate a particular model approach to select or

determine the cCDF F•(rτ+1|Ωτ ) for the nonparametric model or the best-�tting

copula. Related to the cVaR, an approximation of the cES of rτ+1 is

cES•α(rτ+1|Ωτ ) = −E• [rτ+1| (rτ+1 < −cVaR•α(rτ+1|Ωτ )) ,Ωτ ]

≈ −σ̂τ+1E•[ξτ+1|(ξτ+1 < q•α(ξτ+1|ξτ ))]. (1.17)

By construction, the cES exceeds the cVaR. Determining either the cVaR or the

cES requires an estimate of the cCDF of returns F•(rτ+1|Ωτ ). Since rτ+1 = στ+1ξτ+1,

this estimate depends on both the (one-period ahead) prediction of the conditional

variance στ+1 and on the cCDF F•(ξτ+1|Ωτ ) ≈ F•(ξτ+1|ξτ ).21 A one-period ahead

volatility forecast for the TGARCH(1,1,1) can be obtained from (1.2) by means of

QML parameter estimates,

σ̂2
τ+1 = γ̂0 + γ̂1r

2
τ + γ̂−1 r

2
τI(rτ < 0) + β̂1σ̂

2
τ . (1.18)

21Graphical displays of empirical innovations ξt+1 vs. ξt−1 (or respective higher order co-moments)
illustrate very minor (if any) higher order dependence among �ltered TGARCH innovations.
While the direct dependence is already weak, the approximation q•α(ξτ+1|Ωτ ) ≈ q•α(ξτ+1|ξτ )
builds upon negligibility of historic information ξτ−1, ξτ−2, . . . given that ξτ enters the formation
of the conditional quantile.
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Conditional on a unique volatility predictor σ̂2
τ+1, we then use four competing

modeling choices of F•(ξτ+1|ξτ ). The �rst two of these predictors rely on the IID

assumption of Gaussian or standardized Student−t distributions that is commonly

made for the TGARCH innovations.22 These two forecast models provide the IID

benchmarks against which we evaluate our proposed predictors that exploit potential

serial dependence of TGARCH innovations. Here, we �rst estimate the conditional

distribution without imposing any parametric structure (Fnp(ξτ+1|ξτ )). Second, we
select a particular candidate from the class of standardized copula distributions

as described in section 1.3.2, and exploit the respective conditional distribution

Fj∗(ξτ+1|ξτ ) for risk prediction.

1.4.2 Estimation of conditional CDFs

Since the nonparametric and copula-based predictors for (1.16) and (1.17) require

the inversion of the model innovations' cCDF, we employ a Nadaraya-Watson (NW)

estimator to approximate the distribution of ξτ+1 given ξτ from the estimated

TGARCH innovations. To outline the NW cCDF estimate we adopt the common

convention to indicate with y and x the dependent (ξτ+1, ξt+1) and conditioning

variable (ξτ , ξt), respectively. The nonparametric cCDF Fnp(ξτ+1|ξτ ) is evaluated

along equidistant grid points y ∈ y and x ∈ x with y = (−4.0,−3.9, . . . , 4.0)′ and

x = (−4.0,−3.9, . . . , 4.0)′. Using the sample information from rolling windows,

{ξt}τt=τ−W , the cCDF estimate reads as

F̂np(y|x) =

∑τ−1
t=τ−W Kh(x− ξt)I(ξt+1 ≤ y)∑τ−1

t=τ−W Kh(x− ξt)
, (1.19)

where Kh(u) = 1
h
K(u/h) is a kernel function and h > 0 is the bandwidth pa-

rameter.23 From the discretized estimate F̂np(y|x), nonparametric cVaR and cES

estimates can be obtained. The conditional quantile is then given as

q̂npα (ξτ+1|ξτ ) = q̂npα (y|x) = −F̂−1
np [α|x], (1.20)

22For the Student−t distributions the degrees of freedom are re-estimated at each forecast origin.
23In this study, the Gaussian kernel de�ned as K(u) = 1√

2π
exp(− 1

2u
2) and a bandwidth h =

1.06(W − 1)−0.2 are used throughout and yield satisfactory results. An optimal bandwidth rule
for conditional quantile estimation can be found in Cai (2002).
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where the approximation is along the grid vector x = (−4.0,−3.9, . . . , 4.0)′ and

linear interpolation is applied to determine q̂npα (y|x), where y = ξτ+1 and x = ξτ .

With this quantile at hand, the cES can subsequently be estimated by means of the

plug-in method (Cai and Wang, 2008) as

ĉES
np

α (y|x) = − 1

α

∫ q̂npα (y|x)

−∞
yf̂np(y|x)dy. (1.21)

Since the estimated cCDF is discrete, an approximation of (1.21) is

ĉES
np

α (ξτ+1|ξτ ) = ĉES
np

α (y|x)

= − 1

α

∑
yi≤q̂npα (y|x)

(
yi −

yi − yi−1

2

)
[F̂np(yi|x)− F̂np(yi−1|x)]. (1.22)

To evaluate conditional quantiles and moments of the copula distributions we ap-

ply MC techniques.24 Simulated random variables are subjected to nonparametric

evaluation of the conditional distribution of interest, i.e.,

F̂ (y|x) =
1

S

S∑
s=1

F̂ (s)(y|x) with F̂ (s)(y|x) =

∑T−1
t=1 Kh(x− v(s)

2,t )I(v
(s)
1,t ≤ y)∑T−1

t=1 Kh(x− v(s)
2,t )

. (1.23)

Kernel based estimates F̂ (s)(y|x) are obtained from the same S = 1,000 simulations

employed to determine the discretized distributions H(j)
(m,n) in (1.15). Quantiles and

tail expectations for simulated data are obtained in full analogy to the empirical

counterparts given in (1.20) and (1.22). For further details on these simulations see

section 1.3.2.

1.4.3 Model combination

In a broad literature initiated by Bates and Granger (1969) and reviewed, e.g., by

Timmermann (2006), forecast combinations are seen as a promising means to ex-

ploit model complementarities, and to cope with various kinds of (unknown) model

misspeci�cation. In consequence, combined predictions have been suggested to im-

24Although the model framework is parametric, the analytical extraction of quantiles and moments
from the copulae is not straightforward due to the standardization step in transforming correlated
marginals to sMDS innovations.
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prove upon the forecast performance of single model speci�cations. Therefore, we

further consider three risk predictors that combine the informational content of sin-

gle forecasts. Firstly, to cope with potential (local) misspeci�cation arising from

our matching search, we use at each forecast origin τ average risk predictions ob-

tained from the �ve standardized copula distributions that yield the smallest D(j)

statistics given in (1.13). We refer to this forecast combination as 'Co1'. Secondly,

we combine the four risk predictors relying either on IID innovations (Gaussian and

standardized Student-t quantiles), or on serial dependence patters (Fj∗(ξτ+1|ξτ ) and
Fnp(ξτ+1|ξτ )). This combined predictor denoted as 'Co2' is determined such that

at each forecast origin τ the particular risk model is chosen that has o�ered the

best empirical cVaR coverage over the most recent 250 time instances. Similarly,

conditioning on the best cES predictive accuracy, we combine the two local risk

predictors Fj∗(ξτ+1|ξτ ) and Fnp(ξτ+1|ξτ ). The weighting applied to determine the

combined predictor 'Co3' is derived from the relative inverse mean absolute cES

forecast error over the most recent 250 time instances.

1.4.4 Forecast evaluation

While the evaluation of cVaR models has seen numerous applications, tests on cES

forecast accuracy have been applied less frequently (see McNeil and Frey, 2000,

Angelidis and Degiannakis, 2007, Diks et al., 2011 and Zhu and Galbraith, 2011).

Generally, the cVaR backtesting relies on so-called VaR hits, i.e.

hit•τ+1,α = I(rτ+1 ≤ −ĉVaR
•
α(rτ+1|Ωτ )), τ = W, . . . , T − 1. (1.24)

Since the cES is only de�ned for rτ+1 ≤ −ĉVaR
•
α(rτ+1|Ωτ ), a correct speci�cation of

the hit series is required prior to cES forecast evaluation. Thus, cES tests potentially

su�er from data scarcity, since they depend on the condition of observing a cVaR hit

�rst.25 For this reason, we put particular emphasis on the evaluation of cES forecasts

by means of both common statistical loss functions, and a more economic criterion

that is motivated from the perspective of a representative regulator. Next, we outline

a prominent cVaR diagnostic, and turn to alternative tools for cES evaluation.

25To deal with this problem Zhu and Galbraith (2011) de�ne a hit as a return below a certain
threshold loss of -1.2% to -0.6%. Thereby they di�erentiate cES from cVaR diagnosis. These
threshold levels are, however, not su�ciently conservative for practical applications.
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1.4.4.1 Value-at-risk diagnosis

For the cVaR evaluation we �rst apply the likelihood ratio (LR) test by Kupiec

(1995) on the correct unconditional cVaR coverage of a forecast model. The LR test

thus assesses whether the cVaR is violated more or less often than 100α percent of

the times. The corresponding test statistic reads as LR = 2 log
((

1−α̂
1−α

)(1−α̂)T ( α̂
α

)α̂T)
where α̂ = 1

T−W
∑T−1

τ=W hit•τ+1,α and follows a χ2(1) distribution. Second, we also

apply the dynamic quantile (DQ) test by Engle and Manganelli (2004). The DQ test

extends the LR test and formalizes both a correct unconditional and conditional VaR

speci�cation under the null hypothesis. In this framework it is tested if the centered

hits de�ned as hit•τ+1,α = hit•τ+1,α − α, follow a Martingale Di�erence Sequence

(MDS). We restrict our analysis to the following regression model including �ve lags

of centered hits at the nominal coverage level α and one lag of the hits at the full

set of considered nominal coverage levels

hit•τ+1,α = β0 +
5∑

k=2

βkhit
•
τ−k+1,α + θ1hit

•
τ,.01 + θ2hit

•
τ,.025 + θ3hit

•
τ,.05 + uτ+1. (1.25)

The null hypothesis of correct conditional and unconditional coverage of the model,

hence, reads as H0 : βk = 0, θl = 0 ∀ k = 0, 2, . . . , 5; l = 1, 2, 3.26

1.4.4.2 Expected shortfall diagnosis

The cES forecast diagnosis relies on two measures. First, similar to Angelidis and

Degiannakis (2007) and Zhu and Galbraith (2011), we evaluate the overall cES

forecasting accuracy according to the mean-absolute error (MAE). In order to allow

a comparison of the cES forecasting accuracy across models, it is necessary to de�ne

a common sequence of cVaR hits. This is due to the fact that the sequence of cVaR

hits is likely to di�er across models with more hits for the least conservative forecast

and substantially fewer hits for more conservative forecasts. We therefore de�ne a

26As a further speci�cation of the DQ regression we have considered a purely autoregressive design
for the centered hit process. Diagnostic results do not change qualitatively in such a more
restrictive setting.
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joint cVaR hit to occur if the loss in τ + 1 exceeds all four rival cVaR forecasts, i.e.

hit∗τ+1,α = hitΦ
τ+1,α × hit

t(ν)
τ+1,α × hitnpτ+1,α × hit j

∗

τ+1,α. (1.26)

Thereby, we ensure comparability of the cES forecasting performance by means of

absolute forecast errors.27 The MAE is de�ned as MAE •α = 1

T̃

∑T−1
τ=T−W

∣∣l•τ+1,α

∣∣ ,
with T̃ denoting the number of joint cVaR hits and

l•τ+1,α =

{
(|rτ+1| − ĉES

•
α(rτ+1|Ωτ )) if hit∗τ+1,α = 1

0 otherwise.
(1.27)

Second, as Granger and Pesaran (2000) point out, the choice of a loss functional

should re�ect the objectives of the forecast user. Therefore, we follow Sarma et al.

(2003) and consider a potential loss function of a regulating institution to evaluate

the cES forecast performance. Noticing that only negative news put an investor's

balance sheets under stress, this loss function focuses at situations where a loss

exceeds the predicted cES. Employing the cES as a regulation criterion, a regulator's

loss (RL) may read as

RL•α =
1

T̆ •

T−1∑
τ=T−W

∣∣lr,•τ+1,α

∣∣ , (1.28)

with T̆ • denoting the model-speci�c number of cES hits, and

lr,•τ+1,α =

{
(|rτ+1| − ĉES

•
α(rτ+1|Ωτ )) if rτ+1 ≤ −ĉES

•
α(rτ+1|Ωτ )

0 otherwise.
(1.29)

In order to test if two models di�er signi�cantly in their forecasting accuracy, either

with regards to their MAE or to their RL, we employ the �nite-sample sign test as

proposed by Diebold and Mariano (1995). This test assesses the null hypothesis of

equal predictive ability of two competing models. For this, the null hypothesis is a

zero-median loss di�erential H0 : med(l.,Φt,α − l
.,•
t,α) = 0, where l.,Φt,α is either the MAE

or RL loss of the Gaussian benchmark model. The test statistic is then given by

27Instead, considering, e.g., the union set of cVaR hits, one would give an advantage to the least
conservative forecast, since most excess losses can be expected to occur close to the cVaR forecast.
As this model's cES forecast is also likely closest to the cVaR forecast, it would show the best
cES forecasting accuracy by construction.
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S2 =
∑T

t=τ−W+1 I+(dΦ,•,t), where dΦ,•,t = l.,Φt,α− l
.,•
t,α and I+(dΦ,•,t) = 1 if dΦ,•,t > 0. In

large samples, the studentized S2a statistic S2a = S2−0.5T√
0.25T

is standard normal. The

standard Diebold-Mariano (DM) test is not de�ned here, as the set of cVaR hits is

not continuous. For the application of the sign test in our setting, it is again decisive

that the sets of hits for both competing cES forecast models under consideration

are identical.28

1.5 Empirical results

In this section we �rst describe the performance of particular groups of copula based

models (copula families, choice of marginals) in approximating local time windows

of TGARCH innovations. In light of the diagnosed dependence patterns, it is then of

particular interest if cVaR or cES forecasts can be improved by accounting for serial

dependence patterns in TGARCH innovations. Related to the ongoing discussion in

the Basel framework, we focus on results for the nominal coverage levels α = 0.01 and

α = 0.025. Nonetheless, we also provide the results for the α = 0.05 coverage level

with brief discussions in footnotes. Diagnostic results are shown for each market. To

facilitate the evaluation of overall performance, we also provide suitable summary

statistics. If not stated explicitly, the discussion of the inferential results refers to

the �ve percent signi�cance level.

1.5.1 Copula selection

Complementing the results for the in-sample analysis in Table 1.B.5, Table 1.B.6

documents how often particular combinations of the copula families (Clayton, Frank,

Gumbel) and marginal distributions (Gaussian, Student−t(ν), ν = 5, 10, 15, 20) ob-

tain the smallest distance statistics D(j) given in (1.13) when applied to rolling

windows of length W = 1,000.

Similar to the full sample matching, the copula distributions allowing for higher

order dependence �t the data better than presuming IID distributions for out-of-

sample modeling at each market. Again, the best description of the innovation

28The sign-test for signi�cant di�erences in the MAE criterion is also based on the set of joint hits
hit∗τ+1,α. For the RL criterion, we employ the joint set of cES hits de�ned in (1.29) between each
forecast model and the Gaussian cES forecast.
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sequences is obtained by a representative of the Clayton copula with standard-

ized Student-t(10) marginal distribution, and the Gumbel family with t(5) or t(10)

marginals. At an overall level, some Clayton and Gumbel model speci�cations are

selected with equal frequency in about 45% of all ex ante predictions. The Clayton

and Gumbel copula with t(10) marginal distribution account for largest shares of

25.70% and 22.27%, respectively. While copula selection results are generally in

favor of the Clayton and Gumbel model, conditioning on particular markets reveals

the heterogeneity of serial dependence patterns.

1.5.2 cVaR forecasting

To see if the unconditional coverage of cVaR forecasts derived from Fnp(ξτ+1|ξτ ),
Fj∗(ξτ+1|ξτ ), or combinations thereof is superior to that of risk forecasts relying on

IID innovations, we �rst report empirical coverage estimates for risk levels α = 0.01

and α = 0.025 in Table 1.B.7.

Unconditional cVaR coverage levels di�er strongly across markets. Violations

of the nominal coverage level seem to be the rule rather than the exception, with

most coverage levels exceeding the nominal level. This indicates that, in general,

forecasts are not su�ciently conservative. We �nd that the detected misspeci�ca-

tion is statistically signi�cant for the majority of markets for the Gaussian model

as indicated by the Kupiec (1995) LR test. While accounting for leptokurtosis by

means of the IID Student−t distribution reduces the unconditional misspeci�cation

markedly (1.98% to 1.54%), further improvements are obtained when exploiting

higher order dependence by means of nonparametric estimates Fnp(ξτ+1|ξτ ) or cop-
ula matchings Fj∗(ξτ+1|ξτ ). This reduces the misspeci�cation sizeably and renders

it largely insigni�cant. These gains are largest for the most conservative coverage

level α = 0.01, where forecasts from combining the best �tting copula model and the

nonparametric estimates (Co3) reduce the misspeci�cation of the Gaussian forecast

by almost one half (i.e. the unconditional coverage shrinks from 1.98% to 1.04%).

For α = 0.01, forecasts relying only on copula models (Fj∗ or Co1) provide the best

unconditional coverage for six markets. The best coverage is, however, achieved

by combining Fj∗ with Fnp (Co3) which performs best for nine markets. Overall,

there are just two markets (BSE Sensex 30 and JKSE) where Gaussian or Student-t

quantiles uniquely perform best. For α = 0.025 the gains are smaller in relative
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terms with Co3 reducing the misspeci�cation on average by about one fourth. For

this coverage level, however, the Gaussian or Student-t forecasts are uniformly out-

performed (or matched for the BSE Sensex 30) by at least one forecast that exploits

serial dependence patterns.29 All in all, predictors exploiting the dependence in

subsequent innovations or combinations thereof result in improved unconditional

coverage for the majority of markets and for each coverage level. This result is of

particular importance, since unconditional coverage is the relevant backtesting cri-

terion in the current Basel framework (Basel Committee on Banking Supervision,

2016). For all nominal signi�cance levels, combining Fnp(ξτ+1|ξτ ) and Fj∗(ξτ+1|ξτ )
(Co3) obtains average coverage levels that are closer to the nominal benchmark than

any other cVaR predictor, especially the IID Gaussian or Student-t forecasts.

We summarize the signi�cance levels of the DQ test applied to each cVaR forecast

across all markets by means of Fisher's combined probability test (Fisher, 1934).30

The insigni�cant Fisher test statistics documented in the bottom rows of Table 1.B.9

show that t(ν) and Fj∗(ξτ+1|ξτ ) quantiles (including combinations Co1 and Co3) o�er
best suited risk predictions for α = 0.01 with regard to the conditional accuracy of

their cVaR forecasts. For the medium nominal level α = 0.025, however, copula

forecasts and their combination (Co1) o�er the best conditional nominal coverage

while misspeci�cation is signi�cant for the IID Student−t based quantiles. The

Fisher test statistics for both combinations that may in parts rely on the Gaussian,

Student-t and the nonparametric forecasts (Co2 and Co3) are still insigni�cant, yet

respective p-values are markedly smaller. The Gaussian and the nonparametric cVaR

forecasts violate the hypothesis of correct conditional coverage for both nominal

levels α = 0.01 and α = 0.025.31

Summarizing the performance of rival cVaR estimates, we note that accounting for

dependence of TGARCH innovations shows strong potential to markedly improve

29The results for α = 0.05 are provided in Table 1.B.8. The main results of improved unconditional
coverage from copula or nonparametric forecasts are robust, with the IID Gaussian or Student-t
forecasts being superior in only two markets. However, the gains are somewhat smaller and Co2
becomes the second best approach.

30The Fisher test statistic X2
2N is given by X2

2N = −2
∑N
n=1 log(pn) and follows a χ2(2N) distri-

bution, where N = 18 is the number of stock market indices.
31Regarding the less conservative level α = 0.05, the Fisher test statistic with weakest signi�cance
(32.2%) is obtained when combining the best �ve copula forecasts Fj∗(ξτ+1|ξτ ) (Co1) (see Table
1.B.10). In general, conditional coverage is less likely ful�lled but the patterns of signi�cant
diagnostics are similar to those for the coverage level α = 0.025.
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common risk measures. The diagnostic tests, however, indicate some remaining

misspeci�cation. As a consequence, the following discussion of cES estimates does

not condition on pretest survival models but sheds light on the performance of all

alternative approaches to risk assessment.

1.5.3 cES forecasting

We �rst investigate if cES forecasts are su�ciently conservative. For this purpose,

Table 1.B.11 shows the mean cES forecast error for the joint set of cVaR hits for

α = 0.01 and α = 0.025. For all markets, models and coverage levels, the large

majority of forecasts is not su�ciently conservative. On average, the occurred losses

exceed the predicted cES. Here, conditional Gaussian forecasts provide the least

conservative cES forecasts. While all other models also underestimate the cES in

general, this problem is considerably alleviated when risk predictors exploit serial

dependence patterns of TGARCH innovations. Forecasts derived from Fj∗(ξτ+1|ξτ )
generally perform best across all markets for both coverage levels, but in particular

for α = 0.01. For α = 0.025 nonparametric forecasts Fnp(ξτ+1|ξτ ) are almost equally

conservative.32

While we �nd that the copula forecast model Fj∗(ξτ+1|ξτ ) delivers the most conser-

vative cES forecasts on average, it is of further interest whether this also translates

into more accurate forecasts. Conditioning on hits that are common to all cVaR

prediction models (hit∗τ+1,α in (1.26)), Table 1.B.13 shows the mean absolute cES

forecast errors relative to the Gaussian MAE.

The results underscore that the Gaussian TGARCH model performs poorly and

is outperformed by cES predictions that rely on unconditional tail expectations

of standardized Student−t distributed innovations. However, for this loss func-

tion, combining the informational content of tail expectations of Fnp(ξτ+1|ξτ ) and

Fj∗(ξτ+1|ξτ ) (Co3) again yields, on average, smallest relative MAE statistics for

α = 0.01. At the single market level and with respect to a nominal coverage level of

α = 0.01 (α = 0.025), it turns out that loss statistics obtained from Co3 are smaller

than loss statistics from the unconditional t(ν) model for eleven (eight) out of 18

stock markets. Unconditional forecasts of the standardized t−distributed innova-

32For α = 0.05 Fnp(ξτ+1|ξτ ) is slightly more conservative than Fj∗(ξτ+1|ξτ ), however, the gains
for all forecasts exploiting the dependence patterns are substantial compared with IID forecasts
(see Table 1.B.12).
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tions and combinations thereof (Co2) perform best in only seven and three markets

for α = 0.01 and α = 0.025, respectively. Hence, there is considerable potential to

improve cES forecasting accuracy by deviating from the assumption of IID innova-

tions, especially for a nominal coverage of α = 0.025 which has been considered to

be used as the new standard risk level (Basel Committee on Banking Supervision,

2016).33

To assess whether these gains can also be exploited in an economically meaningful

way, Table 1.B.15 documents prediction results for the regulator's loss criterion

de�ned in (1.29). Again results are provided for each prediction strategy relative to

losses invoked by cES predictions that are derived from the Gaussian model.

Over all markets and coverage levels the Gaussian TGARCH model is again char-

acterized by the weakest performance. Not surprisingly, determining the cES under

the assumption of IID standardized Student−t innovations reduces regulator's losses
over all stock markets, on average, by 53% and 32% for nominal coverage levels of

α = 0.01 and α = 0.025, respectively. Risk predictors that exploit serial dependence

patterns, however, are uniformly superior (except for the SSEC and α = 0.01) to

cES forecasts determined from tail expectations of standardized Student−t inno-
vations. With regard to market speci�c quotes of relative regulator's losses, the

copula-speci�c forecasts Fj∗(ξt+1|ξt) and the combination consisting of the �ve best

copula models (Co1) result in lowest mean regulator loss for ten (α = 0.01) and

nine (α = 0.025) out of 18 stock markets. For an additional four (�ve) markets, Co3

performs best for α = 0.01 (α = 0.025).34

In summary, we �nd that exploiting the dependence of subsequent innovations

by non-parametric estimation and copula-based methods leads, on average, to more

conservative cES forecasts. It turns out that these forecasts reduce absolute losses

and losses exceeding the cES forecast, and yield highest predictive accuracy across

the entire set of rival risk assessments.

33For the coverage level α = 0.05, the Gaussian forecasts are, on average, only outperformed
by the IID forecasts from the t-distribution (see Table 1.B.14). It is important to keep in mind
though, that this analysis does not condition on the cVaR pretest survival, where forecast models
assuming independent innovations showed the strongest patterns of misspeci�cation.

34For α = 0.05, the gains are again smaller, but still pronounced in the range of one third (see Table
1.B.16). The best forecast model is the combination Co3, obtaining the smallest regulator's loss
in eight out of 18 markets.
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1.6 Conclusion

Innovations of common (T)GARCH models appear to lack independence which is

a common assumption in this modeling framework. For a large cross section of

stock market indices we illustrate and detect marked higher order dependence of

innovations beyond zero correlation. To address if such serial dependence patterns

can be exploited for ex ante risk prediction we perform an out-of-sample analysis

for a cross section of 18 major stock markets and evaluate about 18,000 one-step

ahead risk forecasts. For this, we quantify the distribution of innovations conditional

on their past either nonparametrically or by means of a model class comprising

standardized copula distributions. We compare risk forecasts for Value-at-Risk and

expected shortfall from these semi-parametric modelling frameworks against rival

schemes that rely on the conventional assumption of (leptokurtic) independently

and identically distributed innovations. Our empirical performance evaluation also

covers combined risk predictors.

We �nd that ex ante risk prediction by means of TGARCH models gains from

the consideration of potential serial dependence of underlying innovations. Approx-

imating the distribution of innovations conditional on their past by means of �exible

copula distributions yields overall more accurate risk forecasts than developing the

latter from unconditional quantiles or expectations of standardized Student−t in-
novations. Among standardized copula distributions the Clayton and Gumbel fam-

ilies, coupled with standardized Student−t marginals outperform the Frank family

in terms of in-sample �tting and out-of-sample prediction. In terms of risk predic-

tion, these copula predictors largely outperform their nonparametric counterparts.

Combining these two new avenues of risk prediction o�ers a promising approach to

ex ante risk determination.

With regard to future research we notice that the set of applied copula distribu-

tions in this work has been limited to the Clayton, Frank and Gumbel families.

Candidate marginal distributions have been the Gaussian and the standardized

Student−t distribution. Hence, further improvements in risk prediction might be

expected from increasing the set of copulae or marginal distributions. Moreover, in

light of our empirical analysis it appears promising to develop a powerful criterion to

pretest for serial dependence of (T)GARCH innovations to improve risk predictors.
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Appendix

1.A Figures

Figure 1.A.3: Conditional distributions from unrotated standardized bivariate Gaus-
sian and Archimedean copulae.
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Notes: The �gure shows subsequent realizations from a random draw of length T = 2, 000 from
unrotated standardized bivariate Gaussian and Archimedean copulae with Gaussian marginals and
a dependence parameter τ = 0.250 prior to standardization.
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Figure 1.A.4: Conditional distributions from rotated standardized bivariate Gaus-
sian and Archimedean copulae.
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Notes: The �gure shows subsequent realizations from a random draw of length T = 2, 000 from
rotated standardized bivariate Gaussian and Archimedean copulae with Gaussian marginals and a
dependence parameter τ = 0.250 prior to standardization.
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1.B Tables

Table 1.B.1: Data set, TGARCH parameter estimates, Ljung and Box (1978) test for
serial correlation and Lundbergh and Teräsvirta (2002) test for remaining
heteroscedasticity

Index Country T γ0 γ1 γ−1 β1 ν LB(20) LM(1) LM(5)
BSE Sensex 30 IN 2228 9.1E-06 .024 .204 .848 9.699 .388 .309 .057
CAC 40 FR 2307 2.4E-06 .000 .162 .906 13.290 1.000 .074 .133
DAX 30 DE 2299 2.5E-06 .000 .149 .914 11.525 1.000 .070 .171
DJIA 30 US 2265 2.0E-06 .000 .178 .894 9.134 .898 .199 .001
Euro Stoxx 50 EZ 2316 2.0E-06 .000 .156 .911 11.270 1.000 .093 .160
FTSE 100 GB 2273 2.0E-06 .000 .169 .899 13.941 .993 .214 .134
IBEX 35 ES 2286 2.0E-06 .000 .152 .914 9.449 1.000 .027 .026
IBRX 50 BR 2214 8.8E-06 .017 .119 .895 10.393 .991 .316 .169
IPC 35 MX 2266 3.8E-06 .012 .149 .895 9.471 .747 .317 .171
JKSE ID 2201 2.1E-05 .040 .248 .746 6.151 .001 .021 .011
KOSPI KR 2229 6.9E-06 .000 .175 .877 11.293 1.000 .056 .034
MIB 40 IT 2180 2.0E-06 .000 .163 .905 8.794 1.000 .199 .181
Nasdaq 100 US 2266 3.0E-06 .000 .132 .919 11.904 .992 .160 .183
Nikkei 225 JP 2206 5.1E-06 .021 .139 .883 15.265 1.000 .273 .310
RTSI 50 RU 1873 1.2E-05 .054 .118 .867 5.371 .282 .317 .116
S&P 500 US 2266 2.0E-06 .000 .165 .901 8.884 .799 .217 .004
S&P TSX CA 2233 2.0E-06 .005 .137 .906 11.385 1.000 .046 .020
SSEC CN 2273 2.0E-06 .046 .014 .943 4.932 1.000 .114 .198

Notes: Columns γ0 to β1 provide the parameter estimates of the TGARCH(1,1,1) model. ν gives
the estimated degrees of freedom for the Student−t distribution of innovations. The column labeled
'LB(20)' displays p-values for the Ljung and Box (1978) statistic for testing the null hypothesis of no
serial correlation in the model residuals. The columns labeled 'LM(1)' and 'LM(5)' provide p-values
for the Lundbergh and Teräsvirta (2002) statistics obtained with one or �ve lags, respectively, for
testing the null hypothesis of no remaining heteroscedasticity in the residuals.
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Table 1.B.2: Subsample serial autocorrelation in TGARCH residuals

Subsample

Market 1 2 3 4 5 6 7 8 9 10 11 12 13 14

BSE Sensex 30 0.39 0.07 0.02* 0.04* 0.02* 0.01* 0.00* 0.00* 0.02* 0.06 0.05* 0.06 0.46
CAC 40 0.55 0.65 0.48 0.59 0.41 0.65 0.65 0.69 0.77 0.82 0.77 0.92 0.82 0.55
DAX 30 0.72 0.94 0.84 0.92 0.76 0.64 0.76 0.82 0.82 0.82 0.85 0.95 0.81
DJIA 30 0.62 0.85 0.57 0.19 0.06 0.01* 0.06 0.09 0.06 0.16 0.13 0.43 0.54
Euro Stoxx 50 0.54 0.88 0.87 0.83 0.59 0.74 0.65 0.62 0.37 0.61 0.51 0.86 0.73 0.42
FTSE 100 0.36 0.63 0.44 0.17 0.38 0.63 0.73 0.46 0.44 0.75 0.82 0.93 0.84
IBEX 35 0.67 0.73 0.83 0.52 0.40 0.46 0.36 0.15 0.35 0.61 0.76 0.95 0.56
IBRX 50 0.03* 0.11 0.46 0.37 0.27 0.22 0.61 0.25 0.53 0.75 0.78 0.53 0.58
IPC 35 0.41 0.37 0.25 0.20 0.20 0.26 0.10 0.20 0.26 0.55 0.53 0.59 0.72
JKSE 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.01* 0.02* 0.02* 0.02* 0.29 0.37
KOSPI 0.57 0.62 0.60 0.49 0.60 0.75 0.83 0.81 0.79 0.69 0.93 0.96 0.98
MIB 40 1.00 0.99 0.94 0.73 0.64 0.21 0.27 0.47 0.56 0.37 0.55 0.36
Nasdaq 100 0.69 0.71 0.79 0.63 0.48 0.31 0.58 0.50 0.48 0.83 0.64 0.80 0.90
Nikkei 225 0.71 0.87 0.80 0.95 0.65 0.30 0.25 0.08 0.03* 0.16 0.29 0.40 0.69
RTSI 50 0.01* 0.02* 0.03* 0.17 0.13 0.40 0.09 0.02* 0.01*
S&P 500 0.78 0.88 0.77 0.34 0.12 0.03* 0.18 0.18 0.11 0.31 0.22 0.48 0.52
S&P TSX 0.79 0.55 0.97 0.98 0.91 0.78 0.83 0.52 0.74 0.94 0.86 0.77 0.87
SSEC 0.11 0.03* 0.03* 0.12 0.03* 0.02* 0.01* 0.03* 0.11* 0.06 0.17 0.14 0.30

Notes: The table displays the p-values of the LB-test for serial correlation with 20 lags in residuals ξt by Ljung & Box (1978). The
columns indicate the respective subsample, with '1' indicating the �rst subsample spanning the �rst 1000 observations, '2' indicating
the subsample spanning observations 101, . . . , 1100, etc. Values indicated by * are signi�cant at the 5%-level.
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Table 1.B.3: Subsample remaining ARCH e�ects in TGARCH residuals

Subsample

Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14

BSE Sensex 30 0.31 0.18 0.06 0.02* 0.01* 0.20 0.18 0.17 0.17 0.22 0.22 0.28 0.30
CAC 40 0.32 0.15 0.16 0.31 0.31 0.27 0.31 0.26 0.09 0.08 0.03* 0.02* 0.02* 0.02*
DAX 30 0.29 0.30 0.25 0.25 0.18 0.13 0.19 0.14 0.14 0.13 0.12 0.09 0.03*
DJIA 30 0.20 0.26 0.32 0.31 0.32 0.32 0.31 0.28 0.28 0.24 0.14 0.21 0.15
Euro Stoxx 50 0.29 0.19 0.19 0.22 0.27 0.15 0.22 0.19 0.15 0.05 0.02* 0.03* 0.02* 0.02*
FTSE 100 0.27 0.31 0.32 0.30 0.29 0.29 0.32 0.31 0.32 0.28 0.20 0.24 0.17
IBEX 35 0.23 0.22 0.11 0.13 0.22 0.11 0.16 0.08 0.03* 0.01* 0.03* 0.07 0.12
IBRX 50 0.31 0.30 0.31 0.29 0.29 0.32 0.30 0.32 0.28 0.31 0.27 0.32 0.25
IPC 35 0.31 0.32 0.32 0.28 0.32 0.28 0.30 0.24 0.25 0.17 0.31 0.31 0.26
JKSE 0.09 0.06 0.07 0.09 0.11 0.09 0.12 0.11 0.17 0.19 0.20 0.05* 0.05
KOSPI 0.18 0.31 0.28 0.29 0.31 0.29 0.12 0.06 0.09 0.05* 0.05 0.00* 0.02*
MIB 40 0.32 0.31 0.32 0.32 0.09 0.16 0.15 0.09 0.09 0.08 0.08 0.09
Nasdaq 100 0.30 0.32 0.20 0.15 0.31 0.32 0.32 0.23 0.12 0.08 0.03* 0.05 0.05*
Nikkei 225 0.01* 0.00* 0.00* 0.01* 0.00* 0.01* 0.01* 0.01* 0.02* 0.03* 0.22 0.20 0.17
RTSI 50 0.19 0.12 0.11 0.17 0.08 0.14 0.12 0.11 0.14
S&P 500 0.28 0.31 0.32 0.30 0.32 0.31 0.32 0.28 0.24 0.17 0.05 0.16 0.11
S&P TSX 0.10 0.04* 0.13 0.27 0.17 0.21 0.31 0.27 0.17 0.16 0.16 0.19 0.04*
SSEC 0.10 0.20 0.10 0.11 0.08 0.05 0.05 0.15 0.32 0.28 0.30 0.20 0.22

Notes: The table displays the p-values of the LM-test with one lag for remaining ARCH e�ects in residuals ξt by Lundbergh &
Teräsvirta (2002). The columns indicate the subsample with '1' indicating the �rst subsample spanning the �rst 1000 observations,
'2' indicating the subsample spanning observations 101, . . . , 1100, etc. Values indicated by * are signi�cant at the 5%-level.
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Table 1.B.4: Higher order co-moments and tests for independence between TGARCH residuals

Index ξ2
t ξt+1 ξtξ2

t+1 λ
(3)
iid Φ t(10) t̃(10) ξ2

t ξ
2
t+1 ξ3

t ξt+1 ξtξ3
t+1 λ

(4)
iid Φ t(10) t̃(10)

BSE Sensex 30 -.072 .000 4.24 .1200 .2107 .0458 .913 .523 .271 42.58 .0000 .0005 .0004
CAC 40 -.066 -.032 3.33 .1883 .2521 .2706 0.816 -.110 -.059 8.18 .0423 .0235 .0003
DAX 30 -.104 -.016 8.67 .0130 .0447 .0939 0.805 .095 .113 9.42 .0242 .0122 .0006
DJIA 30 -.050 .026 3.45 .1780 .3065 .3951 0.772 -.191 -.205 16.83 .0008 .0007 .0002
Euro Stoxx 50 -.075 -.033 4.48 .1061 .1875 .3348 0.821 -.037 .006 6.52 .0888 .0331 .0005
FTSE 100 -.063 -.017 2.95 .2284 .3234 .2499 0.859 -.181 -.065 9.10 .0280 .0870 .0178
IBEX 35 -.064 .002 3.65 .1605 .2852 .2487 0.930 .099 .158 4.83 .1847 .4233 .0065
IBRX 50 -.093 .034 10.30 .0058 .0363 .0397 0.863 .241 .070 13.48 .0037 .0609 .0014
IPC 35 -.102 .011 9.41 .0090 .0360 .2011 0.913 .432 .242 30.19 .0000 .0115 .0030
JKSE -.153 .044 24.71 .0000 .0002 .0027 0.993 .888 .353 125.30 .0000 .0000 .0000
KOSPI -.092 .034 9.54 .0085 .0358 .0662 0.849 .177 .017 10.91 .0122 .0455 .0036
MIB 40 -.092 -.029 6.14 .0464 .0993 .1999 0.839 -.041 .162 13.01 .0046 .0305 .0012
NASDAQ 100 -.059 .013 3.57 .1670 .2962 .4425 0.770 -.148 -.144 14.33 .0025 .0015 .0002
NIKKEI 225 -.105 .045 13.36 .0013 .0096 .0397 0.939 .350 .126 21.63 .0001 .0685 .0034
RTSI 50 -.101 -.071 7.21 .0271 .0541 .1156 0.989 .469 .453 34.97 .0000 .0017 .0061
S&P 500 -.047 .047 5.01 .0814 .1830 .2881 0.751 -.182 -.275 23.45 .0000 .0001 .0000
S&P TSX -.089 -.033 5.87 .0531 .1016 .0930 0.878 .017 .037 3.00 .3907 .2707 .0174
SSEC -.040 .146 23.60 .0000 .0003 .0124 1.014 .097 -.015 2.73 .4350 .8464 .0794

