Chapter 5

L ine Extraction

Beside the structures with a voluminous shape as discussed in the previous section, structures with
completely different shape propertieslike the dendritic trees of neurons are of interest in thiswork.
These, however, require different segmentation approaches as we will seein the following.

In Figure 3.5 it is obvious, that the shape of the neuron is almost impossible to perceivein adice.
It is even hard to distinguish the little dots stemming from the section of the dendrites with the
dlicing plane from noise. Therefore, it is clear that an interactive method relying on a slice-based
visualization cannot be efficient. The tools discussed in the previous section where designed to
define volumes (or areas per slice) in order to assign them to aspecific structure. However, dentritic
structures have a very small volume and it seems to be much more natural to base an interactive
definition on the center lines and branching points of the tree.

Not only interactive but al so automatic segmentation approaches are strongly adopted to the struc-
ture of the objectsto be segmented. While the algorithms for segmentation of voluminous objects
try to find an optimal boundary curve (2D) or surface (3D), thisis not suitable for structures which
often have athickness of only one voxel. Here algorithms which focus on the extraction of center
lines are more appropriate as we will see.

In this section we will discuss automatic and interactive approaches to the extraction of center-line
graphs from image data sets showing dendritic trees or vascular networks. While for the structures
discussed in Section 4 the image segmentation and the geometry reconstruction step could be well
separated from each other, we will see that for line-type structures these stages will be much more
toothed.

5.1 Interactive Extraction

In this section we present a method for the interactive extraction of (the centerlines of) line-like
structures. Inspired by the Intelligent Scissor technique originally proposed by Mortensen and
Barrett [93] for contour tracing in two dimensional images, we develop a tool that allows quick
and accurate interactive extraction of graphs from three dimensional image volumes.

As pointed out earlier the key to any interactive data manipulation algorithm is a good perceptual
coupling between the user and the computer. Aswe have explained in section 3 and see in Figure
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3.5 the maximum intensity projection (MIP) is especially well suited for the type of datawe have
to treat here. Our god is to extract a graph-type representation consisting of the centerlines of
these structures.

In the following we will first describe the methods we have devel oped to segment the lines in the
two dimensional MIP and then discuss how the third dimension that has been lost in the projection
step can be recovered.

The approach we have taken for the interactive tracing of line-type structuresisinspired by snakes
[53] and intelligent scissor [93, 122] methods for segmentation of voluminous objects. In both
cases a rough approximation of the contour, specified interactively by the user is refined by an
optimization procedure that takes into account the image information.

Snakes methods take a user specified coarse contour as the initial condition for an iterative en-
ergy minimization procedure that takes into account image based as well as locally and globally
defined shape based energy terms. The disadvantage is that the user does not know what level
of accuracy for the initial contour is required, in order to achieve accurate results. There is no
interactive control over the method after the specification of the initial contour.

Intelligent scissor class methods overcome this limitation. They compute piecewise optimal paths
between two interactively specified points called seed point and free point. Due to the properties
of the cost function and path definition that will be discussed in the following sections, the com-
putation can be performed in real time. While the free point is moved, the corresponding optimal
path segment is displayed. Thisway the user can simply optimize the path segment by moving the
mouse until the result is satisfactory.

5.1.1 LineExtractionin MIP

In our method the user successively defines points on the structure to extract in the MIP image.
The algorithm connects them with the optimal path. The costs of a path are defined based on the
local image characteristics. The path is defined in adiscrete way by a series of neighboring pixels.
The problem of path extraction can be formulated as a graph search problem, where the pixels
are nodes of the graph and the links between neighboring pixels are the graphs edges. To each
edge costs are assigned. We will now describe the computation of the optimal paths, followed by
adiscussion of the cost function.

Path Finding

Once the user has selected thefirst point of a structure, the optimal paths from all image pixels to
that seed point are computed simultaneously using the Dijkstra algorithm [116, 134]. Then asthe
user moves the mouse about to set the next point, the cheapest path connecting the current mouse
position with the seed point can be displayed in real time.

For the initial computation of the shortest path from any pixel to the seed point s the algorithm
starts from s and iteratively propagates the current costs from one pixel to its neighbors.

Each node u has a value C'(u) associated, which specifies the costs for the cheapest path to s
known so far. We call anode permanent once we know that the cheapest path from s to v has been



found, i.e. C'(u) will not change anymore. Initialy we set C'(u) to infinity except for the start
point which is assigned zero.

