
Chapter 4

Magnetic Dichroism in
Photoemission from Atoms

The growing interest in using magnetic materials for practical applications stim-
ulates the ongoing research in the magnetic and electronic structure of solids.
A particularly powerful method in this respect is spin-polarized photoemission.
Here, the spin of the outgoing photoelectron is monitored in addition to the pa-
rameters (k‖, E) measured in conventional PE. A disadvantage of this method
is the low detection efficiency [29].

Magnetic dichroism in PE is an alternative way to obtain information on the
magnetic state of a sample. Magnetic dichroism in PE originates from the fact
that dipole-transition matrix elements depend on the magnetic quantum num-
ber of the electron in the initial state and parameters of the incident radiation
(polarization, angle). Different choices of the incident radiation field and initial
state will lead to different transition probabilities into a particular final state.
Therefore, in appropriately chosen experimental geometries, a change in sample
magnetization ~M as well as in ~q (CP light) or in ~E (LP light) will lead to a
variation in PE line intensity that is commonly referred to as magnetic dichro-
ism in PE. We shall illustrate this for PE from an atom in two different cases:
in the first case one can describe the electron in a one-electron picture, in the
second case one has to use atomic multiplet theory (many-body description).

The theory of PE dichroism of rare-earth elements has been addressed in
part in a number of papers [30–34]. Here, we shall concentrate on the case
of rare-earth elements investigated in this work. After a brief presentation
of an appropriate description of lanthanide 4f levels, we shall briefly present
the effects of ground-state splitting and dipole selection rules on the dipole
transition matrix elements, as well as their dependence on light helicity and
sample magnetization.

4.1 Experimental geometries for magnetic dichroism

In magnetic dichroism PE experiments one needs four quantities to uniquely
define the system:
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{
~q, ~M,~eem, ~ex,y,z

}
.

Vector ~q describes the incoming radiation. It denotes the orientation of photon
momentum (circularly polarized light) or the polarization vector (linearly po-
larized light). ~M is the magnetization of the sample, ~eem the emission direction
of the photoelectrons. For crystalline samples, we also need the crystal lattice
~ex,y,z to uniquely define the system.

The first two vectors are ’inherited’ from x-ray absorption spectroscopy
(XAS), where XMCD signals scale with the inner product ~q · ~M , and these
two values are sufficient to define the XMCD system. In PE, the vector ~eem
enters as a result of the angle-resolved detection of the photoelectron; it is also
needed to define the crystal orientation in order to account for photoelectron
diffraction effects. Altogether, angular resolution in PE reduces the symmetry
of the system compared to XAS, and hereby allows one to observe magnetic
dichroism (MD) in additional experimental geometries. Yet, as it often happens,
it also makes the analysis more difficult as compared to MD in XAS, where the
MD signal is simply proportional to the inner product ~q · ~M .

According to Feder and Henk [35], a necessary condition for the presence of
MD effects in some particular geometries is: no space-symmetry operation
should exist that reverses the magnetization but leaves the system
unchanged otherwise . This statement is valid for XAS as well PE experi-
ments.

Magnetic dichroism in PE can be observed with circularly polarized light.
However, it was demonstrated that MDPE can also be observed with linearly
p-polarized light (described by ~E), when the vectors span a ’chiral’ geometry
[32,36,37], i.e. when

∣∣∣ ~E( ~M × ~k)
∣∣∣ > 0. (4.1)

We have used this chiral geometry for magnetic linear dichroism (MLD)
experiments in the present work.

In the following, we shall briefly review the one-electron theory to provide
a transparent picture of the mechanism underling the MD effect in the atomic
case. Here we follow the approach of Menchero [38] that was successfully used
to describe MD in PE from deeper core levels (2p, 3p, 4d). Although the
many-body approach is commonly accepted to be better in describing PE from
4f shells (see sects. 4.3), the one-electron picture is more transparent.

4.2 Single particle model

Let us regard the PE process from an oriented atom. The situation of a magnetic
solid is included by assuming an exchange splitting of the different sublevels.
The geometry of the PE process is illustrated in Fig. 4.1.

