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Abstract 

Xenotransplantation using porcine cells, tissues or organs may reduce the widening gap 

between demand and supply of human donor organs. However, this may be hampered by the 

presence of porcine endogenous retroviruses (PERVs), which belong to the γ-retroviruses 

family and are integrated in the porcine genome and were shown to infect human cells in 

vitro. Three subtypes of PERVs were identified, PERV-A and PERV-B are human tropic and 

pose a direct risk and are ubiquitous while PERV-C infect only pig cells and is not present in 

all pig strains. To date, there are no records of in vivo transmission of PERVs to human or 

primates following porcine material xenotransplantation. Nevertheless, many of the γ-

retroviruses are pathogenic and able to induce tumors and immunodeficiency, which can’t be 

excluded for PERVs. While breeding animals under SPF conditions may eliminate most of 

pathogens and exogenous viruses, PERVs are difficult to eradicate from the porcine genome 

and different strategies must be used to prevent their possible transspecies transmission to 

human. 

The present study is a contribution to the evaluation of the risks imposed by 

xenotransplantation as well as to the prevention of PERV transmission to human.  

Although PERV-C is not human-tropic, the high infectious PERV-A/C which results from the 

recombination between PERV-A and PERV-C raised a major concern for 

xenotransplantation. For this reason choosing PERV-C-free strains with low PERV 

expression is relevant.  The first part of this work addresses the prevalence and the expression 

of PERV in Göttingen minipigs, which are used for numerous biomedical investigations and 

are well characterized. PERV-A, -B and -C were found in all animals tested and their 

expression was low. Infection of human 293 cells was not observed even after mitogen 

treatment of the pig peripheral blood mononuclear cells (PBMCs). 

RNA interference was used in order to reduce the expression of PERVs in pigs and transgenic 

pigs expressing PERV-pol-specific shRNA were generated in our group. In the second part of 

this study the long term effects of PERV specific RNA interference and reduction of PERV 

expression in these pigs was investigated. Over 3 years, the expression of shRNA was 

persistent and PERV expression was consistently reduced in the pig PBMCs. We also 

investigated the expression of PERV and shRNA in different organs of the pigs. Moreover, 

new triple-shRNA expressing vectors were produced using high efficient siRNAs. The use of 

these vectors showed a significant improvement in reducing the PERV expression in vitro. 
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The third part focuses on the use of zinc finger nucleases (ZFN) to knockout PERV genes. 

ZFN specific for the PERV-pol gene were used, and expression of ZFN proteins in porcine 

kidney cells was demonstrated by different methods. However, the high rate of ZFN 

expression and the high copy number of PERV proviruses seemed to have cytotoxic effects. 

ZFN activity couldn’t be detected since a surveyor nuclease assay widely used for detection 

of ZFN induced gene disruption couldn’t be applied in this case. 

In the last part vaccine strategies to prevent PERV transmission were investigated. 

Neutralizing antibodies directed against the recombinant viral envelope proteins gp70 and 

p15E were produced in hamsters. The neutralization effect of the immunized sera was 

measured using a qRT-PCR based neutralization assay. 

To summarize, this work contributed into improving the reduction of PERV expression by 

RNAi, and addressed for the first time the possibility of the use of ZFNs to knock out a gene 

with high copy number such as PERV. 

Keywords: Xenotransplantation, PERV, prevalence, RNAi, zinc finger nuclease, neutralizing 

antibodies. 
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Zusammenfassung 

Die Xenotransplantation mit porzinen Zellen, Gewebe oder Organe könnte die immer größer 

werdende Lücke zwischen Nachfrage und Angebot der menschlichen Spenderorgane 

reduzieren. Dies kann jedoch durch die Anwesenheit von porzinen endogenen Retroviren 

(PERVs) erschwert werden. PERVs  gehören zu den γ-Retroviren und sind im Genom aller 

Schweine integriert und können menschliche Zellen in vitro infizieren. Drei Subtypen des 

PERVs wurden identifiziert, PERV-A und PERV-B sind ubiquitär und besitzen die Fähigkeit 

humane Zellen in vitro zu infizieren. Daher stellen sie ein unmittelbar Risiko für die 

Xenotransplantation dar. PERV-C infizieren nur Schweinezellen und sind nicht in allen 

Schweinestämmen vorhanden. Bis dato, wurde kein Beweis über eine in-vivo-Übertragung 

von PERVs auf Menschen oder nichthumanen Primaten nach Xenotransplantation von 

Schweinmaterial erbracht. Dennoch, viele der γ-Retroviren sind pathogen und können 

Tumore und Immundefizienzen verursachen und dies kann auch für PERVs nicht 

ausgeschlossen werden. Mit der Aufzucht der Schweinen unter DPF (designated pathogen 

free) Bedingungen kann es gelingen, die meisten Krankheitserreger und Viren zu eliminieren, 

was im Fall von PERVs nicht möglich ist, da PERV Proviren bis 100-mal im porzinen Genom 

integriert sind. Daher müssen andere Strategien verwendet werden, um eine möglich 

Übertragung auf den Menschen zu verhindern. 

Die vorliegende Studie ist ein Beitrag zur Bewertung der PERV-Risiken durch die 

Xenotransplantation als auch zur Vorbeugung von PERV Übertragung auf Menschen. 

Auch wenn PERV-C nicht humantrop ist, stellt das aus der Rekombination zwischen PERV-

A und PERV-C stammende hoch infektiöse PERV-A/C  eine besondere Gefahr für die 

Xenotransplantation dar. Aus diesem Grund sollten ausschließlich PERV C-freie Tiere mit 

niedrigen PERV Expression benutzt werden. Der erste Teil dieser Arbeit befasst sich mit der 

Prävalenz und der Expression von PERVs in den gut charakterizierten und für zahlreiche 

biomedizinische Untersuchungen verwendeten  Göttingen Minipigs. PERV-A, -B und -C 

Proviren wurden bei allen getesteten Tieren gefunden, wobei ihre Expression relative niedrig 

war. Selbst nach Mitogenstimulierung der Schweine-PBMCs konnte keine Infektion 

menschlichen 293 Zellen beobachtet werden. 

Basierend auf der RNA-Interferenz wurden in unserer Arbeitsgruppe transgene Schweine 

generiert, die PERV-pol spezifische shRNA exprimieren und eine reduzierte PERV 
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Expression zeigten. Im zweiten Teil dieser Studie wurde die langfristige Wirkung der PERV 

spezifischen RNA-Interferenz untersucht und eine Dauerhafte Reduktion der PERV 

Expression beobachtet. Über 3 Jahre war die Expression von shRNA persistent und die PERV 

Expression war permanent reduziert in den PBMCs.  Die Expression von PERV und shRNA 

wurde ebenfalls in verschiedenen Organen der Schweine untersucht. Darüber hinaus wurden 

neue dreifach-shRNA Vektoren mit hoch effizienten siRNAs entwickelt. Die Verwendung 

dieser Vektoren zeigte eine signifikante Verbesserung bei der Verringerung der PERV 

Expression in vitro. 

Der dritte Teil konzentrierte sich auf den Einsatz von Zink Finger Nukleasen (ZFN) zum 

Knockout von PERV Genen. PERV-pol spezifische ZFN wurden hergestellt und verwendet, 

und die Expression von ZFN Proteine in der porzine Nierenzelllinie PK15 wurde mittels 

verschiedenen Methoden nachgewiesen. Allerdings schienen die hohe ZFN Expression und 

die hohe Anzahl der Kopien der PERV Proviren zytotoxische Effekte zu haben. Außerdem 

konnte die ZFN Aktivität nicht bewiesen werden, da der Surveyor Nuklease Assay, der oft  

für die Detektierung von ZFN induzierten Genmutationen verwendet wird, hier nicht 

angewendet werden konnte. 

Im letzten Teil wurden Impfstoffstrategien zur Verhinderung der PERV Übertragung 

untersucht. Neutralisierende Antikörper, die sich gegen die rekombinanten viralen 

Hüllproteine gp70 und p15E richten, wurden in  Hamstern generiert. Der neutralisierende 

Effekt der immunisierten Sera wurde mit einem qRT-PCR-basierten Neutralisation Assay 

gemessen. 

Zussamenfassend kann gesagt werden, dass diese Arbeit trug zur Verbesserung der RNAi-

basierte Reduzierung der PERV Expression beitrug. Im Rahmen dieser Arbeit wurden zum 

ersten Mal ZFN verwendet, um ein Gen mit so hoher Kopienanzahl wie PERV zu mutieren. 

Schlagwörter: Xenotransplantation, PERV, Prävalenz, Göttingen Minipigs, RNAi, Zins 

Finger Nuclease, neutralizierende Antikörper. 
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1 Introduction 

1.1 Transplantation 

Allotransplantation or the transfer of cells, tissues or organs between individuals of the same 

species presents the optimal solution for patients suffering from organ failure. Since the first 

successful transplantation of kidney in the fifties [1], this replacement therapy has become an 

established standard medical discipline throughout the world. However the discrepancy 

between the worldwide increasing number of patients on the waiting lists and the low human 

donor potential pose a problem and alternatives for allotransplantation are under intensive 

investigation such as use of artificial organs, stem cell studies and the use of other species as 

sources for transplants or xenotransplantation. 

1.1.1 Allotransplantation 

The history of transplantation is tightly bound to the understanding of the immune system and 

the immunosuppression. The first allograft kidney transplantation attempt in 1933 failed 

because of hyperacute rejection of the allograft [2]. Later in the fifties the work group of Dr. 

Joseph Murray successfully succeeded to transfer a kidney allograft between identical twins 

avoiding this way an immune response [1]. This was followed by a series of successful 

transplantations of liver [3], heart [4], bone marrow [5] during the 1960’s when control of 

immune system became feasible. A better understanding of the function of the human 

immune system in the last decades, the improvement of immunosuppression technologies, 

introduction of biological in addition to chemical immunosuppression and the discovery of 

new immunosuppressants such as cyclosporine [6] as well as the establishment of a 

worldwide network for cooperation permitted a long period of suppression of the immune 

system and thus prolonged the survival time of allografts in recipients.   

Since the start of the transplantation, the number of implants grew up progressively and a total 

of 6277 organs have been transplanted in Germany alone during the period of January-

October 2013 (Eurotransplant International Foundation 2013). These replacement operations 

concerned mainly kidneys as well as liver, heart, lung and pancreas coming from deceased 

and living donors (German Organ Transplantation Foundation, DSO). However the number of 

registered patients on active waiting list in Germany came to 10754 in the end of November 



Introduction 

2 
 

2013, which exceeds far the available transplants and results in death of about 1000 persons 

every year because of leak of suitable donor organs (Eurotransplant 2006). 

1.1.2 Alternatives to allotransplantation 

Alternatives aiming to shrink the expanding gap between demand and supply of transplants 

are extensively under investigation and some of them are already in clinical use. Among these 

substitutes are the artificial implants devices emerged as promising substitute in case of 

failure of natural organs. The most popular example is the Ventricular Assist Device (VAD) 

which serves as substitute for heart. VADs are mechanical blood pumps used usually in case 

of weakened hearts as support [7]. Usually they present a short-time bridge till heart recovery 

or during the waiting time for a heart transplant and they helped decreasing mortality to about 

50% [8]. In contrary, Total Artificial Hearts (TAH) are devices that replace totally both 

failing heart ventricles and the valves. These devices are commercially available from 

different manufacturers like the SynCardia TAH (SynCardia, Tucson, USA) or the AbioCor™ 

(ABIOMED®, Inc.; Danvers, Mass). Artificial devices which replace other organs like kidney 

or liver are still not possible because of the complexity of these organs. However high 

complication rates limiting this therapy were reported, like bleeding [9], neurological events 

[10] and sepsis [11]. 

Other opportunities present the regenerative medicine and tissue engineering that aim to 

generate human tissues and organs from induced pluripotent stem cells (iPSCs) which can be 

isolated from the patient thus avoiding the immune rejection. These cells can be cultured 

under different conditions and forced to differentiate into specific cell lineages and tissues and 

can be used in immunohematologic diseases, neuronal destruction and heart failure [12]. For 

example generation of autologous chondrocyte implantations (ACI) which present a 

promising technology for cartilage regeneration [13] or the use of pluripotent mesenchymal 

stem cells (MSCs) for the improvement of cardiac functions in rat models of dilated 

cardiomyopathy [14]. Recently studies reported the generation of the first functional three-

dimensional vascularized liver generated from human iPSCs [15]. Beside the technical 

hurdles that hamper the progress in stem cells studies, clinical application of stem cells raises 

safety concerns such as the tumorigenic potential of undifferentiated iPSCs [16], the risk of 

contamination by xenogeneic pathogens originated from the in vitro culture preparations of 

the stem cells [12], the immunological rejection of the cells and at last the risk of reactivation 
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of oncogenes such as c-Myc [17]. Therefore it would be beneficial to investigate other 

alternatives such as xenotransplantation. 

1.1.3 Xenotransplantation 

Xenotransplantation is by definition the transfer of living cells, tissues or organs from one 

species to another. Such transplants are named xenotransplants or xenografts. 

Xenotransplantation includes also perfusion of foreign cells by blood of the host. We talk 

about concordant xenotransplantation when transfer occurs between closely related species 

like hamster-rat, mouse-rat, and rhesus monkey-baboon pairs. In contrary discordant 

xenotransplantation is used for transplantations between unrelated species. 

First trials using whole organs xenotransplants  

Already at the beginning of the 20th century first unfortunate trials were performed to transfer 

kidneys from rabbit, rhesus monkey, cheep and chimpanzee to human [18]. The main cause of 

failure was the hyperacute immune rejection of the xenotransplants. First success of 

xenotransplantation occurred some 50 years later at the time when the mechanisms of 

immune response and immune rejection became clearer. A kidney transplant from 

chimpanzee survived for 9 months in human patient who was treated with strong 

immunosuppressants [19]. Despite the higher organization of the following trials of 

transferring sheep’s and pig’s hearts, baboon’s and pig’s livers [18] and baboon’s heart [20] 

to human, no satisfactory results were recorded. The last two xenotransplantations of whole 

organs occurred in Poland and India where hearts of pigs were transferred to human with 

dismal results [21]. 

Use of cells and tissues 

Unlike whole organs xenotransplants, the use of cells or tissues seems to be less complicated 

and promising and in the last years many clinical attempts to use cells from pigs were 

successful. For example embryonic porcine mesencephalic tissues were transplanted in 

patients with idiopathic Parkinson’s disease or Huntington’s disease. Porcine cells were 

tolerated without serious adverse events and patients showed clinical improvement [22, 23]. 

Furthermore, porcine islets of Langerhans producing insulin were also used in type 1 diabetic 

patients. Together with porcine Sertolli cells, the porcine islets of Langerhans were protected 

from the human immune system by using subcutaneous autologous collage-generating 

devices and thus immunosuppression was not required. These capsules protect the cells and 
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avoid the diffusion of porcine cells or microorganism in the recipient, but allow transition of 

insulin, nutrient and gazes [24, 25].  The company Living Cell Technology (LCT, New 

Zealand) is pioneering this technology. The encapsulated porcine cells are produced under the 

name DIABECELL
®

 and are currently in a late-stage clinical trial. 

Further application of porcine cells and tissues is the extracorporeal perfusion used as urgent 

help for bridging patient with liver failure and which are waiting for human liver transplants. 

These bioreactors are charged with genetic modified humanized porcine hepatic cells 

(hCD55/hCd59) [26, 27]. 

Use of non-human primates: pros and cons 

Non-human primates (NHPs: chimpanzee, gorilla, baboon) are phylogenetically the closest to 

human and show anatomical, physiological and immunological similarities and thus present 

the obvious choice as donor animals for xenotransplantation. Despite the fact that the only 

successful organ transplantation was a primat-to-human transplantation of kidney [19], they 

were ruled out from xenotransplantation for several reasons: (i) Ethical approaches were 

raised because of their superior intelligence degree and the physiological and behavioral 

features similar to humans and which implies that NHPs can suffer like humans [28, 29]. (ii) 

Most of NHPs species are threatened with extinction and have long gestation periods and low 

number of offspring. (iii) Concerns were also raised regarding the safety of the process since 

most of NHPs harbor several pathogens which may be infectious for human considering the 

similarity of the immune systems among the primates. The most striking example presents the 

evolutionary studies that suggested a cross-species transmission of the simian 

immunodeficiency virus (SIV) from chimpanzee (SIVcpz) and sooty mangabey (SIVsm) 

which generated the human immunodeficiency virus types 1 and 2 (HIV-1 and -2) [30]. 

Furthermore, baboons harbor several exogenous and endogenous retroviruses such as simian 

foamy viruses (SFV), simian T-cell lyphotropic virus (STLV), baboon endogenous virus 

(BaEV) and simian endogenous retrovirus (SERV) which may be transmitted to humans [31].   

Pigs and xenotransplantation 

For several reasons, pigs (sus scrofa) were chosen as adequate substitutes.  

(i) The ethical concerns are less sharp than in case of NHPs since millions of pigs are 

slaughtered annually for human consumption and the idea of use of pigs for transplantation is 

more accepted in the public [32].  
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(ii) Pigs’ organs present physiological and anatomical similarities with human and come in 

different sizes [33-35]. 

(iii)  Pigs have a short reproduction cycle of about 115 days, a short period to reach the 

reproductive maturity (4-8 months), produce high number of large sized litters (5-12) and 

most of their organs reach the maximum size suitable for human body within only 6 months 

[36]. 

(iv) They can be easily bred with low costs and most importantly in controlled, hygienic 

environments the so called designated pathogen free conditions (DPF). 

(v) Pigs are suitable for genetic engineering and this was shown by several studies which 

succeeded to generate pig clones from genetically modified porcine cells by somatic cell 

nuclear transfer (SCNT) [37, 38]. 

However several hurdles remain to be overcome before porcine organs can be used for 

xenotransplantation such as the physiological incompatibilities, the immunological concerns 

and the risk of xenose by transmission of porcine endogenous retroviruses (PERVs) and other 

microorganisms. 

Physiological and endocrinological incompatibility 

The use of complex organs like liver or kidney may raise the risk of endocrinological 

incompatibility because of the multitude of enzymes and hormones produced by these organs 

which may not be suitable for the function of the human organs and vise versa. For example 

the porcine renin is not able to perform cleavage of  human angiotensin [39] and the human 

parathormone is not compatible with the porcine kidney. In case of successful 

xenotransplantation, parathormone induces an increase in the elimination of phosphor from 

the human body which is lethal [40, 41]. It is also established that the repertoire of proteins 

produced by the porcine liver may not be sufficient for a good functioning of the human body 

[42]. It was also shown that human proliferating factors may cause an uncontrolled 

proliferation of porcine cells because of the lack of antagonist in the porcine organs. Further 

physiological discrepancies are the difference in body temperatures which is 39°C for pigs as 

well as differences in the pH values, in life-span, blood pressure and heart rate [43]. 

Immune rejection 

As for allotransplantation, one of the major problems of xenotransplantation is the immune 

rejection of the xenografts. This problem was already known since the first unsuccessful trials 

of xenotransplantation [44]. However the progress in understanding the mechanisms of the 
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immune rejection and the discovery of immunosuppressants solved a big part of the problem. 

In this context, xenotransplantation has the advantage that whole animals can be humanized 

and genetically modified to be suitable as organ donors for human [37, 38], while human stem 

cells studies are still facing many difficulties to reach the phase of whole organ production. 

Four phases of rejection types were described, the hyperacute rejection (HAR) caused by 

pre-existing antibodies and occurs within minutes after transplantation, the acute humoral 

xenografts rejection (AHXR) which appears after 24 hours, the cellular rejection leaded by 

the cytotoxic T-cells and the chronic rejection. 

The hyperacute rejection (HAR) happens very quickly after transplantation and leads to a 

rapid lost of the xenotransplants. HAR is elicited by preformed antibodies that bind to the 

xenoantigens in the endothelial cells of the xenografts and activate the complement cascade 

[45]. This results in platelet activation, coagulation and so disrupts the vascular endothelial 

integrity. 

Within few hours the organ will swell and change its color to dark blue and develops edema, 

hemorrhage and vascular thrombosis followed by onset of necrosis [46]. The main epitope 

responsible for HAR is the non-reducing trisaccharide group, galactosyl α-(1,3)-galactosyl β-

1,4-N-acetyl glucosaminyl commonly known as Gal epitope [47] which is ubiquitous in 

mammals but absent in some primates like human [48]. The human immune system 

recognizes the antigen from the gut, since it is present in microbes of the intestinal bacterial 

flora and builds specific Gal-IgG antibodies. Around 1% of the human circulating antibodies 

pool is specific for the Gal epitope [49, 50]. Furthermore, the complement system plays an 

important role in the hyperacute rejection of xenotransplants by the activation of the 

endothelial cells which in their turn induce the formation of a pro-coagulant surrounding 

leading to rejection. 

In order to avoid or delay the HAR several approaches were tested. One of them was the 

inhibition of the complement activation [51] by administrating cobra venom factor or C1-

inhibitor in pig-to-primate models. Both cases succeeded to prevent the onset of HAR [52, 

53]. However, the use of somatic cell nuclear transfer allowing the generation of transgenic 

pigs made it possible to establish genetically modified pigs whose organs can be tolerated by 

the immune system of human recipient, for example the “humanized” transgene pigs 

expressing human complement regulators CD55 (decay accelerating factors) [54], CD46 

(monocot chemoattractant protein) [55] or CD59[56] which protects the porcine cells from 

complement-induced lysis. Other transgenic pigs lacking or with reduced Gal epitope were 
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also produced. Such as the pigs overexpressing the human β-D-mannoside β-1,4-N-acetyl-

glucosaminyltransferase III (GnT-III) which reduce the Gal epitopes [57] furthermore α1,3-

galactosyltransferase gene (GGTA1)-KO pigs subsequently lacking the Gal epitopes were 

generated [37, 58, 59]. 

The next immune barrier to be overcome is the acute humeral xenografts rejection 

(AHXR). The AHXR is poorly understood and shows a similar pathological course as the 

HAR involving swelling, vascular thrombosis and edema [60], however it appears with a time 

delay of at least 24 hours post transplantation. It involves antibodies and complement 

activation as well as infiltration of neutrophils and CD8+T cells [61]. In contrary to the HAR, 

in the case of AHXR the xenotransplants may function for few hours before rejection [62]. 

Recent studies suggested that the prevention of the AHXR depend on control of the elicited 

humeral response against non-Gal antigens and the disorders of the coagulation system [63-

65].  

Several attempts to avoid the AHXR were performed, among them the use of extracorporeal 

immunoadsorption to reduce the anti-pig antibodies and serum cytotoxicity  in recipient for 

several days [66].  

Beside the humeral immune rejection xenotransplants should face the cellular rejection 

which is set on by the recognition of xenogenic MHC molecules by the T cell receptors. This 

leads to the activation of CD8+ cytotoxic T-lymphocytes (CTLs) and subsequently apoptosis 

of porcine endothelial cells and rejection of the xenograft. Given the fact that peptide 

differences between different species is much greater than between individuals of the same 

species, the cellular response for xenotransplants is greater than to allotransplants and may 

require more immunosuppression to be overcome [67, 68]. 

Regarding the chronic rejection, the understanding of chronic rejection in 

xenotransplantation is still very poor, since most of xenografts tested didn’t reach this stage 

yet and were rejected earlier by HAR or AHXR. However recent studies on pig-to-baboon 

cardiac transplantation where the xenotransplants survived under chronic immunosuppression 

for 179 days, a chronic xenotransplant vasculopathy developed with features similar to 

allotransplants manifesting deposition of extracellular matrix in blood vessels, fibrosis, 

infiltration of lymphocytes and inflammatory cells, diffuse intimal thickening followed by 

apoptosis and ultimate rejection of the organ [69, 70]. In clinical allotransplantation the use of 

immunosuppression proved beneficial in this case. 

To summarize, based on biotechnological techniques and genetic engineering significant 

advances have been achieved in understanding the mechanisms of xenografts rejection and 
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made it possible to overcome the initial hurdles associated with rejection and xenografts 

survival has been significantly prolonged. Even if not totally satisfying, these results bring 

hope that long-term survival of xenografts may be achieved not too far in the future. 

 

Biological risks 

In allotransplantation 

The next major general concern of transplantation medicine is the risk of the transfer of 

infectious agents. An allograft could harbor several human microorganisms and viruses which 

may be transferred to the recipient by leak of immunological barriers and due to the 

immunosuppression treatment which accompany the transplantation usually. A wide range of 

donor-derived infectious microorganisms such as bacteria, fungus, and viruses were 

described. Among the striking examples of viruses are the hepatitis B and C, Epstein-Barr 

virus, HIV and the cytomegalovirus (CMV) [71]. Such infections reduce further the cohort of 

possible human donors, since some of these pathogens especially the viruses cannot be 

eradicated.  

In xenotransplantation 

Xenozoonoses or pathogens that may be transmitted across the species barriers are of major 

concern and present a challenge for xenotransplantation. If infectious diseases in allograft 

pose a risk for the individual human recipient, zoonotic diseases may present a threat for 

individuals as well as for the general population. Microorganisms which are tolerated by one 

species (pig donor) may be pathogen in another (human recipient) because species lines have 

been crossed and thus these pathogens become transmissible from human to human [72]. 

Zoonoses are responsible of more than 60% of the approximately 400 emerging diseases 

identified since 1940 [73]. For example it is thought that the human immunodeficiency virus 

(HIV) may have crossed the species barrier from non-human primates to become a global 

pandemic [30]. Potential xenoses can be divided into non-viral and viral infections. 

Non-viral infection: A wide range of pig-derived non-viral infectious microorganisms such as 

Mycobacterium avium, Trichinella spiralis, Cryptosporidium parvum, Campylobacter coli, 

Strepptococcus suis, Erysipelothrix rhusiopathiae, Toxoplasma gondii and Brucella suis were 

described [74, 75]. Most of these pathogens can be eradicated from the pig herd, by the 
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possibility of maintaining the pigs under sterile conditions and by monitoring them regularly 

for infectious agents [76] 

Viral infection: Furthermore pigs harbor several infectious viruses which have a pathogenic 

potential for human. These include for example the Nipah virus [77] Menangle virus [78], and 

Tioman virus [79], hepatitis E virus (HEV) [80], porcine cytomegalovirus (PCMV) which is 

able to infect human fibroblasts in vitro [81], porcine gammalymphotropic herpesvirus 

(PLHV) [82] and the influenza virus which can cross the species barrier and infect humans 

[83]. Analyses of the H1N1 1918/1919 influenza virus, which killed at least 40 million 

people, revealed that this strain might have originated from the swine influenza virus [84]. 

The vast majority of these viruses can be eliminated from the pig herd using sensitive 

detection assays for screening, by maintaining pigs under SPF conditions and using 

specialized animal husbandry. Although no transmission of potential infectious viruses was 

detected during the last decade in humans exposed to live porcine cells [85], some viruses are 

still pose a relevant risk for xenotransplantation especially the viruses whose DNA is 

integrated into the germline of pigs, such as the porcine endogenous retroviruses (PERVs) 

which can infect human cells in vitro and are widely distributed in the genome of pigs and 

thus cannot yet be eradicated [86].  

 

1.2 The porcine endogenous retroviruses 

1.2.1 Retroviruses 

The porcine endogenous retroviruses are part of the gammaretroviruses. The Retroviridae are 

enveloped single-stranded (+) RNA viruses. Viral RNA is reverse transcribed (reverse 

transcriptase, RT) during the replication cycle and integrated  (integrase) as provirus into the 

genome of the host cell [87]. The discovery of the endogenous retroviruses in the late 1960s 

followed that of the Mendelian inheritance of RNA tumor viruses’ genomes by their hosts. 

The inheritability of virus-transformed phenotype without viral replication, give rise for the 

Temin’s hyptothesis which postulate the generation of DNA intermediate that can be 

integrated into the genome of the host cell [88].  This hypothesis was reinforced by the 

discovery of the viral reverse transcriptase [89]. 
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The family of retroviridae comprises two subfamilies the orthoretroviridae and the spuma 

retroviridae defined by common taxonomic denominators such as structure, composition and 

replicative properties (Figure 1 [90]). A taxonomy based on the phylogenetic evolution 

classifies the orthoretroviridae in 7 genera: Alpharetroviruses, Betaretroviruses, 

Deltaretroviruses, Gammaretroviruses, Epsilonretroviruses and the Lentiviriuses while the 

Spumaviridae family comprises one genus the Foamiviruses (International Committee on 

Taxonomy of Viruses, ICTV). The first three genera are considered simple retroviruses, while 

the rest are considered complex and harbor small accessory proteins encoded by alternatively 

spliced transcripts that are absent in simple retroviruses [91].  