Notes: The table displays empirical means of third and fourth order co-moments and dependence diagnostics λ
(3)
iid and λ

(4)
iid given in

equation (1.4). The columns labeled Φ and t(10) document p−values for testing the null hypothesis of no third or fourth order dependence
for these diagnostics with MC based covariance estimates obtained from Gaussian and standardized Student−t(10) distributed IID

processes, respectively. The columns labeled with t̃(10) show p−values for diagnostics λ(3)
iid and λ

(4)
iid determined for trimmed estimated

innovation standardized Student−t(10) processes.
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Table 1.B.5: Minimum distances between empirical distributions of TGARCH residuals and simulated copulae

iid Clayton Frank Gumbel
Index Φ (tν̂) Φ t(5) t(10) t(15) t(20) Φ t(5) t(10) t(15) t(20) Φ t(5) t(10) t(15) t(20)

BSE Sensex 30 .1003 .0823 .0887 .0762 .0611 .0650 .0680 .0827 .1149 .0812 .0802 .0806 .0627 .0752 .0628 .0621 .0622
CAC 40 .0893 .0841 .0847 .1053 .0704 .0689 .0701 .0847 .1380 .0878 .0833 .0823 .0840 .0965 .0773 .0768 .0774
DAX 30 .1464 .1302 .1389 .1413 .1123 .1142 .1163 .1244 .1683 .1294 .1249 .1240 .1194 .1227 .1183 .1183 .1185
DJIA 30 .1673 .1182 .1384 .0995 .0962 .1051 .1114 .1138 .1329 .1147 .1139 .1142 .0962 .0978 .0945 .0956 .0956
Euro Stoxx 50 .1088 .0927 .0987 .0976 .0779 .0799 .0827 .0910 .1266 .0909 .0891 .0893 .0852 .0927 .0805 .0809 .0813
FTSE 100 .0959 .0797 .0799 .0892 .0621 .0626 .0646 .0781 .1222 .0804 .0786 .0782 .0740 .0822 .0646 .0667 .0682
IBEX 35 .1028 .0782 .1028 .0781 .0695 .0749 .0797 .0776 .1052 .0775 .0768 .0768 .0696 .0731 .0671 .0681 .0681
IBRX 50 .1066 .0821 .1020 .0831 .0667 .0715 .0763 .0830 .1108 .0811 .0824 .0828 .0724 .0762 .0706 .0724 .0723
IPC 35 .1205 .0817 .1025 .0683 .0648 .0722 .0777 .0774 .0980 .0796 .0785 .0778 .0581 .0625 .0569 .0572 .0576
JKSE .1940 .1086 .1485 .1103 .1200 .1344 .1454 .1088 .1080 .1002 .1002 .1011 .1172 .0915 .1012 .1101 .1120
KOSPI .1566 .1337 .1362 .1217 .1046 .1082 .1117 .1299 .1638 .1321 .1301 .1301 .1062 .1164 .1050 .1041 .1043
MIB 40 .1550 .1201 .1041 .0867 .0779 .0831 .0871 .1202 .1434 .1197 .1196 .1194 .0806 .0868 .0783 .0789 .0793
NASDAQ 100 .1099 .0955 .1010 .1028 .0828 .0846 .0870 .0915 .1304 .0949 .0924 .0917 .0860 .0929 .0853 .0862 .0870
NIKKEI 225 .1301 .1206 .1047 .1481 .1060 .1020 .1011 .1101 .1719 .1235 .1168 .1141 .1286 .1297 .1154 .1174 .1189
RTSI 50 .2060 .1114 .1401 .1117 .1248 .1428 .1479 .1186 .1118 .1101 .1101 .1109 .1101 .0997 .1064 .1074 .1088
S&P 500 .1568 .1281 .1286 .1148 .1021 .1062 .1098 .1217 .1502 .1246 .1225 .1220 .1064 .1076 .1047 .1052 .1052
S&P TSX .1298 .1097 .0967 .0889 .0696 .0730 .0764 .1095 .1448 .1091 .1095 .1098 .0696 .0782 .0697 .0698 .0697
SSEC .1745 .1068 .1751 .1064 .1143 .1280 .1370 .1000 .1039 .0978 .0985 .0987 .1370 .1059 .1152 .1289 .1346
Mean .1361 .1035 .1151 .1017 .0880 .0931 .0972 .1013 .1303 .1019 .1004 .1002 .0924 .0938 .0874 .0892 .0900

Notes: The table displays the minimum distances D(j) de�ned in (1.13) between discretized distributions of empirical TGARCH innovation
and simulated copulae processes. The �rst two columns display the distances to the IID Gaussian (Φ) and to the IID Student-t distribution
with estimated degrees of freedom ν̂ (t(ν̂)). Among each class of copulae (Clayton, Frank and Gumbel with marginal distributions Φ or
t(ν), ν = 5, 10, 15, 20), the best parametrization as characterized by Kendall's τ is selected. The best �tting distribution is highlighted with
bold entries.
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Table 1.B.6: Copula selection

Clayton Frank Gumbel
Index Φ t(5) t(10) t(15) t(20) Φ t(10) t(15) t(20) Φ t(5) t(10) t(15) t(20)

BSE Sensex 30 0.00 7.57 24.08 10.09 0.00 0.00 5.29 0.00 0.00 0.00 1.79 39.30 9.68 2.20
CAC 40 0.08 0.00 19.80 36.62 43.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DAX 30 0.00 0.00 42.46 29.77 25.77 1.15 0.00 0.00 0.00 0.00 0.00 0.62 0.23 0.00
DJIA 30 0.00 0.00 15.40 4.50 0.00 0.55 0.00 0.00 0.16 0.00 0.55 78.83 0.00 0.00
Euro Stoxx 50 0.00 0.00 49.20 22.10 4.02 7.97 0.00 2.05 2.96 0.00 0.00 6.99 3.95 0.76
FTSE 100 0.00 0.00 60.20 18.76 0.08 0.00 0.00 0.00 0.00 0.00 0.00 5.10 11.30 4.55
IBEX 35 0.00 0.00 5.67 5.91 2.25 13.29 2.49 1.01 0.00 0.00 45.61 23.78 0.00 0.00
IBRX 50 0.00 0.00 93.58 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.26 0.16 0.00
IPC 35 0.00 9.94 0.00 0.39 0.00 0.32 0.00 0.00 0.00 0.00 0.00 64.96 24.39 0.00
JKSE 0.00 1.25 0.00 0.00 0.00 15.39 0.33 2.91 0.92 0.00 78.45 0.75 0.00 0.00
KOSPI 0.00 0.00 29.84 2.52 0.00 0.00 0.00 0.00 0.00 3.74 0.00 51.30 4.72 7.89
MIB 40 0.00 0.00 4.57 0.68 0.00 0.00 0.00 0.00 0.00 0.00 0.00 16.34 51.48 26.93
NASDAQ 100 10.89 0.87 11.05 8.92 9.94 13.89 0.00 0.00 0.00 0.00 0.00 43.88 0.55 0.00
NIKKEI 225 3.40 0.00 0.00 14.17 62.05 20.38 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
RTSI 50 0.00 1.72 12.36 0.00 0.00 16.82 0.00 2.97 3.78 0.00 47.48 8.70 6.18 0.00
S&P 500 0.00 8.29 34.49 2.68 3.79 5.13 0.00 0.00 0.00 0.00 6.47 39.15 0.00 0.00
S&P TSX 0.00 0.00 59.89 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.57 16.94 19.61
SSEC 0.00 0.08 0.00 0.00 0.00 13.66 1.65 6.04 25.27 0.00 41.92 11.38 0.00 0.00
Mean 0.80 1.65 25.70 8.73 8.41 6.03 0.54 0.83 1.84 0.21 12.35 22.27 7.20 3.44

Notes: The table displays the frequency (in %) how often each distributional class is selected in the recursive estimation setting. The IID
standard normal and t-distribution with estimated degrees of freedom as well as the Frank copula with t(5) margins never obtain smallest
distance statistics and were excluded from the Table. The most frequently selected distributional class is highlighted with bold entries.
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Table 1.B.7: Unconditional cVaR coverage levels: α = 0.01 and α = 0.025

α = 0.010 α = 0.025
Index Φ t(ν) Fnp Fj∗ Co1 Co2 Co3 Φ t(ν) Fnp Fj∗ Co1 Co2 Co3
BSE Sensex 30 .0102 .0082 .0082 .0072 .0072 .0072 .0041* .0184 .0164 .0184 .0133* .0133* .0153* .0133*
CAC 40 .0180* .0161 .0180* .0132 .0132 .0151 .0132 .0397* .0369* .0331 .0312 .0303 .0341 .0322
DAX 30 .0200* .0162 .0095 .0124 .0124 .0114 .0095 .0448* .0429* .0305 .0324 .0315 .0305 .0257

DJIA 30 .0286* .0158 .0158 .0118 .0118 .0128 .0128 .0424* .0404* .0315 .0374* .0374* .0315 .0305

Euro Stoxx 50 .0188* .0159 .0169* .0131 .0131 .0150 .0122 .0432* .0385* .0356* .0366* .0347 .0385* .0338

FTSE 100 .0235* .0186* .0147 .0117 .0127 .0137 .0137 .0381* .0371* .0342 .0323 .0323 .0323 .0332
IBEX 35 .0193* .0116 .0116 .0058 .0048 .0058 .0029* .0376* .0357* .0290 .0280 .0319 .0290 .0251

IBRX 50 .0145 .0114 .0124 .0104 .0104 .0124 .0093 .0342 .0311 .0259 .0270 .0259 .0259 .0259

IPC 35 .0197* .0148 .0148 .0108 .0108 .0118 .0118 .0354* .0335 .0285 .0266 .0276 .0285 .0285
JKSE .0210* .0116 .0137 .0074 .0084 .0084 .0084 .0326 .0284 .0252 .0242 .0252 .0263 .0252

KOSPI .0174* .0163 .0163 .0112 .0112 .0123 .0102 .0368* .0358* .0286 .0286 .0296 .0306 .0296
MIB 40 .0280* .0258* .0226* .0161 .0172* .0183* .0161 .0441* .0419* .0409* .0355 .0355 .0376* .0355

Nasdaq 100 .0177* .0167* .0157 .0138 .0138 .0167* .0128 .0413* .0404* .0295 .0276 .0285 .0285 .0285
Nikkei 225 .0188* .0167 .0105 .0115 .0126 .0126 .0105 .0345 .0345 .0303 .0293 .0293 .0282 .0272

RTSI 50 .0144 .0112 .0161 .0112 .0112 .0128 .0096 .0321 .0289 .0257 .0257 .0257 .0225 .0193
S&P 500 .0285* .0207* .0167* .0148 .0148 .0157 .0138 .0413* .0413* .0335 .0354* .0364* .0335 .0325

S&P TSX .0214* .0173* .0102 .0112 .0112 .0102 .0081 .0387* .0366* .0264 .0305 .0305 .0295 .0275
SSEC .0166 .0117 .0117 .0068 .0059 .0078 .0078 .0362* .0323 .0215 .0264 .0254 .0264 .0244
Mean .0198 .0154 .0142 .0111 .0113 .0122 .0104 .0373 .0351 .0294 .0293 .0295 .0294 .0277

Stand. Dev. .0049 .0041 .0036 .0028 .0031 .0034 .0034 .0061 .0063 .0052 .0056 .0055 .0053 .0054

Notes: The table displays the empirical cVaR coverage for nominal levels of α = 0.01 and α = 0.025. Φ denotes the IID Gaussian forecast,
t(ν) the IID Student-t forecast with estimated degrees of freedom, Fnp the forecast with the non-parametric estimate of the conditional
distribution of ξt, Fj∗ the forecast using the best-�tting copula distribution, and Co1, Co2, Co3 the forecast combinations described in
Section 1.4.3. Bold numbers indicate the most favorable results, where best empirical coverage is de�ned as the smallest absolute deviation
to nominal coverage level. Entries denoted by ∗ deviate signi�cantly from the target coverage level according to the (Kupiec, 1995) test at
the 5% level.
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Table 1.B.8: Unconditional cVaR coverage levels: α = 0.05

Index Φ t(ν) Fnp Fj∗ Co1 Co2 Co3
BSE Sensex 30 .0491 .0521 .0450 .0409 .0419 .0450 .0440
CAC 40 .0710* .0728* .0643* .0643* .0653* .0653* .0662*
DAX 30 .0696* .0696* .0610 .0677* .0677* .0610 .0629
DJIA 30 .0650* .0690* .0621 .0552 .0552 .0571 .0542

Euro Stoxx 50 .0732* .0732* .0582 .0675* .0666* .0572 .0629
FTSE 100 .0635 .0665* .0557 .0596 .0587 .0547 .0547

IBEX 35 .0772* .0782* .0743* .0763* .0753* .0772* .0743*

IBRX 50 .0560 .0581 .0467 .0529 .0498 .0488 .0467
IPC 35 .0541 .0571 .0472 .0492 .0492 .0472 .0463
JKSE .0452 .0505 .0452 .0431 .0431 .0452 .0442
KOSPI .0603 .0623 .0511 .0541 .0541 .0562 .0501

MIB 40 .0753* .0796* .0688* .0634 .0634 .0656* .0645
Nasdaq 100 .0620 .0620 .0561 .0600 .0591 .0571 .0581
Nikkei 225 .0638 .0638 .0544 .0554 .0554 .0565 .0523

RTSI 50 .0546 .0578 .0546 .0482 .0482 .0498 .0514
S&P 500 .0630 .0669* .0600 .0630 .0620 .0600 .0591

S&P TSX .0722* .0722* .0529 .0621 .0621 .0549 .0539
SSEC .0528 .0567 .0499 .0528 .0538 .0479 .0489
Mean .0627 .0649 .0560 .0575 .0573 .0559 .0553

Stand. Dev. .0093 .0085 .0081 .0091 .0089 .0082 .0084

Notes: The table displays the empirical cVaR coverage for a nominal coverage level of
α = 0.05. See Table 1.B.7 for further notes.
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Table 1.B.9: Dynamic Quantile test (p-Values): α = 0.01 and α = 0.025

α = 0.010 α = 0.025
Index Φ t(ν) Fnp Fj∗ Co1 Co2 Co3 Φ t(ν) Fnp Fj∗ Co1 Co2 Co3
BSE Sensex 30 .998 .997 .001 .991 .991 .072 .386 .782 .589 .104 .182 .181 .053 .181
CAC 40 .475 .552 .000 .466 .445 .000 .482 .214 .258 .120 .435 .426 .009 .054
DAX 30 .346 .565 .964 .576 .576 .515 .998 .046 .086 .163 .611 .672 .524 .912

DJIA 30 .024 .602 .606 .991 .991 .975 .977 .108 .216 .665 .250 .250 .700 .660
Euro Stoxx 50 .412 .704 .513 .886 .864 .726 .980 .012 .188 .001 .289 .367 .061 .257
FTSE 100 .045 .060 .034 .525 .591 .476 .494 .278 .134 .253 .604 .600 .325 .326
IBEX 35 .313 .518 .001 .878 .627 .877 .020 .431 .307 .002 .757 .560 .831 .732
IBRX 50 .485 .327 .013 .349 .352 .392 .999 .408 .784 .074 .617 .516 .023 .011
IPC 35 .060 .013 .005 .481 .481 .000 .572 .300 .512 .116 .517 .538 .422 .450
JKSE .360 .994 .655 .994 .999 .999 .999 .608 .885 .837 .912 .907 .886 .904
KOSPI .546 .590 .456 .995 .995 .986 .998 .178 .228 .310 .762 .702 .718 .816

MIB 40 .040 .065 .012 .848 .583 .434 .610 .066 .166 .062 .398 .398 .356 .519

Nasdaq 100 .392 .399 .564 .948 .949 .602 .977 .001 .000 .829 .508 .548 .665 .551
Nikkei 225 .394 .592 .357 .494 .588 .584 .746 .275 .262 .619 .228 .243 .597 .110
RTSI 50 .259 .081 .043 .165 .165 .001 .038 .575 .918 .395 .902 .902 .352 .774
S&P 500 .021 .309 .410 .637 .639 .622 .643 .145 .137 .335 .380 .360 .326 .403

S&P TSX .074 .581 .998 .976 .976 .998 .997 .406 .496 .661 .523 .523 .393 .273
SSEC .452 .934 .964 .696 .491 .996 .812 .525 .965 .906 .957 .959 .665 .923
Fisher-Test .009 .301 .000 .999 .997 .001 .950 .001 .028 .001 .902 .895 .109 .331

Notes: The table displays for each market the p-values for the Dynamic Quantile (DQ) test for a correct unconditional and
conditional VaR speci�cation for nominal coverage levels α = 0.01 and α = 0.025 as speci�ed in equation (1.25). The bottom
row provides the p-values of the cross-sectional Fisher test (Fisher, 1934) as a summary statistic. Bold entries indicate the most
favorable results for each market (largest p-values). See Table 1.B.7 for further notes.
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Table 1.B.10: Dynamic Quantile test (p-Values): α = 0.05

Index Φ t(ν) Fnp Fj∗ Co1 Co2 Co3
BSE Sensex 30 .509 .608 .572 .438 .503 .470 .665

CAC 40 .200 .164 .005 .536 .523 .049 .165
DAX 30 .148 .149 .274 .207 .205 .604 .604

DJIA 30 .422 .261 .269 .608 .608 .463 .588
Euro Stoxx 50 .227 .232 .274 .232 .270 .317 .209
FTSE 100 .423 .197 .448 .447 .331 .161 .176
IBEX 35 .066 .065 .016 .090 .094 .063 .162

IBRX 50 .776 .887 .002 .491 .479 .050 .065
IPC 35 .542 .381 .325 .544 .540 .185 .416
JKSE .720 .391 .663 .686 .695 .245 .681
KOSPI .507 .436 .386 .751 .758 .381 .689
MIB 40 .124 .085 .271 .143 .141 .134 .286

Nasdaq 100 .025 .025 .315 .015 .024 .060 .032
Nikkei 225 .573 .566 .510 .425 .440 .333 .221
RTSI 50 .191 .505 .084 .485 .485 .436 .580

S&P 500 .233 .208 .323 .255 .240 .332 .192
S&P TSX .043 .043 .690 .447 .447 .643 .515
SSEC .844 .876 .679 .968 .972 .979 .804
Fisher-Test .066 .034 .005 .290 .322 .038 .168

Notes: The table displays the p-values for the Dynamic Quantile (DQ) test
for a correct unconditional and conditional VaR speci�cation for a nominal
coverage level α = 0.05 as speci�ed in (1.25), and the p-values of the cross-
sectional Fisher test as a summary statistic. See Table 1.B.9 for further
notes.
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Table 1.B.11: Mean errors for cES forecast: α = 0.01 and α = 0.025

α = 0.010 α = 0.025
Index Φ t(ν) Fnp Fj∗ Co1 Co2 Co3 Φ t(ν) Fnp Fj∗ Co1 Co2 Co3
BSE Sensex 30 -1.343 -.788 -.965 -.726 -.735 -.816 -.819 -.859 -.545 -.443 -.450 -.457 -.421 -.460
CAC 40 -.505 -.143 -.106 -.063 -.041 -.055 -.082 -.380 -.182 -.115 -.077 -.079 -.065 -.102
DAX 30 -.653 -.265 -.147 -.177 -.177 -.141 -.062 -.558 -.315 -.139 -.186 -.190 -.206 -.167
DJIA 30 -.542 -.026 .027 .051 .037 .049 .032 -.443 -.163 .003 -.047 -.049 -.066 -.024
Euro Stoxx 50 -.443 .009 -.092 .083 .073 .094 .016 -.367 -.127 -.048 -.071 -.069 -.094 -.053
FTSE 100 -.577 -.262 -.106 -.019 -.026 -.049 -.053 -.383 -.218 -.022 -.038 -.046 -.084 -.031
IBEX 35 -.408 .149 .153 .410 .348 .402 .224 -.352 -.033 .207 .230 .181 .182 .222
IBRX 50 -.995 -.486 -.451 -.195 -.211 -.299 -.156 -.750 -.446 -.033 -.186 -.178 -.069 -.097
IPC 35 -.677 -.193 -.088 .092 .090 .075 -.004 -.511 -.252 -.191 .006 .000 -.021 -.087
JKSE -2.458 -1.719 -1.205 -1.538 -1.609 -1.511 -1.309 -1.183 -.783 -.540 -.586 -.643 -.640 -.566
KOSPI -1.181 -.761 -.652 -.407 -.428 -.426 -.481 -.892 -.634 -.478 -.283 -.295 -.419 -.400
MIB 40 -.691 -.202 -.133 .057 .035 .039 -.035 -.678 -.378 -.064 -.078 -.094 -.082 -.071
Nasdaq 100 -.800 -.410 -.520 -.333 -.319 -.375 -.436 -.535 -.294 -.302 -.213 -.209 -.247 -.258
Nikkei 225 -1.184 -.915 -1.244 -.621 -.579 -.320 -.594 -.597 -.454 -.325 -.276 -.264 -.087 -.301
RTSI 50 -1.077 -.381 .001 -.574 -.582 -.482 -.404 -.813 -.433 -.138 -.375 -.380 -.152 -.319
S&P 500 -.613 -.019 -.150 -.031 .008 -.046 -.098 -.579 -.262 -.092 -.179 -.151 -.096 -.137
S&P TSX -.410 .017 .278 .299 .291 .250 .255 -.434 -.175 .223 .138 .123 .176 .179
SSEC -1.306 -.198 -.789 -.365 -.307 -.452 -.523 -.654 .015 -.319 -.020 -.023 -.255 -.173
Mean -.881 -.366 -.344 -.225 -.230 -.226 -.252 -.609 -.316 -.156 -.150 -.157 -.147 -.158
Stand. Dev. .503 .449 .455 .451 .456 .437 .393 .223 .207 .213 .200 .201 .200 .202

Notes: The table displays the mean cES forecast errors for nominal cVaR coverage levels of α = 0.01 and α = 0.025. cES forecast errors
are determined for the joint set of cVaR hits. Negative values indicate an overly optimistic cES forecast, i.e. that losses on average exceed
the cES forecast. Bold numbers indicate the most favorable results de�ned as the smallest mean absolute errors. See Table 1.B.7 for further
notes.
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Table 1.B.12: Mean errors for cES forecast: α = 0.05

Index Φ t(ν) Fnp Fj∗ Co1 Co2 Co3
BSE Sensex 30 -.246 -.074 .068 .071 .065 .050 .071
CAC 40 -.285 -.180 -.068 -.062 -.070 -.069 -.064
DAX 30 -.295 -.159 .049 -.022 -.021 -.038 .015

DJIA 30 -.375 -.211 .015 -.049 -.047 -.050 -.019
Euro Stoxx 50 -.330 -.199 -.105 -.128 -.123 -.149 -.116
FTSE 100 -.345 -.251 -.090 -.096 -.096 -.109 -.093
IBEX 35 -.139 .036 .258 .243 .203 .105 .251
IBRX 50 -.598 -.454 -.201 -.272 -.252 -.214 -.234
IPC 35 -.437 -.305 -.165 -.073 -.082 -.159 -.118
JKSE -.765 -.546 -.310 -.320 -.382 -.343 -.315
KOSPI -.647 -.513 -.359 -.241 -.248 -.360 -.300
MIB 40 -.533 -.373 -.099 -.107 -.109 -.138 -.103
Nasdaq 100 -.406 -.274 -.099 -.164 -.160 -.121 -.132
Nikkei 225 -.438 -.355 -.178 -.214 -.212 -.084 -.200
RTSI 50 -.330 -.106 .149 .088 .057 .121 .119
S&P 500 -.466 -.282 -.057 -.137 -.127 -.048 -.099
S&P TSX -.398 -.277 .123 -.025 -.030 .072 .047
SSEC -.433 -.087 -.025 -.074 -.082 -.195 -.053
Mean -.415 -.256 -.061 -.088 -.095 -.096 -.075
Stand. Dev. .151 .155 .157 .136 .133 .135 .144

Notes: The table displays the mean cES forecast errors for nominal cVaR
coverage levels of α = 0.05. See Table 1.B.11 for further notes.
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Table 1.B.13: Relative MAE for cES forecast: α = 0.01 and α = 0.025

α = 0.010 α = 0.025
Index t(ν) Fnp Fj∗ Co1 Co2 Co3 t(ν) Fnp Fj∗ Co1 Co2 Co3
BSE Sensex 30 .698 .795* .611 .608 .626 .621 .880 1.112* .885 .878 .853 .977*
CAC 40 .924 1.555* .916 .908 1.073 1.117 .938 1.062* .946 .920 .945 .974*
DAX 30 .576 .603 .551 .571 .520 .287 .802* 1.014* .808* .789* .866* .846*
DJIA 30 .383* .794* .367* .350* .337* .447* .726 .840* .706 .725 .862 .733
Euro Stoxx 50 .986 1.457* .970 .965 1.002* 1.010* .932 1.141* .879 .897 1.089* .996*
FTSE 100 .769* .804* .714* .654* .717* .766* .822 .916 .805 .794 .804 .804
IBEX 35 .480* .649* 1.005* .857* 1.006* .550* .769 1.117* .972* .943* .984* .972*
IBRX 50 .698 .647 .540 .567 .615 .393 .961* 1.044* .951* .956* 1.027* .933*

IPC 35 .481 .658 .444 .466 .425 .497 .847 .946 .891 .878 .895 .846

JKSE .732 .698* .726 .733 .715 .642* .858 .869* .863 .850 .856 .859
KOSPI .678 .657 .486 .488 .479 .529 .864 .871 .833 .842 .863 .828

MIB 40 .661* .699* .705* .706* .679* .632* .777 .901 .735 .727 .762 .790
Nasdaq 100 .740 .758* .768 .740 .705 .688 .942 .873* .878* .873* .884* .851

Nikkei 225 .846 1.252* .733 .710 .525 .681* .955 1.321* .869 .864 .959 1.075*
RTSI 50 .699 .574* .805 .732 .707 .631 .965 .806* 1.104 1.099 .814 .884
S&P 500 .597* .786* .514* .557* .589* .580* .694 .758* .662 .665 .683 .669
S&P TSX .625* .980* .911* .889* .925* .705* .778 .991 .816 .799 .900 .885
SSEC .499 .947* .693* .677 .593 .676* .984* 1.218* .856 .855 1.148* .915*
Mean .671 .851 .692 .676 .680 .636 .861 .989 .859 .853 .900 .880
Stand. Dev. .157 .288 .186 .164 .206 .197 .090 .152 .102 .099 .113 .100

Notes: The table displays the MAE for cES forecasts from all candidate models relative to the MAE from the IID Gaussian
model for cVaR coverage levels α = 0.01 and α = 0.025. Values less than one indicate that the candidate model provides more
precise cES forecasts than the Gaussian model. Entries denoted by ∗ are signi�cantly di�erent from Gaussian cES forecast at
the 5% level according to the sign test. See Table 1.B.7 for further notes.
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Table 1.B.14: Relative MAE for cES forecast: α = 0.05

Index t(ν) Fnp Fj∗ Co1 Co2 Co3
BSE Sensex 30 1.064* 1.212* 1.136* 1.127* 1.103* 1.158*
CAC 40 1.018 1.230* 1.105* 1.084* 1.089* 1.132*
DAX 30 1.025 1.207* 1.101* 1.106* 1.169* 1.141*
DJIA 30 .924 .913* .935 .942 .943 .888

Euro Stoxx 50 .969 1.032* .970 .975 1.022* .954*

FTSE 100 .963 .952* .943 .948 .982 .927

IBEX 35 1.051* 1.196* 1.122* 1.110* 1.118* 1.149*
IBRX 50 .964 1.009* .954 .957 .973* .939

IPC 35 .917 .961 .904 .885 .960 .919
JKSE .982 1.005 1.022 1.002 .999 1.007
KOSPI .941 .987* .914 .929 .947* .931
MIB 40 .951 .986* .929 .937 .945 .920

Nasdaq 100 .991 1.117* 1.026 1.033 1.073* 1.033*
Nikkei 225 .980 1.19* .937 .930 1.034* 1.037
RTSI 50 1.068* 1.231* 1.241 1.201 1.240 1.194
S&P 500 .911 .829 .914 .900 .811 .800

S&P TSX .923 .999* .854* .863* .923* .898*
SSEC 1.005 1.261* .947 .937 .976* 1.064
Mean .980 1.073 .997 .993 1.017 1.005
Stand. Dev. .050 .132 .103 .096 .101 .114

Notes: The table displays the MAE for cES forecasts from all candidate mod-
els relative to the MAE from the IID Gaussian model for a cVaR coverage
level α = 0.05. See Table 1.B.13 for further notes.

45



C
h
a
p
ter

1
R
isk

F
o
reca

stin
g
w
ith

U
n
co
rrela

ted
D
ep
en
d
en
t
In
n
o
va
tio

n
s

Table 1.B.15: Relative regulator's losses: α = 0.01 and α = 0.025

α = 0.010 α = 0.025
Index t(ν) Fnp Fj∗ Co1 Co2 Co3 t(ν) Fnp Fj∗ Co1 Co2 Co3
BSE Sensex 30 .643* .775 .576* .578* .634* .615 .763* .868 .712* .712* .680* .766
CAC 40 .621* 1.122 .542* .518* .804* .667* .759* .877* .655* .642* .738* .698*
DAX 30 .427* .616* .350* .359* .339* .163* .689* .649* .581* .575* .629* .585*
DJIA 30 .205* .437 .130* .135* .117* .185* .541* .413* .402* .414* .502* .391*

Euro Stoxx 50 .495* 1.092 .404* .413* .409* .499* .664* .789* .564* .572* .707* .606*
FTSE 100 .579* .503* .357* .334* .383* .410* .703* .534* .474* .478* .529* .465*

IBEX 35 .043* .690 .000* .002* .008* .000 .429* .484* .208* .253* .274* .219*
IBRX 50 .532* .569* .290* .312* .491* .212* .799* .620 .640* .637* .632* .577*

IPC 35 .372* .600* .149* .162* .152* .244* .675* .668* .450* .450* .479* .517*
JKSE .695* .585* .657* .674* .646* .571* .760* .679* .680* .697* .715* .669*

KOSPI .660* .653* .415* .424* .419* .467* .790* .723* .587* .598* .675* .646*
MIB 40 .460* .641* .300* .316* .346* .329* .670* .636* .431* .438* .522* .454*
Nasdaq 100 .591* .665 .559* .538* .554* .582* .746* .720* .648* .643* .678* .668*
Nikkei 225 .791* 1.119 .611* .583* .387* .575 .870* .979* .690* .678* .600* .824*
RTSI 50 .509* .361 .664* .620* .583* .486* .756* .570* .796* .796* .536* .648*
S&P 500 .288* .508 .258* .249* .314* .339* .556* .475* .472* .450* .417* .441*
S&P TSX .269* .139* .084* .083* .145* .039* .590* .267* .269* .276* .271* .260*

SSEC .312* 1.016 .466* .437* .450* .524* .521* .881 .476* .478* .798* .615*
Mean .472 .672 .379 .374 .399 .384 .682 .657 .541 .544 .577 .558
Stand. Dev. .194 .269 .202 .194 .206 .204 .115 .183 .156 .149 .150 .162

Notes: The table displays the regulator's loss for cES forecasts from all candidate models relative to the loss from the IID
Gaussian model for cVaR coverage levels α = 0.01 and α = 0.025. See Table 1.B.13 for further notes.
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Table 1.B.16: Relative regulator's losses: α = 0.05

Index t(ν) Fnp Fj∗ Co1 Co2 Co3
BSE Sensex 30 .846* .831 .728* .728* .744 .744*
CAC 40 .870* .922* .763* .762* .822* .783*
DAX 30 .837* .682* .705* .707* .772* .681*

DJIA 30 .770* .511* .593* .595* .599* .532*
Euro Stoxx 50 .823* .811* .738* .735* .859* .714*

FTSE 100 .869* .684* .675* .678* .714* .662*

IBEX 35 .751* .576* .462* .520* .692* .471*
IBRX 50 .875* .715* .736* .724* .705* .700*

IPC 35 .826* .717* .596* .594* .711* .648*
JKSE .863* .759* .753* .777* .753* .741*

KOSPI .873* .788* .664* .678* .767* .715*
MIB 40 .848* .696* .630* .636* .664* .622*

Nasdaq 100 .857* .755* .763* .763* .753* .733*

Nikkei 225 .915* .887* .764* .758* .709* .812*
RTSI 50 .840* .761* .781* .782* .750* .719*

S&P 500 .778* .525* .644* .627* .506* .544*
S&P TSX .824* .428* .509* .520* .441* .455*
SSEC .710* .820 .662* .663* .783 .719*
Mean .832 .715 .676 .680 .708 .667

Stand. Dev. .051 .133 .091 .083 .103 .103

Notes: The table displays the regulator's loss for cES forecasts from all
candidate models relative to the loss from the IID Gaussian model for a
cVaR coverage level α = 0.05. See Table 1.B.13 for further notes.
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CHAPTER 2

Detecting Asset Price Bubbles in Real-Time through

Indicator Combinations1

2.1 Introduction

The U.S. housing market crash resulting in the global �nancial crisis (GFC) of 2007-

08 highlighted the �nancial stability risks that may emerge from extended periods

of excessively high asset price growth. Consequently, this episode has raised the

interest of market participants in the early detection of emerging bubbles on asset

markets. Likewise, the experience from the GFC has also revived the debate among

policymakers and economists about how to contain excessive developments on asset

markets in the future and thereby to enhance the stability of the �nancial system.

An important practical prerequisite for employing countercyclical �nancial market

policies is, however, to be able to correctly assess that an asset price appreciation is

indeed excessive.2

1I am thankful to Kerstin Bernoth, Jörg Breitung, Uwe Hassler, Helmut Herwartz, Helmut Lütke-
pohl and Christian Proaño for their helpful comments and advice. Further, I thank participants
at the 35th International Symposium on Forecasting 2015, Riverside; the IAAE Annual Meeting

2015, Thessaloniki; the Warsaw International Economic Meeting (WIEM) 2015, Warsaw; the 2015
Annual Conference of the Verein für Socialpolitik, Münster; the 47th Money, Macro and Finance

Research Group Annual Conference, Cardi�; and the Workshop �Empirical Macroeconomics� at
Freie Universität Berlin for helpful comments and suggestions on an earlier version of this paper.

2Such policies include, for instance, a tightening of the micro- and macroprudential regulatory
framework, with the Basel III framework suggesting the use of countercyclical capital bu�ers, or
the debate about whether monetary policy could actively lean against the wind of excessive asset
price growth by raising policy rates (see Chapter 4 for a discussion of this debate).
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This task of detecting asset price bubbles has long been deemed impossible, es-

pecially when to be performed in real-time (Trichet, 2005 and Kohn, 2006). For

long, the literature has thus identi�ed bubble periods as pronounced price devia-

tions from an (HP-)�ltered trend (cf. Detken and Smets, 2004; Adalid and Detken,

2007; Assenmacher-Wesche and Gerlach, 2010). Yet, in a real-time monitoring con-

text, this approach su�ers not only from the lack of guidance about the appropriate

parametrization of the �lter, but also from its commonly known endpoint problem.

More recently, however, Phillips et al. (2011) have proposed a promising method

that can provide early warning signals for excessive asset price developments, chal-

lenging the view that the real-time detection of asset price bubbles is infeasible.

Speci�cally, the authors propose to recursively test both an asset's price and its

fundamental series for explosive roots, and show that this real-time monitoring ap-

proach is capable of detecting periods that display patterns typical for asset price

bubbles. Building on this work, Phillips et al. (2015) have subsequently generalized

this monitoring procedure, thereby enhancing its ability to detect the occurrence of

multiple, periodically collapsing bubbles within a sample.

This paper contributes to the literature on the detection of asset price bubbles by,

�rst, evaluating this set of popular indicators with regard to their ability to signal

bubble emergence and collapse dates in real-time, and, second, by developing two

combination approaches to aggregate information across indicators. Applying the

individual indicators to U.S. stock market data, I highlight the considerable hetero-

geneity in the provided signals across all indicators. These results indicate common

weaknesses of all individual indicators, especially with regard to their stability dur-

ing the run of a bubble, their ability to detect its emergence and collapse, and false

positive signals during normal times. Moreover, I illustrate that the exact speci�ca-

tion of the Phillips et al. (2011, 2015) indicators is crucial. In particular, it matters

whether individual price and dividend series or the price-to-dividend ratio are tested

for explosive roots � an issue that is not discussed carefully in the literature. These

�ndings present a challenge to policymakers and applied researchers, as the choice

of the indicator and its exact speci�cation will a�ect the received signal.

Despite the heterogeneity in their signals, the run-up to the 1987 stock market

crash and the dot-com bubble emerge as common bubble periods signaled by most

indicators. For this reason, I propose to combine the individual indicators by ag-
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gregating their signals at each margin in the sample in real-time, thus extending

the work of Harvey et al. (2015). To outline the bene�t of such combinations, I

�rst propose a simple counting approach that can be easily implemented and re-

quires little computational e�ort. Here, I show that a combination requiring three

of in total eight individual indicators to simultaneously signal a bubble detects the

key bubble episodes, but avoids issuing false positive signals. Yet, this approach is

sensitive to the ad-hoc choice of the threshold and the set of the included individ-

ual indicators. Therefore, I subsequently describe how to statistically combine the

indicators of Phillips et al. (2011) and Phillips et al. (2015). I implement this by

means of the multiple testing procedure by Romano and Wolf (2005), which allows

to control for the overall size of such a joint test while also taking the correlation

between the individual indicators into account. Applying these combination indica-

tors to U.S. stock market data, I show that they provide a promising approach to

accurately detect the emergence and collapse of asset price bubbles, and to improve

signal stability during the run of dot-com bubble.