All nodes u that are not yet permanent and have finite costs (initially only s) are maintained in
alist L, sorted according to C(u). From the list we remove the node « with minimal C(u), and
check for all its neighbors v; whether the sum of C'(u) and the costs for the link between C'(u)
and C(v;) is smaller than the current value of C'(v;). If so, these new costs are assigned to C'(v;)
and the node is repositioned in the list L. Aswe will show later both, the extraction of the current
minimum from L, aswell as a sorted inserting operation into . can be performed in constant time
in this special case.

The pseudo-code for this algorithm looks like this:

Definitions:

S Start point

L List of non-permanent nodes
c(u,v) Local costs for link v — v
C(u) Total costs from s to u

Algorithm:

C(s) =0and C(u) = oo for u # s
L ={s}
while L not empty do
u = min(L)
remove u from L
for each v € {neighbors of u} do
if C(u) + ¢(u,v) < C(v) then
if v € L then remove v from L
C(v) = C(u) + c(u,v)
10 insert v into L
11 end
12 end

OO ~NOOULDSWNPRP

After termination C'(u) isinitiaized for al pixels. If ¢(u,v) > 0 for all voxels the actua path
from s to u can then be extracted as follows: Starting from « we start towards the neighbor with
the smallest costs. From that we continue like this until we reach s.

Notice that for positive local cost functions once a node has been processed and removed from L
inline 5 it will never be re-inserted, i.e. it is permanent then. Therefore, as an optimization it is
possible to keep track of that information and restrict the loop in line 6 to non-permanent pixels.

The algorithm is then optimal in the sense that it evaluates each edge only once. Normally the
inserting of an element into a sorted list (line 10) would require a complexity of at least O(log n).
Fortunately in our case we can reduce that complexity to constant time O(0) when the local cost
function isinteger valued, strictly positive and limited by an upper bound.
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In this case we can use a bucket list for sorting [27]. Each bucket contains al nodes with the same
global costs. The buckets can be directly accessed with an index corresponding to the global costs.
In the first step obviously only one bucket is needed (for C' = 0). In each following iteration for all
pixels C(u) can never be smaller than the minimal costs of the previous iteration and never exceed
these minimal costs plus the maximal value of ¢(u,v). In our implementation we define our cost
function so that its values are in therange 1. .. 255 so that at any time at most 256 buckets with
successive C' values are needed. To avoid moving the buckets in memory they are organized in a
cyclic array and the index of the current first bucket together with its associated C' value is stored.
If the lowest bucket is empty we only need to increase the index to the next lowest bucket.

The Dijkstra algorithm is fast so that for typically sized images (e.g. 5122) even the initia full
graph search can be performed in fractions of a second. Some ways for further acceleration are
proposed e.g. in [122, 139].

Cost Function

The cost functions used for traditional contour finding in 2D images typically take into account

the magnitude of the image’s gradient,
G =12+ 12,

where I, and I, are the partial derivatives of the image intensity 7 in x and y direction. In [93] an
additional binary term is used based on zero crossings of the laplacian operator. Though suitable
for detecting the contour of an object such cost functions are not useful for our case, where we
target to extract the centerline rather than the contour of a structure.

A first approach isto use alinear function of the intensity:
c(u,v) = (a- (I(u) +1(v)) + B) - d(u,v) (5.1)
d(u,v) corresponds to the physical distance of the two pixels, i.e.

d(u, v) = 1/v/2 ; u,v arehorizontal/vertical neighbors
T 1 ; u,varediagona neighbors

In the images we consider here, the structures are brighter than the background. Therefore, we
must choose o < 0. The parameter 3 has to be chosen so that ¢(u,v) > 0. With 5 we can
furthermore control the “stiffness’ of the path. The larger 5 is the more impact has the constant
part of the costs yielding shorter paths, while for low constant costs, longer “detours’ can be
“afforded” in order to adapt to strong lines in the neighborhood.

We have found a convenient way to determine good values for o and 3 by deriving them from
the user defined gray value window gmin - - - gmax Used to display the MIP. For display, al values
smaller than gnmin are mapped to black, while values greater than gmax become white.