 

Figure 1. Phylogenetic tree of retroviruses (source: Jern et al., 2005) 

Retroviruses can be exogenous or endogenous (ERV), both contain the whole set of retroviral 

proteins necessary for replication, encapsulation and budding and can thus be transmitted horizontally 

from host to host. However ERVs are present as proviral DNA permanently integrated in the germline 

of all vertebrates and some non-vertebrates. ERVs are remnant of infectious exogenous ancestors, 

which after being stably integrated in the host genome have accumulated mutations; hence only very 
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few of them under certain conditions are still capable of expression of complete infectious particles. 

They are inherited vertically in a Mendelian fashion as normal DNA [92, 93].  

About 5-8% of the human genome consists of ERVs (HERVs). A wide range of beneficial 

functions was described for ERVs, for example the env gene of HERVs encodes for the 

expression of syncytins (Syncitin-1 and -2, respectively HERV-W and HERV-FRD), which is 

essential for the formation of syncytiotrophoblast early during embryogenesis [94, 95]. Other 

functions were described such as gene regulation [96, 97], DNA repair and recombination 

[98], additionally, they are thought to be used by the host as restriction factors to block the 

infection of pathogenic exogenous retroviruses [99].  

As the ERV in other mammals, PERVs are estimated to form a significant part of the porcine 

genome. The first description of PERV particles was in the 1970’s in the supernatant of 

porcine kidney (PK15) cells and other porcine cell lines such as peripheral blood 

mononuclear cells (PBMCs) (Figure 2) [100, 101] and showed morphological characteristics 

of gammaretroviruses [102-105].  

. 

Figure 2. Electron microscopie of the PERV 

PERV particles produced from PK15 cells. (A) And PERV infected human 293 cells (B). Bar, 

500nm[105]. 

It was suggested that PERVs probably originated from murine retroviruses [105]. The 

analysis of the mutations in the long terminal repeats (LTRs) of the PERV sequences revealed 

that the endogenization may have occurred before 7.6 million years [106]. Since then the copy 

number of PERVs in the porcine genome didn’t stop to increase due to re-infection and 

intracellular transposition [107, 108] . This number is strain dependent and can vary from 10 
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to 100 [109, 110]. The replication-competent PERVs are further classified in 3 subtypes 

according to their env sequence, PERV-A, -B and –C (see below) [110-112]. A modern 

example of endogenization event presents the koala endogenous retrovirus (KoRV) [113] 

which is related to murine and gibbon ape leukemia viruses (MuLV and GaLV respectively) 

[114]. KoRV was found as endogenous and exogenous virus in koalas from the north of 

Australia, but was totally absent in the animals of the south which could be explained by a 

wave of infection and endogenization originated from some virus-transmitting rodents from 

Southeast Asia and spreading southwards [115].  

1.2.2 Structure of PERV 

All retroviruses such as PERV have a common structure which consist of a virion of about 

100-150 nm in diameter (Figure 3). The viral envelope shows protruding transmembrane 

glycoprotein (TM), p15E in PERV, bound to the surface glycoprotein (SU), gp70. A matrix 

made up of myristilated proteins (MA) are localized inside the virion just beneath the 

envelope and bound by link proteins to a protein shell made up by capsid proteins (CA) 

Retroviral capsid exhibits different structures. The capsid protect a complex of nucleocapsids 

proteins (NC) and two single-stranded RNA bound to several copies of reverse transcriptases 

(RT) and integrases (IN), which form together the inner core. 

 

Figure 3. Schematic representation of gammaretroviruses 

SU: surface unit, TM: transmembrane protein, RT, reverse transcriptase, IN: Integrase, NC: 

nucleocapsid, CA: capsid protein, PR: protease, MA: matrix protein.  
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1.2.3 Genomic organization and function of the env protein 

The PERV genome is highly organized with the least information necessary for its own 

replication and propagation (Figure 4). It consists of two single-stranded RNA of about 8100 

base pairs [116], both ends of the integrated proviral DNA are flanked by long terminal 

repeats (LTRs). LTRs play an essential role in the viral integration and transcription. They are 

composed of U5 (“unique”), R (“redundant”) and U3 elements where enhancers, the promoter 

and the poly (A) addition signal are located. A primer-binding site (PBS) is located at the end 

of the U5 element and is important for initiating reverse transcription by annealing to a 

cellular tRNAGly [117]. The genome contains also the splice donor and acceptor sites which 

result in two splice variants. The first comprise the full-length sequence coding for Gag and 

Pol proteins, and a spliced variant (3 kb) coding for Env. The RNA contains three major open 

reading frames (ORFs) encoding the Gag, Pol and Env. The gag gene encodes for the viral 

protease, the matrix, the capsid and the nucleocapsid proteins [118], the pol gene encodes for 

the reverse transcriptase and the integrase. 

 

 

 

 

 

 

 

 

Figure 4. Structure of the proviral PERV 

(A) Cap, transcriptional start site; PBS, primer binding site; SD, splice donor; SA, splice acceptor; 

SU/TM, surface/ transmembrane envelope protein cleavage site in Env; PPT, polypurine tract, poly(A) 

addition site; LTR, long terminal repeat; gag, group-specific antigen gene; pro/pol, 

protease/polymerase gene; env, envelope protein gene. Env subtypes of PERVs and the A/C 

recombinant are presented. (B) open reading frames of PERV and different splice variants are 

represented [119]. 
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The surface of the virion containing Env spikes plays a main role in the viral attachment and 

the fusion of viral and cell membranes during the infection process. A bipartite precursor 

envelope protein is the product of the spliced variant mRNA of the env gene [119]. Env are 

glycoproteins, the precursor Env protein undergoes glycosylation then it is cleaved by a 

cellular protease into the non-covalently associated SU and TM. The glycosylation of the Env 

protein is required for infectivity by playing a role in the binding to host receptor [120, 121] 

and the SU or gp70 elicite a host specific glycosylation and thus determine the tropism of 

PERV. For example, the PERV-A Env contains 9 potential N-glycosylation sites, env-B has 6 

and –C has 8 [122]. There is no sufficient information about the mechanism of PERV 

infection and the exact role of the glycosylation on the interaction of receptor and viral 

envelope. However it is known from other retroviruses that immune response involves 

sometime the modification of the glycosylation of receptor proteins which lead to loss of 

infectivity of the virus, while some retrovirus change the glycosylation of their Envs for 

survival [120, 121].  

Whereas the TM protein doesn’t present sequence variations, the SU protein harbors variable 

domains based on them the transcription active PERVs were classified into the 3 subtypes 

PERV-A, -B and –C. PERV-A and –B are permanent in the genome of all pig strains and are 

able to infect cells from different species like human cells in vitro (polytropic), while PERV-

C is ecotropic and not ubiquitous and infect only porcine cells [110, 123, 124]. 

Additionally, a recombinant PERV-A/C was described and which contains the cell fusion 

domain of PERV-C and the receptor binding site of PERV-A which makes it polytropic [125-

127]. The recombinant PERV-A/C is known to reach higher titer than PERV-A. This increase 

was associated with some substitutions in the variable region [128] and the increase in the 

length of LTR [129].  

1.2.4 The PERV replication 

As for most gammaretroviruses, the viral infection is receptor-mediated and requires a 

multiple transmembrane domain cell-surface receptor. For PERV-A two receptors in human 

cells were described and named the human PERV-A Receptor (HuPAR1 and HuPAR2) while 

the PERV-B receptor(s) are still unknown [130]. Both HuPAR contain 11 transmembrane 

domains and thus a transporter function can be attributed [131-133]. The HuPAR1 was 

identified as a G-protein coupled receptor for gamma-hydroxybutyrate [132, 134] while the 

cellular function of HuPAR2 is still unknown [135].  
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The binding of the gp70 envelope protein to the receptor activates the transmembrane protein 

(TM), and resulting conformational changes induce the fusion of viral and host cell membrane 

(Figure 5). This fusion leads to entry of the viral capsid into the cytoplasm, where it 

undergoes partial disassembly, the viral nucleoprotein complex is liberated and the RNA 

genome is reverse transcribed into a double-stranded DNA by the viral RT using cellular 

dNTPs. The double-stranded linear DNA intermediate as well as the Reverse Transcriptase, 

Matrix proteins and Integrase are assembled together to form a subviral particle termed as 

pre-integration complex. Since PERVs have no accessory proteins, the pre-integration 

complex can only be integrated in the genomic DNA during mitosis. After nuclear import the 

viral DNA becomes integrated into the cell chromosome with the aid of virion integrase and 

form a stable provirus achieving then the status of a cellular gene, which can be expressed and 

replicated by cellular enzymes in concert with chromosomal DNA. The transcription of the 

provirus generates spliced and unspliced mRNAs. The translation products and the progeny 

RNA are then assembled at the cell membrane, where viral RNA is incorporated into capsids. 

These capsids are released from the cell by budding of the plasma membrane, which has 

incorporated also the viral envelope proteins.  

Figure 5. The PERV replication cycle  

Budding of viruses is followed by cleavage of the precursor polyproteins by the viral and 

cellular proteases. If the mature PERV virion had incorporated enough Env in its membrane, 

then it will be able to infect new cells and begin a new cycle (for a review see [86]). 
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1.2.5 The pathogenicity of PERV 

Integration and titer 

PERVs are widely distributed and expressed in all pig strains and hence can’t be avoided in 

xenotransplant [136, 137]. In cell culture PERV have low titer of expression, however, 

passaging of PERVs through human cell line led to increase of viral titer which is caused by 

increase of LTR length [129, 138]. These LTR changes were also observed in other 

gammaretroviruses like MuLV and FeLV and were also associated with increase of 

pathogenicity [139]. Furthermore PERV integration sites were found in the human genome 

localized within high gene density regions and CpG-rich island. The integration frequency 

correlated with the virus titer [140]. 

No pathogenesis described 

No pathogenic symptoms were described in the natural host of PERV in vivo or in vitro. 

Furthermore, there is no indication of infections in small animals or non-human primates 

[105, 136, 141, 142]. The PERV transmission after transplantation of porcine islet cells into 

SCID mice was the result of pseudotyping of PERV with MuLV, since mice don’t express 

PERV-A receptors [124, 130]  

Related retroviruses are pathogenic 

It is known that most of retroviruses are pathogenic; however PERV risk is still difficult to 

evaluate. An animal model would help to understand the pathogenicity of PERV. Recently 

mice expressing the HuPAR-2 receptor were generated and were found susceptible to PERV 

infection [143] however, may be also pseudotyping as shown above.  Such genetic modified 

animal models could help understanding PERV risk. 

Absence of in vivo model of PERV requires study of pathogenicity in related viruses. 

Tumor and immunosuppression risk 

Infection by most, if not all retroviruses is known to cause severe immunodeficiency in a wide 

range of species e.g. by FeLV, MuLV, KoRV, the human T-lymphotropic virus (HTLV) [100, 

144-148], HIV [149] and simian immunodeficiency virus (SIV). Particularly, a highly 

conserved domain within the transmembrane protein was associated with immunosuppression 

and is known as immunosuppressive (ISU)-domain [100]. The ISU domain of PERV is 

identical to the ISU domain of FeLV, MuLV, GaLV and KoRV and all Isu domains were 

demonstrated to induce immune suppression [101]. 
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Several PERV-related retroviruses exhibit tumorigenic properties such as MuLV, FeLV, 

KoRV [150] and GALV [151]: 

FeLV: about 60% of infected cats die from opportunistic infections due to immunodeficiency 

of the infected cat and 5-10% develop leukemia/lymphomas [86]. The tumorigenic effect of 

FeLV was attributed to the high expression rate and insertion mutagenesis as well as the 

modification of the LTR [152]. 

MuLV was demonstrated repeatedly to be able to induce tumors by insertional mutagenesis 

in the host cells and high similarities between MuLV and PERV integration profile raise 

concerns about tumorigenic effects of PERV-like MuLV [153].  

Although PERV was isolated from transformed pig kidney cell lines [103, 104, 154] and was 

isolated from lymphoma cells and radiation-induced cells [155], the oncogenic roles of PERV 

are still unclear. Lately, high expression of PERVs were found in melanomas from Munich 

miniature swine (MMS) Troll pigs [126]. 

These results are important for the clinical use of xenotransplantation, since a PERV 

transspecies transmission may induce an immunodeficiency and tumors [100, 112, 151, 156]. 

Recombination and complementation risks 

Among retroviruses, emergence of new pathogenic viruses due to interspecies recombination 

and complementation are well known, such as HIV. A possible recombination and 

complementation events of PERV with human endogenous and exogenous retroviruses may 

also give rise to new virus [157]. Limited studies suggested that such events are very unlikely 

to happen (PERV/HERV) [86, 158-161]. In this case it would help to analyze the copy 

number and location of PERV in the porcine genome and data for some strains are now 

available [109, 116, 162]. 

Risk of PERV from genetically modified pigs 

Strategies aiming to eliminate the replication-competent proviruses could help reducing the 

virus titer. However, remaining non-competent proviruses may still undergo recombination 

and complementation events. Furthermore, some non-competent proviruses may express env 

proteins containing the immunosuppressive domain and thus induce immunosuppression [86] 

In addition, the use of transgenic modified xenotransplants may complicate the investigation 

of the risk of PERV. Such transgenic porcine material may interfere with the immune system 

of the recipient and help protecting PERV from the immune response. An example is the use 

of porcine transplants from C-reactive protein (CRP) expressing pigs. The expression of the 
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CRPs by the porcine cells help reduce the hyperacute xenograft rejection, however it will help 

protecting the PERVs produced by these cells [163]. Furthermore, viral particles budding 

from these cells may contain human CRP which will help those avoiding virolysis by 

activation of the complement [164]. A similar phenomenon was observed in ST-IWOA cells 

expressing the CD59 (see above), which produced PERV viral particles containing CD59 

[165]  

Recent studies made on human recipient which were exposed to porcine xenograft (liver cells, 

islet cells) revealed no infection despite persistent michrochimerism observed in some 

patients [105, 166-169]. However further investigation must be done since in these trials no 

long-term xenotransplantation was performed, furthermore only PBMCs of recipients were 

tested [163].  

1.2.6 Strategies to avoid PERV-induced xenosis  

1.2.6.1 RNA interference 

Short interfering RNAs (siRNAs) are double-stranded RNAs (19 – 23 bp) duplexes that 

trigger silencing of target genes in sequence-specific manner [170, 171]. Long dsRNAs are 

initially recognised by an enzyme of the RNase III family of nucleases, named DICER, and 

processed into small double-stranded molecules (19-23 nucleotides) termed siRNA. Each of 

these small double-stranded siRNAs, is formed by a so-called guide strand and a passenger 

strand (Figure 2.2). The endonuclease Argonaute 2 (Ago 2) catalyzes the unwinding of the 

siRNA duplex. Once unwound, the guide strand is incorporated into the RNA Interference 

Specificity Complex (RISC), which is a multi-protein complex with RNase activity, while the 

passenger strand is released. RISC uses the guide strand to find the mRNA that has a 

complementary sequence leading to the cleavage of the target mRNA [172] by the 

endonuclease argonaute. 

Based on RNA interference, several siRNAs targeting highly conserved region in PERV 

sequences were designed and tested [173]. Furthermore cells expressing permanently these 

siRNAs as small hairpin (sh)RNA were generated. Cells expressing an shRNA targeting the 

polymerase gene pol, which is identical to sequences in PERV-A, PERV-B and PERV-C 

were used to generate shRNA transgenic pigs by SCNT. The shRNA expression and PERV 

reduction was monitored over a period of 6 months [174, 175]. The long term expression and 
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efficiency of shRNA has not yet been investigated. Monitoring of the pigs for shRNA 

expression and PERV reduction was part of the present work. Furthermore expression of 

siRNAs in triple-shRNA expressing vectors will be investigated.  

1.2.6.2 Knockout with Zink Finger nucleases 

The high frequency of proviral PERVs in the porcine genome makes it impossible to knock 

out all PERV genes by classical methods. However, the recent development of the zinc-finger 

nucleases (ZFNs) had opened new opportunity to generate a PERV-KO pig. 

ZFNs are functional as heterodimer and each arm contains a DNA-binding domain which 

recognizes specifically a DNA target sequence of 12-18 base pairs and a cleavage domain, the 

endonuclease FokI which require dimerization to cleave the DNA. Once the DNA-binding 

sequences bind to their contiguous target sequences separated by 5-7 bps, the 2 subunits of 

FokI dimerize and cut the DNA inducing though a double stranded break. ZFNs are high 

specific and recognize a total target sequence of 24-36 bps.  

The double strand break induced by the ZFN results in the activation of cellular repair 

mechanisms such as the error-prone non-homologous end joining (NHEJ) which results in 

short deletion or insertion at the cleaved site and hence a knockout of the targeted gene. 

Gene knockout by ZFNs have been described in a wide variety of species (reviewed in [176]). 

The use of ZFNs was also reported for pig cells [177, 178] and ZFN-knockout transgenic pigs 

were successfully generated by SCNT [37, 179, 180]. 

Most of genes targeted by ZFNs are biallelic. However, targeting of genes with high copy 

numbers was also reported, for example, disruption of the multiallelic (3 of 4) Cytochrome 

P450 Oxidoreductase (POR) in human tumor cell lines using single POR specific ZFN [181]. 

By treating EGFP-transgenic fetal fibroblasts harbouring about 10 copies of the EGFP gene 

with EGFP-specific ZFN, Watanabe et al. demonstrated a decrease of GFP expression in 

treated cells where several copies of the gene were disrupted by the ZFN [177]. Another 

example of ZFN multiple targeting are the Ghost-CCR5 cells, which are a mixed-cell 

populations generated by retrovirus-mediated gene delivery and have an average of four 

CCR5 copies per cell [182]. 

Based on these results, we aimed in this work to disrupt the possible highest number of PERV 

genes in the pig cells. 
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1.2.6.3 Vaccine 

Although PERV transmission to human was not yet detected, preventive measures to avoid 

such transmission in the future are reasonable, and vaccination of patients who will profit of 

porcine xenotransplants will be of great use. In the case of HIV-1 broadly neutralizing 

antibodies were already isolated from infected patients, which were directed against the 

conserved TM (gp41) of HIV-1. However, immunization with both HIV-1envelope antigens 

didn’t succeed to induce such antibodies [183, 184]. In contrast to HIV-1, immunization with 

the ectodomain of the transmembrane protein p15E of PERV [185], FeLV [186, 187] and 

KoRV [113] were successful. A successful example of vaccine is given by the FeLV. Already 

two companies, Leucogen (Virbac) and Nobivac (Intervet) produce vaccines against FeLV 

which protect the cats from infection. These vaccines were based on recombinant 

unglycosylated FeLV-p45 [188, 189].  

Recently, high titres of neutralizing antibodies were measured in sera of hamsters immunized 

with the p15E and gp70 of PERV, and higher titres were measured in sera of animals 

immunized with both antigens [190]. The PERV specific sera recognized two epitopes, the E1 

located in the fusion peptide proximal region (FPPR) and the E2 in the membrane proximal 

external region (MPER) of p15E [185]. However there is no animal model allowing the in 

vivo analysis of these PERV-specific neutralizing antibodies. Therefore, immunization with 

the FeLV-p15E, which is closely related to PERV-p15E were carried out. About 50% of cats 

challenged with the FeLV-p15E were protected from further antigenemia [187].  

The immunization studies performed on gammaretroviruses may also help in the researches of 

HIV vaccine since the epitopes recognized by the gammaretrovirus-p15E antigens are 

localized in positions similar to the 2F5 and 4E10 epitopes of HIV which are recognized by 

the HIV broadly neutralizing antibodies [86]. 

1.2.6.4 Prevalence analysis 

As mentioned above, use of PERV-C free pigs for xenotransplantation is important in order to 

avoid PERV-A and PERV-C recombination. Furthermore, low PERV producer pigs are of 

interest and different strains and herds should be screened to assess the PERV expression. The 

viral expression can be assessed using a wide variety of methods. The most accurate is the 

real-time RT PCR mostly used in this work.  
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1.3 Aim of the study 

The present work was partially supported by the Deutsche Forshungsgemeinschaft DFG 

(De729/4-3) as contribution into establishing the safety of xenotransplantation when porcine 

cells, tissues and organs of pigs are to be used for human.  

In the present study the following strategies to reduce the porcine endogenous retroviruses 

(PERVs) transmission risk were assessed: 

1- The prevalence and expression analysis of PERV in Göttingen minipigs in order to analyse 

prevalence and expression of PERVs in well characterized pigs. 

2- Investigation of the long term effects of PERV specific RNA interference in transgenic pigs 

and improving the siRNA activity by the production of new triple-shRNA expressing vectors. 

3- Reduction of PERV expression by disrupting the PERV proviruses using the Zinc Finger 

Nucleases technology. 

4- Optimizing the anti-PERV vaccine using recombinant envelope proteins of PERV. 
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2 Materials 

 

2.1  Chemicals 

All chemicals were purchased from Sigma Aldrich Chemie GmBH (Germany) or Carl Roth 

GmBH (Germany) as mentioned in the text. 

2.2 List of bacterial strain 

Strain Genotyp 
Top10 F’  E. coli F´(lacIq, Tn10(TetR)) mcrA Δ(mrr-hsdRMS-mcrBC) Φ80lacZΔM15 

ΔlacX74 recA1 araD139 Δ(ara leu) 7697 galU galK rpsL (StrR) endA1 nupG 

E. coli K12 ER2925 ara-14 leuB6 fhuA31 lacY1 tsx78 glnV44 galK2 galT22 mcrA dcm-6 hisG4 rfbD1 

R(zgb210::Tn10)TetS endA1 rpsL136 dam13::Tn9 xylA-5 mtl-1 thi-1 mcrB1 hsdR2 

BL21-CodonPlusTM(DE3)-RP  E. coli B F- ompT hsdS(rB-, mB-) dcm+ Tetr gal λ (DE3) endA Hte [argU proL 

Camr]  

RosettaTM 2(DE3)pLysS  E. coli B F– ompT hsdSB(rB– , mB–) gal dcm (DE3) pLysSpRARE23 (Camr)  

 

2.3 List of plasmids and vector backbones 

GenBank Description References 

pET-22b(+)  bacterial expression vector Novagen 

pCAL-n Bacterial expression vector Stratagen 

pBluscript II KS Bacterial cloning vector oligoengine 

pSUPER basic Bacterial cloning vector  

RNAi-Ready pSIREN-RetroQ  self-inactivating retroviral expression vector designed to 

express a small hairpin RNA (shRNA) 

Clonetech 

pLVTHM Self inactivating lentiviral vector for direct cloning of 

shRNAs. Mammalian expression 

addgene 

pCL-VSV-G VSV-G expressing envelope vector. Mammalian 

expression 

addgene 

psPAX2 Lentiviral packaging vector. Mammalian expression addgene 

pZFN Expression of Zinc Finger Nucleases. Mammalian 

expression 

Sigma-

Aldrich 
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2.4 Plasmid constructs 

Construct Backbone Description Reference 

pT-3shRNA pLVTHM triple shRNA (pol1, pol2 , gag 2) with 3 

promoters (H1, 7SK and H1) expressing 

vector 

this work 

T-3shRNA pSIREN-

RetroQ 

triple shRNA (pol1, pol2 , gag 2) with 3 

promoters (H1, 7SK and H1) expressing 

vector 

this work 

pLVTHM-pol2 pLVTHM pol2 shRNA expressing vector Dr. Dieckhoff 

pet-22b(+) gp70 PERV pET-22b(+) PERV SU (EcoRI/SalI) expression vector C. Wurzbacher 

pCal-n-p15E PERV pCAL-n PERV-TM expression vector Dr. U. Fiebig 

pSuper pol2 pSuper Pol2 shRNA Oligos BglII/HindIII inserted Dr. A. Karlas 

ZFN1-CFP pZFN ZFN1 expression vector with CFP inserted 

as marker 

this work 

ZFN2-YFP pZFN ZFN2 expression vector with YFP inserted 

as marker 

this work 

 

2.5 Antibodies and sera 

Antibody/sera  Dilution  Use Reference  

Rabbit anti-Mouse Immunoglobulins-

HRP  

1:1000 WB/ELISA  Dako  

Anti-Rabbit-Immunoglobulins-HRP  1:2000  WB/ELISA  Dako  

Rabbit anti goat-Immunoglobulins-HRP  1:2000/1:3000  WB/ELISA  Dako  

Anti-swine-Immunoglobulins-HRP  1:1000 WB  Dako  

Goat 16 anti-p15E (PERV)  1:200 WB/ELISA  AG Denner  

Ziege 62 anti-gp70 (PERV)  1:200 WB/ELISA  AG Denner  

Mouse Anti-β-actin, monoclonal clone 

AC-74 

1:5000 WB Sigma-Aldrich 

Mouse Anti-Flag M2 1:500 WB Sigma-Aldrich 

Rabbit Anti-DDX3 1:1000 WB Cell Signaling 

Technology 

Anti GFP 1:1000    

 

2.6 List of enzymes 

Name Manufacturer 

AmpliTaq Gold DNA Polymerase  Applied Biosystems  

Pfu DNA Polymerase (rekombinant)  Fermentas  

KAPA2G DNA-Polymerase  Peqlab  

SuperScript™ III Reverse Transkriptase (RT)  Invitrogen  

Platinum® Taq DNA Polymerase  Invitrogen  
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T4 DNA Ligase  Roche oder Fermentas  

Shrimp Alkaline Phosphatase  Fermentas  

Restriktionsenzyme  NEB or Fermentas  

Lysozym  Sigma  

Trypsin  Invitrogen  

Proteinase K  Qiagen  

 

2.7 DNA and Protein ladders 

Standard Manufacturer 

O'GENERULER™ DNA LADDER MIX Fermentas 

1 KB+ DNA LADDER Invitrogen 

PAGERULER™ PRESTAINED PROTEIN LADDER Fermentas 

 

2.8 Primers and probes 

PCR Primer

/Probe 

Sequence Reference 

Sequencing and cloning primers 

T7-Promotor  TAATACGACTCACTATAGGG Standard 

T7-Terminator  GCTAGTTATTGCTCAGCGG  

M13  for GTAAAACGACGGCCAGT Standard 

M13  rev CAGGAAACAGCTATGAC  

hu7SK for ATAAGGATCCCAATAGAATTCACCAATGGAGACTGCAGTATTTAGC  

This work  rev TATCAATTGGGCTACTCGAGCATTTGAAGACCGAGGTACCCAGGCGGCG

CACAAGC  

Detection PCR 

pol   for ATGTGGATGAGCGTAAGGGAGTAG  

[191]  
 rev GTCTGGGGGCTGCCGAACGAT   

gag  for  TCCAGGGCTCATAATTTGTC  

[191] 
 rev TGATGGCCATCCAACATCGA  

envA  for  TGGAAAGATTGGCAACAGCG  

[119] 
 rev  AGTGATGTTAGGCTCAGTGG 

envB  for  TTCTCCTTTGTCAATTCCGG  

[119] 
 rev  TACTTTATCGGGTCCCACTG  

envC  for CTGACCTGGATTAGAACTGG  

[124] 
 rev  ATGTTAGAGGATGGTCCTGG  

PERV-A VRBF for CCTACCAGTTATAATCAATTTAATTATGGC 

[127] 
PERV-C TMR rev CTCAAACCACCCTTGAGTAGTTTCC 

porcine cyclophilin for  TGCTTTCACAGAATAATTCCAGGATTTA  

[192] 
 rev  GACTTGCCACCAGTGCCATTA  

porcine β-actin for CTCGATCATGAAGTGCGACGT 

[192] 
 rev GTGATCTCCTTCTGCATCCTGTC 

porcine Gapdh for ACATGGCCTCCAAGGAGTAAGA [192] 