I con�rm these �ndings in a simulation study for bubbly processes with varying

length and bubble characteristics. In particular, I �rst highlight the considerable

heterogeneity of bubble signals provided by the individual indicators. Second, I show

that all individual indicators are sensitive to the bubble processes' characteristics and

feature complementary strengths depending on the timing or frequency of bubbles

in the sample. For example, indicators based on price deviations from an HP-

�ltered trend frequently provide false positive signals, but issue the most stable

signal during a true bubble's run. In contrast to this, the Phillips et al. (2011,

2015) indicators issue fewer false signals, but frequently su�er from signal instability.

Further, depending on the number of bubbles in the sample and their exact timing,

either the Phillips et al. (2011) or the Phillips et al. (2015) indicator are more likely

to provide an accurate signal. Finally, both indicators' abilities to detect asset

price bubbles depend on whether individual price and dividend series or the price-

to-dividend ratio are assessed. The proposed combination indicators make use of

these complementary strengths, and by this provide more reliable real-time signals

for the emergence and collapse of asset price bubbles, independent of the speci�c

characteristics of the bubble process.
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Finally, I show that real-time information about the presence of asset price bubbles

can be useful for policymakers and applied researchers � if the provided signal is

accurate and reliable. In particular, I here show that the best combination indicators

as well as the best speci�cations for the Phillips et al. (2011, 2015) indicators carry

signi�cant additional predictive content for output growth against a benchmark

model including other popular real and �nancial predictors.3 In contrast, all other

indicators generally do not improve the forecasts from the benchmark, emphasizing

that the accurate dating of bubble emergence and collapse dates are crucial to exploit

the information content from such indicators for forecasting or policymaking. By

this, I extend the work Assenmacher-Wesche and Gerlach (2010) who consider the

indicator based on the HP-�lter to forecast output and in�ation. As I show, this

indicator generally fails to identify the collapse of an asset price bubble in real-time

and frequently provides false positive signals, limiting its use for forecasting.

The remainder of this paper is structured as follows. Section 2.2 introduces the

bubble indicator and discusses their speci�cations. I further illustrate their real-

time performance when applied to U.S. stock market data, motivating the idea for

indicator combinations. These combination indicators are developed and applied in

section 2.3. Subsequently, I evaluate the �nite sample power properties of all indi-

vidual indicators and their combinations in di�erent bubble environments in section

2.4. Finally, section 2.5 discusses the value of these indicators for forecasting output,

emphasizing the practical relevance of real-time indicator accuracy. I conclude in

section 2.6.

2.2 Detecting asset price bubbles in real-time

I begin by outlining the general framework of asset price bubbles to discuss the

basis and main implications for the real-time monitoring for excessive asset price

developments. An asset price bubble is commonly de�ned as an upward deviation of

the asset's price from its fundamental value (FV) resulting from unjusti�ed beliefs

about the asset's price in the future. The de�nition of a (rational) bubble follows

3Further evidence for the real-time predictive content of these asset price bubble is provided in
Chapter 3.
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from the asset pricing equation

Pt =
1

1 + r
Et [Pt+1 +Dt+1] (2.1)

where Pt, Dt are the asset's market price in and dividend accrued over period t,

respectively, and r is the (time-constant) discount rate. Solving the equation forward

allows to decompose the current asset price into a fundamental component, FVt =∑∞
i=1

(
1

1+r

)i
Et [Dt+i], and a bubble component Bt:

Pt =
∞∑
i=1

(
1

1 + r

)i
Et [Dt+i] + lim

i→∞

(
1

1 + r

)i
Et [Pt+i]

= FVt +Bt, (2.2)

where Bt > 0, if the usual transversality condition lim
i→∞

(
1

1+r

)i
Et [Pt+i]→ 0 does not

hold.4 Importantly, for the asset pricing equation given in (2.1) to hold, and for the

bubble not to shrink to zero in present value or to outgrow the economy, the bubble

component must grow exponentially at the rate 1 + r, i.e. Bt = 1
1+r

Et[Bt+1].

This characteristic of exponential growth of the bubble process motivated di�erent

testing strategies to detect a bubble. Under the standard assumption that dividends

follow a random walk with drift and a bubble is present, i.e. Bt > 0, the price series

contains an explosive root that results from the bubble process. In contrast, when no

bubble is present, i.e. Bt = 0, then the price series follows a random walk as does the

dividend series. This observation motivated the work of Diba and Grossman (1988)

who suggest to exploit this relationship between prices and dividends, and to test

for the existence of bubbles using right-sided unit root tests on both series over the

full sample.5 If prices are found to contain an explosive root but dividends follow a

random walk, a (rational) bubble must be present. If dividends grow exponentially,

too, no inference on the existence of a bubble component is possible.

4See Gürkaynak (2008) for a derivation of the model's underlying assumptions. Camerer (1989)
and Stiglitz (1990) provide surveys on the theoretical work on the conditions under which rational
bubbles can exist.

5Other approaches include variance-bound and two-step speci�cation tests for which surveys are
provided by Flood and Hodrick (1990) and Gürkaynak (2008). Explicit testing for the existence
of a bubble is, however, conceptually limited in general because every test relies on a correct
speci�cation of the FV (Flood and Hodrick, 1990). This implies that empirical tests always
evaluate the joint null hypothesis of the absence of bubbles and a correctly speci�ed model.
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The success of this approach to identify asset price bubbles is, however, limited

by its ability to detect periodically collapsing bubbles. This form of a bubble can

be nested in the above framework such that the bubble is expected to burst with

probability p, or, conditionally on not bursting, to grow at the higher rate (1+r)
1−p .

Despite such periods of explosive behavior, Evans (1991) shows that the price series

as a whole is still integrated of order one such that the approach of Diba and Gross-

man (1988) fails to detect the bubbly process. This limits the ability of this test

to identify bubbles over an entire historical dataset. For policy makers, however,

the value of the Diba and Grossman (1988) test is even more limited, as it does

not allow to monitor asset prices for the emergence and collapse of a periodically

collapsing bubble in real-time. Nonetheless, the illustrated framework is helpful for

de�ning the characteristics associated with a (rational) bubble and for providing a

structure to think about asset price booms that may raise �nancial stability risks,

i.e., as periods of exponential price growth decoupling from the growth rate of div-

idend payouts, with a potentially sudden collapse. Therefore, repeated testing for

explosive growth in prices and dividends may provide early warning signals for such

bubbly periods.

2.2.1 Recursive tests for detecting explosive processes

Addressing the limits of the right-sided unit root test of Diba and Grossman (1988)

and the demand for early warning signals about emerging bubbles, Phillips et al.

(2011) develop a recursive approach that allows to detect periodically collapsing

bubbles and to monitor the emergence and collapse of bubbles in real-time. Speci�-

cally, this approach builds on the idea to examine prices and dividends for explosive

behavior at each margin in the sample by right-tailed unit root tests. More recently,

Phillips et al. (2015) generalize this approach with the aim to allow for a �exible

�restarting� of the test after a �rst bubble in the sample has collapsed.6

6Along the same lines, Homm and Breitung (2012) propose two tests based on structural breaks
in the autoregressive parameters or on forecast breakdowns, two of which can also be employed
for real-time monitoring and date-stamping. I focus on the two tests by Phillips et al. (2011,
2015) here since Phillips et al. (2015) show that these provide superior signals to the Homm and
Breitung (2012) approaches.
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The common starting point for the tests of Phillips et al. (2011) and Phillips et al.

(2015) is hence a variant of the autoregressive speci�cation

zt = µz + δzt−1 +
J∑
j=1

φj∆zt−j + vt, t = 1, . . . , τ, vt
iid∼ N(0, σ2

v) (2.3)

where the null hypothesis H0 : δ = 1 is assessed against its alternative H1 : δ > 1

using right-tailed ADF tests either on both price and dividend series individually, i.e.

zt ∈ {pt, dt}, or on their ratio, i.e. zt = pt − dt, with pt = log(Pt) and dt = log(Dt).

Speci�cally, forward recursive or rolling regressions of (2.3) are carried out, providing

a sequence of ADF-statistics ADFz,τ for all margins τ = τ0, τ0 + 1, . . . , T . The �rst

regression in the recursive setting hence includes τ0 = br0T c observations, where
r0 ∈ (0, 1) is the minimum share of the total sample size T for which (2.3) is

estimated. In the rolling regressions the window size is �xed at τ0.

As outlined above, a bubble is detected when the price series shows explosive

behavior while the fundamental series does not. The bubble emergence date τ̂p,e can

then be obtained as the �rst date τ for which the ADF statistic for the price series

(ADFp,τ ) exceeds the critical value cvadfαT (τ), whereas the collapse date τ̂p,f is the

�rst subsequent date for which the ADF statistic falls below the critical value

τ̂p,e = inf
τ≥τ0

{
τ : ADFp,τ > cvadfαT (τ)

}
, τ̂p,f = inf

τ≥τ̂p,e

{
τ : ADFp,τ < cvadfαT (τ)

}
. (2.4)

If the dividend series is explosive as well (i.e. ADFd,τ > cvadfαT (τ), for all τ with

τ̂p,e ≤ τ ≤ τ̂p,f ), no bubble is indicated. If the dividend series turns explosive at

τ̂d,e with τ̂p,e < τ̂d,e ≤ τ̂p,f , the bubble collapse date τ̂p,f is reset to τ̂p,f = τ̂d,e. This

algorithm yields a binary indicator series Bτ , τ = τ0, τ0 + 1, . . . T with

Bτ =

1 if ADFp,τ > cvadfαT (τ) and ADFd,τ ≤ cvadfαT (τ)

0 else.

Importantly both series can be assessed individually (i.e. zt ∈ {pt, dt}), or by
their ratio (i.e. zt = pt − dt). The literature considers both options but does not
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discuss the implications that follow this choice.7 Rewriting (2.2) in the alternative

representation

Pt −
1

r
Dt =

(
1 + r

r

) ∞∑
i=1

(
1

1 + r

)i
Et [∆Dt+i] +Bt, (2.5)

however, shows that the di�erence Pt− 1
r
Dt is stationary if dividends follow a random

walk (with drift), i.e. Dt ∼ I(1), and there is no bubble, Bt = 0 (Campbell and

Shiller, 1987, 1988; Cochrane, 1992). Testing the individual series hence features a

larger power against the null hypothesis than the test on the ratio. On the one hand,

this implies that testing the series individually can provide a more timely detection

of a bubble. On the other hand, this can also imply a more frequent issuance of

false positive signals. Similarly, this also applies to the dividend series, which, if

found to be explosive, can result in the indicator to signal a bubble collapse. If a

false positive signal on the dividend series is issued during the run of the bubble,

the indicator would hence signal a bubble's collapse preemptively. Testing the log

price-to-dividend ratio can, in contrast, provide complementary information on the

relative growth rate of the two series. If both grow exponentially, but prices grow

at a faster rate than dividends (indicating increasing imbalances), a unit root test

on the ratio can indicate a bubble period that is missed by a test on the individual

series due to explosive growth in both series. Therefore, I evaluate both options.

2.2.2 Existing real-time indicators

2.2.2.1 Forward recursive sup ADF Test

First, I apply the original indicator of Phillips et al. (2011) by estimating (2.3) either

recursively or by rolling windows. As the authors, I set the share of observations in

the initial sample to r0 = 0.1 for the recursive estimation and to r0 = 0.2 for the

rolling window estimation. I denote the indicator based on the recursive estimation

by PWY 11•rec, and the indicator based on the longer rolling window estimation by

PWY 11•rol, where • ∈ {i, r} denotes the indicator based on testing the individual

7While Phillips et al. (2011) and Harvey et al. (2015) test the series individually, Homm and
Breitung (2012), Pavlidis et al. (2014) and Phillips et al. (2015) test the log price-to-dividend
ratio.

56



Chapter 2 Detecting Asset Price Bubbles through Indicator Combinations

series (• = i), or based on testing their ratio (• = r). Therefore, I assess a total of

four speci�cations of the Phillips et al. (2011) indicator.

In order to account for over-rejection in this multiple testing setting, the signi�-

cance level αT needs to approach zero asymptotically for an overall signi�cance level

of 5% to hold. Correspondingly, the critical values cvadfαT (τ) must diverge to in�nity.

Thus, Phillips et al. (2011) suggest using cvadfαT (τ) = log(log(τ))/100, yielding signif-

icance levels of around 4%. For the rolling PWY 11•rol indicator, the critical value is

a constant cvadfαT (τ) = log(log(τ0))/100. The lag order J is determined by the Akaike

Information Criterion (AIC) with Jmax = 12.

2.2.2.2 Generalized sup ADF Test

Phillips et al. (2015) extend the work of Phillips et al. (2011) by not only allowing the

end point (here τ2) to move forward for each recursive regression from τ2 = τ0, . . . , T ,

but by also allowing the start point τ1 for a given τ2 to vary between all values from

0 to max(τ2 − τ0, 1). Thus, the test augments the forward recursive regressions by

testing all possible backward extending windows from the current margin τ2. For

a given end point τ2 ∈ [τ0, T ] and the varying start point τ1 ∈ [0, τ2 − τ0], the

sequence of ADF test statistics is denoted by {ADF τ2
τ1
}. Taking the supremum

of this sequence then provides the backward sup ADF statistic for test margin τ2

denoted by BSADFτ2 = sup
τ1∈[0,τ2−τ0]

{
ADF τ2

τ1

}
. As in Phillips et al. (2011), emergence

and collapse dates are then de�ned as the �rst date for which the BSADF statistic

exceeds or falls below the respective right-tailed critical value8

τ̂e = inf
τ2∈[τ0,T ]

{
τ2 : BSADFτ2 > cvbsadfαT

(τ2)
}
,

τ̂f = inf
τ2∈[τ̂e,T ]

{
τ2 : BSADFτ2 < cvbsadfαT

(τ2)
}
. (2.6)

Following Phillips et al. (2015) I set the initial sample size to r0 = 0.01+ 1.8√
T
and �x

the lag order in (2.3) to J = 1. Assessing the indicator again both on the individual

series and on their ratio, I evaluate two speci�cations denoted by PSY 15•, with

• = {i, r}.

8Critical values for the BSADFτ2 statistic are obtained from simulations using the MATLAB code
provided by Shu-Ping Shi on her website (https://sites.google.com/site/shupingshi/home/
research). This code also allows to obtain the PWY 11 and PSY 15 indicators.
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2.2.2.3 Excessive deviations from HP-�ltered trend

Prior to the seminal contribution of Phillips et al. (2011), the literature commonly

identi�ed asset price bubbles by evaluating the deviation of the real price series from

its one-sided HP-�ltered trend. This builds on the assumption that the fundamental

series follows a slow-moving trend. As such, this indicator can potentially capture

periods in which large deviations of prices from their past trend occur, regardless of

the speed of this accumulation process. To compare the novel indicators based on

unit root test to the previous literature, I therefore also reevaluate this indicator and

identify a bubble if the real stock price deviates from its trend beyond a threshold

κhp, with κhp = 10% following Assenmacher-Wesche and Gerlach (2010). I adjust the

smoothing parameter for estimating the trend component applied in Assenmacher-

Wesche and Gerlach (2010) to the monthly frequency, i.e. λ = 8,100,000. In addition

to the commonly applied recursive method indicated by HPrec, I also assess a rolling

estimation with window size ω = 96 denoted as HProl. These indicators are applied

only to the real price series, no to the dividend series. Following the literature, I do

not update past estimates of the trend component as new observations arrive but

only estimate the τ trend value at each margin based on all available information.

Dating bubbles using the HP-Filter can be criticized along several dimensions.

First, setting the threshold and the smoothing parameter is arbitrary and not based

on theory. Second, the method can tend to generate more booms in the later part

of the sample as the trend estimates becomes less sensitive to new information.

Furthermore, the trend component will capture part of the asset price bubble the

longer it runs or the more pronounced the appreciation is, thus underestimating

the bubble. Nonetheless, the HP-�lter may provide more stable estimates than

ADF-type tests as it is not a�ected by short-lived outliers in dividends.

2.2.3 Detecting stock price bubbles in real-time: An illustration

To illustrate the strengths and weaknesses of these real-time monitoring indicators,

I compare their provided bubble signals when applied to U.S. stock market data.

For this, I use data for the S&P 500 provided by Shiller (2005), focusing on the

period from 1975M1 to 2014M7. The underlying fundamental series for stock prices
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are the dividends paid out as per the asset pricing equation (2.2).9 Both the price

and dividend series are de�ated by the real-time U.S. Consumer Price Index.10

Figure 2.2.1 shows the bubble periods in the S&P 500 index as detected by the

real-time indicators. The �rst �nding is that all indicators provide strongly vary-

ing signals about the emergence and collapse dates of stock price bubbles. This is

particularly apparent when comparing the HP indicators to the ADF-type tests of

Phillips et al. (2011, 2015). Yet, also some common bubble periods emerge. The

pre-�Black Monday� bubble in 1987 is found by three speci�cations of the Phillips

et al. (2011) indicator, one speci�cation of the PSY 15i indicator and both HP in-

dicators. Second, the dot-com bubble is detected by all indicators. However, the

signals vary widely with emergence being signaled from as early as 1995M5 to as

late as 1996M11 and collapse dates ranging from 1999M8 to 2002M4, about seven

months prior and more than two years past the peak in real prices. Furthermore,

all indicators di�er with regard to their stability. While the HPrec, PWY 11•rec and

PWY 11•rol indicators issue stable signals during the course of the dot-com bub-

ble, the PSY 15• indicators frequently collapse and re-emerge again.11 This lack of

continuity presents a challenge to policymakers to properly employ countercyclical

�nancial market policies, potentially misjudging the state of the �nancial cycle en-

tirely. Finally, the PWY 11rrol and the PSY 15r indicators signal a bubble around

the �nancial crisis period from around 2008M10 to 2009M6. This period is special

as the exponential trend in the price-to-dividend ratio comes from a strong decrease

of the ratio after an extended period of stability.

Overall, there are considerable di�erences between all indicators and their spec-

i�cations, with few providing continuous bubble periods. In sum, however, the

indicators by PWY 11irec, PWY 11irol and PSY 15i indicators detect the most likely

bubble periods, while the HP indicators signal too many bubbles to be plausible.

9This data can be obtained from the online supplement of Shiller (2005) available at http://

www.econ.yale.edu/~shiller/data.htm. I restrict the sample to this period as the forecasting
exercise later is carried out for the Great Moderation period starting in the early 1980's.

10All real-time data is obtained from the Real-Time Data Set of the Federal Reserve Bank of
Philadelphia.

11To circumvent this issue, the literature generally suggests bridging bubble periods that are only
a few periods apart. While this can be feasible in an ex post analysis, it is not possible in a
real-time (forecasting) context.
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Figure 2.2.1: Bubble periods in the S&P 500 as detected by individual indicators
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Notes: The �gure shows the bubble periods in the S&P 500 as detected by the individual indicators.
The top panel shows the indicators based on the HP-�lter (left: recursive, right: rolling). The
bottom three panels show the bubble periods detected by the Phillips et al. (2011, 2015) indicators.
The left panels show the indicators when applied to the price and dividend series individually. The
right bottom panels show the indicators when applied to the price-to-dividend (PtD) ratio. The
solid line plots the PtD ratio.
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2.3 A combination approach to real-time bubble detection

The empirical application has emphasized the uncertainty and disagreement among

individual indicators in dating the emergence and collapse of asset price bubbles.

Yet, the most likely bubble periods are typically detected by all indicators, how-

ever, at di�erent times. Hence, I will now outline two strategies to combine the

information across indicators, aiming to exploit the individual indicators' di�erent

strengths, and by this obtain more robust and reliable signals.

2.3.1 A simple threshold counting approach

First, I aggregate the information content of the individual indicators based on a

union of rejections decision rule, following Harvey et al. (2015). The authors combine

two ex post tests by Phillips et al. (2011) and Homm and Breitung (2012), obtaining

a bubble signal whenever any of the two indicators rejects the null hypothesis of a

unit root. To control for the overall size of the power, Harvey et al. (2015) develop

critical values for this joint testing strategy.

This approach is however limited when more than two indicators could be used,

and when indicators that are not based on statistical testing can provide additional

information, e.g. by the HP indicators. Then, inference based on critical values

from the joint limiting distribution of all tests is not feasible. Therefore, the �rst

proposed approach shows the merits of indicator combinations by a simple counting

approach along di�erent ad-hoc thresholds. Following the spirit of Harvey et al.

(2015), however, I identify bubble periods from the union set of all indicators. Thus,

the combination indicator with threshold level κ, denoted by BCombτ,κ , will signal a

bubble in period τ if at least κ individual indicators provide a positive signal in τ ,

i.e.

BCombτ,κ =

1 if
∑
Bτ∈B Bτ ≥ κ

0 else

withB = {PWY 11irec, PWY 11rrec, PWY 11irol, PWY 11rrol, PSY 15i, PSY 15r, HPrec,

HProl}, and κ = 1, . . . , K with K = |B|. The smaller κ, the more bubble episodes

will be detected, implying an overdetection. The larger κ, the more indicators need

to signal a bubble, possibly providing too few signals. A priori, the choice of the

optimal threshold κ is not clear. As such, this indicator su�ers from the lack of
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theoretical guidance about the choice of κ and is sensitive to the included indicators

in B. Nonetheless, this approach provides a straightforward illustration of the po-

tential gains that can be obtained from employing more than one indicator to assess

the presence of an asset price bubble in real-time. Furthermore, this approach can

be easily implemented at low computational costs, and by this provide a practical

solution to aggregate information across indicators. I will explore the best choice

for κ for the given set B through simulations in section 2.4.

2.3.2 Multiple testing with correlated tests

Addressing the limitations of the counting combinations, I, secondly, propose an

indicator based on a statistical combination approach that allows to draw sound in-

ference about the existence of a bubble in real-time and to control the overall size of

the indicator. In particular, the proposed monitoring indicator follows the studen-

tized stepwise multiple testing approach of Romano and Wolf (2005). Importantly,

this approach also takes any dependence structure of nested, and thereby, correlated

tests into account. Yet, while this procedure o�ers control over the overall size of

the combined tests, it comes at the cost of computational intensity. In addition,

it requires tests to provide comparable test statistics and is therefore only feasible

for a subset of all considered indicators. To outline the usefulness of this indicator

and to reduce the computational burden, I will hence combine the three indicators

based on the individual series (i.e. PWY 11irec, PWY 11irol, and PSY 15i), given the

larger power of these indicators compared to testing the price-dividend ratio.12 The

general procedure is, however, applicable to any number of comparable tests. The

developed combination indicator will then assure control over the familywise error

rate (FWE) of all combined tests, where the FWE is de�ned as the probability that

at least one test falsely rejects the true null hypothesis H0 : δ = 1. The method will

control the FWE to be no greater than α = 0.05, at least asymptotically.

This combination approach proceeds as follows. First, I order the s = 1, . . . , S

ADF-type test statistics (here S = 3) of all included indicators by their size at each

margin τ as ADFr1,τ ≥ ADFr2,τ ≥ . . . ADFrS ,τ , where r1 denotes the largest, and

rS denotes the smallest statistic.13 Hence, the most likely signi�cant test statistic

12The PWY 11•rol demands the largest minimum share of observations to be evaluated. Hence the
combination indicator starts at τ0 = b0.2T c.

13Note that for the PSY 15i indicator, this is not the ADF but the BSADF test statistic.
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ADFr1,τ is ordered �rst. However, it is important to also account for di�erent means

and variances of the test statistic. Therefore, I follow Romano and Wolf (2005) and

studentize each test statistic where I obtain their means and standard deviations

from the bootstrap procedure described below. The joint con�dence region for

assessing the hypothesis H0 : δ = 1 with nominal joint coverage probability 1 − α
then takes the form

[ÃDF r1,τ − c1,τ ,∞)× · · · × [ÃDF rS ,τ − c1,τ ,∞) (2.7)

where ÃDF .,τ denotes the studentized test statistic, and where the critical value

c1,τ must be obtained from simulations.14 Romano and Wolf (2005) outline how

to use this framework in a stepwise procedure to identify as many tests as possible

that reject the null hypothesis. For the application here, it is however su�cient

for the largest test statistic ÃDF r1,τ to reject the null hypothesis and to signal the

emergence of a bubble.

To control the α FWE, the critical value c1 must de�ne the 1− α quantile of the

sampling distribution of max1≤s≤S ÃDF rs,τ . Of course the true probability mech-

anism P for this distribution is unknown in practice. For this, Romano and Wolf

(2005) describe a general algorithm that can be used to obtain an estimate for

the required critical value ĉ1 that allows to assess the signi�cance of the largest test

statistic. I follow this algorithm and �rst generate a series z?T under the null hypoth-

esis that z?T follows a random walk with drift, with the drift parameter µz = T−1.

For this series, I then generate M = 1,000 bootstrap series z?,1T , . . . , z?,MT .

For each series z?T and all z?,mT , I compute the test statistics at each margin τ

for the three indicators PWY 11irec, PWY 11irol, and PSY 15i. After ordering them

by size, I denote them by ADF ?
r1,τ

, ADF ?
r2,τ

, ADF ?
r3,τ

for the series z?T and their

bootstrap equivalents ADF ?,m
r1,τ

, ADF ?,m
r2,τ

, ADF ?,m
r3,τ

. The M = 1,000 bootstrap draws

allow to estimate the mean and standard deviation of the test statistics at each τ . I

then use these estimates to studentize the test statistics for the series z?T and z?,mT .

After this standardization step, I retain the largest studentized test statistics of

each bootstrap iteration m = 1, . . . ,M and at each margin τ , denoted by max?,mτ =

max1≤s≤S ÃDF
?,m

rs,τ , and obtain the critical value ĉ1,τ as the 1−α empirical quantile

14Compare Equation (7) of Romano and Wolf (2005).
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of the M values max?,1τ , . . . ,max?,Mτ .15 I denote the combination indicator obtained

from this application of the Romano and Wolf (2005) algorithm as BRWτ , signaling

a bubble in period τ if ÃDF r1,τ > ĉ1,τ .

Figure 2.B.3 plots the critical values for four di�erent sample sizes obtained from

the simulations obtained above (in red). The blue lines provide a �tted curve of the

critical values obtained from regressing the critical values for each margin τ on a

constant and a term log(τ).

To assess the size of this approach, I generate S = 200 series z?,sT under the null

hypothesis and perform the above described algorithm on each series. Table 2.3.1

shows the results for di�erent sample sizes T , together with the �nite sample sizes

for the individual indicators used in the combination. The table reveals an upward

deviation from the nominal size of α = 0.05 for all indicators and sample sizes with

the exception of the PWY 11•rol for T = 200. The PSY 15• indicator appears to su�er

most from overdetection in these short samples. In contrast to this, the combination

indicator is relatively well aligned with the nominal size, yet overdetection becomes

more prominent the longer the sample. This is due to the additional multiple testing

that emerges from the iterative application of the algorithm, yet this issue appears to

be of second-order relevance.16 This is also supported by Figure 2.B.4 which shows

the share of false positive signals across all simulations over the sample. Overall,

this share not trending over time. All in all, I thus conclude that the algorithm

provides critical values that control the nominal size of the test.

2.3.3 Empirical illustration

Figure 2.3.2 displays the stock price bubble periods detected by the combination

indicators BCombτ,κ for κ = 2, . . . , 6 and the BRWτ indicator (bottom right panel).

For κ = 2 (and κ = 1 not depicted here), several periods that do not feature a

prominent increase in the price-to-dividend ratio are classi�ed as bubbles, similar to

the HP indicators. Furthermore the dot-com bubble period extends until 2001M8,

far beyond the price crash in 2000M3. For κ = 3, 4, 5, bubbles are detected only

15I summarize this algorithm in the Appendix 2.A. This algorithm is analogous to the �rst iteration
of Algorithm 4.2 of Romano and Wolf (2005).

16I further note that computing the critical value as the 1− α quantile of the largest studentized
test statistics along all margins τ , i.e. max?,1τ0 , . . . ,max?,1T , . . . ,max?,Mτ0 ,max?,1T , does not reduce
overdetection.
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Table 2.3.1: Size of the combination indicator BRWτ
T

Indicator 200 300 480 624

PWY 11•rec 0.0605 0.0605 0.0544 0.0533
PWY 11•rol 0.0481 0.0505 0.0522 0.0537
PSY 15• 0.0601 0.0684 0.0653 0.0641
BRWτ 0.0525 0.0560 0.0564 0.0567

Notes: The table shows the size of the three individual tests and of
their combination following the Romano and Wolf (2005) algorithm
for four di�erent sample sizes and a nominal size of α = 0.05.

around 1987M3 before the 1987M10 crash and around 1995M12 for the dot-com

bubble. Also, the collapses are detected on time. Increasing κ further deteriorates

the emergence detection, and the dot-com bubble collapse is dated well before the

ultimate peak in prices.

The econometric combination BRWτ combining the PWY 11irec, PWY 11irol and

PSY 15i indicators mirrors the �ndings of the most accurate counting combinations.

It signals the period before the 1987 �Black Monday� crash and detects the dot-com

bubble early in 1995M11. In contrast to the combinations with κ ≥ 3, the collapse,

however, is detected only in 2001M3, one year after the peak in 2000M3. Yet,

in contrast to the counting combinations with κ > 3, the econometric combination

performs better in terms of signal stability with no collapse and re-emergence during

the run of the dot-com bubble.

All in all, the combination indicators with 3 ≤ κ ≤ 5, and the BRWτ indica-

tor appear to provide reasonable and balanced bubble signals, capturing the most

prominent stock price bubbles early after emergence, and avoiding the likely false

positive signals of some of the individual indicators. Moreover, these indicators pro-

vide more stable signals during the run of the dot-com bubble than the PSY 15•

indicators.

2.4 Finite sample power and accuracy

I now evaluate the �nite sample power properties of this extensive set of indicators in

a controlled experiment. For this, I generally follow the simulation set-up of Phillips
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Figure 2.3.2: Bubbles periods in the S&P 500 as detected by combination indicators
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Notes: The �gure shows the bubbles periods in the S&P 500 as detected by the ad-hoc counting
combination indicators BCombτ,κ for di�erent threshold levels κ, and by the econometric combination

BRWτ (bottom right panel). The solid line plots the PtD ratio.
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et al. (2015) but I not only simulate a price but also a dividend series in order to

study the e�ect of testing either both series individually or their log-ratio.

2.4.1 Bubbles as mildly explosive processes

I study the �nite sample power properties of all indicators when the price series

follows a mildly explosive process that is capable of generating a �xed number of

bubbles over a speci�ed sample length. For the single bubble case, this process

follows

zt = zt−1I{t < τe}+ δT zt−1I{τe ≤ t ≤ τf}+

 t∑
k=τf+1

εk + z∗τf

 I{t > τf}

+ εtI{t ≤ τf}, (2.8)

where δT = 1 + cT−α with c > 0 and α ∈ (0, 1), εt ∼ (0, σ2) and z∗τf = zτe + z∗

with z∗ = Op(1). Until bubble emergence and after collapse, the process is thus

characterized by a random walk. During the bubble period, the process is explosive

with an expansion rate δT > 1. After the collapse, the process returns to the pre-

bubble value plus a small perturbation z∗.

As Phillips et al. (2015) emphasize, it is crucial for bubble tests to be able to

�restart� after an initial bubble was detected and collapsed. Therefore, I run a

second simulation that features two explosive and collapsing processes. This two-

bubble scenario is described accordingly with two mildly explosive bubble periods

(characterized by the same growth rate dT ) and random walk processes before, in

between, and after the respective bubble periods

zt =zt−1I{t ∈ N0}+ δT zt−1I{t ∈ B1 ∪B2}+

(
t∑

k=τ1f+1

εk + z∗τ1f

)
I{t ∈ N1}

+

(
t∑

l=τ2f+1

εl + z∗τ2f

)
I{t ∈ N2}+ εtI{t ∈ N0 ∪B1 ∪B2}, (2.9)

where N0 = [1, τ1e), B1 = [τ1e, τ1f ], N1 = (τ1f , τ2e), B2 = [τ2e, τ2f ], N2 = (τ2f , T ]. Ex-

tending the work of Phillips et al. (2015), I further generate a sequence of dividends

that are assumed to follow a random walk with drift, where the drift parameter
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µ = 0.38 matches the sample estimate for the S&P 500 dividend series. The param-

eters in (2.8) and (2.9) take the values c = 1 and α = 0.6 as in Phillips et al. (2015).

The processes are initialized with z0 = 100, and are restricted to remain positive

throughout. The variance of the disturbance εt is matched to the sample standard

deviation of the S&P 500 prices series, i.e. σ = 8.94. I evaluate the �nite sample

properties over 5,000 simulations.

2.4.2 Simulation results: single bubble process

I present the results for the indicators' �nite sample power properties and accuracy

for the single bubble case in Tables 2.C.2 to 2.C.8. First, to explore the e�ects of

bubble location and duration, as well as the speci�cation choices for the Phillips et al.

(2011, 2015) indicators on their detection abilities, I assess the number of identi�ed

continuous bubble episodes in Tables 2.C.2 and 2.C.3. These results suggest that

most indicators identify too many bubble periods. For this reason, I then assess

the indicators' accuracy along six dimensions. First, I present the share of false

decisions (Type I and II errors) in Table 2.C.4, evaluating each indicator's overall

accuracy. For policymakers type I and II errors pose a natural trade-o�. Depending

on the policymakers' preferences or the policy under consideration, missing a bubble

may be more costly than receiving a false positive signal, or vice versa. Therefore,

I evaluate both sources of error separately in Tables 2.C.5 and 2.C.6. Furthermore,

as highlighted in the empirical application, another source of concern are frequent

collapse and re-emergence signals during a bubble's run. I assess the indicators'

stability in Table 2.C.7, displaying the share of missing signals in-between the earliest

emergence and the latest collapse dates provided by each indicator during the true

bubble episode. Finally, I explore the delay until emergence and collapse is detected

by each indicator in Table 2.C.8.

Overall, my �ndings emphasize that higher success rates of detecting the true bub-

ble or a higher signal stability come at the cost of more false positive signals, and

a longer delay until a bubble collapse is detected. When weighing these costs and

bene�ts, the PWY 11irec and the PSY 15i indicators emerge as the most promising

real-time monitoring indicators from the set of individual indicators. Nonetheless, I

�nd that the most promising combining indicators provide considerable gains against

these best individual indicators with regard to the accuracy of the signaled emer-
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gence and collapse dates, and for the stability of the signal during the course of the

bubble. Here, the results are in line with the empirical application, supporting both

the econometric combination and the simple counting combinations with a threshold

choice of κ = 3 or κ = 4.

2.4.2.1 Average number of detected bubble episodes

I begin by assessing the average number of continuous bubble episodes signaled by

each indicator in Table 2.C.2 for di�erent sample lengths T , emergence dates τe and

bubble durations τd. Here, I �nd that the HPrec, HProl and PWY 11•rol indicators

deviate most strongly from capturing the true one-bubble process by providing the

highest number of bubble episodes (between 2.2-3.9 bubbles on average), suggesting

either frequent on-o� signals during the bubble's run, or false positive signals.17

In contrast to this, the average detection rates for the PWY 11•rec and PSY 15•

indicators are more closely aligned to the true one-bubble process. Yet, all three

parameters of the bubble process (sample length, location, and duration) determine

which indicator is the most accurate by this criterion.

The e�ect of di�erent bubble emergence dates on the indicators' detection abilities

is relatively modest for most indicators with the exception of the PSY 15• indicators.

Similar to Phillips et al. (2015), I �nd that these indicators show lower detection rates

when the bubble starts early in the sample (all else being equal). More important

than the emergence date is the duration of the bubble. With the exception of the

HP indicators, the number of detected bubbles increases with bubble duration.18

Adding to the previous literature, I �nd that the choice of the tested series matters

strongly for the performance of the Phillips et al. (2011, 2015) indicators. As outlined

in section 2.2.1, I �nd that all these indicators detect fewer bubbles when the (log)

price-dividend ratio is assessed compared to when both series are tested individually.

All in all, the results suggest that the PWY 11•rec and PSY 15• mirror a one-bubble

17For the HP indicators, overdetection could potentially be addressed by increasing the threshold
κhp. I do not seek to optimize this indicator class but evaluate the indicator as employed by
previous studies (Adalid and Detken, 2007; Assenmacher-Wesche and Gerlach, 2010).

18In order to rule out short-lived bubbles, Phillips et al. (2011, 2015) impose an additional ex
post constraint on the minimum length of the bubble. For the real-time monitoring procedure
of interest to this paper, such an ex post adjustment is, however, not feasible. Therefore, my
results show higher detection rates than the results of Phillips et al. (2015).

69



Chapter 2 Detecting Asset Price Bubbles through Indicator Combinations

process most closely, yet this criterion does not provide any evidence for the signals'

accuracy of detecting the true bubble.

In the bottom panel of Table 2.C.2, I evaluate if the combination indicators can

provide bubble signals that are less sensitive to the speci�c bubble process at play.

Generally, I �nd that the simple combination with κ = 5 provides reasonable signals

of around one bubble on average. Furthermore, the performance of the counting

combinations is, in contrast to the PSY 15• indicator, not a�ected by the sample

size or the bubble location. This remains an issue for the BRWτ indicator. Bubble

duration on the other hand still plays a key role in how many bubbles are detected

for both combination approaches.

2.4.2.2 Frequency distribution of bubble signals

The gains from the combination indicators in reducing the sensitivity to the location

of the bubble become more visible in Table 2.C.3, showing the frequency distribution

of bubble signals for two simulations with T = 200, τd = 20 and two di�erent

emergence dates τe.19 Generally, the results are in line with the results discussed

above with the PWY 11•rol and the HP indicators signaling too many bubbles, and

the PWY 11•rec and the PSY 15• indicators detecting the true number of one bubble

more frequently. However, the impact of bubble location becomes apparent. Here,

the PWY 11irec indicator most frequently detects the true number of one bubble in

47.2% of simulations when the bubble occurs early in the sample. When the bubble

starts later, however, the PSY 15i indicator performs best with a detection accuracy

of 52%.

As documented in the lower panel the counting combination indicators are less

sensitive to the location of the bubble with the BCombτ,4 indicator detecting the correct

number of bubbles in over 50% of the cases regardless of the emergence date. Hence,

these indicators can provide a useful insurance against bubble location. The BRWτ
combination, in contrast, performs better the later the bubble emerges, detecting

the true number of one bubble in 46.8% (for τe = 40) and 59.1% (for τe = 120) of

all simulations.

