
Appendix A

Pseudo-code of Described

Algorithms

A.1 Thinning

The idea of thinning a region is to successively remove pixels from its boundary under

the constraint of maintaining its connectedness. Therefore, pixels that connect different

segments of the area must not be removed. For a given pixel, we will determine the number

of segments it connects. If this is only one segment, then the pixel can be removed. To

calculate the number, a simple observation is needed: When going once around the pixel

and counting the number of transitions between regions belonging to the area and regions

not belonging to the area, the number of transitions is twice the number of connected

segments. This relationship is illustrated in figure A.1a). When labeling the neighboring

pixels according to figure A.1b) and assuming an 8-connectedness, the pseudo code of

procedure 3 performs the thinning. The symbol && expresses a logical AND-operation

and the symbol ! expresses a logical NOT-operation. The sum of boolean values has to

be interpreted as the sum of the respective values 0 or 1.

A.2 Smoothing the Line Contours

During feature recognition, the line contours are smoothed before splitting them at high-

curvature points. We apply the following method:

178

1

2

3

4

segment 1

segment 2

segment 2

a1 a2

a4
a3

a5a6
a7
a8

(a) (b)

Figure A.1: Determining the crossing number.

Procedure 3 Thinning()

Input: array I the pixel array, the value 1 represents the area to thin, 0 the background
Output: array I the image with the thinned regions

{
 finished;
 do{
 finished= ;

 }while (!finished)
}

bool

byte

byte

true
for (all pixels p in I){
 if (p>0){

 Get the values of the 8 neighboring pixels into a1,a2,...,a8
 sigma=a1+a2+a3+a4+a5+a6+a7+a8;
 if (sigma>1){
 chi=(a1!=a3)+(a3!=a5)+(a5!=a7)+(a7!=a1)+
 2*((!a1&&a2&&!a1)+(!a3&&a4&&!a5)+
 (!a5&&a6&&!a7)+(!a7&&a8&&!a5));
 if(chi==2){
 p=0;
 finished=false;
 }
 }
 }

}

//remove pixel

A.3 Calculation of a Curvature Measure

During feature recognition, a curvature measure is calculated at each point of the line

contours.

179

Procedure 4 SmoothLine()

Input: array p the array of points of the actual line
nP the number of points

Comments: V2 is the type for a 2D-point and vector.

{

for (i=1;i<nP-1;i++){
 p[i]=q_m1*p[i-1] +q_p1*p[i+1];

}
}

 q_0 =0.5f;
 q_m1=0.25f;
 q_p1=0.25f;

+q_0*p[i]

float
float
float

int

Procedure 5 CalculateLocalCurvatureMeasure()

Input: array p the array of points of the actual line
nP the number of points
wHalf the number of points to interleave in both directions from the actual point for the calculation
of the angle

Output: array curvature the array to retrieve the curvatures
Comments: V2 is the type for a 2D-point and vector.

PolarAngleOf(v) yields the polar angle of vector v.
AngleFromTo(α, β) yields the angle (∈ [−π, ..., π]) by which α has to be rotated to equal β. The shortest direction
for rotation is chosen.

{

 (k=0;k<wHalf;k++) curvature[k]=0;
 (k=nP-wHalf;k<nP;k++) curvature[k]=0;

 (i=wHalf;i<nP-wHalf;i++){
int ia:=i-wHalf;
int ib:=i+wHalf;
V2 m:=p[i];
V2 va:=m-p[ia];
V2 vb:=p[ib]-m;
curvature[i]:=AngleFromTo(PolarAngleOf(va),PolarAngleOf(vb));

}
}

//Pad the first and last entries with zeros, since the curvature
//of the corresponding points can not be calculated...

 //Calculate the curvatures for the middle part...

for int
for

for int

A.4 Extracting Local Maxima in Curvature

Once the curvature measure is calculated for all line contours, the goal is to identify points

with local maxima in curvature. The following procedure performs this calculation:

180

Procedure 6 GetLocalCurvatureMaxima()

Input: nMax the maximum number of extrema the array pos can store
curvature the array of curvature values as computed by procedure 5
nC the number of curvature values (equals the number of points of the line)
thres the curvature threshold
minDistance the minimal allowed index distance between two intervals

Output: pos the array to retrieve the indices of the local maxima
return value the number of extrema

Comments: thres= 0.5, minDistance= 3 in our implementation

{
 indexOfActualExtremum=-minDistance-1;

 nExtrema=0;
 bestCurvature=0;
 foundAnyExtrema=false;
 (i=0;i<nC;i++){

 aktCurvature=fabs(curvature[i]);
 (aktCurvature>thres){

 dist=i-indexOfActualExtremum;
 (dist>minDistance){
 (foundAnyExtrema){

 (nExtrema<nMax) pos[nExtrema++]=indexOfActualExtremum;
 }

 bestCurvature=aktCurvature;
 indexOfActualExtremum=i;

 foundAnyExtrema=true;
 } {

 (aktCurvature>bestCurvature){
 bestCurvature=aktCurvature;
 indexOfActualExtremum=i;
 }

 }
 }

 }
 (foundAnyExtema){

 if (nExtrema<nMax) pos[nExtrema++]=indexOfActualExtremum;
 }
 nExtrema;
}

float

int
float
bool
for int

float
if

float
if

if
if

else
if

if

return

//the index of the actual
//extremum
//the number of extrema
//the actual best curvature

//if the curvature exceeds the
//given threshold

//open a new extremum

181