Materials 

25 
 

 rev GATCGAGTTGGGGCTGTGACT 

Detection of Integration of pLVTHM 

GFP  for GATCACGAGACTAGCCTCGAGGT 

[175] 
 rev CCAGGATGTTGCCGTCCTC 

Pol2 for AACGCTGACGTCATCAAC 

[175] 
 rev GGACGCTGACAAATTGAC 

Real-time PCR 

pol   for ATGTGGATGAGCGTAAGGGAGTAG  

[191]  rev GTCTGGGGGCTGCCGAACGAT   

 probe  FAM-TAGGACCATGGAGGAGACCTGTTGCC-BHQ  

gag  for
 
 TCCAGGGCTCATAATTTGTC  

[191]  rev
 
 TGATGGCCATCCAACATCGA  

 probe
 
 FAM-AGAAGGGACCTTGGCAGACTTTCT-BHQ 

porcine cyclophilin for TGCTTTCACAGAATAATTCCAGGATTTA  

[192]  rev GACTTGCCACCAGTGCCATTA  

 probe
 
 Cy5-TGCCAGGGTGGTGACTTCACACGCC-BHQ2  

envC  for
 
 TGACCTGGATTAGAACTGG 

[126]  rev
 
 ATGTTAGAGGATGGTCCTGG 

 probe
 
 FAM-CTCTAACATAACTTCTGGATCAGACCC-BHQ1  

envCnv for CCCCAgCCCAAGGACCAG   

 rev AAGTTTTGtCCCCgTTTTAGT  [193] 

 probe FAM-CTtTAACATAACTTCTGGATCAGACCC-BHQ1   

env-A for GCAATGGAGCTGCATAACTTC  

 rev TGTTGCCAATCTTTCCATCT this work 

 probe TGGCCATTTCCAATTCCCATCA  

Env-A(58)    

    

    

env-B for CGCCTTATAGACAGCTCGAA  

 rev GCCTCTAGGAGCAACACCTC this work 

 probe CCCGTATCAGGGTCAATAATCAGCCA  

pol2 shRNA for CGGCGGAGTCAATTTGTCAGC  

 rev GTGCAGGGTCCGAGGT  

 Loop 

primer 

GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACaaggac [194] 

 probe FAM-TGGATACGACaaggac-BHQ1  

Pol1 shRNA rev CGGCGGAGTATCTTACCTCAC  

  Loop 

primer 

GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACaagcag this work 

  probe FAM- 5’ TGGATACGACaagcag 3’ BHQ1  

gag2 shRNA rev CGGCGGTAACCTGAACTGAC  

  Loop 

primer 

GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACaagctc this work 

  probe FAM- 5’ TGGATACGACaagctc 3’ BHQ1  

ZFN primers 

ZFN set 1PCR 1 for CGAAGGCACTACTGCTGGAA 

this work  rev CGTTGGTCATCCATCGGTCT 
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2.9 Eukaryotic cells 

Name Species Cell type Source Medium 

HEK 293 

Human Embryonal kidney 

ATCC CRL-1573 DMEM 

HEK 293 T Invitrogen DMEM 

HEK 293-PERV-5° AG Denner DMEM 

PK15 Swine Kidney cell line ATCC CCL-33 DMEM 

PFFs Swine Primary fetal fibroblasts Prof. Niemann DMEM 

PBMCs Swine Peripheral blood mononuclear cells Prof. Niemann or 

Ellegard 

RPMI 

ZFN set 1 PCR 2 for CAGGTGACCCTCCTCCAGTA 

this work 
 rev CGTTGGTCATCCATCGGTCT 

 

ZFN set 1 PCR 3 for CAGGTGACCCTCCTCCAGTA  

this work 
 rev CGTTGGTCATCCATCGGTCT  

shRNA oligonucleotides 

shRNA pol2 7SK   S ACCTCGGACGCTGACAAATTGACTTTCAAGAGAAGTCAATTTGTCAGCGT

CCTTTTTGGAAA 
 

shRNA pol2 7SK  AS TCGATTTCCAAAAAGGACGCTGACAAATTGACTTCTCTTGAAAGTCAATT

TGTCAGCGTCCG 

shRNA pol2 H1  S GATCCCCGGACGCTGACAAATTGACTTTCAAGAGAAGTCAATTTGTCAG

CGTCCTTTTTGGAAC 
 

shRNA pol2 H1   AS  

AATTGTTCCAAAAAGGACGCTGACAAATTGACTTCTCTTGAAAGTCAATT

TGTCAGCGTCCGGG 

shRNA pol1 7SK   S ACCTCGCAGGAGAGAGGTAACATACTCGAAAGTATGTTACCTCTCTCCTG

CTTTTTGGAAA 

this work 

shRNA pol1 7SK  AS TCGATTTCCAAAAAGCAGGAGAGAGGTAACATACTTTCGAGTATGTTAC

CTCTCTCCTGCG 

shRNA pol1 H1  S GATCCCCGCAGGAGAGAGGTAACATACTCGAAAGTATGTTACCTCTCTC

CTGCTTTTTGGAAC 

this work 
shRNA pol1 H1   AS  

AATTGTTCCAAAAAGCAGGAGAGAGGTAACATACTTTCGAGTATGTTAC

CTCTCTCCTGCGGG 

shRNA gag2 7SK  S ACCTCGCTCATAATTTGTCAGTTCAGGTTACGAATAACCTGAACTGACAA

ATTATGAGCTTTTTGGAAA 

this work 

shRNA gag2 7SK  AS TCGATTTCCAAAAAGCTCATAATTTGTCAGTTCAGGTTATTCGTAACCTG

AACTGACAAATTATGAGCG 

shRNA gag2 H1  S GATCCCCGCTCATAATTTGTCAGTTCAGGTTACGAATAACCTGAACTGAC

AAATTATGAGCTTTTTGGAAC 

this work 
shRNA gag2 H1  AS  

AATTGTTCCAAAAAGCTCATAATTTGTCAGTTCAGGTTATTCGTAACCTG

AACTGACAAATTATGAGCGGG 
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2.10 Animals 

Bacterial culture media 
Luria-Bertani (LB) broth 10 g/l (w/v) tryptone, 5 g/l yeast extract, 0,5 g/l NaCl, pH 7.0 

LB agar LB broth, 14 g/l Agar-Agar (Roth) 

2YT 10 g/l (w/v) tryptone, 16 g/l yeast extract, 5 g/l NaCl, pH 7.0 

Mammalian cells culture media 
DMEM (PK15, 293T) 10% heat-inactivated fetal calf serum (FCS) (PAA, Pasching, 

Austria), 2 mm l-glutamin, 100 U/ml penicillin, 100 lg/ml, 

streptomycin, 15 mm HEPES (Biochrom, Berlin, Germany), ad 500 

ml DMEM 

DMEM (PFF) Same supplements as DMEM (PK15, 293) + 0.1 mm b-

mercaptoethanol, 1% (v/v) non-essential amino acids and a 1% 

(v/v) vitamin solution (Sigma-Aldrich, Steinheim, Germany) 

RPMI Same supplements as DMEM (PK15, 293) 
*Charles River Laboratories International, Inc; Wilmington USA**Hungarian institute of vetenary vaccines;Gödöllö, Hungary 

2.11 Culture media  

Bacterial culture media 
Luria-Bertani (LB) broth 10 g/l (w/v) tryptone, 5 g/l yeast extract, 0,5 g/l NaCl, pH 7.0 

LB agar LB broth, 14 g/l Agar-Agar (Roth) 

2YT 10 g/l (w/v) tryptone, 16 g/l yeast extract, 5 g/l NaCl, pH 7.0 

Mammalian cells culture media 
DMEM (PK15, 293T) 10% heat-inactivated fetal calf serum (FCS) (PAA, Pasching, 

Austria), 2 mm l-glutamin, 100 U/ml penicillin, 100 lg/ml, 

streptomycin, 15 mm HEPES (Biochrom, Berlin, Germany), ad 500 

ml DMEM 

DMEM (PFF) Same supplements as DMEM (PK15, 293) + 0.1 mm b-

mercaptoethanol, 1% (v/v) non-essential amino acids and a 1% 

(v/v) vitamin solution (Sigma-Aldrich, Steinheim, Germany) 

RPMI Same supplements as DMEM (PK15, 293) 

 

2.12 Software and EDV 

Name Use Manufacturer 

MxPro QPCR Software  Real-time PCR Stratagene 

MS Office 2003  EDV Microsoft 

Magellan™ Data Analysis Software  ELISA TECAN 

Lasergene Software Version 8.0 Sequence analysis DNSTAR 

Blast-n und Blast-p  Sequence analysis NCBI 

ImageJ Image processing for concentration 

estimation 

Open source 

FlowJo FACS calibur TreeStar Inc. 

 

  



Methods 

28 
 

3 Methods 

3.1 Molecular biology 

3.1.1 Isolation of plasmid DNA 

Plasmid DNA was isolated from overnight cultures of E. coli in corresponding medium. Cells 

were pelleted and lysed under alkaline conditions using either the QIAprep Spin Miniprep Kit 

(Qiagen, Hilden) or the EndoFree Plasmid Maxi Kit (Qiagen, Hilden) according to the 

manufacturer. Maxi preps are highly purified and endotoxin free and were be used for 

eukaryotic cell transfections. DNA was eluted with nuclease free water and conserved at -

20°C. 

3.1.2 Isolation of DNA  

Genomic DNA was isolated from eukaryotic cells using the DNEASY BLOOD & TISSUE 

Kit (Qiagen, Hilden). Cells were pelleted and re-suspended in 200 µl PBS. Cell lysis and 

DNA purification were performed according to the manufacturer’s instructions.  In order to 

isolate genomic DNA from tissues or organs, 25 mg of each sample were placed in 2 ml 

microcentrifuge tube containing 2 stainless steel beads (7 mm mean diameter, Qiagen, 

Hilden) and the appropriate volume of lysis buffer ATL. Cells were lysed in a TissuLyser LT 

(Qiagen, Hilden) by operating the Lyser for 5 min at 30 HZ. Lysed cells were transferred in a 

new tube and genomic DNA was purified using the DNEASY BLOOD & TISSUE Kit 

according to the manufacturer. 

PCR Products were purified using the MSB Spin Rapace (Invitek, Germany) as recommended 

by the manufacturer. For the extraction of DNA fragments from gel agarose, gel slices 

corresponding to the separated bands were cut under UV-light using the scalpel then melted. 

Further steps of DNA extraction followed using the Invisorb Spin DNA Extraction Kit 

(Invitek, Germany) according to the manufacturer. DNA was eluted using nuclease free H2O. 

3.1.3 Isolation of total RNA and siRNA 

RNA isolation from cells was performed using the RNeasy Minikit (Qiagen, Hilden) as 

described by the manufacturer. The RNA isolation from Tissues and organ samples was 

performed using combined method using the TRI-Reagent (Sigma-Aldrich) and the RNeasy 

Mini Kit (Qiagen, Hilden). Briefly 50-100 mg of tissue samples were homogenized in 1 ml 
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TRI-Reagent using the TissuLyser LT (Qiagen, Hilden). To the supernatant 0.2 ml 

chloroform (Merck) was added and the mixture was centrifuged (12000 x g, 15 min, 4° C). 

The upper phase containing the RNA was carefully transferred to a new tube and mixed with 

chilled 70% ethanol (v/v in DEPC water). The mixture was then transferred to an RNeasy 

spin column (RNeasy MiniKit, Qiagen, Hilden) and centrifuged. Further washing and elution 

steps were performed according to the manufacturer. 

3.1.4 Quantification of nucleic acids 

The concentration and the purity of nucleic acids were determined using a NanoDrop ND-

1000 spectrophotometer (Peqlab, Erlangen, Germany). For each sample 1 µl were measured 

in comparison to nuclease free water as control. Protein free samples should have an A 

260/280 ratio close to 2.0. 

3.1.5 Molecular cloning 

3.1.5.1 Restriction endonuclease digestion and dephosphorylation of plasmid DNA 

For cloning purposes DNA Plasmids or purified PCR products(2,5 µg DNA)  were digested 

using Fast Digest (Thermo Scientific, Darmstadt) enzymes in a 50 µl reaction volume 

containing the 10 time Fast Digest common buffer and the Fast Digest enzymes (5 units per 

µg DNA). The reaction mixture was incubated for 1 hour at 37°C. In order to prevent self-

ligation and improve ligation efficiency, linearized plasmids were dephosphorylated by 

adding 1 unit Shrimp Alkaline Phosphatase (Thermo Scientific, Darmstadt) and incubating at 

37°C for 30 min. Digested plasmids or PCR products were then checked on agarose gel for 

appearance and correct size and concentration was estimated using the ImageJ software. DNA 

extraction was performed as described below. 

3.1.5.2 Annealing and ligation of DNA fragment with T4 ligase 

Linearized and dephosphorylated DNA vectors were mixed with the DNA inserts at different 

ratio in a 10 µl reaction volume, containing 1 µl of T4 DNA Ligase and 1 µl of 10x T4 Ligase 

Buffer (Fermentas). The reaction mixture was then incubated over night at 16°C. The 

products of the ligation mixture were introduced into competent E. coli cells as described 

below. 
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3.1.5.3 Hybridization and cloning of shRNA oligonucleotides 

The shRNA oligonucleotides synthesized by Sigma Aldrich (see table) were designed to 

hybridize forming overhangs, which are suitable for direct cloning into the digested siRNA 

expression vectors. Synthetic sense- and antisense-shRNA were diluted to a stock 

concentration of 50 mM. Oligonucleotides were hybridized reaction mixture containing 1 µl 

of each shRNA and 5 µl T4 Ligase Buffer and dH2O at a final volume of 50 µ. The mixture 

was heated to 94°C for 2 minutes and cooled down slowly till 21°C. Afterwards the 

overhangs of the hybridized shRNA oligonucleotides were phosphorylated by adding 1 µl of 

T4-Polynucleotide kinase and 1 mM dATP and further incubation at 37°C for 30 min. Finally 

the shRNAs were ligated into the corresponding siRNA expressing vector (see 3.1.5.2). 

Ligation products were used to transform competent E. coli (Top 10) and the selection of 

positive clones followed by colony PCR (See 3.1.5.10) using the corresponding primers as 

well as sequencing. 

3.1.5.4 Cloning of ZFN1-CFP and ZFN2-YFP 

In order to study the expression of ZFN proteins and locate them in the cells, the fluorescent 

markers CFP and YFP were inserted in the ZFN plasmids at the 3’ side of the ZFN1 and 

ZFN2 respectively. CFP was amplified from a pCDNA4 V5 HIS-PLUS CFP using the 

primers TTTTTAGATCTGCCGCCGCCATGGTGAGCAAGGGCGAGGAG and rev 

TTTTTCTCGAGCGGAACCTTTCCGGACTTGTACAGCT. The PCR product was purified 

and ligated into the ZFN1 plasmid by using BglII and XhoI. For ZFN2 a mutagenesis PCR 

was carried out to replace a stop codon by a BamHI restriction site using the primers for 

caacggcgagatcaacttcggatccctcgagtctagagggcccg and rev cgggccctctagactcgagggatccgaagttgatc 

tcgccgttg. The YFP sequence was released from a pCMV-Tag 2B-CD63-YFP with XhoI and 

ApaI. The insert was purified by gel extraction using the Invisorb Spin DNA Extraction Kit 

(Invitrogen) and then inserted in an XhoI/ApaI digested ZFN2 plasmid. 

3.1.5.5 Agarose gel electrophoresis  

Agarose gel electrophoresis was performed for analytical as well as preparative procedures. 

According to the DNA fragment size a 1-2% gel was prepared by dissolving the Agarose 

powder in 1x TAE Buffer (50x : 50 mM EDTA, 1 M acetic acid, pH 8,0) and microwave 

heating for about 1 minute until the mixture became translucent. The solution was then cooled 

to approximately 55-60°C and Ethidium bromide was added (0.5 µl / ml) and the gel was 

poured into a casting tray with the corresponding comb. After the gel solidified, it was 
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submerged in 1x TAE buffer-filled electrophoresis tank; DNA samples were diluted into 

DNA loading-buffer (Fermentas) and loaded. Electrophoresis was performed by applying a 

current between 1-10 Volts/cm. The DNA was visualized by UV using the Gel Doc 2000 

(BioRad) or the CHEMOCAM Imager 3.2 (INTAS, Germany) and the size of the DNA was 

determined using the GeneRuler DNA Ladder Mix (Fermentas). 

3.1.5.6 Polyacrylamide gels for resolving small DNA fragments 

For a better resolution, a 10% polyacrylamide gel was prepared. Gels were poured into a Bio-

Rad gel apparatus (Hercules, CA). After polymerization gels were left at 4°C overnight before 

use. Gels were then fixed into a Bio-Rad electrophoresis chamber filled with 1x TBE buffer. 

DNA samples were mixed with 6x loading buffer (Fermentas) and loaded into the wells. 

Electrophoresis was carried out at constant voltage of 110 V for 70-100 min. gels were then 

stained for 15-20 min in 1x TBE containing 0.5 µg/ml EtBr and visualized by UV using the 

CHEMOCAM Imager 3.2 (INTAS, Germany). 

3.1.5.7 Sequencing 

Sequencing of plasmids or PCR products was performed by the FG18 sequencing facility, 

where an advanced chain-termination method described by Sanger and colleagues was used. 

The sequencing reaction was performed with ABI BigDye 3.1v cycle sequencing (Applied 

Biosystems). A sequencing PCR was performed with the DNA samples and the 

corresponding primers in triplicates. The reaction mixture is described in the table 1. The PCR 

products were then measured in the sequencing facility using a 370A DNA Sequencing 

System (Applied Biosystems). The data analysis was performed using the Lasergene 8 

software (DNASTAR). 

Table 1. Reaction mix and cycle conditions for sequencing

DNA 150 ng 

Primer (10 µM) 0.5 µl 

BigDye-Mix 3.1 2  µl 

5x ABI-buffer 1  µl 

Nuclease free water ad 25 µl 

Time Step Temp cycles 

2 min initial Denaturation 96°C 1 

10 sec Denaturation 96°C  

25 

  

5 sec Annealing 55°C 

4 min Elongation 60°C  

3.1.5.8 Polymerase chain reaction (PCR) 

Developed by Mullis in the 1980s the polymerase chain reaction is a robust and powerful tool 

which allows amplifying specific pieces of DNA (usually 100 to 600 bp) more than a billion-

fold [195]. In a first step, double-stranded DNA are “melted” by high temperatures The 
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mixture is then cooled in the presence of sequence-specific primers (denoted as forward and 

reverse) that “anneal” to their targets. A thermo-stable polymerase (Taqpolymerase that was 

isolated from Thermus aquaticus) allows the extension of these primers by applying an 

optimal temperature. The Taq polymerase is a DNA dependant DNA polymerase, which adds 

covalently template directed deoxynucleotide triphosphate (dNTPs) to the 3’OH end of the 

primers. Perfect reaction efficiency leads to doubling of target-DNA quantity after each cycle, 

which results into exponential amplification of the specific DNA fragment. Finally the PCR 

product is abundant enough to be analyzed on an agarose gel with an ethidium bromide stain. 

The method was extended to analyze mRNA using reverse transcriptase to convert it into 

complementary DNA (cDNA). This method of analysis is a qualitative tool for detecting the 

presence or absence of a particular DNA or mRNA.  

3.1.5.9 Gradient PCR  

A gradient PCR allows the empirical determination of an optimal annealing temperature for 

the primers. During the PCR, a temperature gradient is built up across the thermoblock of the 

thermocycler around the calculated melting point (Tm). This allows the most stringent 

parameters for every primer set to be calculated. The cycling conditions comprised of 7 min 

polymerase activation at 95°C followed by 36 cycles of denaturation at 95°C for 30 s, 

annealing at 50-65°C for 30 s and elongation at 72°C for 1 min, a final extension at 72°C for 

5 min.  

The reaction conditions were as follows: 

Reactions were carried out using the Eppendorf Mastercycler gradient which allows the 

following temperature gradient: 49.8°C. 50.2°C, 51.1°C, 52.5°C, 54.3°C, 56.2°C. 58.3°C, 

60.2°C, 62°C, 63.5°C, 64.6°C, 65.1°C. 

Finally PCR products were analyzed on 2% agarose gel.  

3.1.5.10  Colony PCR 

Colony PCRs were used to screen transformed E.coli clones for positive ligation of vectors. 

The used primers were chosen to flank the ligation/insertion site of the vector (table2). For the 

PCR AmpliTaq Gold® polymerase (Roche, Mannheim, Germany) was used. Individual 

bacterial colonies were picked up using a sterile pipette tip and dipped into a reaction tube 

containing 25 µl of the reaction mix. A PCR was then performed following the cycling 

conditions in the table below. 
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Table 2. Reaction mix and cycle conditions of colony PCR.

10 x PCR buffer 2.5 µl 

Primer fwd (10 µM) 0.5 µl 

Primer rev (10 µM) 0.5 µl 

10x PCR Buffer 10  µl 

dNTPs (20mM each) 0.5 µl 

MgCl2 (25mM) 3 µl 

AmpliTaq Gold 0.25 µl 

Nuclease free water ad 25 µl 

Time Step Temp cycles 

2 min initial Denaturation 95°C 1 

15 sec Denaturation 95°C  

32 

  
30 sec Annealing 55°C 

 1 min/kb Elongation 72°C  

10 min Final elongation 72°C 1 

hold Chilling 4°C 1 

 

3.1.5.11 PCR diagnostic 

PCRs specific for PERV-pol and -gag [191] as well as different PERV-env subtypes  (PERV-

A, -B, -C, -A/C and -Cnv) were already described and used in this work: PERV-A and –B 

[112], PERV-C [124], PERV-A/C [127], PERV-C wild boar (WB) and –Cnv [191, 196]. 

PERV-C and –Cnv PCRs were mostly performed using the Kapa2G robust PCR Kit (Peqlab, 

Erlangen, Germany) (Table3). 

Table 3. Kapa2G robust PCR reaction mix and cycle condition 

Template (RNA) 50 ng 

Primer fwd + rev (10 µM each) 1 µl 

dNTPs (10mM each) 0.5 µl 

MgCl2 (25 mM) 0.5 µl 

Kapa2G polymerase (5U/µl) 0.1 µl 

5 x PCR-buffer A 5 µl 

5 x Enhancer 5 µl 

Nuclease free water ad 25 µl 

Time Step Temp cycles 

10 min initial Denaturation 94°C 1 

30 sec Denaturation 94°C  

30 30 sec Annealing AET(*) 

30 sec Elongation 72°C 

5 min Final elongation 72°C 1 

(*)
AET, annealing / extension temperature depends on the primers and time depends on the length of the 

sequence to be amplified. 

3.1.5.12 One-step reverse transcriptase PCR  (RT-PCR) 

In order to quantify the gene expression on mRNA level One-step reverse-transcriptase real-

time PCRs were carried out. Total RNA and not cDNA was used as template and reverse-

transcription and PCR were carried out in the same reaction tube. In the present work two 

systems were used, the SuperScript
TM

III RT (Invitrogen, Karlsruhe, Germany) and the 

SensiFAST
TM

 Probe No-ROX One-Step Kit (Bioline, Luckenwalde, Germany) according to 

the manufacturer guidelines. Both systems use a mixture of reverse transcriptase and DNA 

polymerase in corresponding optimized reaction buffers. The first step involved a reverse 

transcription (45°C, 10 min for SensiFAST or 50°C, 15 min for SuperScript) followed by 

activation of the DNA polymerase (95°C, 2 min). afterwards cDNA can be amplified by the 

PCR reaction. 



Methods 

34 
 

 

Principles 

Real-time RT-PCR is based on the method developed by Mullis [195], which allows 

distinguishing and measuring of DNA or RNA sequences even with very small quantity [197, 

198]. Real-time PCR monitors the amplification progress by measuring fluorescence after 

each cycle. The cycle at which the fluorescent signal crosses a threshold level (cycle threshold 

or Ct) above the background is proportional to the original amount of template, thereby 

enabling quantification. Fluorescence can be tracked using several dyes like Ethidium 

bromide (EtBr) or SYBR green which quantifies double stranded DNA. In this work we used 

TaqMan probes, which is more accurate since it quantifies only the probe sequence. 

Operating mode 

Primers and probes were ordered by Sigma-Aldrich. The TaqMan probe is an 18-22 nt 

sequence specific DNA based fluorescent reporter probe labelled with a reporter fluorophores 

(Table 4) at the 5’ end and a quencher fluorophore (Black Hole Quencher, BHQ) at the 3’ 

end. 

Table 4. Reporter fluorophores of probes  

Dye Extinction [nm] Emission [nm] Quencher 

6-FAM 494 515 BHQ-1 

HEX
TM

 (GAPDH) 535 555 BHQ-1 

Cy5
®
 (cyclophilin) 651 674 BHQ-3 

As long as the probe is not cleaved by the Taq Polymerase, the long wavelength colored 

quencher reduces the fluorescence of the short wavelength colored reporter. As the 

polymerization continues, the polymerase reaches the probe and cleaved it by its 5’ 

exonuclease activity, releasing the reporter away from the quencher. This results in increasing 

the fluorescence intensity of the reporter dye which can then be measured. The cycle at which 

the reaction reaches a fluorescent intensity above the background is called the cycle threshold 

(Ct). Real-time PCR was performed using an Mx4000 Multiplex Quantitative PCR system 

(Stratagene, Amsterdam, Netherland), and the data acquisition was processed by the Mx4000 

software (version 4.20). 

Real-time PCRs were performed as duplexes, where a house-keeping (GAPDH or cyclphilin) 

gene was always co-amplified and measured. These house-keeping (HK genes served as 

reference genes to ensure that the observed differences in the expression levels of the genes of 
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interests were not the result of fluctuations in the amount of the template cDNA. Experiments 

were performed in triplicate which allowed calculating mean values and standard deviations 

(see results). The reaction conditions were as follows: 

Table 5. Reaction mix and cycling conditions for real-time PCRs 

SuperSkript                                                                              

Template (RNA) 50 ng 

Primer fwd + rev (10 µM) 1 µl 

Probe (10 µM) 0.5 µl 

Primer fwd + rev HK(*) (10µM each) 1µl 

Probe HK (10 µM) 0.5 µl 

SuperSkript Platinum Taq 0.25 µl 

2 x reaction Mix 12.5 µl 

Nuclease free water ad 25 µl 

Time Step Temp cycles 

15  min RT 50°C 1 

2 min initial Denaturation 95°C 1 

15 sec Denaturation 95°C  

40-45 

  
2 min Annealing/ Elongation AET(**) 

10 min Final elongation 72°C 1 

shRNA real-time PCR (SuperSkript)

Template (RNA) 

20 ng 

Primer fw (10 µM) 0.5 µl 

Primer rev (10 µM) 0.5 µl 

Loop primer (0.05 µM) 0.5 µl 

Probe (10 µM) 0.5 µl 

SuperSkript Platinum Taq 1  µl 

2 x Reaction Mix 12.5 µl 

Nuclease free water ad 25 µl 

Time Step Temp cycles 

5 min Reverse  

Transcription 

 

25°C  

1 5 min 35°C  

5 min 55°C 

5 min initial Denaturation 95°C 1 

20 sec Denaturation 95°C  

30 sec Annealing/ Elongation 58°C  

SensiFAST 

Template (RNA) 50 ng 

Primer fwd + rev (10 µM each) 1.6 µl 

Probe (10 µM) 0.2 µl 

Primer fwd + rev HK (10µM each) 1.6 µl 

Probe HK (10 µM) 0.2 µl 

2x SensiFAST Mix 10  µl 

Reverse transcriptase 0.2 µl 

Ribosafe RNAse inhibitor 0.4 µl 

Nuclease free water ad 25 µl 

 

Time Step Temp cycles 

10  min RT 45°C 1 

2 min initial Denaturation 95°C 1 

5 sec Denaturation 95°C  

40-45 2 min Annealing/ Elongation AET 

10 min Final elongation 72°C 1 

hold Chilling 4°C 1 
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Real-time PCR (control) 

Template (DNA) 50 ng 

Primer fwd + rev (10 µM each) 1 µl 

Probe (10 µM) 0.5µl 

Primer fwd + rev HK (10µM each) 1 µl 

Probe HK (10 µM) 0.5 µl 

10x PCR Buffer 12.5  µl 

dNTPs  0.2 µl 

MgCl2 0.4 µl 

AmpliTaq Gold 0.25 µl 

Nuclease free water ad 25 µl 
(*)

HK, House-keeping gene; 
(**)

AET, annealing / extension temperature depends on the primers and time depends 

on the length of the sequence to be amplified. 