19Results for detection rates when altering τd and T are in line with the above discussion.
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2.4.2.3 Type I and type II error rates

To assess the accuracy of all indicators in detecting the true bubble, I �rst assess

the overall share of false decisions in Table 2.C.4. This table thus shows how prone

each indicator is to Type I errors (missing a bubble) and Type II errors (issuing

a false signal). Among the individual indicators, the HP indicators are the least

reliable with error rates of around 15% to 20%. Similarly, the PWY 11•rol indicators

feature high error rates for longer bubble periods. In contrast, the PWY 11irec and

PSY 15i indicators usually achieve considerably lower error rates of around 10%.

Their counterparts PWY 11rrec and PSY 15r, however, show higher error rates of up

to 17.7%. Again, the indicators' detection abilities depend on the characteristics of

the bubble as discussed above.

In contrast to the individual indicators, the combination indicators' error rates

are less sensitive to the bubble process. Here, I �nd that simple combinations with

κ = 3 or κ = 4 and the econometric combination BRWτ perform best, and generally

outperform the best-performing individual indicator. Hence, these results emphasize

the gains that both combination approaches can provide. In the following I will

condition the discussion on these overall error rates. In particular, I will discard the

results for combination indicators with κ < 3 and κ > 6, and I will further focus

on the PWY 11irec and PSY 15i indicators in the discussion of the best-performing

individual indicators.

To assess the source of error in more detail, I display the share of false signals

(Type II error) to the total number of signals in Table 2.C.5. These results em-

phasize that both the HP as well as the PWY •rol indicators su�er most from false

positive signals, with Type II error rates as high as 76.9%. This is particularly

problematic for simulations with short bubbles. In contrast, the more parsimonious

PWY 11irec and PSY 15i indicators considerably reduce the probability of falsely

signaling a bubble. Yet, further gains can again be provided by the combination

indicators. Here, the combinations with κ = 4 and κ = 5 always outperform all

individual indicators. For longer bubbles, or bubbles that occur later in the sample,

the econometric combination BRWτ achieves similarly low error rates as these best

counting combinations. Furthermore the BRWτ indicator outperforms all individual

indicators for almost all bubble speci�cations. Hence, these combinations o�er a

clear improvement over the individual indicators in providing accurate positive sig-
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nals and are considerably less sensitive to the location and duration of the bubble

process.

Importantly, this does not come at the cost of failing to detect true bubble periods

as documented in Table 2.C.6. Here, I display the period-by-period probability of

a bubble occurrence given that no signal is issued. Obviously, this share is the

lowest for indicators that issue the most signals, in particular the HP indicators.20

Among the indicators with the best overall error rates, the PWY 11irec and PSY 15i

indicators perform best. Again, later bubbles are more accurately detected by the

PSY 15i indicator. Furthermore, the combination indicators provide possible gains

to the individual indicators. Here, a policymaker with a stronger preference of

not missing a bubble could choose a combination with κ = 3. However, also the

BCombτ,4 and BRWτ indicators frequently outperform the best individual indicators, and

provide the best balance between Type I and Type II error rates independent on

the unknown characteristics of the bubble process.

2.4.2.4 Indicator instability: frequency of on-o� signals

While false positive signals and a failure to detect a true bubble are a major concern

for the feasibility of any indicator, the empirical application has also raised questions

about indicator instability. This source of error is a form of Type I error, with an

indicator failing to signal a true bubble despite a previous correct positive signal.

I evaluate this issue in Table 2.C.7. Here, I show the share of missed bubble peri-

ods between the earliest and latest positive signal during run of the true bubble.21

The HP and the PWY 11irec indicators provide the most stable signals while the

PWY 11•rol indicators su�er most from frequent on-o� signals. As can be expected,

instability is of stronger concern the longer a bubble runs.

Among the counting combination indicators, a lower threshold κ leads to more

stable bubble signals. However, the best indicators BCombτ,3 and BCombτ,4 do not seem

to enhance indicator stability, especially for longer bubbles. In contrast, the econo-

metric combination BRWτ provides stable signals and outperforms the PWY 11irec

indicator for early bubbles in a short sample.

20However, it becomes apparent that the high share of Type II errors of the PWY 11•rol indicators
does not translate into higher detection rates of the true bubble.

21If a bubble is missed completely, this simulation is ignored.
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2.4.2.5 Signal delay

Finally, I evaluate the average delay for each individual indicator until emergence

and collapse of the true bubble are signaled in Table 2.C.8. From the left panel,

it becomes apparent that the delay until emergence is signaled can be substantial.

When applied to monthly data, all indicators frequently miss the bubble over the

course of the �rst year. The earliest signals are generally given by the indicators that

signal the most bubbles, most notably theHP indicators. Again, for the overall most

accurate PWY 11irec and PSY 15i indicators, bubble location is a decisive factor. For

earlier bubbles, the PWY 11irec features higher detection rates, while the PSY 15i

performs better for later bubbles. While the combination with κ = 3 provides the

earliest bubble signals, the more accurate combination indicator with κ = 4 and the

econometric combination BRWτ are also competitive compared to the PWY 11irec and

PSY 15i indicators in detecting bubble emergence on time.

In contrast to the delay until emergence, the right panel shows that most indicators

detect the collapse of a bubble almost immediately or preemptively. Here, it is always

the PSY 15i indicator that provides the most immediate collapse warnings. Also,

the right lower panel shows that combination indicators with 3 ≤ κ ≤ 5 and the

BRWτ indicator are competitive compared to the PSY 15i indicator.

All in all, the results show that the PWY 11irec and PSY 15i indicators detect

asset price bubbles reasonably well, balancing the number of false positive signals

and missed bubbles. Also both indicators detect the collapse date on time. The issue

of false alarms and collapse date inaccuracy, in contrast, are main concerns with the

PWY 11•rol and the HP indicators. Nonetheless, the HP indicators provide valuable

additional information as it su�ers least from instability and detects the emergence

of a bubble with the shortest delay. As such, combination indicators that make

use of HP indicators can employ the complementary strengths of these available

indicators. Yet, also the econometric combination approach BRWτ frequently provides

considerable gains to simply assessing single indicators. Overall, I �nd counting

combination indicators that require κ = 3 or κ = 4 individual indicators to signal

a bubble simultaneously and the BRWτ indicator to provide more reliable bubble

signals and, importantly, to be less sensitive to the characteristics of the bubble

process than the best performing individual indicators.
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2.4.3 Simulation results: two collapsing bubbles

Phillips et al. (2015) show that the PWY •rec indicator has troubles to restart after

a �rst bubble has collapsed and frequently fails to detect a second bubble in the

sample. This is strongly improved by the PSY 15• indicator. I con�rm this for a

simulation with T = 200 and two bubbles of equal length τd = 20 that emerge at

τ1e = 40 and τ2e = 120 in Table 2.C.9. The table presents the average number of

separate bubble periods detected by the indicators, the respective frequency dis-

tribution, as well as the overall error rate (column labeled I+II), the share of false

signals (Type II error) and the probability of a bubble occurring if no signal is issued

(Type I error).

As in the single bubble case, the HP and the PWY 11•rol indicators detect too

many bubbles on average and signal more than two bubbles in over half of the

simulations. The PSY 15• and the PWY 11•rec indicators, on the other hand, fre-

quently detect fewer than two bubbles. However, the PSY 15i indicator dominates

all other individual indicators. This translates further to the error rates. The best

signals for the multiple bubble case are, however, again provided by the combina-

tion indicators. Here, the combination indicators BCombτ,3 ,BCombτ,4 , and the econometric

combination BRWτ generally detect around two bubbles and also minimize the overall

and the Type II error rate. Hence, this case emphasizes that indicator combinations

provide considerable gains in signal accuracy and reliability compared to the signals

provided by individual indicators.

2.5 Forecasting output with bubble indicators

In order to demonstrate the practical relevance of obtaining accurate bubble signals

for stock price bubbles, I explore the predictive content of such indicators for fore-

casting real activity. These bubble indicators are a natural candidate for forecasting

real economic developments for two reasons. As demonstrated by the global �nancial

crisis, an asset price bubble can reduce real economic activity following its burst due

to �nancial instability, and the deleveraging of the private and public sector. Yet,

asset price bubbles may also directly a�ect output during the boom phase. Rising

asset prices alleviate credit constraints for �rms and households, thereby stimulat-

ing investment and consumption. Bubble periods can thus intensify regular business
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cycle movements both through the boom and the bust (see e.g. Kiyotaki and Moore,

1997 and Bernanke et al., 1999).22

2.5.1 Forecast speci�cation

I generally follow Assenmacher-Wesche and Gerlach (2010) who evaluate the pre-

dictive content of the HPrec indicator for forecasting output growth. Yet, I extend

their paper not only by enlarging the set of bubble indicators, but also by tak-

ing the real-time dimension of all variables into account. In contrast to common

predictor variables used to forecast output, stock prices and hence the stock price

bubble indicators are available in real-time. As Assenmacher-Wesche and Gerlach

(2010), I demonstrate the potential of the bubble indicators by predicting industrial

production (IP) by single-equation models including variables that are documented

as frequently showing signi�cant predictive abilities (Stock and Watson, 2003). In

particular, the benchmark model against which I evaluate the marginal predictive

content of all bubble indicators includes in�ation, the unemployment rate, the ef-

fective funds rate and the term spread between 10-year and 3-months government

bond yields. The forecast model hence takes the speci�cation

yτ+h(t) = x′m,τ (t)βm + εm,τ+h(t), ετ
iid∼ N(0, σ2

ε) (2.10)

where yτ (t) denotes the vintage t observation of y at time τ , with t ≥ τ .23 Hence,

for variable y published with a lag of q months, the observations available at time

t are {yτ (t)}t−qτ=1. The full sample then includes observations for the target variable

22The negative real e�ects are likely to be largest for credit �nanced asset bubbles, in particular
on housing markets (Borio and Lowe, 2004; Schularick and Taylor, 2012). A natural extension
is thus to investigate the predictive content of credit-�nanced housing bubbles. I extend this
forecast exercise in Chapter 3 where I enlarge the space of competitor models, and also explore
the predictive content of these indicators applied to the U.S. housing market.

23I evaluate forecasts both with a �xed-lag length of all predictor variables and a speci�c-to-
general lag length selection following Herwartz (2010). As the model with no lags provided
the best benchmark forecast, I only show these results. The forecast evaluation is carried out
against the �nal revised values yτ+h(T ) and the evaluation criterion for forecast accuracy is the
root mean square prediction error (RMSPE). Direct h-step forecasts for y are obtained for each
margin t = R, . . . , T − h − q, since an iterative forecasting procedure would require predictions
up to h− 1 for all variables in x. While this may be feasible for all variables included in the
benchmark model, forecasting the path of the bubble is not.
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y and the vector of predictors {x′τ (t)tτ=1}Tt=R, where xk-speci�c publication lags and

number of revisions are taken into account.

The benchmark model only includes the classical predictors discussed above. This

benchmark model is then augmented by the bubble indicators individually. When

an indicator does not signal a single bubble episode in the estimation window τ =

0, . . . , t − h − q for forecasting margin t, the benchmark forecast is applied at that

margin. That is, the benchmark and the augmented model are identical until the

�rst time that at least one bubble period is signaled. The �rst forecast is carried

out in 1997M12.

2.5.2 Forecast results

I evaluate the predictive accuracy of all models in Table 2.C.10. The benchmark

model's RMSPE is given in the �rst row, followed by the relative gains and losses of

the augmented models subsequently. A value below one indicates a better predictive

accuracy of the augmented model compared to the benchmark. The best forecast

model for each horizon and in each indicator class is highlighted in bold, and the

signi�cance of each model's gain or loss is assessed by the Clark and McCracken

(2009) test for equal predictive ability for real-time data.

Overall, several indicators for stock price bubbles provide considerable gains com-

pared to the benchmark model, yet these gains di�er across the indicators and

forecast horizons. For short-run forecasts up to h = 6 months, most indicators

except for the PWY 11rrol and the BCombτ,1 ,BCombτ,2 outperform the benchmark. Here,

the combination indicators with 3 ≤ κ ≤ 5 and the PWY 11irol indicator perform

best. These best-performing indicators accurately detect the collapse of the dot-com

bubble in contrast to their competitors. However, also the individual indicators

PWY 11irec, PSY 15i, HPrec, and the econometric combination BRWτ provide consid-

erable and signi�cant gains to the benchmark model. All indicators that outperform

the benchmark detect the bubble up to the 1987 stock market crash and the dot-com

bubble, but generally do not provide a false positive signal during the global �nancial

crisis. In contrast, indicators that either miss the 1987 bubble (PWY 11rrec) or pro-

vide a signal around 2009 (PWY 11rrol, PSY 15r) frequently perform worse than the

benchmark for these horizons. These results mostly transfer to longer horizons with

h > 6 with the exception of the deterioration in the performance of the HPrec indica-
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tor which provides the most bubble signals throughout the sample. In contrast, the

parsimonious PSY 15i indicator performs better for longer horizons and provides

the most accurate forecasts overall. Likewise the combinations BCombτ,3 , . . . ,BCombτ,6

continue to outperform the benchmark.

All in all, these results emphasize the importance of accurate signals about the

emergence and collapse of asset price bubbles on stock markets, highlighting their

prospective value for policymakers. False signals during normal times lower the

predictive value of such indicators. Likewise, indicators that fail to capture the

collapse of a bubble on time do not help to predict real economic developments

following the crash. I con�rm these �ndings in an extended forecast experiment

in Chapter 3, where I show that these predictive gains hold even when comparing

the indicators' predictive ability against a large set of macroeconomic and �nancial

variables commonly used to forecast real economic activity.

2.6 Conclusion

Recently, Phillips et al. (2011, 2015) have developed promising new indicators that

allow to monitor asset markets for the emergence and collapse of bubbles in real

time. In this paper, I review these existing approaches and propose two methods to

combine the signals from these individual real-time indicators. Applying the exist-

ing individual indicators to U.S. stock market data, I highlight that these indicators

provide strongly heterogeneous bubble signals. In particular, these indicators fre-

quently su�er from missing true bubble episodes or providing false positive signals,

and from signaling collapse and reemergence during the run of a bubble. Yet, when

a comprehensive picture is taken, most indicators signal the run-up to the 1987 stock

market crash and the dot-com bubble in the late 1990's.

Building on these �ndings, I develop two combination indicators to aggregate the

individual bubble signals in real time. In particular, the �rst class of combination

indicators counts the number of simultaneous signals received from the individual

indicators, and requires this number to exceed a speci�ed threshold. While being

easy to implement, this approach can, however, not control the overall size of the

combination indicator and is sensitive to the threshold choice. Therefore, I develop

a second indicator that combines di�erent speci�cations of the Phillips et al. (2011,
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2015) right-tailed unit root tests by means of a stepwise multiple testing procedure

that accounts for the correlation of all individual tests.

Through simulations I show that the best choice of an individual indicator is

sensitive to the number of bubbles in the sample, their locations, as well as their

duration. In contrast, the proposed combination indicators are considerably less

sensitive to the characteristics of the bubble process. Importantly, these gains do

not come at the cost of lower accuracy. Instead, I show that both the best counting

combination indicator as well as the econometric combination outperform the best

individual indicators by lowering the overall error rates of the provided signals.

Finally, I demonstrate the value of receiving accurate real-time information about

emerging and collapsing asset price bubbles by showing that the most accurate

indicators provide considerable gains for predicting output growth for up to two

years. Hence, these indicators can enrich the information set of policymakers and

of other practitioners.
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Appendix

2.A Romano and Wolf (2005) algorithms for combination in-

dicator

Algorithm 1: Combination indicator based on multiple testing with correlated tests:

At each margin τ

1. Order the studentized ADF-type test statistics of PWY 11rrec, PWY 11rrol, and

PSY 15r by absolute size, labeling them r1 for the largest, and rS for the

smallest.

2. Reject the null hypothesis H0 : δ = 1 if ÃDF r1,τ > ĉ1,τ .

3. If H0 is rejected, set the indicator BRWτ = 1, else BRWτ = 0.

Algorithm 2: Computation of the critical value ĉ1 via the bootstrap:

Generate a series z?T under the null hypothesis that z?T follows a random walk with

drift.

1. Generate M = 1, 000 bootstrap series z?,1T , . . . , z?,MT .

2. For each z?,mT , compute the test statistics associated with the indicators, de-

noted by ADF ?,m
r1,τ

, ADF ?,m
r2,τ

, ADF ?,m
r3,τ

.

3. Obtain estimates for the mean and standard deviation of each test statistic

and studentize test statistics.

4. Obtain largest studentized test statistic for each τ and each bootstrap iteration

m as max?,mτ = max1≤s≤S ÃDF
?,m

rs,τ .

5. Compute ĉ1,τ as the 1− α quantile of max?,1τ , . . . ,max?,Mτ .
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2.B Figures

Figure 2.B.3: Critical values for the BRWτ combination indicator
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Notes: The �gure shows the critical values for the BRWτ combination indicator for di�erent sample
sizes T . The red line shows the critical values obtained from the bootstrap simulation described
in section 2.3.2. The blue line provides a �t line from regressing the simulated critical values on a
constant and log(τ).
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Figure 2.B.4: Period-by-period size of the BRWτ combination indicator
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Notes: The �gure shows the size (the frequency of a false positive signal) of the BRWτ indicator
across time τ for four di�erent sample sizes T .
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2.C Tables

Table 2.C.2: Average number of detected bubbles

Indicator Average number of detected bubbles

T 200 200 200 200 300 300
τe 40 40 120 120 60 180
τd 20 40 20 40 30 30
HPrec 2.49 2.19 2.43 2.23 3.33 3.08
HProl 2.80 2.77 2.53 2.25 3.83 3.91
PWY 11irec 1.20 1.56 1.26 1.65 1.16 1.19
PWY 11rrec 1.08 1.53 1.17 1.53 0.93 1.01

PWY 11irol 3.09 3.45 3.06 3.51 2.87 2.86
PWY 11rrol 2.97 3.40 3.05 3.44 2.45 2.60
PSY 15i 1.00 1.45 1.09 1.43 1.18 1.31
PSY 15r 0.71 1.24 0.80 1.41 0.86 1.08
BCombτ,1 5.20 4.26 5.16 4.34 5.56 5.44
BCombτ,2 3.28 3.09 3.21 2.87 3.61 3.63
BCombτ,3 1.95 2.06 2.02 2.17 1.92 2.01
BCombτ,4 1.16 1.64 1.27 1.70 1.24 1.37
BCombτ,5 0.73 1.54 0.75 1.51 0.84 0.95

BCombτ,6 0.43 1.20 0.44 1.23 0.50 0.65
BCombτ,7 0.21 0.76 0.18 0.73 0.29 0.32
BCombτ,8 0.08 0.30 0.04 0.21 0.12 0.08
BRWτ 1.18 1.52 1.26 1.52 1.45 1.49

Notes: The table shows the average number of detected bub-
bles in the one-bubble simulation exercise. Rows 2-4 indicate
the sample size, the emergence date and duration of the bubble.
Rows 5-12 (middle panel) display the results for the individual
indicators, rows 13-21 (lower panel) for the combination indica-
tors. Bold entries indicate the best indicator in each indicator
class (individual, combined).
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Table 2.C.3: Frequency of detecting zero, one, two, or more bubbles

Number of detected bubbles

Zero One Two More Zero One Two More

Emergence date τe = 40 τe = 120

HPrec 0.021 0.221 0.319 0.439 0.004 0.249 0.331 0.417
HProl 0.006 0.085 0.348 0.560 0.001 0.216 0.328 0.455
PWY 11irec 0.216 0.472 0.231 0.080 0.259 0.403 0.211 0.126
PWY 11rrec 0.342 0.372 0.192 0.093 0.338 0.354 0.180 0.129
PWY 11irol 0.026 0.125 0.234 0.615 0.024 0.130 0.229 0.617
PWY 11rrol 0.042 0.134 0.239 0.585 0.026 0.130 0.237 0.607
PSY 15i 0.318 0.443 0.175 0.065 0.229 0.520 0.194 0.058
PSY 15r 0.517 0.323 0.112 0.049 0.453 0.359 0.140 0.049
BCombτ,1 0.000 0.001 0.031 0.968 0.000 0.005 0.041 0.954
BCombτ,2 0.002 0.098 0.234 0.666 0.001 0.118 0.245 0.636
BCombτ,3 0.052 0.369 0.307 0.272 0.036 0.365 0.308 0.291
BCombτ,4 0.208 0.516 0.198 0.077 0.172 0.502 0.235 0.091
BCombτ,5 0.422 0.447 0.112 0.019 0.406 0.461 0.114 0.019
BCombτ,6 0.655 0.269 0.065 0.011 0.641 0.290 0.063 0.006
BCombτ,7 0.819 0.150 0.029 0.002 0.846 0.131 0.021 0.002
BCombτ,8 0.928 0.064 0.007 0.000 0.962 0.034 0.004 0.001
BRWτ 0.239 0.468 0.199 0.094 0.127 0.591 0.207 0.076

Notes: The table shows the frequency with which an indicator detects zero, one, two or more
bubbles in the one-bubble simulation exercise with sample size T = 200, duration τd = 20
and either an early (left panel) or a late bubble start (right panel). Row 2 indicates the
emergence date. Rows 3-10 display the results for the individual indicators, rows 11-18 for
the combination indicators. Bold entries indicate the best indicator in each category.
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Table 2.C.4: Share of false decisions (Type I and II errors)

Indicator Share of false decisions

T 200 200 200 200 300 300
τe 40 40 120 120 60 180
τd 20 40 20 40 30 30
HPrec 0.172 0.134 0.149 0.131 0.174 0.147
HProl 0.183 0.228 0.145 0.128 0.184 0.178
PWY 11irec 0.081 0.106 0.109 0.144 0.078 0.098
PWY 11rrec 0.104 0.162 0.126 0.199 0.099 0.114
PWY 11irol 0.122 0.170 0.118 0.165 0.098 0.087
PWY 11rrol 0.144 0.195 0.138 0.180 0.120 0.108
PSY 15i 0.085 0.118 0.080 0.105 0.081 0.070

PSY 15r 0.102 0.177 0.100 0.162 0.101 0.095
BCombτ,1 0.260 0.265 0.223 0.181 0.246 0.218
BCombτ,2 0.149 0.124 0.150 0.135 0.122 0.128
BCombτ,3 0.088 0.093 0.087 0.094 0.076 0.070
BCombτ,4 0.079 0.102 0.081 0.101 0.074 0.069
BCombτ,5 0.083 0.127 0.085 0.126 0.080 0.078
BCombτ,6 0.092 0.158 0.092 0.155 0.090 0.088
BCombτ,7 0.096 0.179 0.097 0.179 0.095 0.095
BCombτ,8 0.099 0.193 0.099 0.195 0.098 0.099
BRWτ 0.081 0.100 0.070 0.085 0.076 0.060

Notes: The table shows the number of false decisions (Type I and Type
II errors) as a share of the sample length. For further notes, see Table
2.C.2.

84



Chapter 2 Detecting Asset Price Bubbles through Indicator Combinations

Table 2.C.5: Probability of false signals (Type II errors)

Indicator Share of false signals over all signals

T 200 200 200 200 300 300
τe 40 40 120 120 60 180
τd 20 40 20 40 30 30
HPrec 0.577 0.289 0.536 0.298 0.595 0.531
HProl 0.673 0.528 0.536 0.302 0.681 0.641
PWY 11irec 0.411 0.169 0.662 0.320 0.321 0.536
PWY 11rrec 0.676 0.378 0.896 0.638 0.603 0.838
PWY 11irol 0.631 0.386 0.599 0.371 0.507 0.427
PWY 11rrol 0.769 0.484 0.716 0.432 0.713 0.589
PSY 15i 0.403 0.175 0.379 0.171 0.356 0.296

PSY 15r 0.635 0.328 0.607 0.301 0.622 0.529
BCombτ,3 0.424 0.158 0.414 0.179 0.342 0.303
BCombτ,4 0.326 0.108 0.346 0.133 0.246 0.240
BCombτ,5 0.232 0.073 0.313 0.121 0.173 0.212

BCombτ,6 0.235 0.086 0.297 0.124 0.188 0.215
BRWτ 0.370 0.128 0.309 0.128 0.323 0.246

Notes: The table shows the number of false signals (Type II errors:
signal if no bubble is present) as a share of all signals issued by the
respective indicator. For further notes, see Table 2.C.2.
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Table 2.C.6: Bubble probability if no signal is issued (Type I errors)

Indicator Probability of bubble if no alarm

T 200 200 200 200 300 300
τe 40 40 120 120 60 180
τd 20 40 20 40 30 30
HPrec 0.056 0.064 0.047 0.053 0.046 0.038

HProl 0.056 0.071 0.047 0.054 0.046 0.038

PWY 11irec 0.068 0.100 0.084 0.126 0.069 0.083
PWY 11rrec 0.087 0.154 0.097 0.177 0.090 0.097
PWY 11irol 0.069 0.139 0.066 0.135 0.067 0.057

PWY 11rrol 0.086 0.158 0.081 0.146 0.088 0.077
PSY 15i 0.077 0.116 0.071 0.103 0.075 0.063

PSY 15r 0.094 0.175 0.091 0.159 0.094 0.088
BCombτ,3 0.062 0.080 0.058 0.075 0.060 0.051

BCombτ,4 0.071 0.102 0.070 0.098 0.069 0.063
BCombτ,5 0.081 0.131 0.082 0.128 0.079 0.076
BCombτ,6 0.091 0.162 0.091 0.158 0.090 0.087
BRWτ 0.071 0.097 0.060 0.081 0.067 0.051

Notes: The table shows the number of missed bubble periods (Type I
errors: no signal if bubble is present) as a share of all periods in which
the respective indicators does not issue a signal. The best indicator in
each class that also achieves an overall low error rate (see Table 2.C.4) is
highlighted in bold. The overall lowest Type I error rate is highlighted
in italics.
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Table 2.C.7: Signal instability

Indicator Signal instability

T 200 200 200 200 300 300
τe 40 40 120 120 60 180
τd 20 40 20 40 30 30
HPrec 0.066 0.061 0.021 0.009 0.077 0.011

HProl 0.066 0.061 0.018 0.018 0.077 0.025
PWY 11irec 0.129 0.163 0.023 0.027 0.108 0.020

PWY 11rrec 0.241 0.476 0.148 0.191 0.281 0.154
PWY 11irol 0.268 0.653 0.298 0.672 0.282 0.247
PWY 11rrol 0.310 0.836 0.339 0.746 0.378 0.332
PSY 15i 0.156 0.215 0.094 0.125 0.197 0.104
PSY 15r 0.234 0.572 0.233 0.470 0.321 0.299
BCombτ,3 0.155 0.209 0.102 0.162 0.156 0.110
BCombτ,4 0.160 0.278 0.130 0.239 0.179 0.133
BCombτ,5 0.176 0.376 0.152 0.309 0.214 0.158
BCombτ,6 0.206 0.523 0.173 0.478 0.289 0.229
BRWτ 0.122 0.122 0.093 0.117 0.158 0.091

Notes: The table shows the average number of missing bubble signals
between the �rst emergence and last collapse signal during the course
of the true bubble. For further notes, see Table 2.C.6.
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Table 2.C.8: Average signal delay

Indicator Emergence Collapse

T 200 200 200 200 300 300 200 200 200 200 300 300
τe 40 40 120 120 60 180 40 40 120 120 60 180
τd 20 40 20 40 30 30 20 40 20 40 30 30
HPrec 8.19 9.41 8.05 8.79 10.20 9.91 0.83 0.88 1.45 1.02 0.96 1.12
HProl 8.19 9.41 7.87 8.53 10.20 9.01 0.80 0.87 1.06 0.94 0.88 0.87
PWY 11irec 8.60 13.65 11.92 19.56 14.47 18.52 -0.30 -0.55 0.56 0.45 -0.13 0.69
PWY 11rrec 7.75 16.70 10.29 23.35 13.69 17.27 -3.59 -4.35 -1.34 -1.33 -4.10 -1.92
PWY 11irol 8.00 10.82 7.96 10.22 13.52 11.95 -1.50 -7.48 -1.96 -7.98 -0.97 -1.11
PWY 11rrol 8.47 13.92 9.14 12.96 15.16 14.81 -3.22 -7.39 -2.85 -6.94 -3.75 -2.50
PSY 15i 10.37 15.87 10.30 14.89 15.45 14.08 -0.05 -0.03 0.29 0.28 -0.12 0.41

PSY 15r 10.55 20.17 11.61 19.95 16.82 17.16 -3.70 -6.41 -1.95 -3.04 -5.25 -2.11
BCombτ,3 9.16 11.59 9.40 11.16 13.93 12.78 0.28 0.38 0.34 0.27 0.30 0.51
BCombτ,4 10.29 14.24 10.86 14.18 15.62 15.02 -0.09 -0.22 0.06 -0.21 0.17 0.38
BCombτ,5 11.32 16.84 12.13 17.58 17.17 17.40 -0.43 -1.73 -0.06 -0.92 -0.27 0.12

BCombτ,6 12.32 20.23 13.11 20.49 18.91 19.10 -1.03 -3.95 -0.57 -2.38 -1.14 -0.49
BRWτ 10.22 14.51 9.18 12.13 14.84 12.00 0.41 0.45 0.50 0.38 0.31 0.43

Notes: The table shows the average delay before an indicator signals the emergence or collapse of the true bubble. For
further notes, see Table 2.C.6.
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Table 2.C.9: Bubble detection frequency and accuracy: Two-bubble scenario

Detection rates Type I + II errors

Indicator Average Zero One Two More I + II II I

HPrec 2.80 0.000 0.041 0.426 0.533 0.174 0.375 0.114

HProl 2.87 0.000 0.029 0.394 0.577 0.161 0.359 0.103

PWY 11irec 1.25 0.191 0.475 0.254 0.080 0.184 0.458 0.174
PWY 11rrec 1.04 0.340 0.385 0.193 0.082 0.202 0.666 0.190
PWY 11irol 3.29 0.017 0.083 0.216 0.685 0.172 0.396 0.144

PWY 11rrol 2.95 0.033 0.132 0.245 0.590 0.201 0.530 0.170
PSY 15i 1.57 0.170 0.312 0.346 0.171 0.167 0.344 0.160

PSY 15r 0.93 0.403 0.356 0.172 0.068 0.194 0.475 0.189
BCombτ,1 4.66 0.000 0.001 0.047 0.952 0.190 0.450 0.082

BCombτ,2 3.22 0.000 0.011 0.321 0.668 0.150 0.333 0.097

BCombτ,3 2.39 0.014 0.125 0.479 0.381 0.148 0.283 0.134

BCombτ,4 1.84 0.084 0.284 0.406 0.226 0.161 0.281 0.155
BCombτ,5 1.20 0.266 0.391 0.241 0.101 0.178 0.300 0.176
BCombτ,6 0.65 0.535 0.316 0.121 0.028 0.191 0.323 0.189
BCombτ,7 0.25 0.790 0.172 0.034 0.003 0.197 0.336 0.196
BCombτ,8 0.09 0.923 0.067 0.010 0.001 0.199 0.313 0.199
BRWτ 1.85 0.087 0.245 0.451 0.217 0.153 0.298 0.145

Notes: The table shows the average number of detected bubbles (�rst column), the frequency
distribution of detection zero, one, two, or more bubbles (second to �fth column) as well as
the overall error rate (column six, as in Table 2.C.4), the share of false signals over all signals
(column seven, as in Table 2.C.5), and the probability of missing a bubble if no signal is
issued (column eight, as in Table 2.C.6). See Table 2.C.6 for further notes.
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Table 2.C.10: Predictive accuracy: Stock price bubbles

Forecast horizon (in months)
Model 0 1 3 6 9 12 18 24

Benchmark 0.007 0.012 0.022 0.035 0.044 0.054 0.078 0.101
HPrec 0.988* 0.980* 0.969* 0.986* 1.008* 1.008* 0.990 0.963*
HProl 0.994* 0.984* 0.973* 0.980* 1.002 1.016* 1.030* 1.051*
PWY 11irec 0.995* 0.986* 0.970* 0.976* 0.996* 1.003* 0.993 0.959*
PWY 11rrec 0.999 0.994* 0.988* 1.003 1.018* 1.024* 1.036 1.047
PWY 11irol 0.979* 0.959* 0.942* 0.955* 0.981* 0.996 1.001 0.996
PWY 11rrol 1.021 1.032 1.042 1.056* 1.057* 1.041* 1.012* 1.000
PSY 15i 0.994* 0.988* 0.976* 0.974* 0.977* 0.972* 0.952* 0.924*

PSY 15r 1.024 1.036 1.041 1.046 1.043* 1.030* 0.999 0.979
BCombτ,1 1.011 1.018 1.024* 1.028* 1.030* 1.026* 1.007* 1.010*
BCombτ,2 1.008 1.011 1.010 1.021 1.033* 1.030* 0.993* 0.961*
BCombτ,3 0.970* 0.954* 0.929* 0.940* 0.967* 0.983* 0.979* 0.948*
BCombτ,4 0.972* 0.954* 0.930* 0.944* 0.969* 0.983* 0.982* 0.959*
BCombτ,5 0.974* 0.957* 0.934* 0.951* 0.978* 0.991* 0.996 0.986
BCombτ,6 0.992* 0.976* 0.961* 0.970* 0.983* 0.982* 0.966* 0.945*

BCombτ,7 0.992* 0.980* 0.975* 0.984* 0.997 0.995 0.986 0.969
BCombτ,8 0.996* 0.989* 0.981* 0.984* 0.994* 0.994 0.990 0.982
BRWτ 0.987* 0.973* 0.957* 0.969* 0.993* 1.004* 0.997 0.969*

Notes: Rows two and following display the RMSPE of the stock price bubble augmented models
relative to the RMSPE of the benchmark given in the �rst row. Values less than 1 indicate that
the augmented model is superior to the benchmark. Forecasts denoted by * are signi�cantly
di�erent at the 5%-level from the benchmark as indicated by the test for equal predictive ability
for real-time data by Clark and McCracken (2009). Bold values show the best forecast for a given
horizon in each model class. The CPI, IP and the unemployment rate are published with a lag
of one month. The past �ve months of IP are subject to revisions, while the seasonal factors in
CPI and the unemployment rate are recalculated for up to �ve years.
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CHAPTER 3

Predicting Output with Real-Time Bubble Indica-

tors1

3.1 Introduction

Accurate forecasts of future economic growth are of paramount importance for the

decision-making of economic policymakers. The Great Recession of 2008-09, how-

ever, has highlighted the challenges that forecasters and economic observers face in

this task. Yet, the recession has also emphasized that a stronger surveillance of asset

market conditions may provide valuable information for predicting future economic

activity. In particular, the recession has forcefully illustrated the impact of pro-

nounced asset price movements on the real economy. Following the collapse of the

housing bubble in 2005-06 the U.S. economy in December 2007 entered the longest

and deepest recessionary period since the Great Depression of 1929. Similarly, the

crash of the dot-com bubble in March 2000 ended the decade-long expansion of the

U.S. economy, with the recession starting in March 2001.2

This suggests that bubbles on stock and housing markets, if detected in real-time,

could be a promising predictor for future economic activity. While this real-time

detectability of asset price bubbles has, however, long been contested (cf. Trichet,

2005; Kohn, 2006), Phillips et al. (2011, 2015) have recently challenged this conven-

tional view. In particular, the authors propose a recursive monitoring approach that

1This chapter is based on joint work with Dirk Ulbricht. We are thankful to Helmut Lütkepohl
and Konstantin A. Kholodilin for their helpful comments and advice.

2See �US Business Cycle Expansions and Contractions�, The National Bureau for Economic Re-
search (NBER), available online: www.nber.org/cycles.html
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is capable of detecting periods that display patterns typical for asset price bubbles

by testing both an asset's price and its fundamental series for explosive roots at each

point in the sample. By this, the authors have provided a new, promising approach

to a literature that has previously used price deviations from an (HP-)�ltered trend

as a proxy for excesses on asset markets (e.g. Detken and Smets, 2004; Adalid and

Detken, 2007; Assenmacher-Wesche and Gerlach, 2010).

In this paper, we hence exploit the real-time information from such binary bubble

indicators to forecast a popular monthly index for economic activity, namely total

industrial production (IPT). In particular, we assess the predictive content of several

speci�cations of the bubble indicators of Phillips et al. (2011, 2015), of the popular

indicators based on the HP-�lter, and of combinations of all such indicators as

developed in Chapter 2. Against the background of the pronounced stock and house

price bubbles the U.S. experienced in the past two decades we apply these indicators

to both U.S. stock and housing market data.3

If these indicators are indeed capable of accurately detecting asset price bubbles

in real-time, there is strong reason to believe that this information may help to

predict economic activity both at short and longer forecast horizons. At the longer

horizons, this predictive content may result from the ensuing recession caused by

a future burst of the bubble. In the short run, in contrast, the bubble is likely to

persist and thus to contribute to higher economic growth due to �nancial accelerator

mechanism. Here, Kiyotaki and Moore (1997) and Bernanke et al. (1999) note that

rising asset prices increase the net worth of �rms and households, thereby raising

the value of their collateral and their borrowing limits; and lowering their default

probability and the external �nance premium demanded by lenders. Similarly, rising

asset prices also increase the equity position of lenders, allowing them to increase

their supply of credit (Holmstrom and Tirole, 1997). All else equal, an increase

in asset prices thus stimulates investment, consumption, and, ultimately, output.

Importantly, these �nancial accelerator mechanisms may be particularly pronounced

during speculative asset price bubbles when optimism about future capital gains

reinforces current capital gains and induces a broad surge in lending and investment

3The real economic impacts are likely to be largest for debt-�nanced asset bubbles (Borio and
Lowe, 2004; Schularick and Taylor, 2012). A natural extension of the present paper is thus to
investigate the predictive content of excessive credit growth. This is not done here, as credit data
is only available on the quarterly frequency, limiting the scope for forecast evaluations.
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(cf. Bernanke and Gertler, 1999; Martin and Ventura, 2011, 2012). Thus, the signal

of an asset price bubble is likely to carry di�erent implications for output growth

over di�erent future horizons depending on when the bubble bursts.