Especially for confocal microscopy images the maximal intensity will vary for different parts of
the recording. Therefore, it is often necessary to lower gmax t0 increase contrast and brightness.
Also it is often useful to crop away some lower intensity noise by choosing gmin > 0.
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Figure 5.1: Left: MIP of confocal recording of a honey bee's PE1 neuron along with height-field rendering
of the intelligent scissors cost function. Right: Improved cost function taking into account centeredness.

The same mapping can then be used for the cost function:

8 = 255
—255

a = —
2(gmax_gmin)

Note that the resulting cost function has to be clipped to 0 to avoid negative values. Due to the
use of the bucket list based sorting described in the previous section attention has to be paid to the
maximal possible value. A clipping for large positive values can make sense also. Thiswill aso
be discussed in the next section.

Centeredness

For tubular objects with diameter in the range of the optical resolution of the image acquisition
device, the method described so far produces very good results. For larger structures however
there is a problem which can be understood by looking at figure 5.1, that shows the MIP of a
sub-region of a neuron recording together with a height-field visualization of the cost function.

While for thin structures the cost function has a clear ridge, the larger dendrites form a plateau
with constant costs. Obviously, some clipping has occurred since there are numerous pixels with
maximal value. Note we have not artificially introduced the clipping by the visualization or com-
putation of the cost function but it is due to the settings of the microscope while recording. Notice
that even when reducing the photo multipliers sensitivity (which would make the smaller and
darker structures in other parts of the recording invisible) so that no clipping occurs, the quali-
tative behavior would remain the same: There is no reason why points in the center of a large
dendrite should be brighter than those near the border, if the dendriteis filled homogeneously with
fluorescent dye.

Theformation of plateausin the cost function leads to undesired results. In the case of constant lo-
cal costs, the algorithm will always choose the shortest path connecting the anchor pointswhile we
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would like it to use the most centered one. To overcome this we have to incorporate a centeredness
term into the cost function.

In order to do that we use a boundary seeded distance map, which encodes for every pixel «
the distance D(u) to the nearest boundary point. The obvious problem is that we do not have a
segmentation of the object yet, which would be needed for a definition of the boundary.

Fortunately we need the distance map only for the larger structures which in general are much
brighter and of higher contrast. We have found that after some basic initial preprocessing a hys-
teresis threshold segmentation lead to good results for most data sets.

Notice that it is not necessary and not possible to find a threshold that results in a fully accurate
segmentation. If that were the case for a specific data set we would rather do a threshold seg-
mentation followed by a skeletonization as described in the previous section, thereby obtaining
a completely automated model extraction. Instead, it is sufficient for the segmentation to label
the larger parts and it does not perturb the results if some parts of the background are wrongly
selected.

With the distance function D () the new cost function looks like this
c(u,v) = (o (I(u) + I1(v)) + B+ (D(u) + D(v))) - d(u,v) (5.2

Suitable parameters for v have been found to liein the range 9. . .15 for typical datasets, where D
ismeasured in voxel size.

Instead of computing atwo dimensiona distance map in the MIP one could also compute a three
dimensional distance map on the original image, that could be precombined with the image with
appropriate scaling. Qualitatively the result is the same and we have not found particular advan-
tages of one approach over the other in the final results.

Using the cost function (5.2) we achieve curves that are in close correspondence with the actual
medial axis, thus yielding the desired results.

5.1.2 Recovering Depth

The previous steps were performed in atwo dimensional projection. In order to extract afull three
dimensional model we need to recover the third dimension. To do that we again use a cheapest
path algorithm in the third dimension. Let I3 (u, v, w) be the original three dimensional image
volume. Let (u;,v;),7 = 1...n bethevertices of the polyline chain in the MIPimage. Then anew
2D image is defined by

I?P (i, w) = 3P (uy, vi, w) (5.3

In thisimage we have to find a path connecting the left and right border
IQD(L ) - IQD(n> )

In cases where the path to be extracted is not the first line drawn by the user but elongates a
previously started path or defines a new side branch starting at a branching point, then the depth
valueisgiven for the first pixel aready:

IQD(lva) - IZD(na )
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Figure 5.2: Interacting in front of a stereoscopic 120-degree curved screen with tracked pinch gloves.
Handheld interaction can still be fatigueing for untrained users. It is most often used for navigation rather
than editing. (Left image: The author’s silhouette, right image: Paul Mlyniec from Digital ArtForms, both
pictures taken in Emerging Technology Forum SIGGRAPH 2002, San Antonio.)