3.1.5.13 Relative quantification 

The gene expression values were mostly done according to Livack and Schmittgen method 

[199] by normalizing to the house-keeping gene. The 2
-ΔΔCt

 values were calculated as follows: 

ΔCt = Ct target gene – Ct house-keeping gene 

ΔΔCt = ΔCt examined animals – ΔCt control animals 

3.1.5.14 Determination of Efficiency 

 The real-time PCR efficiency is defined as the probability of duplication of one molecule 

after each PCR cycle. An efficiency of 100% corresponds to a doubling of the DNA amount 

per PCR cycle. In order to obtain reliable comparison and calculations the amplification 

efficiency of target and housekeeping genes should be invariable. Evaluations of the 

efficiency of all used primers were performed. Acquisition of standard curves followed by 

carrying out real-time PCRs using serial dilutions of the target sequences (usually in 

plasmids) and housekeeping genes with known concentrations and copy numbers. The Ct 

values of reference and target genes were plotted against log of copy numbers. The slope (m) 

was determined using linear regression and efficiency was calculated using the following 

function: 

E(%) = (10-1/m - 1) x 100 

3.1.6 Hybridization of oligonucleotide 

The complementary shRNA olingonucleotides were resuspended in nuclease free water at the 

same molar concentration. Equal volumes of both oligos were mixed and heated at 95°C then 

cooled down to 25°C (-0.3°C/s) using a thermocycler. 
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3.1.7 Surveyor nuclease Assay 

The ZFN activity was detected using the Transgenomic Surveyor mutation detection kit 

(Transgenomic, Glasgow, UK) which takes advantage of the Non Homologous end joining 

DNA repair system triggered by the double strand break at the ZFN target site. The Surveyor 

nuclease is an endonuclease that cleaves both strands of a DNA at sites of base mismatch. In a 

first step the ZFN target region is amplified by PCR from genomic DNA of ZFN-treated cells 

and untreated cells. If the ZFNs are active the PCR would results in a pool of mutated and 

unmutated amplicon which were hybridized by heating and slowly cooling to form hetero- 

and homoduplexes. Heteroduplexes contain a “bubble” formed at the site of mismatch. After 

treating this mixture with Surveyor nuclease, DNA heteroduplexes will be cut at the mismatch 

sites. The cleavage products can be analyzed by agarose gel electrophoresis or polyacrylamide 

gel electrophoresis. 

3.2 Microbiological methods 

3.2.1 Competent cells and transformation 

The preparation of Competent E. coli cells were performed as described in the Qiagen bench 

guide. The protocol is based on the method described by Hanahan and colleagues [200]. The 

composition of buffers used for this purpose was described in the materials section. The 

Transformation of competent cells with plasmids and ligation products was performed using 

the heat-shock method [200] which allows a high efficient introduction of DNA plasmid in 

the competent cells. Briefly, 50 µl of competent cells were thawed on ice and mixed with 5-50 

ng of plasmid DNA or 5 µl of a ligation mixture to be transformed and incubated on ice for 

further 20 minutes. Afterwards the mixture was heat-shocked for 40 seconds at 42°C in a 

ThermoStat plus (Eppendorf) and immediately cooled on ice for 2 minutes. Cells were then 

resuspended in 300 µl of TB medium and grown for 40-60 minutes at 37°C in a heated 

shaker. Finally different amount of cells were plated on LB-agar plates containing the relevant 

antibiotics and incubated overnight at 37°C. 

3.2.2 Growth of E. coli cultures and measuring cell density  

Bacteria from starter cultures or glycerol stocks were streaked on selective LB-agar plates. 

For growth in liquid medium a starter culture was prepared by inoculating 5 ml of selective 

LB medium by a single colony from a grown selective plate or by 5 µl of a glycerol stock and 

incubated at 37°C overnight. Large scale bacterial growth was prepared by inoculating 100 µl 
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to 1 L of selective LB, TB or 2YT medium by 500 µl of starter culture and incubating at 37°C 

for 8-12 in a heated shaker by 220 rpm ( INNOVA 4330, New Brunswick Scientific). 

Cell density was monitored photometrically by reading the optical density at 600 nm using a 

photometer (Biophotometer, Eppendorf). At least 800 µl of bacterial culture were measured 

and the machine was blanked with the same culture medium. 

3.2.3 Storage of E.coli strains 

For a short-term storage, agar plates were sealed with parafilm and stored at 4°C for 

maximum one month. For a long-term storage glycerol stocks were prepared by adding 0.5 ml 

of bacterial culture to 0.5 ml of autoclave-sterilized glycerol (100%) into a screw-cap vial. 

The vial was vortexed vigorously and frozen in liquid nitrogen and stored at -80°C.  

 

3.3 Protein chemistry 

3.3.1 Preparation of cell lysate  

To prepare samples for western blotting, whole cells were lysed to release the proteins of 

interest using NP-40 lysis buffer. Cells were washed 3 times with cold PBS at 2000 rpm for 5 

minutes. Lysis followed by adding 1 µl lysis buffer per 104 cells (150 mM NaCl, 1.0% NP-

40, 50 mM Tris, pH 8.0) and incubating on ice for 10 minutes. Lysates were centrifuged at 

maximum speed for 10 minutes at 4°C to pellet the cells debris and protein containing 

supernatant was recovered and frozen down at -80°C till used. 

3.3.2 Nuclear and cytoplasmic protein extracts preparation 

To detect the presence of ZFN proteins in the nucleus of the nucleofected cells by western 

blots, nuclear and cytoplasmatic lysates were prepared. The separation of nuclear and 

cytoplasmic proteins was performed using a NE-PER nuclear protein extraction kit which 

enables the stepwise lysis of cells and extraction of the cytoplasmic part keeping the nucleus 

intact. A second step of nuclear lysis allowed the extraction of nuclear proteins away from 

genomic DNA and mRNA. Briefly, cells were trypsinized and washed with PBS. Pellets were 

then resuspended in 100 µl of cold ice cytoplasmic extraction reagent I (CERI) by vigorous 

vortexing for 15 sec. After incubation on ice for 10 min, 5.5 µl of CERII were added and 

mixed by vortex for 5 sec then incubated on ice for 1 min. after centrifugation for 5 min at 
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maximum speed (16000 x g) at 4°C the supernatant containing the cytoplasmic extract is 

transferred to a new tube. The insoluble pellet which contains nuclei was resuspended in ice-

cold NER reagent and incubated on ice for 40 min with vortexing for 15 sec every 10 min. 

after centrifugation at maximum speed for 10 min supernatant (nuclear extract) was 

transferred to a new tube and stored at -80°C until use. 

3.3.3 Expression and purification of recombinant proteins 

Two antigens were used for PERV immunization; the recombinant p15E protein which 

represent the ectodomain of the transmembrane protein (TM; p15E) of PERV-A (a.a. 488-

596, accession number HQ688786) as well as the recombinant protein corresponding to the 

envelope protein (SU; gp70) of PERV-A (a.a. 49-487, accession number HQ688786). The 

recombinant p15E proteins were expressed in the E. coli strain BL21-CodonPlus(DE3)-RP 

(Stratagene, Amsterdam, Netherland) using a pCal-n-Flag vector (Stratagene, Amsterdam, 

Netherland), which allow fusion of the calmodulin binding peptide (CBP) affinity tag to the 

expressed protein. CBP fusion protein can be then purified by passing cell extracts through 

calmodulin (CaM) affinity resin. Expression and purification of recombinant p15E proteins 

was described earlier [185]. The PERV-gp70 recombinant protein was expressed using the 

expression vector pet-22bb(+) (Novagen, San Diego, CA) with a C-terminal 6x His-Tag 

sequence, which allows purification by affinity chromatography with nitrilotriacetic acid 

matrix.  

IPTG-Induced expression of gp70-recombinant proteins 

Overnight starter cultures of the pet-22b(+) transformed bacteria under ampicillin selection 

were prepared. Starter culture were used to inoculate 1.3 L LB medium (starting OD600 = 

0.1) in 3 L Erlenmeyer flasks. A total amount of 4 L was prepared. Flasks were incubated at 

37°C in a heated shaker by 220 rpm (INNOVA 4330, New Brunswick Scientific) for 

approximately 3 h until the culture reached an OD600 of 0.7. the expression of proteins was 

induced by adding isopropyl-beta-D-thiogalactopyranoside (IPTG. Roth, Germany) (0.1 

µg/ml) since the PERV-gp70 gene is under the control of lac operon. Cells were then pelleted 

in an Avanti Centrifuge J-25 (Beckmann) at 8000 x g and washed with PBS at 4°C, 8000 x g 

(Eppendorf). Pellets were stored overnight at -20°C. 

Disruption of cells 

The cell pellets were thawed for 15 min on ice and resuspended in 5 ml lysis buffer per gram 

pellet (100 mM NaH2PO4, 10 mMTris-HCl, 6 M GuHCl, pH 8.0 (NaOH)). 
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3.3.4 Measurement of protein concentration 

Protein quantification was performed using the Pierce BCA™ protein Assay kit. The method 

is based on the reduction of Cu2+ ion to Cu1+ by proteins in an alkaline medium (The Biuret 

reaction). The amount of the reduced cuprous ion is proportional to the amount of protein 

present in the solution. The chelation of bicinhoninic acid (BCA) with Cu2+ ions produces a 

purples-colored complex exhibiting high absorbance at 562 nm. The working reagent was 

prepared by mixing BCA reagent A with BCA reagent B (50/1). As standard, albumin (BSA) 

was used with concentrations of 200, 400, 600, 800, 1000 and 1200 µg/ml. afterwards 10 µl 

of each sample to measure as well as the standards were added into a 96-well plate and mixed 

with 200 µl working reagent each. After 30 min incubation at 37°C, absorbance was measured 

on an ELISA Reader (Tecan) at 560 nm with reference 492 nm. Protein concentrations were 

calculated using the BSA-standard curve. 

3.3.5 Tricin-SDS-polyacrylamid-gelelektrophoresis 

Denaturing sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) was 

performed to separate proteins according to their size. In order to enhance the sharpness of the 

bands the separation starts in a 4% stacking gel with a wide-meshed polymer followed by a 

separation in a fine-meshed 20% separating gel (for buffers and gels see materials).  

Separating gel was poured into a gel cassette until about two centimetres from the bottom of 

the glass plates. After solidification of the separating gel, the stacking gel was poured on top 

and the appropriate comb slid was added between the glass plates. After polymerization the 

gel was fixed in the electrophoresis chamber which was then filled with electrophoresis 

buffer. Samples were prepared by mixing (3:1) with a sample buffer containing SDS and β-

Mercaptoethanol. Proteins are denatured and linearized to the same shape by the anionic 

detergent SDS which also coats them with negative charges while  β- Mercaptoethanol 

cleaves disulfide bonds and disrupts tertiary and quaternary structures of proteins. 

Additionally, the samples are further denatured by boiling for 5 min at 98°C. The so 

denatured proteins migrate in polyacrylamide towards the positive pole when an electric field 

is applied and the migration distance is proportional to the molecular weight of the protein. 

The samples were then loaded into the wells of the gel. We used 10 μl of the PageRuler 

Prestained Protein Ladder (Fermentas) as molecular weight marker. The electrophoresis was 

run for 15-20 min with a current of 0.03 A / gel until the samples accumulated at the bottom 

of the stacking gel. Subsequently a constant current of 120 V was applied for 1-2 hours. 
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Following electrophoresis, the gel was either stained with Coomassie blue to identify protein 

bands or proteins were transferred to nitrocellulose membranes for immunoblotting. 

3.4  Immunological methods 

3.4.1 Immunization 

Hamsters (Charles River) were immunized with 300 μg of p15E, gp70 or both. In the last 

case, gp70 and p15E were immunized in different parts of the body. The proteins were 

emulsified in complete Freund’s adjuvant intramuscularly and subcutaneously (i.m. 50μl, s.c. 

700μl). The control animals were immunized with adjuvant and PBS. The immune response 

was boosted by second and third immunizations using incomplete Freund’s adjuvant (Figure 

1B). IgGs were concentrated using Vivapure Q Mini spin columns (Vivascience). Control 

animals were immunized with adjuvant only.  

3.4.2 Preparation of sera 

For sera preparation whole blood was collected in a covered tube and samples were allowed 

to clot undisturbed for 2 h at RT. In order to loosen the clots from the membrane samples 

were stirred using glass rod and left overnight at 4°C. Clots were removed by centrifuging at 

3000 rpm (Eppendorf), 10 min, 4°C.  Supernatant were immediately transferred into a new 

tube. Decomplementation followed by incubating the sera at 56°C for 30 min. samples were 

then conserved as aliquots at -80°C.  

3.4.3 Western blot analysis 

The electrophoretic transfer of proteins from SDS-gels to polyvinyl diflouropyrolidol (PVDF) 

membrane (0.2 μm, Millipore Immobilon) was performed as described by Tobin et al. (1979). 

The SDS gel was placed for 10 minutes in a transfer buffer. The PVDF membrane was pre-

wetted in methanol then soaked for 10 min in transfer buffer. A blot sandwich was prepared 

by placing one or two pre-wetted blotting paper sheet on the anode of a Semi-Dry Transfer 

Cell (BioRad Trans-Blot SD® Semi-Dry Transfer Cell, Biorad, Hercules,USA), followed by 

the PVDF membrane then the SDS-gel which was covered by a second layer of blotting paper 

sheet. The cathode was placed on the top and the blot was run at 20 V for 25 min. After the 

protein transfer the membrane was incubated in the blocking buffer on a shaker for 1 h at RT. 

The primary antibody was then diluted in blocking buffer and added to the membrane. After 

1.5 h incubation at RT, alternatively over night at 4°C, the membrane was washed (5 x 5 min) 



Methods 

42 
 

in the wash buffer and incubated with the peroxidise-conjugated secondary antibody diluted 

1:1000 for 1 h at RT. After five times (5 min each) washing the detection was carried out by 

the enhanced chemoluminescence (ECL Western Blotting Detection Reagents Kit, Pierce, 

Rockford, IL, USA) system according to the manofacturer’s protocol. The detection solution 

was mixed 1:1 and given to the membrane for one minute. The chemoluminescence was 

detected with the chemocam and the time for development varied depending on the intensity 

of the chemoluminescence. 

 

3.4.4 ELISA 

The enzyme linked immunosorbent assay (ELISA) was used for the titration of antigen 

specific antibodies present in the sera. Nunclon
TM

 Delta 96-well MicroWell® plates (Thermo 

Scientific) were coated by the corresponding recombinant antigens, p15E (0.625 µg/well) or 

gp70 (1 µg/µl) overnight at 37°C. Plates were blocked (PBS with 5% (w/v) BSA and 0.05% 

(v/v) Tween-20) for 1.5 h at 37°C then washed with 300 µl wash buffer (PBS with 0.05% 

(v/v) Tween-20) for 10 s. A second blocking buffer (PBS with 2.5% (w/v) BSA and 0.05% 

(v/v) Tween-20) was used for the preparation of sera serial dilution of sera (1:20 – 1:630). 

Plates were incubated with sera dilutions for 2h at 37°C. Afterwards, plates were washed 3 

times for 10 s with 250 µl wash buffer. Plates were then incubated for 1 h at 37°C with the 

secondary HPRT conjugated antibody diluted in the second blocking buffer. after 7 total 

washes (300 µl, 30 s each wash) substrate solution (PBS 30 ml with o-phenylendiamin-

dihidrochlorid (1 mg/ml) and 200 µl 30% H2O2) was added (80 µl / well) for 20 min and the 

reaction was stopped by adding 80 µl stop solution (2N H2SO4). Absorbances were read by 

ELISA Reader Spectra Classic (TECAN) at 490 nm (reference: 620 nm). Data analysis was 

done by the Magelan TM (TECAN) software and MS Excel. 

3.4.5 Confocal laser scanning microscopy (cLSM) and image analysis 

Cells preparation 

PK15 cells were seeded into standard bottom 8 well µ-slides (Ibidi, Munich, Germany) and 

transiently transfected with the following plasmids: (i) ZFN1-CFP and ZFN2-YFP (ii) a 

Plasmid expressing a CFP-YFP fusion dimer protein as positive control (iii) two plasmids 

expressing unconjugated CFP and YFP. All plasmids were transfected alone to acquire a 

triple set of images from the donor, the acceptor and donor/acceptor. We used for each well 

0.3 µg plasmid DNA and MetafectenePro (Biontex) as transfection reagent according to the 
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manufacturer's instructions. One day after post transfection cells were washed twice with 

PBS, and fixed for 20 minutes using 2% paraformaldehyde dissolved in PBS, washed with 

PBS and mounted in glycerol containing 0.1% p-phenylenediamine  

Fluorescence measurements and analysis 

FRET measurements were conducted as described previously [201]. All images were acquired 

using a ZEISS 780 confocal inverted microscope and a 63 x oil immersion objective. Images 

for FRET analysis were obtained using multitrack instrument setting for CFP and FRET 

channel, excitation for CFP channel at 405 nm and emission peak at 475 nm/27nm bandwidth, 

excitation for FRET channel at 405 nm and emission peak at 527/48 nm bandwidth. YFP 

signals were additionally detected in a single track with an excitation at 514 nm and emission 

peak at 527 nm/55-nm bandwidth. Donor and acceptor bleed-through coefficients were 

determined by acquiring images containing only a donor or acceptor, respectively. NFRET 

values were measured with ZEISS ZEN 2010 software. 

3.4.6 Neutralization assay 

3.4.6.1 Preparation of viral stocks  

In order to perform a neutralization assay, viral stocks should be prepared. For this purpose 

uninfected 293 cells were seeded in T25 cell culture flasks. When cell confluency reached 

30%, medium was replaced by virus containing cell-free supernatants produced by already 

PERV/5° infected cells. The PERV/5° cells were established by repeatedly passaging 

recombinant PERV-A/C on 293 cells. Cells were then incubated for 3 days with the viruses 

afterwards they were trypsinized and further cultured in larger flasks for 3 days. After the 

10th day post infection cell culture supernatant were harvested five times every 3rd day. 

Supernatants were centrifuged (2000 x rpm, 5 min) and filtered (0.2 µm), and aliquots of 1 ml 

were freeze down in liquid nitrogen. Titration of supernatants followed using real-time PCR 

and the supernatant with ΔCT (Ct PERV – Ct GAPDH) value of 1 to 2 was chosen for 

neutralization assay with the same concentration. 

3.4.6.2 Neutralization assay 

One day prior infection, 100 µl of 293 cells (3000 cells/ well) were seeded into 96-well plates. 

The decomplemented sera (56°C, 30 min) were mixed with viral supernatant dilution (20 µl to 

80 µl) and incubated for 30 min at 37°C before adding to the 293 cells. After 72 h incubation, 

cells were checked for viability by light microscopy, and then heat inactivated (95°C, 30 
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min). Cell lysis was performed by 3 cycles of heating/freezing (-80°C, 10 min / 95°C, 5 min) 

followed by an overnight incubation  at 56°C in lysis buffer (nuclease free water containing 

0.2 mg/ml proteinase K and 10% (v/v) 10 x PCR buffer. Proteinase K was inactivated by 

heating at 95°C for 30 min. the proviral DNA was quantified by PERV-gag specific duplex 

real-time PCR using 3 µl of each lysate sample.  

The Ct values of the housekeeping gene GAPDH should be equal in all samples, indicating an 

absence of cell toxicity. Results were calculated as ΔCT values (Ct GAPDH – Ct PERV). 

Higher ΔCt values corresponded to lower proviral loads and thus a higher neutralization 

activity of sera.   

3.4.7 Epitope Mapping 

A 15-mer peptide library were synthesized corresponding to the whole PERV p15E sequence 

and presenting an overlap of 12 residues were fixed on glass chip (JPT Peptide Technologies, 

Germany) and protocol was carried out as described [190, 203]. 

3.5 Cell culture techniques 

 

3.5.1 Preparation of cultures of porcine primary fetal fibroblasts (PFFs) 

Porcine ear fibroblasts were isolated from transgenic and control pigs while Primary porcine 

fetal fibroblasts for SCNT were established from a day 25 post-conception foetus as 

previously described (Peterson et al., 2009) in the Institute for Farm Animal Genetics, 

Mariensee, Germany.  

3.5.2 Isolation of porcine PBMCs  

Porcine peripheral blood mononuclear cells PBMCs were isolated from heparinised blood 

samples using Ficoll–Paque gradient centrifugation as described by the manufacturer 

(Amersham Pharmacia, Uppsala, Sweden). Briefly, the separation medium was pre-warmed 

to RT and 15 ml were preloaded in a 50 ml Falcons. Up to 30 ml of the heparinised blood 

were loaded carefully to avoid mixing of the blood with the medium. Gentle centrifugation 

(800 x g, 15 min RT, without braking) resulted into a Ficoll/plasma interphase enriched in 

PBMCs. Red blood cells and granulocytes were accumulated at the bottom of the tube. The 

upper phase was gently discarded. The PBMCs interface was collected in a new 50 ml falcon 
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and washed with PBS (without Mg
2+

 or Ca
2+

) and pellets were re-suspended in pre-warmed 

complete RPMI medium. 

3.5.3 Cell counting  

Viability and yield of cells were determined using a Neubauer cell counting chamber. In order 

to distinguish live and dead cells, 10 µl of 0.4% (v/v) trypan blue (Sigma-Aldrich Steinheim, 

Germany) was added to 10 µl of cell suspension. The cell titer was calculated using the 

following formula: 

Z= N x 2 x 102 cells/ml 

(Z= cell concentration. N = total cell count/number of counted large squares, 2 = dilution 

factor) 

The viability of cell population could be determined by calculating the percentage of living 

cells (uncoloured cells) 

3.5.4 Cryoconservation of eukaryotic cells 

Cells were trypsinized and washed with PBS (200 x g, 5 min, RT), pellets were resuspended 

in 1 ml freezing medium containing 90% FCS and 10% dimethyl sulfoxide (DMSO) 

(Invitrogen) at a concentration of 1-5 million cells/ml/cryovial. Cells were frozen gradually 

(1°C/minute in a Mr. Frosty freezing container (Nalgene, Rochester, USA) and stored at -

80°C overnight then transferred in liquid nitrogen the following day. 

For cell thawing the cryovials were shacked in 37°C warm water until the complete thawing. 

Vials were then wiped with 70% (v/v) ethanol, and the content was quickly washed into 10 ml 

pre-warmed (37°C) complete medium (25 x g, 10 min, RT) and resuspended in new medium. 

3.5.5 Eukaryotic cell culture  

Fibroblasts and the porcine kidney cells PK15 (ATCC-CCL-33) were cultured in DMEM 

while PBMCs were cultured in RPMI. All eukaryotic cells were incubated in 5% CO2 at 37°C 

and 98% relative humidity in a BBD 6220 incubator (Heraeus). RPMI and DMEM were each 

supplemented with 10% heat-inactivated fetal calf serum (FCS) (PAA, Pasching, Austria), 2 

mm l-glutamin, 100 U/ml penicillin, 100 µg/ml, streptomycin, 15 mm HEPES (Biochrom, 

Berlin, Germany). In the case of fibroblasts, 0.1 mm b-mercaptoethanol, 1% (v/v) non-
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essential amino acids and a 1% (v/v) vitamin solution (Sigma-Aldrich, Steinheim, Germany) 

were added.  

Adherent cells were trypsinized every 2 to 3 days. Media were removed and cells were 

washed with pre-warmed PBS. Depending on the flask size an appropriate volume of 

trypsin/EDTA (Biochrom) was added for 1-3 minutes at 37°C. cells were then resuspended in 

pre-warmed complete Medium. The splitting ratio varied according to cell density between 

1:2 and 1:8. For PK15 cells a cell scrapers were mostly used to detach them. 

3.5.6 Infection Assay 

One day prior to infection, 5 x 104 HEK 293 cells were seeded in 12-well plates. Cells were 

then infected with PERV-containing cell-free supernatants of PHA-stimulated or unstimulated 

PBMCs cultures. Supernatant were filtered using a 0.2 µm filter (Sartorious Stedim Biotech, 

Göttingen, Germany) and polybrene was added at a final concentration of 7 µg/ml. plates 

were then spinoculated (1h, 2000 rpm, 37°C). In parallel, porcine PBMCs were coincubated 

with 293 cells using cell culture inserts with 0.4 µm pore size membrane (Greiner). Different 

samples were tested with or without phytohemagglutenin L (PHA)-stimulation (Biochrom, 

Berlin, Germany) at a concentration of 2.4 µg/ml and by adding or not polybrene. After 3 

days incubation 293 cells were split every 2 days four times by trypsinization. Afterward cells 

were harvested, DNA was isolated as described and PERV-specific PCRs were performed. 

False-positive results caused by remaining porcine genomic DNA from dying PBMCs were 

investigated by performing control PCRs using porcine GAPDH and beta-actin PCRs. A 

PERV A/C adapted to human cells and characterized by duplications in the LTR [129] was 

used as positive control. 

3.5.7 FACS and FACS sorting 

Fluorescence activated cell sorting (FACS) was used to measure the fluorescence of GFP 

expressing cells. 1-5 x 106 cells were fixed by incubating in 2% formaldehyde for 20 min 

then washed 3 times with PBS and resuspended into FACS buffer (PBS with 5% FCS and 

0.02% sodium azide). In order to avoid cell aggregation fixed cells were then filtered through 

Pre Separation Filters (Miltenyi Biotech). Measurements were performed using a FACS 

calibur (BD Biosciences) and 1000 cells of each sample were measured. Results were 

analyzed using a FlowJo software (Tree Star Inc., Ashland, Oregon). 
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The sorting of live cells was performed in the FACS-service facility of the Max Planck 

Institute for infection biology (Berlin) using a MOFLO HIGH-PERFORMANCE CELL 

SORTER (Dako). 

3.5.8 Transfection (lipofection) 

Transfection was optimized and performed using Lipofectamin as described by the 

manufacturer. For a transfection in 10 cm2 plates cells were seeded at a density of 1 x 106 

cells for 24 h so that confluency reached 80% at the time of transfection. Up to 30 µg plasmid 

were mixed in 1.5 ml serum free DMEM medium and the mixture was added to the 

transfection reagent (10 µl Lipofectamin / 1.5 ml serum free medium). DNA/transfection 

reagent mixture was then incubated at RT for 20 min, during this time 7 ml of fresh medium 

was added to the cells. Afterward 3 ml of the DNA/transfection reagent mixture were added 

dropwise to the plate, while gently swirling the plate. Four hours later transfection medium 

was replaced by 10 ml fresh DMEM medium. 

3.5.9 Nucleofection 

Cells were transfected using the Amaxa Nucleofector II device (Lonza, Basel, Switzerland). 

For PK15 and 293 cells the Amaxa cell line nucleofector kit V was used and the Amaxa Basic 

Nucleofector Kit for Primary Mammalian Fibroblasts (cat.nr. VPI-1002 PC) for PFFs.  Cells 

were subcultured 2 days before nucleofection . On the day of nucleofection cells were 

trypsinized and washed gently with PBS. For each nucleofection 1-2 million cells were 

resuspended in 100 µl of the pre-mixed nucleofector solution.  DNA plasmids were added and 

the mixture was transferred into a 2 mm electroporation cuvette and nucleofected with 

program A-023 for 293 cells, T-023 for PK5 and U-023 for PFFs. After nucleofection cells 

were immediately transferred into 2 ml pre-warmed medium in a 6-well plate.  

 

3.5.10 Production of lentiviral particles and transduction 

Porcine Foetal fibroblasts used for SCNT are slowly dividing and hard to transfect primary 

cells. Cell transduction using lentiviral vectors of 2nd and 3rd generation has become a major 

safe tool for efficient gene delivery allowing a stable expression of shRNAs. The method 

consists into delivering the expression plasmid containing the shRNA cassette as a lentiviral 

particle which infect the cells and integrate the shRNA cassette into the genome of the cell 
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allowing a stable expression of the shRNA. Lentiviral particles are generated in 293A helper 

cells by co-transfecting plasmids expressing the genes necessary for the production of the 

lentiviruses. In this work were used: (i) the PLC-VSV-G plasmid (Nolan Lab) coding for the 

envelope proteins, (i) the packaging plasmid PSPAX2 (Trono Lab) coding for the structural 

protein gag and the retrovirus-specific enzyme pol and (iii) the lentiviral expression plasmid 

pLVTHM (Trono Lab) which allow the integration of the shRNA cassette stably into the 

genome of the infected cells.  