We therefore assess the value of the available real-time asset price bubble indi-

cators in predicting output growth for up to two years in a monthly sample from

1975 to 2014. Here, we generally follow the recursive out-of-sample forecast experi-

ment of Stock and Watson (2003), evaluating the predictive gain of these indicators

against a large set of macroeconomic and �nancial predictors commonly used to

forecast output. Further, we assess if these bubble indicators can also improve upon

an autoregressive, dynamic factor model (DFM) that condenses the information

from the set of macroeconomic and �nancial predictors at each point in the sample.

Throughout the paper, we acknowledge the real-time availability of all data, taking

into account all publication lags and revisions.

We �nd that several indicators for asset price bubbles strongly improve upon the

autoregressive benchmark model for output and are routinely included in the Model

Con�dence Set (MCS) of superior models. In particular, the best stock price bubble

indicators are among the best ten of in total 248 forecast models for forecast horizons

from three to 18 months. In addition, we note that these indicators also provide the

most plausible bubble signals. Since bubble episodes on stock and housing markets

are not uniquely de�ned, and the available indicators provide di�ering bubble sig-

nals, our forecast assessment hence also o�ers an additional criterion to address the

quality of the indicators' real-time bubble signals. House price bubbles, however,

are more di�cult to detect but provide signi�cant predictive gains at the two year

horizon. We also show that stock and house price bubble indicators provide predic-

tive gains to the DFM that condenses the information of all rival macroeconomic

and �nancial predictors.

Finally, we address the question at which times asset price bubble indicators are

particularly useful for forecasting output. We again �nd that the most promis-

ing bubble indicators outperform the simple autoregressive forecasts both during

recessions and expansions. Furthermore, the relative gains to the AR model are

quantitatively comparable across the two regimes. This suggests that these bubble

indicators add valuable information to lagged values of output growth independent

of time. In contrast, the predictive accuracy of the conventional, non-bubble in-
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dicators varies strongly over time as noted also by Stock and Watson (2003) and

Rossi and Sekhposyan (2010) with their predictive gains stemming largely from the

three short recessionary periods in our sample. For expansion periods the predic-

tive value of conventional macroeconomic and �nancial indicators is considerably

smaller. In contrast, adding the binary indicators for asset price bubbles to the AR

model strongly improves its forecast. Speci�cally, the eight best forecasts during

expansions are all provided by bubble-augmented AR models. All in all, we thus

show that the most accurate real-time indicators for asset price bubbles are promis-

ing alternative predictors for real economic activity. By this, we provide evidence

that these indicators are consistently linked to amplifying or dampening output at

di�erent horizons as predicted by the theoretical literature. This suggests that these

indicators are indeed capable of detecting true bubble episodes in real-time.

The remainder of this paper is structured as follows. The next section introduces

the bubble indicators and applies them to U.S. stock and housing market data.

Further, we also present the set of alternative predictors and their transformations

in this section. Section 3.3 then describes the forecast experiment and the evaluation

statistics. Section 3.4 presents the results, and Section 3.5 concludes.

3.2 Real-time indicators for asset price bubbles

We assess the predictive content of three classes of real-time monitoring indicators for

asset price bubbles: six speci�cations of the recursive (or rolling) tests for explosive

roots in asset prices and fundamentals developed by Phillips et al. (2011, 2015),

two speci�cations of indicators based on price deviations from one-sided HP-�ltered

trends, and nine speci�cations of combination indicators developed in Chapter 2.

This provides us with a total of 17 real-time monitoring indicators for asset price

bubbles. In the following, we brie�y describe all indicators which follow exactly the

speci�cations outlined in Chapter 2. The reader of the previous chapter may hence

skip to Section 3.2.4.

3.2.1 Detecting explosive bubble processes by unit-root tests

The tests of Phillips et al. (2011, 2015) build on the insights of Diba and Grossman

(1988) that a rational asset price bubble can only be sustained when the bubble
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component in an asset's price grows exponentially at the rate of interest in expec-

tation.4 Assuming that the underlying fundamental series (e.g. dividends Dt) is

I(1), this implies that any explosive behavior of the observable price series (Pt)

must stem from the presence of a (rational) bubble.5 The monitoring approaches

by Phillips et al. (2011, 2015) hence build on sequentially testing both the price and

the fundamental series for explosive growth.

Speci�cally, these approaches apply right-tailed ADF tests of the null hypothesis

H0 : δ = 1 against its alternative H1 : δ > 1 by estimating the ADF equation

zt = µz + δzt−1 +
J∑
j=1

φj∆zt−j + vt, t = 1, . . . , τ, vt
iid∼ N(0, σ2

v) (3.1)

for both prices (pt) and fundamentals (dt) individually, i.e. zt ∈ {pt, dt}, or for

their log-ratio, i.e. zt = pt − dt, with pt = log(Pt) and dt = log(Dt). Speci�cally,

these tests are carried out sequentially at each margin in the sample, i.e. for each

τ = τ0, τ0 +1, . . . , T . This can be done by recursive or rolling regressions of (3.1) and

provides a series of ADF tests for prices (ADFp,τ ) and fundamentals (ADFd,τ ) when

both series are tested individually. A bubble is then signaled at each τ for which

ADFp,τ ≥ cvadfαT (τ), while ADFd,τ < cvadfαT (τ). Similarly, when testing the log-ratio,

a bubble is signaled at each τ for which ADFpd,τ ≥ cvadfαT (τ).

As emphasized in Chapter 2, the choice of whether testing prices and fundamentals

sequentially, or testing their ratio, in�uences the outcome. In particular, under the

null hypothesis of no bubble the log-ratio is stationary (Campbell and Shiller, 1987,

1988; Cochrane, 1992). Testing the individual series thus provides a larger power

against the null hypothesis than testing the log-ratio. While this implies a higher

chance of detecting explosive growth in prices in the bubble scenario, it also raises

the chance of false positive signals about explosive growth in the dividend series. In

this case, a true bubble would be missed. In contrast, testing the log-ratio assesses

the relative growth rates of the two series, allowing to detect periods of an emerging

asset price overvaluation when prices grow faster than dividends.

4See Camerer (1989) for a derivation of this condition and further extensions of the rational bubble
framework.

5Scherbina and Schlusche (2014) provide a survey on behavioral explanations for explosive, bubbly
asset price increases.
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First, we employ the binary bubble indicators of Phillips et al. (2011) by es-

timating (3.1) either recursively (denoted by PWY 11•rec) or by rolling windows

(PWY 11•rol). Here, • ∈ {i, r} denotes the indicator based on testing the individual

series (• = i), or based on testing their ratio (• = r). These indicators take the

value one for each τ for which a bubble is signaled. The recursive approach starts at

τ0 = br0T c, where r0 ∈ (0, 1) is the minimum share of T for which (3.1) is estimated.

For the rolling estimation approach, the window size is �xed at τ0. Critical values

are given by cvadfαT (τ) = log(log(τ))/100 for the recursive approach, and a constant

cvadfαT (τ) = log(log(τ0))/100 for the rolling window estimation (Phillips et al., 2011).6

While Phillips et al. (2011) show that their approach is capable of detecting sin-

gle bubble processes in asset prices, Phillips et al. (2015) �nd that it has trou-

bles to �restart� after a �rst bubble has collapsed, and frequently misses any sec-

ond or further bubble in the sample. Therefore, the authors extend the work of

Phillips et al. (2011) and augment the forward recursive regressions by testing all

possible backward extending windows at each given margin τ2. Speci�cally, this

approach not only moves the estimation end point τ2 forward for each recursive

regression from τ2 = τ0, . . . , T , but also assesses all possible backward expanding

windows from the start point τ1 ∈ [0,max(τ2 − τ0, 1)] for a given τ2. For a given

end point τ2 ∈ [τ0, T ] and all possible start points τ1 ∈ [1,max(τ2 − τ0, 1)], the

sequence of ADF test statistics is denoted by {ADF τ2
τ1
}. The unique test statis-

tic at τ2, BSADFτ2 , is then obtained by taking the supremum of this sequence,

i.e. BSADFτ2 = sup
τ1∈[1,τ2−τ0]

{
ADF τ2

τ1

}
. The two binary indicators PSY 15•, with

• = {i, r}, then take the value one for each τ2 for which BSADFτ2 exceeds the

critical value cvbsadfαT
(τ2).7

6Following the authors, we set r0 = 0.1 for the recursive estimation and r0 = 0.2 for the rolling
window approach. The lag order J is determined at each τ by the Akaike Information Criterion
(AIC) with Jmax = 12.

7Critical values for the BSADFτ2 statistic are obtained from simulations using the MATLAB code
provided by Shu-Ping Shi on her website (https://sites.google.com/site/shupingshi/home/
research). Following Phillips et al. (2015), the initial sample size is set to r0 = 0.01 + 1.8√

T
and

the lag order in (3.1) is �xed to J = 1.
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3.2.2 Bubbles as price deviations from an HP-trend

Prior to Phillips et al. (2011), the literature commonly de�ned asset price bubbles

as an �excessive� deviation of the real price series from its one-sided HP-�ltered

trend. This builds on the assumption that the asset's fundamentals follow a slow-

moving trend (e.g. Detken and Smets, 2004; Adalid and Detken, 2007; Assenmacher-

Wesche and Gerlach, 2010). As such, this indicator can potentially capture periods

in which large deviations of prices from their past trend occur, regardless of the

speed of this accumulation process. We therefore also include two speci�cations

of bubble indicators based on the HP-�lter. Following Assenmacher-Wesche and

Gerlach (2010), we de�ne a bubble to occur when the real asset price exceeds its

trend by a threshold of at least κhp, with κshp = 10% for stock price bubbles and

κhhp = 7.5% for house price bubbles. The smoothing parameter λ for estimating the

trend component follows Assenmacher-Wesche and Gerlach (2010) but is adjusted to

the monthly frequency, i.e. λ = 8,100,000. In addition to a recursive trend estimate,

denoted by HPrec, we also employ a rolling estimation with window size ω = 96,

denoted by HProl. Following the literature, we do not update past estimates of the

trend as new observations arrive, but use the margin τ and past price observation

only to estimate the τ trend value.

3.2.3 Combination approaches to real-time bubble detection

As shown by Phillips et al. (2015) and extended in Chapter 2 all individual indicators

feature complementary strengths and weaknesses depending on their exact speci�-

cation, and depending on the characteristics of the bubble process. For instance,

Phillips et al. (2015) show that their indicator more often detects a second bubble

in the sample compared to the indicators of Phillips et al. (2011), which, however,

comes at the cost of a lower power to detect the �rst bubble. A natural way to

aggregate the information content across indicators is thus to combine signals from

all individual indicators. This can be implemented following the two approaches

developed in Chapter 2. As shown in this chapter several of these combinations

outperform the individual indicators with regard to their signal accuracy. We hence

also assess the predictive ability of these combination indicators.

First, we aggregate the information content of the individual indicators based on

the simple counting approach developed in Chapter 2. In particular, this indicator
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counts how many of the eight individual indicators B = {PWY 11irec, PWY 11rrec,

PWY 11irol, PWY 11rrol, PSY 15i, PSY 15r, HPrec, HProl} simultaneously signal a

bubble. If this number exceeds a threshold κ, the combination indicator BCombτ,κ

takes the value one. The caveat of this approach is that the optimal choice for κ

is not clear. Therefore, we explore the predictive value for all possible choices for

κ = 1, . . . , 8. To rule out the trivial case of BCombτ,κ = 0 ∀ τ , we require that BCombτ,κ = 1

for at least one τ .8

Second, we employ the econometric combination indicator developed in Chapter 2.

This indicator addresses the limitation of the indeterminacy of the threshold choice κ

and allows to control the overall size of the approach. Speci�cally, this combination

builds on the multiple testing approach of Romano and Wolf (2005), taking into

account the correlation structure between the individual test statistics. For this,

it is required that all included tests provide comparable test statistics which rules

out the inclusion of the HP indicators. As in Chapter 2, we will use this algorithm

to combine the three indicators PWY 11irec, PWY 11irol, and PSY 15i. The general

idea of this test is to order the (studentized) test statistics associated with the three

indicators at each margin τ by size, and then to assess whether the largest one

exceeds the critical value. This critical value is obtained from bootstrap simulations

and controls the familywise error rate (FWE) to be no greater than α = 0.05, with

the FWE being de�ned as the probability that at least one test falsely rejects the

true null hypothesis H0 : δ = 1. We denote the combination indicator obtained from

this application of the Romano and Wolf (2005) algorithm as BRWτ .

3.2.4 Stock and house price bubbles in the U.S.

Figures 3.A.1 to 3.A.4 display the signals obtained from all individual and combina-

tion indicators when applied to monthly U.S. stock and housing market data for the

period from 1975M1 to 2014M12. For stock prices, we choose the S&P 500 index

as the most relevant stock market index that captures around 75% of the total U.S.

market capitalization. Naturally, the underlying fundamental series of the stock

price index is the associated dividend series. For house prices, however, the choice

of the underlying fundamental series is more controversial. Here, we follow Pavlidis

8This provides us with eight counting combination indicators BCombτ,κ for stock markets, while for

house price data, BCombτ,κ = 0 ∀ τ for κ > 5.
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et al. (2014) and employ real disposable income per capita as a measure for the

fundamental determinant of house prices. By this we aim to measure the a�ord-

ability of housing.9 Assuming that households devote a constant share of their total

income to renting, house prices should grow only at the growth rate of per capita

real disposable income.10

Figure 3.A.1 shows the bubble episodes for the S&P 500 index as detected by

the indicators of Phillips et al. (2011, 2015) and by the indicators based on the

HP-�lter. Overall, there is a strong heterogeneity in the provided signals, with

only few indicators providing plausible signals throughout. The most plausible real-

time bubble signals are provided by the PWY 11irol and the PSY 15i indicators,

detecting both the bubble preceding the 1987 �Black Monday� crash and the dot-com

bubble. Their counterparts testing the log-ratio of prices and dividends both signal

a negative bubble following the global �nancial crisis. Both PWY 11•rec indicators

do not provide false positive signals after the crisis, but instead miss the crash of

the dot-com bubble, providing signals well into 2002. Finally, the HP indicators

capture the 1987 and dot-com bubbles at an early stage, yet generally provide the

most (false) signals. Therefore, the PWY 11irol and the PSY 15i indicators can be

expected to provide the best forecasts for output.

Figure 3.A.1 however also showed that some common periods for asset price bub-

bles emerge. Therefore, combinations of such indicators can be a promising tool to

focus on these periods only, while discarding false positive signals by the di�erent

individual indicators. These signals from the combination indicators are displayed in

9All stock and house price data are obtained from the online supplement of Shiller (2005) available
at http://www.econ.yale.edu/~shiller/data.htm. All price and dividend series are de�ated
by the real-time U.S. Consumer Price Index from the Real-Time Data Set of the Federal Reserve
Bank of Philadelphia. The data for real disposable income per capita is obtained from FRED.

10This measure is of course a simpli�cation as it discards changes in mortgage rates, or related
tax rates. See Himmelberg et al. (2005) for a discussion of this issue. Nonetheless, we think
that our measure is preferred to other approaches such as using rent series as the underlying
fundamental for several reasons. First, rent series are generally measured with great error only
and do not account for the intrinsic value of owning a house. Secondly, the causality structure
between rental and purchase prices for housing is ambiguous. In case of high market power on
the home owners' side, it is possible that rising purchase prices induce rising rent prices, thus
leading to explosive growth in both series during a housing bubble. Eventually, this development
is likely not sustainable, yet the indicators described above would not signal a bubble.
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Figure 3.A.2.11 For a threshold choice of κ = 2, the counting combination indicator

appears to detect too many bubble episodes to be plausible. Choosing κ = 6, in

contrast, appears to be too restrictive as this combination misses the 1987 bubble

and provides an instable signal during the dot-com bubble. For threshold choices in

between, however, the �gure reveals the strengths of this approach. For κ = 3, . . . , 5

only the pre-�Black Monday� bubble and the dot-com bubble are detected, with

accurate collapse dates. Similarly, also the econometric combination BRWτ provides

reasonable signals for these two periods but the dot-com bubble collapse is only

detected in 2001M2.

Figures 3.A.3 and 3.A.4 display the results for house price bubbles. Overall,

the ratio of house prices to disposable income per capita is less volatile than the

price to dividend ratio for the S&P 500 index. This appears to provide a strong

challenge to the available bubble indicators, especially for the PWY 11•rec indicators

(failing to detect prolonged bubble episodes) and the PSY 15r indicator (providing

too many signals). The most plausible signals for the housing bubble preceding

the global �nancial crisis are provided by the HPrec and the PWY 11irol indicators.

When aggregating signals through combinations, again a threshold of κ = 3 or

κ = 4 provides the most promising signals. Also, the econometric approach tends

to provide bubble signals only during pronounced boom periods, yet its signal is

inherently instable during the run of the housing bubble. Overall, the predictive

ability of the most promising indicators for house price bubbles is likely to be limited

due to the lack of a pronounced bubble early in the sample.

3.2.5 Other predictors

As a reference to compare the predictive ability of the N = 31 bubble indicators to

other commonly used predictors for output growth we include a comprehensive set

of 46 macroeconomic and �nancial variables. Speci�cally, we include real economic

variables comprising measures of output, capacity utilization, the labor market, (en-

ergy and commodity) prices, as well as �nancial variables namely interest rates, their

spreads, and exchange rates. We also include stock prices, dividends, earnings, house

prices, and housing starts as related indicators to our bubble indicators. Further, in

11We suppress the signals from the simple counting indicators with κ = 1, 7, 8 for ease of presen-
tation, noting that setting κ = 1 induces strong overdetection while combinations with κ = 7, 8
provide too few signals.
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in our benchmark AR model speci�cations, we do not pre-test any of the predictors

for stationarity but directly consider both levels as well as up to four transforma-

tions of each variable. These are �rst (D1) and second di�erences (D2), as well as

month-on-month (P1) and year-on-year (P12) percentage changes.12 This provides

us with a total of M̃ = 216 candidate non-bubble predictors. We take into account

the real-time availability of all data, considering both publication lags and revisions

where necessary. Stock prices and dividends are unrevised and available immedi-

ately, such that the stock price bubble indicators are timely available. House prices

and disposable income per capita are available with a publication lag of two months.

For an overview of all variables, their publication lag, and the transformations see

Table 3.B.2.

3.3 Real-time forecast experiment and evaluation

In this section, we �rst describe our pseudo-out-of-sample forecast experiment. Sec-

ond, we outline our forecast evaluation statistics.

3.3.1 Model speci�cations

To evaluate the predictive content of the bubble indicators, we follow the set-up of

Stock and Watson (1999, 2003), and assess each bubble indicator's forecast accuracy

relative to an autoregressive (AR) benchmark model, and relative to the set of

macroeconomic and �nancial predictors. Speci�cally, we �rst construct a large set

of competitor models, consisting of the AR and the AR augmented by each of the

exogenous predictor variables (ARX) individually. Second, we evaluate the value

of the binary bubble indicators against a model that draws on all the information

provided by the large set of macroeconomic and �nancial indicators. For this, we

augment an autoregressive model by factors extracted from the set of predictor

variables as in Stock and Watson (1999). We now describe these two forecast set-

ups in order.

First, we compare the predictive ability of all candidate models to the benchmark

univariate AR model of output growth. For this, we sequentially augment the AR

12Since spreads are zero at times, their percentage changes are not de�ned and thus discarded from
the set of predictors. This is denoted by `a' in the respective columns in Table 3.B.2.
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model by one of the candidate predictors from Table 3.B.2 or from the set of stock

and house price bubble indicators. Following the literature of, for example, Stock

and Watson (1999, 2003), Rossi and Sekhposyan (2010), and Ulbricht et al. (2016),

our forecast speci�cation at margin τ for the individual model m = 0, 1, . . . ,M

(M = 247) for forecast horizon h is given by

yht+h = αm,h +

P+l0∑
p=l0

βm,h,pyt−p +

Qm+lm∑
q=lm

γm,h,qxm,t−q + uhm,t+h, t = 1, . . . , τ (3.2)

where yht+h is the annualized growth rate of the IPT index at time t over the next

h months, i.e. yht+h = 1200
h

log
(
IPTt+h
IPTt

)
. As in the literature, the lagged dependent

variable is speci�ed in �rst log-di�erences, i.e. yt = 1200 log
(

IPTt
IPTt−1

)
. Further, xm,t

is the single candidate predictor for model m, uhm,t the respective error term, and

αm,h, βm,h,p, γm,h,q are (model-, horizon-, and lag-speci�c) regression coe�cients. For

the benchmark AR model (m = 0), all γm,h,q = 0 so that the third term disappears.13

We take into account all dimensions of the real-time availability of all variables. For

this, l0 takes on the value of the publication lag of IPT (i.e. l0 = 1) and lm is the

publication lag of the candidate predictor (as given in the fourth column of Table

3.B.2). Further, we consider the speci�c vintage τ data as available at the time of

the forecast for all real economic predictors (see column six of Table 3.B.2). By this,

we account for all revisions as well as recalculations of seasonal adjustment factors

in real economic data as provided by the responsible statistical agency. Finally, the

optimal lag lengths P and Qm are determined at each forecast margin τ using the

Bayesian Information Criterion (BIC) for a maximum lag length of twelve months.

Speci�cally, we �rst determine the lag length P of the AR model, and holding this

P �xed, we then estimate the optimal Qm for each candidate model, but require

Qm ≥ 1. We repeat this for each h-speci�c model at each margin τ .

Second, we evaluate the predictive value of the bubble indicators against an au-

toregressive dynamic factor model as employed by Stock and Watson (1999). The

authors show that such models may provide better in�ation forecasts than AR(X)

models. Therefore, we follow the approach of Stock andWatson (1999) and construct

factors as the principal components from the M̆ = 180 stationary macroeconomic

13If the candidate predictor shows no variation (e.g. no bubble signal) up to the forecast margin
τ , the benchmark AR forecast is applied instead.
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and �nancial predictors X̆t = [x1,t, . . . , xM̆,t]
′ from all M̃ = 216 transformations as

available at time τ .14 We thus obtain a k-dimensional vector of factors Ft with

0 < k << M̆ condensing the information from all conventional predictors. The

optimal number of factors k is determined by the Bai and Ng (2002) criterion from

a maximum of K = 5 factors.15 We then adapt the autoregressive model in (3.2) by

adding the factors as

yht+h = αi,h +

P+l0∑
p=l0

βi,h,pyt−p +
R∑
r=1

δi,h,rF
′
t−r +

Q̃i+li∑
q=li

γ̃i,h,qbi,t−q + uhi,t+h (3.3)

where R is the optimal lag length of the vector of factors, and bi,t−q with i = 1, . . . , N

is one indicator from the set of N = 31 stock and house price bubble indicators not

included in the construction of factors. For this evaluation, the benchmark model

is now the dynamic factor model (DFM) with all γ̃i,h,q = 0.

However, constructing the factors Ft from the entire set of the M̆ (transformed)

macroeconomic and �nancial predictors can be criticized as some of these predictors

may not provide valuable information for predicting output, but nonetheless assert

strong in�uence on the shape of the factors. To discard these variables, we also

construct factors from a preselected set of the most promising candidate predictors

at each margin τ . For this, we follow Bai and Ng (2008) and employ the Elastic

Net regularization and variable selection method of Zou and Hastie (2005). This

method performs a penalized least squares estimation of the augmented AR

yht+h = α + βyt + γX̆t + eht+h (3.4)

where we again acknowledge the real-time availability of each predictor in X̆t. Specif-

ically, the elastic net estimate of β = [α, β, γ]′ is given by β̂ = (1+λ2) arg minβ |y−

14We de�ne a predictor to be non-stationary if at least two of four tests indicate non-stationarity.
The tests are the ADF- and the Phillips-Perron (PP) tests with a constant and a linear trend,
and the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test with either level or trend stationarity
as the null hypothesis (Perron, 1988; Kwiatkowski et al., 1992). We �nd all macroeconomic and
�nancial predictors to be I(1) at most. The excluded level variables are denoted by `y' in column
`L' of Table 3.B.2.

15Speci�cally, the criterion for determining the number of factors k at margin τ = 1, . . . , T reads

as ICp2(k) = log(V (k))+k M̆+τ
M̆τ

log(min(M̆, τ)), where V(k) is the sum of squared residuals from
the k-factor model.

103



Chapter 3 Predicting Output with Real-Time Bubble Indicators

Xβ|2 + λ2|β|2 + λ1|β|1. Similar to the least absolute shrinkage and selection oper-

ator (LASSO) by Tibshirani (1996), this approach allows to obtain a sparse model

through the l1 norm dependent on the penalty term λ1. The quadratic part of the

penalty, on the other hand, encourages a grouped selection of correlated variables.

For a given λ2, we then obtain the �rst 30 of the M̆ = 180 variables, for which the

elastic net method provides non-zero parameter estimates.16 From this subset of 30

predictors, we then determine the factors and estimate the (augmented) dynamic

factor model as in (3.3).

For these three set-ups (ARX, DFM, and DFM with elastic net preselection), we

conduct a pseudo-out-of-sample forecast experiments based on data from 1975M1

to 2014M12 (T = 480) for forecast horizons of h = 0, 1, 3, 6, 9, 12, 18, 24 months.

The h = 0 horizon gives the nowcast for the unpublished IPT realization. The �rst

direct h-step forecasts are carried out in 1983M7 for all horizons from 1983M7 to

1985M7 (τ0 = 103 −max(l0, li) observations).17 At each iteration, the information

set is extended by one month (recursive approach), all 248 models are re-estimated,

the lag lengths P and Qm are updated and all h-step forecasts are made.

3.3.2 Forecast evaluation

We evaluate the models' forecast performance by simple (relative) forecast accuracy

and forecast rank measures, as well as by pairwise and joint tests on equal predictive

accuracy. For this, we �rst obtain the forecast errors of each model based on (revised)

data of 2014M12.

The �rst measure we construct is the root mean square prediction error (RMSPE)

given by

RMSPEm,h =

√∑T
t=τ0+h e

2
h,m,t

T − τ0 − h+ 1
, (3.5)

16We implement the elastic net estimation using the glmnet and elasticnet packages provided in
R and determine the λ2 penalty term using a 1,000-fold cross-validation approach. The choice
of 30 series follows Bai and Ng (2008) but we �nd our results to be robust when increasing this
choice to 50.

17As in the related literature, we only perform direct forecasts for h > 0. Also, predicting interim
values up to h is not feasible for the bubble indicators.
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where eh,m,t = (ŷhm,t+h−yt+h) is the h-step forecast error made by modelm in forecast

period t. In order to evaluate the forecast accuracy of each candidate predictor, we

employ the RMSPE ratio de�ned as RRm,h =
RMSPEm,h
RMSPE0,h

where model m = 0 is the

AR (or DFM) forecast. A RRm,h < 1 thus implies a better predictive accuracy of

the ARX model compared to the benchmark, non-augmented AR model. Further,

we provide the RMSPE rank of each model m at each forecast horizon h. The best

model is thus the model that achieves the overall smallest RMSPE.

To test whether the gains or losses from augmenting the simple AR or DFMmodels

by the alternative predictors are statistically signi�cant, we apply the modi�ed test

statistic of Clark and West (2007). As the conventional test by Diebold and Mariano

(1995) (DM test), this pairwise comparison assesses the null hypothesis that two

models perform equally well. For this, we de�ne the time t loss di�erence between a

candidate model m for horizon h and the benchmark as d0,m,h,t = e2
h,0,t− e2

h,m,t. The

null hypothesis of equal predictive ability is thus H0 : E(d0,m,h,t) = 0. The standard

DM test can, however, not be applied here since the benchmark model is nested

in the augmented model m, such that, under the null hypothesis, the additional

predictor variables do not provide new information to the benchmark forecast. Yet,

their estimation introduces additional noise to the forecast of the alternative model,

such that it must provide less accurate forecasts than the benchmark if the null

hypothesis is true. Consequently, the DM test of equal predictive accuracy must be

adjusted to account for the fact that the two models are nested. Clark and West

(2007) show that this adjustment is given by

CWm,h =
d̄h,m − āh,m

V̂ (d̄h,m − āh,m)
(3.6)

where d̄0,m,h is the estimated mean of d0,m,h,t and V̂ (.) is the estimated long-run

variance of the adjusted d0,m,h,t, with āh,m = 1
T−τ−h+1

∑T−h
t=τ (ŷh0,t+h − ŷhm,t+h)2.

While the Clark and West (2007) test allows to compare the accuracy of a can-

didate model to a predetermined benchmark, it does not identify the overall best

models as it is sensitive to the choice of the benchmark. Therefore, we also iden-

tify the 25 percent Model Con�dence Set (MCS) of Hansen et al. (2011).18 This

18The assumptions for the MCS require forecasts to be obtained from a rolling window estimation
approach. Thus, we present results for a pseudo-MCS here. For the forecast experiment of
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approach aims to identify a subset of superior modelsM? from the set of all mod-

els M . Here, the set of superior models outperform all inferior models in terms of

forecasting accuracy. This subset is hence de�ned as

M? ≡ {m ∈M : E(dm,j,h,t) ≤ 0 ∀ j ∈M} (3.7)

where E(dm,j,h,t) is the pairwise loss di�erential between models m and j based on

squared forecast errors as above. Thus, this procedure carries out one-by-one com-

parisons of all models, and attempts to successively eliminate the worst performing

model until the null hypothesis of equal predictive performance among all remain-

ing models cannot be rejected at con�dence level α. In the best case, when the

data is very informative, the MCS consists of one unique model. When the data is

uninformative, the procedure yields a subset of many, or even all, models.

Speci�cally, the MCS is obtained through the following steps with the candidate

MCSM = M at the �rst iteration.

1. The null hypothesis of equal predictive accuracy, i.e. H0,M : E(dm,j,h,t) ≤
0 ∀ m, j ∈M is assessed at signi�cance level α.

2. If H0 is rejected, the worst-performing model is eliminated fromM.

3. This is repeated until the null hypothesis cannot be rejected anymore. The

set of remaining models is then de�ned as the MCSM?
100(1−α), where we set

α = 0.25.

We test for equal predictive accuracy in step one using the Tmax,M statistic. For

this, we de�ne the t-statistic

tm,.,h =
d̄m,.,h√
V̂ (d̄m,.,h)

, (3.8)

where d̄m,.,h is the horizon h loss of model m relative to the average across models

in M, i.e. d̄m,.,h = n−1
∑

j∈M d̄m,j,h, with n = |M|. This t-statistic can then be

Stock and Watson (1999), Hansen et al. (2011) show that the results for the pseudo-MCS under
the recursive approach are very similar to the MCS obtained from a rolling window approach.
For our study, however, the predictive ability of the binary bubble indicators is limited when
conducting a rolling window estimation due to the sparsity of the bubble signals.
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used to assess the null Hm,.,h : E(d̄m,.,h) = 0. Hansen et al. (2011) show that the

null hypothesis H0,M de�ned in step one is equivalent to {Hm,.,h ∀ m ∈ M}, which
extends to {E(d̄m,.,h) ≤ 0 ∀ m ∈M}. Thus, the null hypothesis H0,M can be tested

using the statistic

Tmax,M = max
m∈M

tm,.,h, (3.9)

where the asymptotic distributions of these test statistics can be obtained using

bootstrap methods.19 If the null H0,M is rejected, the worst-performing model

must be eliminated. We identify this model by the elimination rule emax,M =

arg maxm∈M tm,.,h. This model has the largest standardized excess loss relative to

the average of all other models and thereby contributes the most to the test statistic.

Finally, we will not only assess the models' overall performance, but also their

forecast ability for output growth during expansion and recession periods. For this

subsample analysis, we evaluate the relative RMSPE ratios and the models' RMSPE

ranks based on forecast errors occurring during expansion and recession periods as

de�ned by the NBER.20 Since this yields series of nonconsecutive forecast errors, the

Clark and West (2007) test and the MCS evaluation are not de�ned. Figure 3.A.5

depicts the recession periods and the IPT series.

3.4 Results

3.4.1 Overall predictive accuracy

Table 3.4.1 displays the main results from our real-time pseudo-out-of-sample fore-

cast experiment for all forecast horizons h = 0, 1, 3, 6, 9, 12, 18, 24. The second row

displays the number of models included in the MCSM?
75. For most horizons except

for the nowcast (h=0), the MCS eliminates at least 60% of the models. The fewest

number of survival models are obtained for the one-year forecast horizons, for which

31 models are found to be superior to all excluded models.

19We implement this procedure using the MFE Toolbox implemented in Matlab by Kevin Sheppard,
available at https://www.kevinsheppard.com/MFE_Toolbox.

20These dates are available at www.nber.org/cycles.html. The results for the subsample perfor-
mance also hold when expansion and recession periods are de�ned based on the turning-point
algorithm by Bry and Boschan (1971) and Harding and Pagan (2002) for the target variable IPT.
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Table 3.4.1: ARX forecasts: relative RMSPE, forecast rank, and MCS
Horizon 0 1 3 6 9 12 18 24 Mean
MCS 154 61 81 95 36 31 63 106 80
AR 7.368 (98) 5.602 (107) 4.738 (99) 4.513 (115) 4.355 (130) 4.166 (131) 3.799 (127) 3.417 (138) 4.745 (124)
DFM .983 .981 1.008 1.032 1.021 1.030 1.012 1.034 1.009
DFM ELA .952 .918 .936 1.003 .983 .979 1.004 .976 0.965

Best non-bubble indicator
NAPM .932 (1) .984 (97)
NAPM .887 (1) .984 (97)
DY.D1 .916 (1) .945 (5)
DY.D1 .894 (1) .945 (5)
ENRG.P12 .899 (1) .933 (1)
ENRG.P12 .905 (1) .933 (1)
ENRG.P12 .892 (1) .933 (1)
T1YFFM .883 (1) .951 (12)

Stock price bubbles
HPrec .995 (45) 1.217 (239)
HProl .995 (48) 1.207 (235)
PWY 11irec .999 (80) .982 (36) .973 (38) .943 (30) .929 (52) .961 (84) .966 (42)
PWY 11rrec 1.001 (107) .989 (53) .987 (83) .977 (71)
PWY 11irol .990 (21) .987 (34) .967 (11) .956 (13) .927 (11) .925 (10) .909 (22) .922 (38) .948 (8)
PWY 11rrol .993 (32) .997 (83) .980 (31) .966 (18) .931 (12) .927 (12) .909 (26) .929 (52) .954 (16)
PSY 15i .997 (59) .975 (20) .956 (12) .922 (6) .915 (2) .895 (2) .916 (29) .947 (7)
PSY 15r 1.008 (170) .989 (51) .974 (41) .938 (19) .920 (40) .926 (46) .962 (34)

BCombτ,1 1.006 (157) 1.234 (241)

BCombτ,2 1.002 (113) .986 (116) 1.213 (237)

BCombτ,3 .989 (19) .981 (22) .957 (5) .947 (8) .920 (4) .917 (3) .905 (10) .925 (45) .943 (4)

BCombτ,4 .988 (14) .983 (25) .960 (6) .952 (9) .922 (7) .920 (6) .908 (21) .927 (47) .945 (6)

BCombτ,5 .993 (33) .991 (43) .963 (7) .955 (11) .926 (10) .923 (8) .910 (27) .927 (48) .948 (9)

BCombτ,6 .997 (57) .988 (35) .967 (10) .954 (10) .923 (8) .927 (13) .913 (31) .924 (42) .949 (11)

BCombτ,7 .998 (75) .990 (41) .973 (18) .968 (22) .938 (20) .916 (36) .923 (41) .955 (20)

BCombτ,8 .999 (82) .991 (42) .973 (17) .967 (20) .937 (18) .917 (38) .925 (43) .956 (22)

BRWτ .994 (41) .994 (54) .974 (19) .966 (17) .936 (16) .934 (19) .915 (35) .939 (56) .957 (25)

House price bubbles
HPrec 1.010 (146)
HProl .999 (79) .983 (37) .974 (39) .935 (14) .930 (17) .902 (5) .907* (22) .953 (13)
PWY 11irec .996 (49) .990 (56) .979 (57) .905 (11) .900* (13) .956 (21)
PWY 11rrec .998 (73) .925 (47) .916* (28) .966 (43)
PWY 11irol 1.004 (143) .979 (78)
PWY 11rrol 1.007 (167) .920 (41) .918* (33) .976 (63)
PSY 15i .998 (74) .995 (75) .913 (32) .908* (24) .963 (36)
PSY 15r .997 (65) .918* (35) .970 (51)

BCombτ,1 .993 (39) .991 (45) .990 (57) .982 (64) .931 (57) .918 (34) .966 (41)

BCombτ,2 .999 (85) .994 (65) .984 (71) .916* (30) .970 (48)

BCombτ,3 1.000 (94) .922 (45) .913* (27) .967 (45)

BCombτ,4 1.004 (135) .980 (81)

BCombτ,5 .995 (71) .985 (76) .977 (66)

BRWτ .997 (66) .979 (30) .978 (55) .938 (21) .935 (25) .915 (34) .923* (40) .958 (29)

Notes: The table shows the forecast performance of the ARX models. The second line displays the number of models
included in the MCS. The third line shows the RMSPE of the AR model and its horizon-speci�c rank among all models
in parentheses. The fourth and �fth line display the relative RMSPE of the DFM and the DFM with elastic-net
preselection. The top panel shows the relative RMSPE of the best performing non-bubble indicator for each forecast
horizon. The middle panel shows the same results for all stock price bubble indicators; the bottom panel gives the
results for the house price bubble indicators. Bubble indicators excluded from the MCS are not displayed for ease
of presentation. For forecasts denoted with `*', the hypothesis of equal predictive performance of the AR and the
candidate predictor is rejected at the ten percent signi�cance level by the Clark and West (2007) test. The best
indicators at each horizon for each class (stock vs. house, individual vs. combination) are highlighted in bold. Values
in italics are among the best ten percent of all models. The last column shows the mean value (relative) RMSPE across
all evaluated horizons.
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The third to �fth rows display the absolute RMSPE of the AR model, as well as

the relative RMSPE ratios for the DFM and the DFM with elastic net preselection

(DFM ELA). Also, the forecast rank of the AR is given in parentheses. Overall,

we �nd that the AR model performs around the median of all models with forecast

ranks of 98 to 138 and is excluded from the MCS for all horizons except for the now-

cast h = 0. This implies that on average across all horizons half of the ARX models

outperform the simple AR forecast. Furthermore, while the DFM based on all sta-

tionary transformations of all predictors does not outperform the AR model except

for h = 0 and h = 1, the DFM with elastic net preselection strongly outperforms

the AR except for two horizons (h = 6 and h = 18).