In this case the same algorithm as described in section 5.1.1 can be used, otherwise all pixels (1, -)
are used as seed points simultaneously and the iteration is done until thefirst pixel (1, n) becomes
permanent.

5.1.3 Resultsand Discussion

We have developed a method for the interactive tracing of dendritic trees in neurons. With this
method it is possible to accurately extract the centerline graph in even complex neurons. Also in
cases where theimage quality is poor, with afew more mouse-clicks good results can be achieved.

An obvious question is, whether it would not be possible to work directly in three dimensions
and search the optimal paths there. Beside performance issues, two main factors complicate this:
Visualization and interaction. We have aready discussed the difficulty of visualizing an entire
data volume at once. The problem can also be seen in Figure 4.2, where a “crisp” visualization
of the structure in the image data set contradicts good visibility of the selected voxels inside this
structure.

The interaction would require an input device with at least three degrees of freedom. Such devices
exist, but in the majority of applications they are primarily used for navigation rather than editing.
It has turned out, that using a hand-held 3-DOF or 6-DOF input device is quite fatiguing for the
arm and therefore not well suited for editing over several hours, compare Figure 5.2. Also it was
important for us to develop atool that can be used by numerous biologists, which do not have
access to stereoscopic display systems and tracking hardware. Virtual Reality is till a quite new
technique and we expect to see significant improvements in the usability in the next years, which
may change the situation.

In the next section we will show, how the results from this section can be used for automatic
tracing algorithms in three dimensions.
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Figure 5.3: Images from angiography and recordings of single neuron fills look similar. Left image shows
a human cerebral digital subtraction angiography. Right image shows PE1 neuron in the honey bee brain.
In detail, however, there are differences in contrast, signal-to-noise ratio and the structures the researchers
areinterested in.

5.2 Automatic Extraction

In the following we will discuss methods for automatic extraction of line-like structures from
image data. The vast majority of previous work related to this field, however, has not focused on
the extraction of dendrites from microscopic images, but on the extraction of vessel trees. The
data sources for three dimensional images of vascular network are mainly Computer Tomography
Angiography (CTA) and Magnetic Resonance Angiography (MRA).

Angiography images are structural similar to the recordings of neurons as can be seen in Figure
5.3. But there are also important differences:

e Thesignal-to-noiseratio is often much better in the angiograms than in confocal recordings,
especially when contrast agents are used.

e For medical diagnosis and treatment planning especially the larger vessels are of interest,
e.g. when investigating stenosis or aneurysms, while the neuro biologists are interested in
complete models of the dendritic tree containing even the finest branches.

e Although a non-isotropic voxel size is common in medical images, there is not such a pro-
nounced anisotropy in recording resolution (unsharpnessin z-direction) like in the confocal
recordings. Therefore, carefulnessis advised when generalizing the results from vessel tree
extraction.

e Most automatic vessel detection methods use some functional, which for each point in the
image domain givesalikelihood for this point to be part of avessel or to lie on the centerline
of avessd.
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5.2.1 Scale Space

We have distingui shed voluminous and line-like structures. However, the decision whether acylin-
drical object is line-like or not depends on the scale of observation, i.e. the resolution at which
we arelooking. Thisisavery general property of many computer vision problems. Note that the
term'scale’ isdifferent from (though related to) the sampling frequency of the input image, i.e. the
voxel resolution.

If we use a an image operator based on partial derivatives, like the gradient magnitude or the
Laplacian, and approximate it by differences of the nearest neighbors of a voxel, asit is standard
in image processing, we would implicitly choose a particular scale which is determined by the
voxel size. Since structures with different diameters are to be detected, this is not a good idea.
We have to analyze the image on multiple scales. Good overviews on scale spaces and multi scale
image analysis are given by Lindeberg in [72, 74, 73]. The scale space representation L of an
n-dimensional function f : ™ — R isafamily of functions with afamily parameter ¢ called the
scale parameter ¢, which can be derived from f by convolution with a Gauss kernel.

R xR — R

L('vt) = g('vt)of(') (54)
(b)) = Lo
7 (2nt) 2

o = Vi

It is well-known that Equation (5.4) can also be derived as the solution of the linear diffusion
eguation:

1 1l &
oL = 2AL_2;(9WL
L(-,0) = f()

An important property of a scale space representation is the decrease of “amplitude”’, i.e. the
magnitude at local maxima and minima will in general decrease when a function is subject to
scale space smoothing according to Equation (5.4). Due to the commutativity of convolution
and derivation the same is true for derivatives of L. As an example consider a one-dimensional
sinusoid:
flx) = sin(wyx)
L(z,t) = e “0"2sin(wyz).