To produce lentiviral particles, 293A cells were transfected as described (see 3.5.10) using a 

DNA plasmid mixture of 21 µg as follow: pLVTHM (10 µg), PSPAX2 (7.5 µg) and PCL-

VSV-G (3.5 µg). After 2-3 days incubation at 37°C the efficiency of transfection was 

analyzed by fluorescence microscopy. If efficiency was over 70%, the viral supernatant was 

harvested, spun down for 10 min at 2000 x g and filtered using a 0.45 µm filter. One day prior 

to infection PFFs were seed in 6 well plates at a density of 0.1-0.2 Mio cells per well. To 

infect with virus 2-3 ml of Viral supernatant were added with polybrene (7 µg/ml). Plates 

were then spinoculated at 2300 rpm for 1h at 37°C. Cells were then incubated over night at 

37°C and next day medium was replaced by a new one.  

3.5.11 Generation of transgene pigs 

The generation of transgenic pigs was performed by Dr. Björn Petersen (Federal Research 

Institute for Animal Health, Mariensee, Germany) from transgenic porcine fetal fibroblasts 

(PFFs) by somatic nucleus transfer (SCNT) as described [38]. 
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4 Results 

4.1    Prevalence and expression of PERVs 

Several methods were developed for the investigation of PERVs and PERV infections and 

reviewed in [86]. Direct methods were used to detect the proviruses in the cells such as PCRs 

and real-time PCRs [191, 204-207], Southern blotting [116, 156] and fluorescence in situ 

hybridization [127, 208] which allowed the detection of different PERV subtypes, the 

investigation of the copy numbers and the localization of proviruses within the genomes. PCR 

and real-time PCR were used also for the estimation of viral expression on mRNA level 

[209]. The expression of viral proteins was assessed using different immunological methods 

[203, 209-211]. Further methods were elaborated to detect and quantify the viral particles and 

the production of infectious viruses by measuring the reverse transcription activity or the 

infection ability of the viruses [105, 123, 212-214]. In addition, indirect methods based on 

immune response of the host and the detection of antibodies by ELISA and Western blots 

were also used (for a review see [86]). 

4.1.1 Establishment of new real-time PCRs for detection of PERVs 

PCRs specific for PERV-gag and -pol as well as PERV-env (PERV-A, -B, -C and -Cnv 

subtypes) were established and used for the detection of proviruses and to assess the release 

and infectivity of viral particles. In addition, reverse transcription (RT) real-time PCRs 

specific for PERV-gag, -pol, -envC and PERV-envCnv were described and served for the 

detection and quantification of PERVs on mRNA levels [191, 204-207]. However real-time 

PCR specific for PERV-envA and -envB have not yet been established. Here we describe the 

different steps in establishing these two real-time PCRs which, when added to prior described 

PERV-specific real-time PCRs will provide a diagnostic test and improve the detection of 

PERVs proviruses and PERVs expression.  

New primers and probes were designed based on the alignment of different known sequences 

of PERV-A as well as for PERV-B, so that primers could amplify a highly conserved region 

in the env-A and env-B genes. A gradient PCR was performed at temperatures between 55°C 

and 65°C to assess the annealing temperature of primers (Figure 6 A). The estimated primers 

annealing temperature (AT) corresponding to the higher band intensity were 58°C for PERV-

A and 56°C for PERV-B. These temperatures are also in the range of AT of porcine 

cyclophilin (pCyc).  
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Since real-time PCRs were performed in duplexes with the housekeeping gene porcine 

cyclophilin, primers were tested for possible interference. Real-time PCRs were performed for 

PERV-A and PERV-B with the same amount of mRNA separately in different tubes or 

together in duplexes with the pCyc primers. No significant differences in CT values were 

observed in both cases, which exclude interference between primers (Figure 6 B). 

The efficiencies of the real-time PCRs were then investigated using a fivefold serial dilutions 

of vectors containing the env-A and env-B sequences with known concentrations ending with 

0.2 plasmid copies per reaction. The porcine cyclophilin was co-amplified as internal standard 

for quantification and quality control of the template DNA (data not shown). For each run, a 

standard curve was generated with log of the RNA concentration on the X-axis and cycle 

threshold on the Y-axis. After exclusion of the highest and the lowest concentrations, a line of 

best fit was generated using 5 concentration data points. The reaction efficiency was 

calculated using the following equation: E = 10
(-1/m)

/2 x 100, where (m) represents the slope 

of the line. The efficiency of the PCR should be close to 100%. The standard curves, which 

were generated in these runs, produced linear results and R
2
 values were >0.99 for both real-

time PCRs. R
2
 is a statistical parameter that indicates how good is the Y value (Ct) in 

predicting the value of X (concentration). In general, all efficiencies tested were close to 

100% with 100.4% for PERV-A and 98.2% for PERV-B.  

The newly established real-time PCRs were then used to measure the expression of PERV-A 

and PERV-B in different samples of total mRNA from PK15 cells and PBMCs from 

Göttingen minipigs MP1 and MP2 (Table1). In order to test the specificity of the real-time 

PCRs, control vectors containing env-B, env-C and env-A/C sequences were also tested 

(Figure 6C). As expected, PERV-A expression was higher than PERV-B in all samples and 

PERV expression in Göttingen minipigs was higher than in PK15. PK15 cells showed an 

expression of 0.29 Mio PERV-A copies and 0.06 Mio PERV-B copies per 50 ng total mRNA. 

While PERV expression in MP1 for examples was much higher with 2.3 Mio copies PERV-A 

and 0.94 Mio PERV-B per 50 ng total mRNA. Vector controls revealed a high specificity of 

both real-time PCRs, specially the PERV-A real-time PCR which was able to discriminate 

between env-A and env-A/C containing vectors. 
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Figure 6. Establishment of PERV-A and PERV-B specific real-time PCR.  

(A) Experimental determination of optimal annealing temperature and optimal MgCl2 concentration. 

Using the gradient function of the Eppendorf Mastercycler, a gradient of 54°C to 64°C and two MgCl2 

concentrations were tested, 10 pmol/µl of primers were used. (B) Testing of primer interference of 

PERV-A and PERV-B combinated with cyclophilin primers for a duplex real-time PCR. (C) Real-time 

efficiencies for PERV-A and PERV-B. Serial dilutions of PERV-A and PERV-B plasmids with known 

concentrations and copy numbers were prepared and used. The standard curves generated from the 

cycle thresholds of each dilutions and the equation of the line of best fit are represented. (D) Test of 

real-time PCRs using 100 ng of total RNA isolated from PK15, PBMCs of a Landrace German pig 

(K280) as well as RNA from PBMCs of Göttingen minipigs nr. 1 and 2. RNA from 293T cells was 
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used as negative control. Specificity of the real-time PCRs was tested using vectors containing env-A, 

envB and env-C sequences of PERVs. 

New real-time PCRs specific for PERV-A and PERV-B subtypes were established and showed high 

PCR efficiencies comparable to real-time PCRs specific for other PERV subtypes as well as for the 

porcine cyclophilin housekeeping gene. In addition no Primer interference was observed which allow 

carrying out these real-time RT-PCRs as duplexes. These results would enable comparative expression 

studies using of all known PERV subtypes.  

4.1.2 Screening of Göttingen minipigs  

Göttingen minipigs are used for numerous biomedical researches [215, 216]; however, the 

prevalence and the expression of different PERV subtypes in these animals were not yet 

investigated. In this study, screening of Göttingen minipigs was performed using sensitive 

PCR and real-time PCR methods [122]. 

Table 6. List of Göttingen minipigs analyzed in detail. 

 

 

 

 

 

4.1.2.1 The Animals 

In total 15 Göttingen minipigs produced at Ellegaard (Dalmose, Denmark) in the same animal 

unit were analyzed on DNA level for presence of different PERV subtypes on DNA level. 

Among them 5 (Table 6) were further investigated at the RNA level for PERV expression. 

These 5 animals were from 5 different families (families 1, 3, 4, 8 and 9). 

The founder colony was produced by entry of animals derived by caesarean section and 

colostrums deprivation. Animals were kept in full-barrier establishment under strict 

designated pathogen-free (DPF) conditions according to international standards for animal 

welfare. Furthermore animals are monitored for absence of a wide range of pathogens twice a 

year, according to the recommendations of the Federation of European Laboratory Animal 

Science Associations (FELA-SA). The whole results are published in the Health Monitoring 

Report (http://www.minipigs.dk/).  

pig number identification 

number 

gender age 

1 M213540 M 263 d 

2 M213553 M 260 d 

3 M213582 M 257 d 

4 F213225 F 285 d 

5 F213454 F 270 d 

http://www.minipigs.dk/
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4.1.2.2 Experimental design 

Blood from 15 animals was transported with sodium citrate on ice (8 h) to the Robert Koch 

Institute. PBMCs were isolated and genomic DNA was isolated for the prevalence analysis. 

From PBMCs of 5 Göttingen minipigs which were designated to expression analysis, RNA 

was isolated from fresh PBMCs as well as from PBMCs stimulated or not with PHA for 3 or 

5 days. PERVs expression on mRNA was assessed by carrying out specific real-time PCRs. 

In order to investigate the release of human-tropic PERV viral particles, an infection assay 

was carried out by incubating 293 cells with supernatant from PHA-stimulated or 

unstimulated PBMCs as well as co-incubation of PBMCs and 293 cells (Figure 7). 

 

 

Figure 7. Experimental design of Göttingen minipigs analysis. 

(A) PBMCs from different pigs were isolated and DNA and RNA were isolated from fresh PBMCs. 

PBMCs were incubated with or without PHA for 3 and 5 days and cells RNA was isolated from cells 

while supernatant was used for incubation with human 293 cells. PBMCs were also co-cultivated with 

293 cells using cell culture inserts. (B) Schematic presentation of the genome of a PERV provirus and 

A 

B 
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location of the primers used for the PCRs and real-time PCRs. (LTR, long terminal repeat; gag, group-

specific antigen; pro/pol, protease, polymerase; env, envelope proteins). The length of the PCR 

amplicons is given in bp. 

4.1.2.3 Detection of PERVs subtypes in the genome of Göttingen minipigs 

In order to investigate the prevalence of PERVs in the genome of the Göttingen minipigs, 

different PCRs and real-time PCRs were carried out using genomic DNA isolated from 

PBMCs (Figure 7). Results revealed the presence of PERV-A and PERV-B in all 15 animals 

(Figure 8A). Same results were observed for the ecotropic viruses PERV-C and PERV-Cnv. 

In contrast, the recombinant PERV-A/C was absent in the germ line of all investigated 

animals.  

 

Figure 8. Prevalence of PERV in Göttingen Minipigs 

(A) Detection of PERV-A, PERV-B, and PERV-C proviruses in the genome of five Göttingen 

minipigs by PCR using primers specific for the env genes as well as for gag and pol (Lane a). DNA 

loading was analyzed by PCR using the primers for cyclophilin. PK15 cells do not harbor PERV-C, 

NTC, non-template control. In lane b and c, the absence of PERV infection in human 293 cells is 
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shown. (Lane b) The same PCRs were performed with DNA from human 293 cells after incubation 

with supernatant from peripheral blood mononuclear cells (PBMCs) stimulated with PHA, and (lane c) 

with DNA from 293 cells after 5 day co-cultivation with PHA-stimulated PBMCs. (B) Detection of 

PERV-Cnv proviruses and absence of PERV-A/C proviruses in the genome of five Göttingen minipigs 

by PCR. As positive control for PERV-A/C, a plasmid was used, as negative controls PK-15 cells, not 

harbouring PERV-Cnv, and human 293T cells were used. DNA loading was analyzed by PCR using 

the primers for cyclophilin. PERV, porcine endogenous retroviruses [122]. 

Real-time PCR were used to quantify the copy number of PERVs. Results showed higher 

copy number of total PERV and PERV-C provirus in the genome of Göttingen minipigs when 

compared with the German landrace pigs. However, real-time specific for the PERV-A 

clone58  is higher in German landrace pigs [119] as shown in Figure 9.  

 

Figure 9. PERV prevalence in Göttingen Minipigs quantified by real-time PCR. 

Detection and quantification of PERV proviruses in the genome of 15 Göttingen minipigs (three 

groups of five animals each, animals 1 to 5 correspond to the animals shown in Figure 8) and seven 
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German landrace pigs (Ctrl 1-7) by real-time PCR specific for gag, env-C and env-A(58). Results of 

PERV gag and PERV env-C are given as copy numbers of proviruses. PERV env-A(58) were 

calculated according to the 2
- ∆∆Ct

 method. The standard deviation is based on triplicate measurement. 

As expected, the expression of PERVs increased after PHA-stimulation of PBMCs and was 

higher after 5 days of stimulation then after 3 days stimulation, and always higher compared 

to PBMCs incubated in medium. These results were in concordance with earlier 

measurements of PERV expression done for German landrace and Schwäbisch-Hall pigs, 

however, not as high as the expression described for Yucatan minipigs Table [217, 218]. 

4.1.2.4 Expression of PERVs in Göttingen minipigs 

The analysis of PERV expression on RNA level was performed using real-time PCR specific 

for PERV-pol, which detect the full-length mRNA of all PERV subtypes and PERV-Cnv, 

which is able to measure the full-length and spliced PERV-Cnv on mRNA level. The total 

RNA analyzed was obtained from fresh PBMCs as well as PBMCs stimulated or not with 

PHA for 3 or 5 days (Figure 10). As expected, the expression of PERV increased after PHA-

stimulation of PBMCs and was higher after 5 days of stimulation then after 3 days 

stimulation, and always higher compared to PBMCs incubated in medium.  
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Figure 10. PERV expression in Göttingen minipigs. 

 Expression of PERV in PBMCs from five Göttingen minipigs (1 to 5). Real-time PCR specific for pol 

gene allowed measurement of the expression of all PERV subtypes. PERV-Cnv specific real-time 

PCR was used to measure the expression of only this PERV subtype. RNA was obtained from fresh 

PBMCs and PBMCs incubated in medium alone or medium with PHA for 3 or 5 days. Values were 

calculated after the 2
-∆∆Ct

 method using the expression of the housekeeping gene porcine cyclphilin for 

the normalization. For PERV-pol, values were presented in comparison to PERV pol expression in 

PK15 cells, which was set 100%. For PERV-Cnv, the expression in freshly isolated PBMCs. 

Table 7.  Expression of PERVs in different pig breeds. 

  Expression (% of PK15) 

Pig breed n Freshly isolated 5 days with PHA 

Göttingen minipig 5 1.56 ± 0.02 5.72 ± 0.09 

German landrace (GL)* 8 0.40 ± 0.10 nd 

Schwäbisch-Hall* 9 0.83 ± 0.23 nd 

Duroc/GL* 10 0.28 ± 0.09 nd 

Large White* 3 3.07 ± 1.16 4.88 ± 1.57 

Yucatan micro pig* 1 10.48 ± 5.28 92.58 ± 25.85 

*Data from [218]. Nd, not done. 

These results were in concordance with earlier measurements of PERV expression done for 

German landrace and Schwäbisch-Hall pigs, however, not as high as the expression described 

for Yucatan minipigs Table 7 [217, 218]. 

4.1.2.5 Absence of virus particle release from PHA-stimulated PBMCs 

In order to analyze the release of infectious viral particles, human 293 cells were co-incubated 

with PBMCs of 5 different pigs or incubated with cell-free supernatant from PBMCs treated 

or not with PHA for 5 days. To avoid microchimerism, which could be caused by a possible 

contamination of the 293 cells by porcine cells or DNA, 293 cells were splitted for 3 times 

after incubation to remove remains of porcine DNA and cell culture inserts with 0.4 µm pore 

size membrane were used for co-incubation. If released, viral particles may diffuse through 

the pores and infected the adherent 293 cells. The infection was measured by specific PCR 

performed with DNA isolated from the treated 293 cells.  
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To assess the contamination of 293 by porcine DNA, PCR specific for porcine beta-actin and 

GAPDH were carried out and all results were negative. PCR results revealed no proviral DNA 

in all samples, 293 with supernatant, co-incubation with PBMCs and each with (Figure 11) 

and without PHA stimulation (not shown), indicating that no infection with human-tropic 

PERV viruses occurred. Cultures infected with the PERV-A/C were used as positive control. 

 

 

Figure 11.  Infection of 293 cells with supernatant of Göttingen minipigs PBMCs. 

Detection of PERVs proviruses in DNA of 293 cells was performed by PERV-specific PCRs. PCR 

using porcine cyclophilin primers was used as control. 1, 2 and 7 correspond to DNA of 293 cells 

incubated with supernatant of PBMCs from pigs 1, 2 and 3 respectively. 3, PBMCs from pig1. 4, 

PK15. 5 and 6 293 cells incubated with medium only as negative control. 8, non-template control.  
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4.2  Reduction of PERV expression with siRNA 

In earlier works several synthetic siRNA targeting different parts of the PERVs genome were 

tested among them the so called pol2 siRNA. The pol2 siRNA target a high conserved region 

within the PERV-pol gene and is identical in PERV-A, PERV-B and PERV-C. Furthermore, 

it was proven to be the most effective in reducing the PERV expression of all three virus types 

when tested in PK15 cells [173, 174]. In following studies stable cell lines were generated 

which expressed the pol2 as shRNA, using the lentiviral system pLVTHM for transduction of 

porcine fetal fibroblasts. These cells were then used for the generation of transgenic pigs by 

SCNT, where the pol2 shRNA was shown to be integrated in the genome and to be expressed 

in all cells and tissues of the animals. The expression of PERV as well as the pol2 shRNA in 

these transgenic pol2-pigs was monitored over a maximum of 6 months [126, 175]. However 

a long term effect of the RNA interference would be necessary for xenotransplantation in 

human patient. Therefore the expression of the pol2 shRNA and the PERV expression were 

studied over a period of 3 years, after that animals were sacrificed and organs probes were 

analyzed in detail for PERV and shRNA expression. 

4.2.1 Long-term effects of PERV specific siRNA in transgenic pigs 

4.2.1.1 Generation of transgenic pigs 

In previous studies pol2 siRNA was selected as most efficient in reducing PERV expression 

in PK15 cells and was expressed as shRNA under the control of a H1 promoter in the 

lentiviral vector pLVTHM [126]. Transgenic porcine foetal fibroblasts (P1F10) transduced 

with pLVTHM-pol2 constructs as well as fibroblasts transduced with empty pLVTHM 

vectors as control were used for the generation of transgenic pigs using SCNT as described 

earlier [175].  

The generated transgenic pigs and their numbers are presented in Table 8. The control clones 

140 and 142 and the shRNA expressing clones 147 and 148 survived, while control clones 

136, 137 and 139 died early after birth. Later cells from clone 287 were recloned to generate 

the animal 287. The integration of the vectors was proved by PCRs specific for egfp and the 

shRNA expression cassette [126]. GFP was expressed in all animals and GFP expression was 

monitored at different time points for 3 years by analyzing ear fibroblasts cultures isolated 

from the transgenic animals [194, 196] as well as from PBMCs (Appendix 4) using 

fluorescence microscopy and FACS analysis. 
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Table 8. Transgenic animals obtained by somatic cell nuclear transfer 

PFF* Vector Transgene Nuclear transfer Birth date Clone number 

P1F10 pLVTHM GFP 
 

14.11.2007 10,11.03.2008 136,137,139,140,142 

P1 F10 pLVTHM GFP Pol2 shRNA Pol2 14.11.2007 12.03.2008 147,148 

Recloning† pLVTHM GFP Pol2 shRNA Pol2 20.11.2008 15.03.2009 287 

 (*) PFF=porcine primary fetal fibroblasts; (†) clone 287 was recloned from cells of clone 148. 

The expression of GFP was higher in cell lines from GFP-control animals compared to cells 

from animals expressing the pol2 shRNA. Measurements of PERV mRNA expression didn’t 

reveal a significant difference between fibroblasts isolated from pLVTHM-control animals 

and shRNA transgenic animals [194]. The expression of shRNA had no visible influence on 

the animals and both groups of animals were healthy during the whole time. 

4.2.1.2 Inhibition of PERV expression in PBMCs at different time points 

In order to assess long-term efficiency of the shRNA-mediated knockdown of PERV 

expression, blood samples from shRNA transgenic pigs and control pigs were taken at five 

different time points. PBMCs were prepared and RNA was isolated from fresh PBMCs as 

well as from PBMCs incubated with or without PHA stimulation for 5 days (Figure 12).  

 

 Figure 12. Long-term analysis of the efficacy of RNA interference, experimental design. 

Time schedule of the experiment. The control pigs (blue background) were generated from P1F10 

fibroblasts transduced with empty vector pLVTHM. The shRNA pigs (orange background) were 

generated from pLVTHM-pol2 transduced P1F10 cells. Birth and scarification times as well as time 
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points of taking ear biopsies, PBMCs and organs for PERV and shRNA expression analysis are 

indicated. 

PERV expression was analyzed by real-time PCR. Previous results revealed a fluctuation of 

the expression of different housekeeping genes in various organs and porcine cyclophilin 

showed the lowest variation in its expression [175]. Therefore expression of PERV was 

normalized to the amount of total RNA and copy numbers were calculated using the Ct values 

and a serial dilution of a plasmid containing the pol sequence of PERV with known 

concentrations. The expression of PERV was shown to be lower in all shRNA transgenic pigs 

when compared to control animals (Figure 13A). This reduction was constant during the 3 

years of the life span of the animals. These results were also confirmed when PBMCs were 

stimulated with PHA, which induce the PERV expression. Expression of PERV in PHA 

stimulated PBMCs of shRNA-animals was lower when compared to PHA-stimulated control 

PBMCs. 

4.2.1.3 Expression of the pol2 shRNA and PERV in different organs 

All control and shRNA transgenic animals save clone 148 which was still under long-term 

observation at the time, were sacrificed and organ samples were obtained. RNA was isolated 

and PERV mRNA and shRNA expressions were measured. Using the siRNA specific PCR all 

organs showed a high level of pol2-siRNA expression and organs of clone 147 showed higher 

level of siRNA expression than animal 287. The spleen showed the highest siRNA expression 

with 886492 pol2 siRNA copies/ng total RNA in clone 147 and 704020 copies/ng in clone 

287. No siRNA expression was observed in the control animals. 

Organs were also tested for PERV expression on mRNA level. PERV expression was 

inhibited in all organs of the shRNA transgenic pig by up to 65% when compared to control 

animals. And the highest PERV copy number was reserved for spleen with 90659 and 72974 

PERV copies/ng of total RNA from vector control animals vs. 28681 and 30000 copies/ng in 

spleen of the pol2 shRNA animals 147 and 287 respectively. The lowest PERV expression 

were observed in the heart with 30739 and 31757 copies/ng in vector control animals vs. only 

12898 and 1323 copies/ng for shRNA animals (Figure 13B.). 

4.2.1.4 PERV protein expression 

In order to investigate whether the shRNA could reduce the PERV protein expression 

Western blot analysis were performed using antisera specific for the transmembrane envelope 
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protein p15E and the major core protein p27Gag of PERV. Expression of PERV proteins in 

both control and shRNA transgenic groups was under the detection limit of the assay (data not 

shown) indicating that in both cases, infection virus particles could not be released. 

 

 

Figure 13. Inhibition of PERV expression in PBMCs of pol2-shRNA transgenic pigs. 

(A) PERV expression in fresh and incubated PBMCs with or without PHA stimulation. PBMCs were 

isolated from control animals and shRNA transgenic animals at 5 different time points. Total RNA 

was isolated and PERV expression was measured using PERV specific real-time PCR. Values were 

calculated directly from the Ct values normalized to ng total RNA. All measurements were taken in 

triplicates and standard deviations are shown. Animals 140 and 147 were sacrificed at day 1009. (B) 
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Expression of pol2 shRNA (spots) and inhibition of PERV expression (columns) in different organs of 

the pol2-shRNA transgenic animals 142, 147 and 287 and the vector-control transgenic animals 140 

and 142. Pigs were sacrificed and total RNA was isolated from different tissue samples. PERV pol 

expression and shRNA expression were measured using specific real-time PCR. All tissues of shRNA 

transgenic animals expressed shRNA but at different levels and showed a reduction of PERV 

expression when compared to vector-control animals. Standard deviation is based on triplicate 

measurements. 

4.2.2 Generation of triple siRNA transgenic cells 

In earlier works done in our and other groups, several siRNA targeting different parts of the 

PERV genome were designed using different algorithms. These siRNAs were tested and 

among the most powerful in decreasing the PERV expression in PK15 cells were the pol2 

[173], pol1[196] and gag2 siRNAs (group of Dr. L. Scobie, Glasgow). Transfection of PK15 

cells with pol2-, pol1- and gag2-shRNA expressing vectors showed a high PERV mRNA 

reduction till 38%, 10% and 23%, respectively [196]. Furthermore vectors expressing double 

siRNAs under the control of H1 promoters were generated and tested and pol1/pol2 vectors 

reduced the PERV expression to 20% when total mRNA of transfected PK15 was tested 

[196]. In order to enhance the efficacy of siRNAs in reduction the PERV expression, triple-

shRNA vectors were produced, which express the 3 most efficient siRNAs under the control 

of three different polymerase III-dependant promoters and using the pSiren vector which 

allow a puromycine selection as well as the pLVTHM vector with GFP as selection marker.  

4.2.1.5 Preparation of shRNA expression constructs 

In a first step the 7SK promoter was PCR amplified from human genomic DNA (see primers 

in Material section). The designed 7SK primers contained restriction sites so that the PCR 

amplicon was flanked by BamH1 and EcoRI on the 5’ side and BbsI, XhoI and MfeI on the 3’ 

end. The 7SK amplicon was then inserted in a H1 containing pSuper-MfeI vector [196], 

upstream of the H1 promoter by digestion ligation with the BamH1/EcoRI (Figure 14). 

Synthetic shRNA were designed each as sense and antisense oligopeptides using a 7 nt loop 

for the pol2 shRNA and a 4 nt loop for pol1 and gag2. Two groups of shRNA were designed: 

The hybridization of the first group resulted in overhangs which fit into BbsI and XhoI 

restriction sites specific for the 7SK primers, shRNA of the other group were flanked by 

BglII/BamHI and EcoRI/MfeI overhangs suitable for insertion downstream the H1 and U6 

promoters. ShRNAs were hybridized and added after the 7SK promoter then H1. The double 
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cassettes (7SK shRNA1-H1 shRNA2) were then fished up by BamHI/MfeI digestion and 

inserted downstream the U6 into a pSiren vector. Following, shRNAs were inserted 

downstream the U6 promoter. The triple-shRNA cassette was also cut from the pSiren 

plasmid and inserted into a pLVTHM replacing the original H1 promoter. In the end for each 

vector, 5 different combinations of promoters/shRNA were constructed (Table 9) using T1-6 

for pSiren vectors and pT1-6 for pLVTHM vectors. T5 and pT5 sequencing showed several 

mutations and were not used in further experiments. 

       

 

 

     
 

 

 Figure 14. Cloning strategy of triple shRNA vectors. 

A Different types of shRNAs with overhangs specific for insertion after 7SK, H1 or U6 promoters. B 

Different steps of cloning yielding the triple-shRNA cassettes (for more details see text). 
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Table 9. Triple shRNA constructs based on pSIREN and pLVTHM backbones. 

 

 

 

 

 

All constructs were sequenced and transfection tests with 293 cells were performed after each 

step in order to assess whether the constructs were functional. The pLVTHM-transfected 293 

cells were observed on fluorescence microscope for GFP expression and pSiren-transfected 

293 cells were exposed to puromycin selection. The functionality of the promoters was 

assessed by measuring the pol2 expression by real-time PCR (Data not shown). 

4.2.1.6 Establishment of one-step real-time PCR for siRNA quantification 

In an earlier work, a real-time PCR for the quantification of pol2 siRNA was established [194, 

196]. In the present work we tried to establish new real-time PCR specific for pol1 and gag2 

siRNAs. For this purpose we used stem-loop RT primers containing at the 3’ side an 

overhang, which can bind specifically to the 3’ ends of the siRNAs (Figure 15A). The real-

time PCR consisted into a first step of reverse-transcription of the siRNA using the Super-

Script III system (Invitrogen). A heating step led to opening of the stem-loop/siRNA, which 

served as template for a conventional PCR using a forward primer specific for the siRNA, a 

reverse primer specific for the stem-loop and a FAM-labelled probe (Figure 15B). To measure 

the copy numbers of the siRNAs using the described real-time PCRs, serial dilutions of 

synthetic pol1 and gag2 siRNAs with known concentrations were performed. The newly 

established real-time PCRs functioned when using synthetic siRNAs (Figure 15C), 

unfortunately when using the total mRNA isolated from transfected cells, the real-time PCRs 

couldn’t detect the pol1 and gag2 siRNAs, while pol2 siRNA was detected in all tested 

vectors.  In other words, pol2 siRNA was expressed under the control of all 3 promoters used, 

which is a proof that the promoters were functioning well. However, the predicted sequences 

of the synthetic siRNA used for pol1 and gag2 might not correspond to the siRNAs which 

results after the processing of the pol1-and gag2-shRNA with the DICER in vivo.  Therefore 

only pol2-specific real-time PCR was used. 
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Figure 15. Establishment of shRNA specific real-time PCR. 