Turning to the individual indicators, the top panel displays the relative RMSPE

of the best non-bubble predictor for each forecast horizon. For short horizons,

the survey-based purchasing managers index (ISM Manufacturing: PMI Composite

Index, NAPM) performs best, outperforming the AR model by 6.8% to 11.3%.

Across all horizons, however, this index is only the 97th best model (see last column).

In contrast, the non-bubble indicators performing best at medium- to long-term

horizons are also among the best twelve predictors overall. These are the dividend

yield (in �rst di�erences, DY.D1), the year-on-year percentage change in the World

Bank Energy Index (ENRG.P12), and the term spread between one-year Treasuries

and the Federal Funds Rate (TY1FFM).21

While there is always one non-bubble indicator that outperforms all bubble indi-

cators, several bubble indicators are competitive in terms of forecast accuracy. The

middle panel shows the performance of the stock price bubble indicators, where we

suppress entries that are excluded from the MCS. Overall, we �nd that at least

eight out of 17 indicators are included in the MCS. Among these, the PWY 11irol
and PSY 15i indicators, as well as the combinations BCombτ,κ with κ = 3, . . . , 6 are the

best performing indicators, ranking fourth to eleventh overall. Among the individ-

ual indicators, the PWY 11irol provides the best forecasts for the short-term horizons

up to h = 3, while the PSY 15i is among the overall best indicators for h = 6 and

21Among the other overall best indicators are the dividend yield in levels (DY, 2nd overall), housing
starts (HSTARTS.P12, 3rd), and total capacity utilization (CUT.D2, 10th). Further, we �nd
that only few non-bubble ARX models are excluded from the MCS for all horizons. These are
denoted by `x' in Table 3.B.2. The share of excluded models is similar for all transformations,
such that several trending level variables are included in the MCS for at least some horizons.
This indicates that pretesting for and excluding I(1) predictors may discard relevant predictors.
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longer. Nonetheless, both are outperformed for horizons up to h = 12 by the simple

combinations BCombτ,κ with κ = 3, 4. It is noteworthy that these best individual and

combination indicators also provide the most plausible bubble signals as demon-

strated in Figures 3.A.1 and 3.A.2. In contrast, the HP indicators rank among the

worst indicators overall. Nonetheless, they do provide some valuable information

when combined with the unit root indicators to BCombτ,κ with κ ≥ 3.

The bottom panel shows the results for the house price bubble indicators. Gen-

erally, these indicators are frequently excluded from the MCS. Across all horizons,

however, these signals help to outperform the AR forecast. For the long-term fore-

cast of h = 24, they rank among the best 25 models, and their predictive gains

against the AR model are statistically signi�cant at the ten percent level. At this

horizon, they also outperform the stock price bubble indicators.

Since the DFM with elastic net preselection outperforms the AR models and all

bubble indicator-augmented models at most horizons, we assess the performance

of the bubble-augmented DFM in Table 3.B.3. Again, the best stock price bubble

indicators provide more accurate forecasts than the DFM with elastic net preselec-

tion. We thus conclude that these indicators provide additional predictive value for

output growth even when all information from a large set of conventional macroe-

conomic and �nancial predictors is already considered. This also suggests that the

bubble episodes detected by the best indicators are systematically related to higher

or lower future output growth.

3.4.2 Predictive accuracy in expansion and recession periods

As discussed in the introduction, the additional predictive value of such bubble indi-

cators may result from the causal e�ects that pronounced asset price appreciations

have on the economy by intensifying expansions during their boom and by causing

recessions after their burst. We therefore explore from which periods the predictive

gains of the bubble indicators stem.

For this, we replicate the previous results but condition on NBER expansion and

recession periods. Table 3.B.4 displays the forecast performance of all models for

NBER expansion periods. During expansions, the AR forecast is more accurate

in absolute and in relative terms. Speci�cally, the AR forecast now ranks 71st

overall (see the last column) versus 124th in the full-sample analysis. For the three-
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month horizon, only 16 models outperform the AR forecast. Again we display the

best performing non-bubble indicators in the upper panel. Since most periods are

expansion periods, the best performing non-bubble predictors are almost identical

to the ones for the full-sample evaluation. However, their overall forecast ranks and

their relative gains to the AR deteriorate. Moreover, we note that the DFM and the

DFM ELA only help to improve the immediate forecasts.

In contrast, the best performing bubble indicators from the full-sample analy-

sis again help to improve the forecast accuracy of the AR model. Speci�cally, stock

price bubble indicators now provide the overall seven best forecasts (see last column).

Again, these are the PWY 11irol and PSY 15i indicators, as well as the combinations

BCombτ,κ with κ = 3, . . . , 5. However, also the PWY 11rrol and the econometric com-

bination BRWτ are among the best seven predictors. Thus, we conclude that the

predictive gains of these binary indicators stems mostly from an upward correction

of the AR forecast during expansion periods.22 Since the DFM hardly outperforms

the AR benchmark, we do not show the results for the augmented DFM but only

note that most bubble indicators again help to improve forecasts from the DFM and

with DFM with elastic net preselection.

Table 3.B.5 shows the forecast performance during recession periods. For these

periods, the AR model performs considerably worse, both in absolute and in relative

terms. On average, 190 indicators help to improve the forecasts of the AR model.

The results for the best-non bubble indicators emphasize that their predictive value

is considerably higher during recession periods. In contrast, while the bubble indi-

cators continue to frequently outperform the AR model and rank among the best

100 models (top 40%), their predictive value is smaller than the one of the best

macroeconomic and �nancial predictors. However, it is important to note that this

�nding is obtained from 34 months of recessionary periods only. Moreover, the best

bubble indicators from the expansion or full-sample analysis again outperform the

AR forecast.

Furthermore, predictive gains during recessions can also be obtained from con-

densing the information from the best macroeconomic and �nancial predictors by

22We �nd that the full-sample parameter estimates γm,h,q for horizons h ≤ 9 are positive and
signi�cant for all best performing bubble indicators (see Table 3.B.7). For h > 9, the signs of
the most plausible indicators (PWY 11irol and BCombτ,3 , BCombτ,4 ) revert, presumably capturing the
ensuing recession.
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means of the DFM and the DFM with elastic net preselection, in particular. This

latter model now outperforms the AR model for all horizons. As shown in Table

3.B.6, this model can, however, be further improved by augmenting it by the BCombτ,3

combination indicator applied to stock prices or the PSY 15r indicator applied to

house prices. All in all, we thus conclude that real-time bubble indicators as pro-

posed by Phillips et al. (2011, 2015) and the combination indicators developed in

Chapter 2 provide a promising tool to detect asset (and in particular stock) price

bubbles in real-time, and that these signals can further be employed to help predict

future real economic activity.

3.5 Conclusion

In this paper, we explore whether available monitoring indicators for asset price

bubbles can help to improve forecasts for output growth in real-time. For this, we

compare them to a comprehensive set of 216 models based on macroeconomic and

�nancial indicators that are commonly used to predict real economic activity or in-

�ation. In particular, our set of real-time bubble indicators makes use of monitoring

tests for explosive growth in stock or house prices, of deviations from a HP-�ltered

trend, or of a simple counting or econometric combinations of these tests.

We �rst show that several indicators provide plausible signals for stock price

bubbles in real-time. Subsequently, we then show that these same bubble indicators

also help to improve output forecasts from an autoregressive model, and are among

the ten best overall predictors when compared to the large set of rival predictors.

Finally, we show that these predictive gains stem mostly from expansion periods in

output growth, but forecasts can also be improved during recession periods when

combining a dynamic factor model of the best conventional predictors with the most

promising bubble indicators. We therefore argue that real-time indicators for asset

price bubbles can provide useful supplementary information for output forecast.
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Appendix

3.A Figures

Figure 3.A.1: Bubble periods in the S&P 500 as detected by individual indicators
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Notes: The �gure shows the bubble periods in the S&P 500 as detected by the real-time individual
indicators. The top panel shows the indicators based on the HP-�lter (left: recursive, right:
rolling). The bottom three panels show the signals from the Phillips et al. (2011, 2015) indicators.
Here, the left panels show the indicators when applied to the price and dividend series individually.
The right bottom panels show the indicators when applied to the price-to-dividend (PtD) ratio.
The solid line plots the PtD ratio.
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Figure 3.A.2: Bubble periods in the S&P 500 as detected by combination indicators
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Notes: The �gure shows the bubble periods in the S&P 500 as detected by the counting combina-
tion indicators BCombτ,κ for di�erent threshold levels κ, and by the econometric combination BRWτ
(bottom right panel). See Figure 3.A.1 for further notes.
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Figure 3.A.3: Bubble periods in house prices as detected by individual indicators

1980 1990 2000 2010
0

100

200
HPrec

1980 1990 2000 2010
0

100

200
HProl

1980 1990 2000 2010
0

100

200
PWY 11

i

rec

P
ric

e−
to

−
In

co
m

e 
R

at
io

1980 1990 2000 2010
0

100

200
PWY 11

r

rec

1980 1990 2000 2010
0

100

200
PWY 11

i

rol

1980 1990 2000 2010
0

100

200
PWY 11

r

rol

1980 1990 2000 2010
0

100

200
PSY 15

i

1980 1990 2000 2010
0

100

200
PSY 15

r

Student Version of MATLAB

Notes: The �gure shows the bubble periods in U.S. house prices as detected by the individual
indicators. The indicators are ordered as in Figure 3.A.1. The left bottom three panels show
the Phillips et al. (2011, 2015) indicators applied to the real price and disposable income series
individually. The right bottom panels shows the indicators applied to the price-to-income (PtI)
ratio. The solid line plots the PtI ratio.
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Figure 3.A.4: Bubble periods in house prices as detected by combination indicators
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Notes: The �gure shows the bubbles periods in U.S. house prices as detected by the counting
combination indicators BCombτ,κ for di�erent threshold levels κ, and by the econometric combination

BRWτ (bottom right panel). See Figure 3.A.3 for further notes.
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Figure 3.A.5: NBER recession dates and total industrial production
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Notes: The �gure shows U.S. recession periods (grey bars) as de�ned by the NBER and the
evolution of the total industrial production index (IPT, right axis).
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3.B Tables

Table 3.B.2: Data: de�nitions, sources, lags and revisions, and transformations

Variable Identi�er Source Lag SA REV L D1 D2 P1 P12

Real economic variables

Industrial Production Index: Total IPT RTDS 1 yes yes y

Industrial Production Index: Manufacturing IPM RTDS 1 yes yes y x

ISM Manufacturing: PMI Composite Index NAPM FRED 1 - - x

Capacity Utilization Rate: Manufacturing CUM RTDS 1 yes yes x, y x x

Capacity Utilization Rate: Total CUT RTDS 1 yes yes y

Nonfarm Payroll Employment EMPLOY RTDS 1 yes yes y

Indexes of Aggregate Weekly Hours: Total H RTDS 1 yes yes x, y

Indexes of Aggregate Weekly Hours: Goods-

Producing

HG RTDS 1 yes yes x, y

Indexes of Aggregate Weekly Hours: Service-

Producing

HS RTDS 1 yes yes x, y

Housing Starts HSTARTS RTDS 1 yes yes y

Prices and Energy

Consumer Price Index all urban consumers CPI FRED 1 - - y

Core Consumer Price Index PCPIX FRED 1 - - x, y x x x

Producer Price Index (Finished Goods) PPI BLS 1 - - y x x

Core Producer Price Index (Finished Goods) PPPIX BLS 1 - - x, y x x

Nominal House Price Index HPI Shiller 2 - - y x

Spot Oil Price: West Texas Intermediate OILPRICE FRED 0 - - y x x

Crude Oil, Average of U.K. Brent, Dubai & West

Texas Intermediate, End of Period, USD

OILAVG MB 0 - - y x x

Commodity Indices, World Bank, Non-Energy In-

dex, End of Period, USD

NONENRG MB 0 - - y x

Commodity Indices, World Bank, Metals & Min-

erals Index, End of Period, USD

METAL MB 0 - - y

Commodity Indices, World Bank, Food Index,

End of Period, USD

FOOD MB 0 - - y

Commodity Indices, World Bank, Energy Index,

End of Period, USD

ENRG MB 0 - - y
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Data: de�nitions, sources, lags and revisions, and transformations (ctd.)

Variable Identi�er Source Lag SA REV L D1 D2 P1 P12

Financial variables

Nominal S&P 500 Index SP500 Shiller 0 - - y x

S&P 500 Dividends DIV Shiller 1 - - y x

S&P 500 Earnings EAR Shiller 4 - - x x x x

S&P 500, Index, Dividend Yield, Average of Period DY MB 0 - - y x

S&P 500, Index, P/E Ratio, Average of Period PE MB 0 - - x x x x x

E�ective Federal Funds Rate FEDFUNDS FRED 0 - - y x

3-Month Treasury Bill: Secondary Market Rate TB3MS FRED 0 - - y x x

3-Month Treasury Bill Minus Federal Funds Rate TB3SMFFM FRED 0 - - a a

6-Month Treasury Bill: Secondary Market Rate TB6MS FRED 0 - - y

6-Month Treasury Bill Minus Federal Funds Rate TB6SMFFM FRED 0 - - a a

1-Year Treasury Constant Maturity Rate GS1 FRED 0 - - y x

1-Year Treasury Constant Maturity Minus Federal

Funds Rate

T1YFFM FRED 0 - - a a

5-Year Treasury Constant Maturity Rate GS5 FRED 0 - - y x x

5-Year Treasury Constant Maturity Minus Federal

Funds Rate

T5YFFM FRED 0 - - a a

10-Year Government Bond Interest Rate GS10Y Shiller 0 - - y x x

10-Year Treasury Constant Maturity Minus Fed-

eral Funds Rate

T10YFFM FRED 0 - - a a

Moody's Seasoned Aaa Corporate Bond Yield AAA FRED 0 - - y x

Moody's Seasoned Aaa Corporate Bond Minus

Federal Funds Rate

AAAFFM FRED 0 - - x a a

Moody's Seasoned Baa Corporate Bond Yield BAA FRED 0 - - x, y x x x x

Moody's Seasoned Baa Corporate Bond Minus

Federal Funds Rate

BAAFFM FRED 0 - - x a a

3-Month AA Non�nancial Commercial Paper Rate CPNF3M MB 0 - - y x
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Data: de�nitions, sources, lags and revisions, and transformations (ctd.)

Variable Identi�er Source Lag SA REV L D1 D2 P1 P12

Exchange rates

Trade Weighted U.S. Dollar Index: Major Curren-

cies

TWEXMMTH FRED 0 - - x, y x

Canada / U.S. Foreign Exchange Rate EXCAUS FRED 0 - - y

Japan / U.S. Foreign Exchange Rate EXJPUS FRED 0 - - x, y

Switzerland / U.S. Foreign Exchange Rate EXSZUS FRED 0 - - y

U.S. / U.K. Foreign Exchange Rate EXUSUK FRED 0 - - y

Notes: The table lists the set of macroeconomic and �nancial predictors used to forecast industrial production

(IPT). The sources are the Real-Time Dataset for Macroeconomists from the Federal Reserve Bank of Philadelphia

(RTDS), the Federal Reserve Economic Data from the Federal Reserve Bank of St. Louis (FRED), the Bureau

of Labor Statistics (BLS), Macrobond (MB), and the stock and housing market data provided by Robert Shiller

(Shiller) available at http://www.econ.yale.edu/~shiller/data.htm. Column `Lag' displays the publication lag

in months. `SA' denotes which series are seasonally adjusted and `REV' denotes which series are revised after

initial publication. The last �ve columns indicate the di�erent transformations of the raw data: level (L: xt), �rst

di�erences (D1: ∆xt = xt − xt−1), second di�erences (D2: ∆2xt = ∆xt − ∆xt−1), month-to-month percentage

changes (P1: 1200
xt−xt−1

xt−1
) or year-on-year percentage changes (P12: 100

xt−xt−12

xt−12
). Entries denoted by `a' are not

included in the forecast exercise as the series are not de�ned at some margins. Entries denoted by `x' are included in

the forecast exercise but are found to be eliminated from the Model Con�dence Set (MCS) for all forecast horizons.

Entries denoted by `y' are found to be non-stationary by at least two tests for stationarity and are thus excluded

from the construction of factors for the DFM.
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Table 3.B.3: Forecasts from augmented DFM with elastic-net preselection
Horizon 0 1 3 6 9 12 18 24 Mean
DFM ELA 7.014 (13) 5.141 (23) 4.434 (17) 4.526 (8) 4.282 (7) 4.078 (19) 3.813 (14) 3.334 (10) 4.578 (14)

Stock price bubbles
HPrec .999 (10) .982 (1) 1.063 (30)
HProl 1.063 (29)
PWY 11irec .994 (9) 1.009 (21)
PWY 11rrec 1.017 (26)
PWY 11irol .993 (8) .989 (5) .992 (5) .993 (5) .986 (5) .994 (5) .994 (6)
PWY 11rrol 1.009 (22)
PSY 15i .994 (6) .989 (3) .977 (2) .982 (1) .987 (1) .992 (4)
PSY 15r 1.015 (27)

BCombτ,1 .999 (9) 1.076 (32)

BCombτ,2 1.071 (31)

BCombτ,3 .986 (2) .976 (1) .985 (1) .985 (1) .975 (1) .989 (2) .988 (1)

BCombτ,4 .998 (8) .987 (3) .981 (2) .989 (3) .988 (2) .980 (3) .995 (6) .991 (2)

BCombτ,5 .994 (10) .982 (3) .991 (4) .990 (4) .983 (4) .995 (7) .993 (3)

BCombτ,6 .993 (2) .991 (4) .991 (6) 1.000 (9) .998 (6) .989 (7) .996 (8) .995 (7) .994 (5)

BCombτ,7 .997 (5) .993 (7) .994 (8) 1.001 (8) .994 (10) .992 (2) .996 (7)

BCombτ,8 .998 (6) .994 (4) .998 (9)

BRWτ .993 (7) 1.000 (10) 1.001 (9) 1.002 (16)

House price bubbles
HPrec .998 (7) 1.027 (28)
HProl .993 (4) .994 (3) 1.002 (19)
PWY 11irec 1.001 (10) .992 (3) .995 (5) .999 (12)
PWY 11rrec .993 (9) .998 (8) 1.002 (18)
PWY 11irol .994 (3) .994 (9) 1.001 (13)
PWY 11rrol 1.015 (25)
PSY 15i .995 (10) .999 (7) 1.003 (17)
PSY 15r 1.013 (24)

BCombτ,1 .988 (4) .987 (2) .987 (6) .998 (8)

BCombτ,2 .999 (9) 1.012 (23)

BCombτ,3 .991 (8) .998 (9) .995 (6) 1.000 (15)

BCombτ,4 .993 (1) .993 (6) 1.000 (11)

BCombτ,5 .996 (4) .992 (5) .998 (10) .998 (10)

BRWτ 1.005 (20)

Notes: The table shows the forecast performance of the (augmented) dynamic factor model (DFM) with elastic-net
preselection for all forecast horizons given in the �rst line. The second line shows the RMSPE of the DFM with
elastic-net preselection and its horizon-speci�c rank among all models in parentheses. The top panel shows the
RMSPE (relative to the DFM ELA model) and rank of all stock price bubble indicators; the bottom panel shows
the same results for the house price bubble indicators. Only the ten best bubble indicators at each horizon are
shown for ease of presentation. See Table 3.4.1 for further notes.
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Table 3.B.4: ARX forecasts: NBER expansion periods
Horizon 0 1 3 6 9 12 18 24 Mean
Obs. 344 344 344 344 344 344 344 344
AR 6.345 (100) 4.390 (69) 3.315 (17) 2.873 (32) 2.892 (97) 3.031 (96) 3.088 (117) 2.929 (123) 3.608 (71)
DFM .993 1.014 1.063 1.173 1.148 1.098 1.083 1.078 1.067
DFM ELA .977 .970 1.023 1.128 1.081 1.033 1.083 1.048 1.031

Best non-bubble indicator
NAPM .949 (1) .994 (57)
NAPM .902 (1) .994 (57)
T1YFFM .965 (1) .968 (10)
DY.D1 .934 (1) .973 (13)
DY.D1 .884 (1) .973 (13)
DY.D1 .894 (1) .973 (13)
ENRG.P12 .873 (1) .967 (9)
T1YFFM .882 (1) .968 (10)

Stock price bubbles
HPrec .992 (55) 1.339 (239)
HProl .991 (50) 1.311 (233)
PWY 11irec .986 (32) 1.004 (92) 1.026 (77) 1.026 (64) .929 (11) .934 (11) .919 (34) .968 (84) .977 (18)
PWY 11rrec .993 (56) 1.046 (92) .968 (59) .968 (60) .943 (68) .983 (97) .997 (64)
PWY 11irol .976 (8) .992 (36) 1.010 (50) 1.010 (50) .922 (9) .917 (9) .895 (7) .924 (29) .960 (4)
PWY 11rrol .975 (7) .988 (32) 1.001 (22) 1.012 (53) .926 (10) .916 (8) .891 (4) .925 (33) .958 (3)
PSY 15i .985 (27) 1.024 (72) 1.009 (46) .916 (6) .914 (7) .891 (5) .920 (25) .965 (7)
PSY 15r .991 (52) .994 (42) 1.018 (62) 1.008 (42) .951 (23) .959 (43) .920 (35) .935 (49) .976 (16)

BCombτ,1 .997 (78) 1.350 (241)

BCombτ,2 .989 (40) 1.316 (235)

BCombτ,3 .976 (9) .985 (23) .992 (7) .997 (28) .907 (3) .899 (2) .885 (2) .924 (28) .951 (1)

BCombτ,4 .974 (6) .987 (27) .998 (14) 1.004 (36) .910 (5) .901 (4) .887 (3) .924 (27) .953 (2)

BCombτ,5 .981 (16) .999 (65) 1.003 (24) 1.009 (43) .920 (8) .912 (5) .894 (6) .927 (39) .961 (5)

BCombτ,6 .989 (38) .999 (61) 1.015 (56) 1.006 (39) .919 (7) .933 (10) .911 (21) .930 (42) .968 (11)

BCombτ,7 .991 (48) 1.002 (78) 1.026 (79) 1.039 (84) .951 (20) .944 (17) .914 (29) .931 (44) .978 (24)

BCombτ,8 .991 (51) 1.002 (80) 1.025 (76) 1.037 (81) .948 (18) .945 (22) .914 (30) .932 (46) .978 (23)

BRWτ .981 (14) 1.002 (79) 1.017 (60) 1.009 (45) .908 (4) .913 (6) .899 (10) .944 (52) .964 (6)

House price bubbles
HPrec 1.058 (154)
HProl .988 (36) 1.005 (95) 1.049 (95) .951 (22) .946 (23) .903 (14) .921 (26) .981 (33)
PWY 11irec .981 (17) .998 (59) .958 (32) .948 (26) .897 (8) .906 (7) .977 (19)
PWY 11rrec .983 (22) 1.003 (88) .976 (68) .983 (76) .923 (37) .925 (32) .990 (45)
PWY 11irol .998 (88) .998 (90) .960 (89) .970 (89) 1.014 (108)
PWY 11rrol .998 (85) .985 (77) .923 (39) .926 (37) 1.014 (112)
PSY 15i .985 (28) 1.003 (89) .974 (67) .981 (74) .910 (20) .917 (21) .991 (47)
PSY 15r .990 (43) .986 (76) .995 (86) .947 (74) .925 (31) 1.004 (80)

BCombτ,1 .983 (20) 1.001 (73) .983 (72) .985 (78) .940 (59) .931 (45) .993 (53)

BCombτ,2 .986 (31) 1.003 (87) .990 (82) .945 (72) .925 (34) .998 (67)

BCombτ,3 .987 (33) .973 (64) .987 (80) .923 (38) .920 (24) .994 (58)

BCombτ,4 .997 (79) 1.002 (99) .963 (93) .967 (83) 1.014 (111)

BCombτ,5 .988 (80) .992 (85) .962 (92) .971 (90) 1.011 (101)

BRWτ .983 (21) 1.003 (86) 1.032 (86) 1.056 (110) .945 (16) .942 (13) .914 (28) .925 (35) .978 (21)

Notes: The table shows the forecast performance the (augmented) AR models during NBER expansion periods. The
second line shows the number of months de�ned as expansion periods. Only bubble indicators that rank among the best
100 predictors (or the best stock and house price bubble indicator at a given horizon) are shown for ease of presentation.
See Table 3.4.1 for further notes.
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Table 3.B.5: ARX forecasts: NBER recession periods
Horizon 0 1 3 6 9 12 18 24 Mean
Obs. 34 34 34 34 34 34 34 34
AR 13.897 (112) 12.295 (171) 11.624 (183) 11.754 (186) 1.961 (185) 9.636 (181) 7.452 (203) 5.835 (212) 1.432 (191)
DFM .962 .937 .960 .937 .921 .957 .877 .912 .937
DFM ELA .897 .845 .858 .919 .908 .921 .849 .762 .877

Best non-bubble indicator
SP500.P12 .868 (1) .879 (16)
SP500.P12 .780 (1) .879 (16)
SP500.P1 .678 (1) .842 (7)
ENRG .677 (1) .739 (3)
OILAVG .587 (1) .738 (2)
OILAVG .548 (1) .738 (2)
METAL .595 (1) .780 (6)
METAL .518 (1) .780 (6)

Stock price bubbles
HPrec 1.000 (108) .953 (60) .896 (30) .896 (30) .937 (93) .921 (85) .880 (62) .933 (51)
HProl .960 (68) .905 (41) .905 (35) .923 (47) .956 (107)
PWY 11irec .965 (120)
PWY 11rrec .965 (121)
PWY 11irol .931 (94) .922 (46) .931 (74) .934 (97) .951 (92)
PWY 11rrol .938 (96) .933 (81) .967 (123)
PSY 15i .933 (96) .923 (50) .925 (51) .915 (60) .901 (57) .905 (96) .946 (76)
PSY 15r .928 (61) .925 (72) .919 (80) .903 (92) .966 (122)

BCombτ,1 .938 (100) .901 (90) .960 (111)

BCombτ,2 .935 (85) .929 (91) .911 (69) .879 (59) .958 (109)

BCombτ,3 .928 (85) .916 (37) .929 (64) .950 (86)

BCombτ,4 .928 (88) .918 (40) .931 (76) .952 (97)

BCombτ,5 .930 (91) .921 (44) .930 (69) .934 (99) .951 (95)

BCombτ,6 .974 (100) .925 (75) .921 (43) .925 (49) .921 (68) .916 (76) .908 (99) .944 (73)

BCombτ,7 .927 (84) .922 (48) .928 (63) .926 (76) .920 (83) .904 (93) .946 (75)

BCombτ,8 .928 (86) .923 (52) .930 (68) .927 (86) .923 (91) .905 (95) .947 (79)

BRWτ .962 (113)

House price bubbles
HPrec .972 (97) .913 (55) .928 (70) .953 (101)
HProl .925 (74) .917 (38) .923 (46) .915 (59) .899 (54) .870 (53) .940 (67)
PWY 11irec .933 (97) .927 (65) .935 (87) .927 (87) .918 (79) .886 (68) .951 (89)
PWY 11rrec .930 (80) .940 (99) .928 (99) .893 (81) .955 (106)
PWY 11irol .927 (81) .926 (62) .930 (73) .927 (79) .950 (88)
PWY 11rrol .928 (71) .935 (89) .927 (78) .913 (72) .899 (89) .951 (94)
PSY 15i .932 (95) .926 (60) .933 (80) .931 (94) .918 (78) .885 (67) .950 (87)
PSY 15r 1.012 (160) .973 (98) .919 (66) .932 (87) .938 (96) .929 (92) .911 (68) .902 (91) .946 (77)

BCombτ,1 .926 (78) .929 (78) .939 (98) .914 (75) .884 (65) .948 (80)

BCombτ,2 .934 (98) .926 (64) .937 (94) .925 (96) .893 (80) .953 (100)

BCombτ,3 .932 (83) .938 (97) .934 (100) .921 (86) .896 (84) .955 (104)

BCombτ,4 .928 (87) .927 (67) .932 (77) .928 (88) .953 (98)

BCombτ,5 .925 (77) .924 (56) .929 (65) .925 (75) .949 (84)

BRWτ .927 (68) .934 (82) .927 (80) .917 (77) .953 (99)

Notes: The table shows the forecast performance of selected predictors during NBER recession periods. The second line
shows the number of months de�ned as recession periods. Only bubble indicators that rank among the best 100 predictors
(or the best stock and house price bubble indicator at a given horizon) are shown for ease of presentation. See Table 3.B.4
for further notes.
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Table 3.B.6: Forecast from augmented DFM with elastic-net preselection: NBER
recession periods

Horizon 0 1 3 6 9 12 18 24 Mean
DFM ELA 12.468 (26) 1.394 (28) 9.972 (5) 1.801 (5) 9.951 (10) 8.874 (25) 6.324 (20) 4.448 (12) 9.154 (19)

Stock price bubbles
HPrec .981 (3) .969 (2) .984 (3) 1.000 (6) .993 (8)
HProl .985 (5) .976 (4) .988 (4) .978 (1) .969 (1) .949 (1) .963 (1) .989 (3) .975 (1)
PWY 11irec .985 (4) .982 (5) 1.002 (21)
PWY 11rrec 1.008 (25)
PWY 11irol .996 (12)
PWY 11rrol 1.036 (30)
PSY 15i .987 (8) .984 (8) .978 (6) .986 (5) .986 (2) .992 (6)
PSY 15r 1.044 (32)

BCombτ,1 1.005 (9) .939 (1) .997 (15)

BCombτ,2 1.014 (28)

BCombτ,3 .987 (7) .982 (6) 1.001 (7) .999 (6) .975 (3) .982 (3) .998 (7) .992 (4)

BCombτ,4 .986 (6) .983 (7) 1.001 (6) .999 (5) .977 (4) .984 (4) .992 (5)

BCombτ,5 .986 (10) 1.002 (10) 1.006 (10) 1.000 (9) .980 (8) .987 (7) .999 (10) .993 (9)

BCombτ,6 .985 (9) 1.000 (8) .978 (5) .987 (6) .990 (4) .994 (10)

BCombτ,7 .982 (10) .994 (5) .996 (13)

BCombτ,8 .998 (8) .998 (17)

BRWτ .987 (10) 1.001 (8) .989 (10) .996 (11)

House price bubbles
HPrec 1.041 (31)
HProl 1.002 (9) .999 (4) .993 (3) .98 (9) .982 (2) .999 (9) .992 (7)
PWY 11irec 1.005 (7) .999 (7) .997 (16)
PWY 11rrec 1.005 (8) 1.001 (20)
PWY 11irol 1.006 (24)
PWY 11rrol 1.023 (29)
PSY 15i 1.004 (22)
PSY 15r .975 (1) .962 (1) .969 (1) .992 (3) .992 (2) .978 (7) .989 (8) .980 (2)

BCombτ,1 .981 (2) .974 (3) .972 (2) .991 (2) .998 (4) .973 (2) .989 (9) .996 (6) .983 (3)

BCombτ,2 1.009 (26)

BCombτ,3 1.010 (27)

BCombτ,4 1.005 (23)

BCombτ,5 .999 (18)

BRWτ .987 (9) .996 (14)

Notes: The table shows the forecast performance of the (augmented) dynamic factor model (DFM) with elastic-
net preselection during NBER recession periods. See Table 3.B.3 for further notes.
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Table 3.B.7: Full sample parameter estimates for stock price bubble indicators
Horizon 0 1 3 6 9 12 18 24

HPrec .200 (4.32) .190 (5.38) .138 (4.47) .110 (3.93) .098 (3.79) -.251 (.61) -.191 (.54) -.115 (.37)
HProl .199 (4.30) .187 (5.34) .139 (4.50) .110 (3.96) .099 (3.84) -1.219 (3.01) -1.667 (4.72) -1.639 (5.29)
PWY 11irec .195 (4.22) .186 (5.27) .136 (4.41) .107 (3.85) .095 (3.71) 2.318 (3.04) 2.086 (3.14) 1.929 (3.34)
PWY 11rrec .198 (4.28) .188 (5.32) .136 (4.41) .107 (3.84) .095 (3.69) 2.045 (2.58) 1.663 (2.41) 1.227 (2.04)
PWY 11irol .200 (4.33) .190 (5.38) .138 (4.46) .109 (3.92) .098 (3.78) -1.113 (1.79) -1.119 (2.07) -1.093 (2.32)
PWY 11rrol .200 (4.32) .189 (5.36) .138 (4.48) .110 (3.94) .099 (3.81) -.302 (.52) -.497 (.99) -.583 (1.33)
PSY 15i .199 (4.30) .189 (5.35) .138 (4.46) .109 (3.91) .098 (3.77) .343 (.71) .203 (.48) .089 (.24)
PSY 15r .199 (4.31) .189 (5.36) .137 (4.46) .109 (3.91) .098 (3.77) -.864 (1.56) -.947 (1.96) -.970 (2.31)

BCombτ,1 .200 (4.33) .190 (5.41) .139 (4.52) .110 (4.01) .099 (3.89) -1.527 (4.09) -1.615 (4.98) -1.468 (5.17)

BCombτ,2 .197 (4.26) .188 (5.31) .137 (4.44) .108 (3.88) .097 (3.74) .468 (1.13) .284 (.78) .307 (.97)

BCombτ,3 .200 (4.32) .189 (5.36) .138 (4.47) .109 (3.92) .098 (3.78) -.020 (.04) -.269 (.56) -.377 (.90)

BCombτ,4 .199 (4.31) .189 (5.36) .138 (4.47) .109 (3.92) .098 (3.78) -.081 (.14) -.306 (.61) -.438 (1.01)

BCombτ,5 .200 (4.33) .189 (5.37) .138 (4.47) .110 (3.93) .098 (3.79) -.636 (1.04) -.791 (1.49) -.892 (1.93)

BCombτ,6 .198 (4.28) .188 (5.32) .137 (4.45) .109 (3.89) .097 (3.76) .563 (.75) .003 (.00) -.277 (.49)

BCombτ,7 .199 (4.31) .189 (5.36) .138 (4.47) .109 (3.93) .098 (3.79) .983 (1.07) .853 (1.07) .479 (.69)

BCombτ,8 .199 (4.29) .188 (5.34) .138 (4.46) .109 (3.92) .098 (3.78) 1.017 (.97) 1.151 (1.26) 1.031 (1.29)

BRWτ .199 (4.31) .189 (5.36) .138 (4.47) .109 (3.93) .098 (3.79) .110 (.21) -.178 (.38) -.317 (.78)

Notes: The table shows full-sample parameter estimates of the bubble indicators for di�erent horizons h given in the
top row. The parameters are obtained from estimating the augmented autoregressive model given in (3.2). Absolute
values of the t-statistics are provided in parentheses.
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CHAPTER 4

Monetary Policy and Mispricing in Stock Markets1

4.1 Introduction

The appropriate response of central banks to excessive asset price developments is

subject of intense debate. While some researchers and policy makers advance the

conventional view that central banks should focus solely on price and output stabi-

lization (Bernanke and Gertler, 1999; Posen, 2006), others call for an active, �leaning

against the wind� (LATW) monetary policy (Borio and Lowe, 2002; Cecchetti et al.,

2002). This policy prescribes that central banks should monitor asset prices closely

for the presence of bubbles, de�ned as periods when prices deviate excessively from

their fundamentally justi�ed value. If a bubble is detected, the central bank should

raise the policy rate to attenuate asset mispricing and to contain the risks for �nan-

cial and macroeconomic stability.

For an asset price targeting monetary policy to be feasible, however, two key re-

quirements need to be ful�lled. First, a monetary policy tightening must not only

lower asset prices, but speci�cally the possibly non-zero mispricing component in

asset prices. Second, this response of the mispricing component needs to be su�-

1This chapter is based on joint work with Kerstin Bernoth. We thank Klaus Adam, Refet Gürkay-
nak, Helmut Herwartz, Helmut Lütkepohl, as well as participants at the IFABS 2016 Conference,
Barcelona; the 14th INFINITI Conference on International Finance, Dublin; the 33rd Interna-

tional Symposium on Money, Banking and Finance, Clermont-Ferrand; the Conference on �Chal-

lenges of European Integration� at University of Bonn, the 2015 DIW Berlin Macroeconometric
Workshop, and seminar participants at Bundesbank, Norges Bank, University of Hamburg, Uni-
versity of Göttingen and Halle Institute for Economic Research (IWH) for helpful comments and
suggestions.
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ciently large such that a monetary intervention is not too costly in terms of in�ation

or output depression.2 Hence, the LATW policy prescription builds strongly on the

notion that an increase in interest rates reduces an asset price bubble substantially.

Yet, this paradigm is challenged by Galí (2014), who argues that the bubble compo-

nent in asset prices must grow in expectation at the rate of interest according to the

theory on rational asset price bubbles. This argument receives empirical support

from Galí and Gambetti (2015), who �nd that the bubble component increases fol-

lowing a monetary policy tightening. Raising the policy rate to combat an emerging

asset price bubble would hence carry adverse e�ects and, in fact, exacerbate mis-

pricing. Importantly, this also implies that a central bank faces a trade-o� between

stabilizing asset markets and in�ation when an asset price boom is accompanied by

a boom in real activity.3

In this paper, we challenge the theoretical predictions and empirical �ndings of

Galí (2014) and Galí and Gambetti (2015) along three dimensions. First, we extend

the theoretical analysis beyond the concept of rational bubbles to a more general

notion of stock mispricing following Brunnermeier and Julliard (2008). More specif-

ically, we allow for mispricing to arise (i) from a violation of the transversality con-

dition; and/or (ii) from false expectations of irrational investors about the stock's

underlying fundamentals, namely discounted future dividends and equity risk pre-

mia. While we do not attempt to empirically identify the source of mispricing,

this framework carries important implications for the predicted response of stock

mispricing to monetary policy shocks. Speci�cally, we emphasize that the ultimate

e�ect of a monetary policy shock on the mispricing component in stock prices is

ambiguous both in the short and in the long run and depends on how market par-

ticipants form their expectations. Only if one assumes that all agents are rational,

mispricing arises in the form of a rational bubble and one can remove the ambigu-

ity about its response to obtain long-run bubble growth following a contractionary

policy shock as in Galí (2014).

Second, we show that when the change in the required equity risk premium is not

taken into account as in Galí and Gambetti (2015), any deviation from the funda-

2Furthermore, it is required that asset price bubbles can be detected in real-time. Promising
real-time indicators have been proposed by Phillips et al. (2011, 2015) as discussed in Chapter 2.