From this it can be derived immediately that the amplitude of the function and its m-th order
derivative decrease exponentialy with scale:

Lmax (t) - eiwgt/Q

Lommax(t) = wite <0t/
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Figure 5.4: Second order derivation in scale spaceisidentical to convolution with second order derivation of
Gaussian (example for scale 1). If applied to abright structure of radius 1 on dark background the response
will be a high magnitude negative value, since near pixels and farther pixels are weighted with opposite
sign.

structure A1 Ao A3

bright blob <01 K0|x0
dark blob >0|>0|>0
bright line ~0 | <0|x0
dark line ~0|>0>0
brightplate | ~0 | =0 | <0
dark plate ~0|~0|>0

Table 5.1: Eigenvalue patterns of Hessian matrix for blob-like, line-like and plate-like structures. Eigenval-
uesare |\1| < |Az| < |As].

Lindeberg shows that in order to be able to detect image features on different-scales and automat-
ically detect the scale at which afeature is strongest, it is necessary that the image operators use
"normalized derivatives':

8x,7fnorm = tvax

Note that for v = 1 this corresponds to the dimensionless variable

0 0

é‘—z = — =0g—
o Gf_gax

Using £ and Jz» makes an operator invariant against image scaling, i.e. the change of physical
units.

5.2.2 LineDetection Operators

As we have seen earlier, the magnitude of the image intensity gradient is an indicator for the
frontier between two objects of different intensity. A pixel in the center of a vessel on the other
hand corresponds rather to a maximum of intensity than to ajump, leading to vanishing intensity
gradient.

Therefore, a second order derivative operator like the Laplacian seems to be more appropriate.
And indeed, if applied at the appropriate scale, it could be used as an indicator for center line
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points, sinceit responds to local maxima as can be understood from Figure 5.4. However, it does
not take into account the constant intensity tangential to the vessel and would therefore even better
respond to point-like spots.

For a pixel on (the center of) a line we would expect the intensity to drop significantly in al
directions normal to the line and to not change in the direction tangential to the line. In order to
encode this more complex directional structure of the intensity derivatives, the Hessian matrix can
be employed:

H;j(I(%) = 0x,0:,1(T)

The three eigenvector/eigenvalue pairs encode the principle directions of second order derivatives
and the corresponding second order derivative value. Several researchers have used line detection
criteria based on these eigenvalues and/or eigenvectors [79, 32, 109, 63, 5]. In [61] it is proposed
to use the Hessian eigenvectors to detect the line direction and then apply a non-isotropic line
detection filter. In [28] a multi-scale wavelet based edge-detection followed by a reconnection
step is proposed. [5] reviews and benchmarks several of these methods.

Thereisno canonical way to create a scalar valued criterion from the three eigenvalues and eigen-
vectors, instead the measures proposed in literature are based on geometric interpretations, study
of analytical models, or empirical studies.

The qualitative behavior can be seen in Table 5.1, compare [32]; they use a combination of three
different expressions: Let A1, A2, A3 be the three eigenval ues sorted in order of increasing magni-
tude. Then let

A A
RA—M Rp— S= > N

- 5 B — ’
| As] V| A2As3]

Rp measures deviation from blabs: it is large for blobs and small for lines and plates. R4 dis-
tinguishes lines from plates and becomes large for line-like structures. Finaly, S, which is the
Frobenius matrix norm measures “ structuredness’, i.e. it is supposed to distinguish background
noise from structures, where it becomes large. These three values are then combined to the “ves-
selness’ measure at the current scale ¢:

V:{ 0 ;A2 >0V A3>0
" (1 eap(—R%/(207))) exp(—RE/(26%)) (1 — exp(=5?/(2¢%)))

«, 3, and ¢ are empirical parameters and in [32] the authors suggest « = 3 = 0.5 and to set ¢ to
half the maximal occuring value of the S.

Krissian et al. study analytical models to derive properties of the eigenvalues: they investigate a
cylindrical circular model, atoroidal circular model and an elliptical cylindrical model, all with a
Gaussian intensity cross section. They derive properties for the A; which are similar to the above
mentioned as well as an estimation of the magnitude of As.