The idea is to express the dipole operator, the initial and the final states in
terms of the well-known spherical harmonics; this will allow a simple treatment
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Figure 4.1: Measurement geometry for PE. The atom is magnetized along the
z direction. Index k denotes the photoelectron parameters (with wave vector
~k); index q indicates photon parameters; from Ref. [39].

of a general photon-incidence direction and polarization to describe the PE
process. Since all parameters have an obvious physical meaning (emission angle
of electrons, photon polarization, etc.), this formalism has the beauty of being
transparent and straightforward, and it allows to perform calculations by hand
(see Appendix A).

According to Fermi’s Golden rule, the intensity of PE lines is given by

Iǫ
kσ =

∣∣∣
〈
Ψf

kσ

∣∣∣Tǫ

∣∣Ψi
〉∣∣∣

2
δ(Eb + Ek − ~ω), (4.2)

where the δ-function ensures energy conservation; ǫ describes the photon po-
larization; k and σ denotes wave vector of electron and its spin, respectively.
The general expression for the dipole operator, depending on the photon inci-
dence direction and light polarization, is derived in Appendix A. Here, we just
reproduce the final expression:

Tǫ = ~r · ~ǫ = r

√
4π

3

(
−Y 1

1 ǫ+ + Y −1
1 ǫ− + Y 0

1 ǫz
)
, (4.3)

with the light polarization described by the components (Appendix A)

ǫ+ =
e−iφq

√
2

[cosα cos θq − i sinαeiδ ]

ǫ− =
eiφq

√
2

[cosα cos θq + i sinαeiδ ] (4.4)

ǫz = − cosα sin θq.

The photon propagation direction is defined by (θq, φq) and the unit vector
of light polarization is given by the angles α and δ.
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As an illustration, RCP light propagating in z direction (θq = 00, see
Fig. 4.1) with α = 450 and δ = 900 (|ǫ+| = 1) corresponds to Tǫ ∝ Y 1

1 , i.e.
the photon angular momentum and wave vector ~q are parallel. LP light prop-
agating along x direction (θq = 900, φq = 00) with α = 900, δ = 00 (ǫ̂ = êy)
gives ǫ+ = −i/

√
2 and ǫ− = i/

√
2, corresponding Tǫ ∝ i

(
Y 1

1 + Y −1
1

)
∝ y.

The PE final state with emission direction ~k can be represented by a super-
position of spherical waves and written in the basis of spherical functions [40]:

Ψf
kσ(r, θ, φ) = 4π

∑

lm

ile−iδlY ∗
lm(θk, φk)Ylm(θ, φ)fkl(r)σ, (4.5)

with the phase shift δl for outgoing waves and an energy-dependent radial wave
function fkl(r).

The electron wave function of the initial state can be decomposed in a radial
and an angular part, including spin dependence:

∣∣Ψi
〉

= |fnl(r), Φσ(θ, φ)〉 . (4.6)

To define Φσ(θ, φ), we follow the approach introduced by G. van der Laan
[41]. The Hamiltonian includes spin-orbit interaction and exchange interaction
by means of a spin field,

H = λ~l · ~s+ ξsz. (4.7)

The first term accounts for the spin-orbit coupling with strength λ, the second is
due to exchange. The basis set is chosen as |j,mj〉, consisting of eigenfunctions

of the ~l · ~s operator. The spin operator sz couples the mj states allowing a
mixing between the j = l + 1/2 and j = l − 1/2 states. Thus, only mj (not
j) is a good quantum number, which means that the system is invariant under
rotation about ~M .

One should now define the angular and the spin part of the wave function
|j,mj〉 of a spin 1

2 particle that is in the state of orbital moment l. Mathemat-
ically, this is achieved by coupling the angular momenta, one for the spin and
another one for the orbital momentum. It can be viewed as a transformation
between the two basic sets of wave functions |j,mj〉 and |ml,ms〉, performed
by a transformation matrix that can be constructed from Clebsh-Gordan co-
efficients (note that the full notation is |l, s,ml,ms〉 and |l, s, j,mj〉). To be
specific, let us consider the case l = 1. In this case one obtains for |j,mj〉 the
following linear combinations