3As argued in Chapter 3 this is likely the case since asset price booms alleviate borrowing con-
straints for households and �rms, and by this spur consumption and investment (Kiyotaki and
Moore, 1997; Bernanke et al., 1999).
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mental stock price would be incorrectly attributed to mispricing. Our theoretical

framework predicts stock prices to fall in response to a contractionary monetary

policy shock not only due to the rational updating of agents' expectations about

lower future dividends, higher real interest rates, but also due to a higher equity

risk premium demanded by investors. All these factors must hence be accounted for

before inference on the response of the mispricing component is possible. To obtain

an unbiased estimate of the mispricing component, we therefore need measures for

the expectations about both future dividends and the equity premium (Cochrane,

2011). Following a broad literature initiated by Campbell (1991), we obtain these

expectations from forecasts of a stock pricing Vector Autoregressive (VAR) model.

We then empirically decompose the stock price response to monetary policy shocks

into its three economic sources: the response of the expected fundamental com-

ponent related to the stream of future discounted dividends, the response of the

expected equity premium, and the response of the mispricing component. By this,

we also extend the work of Bernanke and Kuttner (2005), who decompose the stock

price into a fundamental component and the equity risk premium. Allowing also for

the possibility of stock mispricing, we �nd a quantitatively similar contribution of

the fundamental component's response, but a smaller contribution of the response

of the expected equity premium to the overall response of stock prices to a monetary

policy shock.

Third, we challenge the empirical �ndings of Galí and Gambetti (2015) by em-

ploying a less restrictive strategy to identify monetary policy shocks in the data. The

authors use a recursive identi�cation scheme building on the assumption that mone-

tary policy shocks move stock prices instantaneously but that the central bank does

not respond within the quarter to idiosyncratic stock price movements. Only under

this scheme they �nd that the mispricing component in stock prices increases follow-

ing a contractionary monetary policy shock. However, the assumption that the U.S.

FED does not respond contemporaneously to stock price shocks (including economic

news captured by stock price movements) is disputable and is rejected by Lütkepohl

and Netsunajev (2014), who test this assumption by exploiting heteroskedasticity

in the data. Further empirical evidence indicates that the FED reacts to stock

price innovations, at least in some periods (Rigobon and Sack, 2004; Bjørnland and

Leitemo, 2009; and Furlanetto, 2011). Thus, we allow for two-way contempora-
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neous responses between stock prices and the policy rate. We implement this by

imposing both zero restrictions on impact and in the long run following Bjørnland

and Leitemo (2009) and by augmenting these with sign restrictions employing the

methodological advances by Arias et al. (2014) and Binning (2013). Similar to Galí

and Gambetti (2015), we evaluate the response of the mispricing component in asset

prices to monetary policy shocks not only in a VAR with constant coe�cients but

also in a time-varying coe�cient (TVC) VAR following the speci�cation of Primiceri

(2005). A TVC-VAR has the advantage that we can take into account that the size

and direction of the stock price response to monetary policy shocks might not be

constant over time but depends on the size of the mispricing component.

We �nd that a monetary policy tightening lowers stock prices signi�cantly. How-

ever, only about one third of the impact response in stock prices can be attributed

to changes in expectations about future dividends, the real interest rate, and the eq-

uity premium. Hence, we conclude that the reduction in stock prices largely results

from a decline in the mispricing component. We also �nd that the response of the

mispricing component to monetary policy shocks is larger during periods of (exces-

sive) stock price booms such as during the dot-com bubble of the 1990s. By this, we

provide support to the arguments of the proponents of an active LATW monetary

policy that a contractionary monetary policy may help to combat excessive asset

price growth.4 However, this comes at the cost of lower economic growth and a

signi�cant reduction in in�ation. We conclude from this that a LATW monetary

policy might not always be the recommended policy tool to combat excessive stock

price developments, especially when excessive stock price booms arise in times of

recession and low in�ation. Nonetheless, our results provide comfort to monetary

policy makers who want to contain in�ationary risks during times when a an asset

price boom is accompanied by a boom in real economic activity. In contrast to the

implications of Galí (2014), we �nd that raising the policy rates to reduce in�a-

tion does not increase but also reduces mispricing on asset markets. Finally, our

results are di�cult to align with the theoretical predictions of the rational bubble

framework, but are in accord with a concept of stock mispricing arising from false

subjective beliefs of irrational investors.

4This �nding is, of course, subject to the Lucas' critique (Lucas, 1976).
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The remainder of this paper is structured as follows. Section 4.2 formally lays out

our accounting framework to decompose stock prices into a fundamental component,

the expected risk premium, and a mispricing component. We also discuss how and

through which channels monetary policy a�ects these di�erent stock price deter-

minants. Section 4.3 outlines our empirical approach: We describe the TVC-VAR

model and the identi�cation strategy employed in our empirical analysis. Section

4.4 describes the data and our measures of expected dividends and the expected

equity risk premium. We discuss our results in section 4.5. Section 4.6 concludes.

4.2 An accounting framework for asset prices

We employ a simple accounting framework based on the asset pricing equation to

decompose the stock price into its fundamental component, an equity risk premium,

and a mispricing component. This framework helps to guide our empirical impulse

response accounting strategy and lays out the theoretically predicted impact of a

monetary policy shock on the stock prices and its components. These theoretical

predictions will then guide our identi�cation strategy to disentangle monetary policy

shocks from other structural shocks. Our framework di�ers from Galí (2014) and

Galí and Gambetti (2015) in two ways: First, we relax the assumption that the

expected stock price return (the discount factor) equals the risk free return. Instead

we allow for the presence of a (time-varying) expected equity risk premium. Second,

we generalize their concept of the mispricing component potentially present in stock

prices. The authors discuss theoretical predictions for the response of this mispricing

component to monetary policy shocks under the assumption that it takes the form of

a rational bubble when all investors are fully rational. We abstract from this narrow

de�nition by following the argumentation of Campbell and Vuolteenaho (2004) and

Brunnermeier and Julliard (2008) that stock mispricing may also occur due to false

subjective believes of irrational investors on future fundamentals and risk premia.

We begin with the standard asset pricing equation. Let Pt and Dt be a stock's

market price and dividend at the end of period t or accrued over period t, respec-

tively. The net return on the stock between date t and t+ 1 is then given by:

Rt+1 =
Pt+1 +Dt+1

Pt
− 1 (4.1)
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One can then show that the stock price is a function of future dividends Dt+i, the

required net stock return Rt+i, and a terminal value:

Pt =
∞∑
i=1

(
i∏

j=1

1

1 +Rt+j

)
Dt+i + lim

T→∞

(
T∏
j=1

1

1 +Rt+j

)
Pt+T . (4.2)

In log-linear form (less a constant) the stock pricing equation can then be written

as:5

pt =
∞∑
i=1

ρi−1 [(1− ρ)dt+i − rt+i] + lim
T→∞

(
ρTpt+T

)
, (4.3)

where logs of variables are denoted by lowercase letters, rt+1 = log(1 +Rt+1) and ρ

is a parameter of the linearization de�ned as ρ ≡ 1/
(
1 + exp(d− p)

)
, where

(
d− p

)
is the long-run average log dividend-price ratio (such that 0 < ρ < 1) (Campbell

et al., 1996).6

We introduce an equity premium to the pricing equation by deducting the real

risk free rate, rft , measured by the real return on a long-term government bond,

from both dividends and the required stock return. Hence, we can rewrite (4.3) in

terms of excess dividends, det = (1 − ρ)dt − rft , and excess returns (the equity risk

premium) that compensate investors for holding risky equity instead of alternative

safe investments, such as government bonds ret = rt − rft :

pt =
∞∑
i=1

ρi−1det+i −
∞∑
i=1

ρi−1ret+i + lim
T→∞

(
ρTpt+T

)
(4.4)

Thus, the stock price re�ects the discounted value of future excess dividends, an

equity premium measured by the discounted value of future excess stock returns,

and a terminal value.

5A derivation of equation (4.3) is shown in Appendix 4.A.
6Campbell et al. (1996) shows with U.S. data that the average dividend-price ratio has been about
4% annually, implying ρ ≈ 0.99 when applied to quarterly data.
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4.2.1 Expectations and asset (mis)pricing

Following equation (4.4), today's stock price depends on future realizations of funda-

mentals and of the stock price itself. This means that agents' expectations about the

future will determine the current stock price. Following Campbell and Vuolteenaho

(2004) and Brunnermeier and Julliard (2008), we allow for the possibility that some

investors are irrational, and hold subjective expectations at time t, denoted by Ẽt,

about future realizations of det and r
e
t . These expectations obtained under the sub-

jective probability measure may deviate from objective expectations Et that are

consistent with the rational processing of objective data.7 Nevertheless, both ex-

pectations are conditioned on the same information set Ωt available at time t, as

indicated by the subscript on E and Ẽ. Hence, taking objective and subjective

expectations of (4.4) yields

pt = Et

[
∞∑
i=1

ρi−1det+i

]
− Et

[
∞∑
i=1

ρi−1ret+i

]
+ Et

[
lim
T→∞

(
ρTpt+T

)]
(4.5)

= Ẽt

[
∞∑
i=1

ρi−1det+i

]
− Ẽt

[
∞∑
i=1

ρi−1ret+i

]
+ Ẽt

[
lim
T→∞

(
ρTpt+T

)]
, (4.6)

respectively. The equality of equations (4.5) and (4.6) holds since the current ob-

served stock price must re�ect both rational and irrational investors' expectations

about future excess dividends and equity premia for them to participate in the mar-

ket. However, these expectations about the paths of both variables might di�er

between both types of investors. This means, for example, that irrational investors

who require a high risk premium, Ẽt
[
ret+i
]
, also expect to receive higher excess

dividends in the future, Ẽt
[
det+i

]
. Yet, when irrational investors are present, the

observed price pt may deviate from its true fundamental value. This is observed

by rational investors who, on average, form correct expectations about future fun-

damentals Et
[
det+i

]
and therefore adjust their required future equity risk premium

Et
[
ret+i
]
such that their stock holdings are in equilibrium. This change in Et

[
ret+i
]

then ensures that (4.5) and (4.6) hold at the observed price level (Brunnermeier and

Julliard, 2008).

7For a further elaboration on this concept, see Manski (2004) and Brunnermeier and Parker (2005).
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By adding and subtracting
(
Et
[∑∞

i=1 ρ
i−1det+i

]
− Et

[∑∞
i=1 ρ

i−1ret+i
])

from (4.6),

we observe that the stock price pt can be written as the sum of three components: a

fundamental component, pFt , measured by the discounted value of expected future

excess dividends; an equity premium, ept, measured by the discounted value of

expected future excess stock returns; and a mispricing component, ψt:

pt = Et

[
∞∑
i=1

ρi−1det+i

]
︸ ︷︷ ︸

pFt

−Et

[
∞∑
i=1

ρi−1ret+i

]
︸ ︷︷ ︸

ept

+ψt, (4.7)

where ψt is de�ned as:

ψt = (Ẽt − Et)

[
∞∑
i=1

ρi−1det+i

]
− (Ẽt − Et)

[
∞∑
i=1

ρi−1ret+i

]
+ Ẽt

[
lim
T→∞

(
ρTpt+T

)]
.

(4.8)

Thus, the observed stock price pt deviates from its objectively justi�ed fundamental

value when (i) irrational investors are present, whose subjective expectations deviate

from objective expectations of rational investors; or (ii) the transversality condition

under the subjective measure does not hold, i.e. Ẽt

[
lim
T→∞

(
ρTpt+T

)]
6= 0. If one

assumes, however, that all agents form expectations under the objective probability

measure, mispricing may only result from a violation of the transversality condi-

tion under objective expectations, i.e. ψt = Et

[
lim
T→∞

(
ρTpt+T

)]
. Thus, only if all

investors are of the rational type and ψt is non-zero, mispricing occurs due to the

existence of a rational bubble and investors are fully aware of it.8 Without these

restrictive assumptions, however, mispricing can result from false subjective expec-

tations of investors. This is in line with Adam et al. (2015), who also show that

subjective belief dynamics can temporarily delink stock prices from their fundamen-

tal value and give rise to asset price booms.9 As such, the concept presented here is

less restrictive than the one described by Galí (2014) and Galí and Gambetti (2015),

who explain mispricing entirely with the presence of a rational bubble.

8For example, this can be explained in the context of overlapping generations models (see the survey
of Stiglitz (1990) for a larger discussion) or in the context of intrinsic bubbles, as introduced by
Froot and Obstfeld (1991).

9For a further extensive survey on the literature relating speculative behavior to irrational and
behavioral factors, see Scherbina and Schlusche (2014).
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4.2.2 E�ects of monetary policy on stock prices

Our accounting framework illustrates that monetary policy shocks may a�ect stock

prices via all its three components. To guide our empirical analysis, we discuss these

three sources in turn.

First, economic theory points to a decrease of the fundamental component of

stock prices in response to a contractionary monetary policy shock for two reasons:

First, a monetary tightening decreases future economic growth and, by this, also

�rms' pro�ts and future dividend pay-outs. Moreover, since in�ation is expected

to decrease following the contractionary policy shock and nominal interest rates

increase, real risk-free rates also rise (Bernanke and Kuttner, 2005). As a result, the

fundamental component is predicted to fall in response to a contractionary monetary

policy shock:10

∂pFt+k
∂εmt

=

[
∞∑
i=1

ρi−1∂Et(d
e
t+k+i)

∂εmt

]
< 0 (4.9)

Second, the expected equity premium is likely to rise following an exogenous mon-

etary tightening for two reasons. First, there is evidence for a (non-linear) �nancial

accelerator mechanism of monetary policy via balance sheet e�ects of �rms and

banks, which implies that a monetary tightening is associated with higher borrow-

ing costs and reduced loan supply. In e�ect, this increases the risk of lower future

�rm pro�ts. Importantly, the increase in risk can be expected to be larger during

times of already tight monetary policy when loan supply is already low and �rms'

�nancial health is poor, which calls for a modeling strategy that accounts for this

time-variation (Patelis, 1997). Second, as outlined by Gust and López-Salido (2014),

a contractionary monetary policy may also reduce participation in risky asset mar-

kets and thereby decrease market liquidity and risk sharing, which would result in a

10An opposing prediction could be obtained if the monetary policy surprise provides new infor-
mation to market participants who are less informed about future output and in�ation than the
central bank. A monetary policy tightening may then signal higher expected future economic
growth and, thus, lead to an upward revision of market participants' expectations about future
excess dividends. However, we assume that market participants and the central bank share the
same information set. Second, by restricting excess dividends to fall following a contractionary
monetary policy shock, we also o�er fundamental variables the best chance to explain a possible
decrease in stock prices. Our empirical results are quantitatively robust to when we allow for a
positive response of expected excess dividends.
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higher equity risk premium required by investors today. Hence, an exogenous mon-

etary tightening can be expected to raise the equity premium that rational investors

require to be compensated for the increase in risk:

∂ept+k
∂εmt

=

[
∞∑
i=1

ρi−1∂Et(r
e
t+k+i)

∂εmt

]
> 0. (4.10)

Since the expected equity risk premium enters the stock pricing equation negatively,

this lowers the current stock price further. Therefore, in absence of a mispricing

component, a contractionary monetary policy shock would induce an immediate fall

in stock prices through both the fundamental and the risk premium component.

In contrast to the responses of these components, the response of the mispricing

component ψt is open to debate. The conventional view of LATW policy propo-

nents builds on the notion that (excessive) stock prices typically fall in response to

a contractionary monetary policy shock. In a similar vein, a monetary loosening

should therefore propagate stock overpricing. This claim �nds empirical support

from e.g. Borio and Lowe (2002), who argue that accommodative monetary policy

may, in a low-in�ationary environment, stimulate asset price bubbles. Similarly,

Bordo and Landon-Lane (2013) �nd that several measures of loose monetary policy

can be consistently related to periods that are demarcated as asset price booms,

even when controlling for other explanatory variables such as credit and current

account imbalances. However, these papers are silent about whether an observed

asset price boom is driven by stronger fundamentals and a lower equity premium,

or by mispricing, and therefore do not allow for drawing any conclusions on the

justi�cation for a LATW monetary policy. Here, the �ndings of Adam et al. (2015)

provide some �rst tentative evidence that a contractionary monetary policy shock

may help to attenuate excessive stock price behavior. The authors �nd that about

two-thirds of the �uctuations in U.S. stock prices are not due to fundamental fac-

tors, but result from self-reinforcing beliefs in the sense that agents become more

pessimistic about future capital gains whenever they are negatively surprised by

past capital gains, and vice versa. A negative capital gains surprise in the previous

period then increases pessimism about future capital gains and leads to an asset

price bust. Thus, this result indicates that an unexpected decrease in capital gains

136



Chapter 4 Monetary Policy and Mispricing in Stock Markets

in response to a contractionary monetary policy shock would lead to a downward

correction of the excessive stock price component.

However, the view that contractionary monetary policy helps to reduce excessive

stock prices is questioned by Galí (2014). If all investors are fully rational and

form objective expectations about the future, mispricing may only occur in the

form of a rational bubble. In this case, the bubble component must grow at the

required rate of return on stocks in expectation.11 Thus, since both the risk-free

interest rate and the expected equity premium are predicted to increase in response

to a contractionary policy shock, an increase in the policy rate will also raise the

expected long-run growth rate of the bubble component. This holds, however, only

in expectation for each period after the policy shock. On impact, the response

of a rational bubble component is, in fact, indeterminate.12 However, Galí (2014)

disregards that mispricing may also occur from the presence of irrational investors.

Thus, the impact of monetary policy shocks on the stock mispricing component

depends on how investors form their expectations and is therefore not only indeter-

minate on impact but also in the long run, i.e.:

∂ψt+k
∂εmt

=

[
k∑
i=1

ρi−1(Ẽt − Et)
∂det+i
∂εmt

]
−

[
k∑
i=1

ρi−1(Ẽt − Et)
∂ret+i
∂εmt

]
+ Ẽt

[
∂ρTpt+k
∂εmt

]
= ?

(4.11)

To summarize, the responses of the fundamental component and of the equity risk

premium to a contractionary monetary policy shock predict an immediate fall in the

stock price. In contrast, the direction of the mispricing response is ambiguous. As

a result, the total response of stock prices to a monetary policy shock ultimately

depends on the nature and the size of the mispricing component relative to the

stock's fundamentals. Since this relative size might vary over time, we need to opt

for a �exible modeling strategy in our empirical analysis of monetary policy e�ects

on stock prices.

11See Chapter 2 for a formal discussion of this result.
12See Galí (2014) for a discussion of this issue.
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4.3 Empirical model and identi�cation

To shed light on the direction and quantitative importance of the mispricing re-

sponse to monetary policy shocks, we provide evidence from a standard monetary

VAR model used to identify monetary policy shocks which we augment by stock

prices, expected excess dividends, and the expected equity premium. We provide

evidence from both a constant and a time-varying coe�cient (TVC) VAR. The mo-

tivation for the latter is threefold. First, and most importantly, time-variation in

the response of stock prices to monetary policy shocks may arise from the pres-

ence of the mispricing component. When mispricing is small, the fundamental and

risk premium response are likely to determine the overall stock price response. In

times of pronounced mispricing, however, its response is likely to assert a stronger

in�uence on the overall stock price response. Second, as outlined in the previous

section, we also suspect non-linearities in the relationship between measures for the

business cycle, the policy rate, and our measure for the expected equity risk pre-

mium following the discussion in Patelis (1997) and Gust and López-Salido (2014).

Therefore, independent of strong empirical evidence for time-varying coe�cients,

our model framework demands such an assessment. Finally, the TVC-VAR has the

general advantage that it allows for accounting for structural breaks and smooth

structural change in the model coe�cients. Since the constant coe�cient VAR (C-

VAR) is a limiting case of the TVC-VAR, as described below, we will only outline

the speci�cations of the TVC-VAR.

4.3.1 Time-varying coe�cient VAR

Our reduced form TVC-VAR follows closely the speci�cation developed by Primiceri

(2005) and also employed by Galí and Gambetti (2015).13 The dynamic relations

between the variables are described by the measurement equation:

Yt = Θ0,t + Θ1,tYt−1 + · · ·+ Θp,tYt−p + ut (4.12)

13We use and adapt the Matlab code for the estimation of the TVC-VAR and the subsequent
impulse response analysis provided by Galí and Gambetti (2015) at https://www.aeaweb.

org/articles?id=10.1257/mac.20140003. For the reduced-form estimation of the C-VAR, we
adapt the code provided by Gary Koop at https://sites.google.com/site/garykoop/home/
computer-code-2. Any errors remain our own.
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where Yt is the K × 1 vector of endogenous variables. The variables included in

the VAR are, �rst, a measure of output growth yt, in�ation πt, and the policy

variable it (federal funds rate) as motivated by the standard class of New-Keynesian

models used to identify the Taylor-rule type monetary policy shocks.14 Following

our partial equilibrium asset pricing model, we further add the growth rate in real

stock prices pt, and measures for expected excess dividend Et[det+k] and the expected

equity risk premium Et[r
e
t+k] to the set of variables.15 We specify the model with

p = 3 lags of endogenous variables.16 The reduced-form residuals ut are assumed to

be independently and normally distributed with variance-covariance matrix Ht, i.e.

ut ∼ N(0, Ht). The time-varying coe�cients in Θi,t, i = 0, 1, . . . , p, evolve according

to a driftless random walk. This is given by the state equation on the joint m × 1

vector θt = vec([Θ0,t,Θ1,t, . . . ,Θp,t]) with m = K(Kp+ 1):

θt = θt−1 + ηt. (4.13)

Here, ηt ∼ N(0, Q) is a random vector, independent of ut for all periods t and s.

The model allows for heteroskedasticity in the reduced-form residuals. To model

changes in volatility, a triangular decomposition of the covariance matrix Ht of ut
is used, given by:

Ht = A−1
t ΣtΣ

′
t(A
−1
t )′, (4.14)

where Σt is a diagonal matrix with elements σi,t for i = 1, . . . , K and At is lower

triangular with diagonal elements equal to one.

The dynamics of covariances are governed by:

αt = αt−1 + ωt, (4.15)

14The responses of asset prices and the underlying fundamentals are robust with respect to includ-
ing variables typically employed to capture expected in�ation, such as commodity prices and
non-energy commodity prices. Therefore, these are excluded in order to reduce the computa-
tional burden.

15In the following, the variables are ordered as Yt = [yt, πt, Et[d
e
t+k], Et[r

e
t+k], it, pt]

′.
16The �ndings are robust to varying lag lengths of p = 4 lags as employed by Galí and Gambetti
(2015).
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where αt = [a21,t, . . . , aK(K−1),t]
′ captures the non-zero and non-unity elements of At

and ωt ∼ N(0,W ), with W being block-diagonal.17 Finally, the dynamics of Σt are

modeled according to a stochastic volatility framework, such that:

log(σi,t) = log(σi,t−1) + νi,t, (4.16)

with the vector νt = [ν1,t, . . . , νK,t]
′ being distributed as νt ∼ N(0, V ), where V is

diagonal. The TVC-VAR nests the VAR with constant coe�cients if the variance

matrices Q, V , and W shrink to zero. The choice of prior distributions is brie�y

speci�ed in Appendix 4.B and follows Galí and Gambetti (2015).

Finally, our core interest lies in the structural shocks εt and their e�ects on our

endogenous variables yt. We adopt the common assumption that the reduced-form

residuals ut are a linear transformation of the underlying structural shocks εt given

by ut = Stεt, where St is the time-varying impact matrix. The structural shocks

ful�ll the common requirements E[εtε
′
t] = IK and E[εtε

′
t−j] = 0 for all t and j 6= 0,

such that St satis�es StS ′t = Ht.18 We identify St as outlined in the next subsec-

tion. With the identi�ed St, we then obtain local approximations of the impulse

responses to the period t structural shocks εt as Galí and Gambetti (2015).19 By

simple accounting, the response of the mispricing component can then be obtained

by deducting the implied response paths of the expected fundamental component

and the expected equity premium from the observed total response of asset prices

following equation (4.7) similar to Galí and Gambetti (2015).

17Assuming block-diagonality implies that covariances across equations evolve independently from
each other. This simpli�es inference and drastically increases the e�ciency of the estimation
algorithm (Primiceri, 2005).

18All random vectors εt, ηt, νt and ωt are assumed to be independent of each other. This restriction
reduces the number of coe�cients that need to be estimated and allows a structural analysis of
the shocks εt that would be precluded if block elements in the covariance matrix of the vector
[εt, ηt, νt, ωt]

′ were non-zero (Primiceri, 2005).
19As common in the literature (cf. Primiceri, 2005, Galí and Gambetti, 2015, or Prieto et al.,
2016), we refrain from computing generalized impulse response functions (GIRFs) to the struc-
tural shocks in our TVC-VAR speci�cation. We note that this is a necessary simpli�cation, as
computing GIRFs increases the computational burden of the empirical analysis. See Baumeister
and Peersman (2013) for an outline how to implement the computation of GIRFs in TVC-VARs.
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4.3.2 Identi�cation via sign restrictions

An important conclusion that can be drawn from Galí and Gambetti (2015) is

that their empirical results are not robust to the assumptions used to identify the

impact matrix St and the structural shocks εt. Speci�cally, the authors obtain

diametrically opposing results on the e�ect of monetary policy shocks on stock

prices depending on whether they assume that the central bank responds within

the same quarter to stock price surprises (by a calibrated coe�cient) or not at all

(as in their benchmark recursive Cholesky system). Allowing for contemporaneous

responses of stock prices to monetary policy shocks, and of the interest rate to stock

price shocks is hence crucial for our analysis. This simultaneity issue in identifying

monetary policy shocks in the presence of �nancial variables is commonly known

in the literature. Bjørnland and Leitemo (2009) provide a solution to this issue by

augmenting an otherwise recursively identi�ed system by one additional long-run

restriction, imposing that monetary policy shocks carry no long-run e�ects on real

stock prices according to the long-run neutrality of money. Hence, their system

is just-identi�ed and allows to freely estimate the impact response of monetary

policy to stock price shocks. However, for our framework with three �nancial and

forward-looking variables, we require an even less restrictive identi�cation scheme

with additional non-zero impact responses. Therefore, we need to relax the impact

restrictions of the recursive identi�cation scheme further, and hence we only partially

identify the monetary policy shock. To then narrow our set of admissible impulse

responses we augment the zero impact and long-run restrictions by imposing as

many additional restrictions as we can defend from the theoretical considerations

discussed in section 4.2. This can be implemented by employing sign restrictions on

the impact responses (Fry and Pagan, 2011).20 Thus, we allow for non-zero impact

responses of stock prices, the policy rate, and both expectation measures to all

shocks. By this we nest all alternative calibrations of the contemporaneous response

of monetary policy to stock prices shocks of Galí and Gambetti (2015). Work by

Arias et al. (2014) and Binning (2013) allows us to combine sign restrictions with

zero impact and long-run restrictions.21

20An alternative could be to employ the external instruments approach as in Gertler and Karadi
(2015). This approach is, however, not yet established for TVC-VARs.

21A limitation to our approach may be that our prior assumptions on the decomposition and
time evolution of the variance-covariance matrix of residuals (equations (4.14)-(4.16)) is not
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Table 4.3.1: Identifying impact restrictions

Shock
Variable εdt εst εmt εpt

yt + − 0 0
πt + + 0 0

Et[d
e
t+k] ? ? − ?

Et[r
e
t+k] ? ? + ?
it + ? + ?
pt + ? ? +

Notes: The table shows the sign restrictions on the impact responses of the variables in the
benchmark VAR to a monetary policy shock εmt , a stock price shock εpt , as well as to a demand
(εdt ) and a supply (εst ) shock. The monetary policy shock is further restricted to have no long-run
e�ect on the real variables yt and pt. Entries denoted with by a �?� are left unconstrained.

Table 4.3.1 summarizes our identifying assumptions on the impact responses of

the variables in the VAR to four identi�ed shocks. We assume that output and

in�ation do not respond within the same quarter to a (contractionary) monetary

policy shock (εmt ). This assumption features strongly in the literature on identifying

monetary policy shocks and mirrors the restrictions implied in the Cholesky decom-

position (cf. Christiano et al., 2005), which are largely motivated by the perception

that the transmission of monetary policy interventions to the real economy is only

e�ective with a considerable lag (Friedman, 1968).22 In contrast, all expectations

and �nancial variables are allowed to respond immediately. The imposed signs are

motivated by the theoretical predictions developed in section 4.2: Expected excess

dividends decrease on impact while the expected equity premium increases.23 Stock

prices are also allowed to respond, yet the sign of the response is ambiguous, allowing

for a strong positive response of the mispricing component.

fully agnostic and thus may fail to identify all admissible structural models. A solution to this
limitation is unfortunately outside the scope of this paper. We thank Prof. Rubio-Ramírez for
helpful consultations on this matter.

22For a robustness check, we relax the zero impact restrictions on εmt , replacing them with sign
restrictions that allow the contractionary monetary policy shock (both conventional and uncon-
ventional) to lower both output and in�ation on impact (Baumeister and Benati, 2013). The
reduction of output growth detected in this case is stronger, while the responses of stock prices
and its components remain una�ected.

23However, for a robustness check, we also allow for the possibility that market participants revise
their expectations about excess dividends upwards following the signal of a contractionary mone-
tary policy shock. In this case, we leave the response of expected excess dividends unconstrained.
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Following Bjørnland and Leitemo (2009), we interpret a stock price shock (εpt )

either as a non-fundamental, idiosyncratic shock motivated by speculative behavior,

or as news about future real economic fundamentals. Therefore, expectations and

�nancial variables may respond immediately to the arrival of new fundamental in-

formation or simply due to portfolio re-balancing in view of higher realized capital

gains. The sign of their responses is left unconstrained with the obvious exception

of stock prices. Similar to the case of the monetary policy shock, we assume that

a stock price shock has no immediate e�ect on the slow moving variables output

and in�ation. This identi�cation, therefore, distinguishes idiosyncratic stock price

shocks from general demand or supply shocks. This is at the heart of the discussion

regarding how central banks should react to stock price shocks that are not imme-

diately related to their primary targets of in�ation and output, but may only a�ect

those variables in the longer run. Yet, this leaves us with the simultaneity problem

in distinguishing stock price and monetary policy shocks, as they are not uniquely

identi�ed so far. We solve this issue by imposing additional long-run restrictions

on the monetary policy shock following Bjørnland and Leitemo (2009). Speci�cally,

we assume that monetary policy does not have any permanent e�ect on the real

variables output and stock prices by the long-run neutrality of money.

Finally, we attempt to identify general aggregate demand (εdt ) and supply shocks

(εst). Even though we are not primarily interested in those shocks, imposing as

many restrictions as possible helps to close in on the shocks of interest and discard

implausible models (cf. Canova and Gambetti, 2009 and Kilian and Murphy, 2012).

The imposed impact restrictions displayed in the table are standard in the literature

and follow Baumeister and Benati (2013). Following the previous discussion on the

nature of a stock price shock, a general demand or supply shock is hence charac-

terized by immediate responses of output and in�ation. We do not constrain the

unidenti�ed �fth and sixth shock of the model, but assure that all shocks provide

distinct sign patterns.

4.4 Data

Our analysis builds on sample information from 1962Q1 to 2014Q4. In our bench-

mark analysis we do not exclude the �nancial crisis period but rely on our TVC

model to account for possible structural breaks and smooth structural changes in
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the parameters. The variables included in the VAR are real GDP, the GDP de�ator

(both in log-growth rates), the e�ective federal funds rate and the growth rate of the

real S&P 500 index.24 All series are de�ated by the U.S. Consumer Price Index for

All Urban Consumers. Further, we add the two measures for expected excess divi-

dends, Et
[
det+k

]
, and and expected excess return on stocks, Et

[
ret+k

]
, (the expected

equity risk premium). These variables are, however, not observable.

To obtain a proxy for both expectations, we therefore follow the broad literature

initiated by Campbell (1991), which is also employed by Bernanke and Kuttner

(2005) and Brunnermeier and Julliard (2008), and use an auxiliary VAR model to

forecast the objective expectations of det+k and r
e
t+k at each margin t. The forecast

d̂et+k and r̂
e
t+k from the VAR can then be interpreted as the objective expectations

Et
[
det+k

]
and Et

[
ret+k

]
consistent with the rational processing of data in line with our

model framework. The variables included in the auxiliary VAR model are realized

log real dividends and the realized quarterly real stock return rt, and the real risk

free rate measured by the ten-year U.S. government bond rate. From the forecasted

series of these variables, we obtain our measures for expected excess dividends and

the equity risk premium. Additionally, we add the log price-earnings ratio, pt − et,
and the BAA-AAA corporate bond spread, rbt , as important predictors for future

stock returns and equity risk (Campbell et al., 2013).25 Here, the corporate bond

spread serves as an additional measure for expected default risk in the economy,

which is likely to be correlated with the expected equity risk premium.26 The lag

length of the VAR is set to one and forecasts are obtained from a VAR estimated on

the full sample in line with the literature (Campbell, 1991; Bernanke and Kuttner,

2005; Brunnermeier and Julliard, 2008; Campbell et al., 2013). Finally, the forecast

horizon is set to ten years to relate expected excess equity returns to the yields on

24Data is obtained from Federal Reserve Economic Data (FRED) of the Federal Reserve Bank
of St. Louis, available at http://research.stlouisfed.org/fred2/, and from Shiller (2005),
available at http://www.econ.yale.edu/~shiller/data.htm.

25Earnings et are the ten-year moving average of quarterly earnings from Shiller (2005).
26The forecasts are robust to additional variables frequently used in the literature, such as the term
spread measured by the di�erence between the ten-year U.S. treasury bond and the three-month
treasury bill yield (Campbell et al., 2010) and a measure for expected market volatility obtained
from the quarterly variance of daily returns (Campbell et al., 2012).
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the long-maturity government bond. Ten year forecasts are obtained sequentially

for each quarter.27

Figure 4.4.1 shows the ten year forecasts of excess dividends and equity returns

over time, which we interpret as the rational expectations at each point in time. In

line with evidence in Claus and Thomas (2001), we �nd an expected equity premium

of around three percent, which �uctuates, however, quite substantially over time. We

�nd an increase in the expected premium simultaneous with the rise in real interest

rates during the Volcker-disin�ation period until about 1984. Subsequently, during

the Great Moderation, the expected equity premium decreased back to the level of

the early 1960s. From 1995 onwards, the expected equity risk premium declined

further, contemporaneous to the sharp run-up in stock prices during the dot-com

bubble. During the collapse of the bubble in the early 2000s, the expected equity

premium jumped up again. In fact, the initial rise in the expected equity premium

precedes the dot-com crash in 2000Q1. Finally, the expected equity premium spiked

once more, but this time subsequently to the collapse of the housing bubble.

In contrast to the expected equity premium, expectations on excess dividends

are relatively stable until about 2003. Thereafter they increased strongly with the

exception of the period around the global �nancial crisis in 2008. Since the ex-

pected excess dividends series is found to be non-stationary, this variable enters our

(TVC-)VAR in log-di�erences.

As a sensitivity check, we compare our measure of the expected equity risk pre-

mium with two alternative proxies of expected default or equity risk commonly used

in the literature. The �rst is the BAA-AAA spread, which measures the expected

default risk premium in the corporate bond market and should therefore be corre-

lated with expected risks on equity. The second measure is derived from the Gordon

(1962) dividend discount model (DDM), which suggests to infer the implied required

rate of return on stocks directly from the asset pricing equation (4.2) (Claus and

Thomas, 2001).28 This model is, however, not consistent with our framework as it

27Our results are robust to lowering the forecast horizon (and thus the implied average stock-
holding period) to �ve years.

28With a measure of the expectations about future real cash �ows and under the additional
assumption that the time t required return remains constant in the future, one can infer
Et[Rt+1] = Et[Rt+2] = . . . from (4.2). Along those lines, we obtain annual estimates of the
DDM implied equity premium from Damodaran (2015). These estimates are then transformed
to the quarterly frequency using the BAA-AAA default spread. Speci�cally, we compute the
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Figure 4.4.1: Estimated expected 10-year equity premium and excess dividends
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Notes: The �gure shows the estimated expected 10-year equity premium (left axis, in percent) and
the estimated expected excess dividends (right axis) obtained from forecasts of the auxiliary VAR.

excludes the possibility of asset mispricing and assumes that the transversality con-

dition holds at all times. Therefore, we only employ it as a robustness check of our

proxy of the expected equity premium, and presume a positive correlation between

the two measures in case mispricing is only weak or restricted to some periods.

We �nd that our forecast measure of the expected equity premium derived from

the auxiliary VAR model is strongly correlated with both the BAA-AAA spread

(correlation of 0.64) and the measure derived from the DDM (correlation of 0.49).

Figure 4.C.5 plots the three (standardized) measures for expected risk premia. The

�gure shows that the trend in all proxies is similar, with rising expected premia until

about 1985, a following downward trend, and a strong spike around the global �-

ratio of the DDM equity premium and the annual average of the default spread. Assuming that
this ratio remains constant over one year, the spread-adjusted DDM equity premium can then
be obtained as the average quarterly BAA-AAA spread multiplied by that ratio.
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nancial crisis. However, the decrease of the expected equity premium obtained from

our auxiliary VAR is more pronounced during the dot-com bubble, and the rise

during the �nancial crisis is less strong compared to the other two measures. Fur-

ther, our preferred expectations measure appears more stable overall. The frequent

sharp rises and falls in the DDM premium may re�ect the fact that it is potentially

distorted by the presence of stock mispricing.

Given our measure for the rational expectations on excess dividends, the equity

premium and the observations for total stock prices, we can evaluate the implied

mispricing component contained in the S&P 500. For this, we �rst discount at each

margin t = 1, ..., T − h the next h realizations of excess dividends and our measure

for the expected equity premium. From equation (4.7), we can then obtain ψt =

pt −
(
Et
[∑∞

i=1 ρ
i−1det+i

]
− Et

[∑∞
i=1 ρ

i−1ret+i
])
, where we approximate the in�nite

sum by the next h = 20 realizations.29 The approximated mispricing component is

displayed alongside the log real S&P 500 and the implied risk-adjusted fundamental

component (the sum of future discounted excess dividends less the sum of future

discounted expected equity premia) in Figure 4.C.6.

Importantly, the level of mispricing is indeterminate due to the omitted constant

in equation (4.7). Nonetheless, the �gure allows us to evaluate the evolution of

the mispricing component relative to the dynamics of the log real S&P 500 index.