However, they suggest to not use the eigenvalues for vessel detection directly because the dis-
cretization artifacts occuring with one-pixel sized vessels and and the uncertainty introduced
by non-circular cross sections make such criteria unreliable. Instead, they use the condition
Ao > 0V A3 > 0 as apre-selection criterion and measure the intensity drop in normal direc-
tion on acircle around the tangential direction (as defined by the eigenvector ¢7):

1 2
Vi(E) = / CVI(F 4 V3V - Ta

27 a=0
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Figure 5.5: Maximum intensity projection of a small part of a confocal neuron recording. Left image
is a projection in recording direction, right image is an orthogonal view. Notice the lower resolution in z-
direction (right) and the gaps and blobs due to staining inhomogeneities (image inverted for better printing).

where 9, lies on a circle in the plane spanned by the two eigenvectors corresponding to the two
strongest eigenvalues: 7, = cos(a)v; + sin(a)@,. The radius parameter /3 is derived from the
analytical model.

Another model based method is proposed in [3]. They directly trace line-like structures by shifting
aset of 4 Nx N kernels aong the line to be extracted. At each point the optimal scale (diameter)
and orientation (centerline direction) is detected by probing in multiple directions and detecting
the maximal response function. In effect thisis quite similar to the response function in [63].

5.2.3 Neuron Data Sets

We have tested the above mentioned methods for the neuronal data sets. Especially the method
[63] enhanced quite well the dendrites while suppressing noise. However, none of these methods
was ableto robustly detect the smallest structures in the data sets and create a connected graph that
was consistent with the image data. Figure 5.5 illustrates why. (Note that this example has still
quite good quality compared to the worst parts of typical confocal recordings). We see that in the
smaller parts of the dendritesthe dye distribution is relatively inhomogeneous. Combined with the
lower resolution in z-direction, this leads to little blobs with major axis in z-direction separated
by intensity gaps. It is clear that the eigenvectors of the Hessian matrix will not yield a reliable
criterion.

524 TreeRe-Assembling

Probably any local criterion will fail in fully and correctly identifying al the parts of the dendritic
treethat ahuman is able to detect. Thereason isthat also global aspects have to be considered, like
human observers do. Although the multi scale approach extends the locality criterion to a certain
degree it is till not able to take into account global structural information. A second problem is
the inhomogeneous staining in the thin parts combined with the lower resolution in z-direction.
This leads locally to structures with major direction in z-direction rather than in direction of the
dendrite asseen in 5.5.

Therefore, we have concentrated on devel oping a method which doesrely primarily on local infor-
mation. We have found that using even simple filtering combined with a subsequent thresholding,
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it iseasily possible to extract a sub-set of the true object.

In anext step, amore relaxed criterium is used to identify candidate points, which are potentially
part of the object. The decision of whether such candidates are considered true object points or
background noise depends on the “costs’ to connect them to the object, in the sense of Section
5.1.1, with an appropriate cost function. The method can be built on top of any other line detection
operator. The steps of the algorithm are in detail:

1. Identify a set C of core voxels that are part of the object.
Note: C will in general not be a single connected component.

2. Identify a set P of voxels that are most likely part of the object.
3. ldentify and label all connected components C; in P U C.

4. If still more than two components C; exist, identify the two closest components C;
and C;. If the costs for the cheapest path from C; to C; does not exceed a given
threshold, add this path to C. Continue with step 3.

The definition of the shortest path in step 3 is completely analogous to the definition in Section
5.1.1. We define the distance of two components to be the costs of the cheapest path connecting
them.

The result is a single connected object. This can be further processed using a skeletonization
agorithm.

5.25 Skeletonization

Most of the described methods for automated line-structure extraction will not generate a one-
voxel thin tree. Therefore, we use athinning algorithm to reduce the structuresto their centerlines.
The centerline is closely related to the skeleton. Blum introduced a definition for the skeleton
based on the grass-fire analogy [8]: If afire waslit at all boundary voxels and the fire propagated
with constant speed towards the center of the object, the skeleton consists of the points where fire
fronts meet. Other definitions base on local discontinuities of the boundary seeded distance map.
For ageneral object the skeleton consists not only of line but aso of surfaces.