 (A) Design of the shRNAs, here are only the 7SK-shRNA represented. (B) Description of the two-

step real-time PCR developed for quantification of the PERV-specific siRNA. In a first step, a loop 

primer hybridizing to the 3’ portion of the siRNA was added and a reverse transcription was 
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performed. This step is followed by conventional real-time PCR using primers specific for the shRNA 

and the loop and a FAM-labeled probe. (C) The efficiency of the real-time PCR of each siRNA as well 

as the characterization of the internal stability profiles of each siRNA for target positions 1-19. 

Several Studies showed that asymmetry in the internal stability of the siRNA duplex may play 

a role into the selection of the guide siRNA strand and the enhancing of the RNA interference 

[219, 220]. In order to investigate the thermodynamic profiles of the used PERV siRNA, their 

internal stability was calculated using an Sfold software [221]. After cleavage of the shRNA 

loop-hairpin, the RISC complex binds to the siRNA duplex and select one of both strand (the 

guide) to be the functional siRNA while the antisense strand (the passenger) is degraded. It 

was shown that the strand showing the lowest internal stability on its 5’ terminus and in the 

region of 10-14, binds weakly to its complement and thus survive as guide strand [220]. The 

profiling of pol2 and pol1 siRNAs showed a decreased internal stability of the 5’-terminus in 

comparison to the 3’-end; however this was less marked for gag2 siRNA, which on the 

contrary exhibited a greater instability in the region between 8-13 (Figure 15C).   

In order to test the constructs and the efficacy of the RNA interference, PK15 cells were 

nucleofected as described (see Methods).  

4.2.1.7 Reduction of PERV expression in PK15 using T and pT constructs 

The first tested constructs were the T vectors with pSiren as backbone. PK15 were transfected 

and subjected to puromycin selection (0.5, 0.6 or 0.7 µg/ml). Total mRNA was isolated and 

PERV-pol real-time PCRs were carried out to measure the reduction of PERV expression by 

the shRNA constructs. A reduction of PERV expression in comparison to mock transfected 

cells was observed (Figure 16A). This reduction was 68% in T2-PK15, 66% in T3-PK15, and 

67% in T6-PK15 cells while Pol2-pSiren reduced the PERV expression of 56%. However, 

these results were not better than the results described in earlier works when using for 

example the pLVTHM system. Furthermore, the additive efficacy of siRNA in T vectors 

didn’t show a significant improvement in reduction of PERV expression when compared to 

the Pol2-pSiren. 
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Figure 16. Reduction of PERV expression in PK15 transduced with T or pT vectors. 

(A) PK15 cells were transfected with T2, T3 and T6 plasmids as well as Pol2 and Mock controls. Cells 

were then subjected to puromycin selection using different concentrations. RNA was isolated and pol-

specific real time PCR was performed. Results were calculated according to the 2-∆∆CT method using 

cyclophilin for normalization, and presented as percentage of the control value fixed to 100%. 

Standard deviations were calculated for triplicates. (B) Analysis of PERV-pol expression in pT-

transduced PK15. A pol-specific real-time PCR was performed and gene expression is presented as 

percentage calculated in relation to mock-transfected cells after normalization against porcine 

cyclophilin. As control PK15 cells were transfected with an empty pLVTHM plasmid. 

Therefore, pT vectors based on the pLVTHM backbone were also tested in PK15 cells. Two 

days after nucleofection GFP-expressing cells were sorted by a FACS sorter. Total mRNA 

was isolated from the sorted cells and a PERV-pol real-time PCR was performed (Figure 

16B). The PERV expression was significantly reduced in all pT-PK15 cells (<50%). The 

greatest reduction was observed in pT3- and pT4-PK15 cells, where expression of PERV was 

reduced to only ca. 8% of the expression in mock-transfected PK15. The Pol2-pLVTHM 

reduced the expression of PERV to 14,46% which corresponded to the range of values 
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measured in earlier works [196]. The pT1 vector showed the lowest reduction rate with 

20.69% only. This showed that the use of the pLVTHM pT plasmids yielded better results 

than when pSIREN vectors were used. However the reduction of PERV by triple-shRNA 

vectors didn’t show a significant reduction in comparison to single Pol2-shRNA when total 

mRNA was tested.  

It is well known that the processing of shRNA as well as the whole RNA interference activity 

take place within the cytoplasm of the cells. By measuring the reduction of PERV expression, 

total mRNA was used as template. That raised the question about the contribution of the intact 

nuclear RNA into masking the real efficacy of the shRNAs into reducing the cytoplasmic 

mRNA. For this reason, total, nuclear and cytoplasmic RNA were isolated as described in the 

method section and used for pol-specific real-time PCR measurement. In all reactions 100 ng 

RNA were used as template. Results are presented as percentage of copy number relative to 

the mock transfected PK15 cells for the 3 different groups (total, nuclear or cytoplasmic 

RNA) (Figure 16).  

A greater reduction in cytoplasmic mRNA of pT-PK15 cells was observed when compared to 

total and nuclear RNA (Figure 17). While pol2 alone reduced the expression of cytoplasmic 

PERV mRNA to ~ 14%, better scores were reserved for pT3 and pT4 with only 4% PERV 

mRNA detected in cytoplasm in comparison to cytoplasm of mock-transfected PK15 cells. 

The pT2 and pT4 reduced the expression to ~5% and pT1 to only 14%. The empty pLVTHM 

control vectors showed an insignificant reduction compared to the mock-PK15 in all tested 

samples. When 2-ΔΔCt values were used standard deviation were calculated using the 

following equation: 

Positive error: 2
- ΔΔCt

 – (1+E)
-( ΔΔCt+ SDΔCt) 

Negative error: 2
- ΔΔCt

 – (1+E)
-( ΔΔCt- SDΔCt) 

Were E represents the efficiency of the real-time PCR calculated from a serial dilution of 

plasmids containing the target sequence with known concentration. 

Standard deviations of percentages based on copy number were calculated using the following 

equation: 

   100 

                                          Mc² x √( St² x Mc² + Sc² x Mt² ) 

Where SD: standard deviation, Mc and Sc: Mean and SD of control resp., Mt and Sc mean 

and SD of sample.  

SD = 
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Figure 17. Reduction of the PERV-pol gene expression in cytoplasm and nucleus of  pT 

transduced PK15 cells. 

Cells were transfected by different pT vectors and control plasmids (GFP corresponded to an empty 

pLVTHM vector). Fluorescent cells were selected by FACS sorting and total RNA, nuclear RNA and 

cytoplasmic RNA were isolated and used for pol-specific real-time PCR. Copy numbers were 

calculated using a serial dilution of a plasmid containing the pol sequence with known concentrations. 

(A) Results are presented in percentage relative to the mock-PK15 RNA. (B) Results are presented as 

absolute copy numbers per pg RNA.  

The table 10 shows the same results but as copy number per pg RNA. The ratio of total PERV 

mRNA to cytoplasmic and nuclear RNA was calculated for each sample. These results helped 

to see how the PERV mRNA copy numbers tended to shift towards nuclear RNA in pT-

transfected vectors revealing thus a reduction of PERV in the cytoplasm of shRNA-cells. For 

example the calculated (total: nuclear: cytoplasmic RNA) ratio of Mock-PK15 was (2:4:1) 

while that of pol2-PK15 (4:8:1) and pT3 (8:29:1). These results presented an improvement in 

the use of shRNA when compared for examples to earlier results where double shRNA in 

pSiren were used [196]. 
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Table 10. PERV mRNA expression in different RNA fractions. 

 

 

4.2.1.8 Generation of triple-shRNA expressing porcine fetal fibroblasts (PFFs) 

In order to produce a new generation of shRNA pigs expressing triple-shRNA, PFFs were 

transduced with pT2, pT3, pT4 and pT6 as well as empty pLVTHM as control. A pool of 

shRNA-PFFs as well as GFP expressing cells were sorted by FACS sorter (Figure 18) and 

sent to the Friedrich-Löffler-Institute (Neustadt, Mariensee) for SCNT. 

                

                

Figure 18. Fluorescence microscopy of shRNA- expressing PFFs.  

Fluorescence microscopy of PFFs transfected with empty pLVTHM control vectors or with pol2-

plVTHM or different pT plasmids pooled and sorted by FACS. 

To summarize, new plasmids expressing three different PERV specific siRNA at the time and 

under the control of three different promoters were generated. These new constructs were 

tested on PK15 cells and showed a significant improvement of the PERV expression 

reduction when compared to single shRNA plasmids. Porcine fetal fibroblasts were stably 

transfected with the new constructs and can be used for the generation of new transgenic pigs 

by SCNT.  

plasmid PERV copies/ng RNA Ration (total:nc:cyt) 

total RNA nuclear RNA cytoplasmic RNA 

pT1 56 140 12 5:12:1 

pT2 28 81 4 7:19:1 

pT3 26 95 3 8:29:1 

pT4 23 85 3 7:25:1 

 pT6 38 116 4 8:26:1 

 pol2 42 90 12 4:8:1 

GFP 101 270 64 2:4:1 

Mock 170 344 81 2:4:1 

Wild type     pLVTHM empty vector           shRNA pool 

  F
lu

o
re

sc
en

ce
   

   
   

   
   

   
 C

o
n

tr
as

t 
 

   
m

ic
ro

sc
o

p
e 

   
   

   
   

   
   

 m
ic

ro
sc

o
p

e
 

 
 



           

 Results 

 

72 
 

4.3  Knock-out of PERV by Zinc Finger Nucleases 

4.3.1 Design of Zinc Finger Nucleases targeting the PERV gene 

Zinc finger nucleases targeting the PERV genes were designed, cloned and validated by 

Sigma-Aldrich (St. Louis, USA). Among 67 ZFN candidates targeting the pol gene of PERV, 

10 ZFNs were found to target highly conserved regions of PERV pol gene when the 

sequences were aligned with seven different known PERV sequences (see table in Appendix 

2). These 10 chosen candidates were then tested and the 3 most active ZFN pairs were 

selected and sent as plasmid DNA (see plasmid map in Appendix 5). The full binding sites of 

the ZFN pairs used are presented in Table 11. The lower case letters corresponds to the 

cutting site where the double-strand break was created. 

Table 11. The three most powerful ZFNs and their target sequences. 

 

4.3.2 Detection of ZFN expression by Western blot analysis 

In order to analyse the expression of ZFN, 2 million PK15 cells per sample were nucleofected 

with plasmids of ZFN set 1 (0.1 µg, 0.5 µg, 1 µg, 2 µg or 7.5 µg each) and cells were 

harvested after 12h, 24h and 48 h. ZFN proteins are tagged with an N-terminal 3xFLAG.  

To assess the expression of ZFN proteins an anti-flag Western blot assay was performed using 

total cell lysate and the anti-FLAG M2 antibody. SDS PAGE / Western blot analysis showed 

high ZFN expression which was proportional to the amount of ZFN plasmids used for 

nucleofection. However, the strongest expression was detected in cells after 12 h incubation 

and using 2 µg/ml plasmid. The expression decreased after 24h and 48h (Figure 19).  

 

 

ZFN Target sequence Position in PERV-A 
Accession nr. AJ293656 

PZFN1/PZFN2 (Set 1) CGCAAGGACCTTACAgacatACCGCTGACTGGAGAA 3957..3995 

PZFN3/PZFN4 (Set 2) AACATCGTTCGGCAGcccccAGACCGATGGATGAC 4405..4439 

PZFN5/PZFN6 (Set 3) GGCCCCAACCACAGCCAAacaagtGAGAGAGTTTTTGGG 4558..4592 
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 Figure 19. Expression of ZFN proteins in ZFN-nucleofected PK15 cells. 

Western blot analysis of the kinetic of ZFN expression in PK15 cells nucleofected with different 

amounts of ZFN set 1 plasmids. Cell lysate of PK15 cells nucleofected with a plasmid expressing a 

flag containing protein was used as positive control. The anti-Flag M2 antibody (Sigma-Aldrich) 

diluted 1:500 was used as  antibody. Lane M: size of the bands of the protein marker. 

ZFN proteins contain also a nuclear localization signal (NLS) which allows the transportation 

of ZFN proteins to the nucleus where they can bind to the target DNA. In order to proof the 

nuclear localization of the left and the right ZFN proteins, cells were nucleofected with both 

ZFN1 and ZFN2 plasmids of set 1 together or separately. After 48 h incubation, cells were 

harvested and nuclear and cytoplasmic lysate were prepared using the Pierce NE-PER nuclear 

protein extraction kit (Figure 20). Bands corresponding to the ZFN proteins detected by anti-

Flag antibodies were observed in all extracts but much stronger in the nuclear lysate. 

Therefore the extracts were also analyzed for cytoplasmic and nuclear contamination with β-

actin antibody and the DEAD-box RNA helicase DDX3 antibody (see Materials section) as 

cytoplasmic and nuclear markers respectively. A negligible contamination of cytoplasmic 

extract was detected. In the case of ZFN2 lysates this contamination was stronger. 

Conversely, tracks of β-actin were detected in nuclear lysates, however it is unclear whether 

this is a contamination since it was shown that actin plays a physiological role in the nucleus 

[137]. 
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Figure 20. Detection of ZFN proteins in cytoplasmic and nuclear lysates. 

 PK15 cells were nucleofected with ZFN1 and ZFN2 plasmids together or separately and about 2 

million cells per sample were fractionated. Each lane was loaded with nuclear or cytoplasmic extract 

from about 0.5 million cells. Whole cell lysate (WCL) from pCMV transfected PK15 cells was used as 

positive control (1 x 10
5
 cells). Anti-Flag antibodies were used for detection by SDS-PAGE / Western 

blot analysis. Cytoplasmic and nuclear segregation was assayed by β-actin and DDX3, respectively. 

ZFN proteins were highly expressed in the ZFN transfected cells as shown by the Western blot 

analysis. This expression reached a peak 2 days post-transfection. Analysis of nuclear and cytoplasmic 

lysates of ZFN transfected cells revealed the nuclear localization of the ZFN proteins. 

4.3.3 Detection of ZFN expression by FRET 

In order to investigate the expression of ZFN proteins and their localization in the transfected 

cells, Förster resonance energy transfer (FRET) imaging was used. PK15 cells were 

transfected with CFP and YFP linked to ZFN1 and ZFN2 respectively as well as fused YFP-

CFP dimer or single plasmids coding for CFP and YFP as controls. In order to analyse the 

interactions of the fused ZFN and their localization, the cells were fixed 24 h post-transfection 

and FRET analysis was performed. The normalized FRET values (NFRET) were obtained 

from a set of three images (donor, acceptor and co-transfected donor and acceptor). In cells 

transfected with ZFN1-CFP and ZFN2-YFP the expressed proteins were localized 

predominantly in the nucleus and showed high NFRET values (Figure 21A), indicating that 

the ZFNs were transported to the nucleus and were localized in close proximity (less than 10 

nm), suggesting that ZFN1-CFP and ZFN2-YFP were interacting. We can exclude that the 

fluorescent proteins CFP and YFP were associated in an unspecific manner, because in order 

to generate the plasmids pZFN1-CFP and pZFN2-YFP modified SCFP3A and SYFP2 

templates were used to improve the brightness of the fluorescent proteins and their 

monomeric properties [280]. Both fluorescently tagged ZFN proteins strongly co-localize 

with DAPI staining the nucleus (Figure 21A). 
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Figure 21. FRET analysis to investigate bimolecular interaction properties of  ZFN1-CFP and 

ZFN2-YFP. 

(A) FRET images. PK15 cells were transfected with the CFP-YFP (lane 1), CFP and YFP (lane 2) or 

ZFN1-CFP / ZFN2-YFP (lane 3) constructs, fixed 24 h after transfection and then imaged in the 
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following channels: Donor CFP  (first column), FRET (second column) and acceptor YFP (third 

column). The last column displays a corrected and normalized FRET image NFRET calculated from the 

first 3 channels as described in the methods section. Scale bar = 20 µm. NFRET color lookup bar values 

range from black (0) to red (10). (B) NFRET intensities of 9-16 cells were measured, and the mean NFRET 

values ±SD are represented.  

4.3.4 Expression of ZFN in nucleofected PK15 cells 

ZFN plasmids linked with CFP and YFP were also used to assess the cell viability and 

toxicity of ZFN plasmids. For this purpose, PK15 cells were transfected by nucleofection with 

1 µg (not shown), 2 µg or 7.5 µg ZFN1-CFP and ZFN2-YFP together or separately. CFP and 

YFP plasmids were also used as controls. In the case of single plasmid transfection, the 

double amount of DNA was used. Cells were then observed daily on a fluorescence 

microscope and images were taken on days 1 and 5 after nucleofection (Figure 22). 

Fluorescence microscopy revealed that when nucleofected with both ZFNs,  fluorescent cells 

were disappearing progressively up to 5 days after transfection, while control cells as well as 

cells transfected with (C or Y)FP ZFN separately were still fluorescent 5 days post-

nucleofection, indicating that the cells with both ZFN were dying. 

Since the linkage of CFP and YFP at the C-terminus of ZFN proteins near the active center of 

the FokI nuclease may interfere with the activity of the ZFN, another toxicity test was 

performed using the original ZFN1 and ZFN2.  

PK15 cells were transfected by nucleofection with different amounts of ZFN plasmids (Figure 

23A). Additionally, PK15 cells, uninfected 293T cells as well as 293 PERV infected cells 

were transfected with ZFN plasmids together. As control cells were nucleofected with an 

empty GFP-pLVTHM vector as control (Figure 23B, C and D).  In order to analyse the effect 

of a single ZFN plasmid DNA, PK15 cells were transfected with ZFN1 and ZFN2 plasmids 

together or separately (E). Cells were then counted after 1, 3 and 5 days of transfection.   
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 Figure 22. Expression of CFP and ZFP linked ZFN proteins in PK15 cells. 

PK15 cells were nucleofected with ZFN1-CFP and ZFN2 YFP together or separately. Imaging by 

fluorescence microscopy followed 1 day and 5 days after post-nucleofection. PK15 nucleofected with 

CFP and YFP expressing plasmids were used as control.  
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Figure 23. Cell viability after nucleofection with ZFN plasmids. 

PK15 cells were nucleofected with different amounts of ZFN1/ZFN2 plasmids at day 0 (A) and cells 

were counted at days 1, 3 and 5 post-nucleofection. New HEK 293 cells were infected for 2 days with 

supernatant gained from older PERV-infected 293T cells. The newly infected 293 cells were then 

nucleofected with ZFN1/ZFN2 (2 µg each), pLVTHM-GFP (4µg) or mock (B). PK15 cells (C) as well 

as uninfected 293T (D) cells were also nucleofected with the same amounts of plasmids. A double 

amount of DNA was used in case of transfection with a single plasmid (E).  

A common observation for all samples was the reduction of the cell number about 60-70% on 

day one after nucleofection independently from the plasmid used and the amount of DNA. 
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However, on day 3 the cell number increased in correlation with the amount and type of 

plasmid used. The number of PK15 cells increased the faster the fewer amounts of plasmids 

were used (Figure 23A). PK15 cells as well as PERV-infected 293 cells transfected with both 

ZFN plasmids showed a significant reduced cell number in comparison to control cells. In 

contrast, uninfected 293T cells showed no difference in cell count 3 days post-nucleofection 

of both ZFNs. When ZFN1 and ZFN2 were transfected separately (Figure E) cell viability 

was not affected and the cell number measured after 5 days was near to control cells, while 

viability was decreased in cells co-transfected with ZFN1/ZFN2. 

4.3.5 PERV expression in cells transduced with ZFN set1 

In order to investigate the ZFN activity, total RNA was isolated from PK15 cells and PERV-

infected 293 cells transduced with different amounts of ZFN set1. PERV expression was 

measured using the pol specific real-time PCR. Porcine cyclophilin (PK15) and huGAPDH 

(293 cells) served as reference. No difference in PERV expression was observed between 

ZFN cells and untreated cells. Expression of housekeeping genes was the same in all tested 

samples (data not shown). 

Cells transfected with both ZFN1 and ZFN2 plasmids died 2 to 3 days post transfection. Cells 

transfected with a single ZFN plasmid showed a cell viability which was comparable to that 

of control cells. This was observed by fluorescence microscopy when cells were transfected 

with (C or Y)FP ZFN plasmids as well by the direct cell counting of cells transfected with 

original ZFN plasmids alone or separately. 

4.3.6 Surveyor nuclease assay 

For the optimization of the surveyor nuclease assay, several parameters were tested for each 

step of the assay.  

In a first trial 1-2 million PK15 cells as well as PERV infected 293 cells were transfected with 

different amount of plasmid DNA (100 ng, 500 ng, 1 µg, 2µg, 7.5 µg or 10 µg) and in a 

second experiment a repetition of three nucleofections with 2 days intervals was performed 

using 100ng, 500 ng or 1µg ZFN1/ZFN2. Afterwards cells were harvested and DNA was 

isolated as described in the methods section. 

In a first step the ZFN target sequence was amplified using 3 different primer pairs (PCR1-3) 

and using 3 different polymerases: Optimase polymerase (Transgenomic), the Phusion Hot 
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Start Flex DNA Polymerase (New England Biolabs) and the Expand high Fidelity Plus 

polymerase (Roche) (Figure 24A).  

In a second step PCR products were heated to 95°C for dehybridization and then cooled down 

slowly for re-annealing. At this stage the wild type sequences and mutated sequence if present 

will re-anneal building bubbles corresponding to the DNA mismatches, which can be then cut 

by the surveyor nuclease. 10 µl of each sample were loaded on a 2% agarose gel and the 

concentration of the PCR amplicon was estimated using ImageJ software. DNA concentration 

was estimated to be approximately 40 ng/µl for all samples. 

In the third step rehybridized amplicons were treated with the Surveyor nuclease. Different 

combinations of reaction parameters were tested for optimization: different DNA amounts, 

the enhancer concentration (1 or 2 µl) the MgCl2 concentration (0, 0.5 or 1 µl) the nuclease 

quantity (0.5, 1 or 2 µl), as well as the nuclease working time (20 min, 40 min, 1h or 2 h). 

After stopping the reaction with a stop solution, samples were run on 2% agarose gel or 10% 

polyacrylamide gel. All tested samples revealed the formation of many cleavage products, 

which can be seen in the figure as a multitude of bands. The band positions are reproducible 

for the same cell type independently from the reaction conditions. In order to test the nuclease 

for possible contamination, PCR products were treated directly with nuclease and no cleavage 

bands were detected (Figure 24C). 

In parallel, a G/C control was performed as described by the manufacturer. It consists of two 

control plasmids with inserts that differ at a single base pair. The amplification of the region 

containing the mutation with specific primers, followed by dehybridization / rehybridization 

step and treatment with nuclease, led to cleavage of the heteroduplexes into two bands (416 

and 217 bps) (Figure 24D). 

4.3.7 Sequencing of ZFN target sequence 

In order to investigate the homogeneity of the PERV sequence targeted by the ZFN set 1, a 

cloning of the PCR1 products was performed using the Topo PCR cloning kit (Life 

Technologies) as described by the manufacturer and 24 from these clones were sequenced. 

Sequencing results revealed a high number of point mutations which were distributed all 

along the tested sequences (see Appendix 3). These mutations could be targeted by the 

Surveyor nuclease which leads to the high number of bands observed in the assay.  
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Figure 24. Surveyor nuclease assay 

(A) PCR using genomic DNA as template for PCR (PCR1 = 645bp, PCR2 = 517 bp, PCR3 = 718 bp). 

After running on agarose gel, DNA concentration was estimated using an ImageJ software. Lane 1-5, 

PK15 cells transfected with 100 ng, 500 ng, 1 µg, 2 µg ZFN and 4 µg pLVTHM resp.; lanes 8 and 12, 

PK15 transfected with 2 µg ZFN1/2 each, lanes 9 and 13, PK15 transfected with 4 µg pLVTHM. 

Lanes 6, 10 and 14, PERV-infected 293 cells transfected with 2 µg ZFN1/2 each and lanes 7, 11 and 

15 with 4 µg pLVTHM. (B) Agarose gel analysis of the rehybridization of PCR amplicons as in A. (C) 

PAGE analysis of dehybridized and hybridized samples after incubation with 1 µl nuclease, 1 µl 

MgCl2 and 1 µl enhancer for 20 minutes. As control unhybridized samples from PCR reactions were 

treated with nuclease (D) Analysis of the G/C control of the surveyor nuclease assay. Three different 

amounts of DNA (200, 400, 600 ng) were treated with nuclease as described by the manufacturer and 

run on gel agarose. 

 The surveyor nuclease assay is the method of choice for the detection of mutations induced 

by ZFN treatment. Despite the fact, that ZFN target sequence is similar in all known PERVs, 

sequencing of the surrounding region of this target site showed a high rate of point mutations 

which could be a target for the CelI nuclease, which led to the high number of bands 

observed.   
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4.4  Generation of neutralizing antibodies against PERVs 

During the long exposure of human patients to xenotransplants in the future, production of 

PERV particles by the remaining porcine lymphocytes may be induced and pose an infection 

risk for the recipient. Despite the fact that no transmission of PERVs was observed in vivo 

yet, the use of neutralizing antibodies against PERV as vaccines may contribute to the 

protection from a possible infection. Earlier work described neutralizing antibodies directed 

against the transmembrane envelope protein p15E and the surface envelope protein gp70 of 

PERV in goat, rats and hamster [185, 190, 196, 203]. Hamsters showed several advantages 

when studying the neutralizing antibodies, since unlike rats, they didn’t shown pre-existing 

antibodies against p15E [190, 196]. These studies showed that immunizing hamsters with a 

mixture of gp70 and p15E resulted into sera with higher neutralizing activity than in animals 

immunized with the antigens separately. In the present work we aimed to confirm these data, 

and furthermore to investigate whether the method of application of antigens could influence 

the neutralization effect, since by mixing p15E and gp70 both molecules may interact together 

and this could have influence on the production of antibodies. 

4.4.1 The antigens 

The sequences of the p15E and gp70 recombinant proteins derived from the PERV envA 

(accession number AJ293656) as depicted (Figure 25). The recombinant proteins were 

expressed in E.coli and purified using affinity chromatography as described [190, 203].  

 

 

             

 

 

 

Figure 25. Schematic presentation of the recombinant PERV antigens. 

The EnvA polyprotein, the recombinant proteins gp70 and p15E are depicted. SP: signal peptide, 

arrows: proteinase cleavage sites, PelB: pectate lyase B leader sequence directs the protein to the 

periplasm of E.coli, CBP: calmodulin binding peptide. 
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Table 12. Cloning and purification of antigens . 

 Accession nr. length Molecular 

mass [kDa] 

Expression vector E.coli strain Purification (aff. 

chromatography) 

P15E HQ688786 a.a. 488-596 16.3 pCal-n(1) (Stratagene) BL21-Codon 

plus(DE3)-RP 

(Stratagene) 

CBP(3) 

Gp70 HQ688785 a.a. 50-487 54 Pet22b(+)(2) (Novagen) Ni-NTA (Qiagen) 

(1)[185]; (2)[222]; (3)Calmodulin binding peptide (31a.a.) fused to the P15E sequence and used for purification with affinity chromatography. 

4.4.2 Immunization 

A total of 16 hamsters were divided into four groups and immunized 4 times with intervals of 

3 weeks. The first group was injected with 300 µg of p15E, the second group was given a 

mixture of p15E and gp70 (300 µg each), to the third group p15E and gp70 were injected 

separately at different body parts, and the animals of the control group were immunized with 

adjuvant and PBS. The first immunization proteins or PBS were emulsified in complete 

Freund’s adjuvant with a final volume of 750 µl per animal. For boosting incomplete 

Freund’s adjuvant was used (50 µl i.m. and 700 µl s.c.) 