|3/2, 3/2〉 =
∣∣Y 1

1 ↑
〉

|3/2, 1/2〉 =
√

2/3
∣∣Y 0

1 ↑
〉

+
√

1/3
∣∣Y 1

1 ↓
〉

|3/2,−1/2〉 =
√

1/3
∣∣Y −1

1 ↑
〉

+
√

2/3
∣∣Y 0

1 ↓
〉

(4.8)

|3/2,−3/2〉 =
∣∣Y −1

1 ↑
〉

|1/2, 1/2〉 =
√

1/3
∣∣Y 0

1 ↑
〉
−
√

2/3
∣∣Y 1

1 ↓
〉

|1/2,−1/2〉 =
√

2/3
∣∣Y −1

1 ↑
〉
−
√

1/3
∣∣Y 0

1 ↓
〉
.
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To express the matrix elements of Hamiltonian (4.7) one also needs the
expansion of the |j,mj〉 states in |ml,ms〉 basis functions to find out how the
~l · ~s and sz operators act on the |j,mj〉 states. With this, it is straightforward
to show that the Hamiltonian takes the form:

H =
1

6




3λ+ 3ξ 0 0 0 0 0

0 3λ+ ξ 0 0
√

8ξ 0

0 0 3λ− ξ 0 0
√

8ξ
0 0 0 3λ− 3ξ 0 0

0
√

8ξ 0 0 −6λ− ξ 0

0 0
√

8ξ 0 0 −6λ+ ξ



. (4.9)

The appearance of off-diagonal terms directly shows the mixing of the j =
3/2 and j = 1/2 states with equal mj numbers. As it has been mentioned
above, mj stays to be a good quantum number due to the preserved rotational
symmetry around the magnetization axis.

The resulting scheme of levels is illustrated on Fig. 4.2 in the limit of λ≫ ξ.
In this limit, p3/2 and p1/2 energy levels are given by:

Ei =

{
λ
2 + ξ

3mj , j = 3
2

−λ− ξ
3mj j = 1

2

. (4.10)

The Hamiltonian matrix in Eq. 4.9 has to be diagonalized to obtain the
eigenstates Φσ(θ, φ) for arbitrary λ, ξ. The eigenfunctions will be presented as
linear combinations of |j,mj〉 states with the same mj. This mixing becomes
negligible for the case of λ≫ ξ.

To calculate the transition matrix element for the general case, it is suf-
ficient to write it as a linear combination of the matrix elements calculated
for the |j,mj〉 basis states. The matrix elements for the three basic electric-
dipole operators in Eq. 4.3 can be calculated analytically and were tabulated
by Menchero [38]; they are reproduced in Appendix A (Table A.1, A.2, A.3).

Let us now turn to a typical core-level MDPE experiment in the limit of
λ≫ ξ. Dichroism can be measured by reversal of the sample magnetization in
two subsequent experiments, and the PE line intensity difference Iup − Idown

represents the magnetic dichroism effect; it is illustrated in Fig. 4.2. In the
limit of λ≫ ξ, the core levels are given by |j,mj〉 spin-orbit eigenstates; adja-
cent mj levels are separated in energy by ξ/3. In this limit, a reversal of the
magnetization will reverse the positions of |j,mj〉 and |j,−mj〉 levels, without
affecting their intensities in PE.

For the case of CP excitation (~q ‖ ~M ), the MD can be written as

2p3/2 : I|3/2,3/2〉 − I|3/2,−3/2〉 = 3∆MCD(θk, φk)

I|3/2,1/2〉 − I|3/2,−1/2〉 = ∆MCD(θk, φk) (4.11)

2p1/2 : I|1/2,1/2〉 − I|1/2,−1/2〉 = 2∆MCD(θk, φk).

The angular dependence of the MD effect is contained in the quantity
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Figure 4.2: (a) Illustration of magnetic dichroism for p-level photoemission
in the limit λ ≫ ξ. (b) and (c) Relative intensities and energy positions of
mj-components in the PE spectra upon magnetization reversal; from Ref. [38].

∆MCD(θk, φk) =
1

3

(
3R2

2 sin2 θk −R2
0 −R2

2 −R0R2

(
3 cos2 θk − 1

)
cos(δ0 − δ2)

)
.