Thus, the �gure reveals some time variation in the contributions of the risk-adjusted

fundamental component and the mispricing component to the overall stock price.

Up to 1982, the size of the risk-adjusted fundamental component exhibits a steady

downward trend while stock prices �uctuated more strongly, �rst showing an up-

ward trend until 1975 and then starting to decrease thereafter. Thus, most of the

short-run dynamics of the stock price index can be attributed to a volatile mis-

pricing component. From 1982 onwards, both the fundamental and the mispricing

component increase and contributed to the pronounced increase in the overall stock

index. Yet, around 1986 � prior to the 1987 stock market crash � the trend growth

in the S&P 500 decouples from the relatively stable evolution of the fundamental

component and can largely be attributed to a strong increase in the mispricing com-

ponent. This is again the case during the run-up to and the crash of the dot-com

bubble in the second half of the 1990s and the early 2000s. Thus, our measure of

29The implied mispricing is robust to extending the approximation of the in�nite sum to h > 20
observations.
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the mispricing component coincides well with anecdotal evidence of excessive stock

price periods.

In the following, we refrain from using the estimated mispricing component di-

rectly in our VAR model, but infer the impulse response of the mispricing component

to a monetary policy shock from the responses of the observed stock price index, and

of the expectations about future excess dividends and excess equity returns. This

allows a comparison of our results with those of Galí and Gambetti (2015). However,

we �nd that our results are robust to including the estimated mispricing component

in the VAR instead of the observed stock price index and our expectation measures,

and estimating the mispricing response directly.

4.5 Results

We �rst present the estimated responses of the stock price and its components to

a contractionary monetary policy shock in the framework of a constant coe�cient

VAR (C-VAR), which allows to assess the signi�cance of the �ndings more e�ciently

than the TVC-VAR.30 Later, we move to the TVC-VAR results and show that the

TVC-VAR supports the general �ndings from the C-VAR. However, there is some

evidence for time-variation in the responses of stock prices and expected equity

premia to monetary shocks. The monetary policy shock is calibrated to raise the

policy rate by 100 basis points (BPS) at each point in time to isolate changes in the

transmission from changes in the size of the shock for the TVC-VAR. The individual

stock price components are calculated as suggested by our stock price equation (4.7),

where we approximate the in�nite sum of discounted excess dividends and expected

equity premia by the sum over the next 20 periods.

30We estimate both models with Bayesian methods using the Gibbs sampler algorithm. To approx-
imate the posterior distribution of the C-VAR we obtain 10,000 draws (after a burn-in of 5,000
draws) of which we retain every �fth to remove potential serial correlation. For the TVC-VAR,
we increase the burn-in to 10,000 draws and approximate the posterior by every �fth of 25,000
draws. In both models, we obtain the admissible set of impulse responses by assessing 10,000
candidate impact response matrices to ful�ll the zero and sign restrictions for each draw of the
reduced form parameters using the algorithm of Binning (2013).
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4.5.1 Evidence from a constant coe�cient VAR

Figure 4.5.2 shows the cumulative impulse responses of the �nancial variables and

the inferred responses of the individual stock price components. In detail, Panels

4.5.2a-4.5.2c show the responses of the variables that enter our VAR model, i.e. the

measures for expected excess dividends and the risk premium, as well as the real S&P

500 price index. To evaluate the contribution of the fundamental components to the

total stock price response to a monetary policy shock, we display the response of

the three individual stock price components as inferred from equation (4.7) in Pan-

els 4.5.2d-4.5.2f. In particular, we assess the impulse responses of the fundamental

component, given by the expected sum of future discounted excess dividends, the

fundamental component adjusted for the expected sum of future discounted equity

premia (labeled risk-adjusted fundamental component), and, �nally, the mispric-

ing component that is obtained by subtracting the response of the risk-adjusted

fundamental component from the observed total response of stock prices.

We �nd that expectations about excess dividends decrease on impact by about 2.9

percent and the expected equity risk premium increases by about 3.7 BPS (Panels

4.5.2a and 4.5.2b). Both responses are signi�cant for at least three quarters. Further,

we �nd a strong negative response of the real S&P 500 index of about �ve percent

on impact which is signi�cant for about three years (Panel 4.5.2c). While our point

estimate is smaller in absolute terms than the nine percent estimate of Bjørnland and

Leitemo (2009), their estimate lies well within our posterior error bands. It is worth

mentioning that when we repeat our estimations relying on the more restrictive

Cholesky identi�cation scheme of Galí and Gambetti (2015), we cannot replicate the

negative response of the stock market index. Hence, we argue that the identi�cation

strategy plays an important role in explaining the di�erences in the estimation

results, where ours is less restrictive. However, also the addition of both expectation

measures adds to our �nding that stock prices are suppressed for a prolonged period

after the shock.

Inferred from the response of expected excess dividends, we, similarly to Galí and

Gambetti (2015), �nd that the fundamental component decreases signi�cantly by

about 1.3 percent on impact (Panel 4.5.2d). This decline is persistent and signi�cant

throughout. Yet, this response implies that the fundamental factor explains less than

half of the immediate decrease in the S&P 500. Subtracting the implied response of
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Figure 4.5.2: Impulse responses of the S&P 500 and its components to a monetary
policy shock
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Notes: The �gure shows the cumulative responses (in percent) of expected excess dividends, the
expected equity premium, the S&P 500 price and its implied components to a 100 BPS contrac-
tionary monetary policy shock for impulse response horizons of up to 24 months (x-axis). The
solid blue lines indicate the impulse response functions of the median-target model obtained by
minimizing the absolute deviation to the pointwise median responses of all variables to the mon-
etary policy shock for all impulse horizons. The dashed red lines denote the 68% posterior error
bands following Kilian and Murphy (2014).

the required risk premium, we �nd that the explanatory content increases further

and that the responses in excess dividends and the expected risk premium together

account for a 1.5 percent fall in stock prices (Panel 4.5.2e).
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Thus, this leaves around 3.5 percentage points of the observed �ve percent impact

drop in the S&P 500 index unexplained. From equation (4.7) this unexplained part

can hence be attributed to the response of the mispricing component as displayed in

Panel 4.5.2f. Consequently, we conclude that a contractionary monetary policy shock

systematically lowers stock prices over and beyond what is implied by fundamental

factors. We �nd this overreaction to be signi�cant for about three quarters.

This implies that a central bank could use such a policy to lean against the wind

of stock price bubbles if it perceives stock prices to be excessively high.31 Further,

our result contrasts the �ndings of Galí and Gambetti (2015) and is di�cult to align

with the theoretical predictions of the rational bubble framework. In contrast, these

�ndings can be explained by a framework in which stock mispricing arises from false

subjective beliefs of irrational investors.

We assess the robustness of our results along two dimensions. First, our results

are robust to relaxing the sign restriction on expected excess dividends. When we

allow for a positive response, expected excess dividends do not decrease signi�cantly

across the studied impact horizons. Since the response of all other �nancial variables

is largely una�ected, this implies a smaller response of the fundamental component

and thus an even larger negative response of the mispricing component to a con-

tractionary monetary policy shock. Moreover, we �nd our results to be robust to

employing the BAA-AAA spread or the DDM implied equity return as alterna-

tive measures for expected excess returns. These results are displayed in Figures

4.C.7 and 4.C.8. We �nd a larger response of the approximated expected equity

premium of twelve BPS for the BAA-AAA spread (Panel 4.C.7b) and 17 BPS for

the DDM-implied premium (Panel 4.C.8b) compared to the VAR-forecast measure.

Furthermore, the total response of the S&P 500 is somewhat smaller at around 4.5

percent when using the BAA-AAA spread. For this speci�cation, we thus �nd the

explanatory power of the mispricing component to be smaller and only signi�cant

after impact (Panel 4.C.7f). In contrast, when we employ the DDM implied equity

return as our measure for expected equity risk premia the results are quantitatively

similar to our benchmark estimation, yet the response of the mispricing component

is signi�cant for three years (Panel 4.C.8f).

31It is important to note that our results are subject to the Lucas' critique. If monetary policy
were to exploit these �ndings in a systematical manner, investors will take this into account,
which may already reduce the frequency of excessive stock price periods.
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Our �ndings suggest that central banks could attenuate excessive stock price de-

velopments by raising the policy rate. Yet, in order to assess whether central banks

also should make use of such a LATW policy, we need to trade o� the bene�ts of

such a policy against its real economic costs. Figure 4.5.3 shows the cumulative

responses of output and in�ation to the exogenous 100 BPS increase in the policy

rate (Panels 4.5.3a-4.5.3b). The �gure reveals that a leaning against the wind policy

lowers output signi�cantly by one percent after two years. Similarly, prices decrease

signi�cantly by about one percent in the long run. De�ating excessively high stock

prices through conventional interest rate policy puts considerable downward pres-

sures on real economic activity. In times when stock mispricing is not accompanied

by a positive output gap and in�ation above target, this would indicate a con�ict

between �nancial stabilization on the one hand, and price and output stabilization

on the other hand. Thus, our results feed into the debate of whether monetary

policy is too blunt an instrument to stabilize asset prices and, if not, what other

policy instruments, e.g. macroprudential policies, are more suitable for this objec-

tive. However, one also has to consider that the immediate costs of lower output and

in�ation could be o�set if the relevant counterfactual is that an emerging bubble is

not de�ated through active monetary policy, but results in a �nancial market crash

with a potentially larger output and in�ation contraction. This, however, cannot be

captured and estimated in our modeling framework.32

Finally, we also address the question how the U.S. FED responded to stock price

shocks, which is key for the identifying restriction in Galí and Gambetti (2015).

These results are presented in Figure 4.C.9. As can be seen from Panel 4.C.9c,

we cannot reject the assumption of Galí and Gambetti (2015) that the FED has

not responded to stock market shocks on impact. However, the 68% con�dence

level bands indicate the considerable uncertainty around this estimate with a larger

probability being assigned to an active, countercyclical response of monetary policy

to stock price shocks. Overall, these results question the validity of the imposed

zero restriction of Galí and Gambetti (2015).

32For a concluding statement on the cost-bene�ts-analysis of such a policy, one would need to
consider a general equilibrium model with a loss function of the monetary authority, which is
beyond the scope of this paper.
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Figure 4.5.3: Impulse responses of real economic variables to a monetary policy
shock
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Notes: The �gure shows the cumulative responses (in percent) of output, in�ation, and the nominal
and real policy rates to a 100 BPS contractionary monetary policy shock. See Figure 4.5.2 for
further notes.

4.5.2 Evidence from the TVC-VAR

Figure 4.5.4 shows the responses of expected excess dividends, the equity premium,

stock prices and its decompositions to a 100 BPS contractionary monetary policy

shock over time. In general, the TVC-VAR con�rms the main �ndings from our C-

VAR model, but we nevertheless �nd some time-variation in the impulse responses,

which helps shed light on the question of whether a LATW policy is particularly

e�ective during speci�c periods of time, especially in times of stronger mispricing.

Panel 4.5.4a shows that the negative response of expected excess dividends was

quite stable over time and increased in absolute terms only towards the end of the

sample. For the expected equity risk premium, time variation in the response is
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Figure 4.5.4: Time-varying impulse responses to a monetary policy shock
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(f) Mispricing component

Notes: The �gure shows the cumulative, time-varying responses (in percent) of expected excess dividends, the
expected equity risk premium, and the S&P500 index, as well as its implied components, to a 100 BPS increase
in the federal funds rate. The impulse response functions for up to 24 months (right axis) are obtained from the
median-target model.
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more pronounced. Panel 4.5.4b shows that until around 1990, the positive response

of the expected equity premium was very modest at around �ve BPS. Thereafter, the

response increased considerably up to 20 BPS and became more volatile. Similarly,

the response of the stock price index shown in Panel 4.5.4c shows a substantial

degree of time variation around 1990. Until then, the S&P 500 decreased by around

�ve percent following a monetary tightening of 100 BPS. Thereafter, however, the

response increased in absolute value to around twelve percent during the dot-com

bubble in the late 1990's and the last quarters in 2014.

Correspondingly, the individual components also respond more strongly during

the latter part of the sample. As shown in Panel 4.5.4e, the impact of the implied

risk-adjusted fundamental component continuously strengthened, thus increasing its

explanatory power for the decline in stock prices from around two percent in 1980

to around six percent at the end of the sample. Together with the overall stock

price response in Panel 4.5.4c, this implies a time-varying response of the mispricing

component only since about 1990. As displayed in Panel 4.5.4f, we �rst con�rm

the negative (median) response of the mispricing component to a contractionary

monetary policy shock over the whole sample, supporting the evidence that the

central bank could lower excessive price movements in stocks by raising its policy

rate. Yet, we observe that the response has increased sharply in absolute value

around 1990 and is particularly strong between 1995 and 2001, the period that is

associated with the stock price boom during the dot-com bubble. Our evidence thus

suggests that a tighter monetary policy stance during this period could have reduced

mispricing by about seven percent.33

To summarize, the results of the TVC-VAR o�er support to the proponents of a

LATW policy and indicate that a monetary tightening lowers excessive stock prices.

To give an indication of the signi�cance of this �nding, Figure 4.C.10 displays the

probability of a negative cumulative response of the mispricing component over time

at selected horizons from the credible set of accepted impulse responses. For horizons

33In contrast to the time-variation in responses of �nancial variables, the response of output and
in�ation to monetary policy shocks is relatively stable across time and corresponds to the re-
sponses estimated using the C-VAR. We further note that while the median impulse responses
from the TVC-VAR are frequently found to be signi�cantly di�erent from zero as in the C-VAR,
the observed time-variation in median IRFs is generally not signi�cant. To be speci�c, the me-
dian IRF at time t and horizon h generally lies within the 68% con�dence bands of the same
variable at the same horizon for any other time t′.
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up to one year, this probability is larger than 50 percent and takes values of up to

90 percent for the impact and one quarter horizons and the time period of up to

1990. Interestingly, however, during the 1990 to 2001 period, when the S&P 500 was

most likely overpriced, a monetary policy contraction would likely have been more

e�ective at attenuating mispricing for horizons of one year or longer, compared to

the earlier part of the sample. On impact, the chance of reducing mispricing was

larger at the beginning of the sample than toward the end of the sample.

4.5.3 Robustness analysis: Monetary policy at the zero lower bound

In response to the global �nancial crisis, the Federal Reserve Bank gradually lowered

its target range for the federal funds rate until it reached the zero-lower bound (ZLB)

in December 2008. From this time onwards, the federal funds rate could no longer

be used as an instrument to further stimulate the economy. To evaluate whether

the estimated time-variation in the e�ects of monetary policy over time was subject

to this constraint, we perform two robustness checks. First, and similar to Galí and

Gambetti (2015), we have repeated all estimations on a shorter sample up to 2007Q4,

thus excluding the global �nancial crisis, and �nd that our results are largely robust

to the shorter sample period. Second, we run our estimations using the Wu and

Xia (2014) shadow rate instead of the federal funds rate in our VAR. The shadow

rate accounts for unconventional monetary policy e�ects on the term structure of

interest rates in a ZLB environment and is used as a measure of the federal funds

rate that would prevail in the absence of the ZLB.

Figure 4.C.11 show the time-varying impulse responses of expected excess div-

idends, the expected equity premium, stock prices, the risk-adjusted fundamental

and the speculative component to a 100 BPS monetary policy shock as measured

by an increase in the Wu and Xia (2014) shadow rate. We can generally con�rm the

previous results obtained for the expected excess dividends and the equity risk pre-

mium. However, the impact responses are slightly smaller than in the benchmark

model. Moreover, we �nd that the time-variation in the response of stock prices

is now less pronounced (Panel 4.C.11c). In combination, this implies a stronger

negative response of the mispricing component in the �rst part of the sample up

until about 1995, and a weaker but still negative response toward the end of the

sample. In particular, the dot-com bubble episode no longer stands out. Thus, we
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can conclude that the policy constraint at the zero lower bound explains part of the

observed time variation of the response of the mispricing component of stock prices.

4.6 Conclusion

In this paper, we explore the e�ects of monetary policy on stock prices and on

their underlying components. By allowing for the possibility of stock mispricing,

we address the question whether central banks could implement a leaning against

the wind policy to attenuate excessive stock price developments. We �nd that

stock prices decrease signi�cantly and persistently in response to a monetary policy

tightening. Decomposing this response into a fundamental component related to

rational expectations about future discounted dividends, and an expected equity

risk premium, we �nd that these sources can only account for about one third of

the fall in stock prices. Hence, we conclude that the decrease in stock prices can

largely be attributed to a systematic negative response of the mispricing component.

By this, we provide support to the claims of the proponents of an active, leaning

against the wind monetary policy. If stocks are overpriced, contractionary monetary

policy could be used to lower mispricing. Yet, this comes at the cost of considerable

downward pressure on prices and real economic activity.

In contrast to previous literature, we therefore argue that such a policy can be

implemented without trade-o� if output and in�ation are also above the central

bank's targets. Yet, when excessive stock mispricing arises at times when output

and in�ation are below their targets, it is debatable whether conventional interest

rate policy are not too blunt a tool to dampen excessive stock mispricing in a cost-

e�ective manner. In particular, at these times, the central bank faces the trade-o�

between containing an excessive asset price bubble and stimulating real economic

activity. Given the relatively modest response of the mispricing component to a large

monetary policy shock, it is questionable whether conventional monetary policy is

the right tool to use. Nonetheless, since we �nd a signi�cant overreaction of stock

markets to interest rate shocks, policy makers need to carefully consider �nancial

stability concerns also for accommodative monetary policy measures, as they may

induce a signi�cant and persistent overpricing in stock markets, and foster the build-

up of imbalances in the �nancial system.
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Finally, our results are di�cult to align with a concept of mispricing that assumes

that all agents are rational and hold objective expectations about future dividends

and excess capital gains. Such a framework employed by previous literature predicts

that the mispricing component increases in response to a contractionary monetary

policy shock in the long-run. In contrast, our �ndings are in line with a framework

in which a share of investors are irrational and hold false subjective expectations

about the stock's underlying fundamentals. Such a framework may arise from a

range of possible behavioral explanations.
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Appendix

4.A Log-linear approximation of asset pricing equation

Under the assumption that the price-dividend ratio is stationary, the log-linear ap-

proximation of equation (4.1) is given by:

rt+1 = log(Pt+1 +Dt+1)− log(Pt)

= pt+1 − pt + log (1 + exp(dt+1 − pt+1)) , (4.17)

where logs of variables are denoted by lowercase letters and rt+1 = log(1 + Rt+1).

Log-linearizing equation (4.17) around the steady state using a �rst-order Taylor

expansion, we obtain:

rt+1 = k + ρpt+1 + (1− ρ)dt+1 − pt, (4.18)

where ρ and k are parameters of linearization de�ned as ρ ≡ 1/
(
1 + exp(d− p)

)
,

where
(
d− p

)
is the average log dividend-price ratio (such that 0 < ρ < 1), and

k ≡ − log (ρ)− (1− ρ) log (1/ρ− 1).

Solving equation (4.18) for pt and iterating forward, the stock price can be written

as a linear combination of future dividends, future stock returns, and a terminal

value (disregarding the constant term k):

pt =
∞∑
i=1

ρi−1 [(1− ρ)dt+i − rt+i] + lim
T→∞

ρTpt+T . (4.19)

4.B Priors and Estimation of TVC-VAR

We follow Primiceri (2005) and Galí and Gambetti (2015) and assume that the

initial states for the coe�cients θt, the covariances αt, the log volatilities σt and

the hyperparameters Q, V and W are independent of each other. The priors for

the initial states of the coe�cients, the covariances and the log standard errors

are assumed to be normally distributed. The priors of the hyperparameters are

assumed to be distributed as independent inverse-Wishart. All these assumptions

are standard in the literature as described in Primiceri (2005). The priors thus take
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the speci�c forms:

θ0 ∼ N(θ̂, 4 ∗ Ĉov(θ))

αi0 ∼ N(α̂, Ĉov(αi))

log(σ0) ∼ N(log(σ̂), IK)

Q−1 ∼ IW (kQ(K + 1)Ĉov(θ), K + 1)

V −1
i ∼ IW (kV (i+ 1)Ĉov(αi), i+ 1)

W−1 ∼ IW (kW (K + 1)IK , K + 1)

where the prior means and covariances are obtained from OLS-estimates from a

constant VAR for a training sample with T0 = 48 observations and with kQ = 0.005,

kV = 0.01, kW = 0.01 so that the priors are not �at but di�use. Note that the prior

V is an inverse-Wishart with degrees of freedom and scale parameter adjusted to the

number of variables in the respective equation i = 2, . . . , n. For the constant VAR

speci�cation, we impose independent Normal-Wishart priors with identical means,

variances and degrees of freedom for θ0 and H0 as for the TVC-VAR speci�cation.

The model is estimated using the Gibbs sampling algorithm described in Del Negro

and Primiceri (2015). A summary is available in the online appendix of Galí and

Gambetti (2015).
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Appendix

4.C Figures

Figure 4.C.5: Comparison of standardized proxies for the expected 10-year equity
premium
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Notes: The �gure compares the estimated expected equity premium from the auxiliary VAR (blue
line) with other available proxies for the expected 10-year equity premium. These are the BAA-
AAA spread (green line) and the expected equity premium from a dividend discount model (red
line).
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Figure 4.C.6: Implied mispricing in the S&P 500
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Notes: Log real S&P500 index (demeaned) and implied risk-adjusted fundamental and mispricing
components from equation (4.7).
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Figure 4.C.7: Impulse responses of the S&P 500 and its components to a monetary
policy shock with the BAA-AAA spread
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Notes: The �gure shows the cumulative responses (in percent) of expected excess dividends, the
expected equity premium, the S&P500 price and its implied components to a 100 BPS increase
in the federal funds rate, where the expected equity risk premium is measured as the BAA-AAA
spread. See Figure 4.5.2 for further notes.
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Figure 4.C.8: Impulse responses of the S&P 500 and its components to a monetary
policy shock the with DDM equity premium
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Notes: The �gure shows the cumulative responses (in percent) of expected excess dividends, the
expected equity premium, the S&P500 price and its implied components to a 100 BPS increase in
the federal funds rate, where the expected equity premium is obtained from the dividend discount
model (DDM). See Figure 4.5.2 for further notes.
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Figure 4.C.9: Impulse responses of real economic variables to a stock price shock
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Notes: The �gure shows the cumulative responses (in percent) of real economic variables and the
nominal and real policy rates to an exogenous one percent stock price increase. See Figure 4.5.2
for further notes.
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Figure 4.C.10: Time-varying probability of a negative mispricing response to a mon-
etary policy shock
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Notes: The �gure shows the probability of a negative cumulative response of the mispricing com-
ponent to a 100 BPS increase in the federal funds rate over time at selected horizons.
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Figure 4.C.11: Time-varying impulse responses to a Wu and Xia (2014) shadow rate
monetary policy shock
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Notes: The �gure shows the cumulative, time-varying responses (in percent) of expected excess dividends, the
expected equity risk premium, and the S&P500 index, as well as its implied components, to a 100 BPS increase in
the Wu and Xia (2014) shadow rate. The impulse response functions are obtained from the median-target model.
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Summary

Throughout history, bursting asset price bubbles have frequently challenged not only the
stability of the �nancial system, but have also caused severe economic contractions. Most
recently, the global �nancial crisis (GFC) resulting from the burst of the U.S. housing
bubble has provided a forceful reminder about the risks inherent in �nancial markets and
has challenged the understanding of macro- and �nancial economists about the linkages
between the �nancial system and the real economy. As a result, the crisis has also sparked
intense debates about pre-crisis economic and �nancial policies, in particular with regard
to �nancial market regulation and the role of monetary policy in amplifying or dampening
asset price cycles. This dissertation consists of four chapters that empirically address some
of these challenges and debates. Thereby, this thesis contributes to the literature on risk
modeling of serially dependent asset returns; the real-time detection of asset price bubbles;
forecasting of real economic activity using real-time indicators for asset price bubbles; and
the role of monetary policy in asset mispricing.
The �rst chapter, based on a paper with Helmut Herwartz and Moritz Seidel, explores

whether model residuals from the class of (threshold) generalized autoregressive condi-
tional heteroskedasticity ((T)GARCH) models are characterized by serial dependence,
which could potentially be used to enhance conventional risk forecasts. We �nd that these
residuals are hardly independent and identically distributed but instead show forms of
higher order serial dependence. This suggests that TGARCH models commonly employed
for predicting market risk of speculative asset returns do not use all available information
for their forecast. We propose two strategies to quantify the serial dependence structures
between model innovations, a nonparametric estimation approach and a �exible modeling
approach based on standardized copula distributions. We show that these strategies more
accurately describe the in-sample dependence patterns between consecutive innovations,
and outperform conventional TGARCH model predictions for the conditional Value-at-
Risk and the conditional Expected Shortfall at the relevant risk levels outlined by the
Basel Committee on Banking Supervision.
The second chapter assesses whether emerging asset price bubbles can be detected in

real-time. For this, I begin by evaluating the accuracy of existing early warning indicators
for stock price bubbles. I apply these indicators to U.S. stock market data and highlight the
considerable signal heterogeneity across all indicators, with frequent false positive signals
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Summary

during normal times and instable signals during the 1990's dot-com bubble. To improve
signal accuracy, I then propose two strategies to combine signals from all individual indica-
tors in real-time. First, I put forward a simple counting approach that requires the number
of simultaneous bubble signals from all indicators to exceed a speci�ed threshold. Second,
I develop a combination indicator based on a multiple testing procedure that controls the
overall size of such a joint test. Through simulations, I show that both combination strate-
gies provide more accurate real-time signals for the emergence and collapse of asset price
bubbles.
The third chapter, based on joint work with Dirk Ulbricht, assesses whether real-time

indicators for bubbles on stock and housing markets contain valuable information for pre-
dicting real economic activity. We �nd that several indicators for asset price bubbles
strongly improve upon an autoregressive (AR) forecast model for output growth. More-
over, these bubble-augmented AR models are also highly competitive in providing accurate
forecasts against a large set of 216 models based on macroeconomic and �nancial predictors
commonly used to forecast real economic activity. In addition, we note that the best pre-
dictive bubble indicators also provide the most plausible bubble signals, providing further
evidence that these indicators are capable of detecting true bubble episodes in real-time.
The fourth chapter, based on joint work with Kerstin Bernoth, investigates the role

of monetary policy in misaligning stock prices from their fundamental value. Using a
structural vector autoregressive model, we decompose the estimated response of stock
prices to a monetary policy shock into a change of expected future dividends and a change
in the equity risk premium. We �nd that only about one third of the overall impact
response of stock prices can be accounted for by these two sources, which suggests a strong
and systematic overreaction of stock markets to monetary policy shocks. This result lends
support to the proponents of an activist, leaning against the wind monetary policy: By
raising interest rates, the central bank can indeed lower the mispricing component in stock
prices. However, this comes at the cost of dampening real economic activity and is hence
only recommendable to an in�ation-targeting central bank when a perceived excessive asset
price boom is accompanied by economic growth and in�ation above the bank's targets.

Keywords: Asset price bubbles, �nancial stability, macro-�nancial linkages, monetary pol-
icy, asset pricing, risk forecasting, volatility modeling, real-time bubble detection, indicator
combination, real-time forecasting, leaning against the wind, stock pricing, housing bub-
bles, structural vector autoregression, unit root testing, GARCH, copula distributions

JEL Classi�cation: C22, C32, C51, C52, C53, E44, E52, G12, G32
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Zusammenfassung

Auf Vermögensmärkten ist es im Laufe der Geschichte immer wieder zu Preisblasen gekom-
men, welche häu�g mit schwerwiegenden Folgen nicht nur für die Stabilität des Finanzsys-
tems, sondern auch mit emp�ndlichen realwirtschaftlichen Konsequenzen einhergingen.
Zuletzt hat die aus dem Platzen der U.S.-amerikanischen Immobilienblase resultierende
Globale Finanzkrise die Risiken im Finanzsystem deutlich hervortreten lassen, und das
Vorkrisenverständnis von Makroökonomen und Finanzwissenschaftlern über die makro�-
nanziellen Verknüpfungen herausgefordert. Darüber hinaus hat die Krise Debatten über
die wirtschafts- und �nanzmarktpolitischen Rahmenbedingungen angestoÿen, insbesondere
mit Blick auf die Finanzmarktregulierung und die Rolle der Geldpolitik in der Verstärkung
von Vermögensblasen. Diese Dissertation besteht aus vier Kapiteln, die sich empirisch
mit einigen dieser Debatten befassen. Insbesondere leistet diese Dissertation einen Beitrag
zur Literatur der Modellierung von seriell abhängigen Finanzmarktrenditen, der Echtzeit-
erkennung von Vermögenspreisblasen und deren Nutzen für die Konjunkturprognose, sowie
der Rolle der Geldpolitik in der Fehlbepreisung von Vermögenswerten.
Das erste Kapitel, basierend auf einem Papier mit Helmut Herwartz und Moritz Sei-

del, untersucht, ob Modellinnovationen von (Threshold) Generalized Autoregressive Condi-

tional Heteroskedasticity ((T)GARCH) Modellen serielle Abhängigkeiten aufweisen, welche
potenziell zur Verbesserung herkömmlicher Risikoprognosen genutzt werden könnten. Wir
beobachten, dass diese Residuen in der Tat nicht unabhängig und gleichverteilt sind, son-
dern seriell abhängig in höherer Ordnung sind. Das deutet darauf hin, dass TGARCH
Modelle, welche oftmals zur Prognose von Marktrisiken spekulativer Vermögenspositio-
nen verwendet werden, nicht alle verfügbaren Informationen nutzen. Um diesen Prog-
nosegehalt auszunutzen, schlagen wir zwei Strategien zur Quanti�zierung der zeitlichen Ab-
hängigkeitsstrukturen zwischen Modellinnovationen vor, einen nichtparametrischen Ansatz,
und einen �exiblen Modellierungsansatz basierend auf standardisierten Copulaverteilun-
gen. Wir zeigen, dass diese Strategien die Abhängigkeitsmuster aufeinanderfolgender In-
novationen besser beschreiben, und die Prognosegüte konventioneller TGARCH-Modelle
für den bedingten Wert im Risiko (Value at Risk, VaR) und den bedingten erwarteten
Fehlbetrag (Expected Shortfall, ES) deutlich verbessern.
Das zweite Kapitel analysiert, ob entstehende Vermögenspreisblasen in Echtzeit erkannt

werden können. Dafür evaluiere ich zunächst die Signalqualität existierender Frühwarnindi-
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katoren für Aktienpreisblasen. Für U.S. Daten zeige ich die erhebliche Heterogenität der
Blasensignale aller Indikatoren auf, und beobachte zahlreiche falsche positive Signale in
Zeiten stabiler Preise, und instabile Signale während der 1990'er Dotcom-Blase. Zur
Verbesserung der Signalgenauigkeit schlage ich daher zwei Strategien zur Echtzeitkom-
bination der Signale aller einzelnen Indikatoren vor: eine simple Abzählregel, die die Sig-
nale aller einzelnen Indikatoren aggregiert und die Überschreitung eines Schwellenwertes
erfordert, sowie einen Indikator basierend auf einem multiplen Testansatz, welcher die
Gesamtgröÿe eines solchen gemeinsamen Tests kontrolliert. Im Rahmen einer Simulations-
studie zeige ich, dass beide Kombinationsansätze präzisere Echtzeitsignale für die Entste-
hung und den Zusammenbruch von Vermögenspreisblasen senden.
Das dritte Kapitel, beruhend auf einer gemeinsamen Arbeit mit Dirk Ulbricht, unter-

sucht anschlieÿend, ob diese Echtzeitindikatoren für Aktien- und Hauspreisblasen wertvolle
Informationen für die Konjunkturprognose liefern. Unsere Ergebnisse zeigen, dass mehrere
dieser Indikatoren die Prognosen eines autoregressiven (AR) Modells für das Wachstum der
Industrieproduktion deutlich verbessern. Des Weiteren sind diese um Blasenindikatoren
erhöhten AR Modelle wettbewerbsfähig gegen eine umfangreiche Reihe von 216 Modellen,
die auf Informationen von häu�g verwendeten makroökonomischen Zeitreihen und Finanz-
marktvariablen zugreifen. Wir zeigen weiterhin, dass die besten Prognoseindikatoren eben-
falls die plausibelsten Blasensignale senden, was ein weiterer Hinweis darauf ist, dass diese
Indikatoren in der Lage sind Vermögenspreisblasen in Echtzeit zu erkennen.
Das vierte Kapitel, basierend auf einem Papier mit Kerstin Bernoth, untersucht die Rolle

der Geldpolitik in der Blasenbildung auf Aktienmärkten. Mit Hilfe eines strukturellen vek-
torautoregressiven Modells zerlegen wir dafür die Veränderung von Aktienpreisen auf einen
geldpolitischen Schock in die Veränderung zukÃ1

4nftiger Dividenden und die Veränderung
der erwarteten Risikoprämie. Wir beobachten, dass lediglich ein Drittel der Gesamtverän-
derung von Aktienpreisen auf diese beiden Gröÿen zurückzuführen ist, was auf eine starke
und systematische Überreaktion von Aktienmärkten auf geldpolitische Schocks hindeutet.
Unsere Ergebnisse unterstützen dabei die Forderungen nach einer aktiven, �leaning against
the wind� Geldpolitik: In dem die Zentralbank die Zinsrate erhöht, kann sie übertriebene
Fehlbewertungen von Aktienpreisen senken. Allerdings verursacht dies ein deutliches Ab-
schwächen der Konjunktur und kann daher nur in Einklang mit einer auf Preisstabilität
ausgerichteten Geldpolitik gebracht werden, wenn eine wahrgenommene Aktienpreisblase
mit Wirtschaftswachstum und In�ation oberhalb der Zentralbankziele einhergeht.

Schlagworte: Vermögenspreisblasen, Finanzstabilität, Makro�nanzielle Verknüpfungen, Geld-
politik, Preisbildung auf Vermögensmärkten, Risikoprognosen, Volatilitätsmodellierung,
Echzeitblasenerkennung, Indikatorkombination, Echtzeitprognose, �leaning against the wind�,
Aktienpreise, strukturelle Vektorautoregression, Einheitswurzeltest, GARCH, Copulaverteilung

JEL Klassi�kation: C22, C32, C51, C52, C53, E44, E52, G12, G32

XL



Ehrenwörtliche Erklärung

Hiermit erkläre ich, dass ich die vorgelegte Dissertation auf Grundlage der angegebe-

nen Quellen und Hilfsmittel selbstständig verfasst habe. Alle Textstellen, die wörtlich

oder sinngemäÿ aus verö�entlichten oder nicht verö�entlichten Schriften entnommen

sind, sind als solche kenntlich gemacht. Die vorgelegte Dissertation hat weder in der

gleichen noch einer anderen Fassung bzw. Überarbeitung einer anderen Fakultät,

einem Prüfungsausschuss oder einem Fachvertreter an einer anderen Hochschule zum

Promotionsverfahren vorgelegen.

Benjamin Beckers

Berlin, den 18. Mai 2017

XLI



Liste verwendeter Hilfsmittel

• Matlab 8.1.0.604 (R2013a)

� Optimization Toolbox

� Financial Toolbox

� Econometrics Toolbox

� Statistics Toolbox

• RStudio 1.0.136 basierend auf R 3.3.0

• Eviews 8.0

• Stata 14

• Microsoft Excel

• LATEX

• Siehe auch Literatur- und Quellenangaben

XLII


	Acknowledgments
	Erklärung zu Ko-Autorenschaften
	Erklärung zu Vorarbeiten
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction and Overview
	Risk Forecasting in (T)GARCH Models with Uncorrelated Dependent Innovations
	Introduction
	Dependence in GARCH innovations
	Data and the TGARCH model
	Higher-order dependence of uncorrelated innovations

	The copula-TGARCH model
	Standardized copula implied dependence structures
	Standardized copula distributions
	A model class based on standardized copula distributions

	Copula matching

	A large scale comparison of risk predictors
	Ex ante risk measures
	Estimation of conditional CDFs
	Model combination
	Forecast evaluation
	Value-at-risk diagnosis
	Expected shortfall diagnosis


	Empirical results
	Copula selection
	cVaR forecasting
	cES forecasting

	Conclusion
	Figures
	Tables

	Detecting Asset Price Bubbles in Real-Time through Indicator Combinations
	Introduction
	Detecting asset price bubbles in real-time
	Recursive tests for detecting explosive processes
	Existing real-time indicators
	Forward recursive sup ADF Test
	Generalized sup ADF Test
	Excessive deviations from HP-filtered trend

	Detecting stock price bubbles in real-time: An illustration

	A combination approach to real-time bubble detection
	A simple threshold counting approach
	Multiple testing with correlated tests
	Empirical illustration

	Finite sample power and accuracy
	Bubbles as mildly explosive processes
	Simulation results: single bubble process
	Average number of detected bubble episodes
	Frequency distribution of bubble signals
	Type I and type II error rates
	Indicator instability: frequency of on-off signals
	Signal delay

	Simulation results: two collapsing bubbles

	Forecasting output with bubble indicators
	Forecast specification
	Forecast results

	Conclusion
	romano05 algorithms for combination indicator
	Figures
	Tables

	Predicting Output with Real-Time Bubble Indicators
	Introduction
	Real-time indicators for asset price bubbles
	Detecting explosive bubble processes by unit-root tests
	Bubbles as price deviations from an HP-trend
	Combination approaches to real-time bubble detection
	Stock and house price bubbles in the U.S.
	Other predictors

	Real-time forecast experiment and evaluation
	Model specifications
	Forecast evaluation

	Results
	Overall predictive accuracy
	Predictive accuracy in expansion and recession periods

	Conclusion
	Figures
	Tables

	Monetary Policy and Mispricing in Stock Markets
	Introduction
	An accounting framework for asset prices
	Expectations and asset (mis)pricing
	Effects of monetary policy on stock prices

	Empirical model and identification
	Time-varying coefficient VAR
	Identification via sign restrictions

	Data
	Results
	Evidence from a constant coefficient VAR
	Evidence from the TVC-VAR
	Robustness analysis: Monetary policy at the zero lower bound

	Conclusion
	Log-linear approximation of asset pricing equation
	Priors and Estimation of TVC-VAR
	Figures

	Bibliography
	Summary
	Zusammenfassung
	Ehrenwörtliche Erklärung
	Liste verwendeter Hilfsmittel