 

4.4.3 Characterization of binding antibodies by Western blot analysis 

Antigen specific antibodies were detected by Elisa and Western blot analysis. Immune sera 

(IS) from the final bleeding were tested and pre-immune (PI) sera served as control to prove 

that antibodies were the result of the immunization and were not pre-existing in the animals 

like in the case of some rats [190]. Antigen specific antibodies were detected in all immune 

sera (Figure 26A). The repetition of the blots where PI sera were run separately from IS 

showed that the small bands corresponding to the PI in the first blot (Figure 26A) were only a 

contamination. In order to quantify the p15E antibodies titer, ELISAs were carried out using 

p15E antigens. The amounts of p15E specific antibodies observed in sera of animals 

immunized with p15E were slightly lower than in animals immunized with both antigens. 

However the difference wasn’t significant. In addition, in the groups immunized 

simultaneously with both antigens, no significant differences were observed in p15E 

antibodies amounts when p15E and gp70 were applied as a mixture or separately. 
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Figure 26. Western Blot analysis of the hamster immune sera. 

Western blot analysis using p15E (A,B) and gp70 (C) used for the immunization. Immune sera of the 

final bleeding of 4 hamster groups were tested. Pre-immune (PI) sera of each group as well as the 
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immune sera of the control group H8 were pooled. G346 referred to the immune serum of the goat 

346. Sera were diluted 1:400 (A,C) or 1:800 (B). Anti-hamster and anti-goat antibodies were diluted 

1:2000. Lane M presents position and size (kDa) of protein standards.  

 

 

Figure 27. ELISA of the immune sera. 

Titration of the sera from immunized hamsters (H1-3) and control animals (H4) using the purified 

recombinant p15E antigen. The mean values of all animals of each groups as well as the 

corresponding standard deviations are represented.  

4.4.4 Neutralization assay 

In order to assess the neutralization capacity and the specificity of the neutralizing antibodies 

in the immune sera, a neutralization assay was performed as described earlier [203]. The 

assay is based on the inhibition of PERV proviral integration in human 293 cells after 

incubation of the virus with neutralizing immune sera. The proviral integration is measured by 

a quantitative RT-real-time PCR specific for the PERV gag and which recognizes most of the 

PERV subtypes.  

A PERV viral stock with known titer was prepared as described in the Method section, and 

incubated with 293 cells. Simultaneously, serial dilution of immune sera were prepared and 

added to the cells. Pre-immune sera were used as control to assess whether the observed 

neutralizing effect was the result of specific antibodies. Sera from immunized goats (goat 62 

and 346) were used as additional controls [203]. If neutralizing antibodies are present in the 

sera, the proviral integration will be reduced and this would be reflected by higher Ct values 

of the real-time PCR. For the normalization of the results, a duplex real-time PCR was carried 

out, which measure additionally the expression of human GAPDH. The use of this 
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housekeeping gene served also to check the cytotoxicity effects of viruses or sera. The 

expression of human GAPDH was constant in all samples tested (mean Ct = 24.65 ± 0.7), and 

therefore ΔCt values were calculated and presented in the figure. Higher ΔCt values 

correspond to high neutralizing activity. 

All immune sera but not pre-immune sera exhibited a neutralizing activity (Figure 28). The 

titers of neutralizing activity were higher in animals immunized with both antigens than in 

animals immunized with recombinant p15E alone. However, no significant difference was 

observed between animals immunized with the p15E/gp70 antigen mixture or animals 

injected with both antigens but separately. 

 

Figure 28. Neutralizing activity of sera. 

Sera from all animals immunized with p15E (blue columns), p15E/gp70 mixture (red columns), p15E 

and gp70 separately (green columns) and control animals were analyzed by neutralization assay. 

Results are presented as mean values of ΔCt values of each group as well as the corresponding 

standard deviations. 

 

4.4.5 Epitope mapping 

The mapping of the epitopes in p15E which were recognized by the sera was performed as 

described earlier [190, 203] using 12 a.a. overlapping 15-mer peptides covering the entire 

p15E of PERV and coated on a glass chip (JPT Peptide Technologies, Germany). Epitope 
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showed only one epitope localized at the MPER of p15E and corresponds to the E2a 

SKLRERLERRRR (Figure 29) 

 

Figure 29. Epitope mapping of immune sera using the glass slide method 

Serum from hamster 6/3 were tested using glass slide coated with 15-mer peptides and overlapping by 

12 a.a.   
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5 Discussion 

 

5.1 Improvements of the diagnostic tools 

5.1.1 New real-time PCRs suitable for PERVs expression studies 

Different methods were developed to measure the copy numbers of proviral PERVs in the 

genome as well as to quantify the expression of different PERV subtypes on mRNA level. 

Real-time PCRs specific for PERV-gag, -pol, envA/C, env-C and env-Cnv were described in 

earlier works [86, 124, 127, 191]. In order to accomplish the list of PERVs real-time PCRs for 

diagnostic studies, PERV-A and PERV-B specific real-time PCRs were established. 

Efficiencies of the real-time RT-PCR for PERV-A and PERV-B were very close to the 

efficiencies of the real-time RT-PCR for PERV-gag and PERV-envC and –Cnv ([185, 191] 

therefore all cited real-time PCRs could be run in parallel and are comparable. Real-time 

PCRs run with different env containing plasmids showed that the newly established real-time 

PCR were very specific. When total mRNA from PK15 cells was tested, PERV-A expression 

was shown to be higher than expression of PERV-B. In contrast, PERV-A and PERV-B 

expression was shown not to be very high in PBMCs of Göttingen minipigs. Based on these 

results, the combination of all PERV real-time PCR is the basis of an effective screening of 

pigs for PERV expression and helps to classify the tested pigs in low, medium or high 

producers. 

5.1.2 Analysis of the expression of PERV-C in Göttingen minipigs 

5.1.2.1 Why should Göttingen minipigs be screened for PERVs? 

In the present work, the prevalence and expression of PERVs in the Göttingen minipigs were 

investigated. Göttingen minipigs are well-characterized pig breed used worldwide for 

biomedical and toxicological researches [215, 216, 223]. They are microbiologically well 

characterized and are monitored continuously for absence of different microorganisms. 

Although their size presents a disadvantage for their use for organ xenotransplantation, their 

detailed documentation and physiologic parameters render them relevant for islet cell 

xenotransplantation. For these reason we tried to analyze the PERV prevalence and 

expression in these pigs systematically using PBMCs from the animals. 
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The Göttingen minipigs are the result of breeding of three different strains: Minnesota 

Minipigs, Vietnamese Potbelly Pig and German Landrace. They were generated at the 

University Göttingen, Germany [224] and are breed at Illegaerd, Denmark in independent, 

full-barrier specified pathogen-free (spf) facilities and are microbiologically well 

characterized and screened on a regular basis for the presence of microorganisms 

(http://www.minipigs.dk/). Unlike other pig strains Göttingen minipigs have small size organs 

which don’t match those of the human body. However, Göttingen minipigs may be important 

for xenotransplantation when using cells or tissues and considering numerous physiologic 

advantages like the well-defined health status and strictly managed genetics of the animals. 

Furthermore, Göttingen minipigs are used for numerous biomedical researches which allowed 

a detailed documentation of their physiologic parameters [215, 216]; however, the prevalence 

and the expression of different PERV subtypes in these animals were not yet investigated. In 

this study, screening of Göttingen minipigs was performed using sensitive PCR and real-time 

PCR methods. Peripheral blood mononuclear cells (PBMCs) were tested for several reasons: 

First, PBMCs are easily obtainable from the animals; second, it was described in this work 

and previous works that PERV expression showed fluctuations when animals of various 

strains or different organs of the same animal were compared, while PBMCs showed a good 

correlation when comparing different animals or strains [194, 218]. 

5.1.2.2  The genome of Göttingen minipigs doesn’t harbor recombinant PERV-A/C 

Our results revealed that Göttingen minipigs harbor the subtypes A, B, C and Cnv of PERV. 

However PERV-A/C could be detected neither in the germline nor in PBMCs of all tested 

animals. Until now the recombinant PERV-A/C couldn’t be found in the germ line of pigs. Its 

presence is restricted only to some organs, which are related to the immune system such as the 

spleen [125-127, 138, 225, 226]. Furthermore, PERV-A/C viruses were characterized by their 

high replication titers and their ability to adapt to human cells [128, 129, 226], not to forget 

that high expression levels of PERV-C in PBMCs was shown to be related to enhanced 

infectivity of the recombinant PERV-A/C from PBMCs in vitro [127]. Collectively, these data 

make it plausible to exclude PERV-C harbouring pigs from being candidate for 

xenotransplantation. Unlike the ubiquitous PERV-A and PERV-B detectable in all pigs, 

PERV-C is not present in all pigs, which allow the selection of PERV-C negative animals. 

However, it is still unclear whether this aim is reachable. Since in the present study, all of the 

15 analyzed Göttingen minipigs were shown to harbor PERV-C and PERV-Cnv.  

http://www.minipigs.dk/


           

 Discussion 

 

90 
 

5.1.2.3 Absence of PERV particles in mitogen-activated PBMCs 

The main criterion when evaluating virus safety is the release of human-tropic infectious viral 

particles. In all five pigs analyzed for production of viruses using highly susceptible human 

293 cells, no release of infectious human-tropic viral particles by PBMCs was detected. 

Furthermore, Western blot analysis revealed no viral protein expression in mitogen stimulated 

PBMCs (data not shown), although the PERV expression on mRNA levels was higher in 

comparison to the German landrace pigs. Not to forget that these experiments were limited 

since the co-incubation of PBMCs and 293 cells method used didn’t allow cell-cell contact, 

which was thought to allow a more effective virus transfer.  In order to avoid 

michrochimerism, further studies should include a co-cultivation of PBMCs with geneticin-

resistant 293 cells, which allow selection of 293 cells after cell-cell-contact incubation as 

described earlier [227]. 

Göttingen minipigs and their suitability for xenotransplantation 

The German landrace pigs analyzed in earlier studies were obtained from animal farms and 

showed low PERV expression [218]. In contrast, the Göttingen minipigs showed higher 

PERV expression, however they have the great advantage of being maintained under SPF 

conditions and for being monitored for the absence of a variety of microorganisms including 

viruses, bacteria, fungi and parasites (http://www.minipigs.dk). Nonetheless, additional 

screening for further viruses, like lymphotropic gammaherpesviruses, the cytomegalovirus 

and the hepatitis E virus, may be necessary to assess whether the use of Göttingen minipigs is 

appropriate as source animals for xenotransplantation regarding microbiological safety.  

Risk of PERV-A/C transmission in miniature swine 

Establishment of miniature pigs was started in 1975 in the Massachusetts General Hospital 

(MGH) by breeding two founder animals and focused on increasing the coefficient of 

inbreeding and maintaining different swine leukocyte antigen haplotypes within the offspring 

[228]. Analysis of miniature pigs from the MGH allowed identification of the so-called null 

pigs, which weren’t able to transmit PERV infection to either human or porcine cells [127]. 

Further genomic analysis of PERV-A/C transmitter minipigs demonstrated that only one  

provirus of PERV-C was implicated in the formation of PERV-A/C recombinants [229]. 

Other studies showed that release of human-tropic PERV-A/C by PBMCs of these miniature 

swines, capable of infecting human 293 cells in vitro, was related to the presence of a unique 
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PERV gag restriction fragment length polymorphism [230]. Such genotyping data together 

with investigations of the gene expression at the mRNA and protein level as well as infection 

experiments will serve as an important tool in the selection of pigs suitable for 

xenotransplantation. 

To summarize, it was shown that PERV can infect human cells in vitro, such as 293 cells 

[123, 151, 231], however there is still no evidence of in vivo PERV transmission during first 

pre-clinical and clinical xenotransplantations using pig cells (for a comprehensive review see 

[86]). Preclinical studies also failed to show a transmission, and when animals including non-

human primates were inoculated with PERV viruses, even after applying strong 

immunosuppression for the tested animals in some experiments no virus transmission was 

observed [232]. Finally, it is important to mention that the donor and transplant screening 

rules in the context of xenotransplantation will surpass those of donor screening for 

allotransplantation which was practiced for many years [233], and this may eventually lead to 

much safer transplants [234]. 

 

  



           

 Discussion 

 

92 
 

5.2 Knock down of PERV expression using siRNA 

Knock down of gene expression using RNA interference has been established as a powerful 

method used routinely in molecular biology [170]. Transgenic animals expressing siRNA as 

short-hairpin RNA from several species were successfully generated. Double stranded RNA 

trigger silencing of target genes in a sequence-specific manner. These double stranded 

siRNAs are formed by a guide strand and a passenger strand. The guide strand is chosen by 

the RISC complex and leads it to the complementary target sequence to be cleaved. PERVs 

are present in high copy number in the genome of pigs and presents high variability in their 

env sequence [110, 112]. Therefore classical knock out strategies based on insertion 

mutagenesis are nearly impossible. However the sequences of the pol and gag genes contain 

highly conserved regions among different PERV subtypes. This feature was used to design 

several successful gag and pol-specific siRNA [173, 196]. 

5.2.1 ShRNA transgenic pigs with reduced PERV expression up to three years 

Pol2-shRNA was designed to target a highly conserved region of the polymerase gene pol of 

PERV-A, -B and -C subtypes, and thus should be able to suppress the expression of all types 

of PERV [173]. Transgenic pigs expressing the pol2 specific shRNA were generated and 

monitored for PERV and shRNA expression during a period of three years. Results 

demonstrated a strong and long lasting reduction of PERV expression in ear fibroblasts, 

PBMCs, as well as in several organs of these animals at the end of their life. The expression 

of the GFP marker and the pol2 shRNA was also demonstrated to be permanent during the 

whole period of the study.  

The aim of this project was to analyze the long term efficacy of RNA interference in knocking 

down the PERV genes over a long period of time, which is necessary in cells, tissues and 

organs to be transplanted in the human body. The main challenges of the present study were 

first to reduce the already low levels of PERV mRNA expression, second the very low levels 

of protein translation as well as the absence of viral particles release in pigs. Another problem 

faced was that the low levels of PERV expression in wild-type animals and the differences 

observed in the expression between different animals presented a challenge in determining the 

efficacy of the RNA interference in vivo. However a reduction of PERV mRNA level should 

enhance the safety by preventing the release of infectious particles and reduce 

complementation or recombination possibilities of the numerous PERV copies in the genome 

of pigs.  
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To overcome these challenges, the expression of PERV in PBMCs from transgenic pigs and 

control pigs was measured in PHA-stimulated cells, which made the differences in expression 

more visible [101, 235]. It was shown that virus release in miniature pigs depended on the 

level of mRNA expression and occurred only at a certain expression level. Other pig strains 

showed the same or higher mRNA expression, but no virus release accompanied this 

expression [218]. These results imply that virus release depends not only on mRNA 

expression but also on genetic factors of the pigs and the type of proviruses.  

While evaluating the risks of xenotransplantation it is necessary to take into account the viral 

factors (virus titer and regulation of viral protein expression), the genetic factors of the donor 

animal as well as of the recipient (restriction factors, innate and adaptive immunity) and the 

health status of both donor and recipient. However, it was shown in this study that the 

probability of viral transmission is lower when the release of viral particles is low. 

Measurements of the PERV mRNA expression and the shRNA were performed using specific 

real-time PCRs. As housekeeping genes, porcine GAPDH and cyclophilin were used. Earlier 

studies showed fluctuations in the expression of these housekeeping genes in different organs, 

due to this reason, data analysis was mostly carried out based on total RNA. In some cases the 

2
-ΔΔCt

  method of Livak and Schmittgen [199] was used by referring to both housekeeping 

genes. The measurement of siRNA expression was carried out using a method developed in 

earlier works [194, 196]. This method is based on using a loop primer which binds to the 

siRNA and allows reverse-transcription and subsequent PCR-amplification. This method is 

more accurate than other methods based on Northern blot using phosphor-labeled siRNAs 

[175] or primers upstream to the shRNA [236]. 

The efficacy of the pol2 siRNA in reduction of PERV expression was analysed and confirmed 

in different tissues of transgenic animals. High levels of shRNA and low levels of PERVs 

were detected in all shRNA-transgenic animals when compared to control-vector transgenic 

animals. Noteworthy were the fluctuations in shRNA and PERV expression between the 

different tissues of the same animal. The highest levels of PERV were detected in lymph 

nodes and spleens, while lowest values were observed in the brain and muscles. These results 

were in agreement with earlier studies performed on wild-type and transgenic German 

landrace pigs [175, 218] and Yucatan mini pigs [217]. An explanation of these results could 

be the composition of cells in different tissues, the methylation status of the PERV promoters 

and genes [237] as well as the organ specific profile of transcription factors. A comparable 
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example could be the human endogenous retrovirus (HERV). Studies have shown that the env 

gene of the human endogenous retrovirus (HERV)-W encodes for syncytin, which is involved 

in human syncytiotrophoblast formation [238]. Syncytins, which originate from different 

ERVs, were also found in several mammals like mice [239, 240], rabbits, Carnivores [241] 

and cows [242]. Furthermore, recent studies reported high expression of the PERV-A receptor 

(HuPAR-2) in the villous trophoblast cells of humans. This expression is enhanced by the 

overexpression of the transcription factor activator protein (TFAP)-2γ, which is one of the 

transcription factors involved in the transcription of HuPAR-2 [243]. PERV was not found 

highly expressed in pig placenta [217] and no syncytin-like proteins were recorded yet, which 

is in accordance with the absence of syncytiotrophoblast in pigs, where the fetal and maternal 

tissues are simply apposed and no fetal trophoblast cells fusion occurs [244]. However, these 

results observed for HERV-W may explain the high PERV expression in some organs. In 

other words, this difference observed in PERV expression in different organs may be due also 

to higher susceptibility of their cells to PERV re-infection by the overexpression of PERV 

receptors. Furthermore, high expression in some organs related to the immune system like the 

spleen and lymph nodes may be due to an ongoing immune response which may activate the 

expression of PERVs  

5.2.2 Heritability of the shRNA transgene to the offspring 

In order to assess the heritability of endogenous shRNA of transgenic pigs, new pol2-shRNA 

male pigs were need in order to mate them with the females and check the offspring for 

presence of shRNA and its expression as well as the efficacy of the shRNA in reducing the 

PERVs of the litter. Male PFFs were transduced with the Pol2-shRNA pLVTHM vector or 

control empty pLVTHM and were used for SCNT. Afterwards 4 litters were born, one of 

them dead-born and the other three were tested and unfortunately they all harboured the 

control empty pLVTHM vectors. This question must be further investigated. 

5.2.3 Reduction of PERVs using new triple-siRNA vectors 

In earlier works done by our group several PERV-specific siRNAs were tested and showed 

high interference potential. Significant reduction of PERV expression was observed when the 

pol2-, pol1- and gag2-siRNAs were used in PK15 cells [173, 196]. Among these siRNAs the 

pol2 was expressed as shRNA in pLVTHM vectors and transgenic pigs were generated. Pol2 

shRNA expression was monitored over three years and PERV reduction persisted [175, 194].  
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5.2.3.1 Advantages of multiple shRNA 

It was shown in the case of other viruses like Hepatitis C [245] and HIV [246-248] that the 

use of a cocktail of siRNAs yielded better interference effect. Multiple siRNA can prevent the 

failure of individual siRNA and avoid the emergency resistant strains. Although viral escape 

was not described for PERV viruses yet, the high copy numbers and diversity of PERV 

proviruses in the genome of pigs may raise comparable problems.  

Furthermore the PERV specific siRNAs used were chosen to target highly conserved region 

of the known pol and gag genes. Since PERV-env genes could present high difference in their 

sequences, we avoided the use of PERV-env-specific siRNA. For all these reasons a 

combination of two pol- and a gag-specific siRNAs would have quantitative and qualitative 

advantages by targeting a high number of PERV copies including different PERV subtypes.  

5.2.3.2 Remarks on the design of triple-shRNA vectors 

In the first experiments using double-siRNAs directed against PERV, the shRNAs were either 

placed in tandem downstream a single RNA polymerase II promoter (CAG promoter) [236] or 

two H1 RNA polymerase III promoters were used one for each shRNA [196]. Several double 

shRNA were tested by Kaulitz et al. [196], however none of these constructs was able to 

overcome the potency of the single pol2 or pol1 shRNA. This may be due to the promoter 

inhibition or interference caused by the leak of enough space between the two shRNA 

cassettes. It was furthermore demonstrated that co-transfection of two single shRNAs is more 

efficient than single-shRNA in reduction of PERV expression in PK15 cells [196]. 

In order to optimize the multiple shRNA plasmids, three different RNA polymerase III 

promoters were used and the space separating the three shRNA cassettes was taken into 

consideration for the design of the constructs. Furthermore, two different backbone plasmids 

were tested, the pSIREN which was already used by Kaulitz [196], and the pLVTHM vector.  

Several reports described multiple shRNA vectors, using polymerase III promoters [249-251]. 

These commonly used promoters are suitable for the siRNA expression since they are able to 

direct the synthesis of small transcripts such as shRNAs and they require a stretch of 4-5 

deoxythymidines as stop codon [252, 253]. The transcription is usually stopped after the 

second T, yielding an shRNA hairpin loop transcript with a double-thymidine 3’-overhang, 

which was shown to contribute into the selection of the guide siRNA strand during the RISC 

processing of the shRNA [254, 255] as well as into the duration of silencing capacity [256]. In 
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addition it could enhance the resistance of siRNAs to nucleases [170]. Since use of the same 

repeated promoter could end up into undesired deletions of the shRNA cassettes due to 

possible recombinations during the transduction of the vectors [257], we decided to use 3 

different pol-III promoters the promoter of the human U6 small nuclear RNAs (shRNA) 

[258], H1 promoter of the human nuclear RNase P and the human 7SK promoter. 

It was shown that the use of pol III promoters for shRNA expression might be less 

advantageous than pol II promoters for gene therapy applications [259]. For example pol III 

promoters are not capable of spatial and temporal conditional expression as needed for 

therapeutical applications [260], which is not needed in the case of this study where restriction 

of shRNA transcription is in contrary unprofitable. Furthermore, pol III promoters are 

constitutively active in a wide range of cell types, which is advantageous in this case. Another 

advantage over pol II is the short lengths of pol III promoters, which make it easier to use 

three promoters in the same vector. On the other hand, pol III promoters are very robust and 

usually lead to high shRNA expression which may cause cytotoxicity [261]. However after 

testing the triple-shRNAs only one construct (pT1) exhibited high cell toxicity (data not 

shown) and was not used for generation of shRNA pigs. The pol III promoters used were the 

U6, H1 and 7SK promoters.  

A cloning strategy was developed in order to insert all H1 and 7SK promoters easily in a 

pSUPER-Mfe vector. The double-cassettes were then inserted into a pSIREN vector 

containing a U6 promoter. This cloning strategy allowed moving the triple shRNA cassettes 

into a pLVTHM vectors. At last, 5 pSIREN based vectors and 5 pLVTHM vectors were 

constructed and contained different combinations of shRNA/promoters.  

5.2.3.3 Study of the internal stability of the used siRNAs 

The shRNAs chosen were shown to have high interference potency. Especially the use of the 

pol1 shRNAs resulted in great reduction of PERV expression in PK15 cells. These results 

were in correlation with the internal stability of siRNA measured using the SFold software. It 

was described that asymmetry in internal stability of double-stranded RNA precursor play a 

role in the selection of the guide siRNA. The strand showing less stability in its 5’end is easier 

to unwind and thus to be incorporated into the RISC complex [219, 220]. This asymmetry was 

accentuated in the pol1 siRNA and to a lesser extent in the pol2 siRNA. Gag2-siRNA showed 

little asymmetry between both ends, however it showed a low internal stability in the 8-12 nt 

position fulfilling thus the second requirement for guide strand selection. 
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5.2.3.4 Establishment of pol1 and gag2-shRNA real-time PCR 

For the measurement of the siRNA expression, a pol2-specific real-time PCR was already 

established [194]. In this work, further real-time PCRs specific for pol1 and gag2 were 

established. These newly established real-time PCRs functioned with high efficiency when 

synthetic siRNAs were used as templates. However, no detection of pol1 or gag2 siRNAs was 

possible, whether when total mRNA of shRNA transfected cells was used as a template, or 

even when shRNA with 4 or 7 nt-loop were tested. But pol2 shRNA was detected in all 

constructs, which means that all three promoters were active and were able to lead the shRNA 

expression. Furthermore, the pol2-siRNA expression measured by the pol2-siRNA real-time 

PCR was shown to be higher in vectors containing single pol2 shRNA than in triple-shRNA, 

however interference efficiency of triple shRNA was much higher than constructs containing 

single pol2 shRNA (data not shown). Additionally it is known that a correlation exists 

between the amount of siRNA and its potency [196, 236]. All this suggested that in triple-

shRNA all three siRNAs should be expressed. A possible explanation of the failure of 

detection could be the unpredictable resulting sequence of the siRNA after processing of the 

double-stranded shRNA by the DICER complex in vivo, and which may not match the tested 

synthetic siRNA in vitro.  

5.2.3.5 PERV specific triple-shRNA: a high efficient tool to reduce the PERV expression 

The T vectors based on pSIREN backbone were tested in PK15 cells, and positive cells were 

selected by different concentrations of puromycin. It seemed that the combination 

promoters/shRNA in T1 was toxic for the cells, since moving the triple-cassette to a 

pLVTHM vector resulted in the same cytotoxicity. The other T constructs showed low 

cytotoxicity and a reduction in PERV expression. However this reduction wasn’t a significant 

improvement when compared to the single-shRNA pol2-pSIREN, which may explain earlier 

results done with double-shRNA using the pSIREN vector [196]. For this reason the triple-

shRNA cassettes were inserted into a pLVTHM vector (pT) and tested in PK15 cells by 

nucleofection and following FACS sorting. The pT vectors showed high efficiency in 

reducing PERV expression. This expression was reduced to 8% when compared to mock 

transfected cells, while pol2 single-shRNA reduced the expression to only 15%. These results 

were comparable to those observed in earlier work when pol2-shRNA was used [196].  

However, the measurement of PERV expression was done using total mRNA extracted from 

PK15 cells. Since the processing of the shRNA as well as the whole RNA interference 
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process takes place in the cytoplasm of the cells, the nuclear mRNA is protected from the 

siRNA effects. Thus, measuring the PERV expression using the total mRNA is not accurate 

and doesn’t reflect the real efficiency of the RNA interference. For this reason, cytoplasmic 

and nuclear RNA were measured separately. Doing so, we could demonstrate that the amount 

of cytoplasmic PERV mRNA remaining in the cells corresponded to only 4% compared to 

mock transfected cells, while nuclear mRNA was reduced only to the quarter of its amount in 

control cells. It is important to mention here that these results were not suitable for the 

comparison of expression between nuclear and cytoplasmic mRNA, because equal amounts of 

RNA template were tested, which doesn’t correspond to an equal cell number, since no 

studies were yet done about the nuclear:cytoplasmic RNA ratio in PK15 cells. However, the 

comparison of PERV mRNA amount in total, nuclear and cytoplasmic mRNA showed that 

cytoplasmic PERV in pT transfected cells is lower than in cytoplasm of control cells. In other 

words, using the new triple-shRNA vectors presented an improvement in reducing the 

cytoplasmic PERV expression when compared to single-shRNA vectors. 

5.2.3.6 Generation of triple-shRNA transgenic pigs 

Finally, porcine fetal fibroblasts were transfected with the pT vectors as well as pol2 single-

shRNA and control empty pLVTHM vectors. The pT1 plasmid was excluded since it showed 

lower efficacy in reduction of PERV expression in PK15 as well as high cytotoxicity. Since 

transduction efficiency is very low and the PFFs are vulnerable primary cells which require 

cell to cell contact for their growth, all shRNA-PFFs were pooled. The pLVTHM control cells 

as well as the pooled shRNA-cells expressing GFP were selected by FACS sorter and were 

sent to the Friedrich-Löffler-Institute (Neustadt, Mariensee) for SCNT. Further studies should 

be done to follow the litter and measure the siRNA and the PERV expression in PBMCs and 

tissues. 
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5.3 Knock out of PERV with Zinc Finger Nuclease 

In the present study we aimed to knock out a number of PERV genes in porcine cells in order 

to reduce PERV expression. PERVs revealed to be distributed in the genome of pigs with a 

high copy number[110], therefore classical knock out methods are difficult to apply in this 

case. Earlier studies showed an efficient biallelic knockout of the α1,3-galactosyl-transferase 

(GGTA1) in porcine cells using  zinc finger nucleases [37]. Also other studies showed that the 

ZFN can be applied successfully in porcine cells [262-264]. The pol gene of PERV was the 

region of choice to knock out since previous studies using siRNA targeted against the pol 

gene showed a high reduction of PERV expression [175, 194, 236].  Therefore an alignment 

of the known PERV pol sequences allowed the selection of a high conserved region, which 

was used to design and select an appropriate ZFN, which could target a large number of 

PERV copies. 