Numerous methods exists to compute or approximate skeletons. The methods include simulation
of the grass-fire, boundary shrinking [146], analytic computations, extraction from distance maps
[108, 103], and topologica thinning [62, 65, 104]. We do not want to give a complete survey
of skeletonization and thinning here, but merely concentrate on two methods that we have found
particular usefull for our application. For further reading we refer to the given references.

Sato et.al. [108], propose a method which builds a tree by succesively connecting the farthest
point in a point seeded distance field to the tree generated so far. The algorithm then marks the
parts already visited. The method guarantees, that the result is a graph without loops. If theinitial
object, however, is not tree like, the results are not always satisfying.

Topological thinning algorithms guarantee that the result is homotopic to the input object. They
successively remove points until no further points can be removed without changing the topology.
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To guarantee centeredness of the resulting skeleton, Pudney has proposed to test and remove voxels
in order of their distance value [104].

Both methods have produced similar results in our application and worked quite well. Notice that
many of the input structures are not much thicker than one voxel anyway.

5.2.6 RadiusEstimation

For morphometric analysis, as well as for display purpose, one is not only interested in the cen-
terline tree, but also in thickness information. One way to compute the thickness is based on the
distance map. The local thickness that should be associated with a point on the centerline is the
value of the boundary seeded distance field at that point. If a distance ordered thinning algorithm
is used, this does not require an additional computational step, but it is generated automatically.
Note that the distance map computation requires a segmentation of the object. If line extraction
operators like those discussed in Section 5.2 are used, such a segmentation is not necessarily gen-
erated. Instead, the operator directly enhances the centerline. K. Krissian et. al. proposein [63] to
derive the diameter from the scale in which the response to the line detection operator is strongest.
We have found however, that in most cases the structures that cannot be threshold segmented, are
the thinnest lines, which always have their strongest response on the smallest scale.

5.2.7 Resultsand Discussion

We have devel oped amethod to automatically extract graphs of neuronsfromimage data. Based on
existing line structure indicators, we have employed a cheapest-path algorithm to connect initialy
disconnected components.

As we have shown, various different methods exists, which deal with the extraction of line-like
structures. One important observation we have made for the data sets relevant in our work is this:
Thethicker structures normally have agood contrast and can be extracted quite easily. Thedifficult
parts are the very thin lines. Here the fluorescent dye concentration is often inhomogeneous and
the small volume leads to a small signal-to-noise ratio.

Therefore, we have found that applying a combination of methods for the different parts of adata
set can be required. Also we have found that the optimal combination of methods depends on the
particular data set. The typica steps are

1. Correction of an intensity drop in z-direction.

2. Interactive removal of undesired objects and noisy parts in the image.
3. Hysteresis thresholding to extract bright (and thick) parts of the image.
4

. Filtering with a line enhancement operator based on the eigenvalues and vectors of
the Hessian on a small scale to extract small lines.
If theresolution in z-direction is significantly lower thanin axial direction however, we have
found that skipping this step can lead to better results.

5. Selection of candidate points followed by the re-assembling step described in Sec-
tion 5.2.4.
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Figure 5.6: top(i-iv), bottom (v-viii), Work-flow for automatic extraction of a graph model of the dentritic
treec A confocal recording of a honey bee's PEL neuron is shown with one dlice (i) and a maximum in-
tensity projection (ii). Automatic compensation of the intensity drop in z-direction has aready been done.
Interactive volume editing tools are used to remove some undesired objects in the data set (iii,iv). At this
stage aline enhancement filter could be applied, which has not been done in thisimage due to unisotropical
resolution (see text). By interactively modifying a colormap in the maximum intensity projection (v and
vi), aconfidence level isfound. All blue points will be part of the object. A second level is chosen to define
points that can potentially be part of the object, if suitable connections exist (green pixels in vii). After
the re-assembling, skeletonization, line-extraction and line-smoothing step, a polyline-based description is
obtained. The full result is shown in Figure 5.7.

6. Thinning and distance map computation in the thicker parts for radius information.

7. Conversion of the voxel based skeleton description into an explicit poly-line based
description.

These steps are illustrated in atypical example in 5.6. The resulting tree is shown in Figure 5.7.
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Figure 5.7: Dendritic tree of ahoney bee's PE1 neuron. The poly-line tree has been extracted automatically
from a high-resolution confocal recording. It is rendered using illuminated lines. The thicker parts are
rendered as polygonal models, which have been extracted using hysteresis thresholding from an overview

scan.
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