5.3.1 Kinetic of ZFN expression 

Kinetic studies of the ZFN expression in ZFN-transfected PK15 cells revealed high 

expression 12 to 24 h post-transfection followed by a decrease of expression after 48 h. The 

expression level was dependent on the amount of ZFN plasmid used for transfection. The 

decrease of ZFN expression after 48 h could be related to the degradation of plasmids in the 

cells, the silencing of the CMV promoter [265-267] or the death of the cells due to probable 

toxicity of the ZFNs.  

5.3.2 Localisation of ZFN expression 

Furthermore, we investigated the localization of the ZFN proteins. The immunoblotting of 

nuclear and cytoplasmic extract from ZFN-transfected cells using anti-Flag antibodies showed 

a clear accumulation of the ZFN proteins within the nuclei. The nuclear and cytoplasmic 

segregation was tested by using β-actin and DDX3 antibodies. The β-actin was present mainly 

in the cytoplasm, however a relatively lower amount of expression was detected in the nuclear 

extract. This could be the result of cross contamination but it was most probably nuclear β-

actin, which is now known to have important functions within the nucleoplasm [268, 269]. In 

contrast, DDX3 was shown to be expressed mainly in the nuclear lysate. Only one sample 

showed a contamination of the cytoplasmic lysate by nuclear extract. The next experiment 

done with fluorescent marked ZFN confirmed also these results and showed moreover that 

both ZFN1 and ZFN2 were present predominantly in the nucleus. These results additionally 
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proved that the ZFN proteins are imported to the nucleus where they can be in contact with 

their DNA target sites.  

This study showed using two methods, FRET and Western blot analysis, that the ZFN1 and 

ZFN2 proteins are localized in the nucleus. In total 9 to 16 cells were measured and NFRET 

values were calculated. The co-expressed ZFN1-CFP / ZFN2-YFP accumulated in the nucleus 

and NFRET values proved that both ZFN arms may interact within the nucleus by binding to 

their DNA target sequence allowing a dimerization of the Fok1 subunits. Control CFP-YFP 

dimers showed high NFRET values. In contrast, when unconjugated CFP and YFP were co-

transfected, no FRET was observed. However, the overexpression of ZFN proteins, which 

were highly accumulated in the nucleus, could lead to misinterpretation therefore further 

studies using for example the two hybrid system might confirm the interaction of both ZFN 

protein subunits. 

5.3.3 ZFN protein cytotoxicity 

A general observation in all ZFN nucleofection experiments was the low viability of cells 

after transfection independent of the nucleofection process. A possible explanation could be 

the high number of PERV copies in the genome. That is when ZFNs were active they would 

simultaneously target several sites of the genome which is not comparable to the previously 

described toxicity due to off-target effects of ZFNs [270, 271].  

In order to study the expression of ZFN in PK15 cells as well as their toxicity, transfected 

PK15 with different amounts of ZFN1-CFP/ZFN2-YFP and control plasmids were observed 

for 5 days by fluorescence microscopy. The number of cells co-transfected with both ZFN 

plasmids decreased progressively and green cells disappeared totally after 5 days, while cells 

transfected with ZFN1-CFP and ZFN2-YFP separately as well as control CFP/YFP were still 

fluorescent 5 days after transfection, even though fluorescence decreased possibly due to 

plasmid degradation or CMV promoter silencing. However the used ZFN plasmids were 

engineered so that the CFP or YFP were placed at the C-terminus of the FokI subunit of the 

ZFN protein. So an interference of the fluorescent markers with the FokI dimerization and 

activity couldn’t be excluded. In order to shed light on this question, PK15 cells as well as 

293 cells and PERV infected 293 cells were nucleofected with ZFN plasmids together or 

separately. Viable cells were counted 1, 3 and 5 days after transfection. Cell number was 

reduced to about 60% 1 day after transfection in all samples independently of the plasmids 
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used as a result of the use of nucleofection for transfection, where the viability was measured 

to 60-70% (not shown).  

The transfection of PK15 cells with an increasing amount of ZFN led to increased cell death 

proportional to the DNA-plasmid quantity used. Furthermore, results showed that after 3 days 

the number of cells containing PERV sequences (PK15 or PERV infected 293 cells) was low, 

while the number of ZFN-nucleofected 293 control cells was comparable to that of mock- or 

pLVTHM-transfected cells. Additionally when PERV-expressing cells were transfected with 

ZFN1 and ZFN2 separately, the cell number was comparable to that of control cells. In 

conclusion, ZFN proteins may be active in the transfected cells only when both ZFN1 and 

ZFN2 are co-transfected. Nevertheless, this activity might be toxic for cells because of the 

high copy number of the target PERVs in the genome. 

To summarize, the high copy number of PERVs in the genome combined to the high level of 

ZFN expression in transfected cells, could lead to the ZFN cytotoxicity observed. This 

overexpression of ZFN proteins in transfected cells is due to the high nucleofection efficiency 

and to the use of the cytomegalovirus promoter, which is one of the strongest promoters 

described [136, 272]. To overcome this, the use of a weak or inducible promoter could reduce 

the ZFN expression to a non-toxic level. An alternative is the use of mRNA for the expression 

of ZFN since unlike plasmids, mRNAs are quickly degraded in the cells. 

5.3.4 Measurement of ZFN activity 

PERV expression in ZFN treated cells 

There was no reduction in the PERV expression in ZFN treated PK15 cells and PERV 

infected 293 cells (data not shown). This can be due to the low transduction efficiency or the 

cytotoxicity of the ZFN proteins. 

The Surveyor nuclease assay is not a suitable choice 

In order to investigate the activity of ZFNs in the cells, we used the surveyor nuclease assay 

(SNA) which allows the detection of mutations caused by the ZFN cleavage and DNA repair 

by the cell. The combination of different reaction parameters constantly generated the same 

results, where a multitude of bands were observed on agarose or polyacrylamide gels after 

treatment of rehybridized PCR products with the Surveyor nuclease. A contamination of the 

nuclease could be excluded by using the C/G control as well as un-rehybridized PCR 
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amplicons, where two cleavage bands were observed as expected. The presence of a high 

number of cleavage bands was probably the result of the existence of multiple cleavage sites 

within the PCR amplicon heteroduplexes treated with the nuclease. This could be due to the 

presence of various mismatches in the heteroduplexes when different PCR products are 

rehybridized.  

The PCR primers of the SNA were designed so that the approximately 600 bps long 

amplicons include the ZFN target site. Additionally, the ZFN was designed in a conserved 

region where all known PERV pol sequences were compared. The presence of different 

mismatches in the heteroduplexes raised a question about the homogeneity of the PCR 

amplicons in the porcine cells. In other words, porcine cells may contain diverse unknown 

PERV sequences and so the amplified region may not be highly conserved, which may 

interfere with the assay results. For this purpose, cloning of PCR products was performed and 

sequencing of 24 amplicons revealed the presence of a high number of various mutations.  

It is important to note here, that PERV infected 293 cells used in this study were freshly 

infected by supernatant from older PERV-infected 293 cells, which were in culture for a long 

period. This might allow the formation of new mutation due to repeated infection and thus, 

the supernatant may contain different populations of PERV viruses. This was revealed by the 

profile of cleavage bands of PERV-infected 293 cells, which was different from that of PK15 

cells.  

Considering all these results, we came to the conclusion that the SNA is not a suitable assay 

for the measurement and detection of mutations in this case. Further work may be done to 

assess the activity of ZFN proteins. For examples, by co-transfecting a single PERV plasmid 

with the ZFN plasmids and testing the PERV mRNA expression or the establishment of 

control 293 cells infected with a single PERV clone with reduced virus integration number, 

which can be then used for ZFN nucleofection tests. 
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5.4 Improvement of the production of neutralizing antibodies against 

PERVs 

Several γ-retroviruses like FeLV, MuLV and KoRV are pathogenic in their infected host. For 

some of them a trans-species transmission was described, like in the case of KoRV which was 

able to infect human cells in vitro as well as Wistar rats in vivo. In rats KoRV was also able to 

induce a humeral immune response and may be the cause of tumor development [113]. In 

general retroviruses were shown to induce immunodeficiency which often results in death of 

infected animals by the emergence of opportunistic infections [100, 144, 273, 274].  

Although no PERV transmission was observed from pigs to human yet, PERVs can infect 

human cells in vitro. Furthermore, during a long contact period between porcine cells or 

tissues and immunosuppressed human recipients an adaptation of PERVs to the human cells 

cannot be excluded. For this reason it may be reasonable to prepare a PERV-vaccine which 

could be used as a preventive measure for putative human recipients. On the other hand, the 

trials for vaccine development may help to understand the general mechanism of 

neutralization of different retroviruses including HIV-1 by MPER-specific antibodies. 

5.4.1 Inducing of p15E-specific antibodies 

The immunization of hamsters with recombinant p15E and gp70 induced high titers of 

neutralizing antibodies. Higher titers of p15E-specific antibodies were observed in the group 

of animals immunized with both antigens separately. These antibodies strongly recognized the 

epitope (SKLRERERRR) corresponding to the E1 epitope in the MPER region. The second 

epitope E2 (FEGWFNR) was recognized by the antibodies but to a less extent (Figure 30). 

Only one hamster (H6/3) from the group of animals immunized with a mixture of PERV 

p15E/gp70 and which showed the highest antibodies titers in ELISA was tested by epitope 

mapping. 

 It was already shown that immunization with recombinant p15E of PERV induced high titers 

of neutralizing antibodies recognizing both epitopes in goats, rats, mice or hamsters [113, 

203]. Such neutralizing antibodies recognizing similar epitopes were also detected in sera of 

different animals immunized with the p15E of the feline leukemia virus (FeLV) [186, 187, 

275, 276] and the koala retrovirus (KoRV) [113]. These epitopes showed a similarity to the 

human HIV-1 antibody 4E10, which recognizes the epitope (NWFNIT) in the MPER of the 
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transmembrane envelope protein gp41 of HIV-1 which is important for vaccine design [184, 

277]. 

 

 

                              

Figure 30. Localisation of epitopes in the transmembrane envelope proteins of PERV, FeLV and 

HIV-1 recognized by neutralizing antibodies. 

This picture shows the localization of the epitopes recognized by neutralizing antibodies in sera of 

goats and hamsters immunized with the p15E of PERV-A, in goats immunized with p15E of FeLV 

[86, 186], as well as the position of the epitopes recognized by monoclonal antibodies 2F5 and 4E10 

in HIV-1 TM isolated from patients [184]. FP, Fusion peptide. NHR and CHR, N- and C-terminal 

helical regions, TM, transmembrane protein. 

The titer of anti-gp70 was higher in the group immunized with both antigens separately. In 

contrast, lower titers were observed in the group immunized with a mixture of both antigens.  

5.4.2 The neutralizing effect of the PERV p15E immune sera  

The neutralizing effect of the immune sera was tested by an neutralization assay similar to a 

neutralization assay described for HIV-1 [278]. The assay is based on the measurement of 

proviral DNA in human cells which where incubated in a mixture of immune sera and PERV 

viruses. The presence of neutralizing antibodies in the sera will hamper the infection of the 

human cells and thus the copy number of proviral DNA will decrease in comparison to 

control cells and pre-immune sera. The provirus measurements were carried out by real-time 
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PCR. Usually the expression of a housekeeping gene like GAPDH is also measured in order 

to screen for cell viability.  

Earlier works showed a neutralizing effect of sera from non-immunized rats [196, 279]. One 

explanation of this phenomenon is the presence of pre-existing cross-reacting antibodies, 

which were originally directed against PERV-related retroviruses like MuLV or FeLV or 

other endogenous retroviruses known to be expressed in numerous species in context of 

physiological or pathological conditions [190]. For these reasons hamster was the animal of 

choice for immunization experiments.  

Immunization of hamsters with recombinant p15E and gp70 of PERV showed high 

neutralization effects of sera. This activity is higher in animals immunized simultaneously 

with both p15E and gp70 [190]. In this work we aimed to investigate the effect of applying 

both antigens separately in different parts of the body or as a mixture. By mixing gp70 and 

p15E an interaction between both peptides may occur, which would influence the availability 

of some epitopes for immunization. Results showed higher neutralization activity in sera of 

animals immunized with both antigens than in animals immunized with p15E alone, however 

no significant difference was observed between animals immunized with a mixture of 

p15E/gp70 or separately.  
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Appendix 1 

PERV genes sequences used for the design of siRNAs and Zinc Finger Nucleases 

 

 

Name Accession cell line mol type Ref. 

Porcine endogenous type C retrovirus proviral gag gene, pol gene and env gene, 

class A, clone 58 AJ293656.1 PK15 

genomic 

DNA 

[119] 

Porcine endogenous type C retrovirus proviral gag gene, pol gene and env gene, 

class B, clone 213 AJ293657.1 PK15 
genomic 
DNA 

Porcine endogenous retrovirus type C proviral gag, pol and env genes and LTR 

(class B, clone 33) AJ133816.1 

grown in 

PK15 

genomic 

DNA 

Porcine endogenous retrovirus type C proviral gag, pol and env genes and LTR 

(class B, clone 43) AJ133818.1   
genomic 
DNA 

Porcine endogenous retrovirus type C proviral gag, pol and env genes and LTR 

(class A, clone 42) AJ133817.1 

grown in 

PK15 

genomic 

DNA 

Porcine endogenous retrovirus A gag-pol polyprotein and env protein genes, 

complete cds 
AY099323.1 

293 cells 

infected with 

PERV from 

PK-15 cell 
supernatant 

genomic 
DNA 

[117] 

Porcine endogenous retrovirus B gag-pol polyprotein and env protein genes, 

complete cds 

AY099324.1 

293 cells 

infected with 

PERV from 
PK-15 cell 

supernatant   
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Appendix 2 

Alignment of different PERV clone sequences at the ZFN target sequences (red). 
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Appendix 3 

Alignment of different sequenced clones, which were PCR amplified from genomic DNA of 

PK15 by the ZFN primers PCR1 (see 2.8 in Materials) used for the Surveyor Nuclease Assay. 

Majority                 CGTTGGTCATCCATCGGTCTGGGGGCTGCCGAACGATGTTCTCCAATGCATGGGGGGCTATTACAGTTATATTCTGTCCCAAAGTCAATTTGTCAGCGTC 

                         ---------+---------+---------+---------+---------+---------+---------+---------+---------+---------+ 

                                  10        20        30        40        50        60        70        80        90        100 

                         ---------+---------+---------+---------+---------+---------+---------+---------+---------+---------+ 

revcomp 195-196 sequence CGTTGGTCATCCATCGGTCTGGGGGCTGCCGAACGATGTTCTCCAACGCATGGGGGGCTATTACAGTTATATTCTGTCCCAAAGTCAATTTGTCAGCGTC        100 

revcomp MS_130926_01     ....................................................................................................        100 

revcomp MS_130926_02     ....................................................................................................        100 

revcomp MS_130926_03     ..............................................C.....................................................        100 

revcomp MS_130926_04     ..............................................C.....................................................        100 

revcomp MS_130926_05     ....................................................................................................        100 

revcomp MS_130926_06     ....................................................................................................        100 

revcomp MS_130926_07_20  ....................................................................................................        100 

revcomp MS_130926_08_20  ....................................................................................................        100 

revcomp MS_130926_09     ....................................................................................................        100 

revcomp MS_130926_10     ...............................G...............................T....................................        100 

revcomp MS_130926_11     ..............................................C.....................................................        100 

revcomp MS_130926_12_20  ..............................................C.....................................................        100 

revcomp MS_130926_13_20  ..............................................C.....................................................        100 

revcomp MS_130926_14     ...................A..........................C.....................................................        100 

revcomp MS_130926_15     ....................................................................................................        100 

revcomp MS_130926_16     ........................................T.....C.....................................................        100 

revcomp MS_130926_17_20  ....................................................................................................        100 

revcomp MS_130926_19     .........................T......................................C...................................        100 

revcomp MS_130926_20     ..............-..CAA................................................................................         99 

revcomp MS_130926_21     ....................................................................................................        100 

revcomp MS_130926_24_20  ....................................................................................................        100 

 

Majority                 CTTGACCAGTATGGCCACAGCTGCGATAGCCTTCAGGCATACGGGCCAACCACTGGCTACAGGATCGAGCTTCTTTGACAGGTAGGCAACAGGTCTCCTC 

                         ---------+---------+---------+---------+---------+---------+---------+---------+---------+---------+ 

                                  110       120       130       140       150       160       170       180       190       200 

                         ---------+---------+---------+---------+---------+---------+---------+---------+---------+---------+ 

revcomp 195-196 sequence CTTGACCAGTATGGCCACAGCTGCGATAGCCTTCAGGCATATGGGCCAACCACTGGCTACAGGATCGAGCTTCTTTGACAGGTAGGCAACAGGTCTCCTC        200 

revcomp MS_130926_01     ..................................................................A.................................        200 

revcomp MS_130926_02     ..................................................................A.................................        200 

revcomp MS_130926_03     ....................................................................................................        200 

revcomp MS_130926_04     ....................................................................................................        200 

revcomp MS_130926_05     .................................................................A..................................        200 

revcomp MS_130926_06     ....................................................................................................        200 

revcomp MS_130926_07_20  .................................................................A..................................        200 

revcomp MS_130926_08_20  ..................................................................A.................................        200 

revcomp MS_130926_09     ....................................................................................................        200 

revcomp MS_130926_10     ..................G.................................................................................        200 

revcomp MS_130926_11     ....................................................................................................        200 

revcomp MS_130926_12_20  .............................................A......................................................        200 

revcomp MS_130926_13_20  ....................................................................................................        200 

revcomp MS_130926_14     ....................................................................................................        200 

revcomp MS_130926_15     ..................................................................A.................................        200 

revcomp MS_130926_16     .................G.......................T..........................................................        200 

revcomp MS_130926_17_20  ..................................................................A.................................        200 

revcomp MS_130926_19     .........C........................................................A...............C.................        200 

revcomp MS_130926_20     .................................................................A..................................        199 

revcomp MS_130926_21     ..................................................................A.................................        200 

revcomp MS_130926_24_20  ..................................................................A.................................        200 

 

Majority                 CATGGTCCTAGGGTTTGGGTTAAAACTCCCCGGGCTACTCCCTTACGCTCATCCACATAAAGGGTAAAGGGTTTAGTTACGTCAGGGAGGGCCAGAGCAG 

                         ---------+---------+---------+---------+---------+---------+---------+---------+---------+---------+ 

                                  210       220       230       240       250       260       270       280       290       300 

                         ---------+---------+---------+---------+---------+---------+---------+---------+---------+---------+ 

revcomp 195-196 sequence CATGGTCCTAGAGTTTGGGTTAAAACTCCCCGGGCTACTCCCTTACGCTCATCCACATAAAGGGTAAAGGGTTTAGTCACGTCAGGGAGGGCCAGAGCAG        300 

revcomp MS_130926_01     ....................................................................A..........A...................        300 

revcomp MS_130926_02     .............................T......................................................................        300 

revcomp MS_130926_03     .............................................................................C......................        300 

revcomp MS_130926_04     ...........A.................................................................C......................        300 

revcomp MS_130926_05     .............................................G......................................................        300 

revcomp MS_130926_06     ....................................................................................................        300 

revcomp MS_130926_07_20  .............................................G......................................................        300 

revcomp MS_130926_08_20  .............................T......................................................................        300 

revcomp MS_130926_09     .............................................................................C......................        300 

revcomp MS_130926_10     .............................................................................C......................        300 

revcomp MS_130926_11     ...........A.........................................T.......................C..A...................        300 

revcomp MS_130926_12_20  .............................................T......................................................        300 

revcomp MS_130926_13_20  ...........A.................................................................C......................        300 

revcomp MS_130926_14     .............................................................................C......................        300 

revcomp MS_130926_15     .............................T......................................................................        300 

revcomp MS_130926_16     ......................G........................T................................A...................        300 

revcomp MS_130926_17_20  .............................T......................................................................        300 

revcomp MS_130926_19     .............................T......................................................................        300 

revcomp MS_130926_20     .............................................G......................................................        299 

revcomp MS_130926_21     .............................T......................................................................        300 

revcomp MS_130926_24_20  .............................T......................................................................        300 

 

Majority                 GTGCGCTCAGCAGGGCCTTTTTGATAGCATCAAATGCCTTCTGGTGCTCAGGAGCCCAGGAGAATTCCCCTTTTTCTTTGGTTAGCGGGTAGAGTGGGGC 

                         ---------+---------+---------+---------+---------+---------+---------+---------+---------+---------+ 

                                  310       320       330       340       350       360       370       380       390       400 

                         ---------+---------+---------+---------+---------+---------+---------+---------+---------+---------+ 

revcomp 195-196 sequence GTGCGCTCAGCAGGGCCTTTTTGATAGCATCAAATGCCTTCTGGTGCTCAGGAGCCCAGGAGAATTCCCCTTTTTCTTTGGTTAGTGGGTAGAGTGGGGC        400 

revcomp MS_130926_01     ....................................................................................................        400 

revcomp MS_130926_02     ....................................................................................................        400 

revcomp MS_130926_03     ....................................................................................................        400 

revcomp MS_130926_04     ..............................................T......................................T..............        400 

revcomp MS_130926_05     ..............................................................................................C.....        400 

revcomp MS_130926_06     ....................................................................................................        400 

revcomp MS_130926_07_20  ....................................................................................................        400 

revcomp MS_130926_08_20  ....................................................................................................        400 

revcomp MS_130926_09     ....................................................................................................        400 

revcomp MS_130926_10     .....................................................................................T..............        400 

revcomp MS_130926_11     .....................................................................................T..............        400 

revcomp MS_130926_12_20  ....................................................................................................        400 

revcomp MS_130926_13_20  .....................................................................................T..............        400 

revcomp MS_130926_14     .....................................................................T...............T..............        400 

revcomp MS_130926_15     ..............-..C...................................................................T..............        399 

revcomp MS_130926_16     ....................................................................................................        400 

revcomp MS_130926_17_20  ....................................................................................................        400 

revcomp MS_130926_19     ....................................................................................................        400 

revcomp MS_130926_20     ..............................................................................................C.....        399 

revcomp MS_130926_21     ........................................................-...........................................        399 

revcomp MS_130926_24_20  ....................................................................................................        400 
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Majority                 TGCTAAGGTCGCAAACCCCGGGATCCACAGTCTGCAAAATCCAGCTGTCCCCAAAAACTCTCTCACTTGTTTGGCTGTGGTTGGGGCCGGTATCTGGACT 

                         ---------+---------+---------+---------+---------+---------+---------+---------+---------+---------+ 

                                  410       420       430       440       450       460       470       480       490       500 

                         ---------+---------+---------+---------+---------+---------+---------+---------+---------+---------+ 

revcomp 195-196 sequence TGCTAAGGTCGCAAACCCCGGGATCCACAGTCTGCAAAATCCAGCTGTCCCCAAAAACTCTCTCACTTGTTTGGCTGTGGTTGGGGCCGGTATCTGGACT        500 

revcomp MS_130926_01     ....................................................................................................        500 

revcomp MS_130926_02     ....................................................................................................        500 

revcomp MS_130926_03     ....................................................................................................        500 

revcomp MS_130926_04     ....................................................................................................        500 

revcomp MS_130926_05     ......................................................................C.............................        500 

revcomp MS_130926_06     ..........................................................................................C.........        500 

revcomp MS_130926_07_20  ..................T.................................................................................        500 

revcomp MS_130926_08_20  ....................................................................................................        500 

revcomp MS_130926_09     ....................................................................................................        500 

revcomp MS_130926_10     ....................................................................................................        500 

revcomp MS_130926_11     ....................................................................................................        500 

revcomp MS_130926_12_20  ....................................................................................................        500 

revcomp MS_130926_13_20  ....................................................................................................        500 

revcomp MS_130926_14     .................G..................................C...............................................        500 

revcomp MS_130926_15     .....T..............................................................................................        499 

revcomp MS_130926_16     ..T......T..........................................................................................        500 

revcomp MS_130926_17_20  ....................................................................................................        500 

revcomp MS_130926_19     ....................................................................................................        500 

revcomp MS_130926_20     ....................................................................................................        499 

revcomp MS_130926_21     ....................................................................................................        499 

revcomp MS_130926_24_20  ....................................................................................................        500 

 

Majority                 ACAGTTTTCTTCCGTGCCTCCGTCAGCCATCGCTGCCCGCCCCGCAAACTGTACCCCAAGTATGTTACCTCTCTCCTGCAAATCTGGGCCTTCTTAGCGG 

                         ---------+---------+---------+---------+---------+---------+---------+---------+---------+---------+ 

                                  510       520       530       540       550       560       570       580       590       600 

                         ---------+---------+---------+---------+---------+---------+---------+---------+---------+---------+ 

revcomp 195-196 sequence ACAGTTCTCTTCCGTGCCTCCGTCAGCCATCGCTGCCCGCCCCGCAAACTGTACCCCAAGTATGTTACCTCTCTCCTGCAAATCTGGGCCTTCTTAGCGG        600 

revcomp MS_130926_01     ..................................................................................................A.        600 

revcomp MS_130926_02     ...............................................G..................................................A.        600 

revcomp MS_130926_03     ....................................................................................................        600 

revcomp MS_130926_04     .T..........................................................................................T.....A.        600 

revcomp MS_130926_05     ......C.............................................................................................        600 

revcomp MS_130926_06     ......C.........................................................G...................................        600 

revcomp MS_130926_07_20  ....................................................................................................        600 

revcomp MS_130926_08_20  ..................................................................................................A.        600 

revcomp MS_130926_09     ......................................A...T.........................................................        600 

revcomp MS_130926_10     ......C...............................C.............................................................        600 

revcomp MS_130926_11     ......C........................................C....................................................        600 

revcomp MS_130926_12_20  ..................................................................................................A.        600 

revcomp MS_130926_13_20  ......C.............................................................................................        600 

revcomp MS_130926_14     ......C.............................................................................................        600 

revcomp MS_130926_15     ......C.............................................................................................        599 

revcomp MS_130926_16     ....................T.................A..............T......................................T....T..        600 

revcomp MS_130926_17_20  ..................................................................................................A.        600 

revcomp MS_130926_19     ....................................................................................................        600 

revcomp MS_130926_20     ..................................................................................................A.        599 

revcomp MS_130926_21     ..................................................................................................A.        599 

revcomp MS_130926_24_20  ..................................................................................................A.        600 

 

Majority                 AGGCTCTGTAGCCTAGGTCAGACAATTCCAGCAGTAGTGCCTTCGX 

                         ---------+---------+---------+---------+------ 

                                  610       620       630       640     

                         ---------+---------+---------+---------+------ 

revcomp 195-196 sequence AGGCTCTGTAGCCTAGGTCAGACAATTCCAGCAGTAGTGCCTTCG                                                               645 

revcomp MS_130926_01     .............................................                                                               645 

revcomp MS_130926_02     .............................................                                                               645 

revcomp MS_130926_03     ........................-.....T..............A                                                              645 

revcomp MS_130926_04     .............................................                                                               645 

revcomp MS_130926_05     .............................................                                                               645 

revcomp MS_130926_06     ........................T....................                                                               645 

revcomp MS_130926_07_20  .............................................                                                               645 

revcomp MS_130926_08_20  .............................................                                                               645 

revcomp MS_130926_09     .............................................                                                               645 

revcomp MS_130926_10     .............................................                                                               645 

revcomp MS_130926_11     ....................CC.CC.....-T.............A                                                              645 

revcomp MS_130926_12_20  .............................................                                                               645 

revcomp MS_130926_13_20  .............................................                                                               645 

revcomp MS_130926_14     .............................................                                                               645 

revcomp MS_130926_15     .............................................A                                                              645 

revcomp MS_130926_16     ...............T.............................                                                               645 

revcomp MS_130926_17_20  .............................................                                                               645 

revcomp MS_130926_19     .............................................                                                               645 

revcomp MS_130926_20     .............................................A                                                              645 

revcomp MS_130926_21     .............................................A                                                              645 

revcomp MS_130926_24_20  .............................................                                                               645 
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