(4.12)
When using linearly polarised light in a chiral experimental geometry, MD has
the same appearance

2p3/2 : I|3/2,3/2〉 − I|3/2,−3/2〉 = 3∆MLD(θk, φk)

I|3/2,1/2〉 − I|3/2,−1/2〉 = ∆MLD(θk, φk) (4.13)

2p1/2 : I|1/2,1/2〉 − I|1/2,−1/2〉 = 2∆MLD(θk, φk),

yet with

∆MLD(θk, φk) = R0R2 sin2 θk sin 2φk sin(δ0 − δ2). (4.14)

Comparing the spectral shapes in (4.11) and (4.13), we arrive at the im-
portant conclusion: the shape of MLD is equal to the shape of MCD .
However, this does not hold for the size and angular dependence. Although
we have derived this result in the framework of a one-electron model (in the
limit λ ≫ ξ) it is valid more generally for any λ and ξ. Moreover, and this is
especially important for us, it also holds for MD from localized 4f shells, where
the many-body approach is needed.
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The possibility to observe MD with unpolarized light also can be expected,
if one views it as an incoherent superposition of s- and p-components (due to
the p-component, since the s-component does not contribute to MD).

It is instructive to point out that MD can be qualitatively viewed as the
result of spin-polarized emission induced by the excitation field (e.g. CP light).
At certain emission angles and chosen level, one spin component can have a
higher excitation probability, e.g. the spin-up orientation (minority charac-
ter). Upon reversal of magnetization, the spin-up electrons will still be exited
with higher probability, but now the same level has majority character. The
change from minority to majority character is accompanied by an increase of
the binding energy. LP light can also lead to an induced spin polarization, and
consequently to an MD effect.

Another useful result of the single-particle model is the following: rever-
sal of magnetization and reversal of helicity are equivalent only in
certain geometries, e.g. when ~M, ~q and ~k are coplanar.

Let us consider a sample with the surface normal oriented in x-direction,
which is magnetized in z-direction. Let the photon be incident in the xz plane
(θq = 450, φq = 1800), and concentrate on normal emission (θk = 900, φk = 00).
The asymmetry upon magnetization reversal can be defined by

A =

∑
n

∣∣∣IMup
n − IMdown

n

∣∣∣
∑

n(I
Mup
n + IMdown

n )
, (4.15)

where the summation is over n multiplet lines. Simply speaking, the asymmetry
A is given by the area under the difference spectrum divided by the area under
the sum of the spectra.

For MD experiments with CP light, where the sample magnetization is fixed
but the light helicity is switched, the asymmetry is given by:

Ã =

∑
n

∣∣IRCP
n − ILCP

n

∣∣
∑

n(IRCP
n + ILCP

n )
. (4.16)

Both asymmetries, A and Ã, are equal for the highly symmetric geometries
chosen above. But the equivalence of the two definitions does not hold in
general. When reducing the symmetry of the experiment, e.g. by rotating the
magnetization ~M around the surface normal (so that it is still in the yz-plane),
A and Ã are no longer identical. This is illustrated in Fig. 4.3, where the
magnetic dichroic asymmetries are shown as a function of the rotation angle
β for the cases of RCP, LCP, s-, and p-polarized excitation (with parameters
R2/R0 = 3 and a phase difference δ2 − δ0 = 1). The case of β = 0 corresponds
to ~M ‖ z-axis in Fig. 4.1.

In case of LP light, the dichroic asymmetry Ap (p-polarized excitation) is

non-vanishing, reaching a maximum value for β = 900 (i.e. ~M ‖ y-axis). For p-
polarized excitation, MD is originating entirely from cross-channel interference
(Eq. 4.14). This is indicated by the proportionality of the overall dichroic signal
intensity to the sine function of the phase-shift difference for two excited waves.
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Figure 4.3: Dichroic asymmetries for CP and LP incident radiation plotted
as angular dependence on the magnetic rotation angle β (see text). LP light:
Asymmetries are shown for s- and p-type polarization (As, Ap). CP light:
Asymmetries corresponding to magnetization reversal (ARCP , ALCP ) and flip
of photon helicity (Ã); from Ref. [38].

As will be seen in section 4.4, this also holds for MD in PE from the 4f shells.
For s-polarized light, the dichroic asymmetry As is always zero.

The consequence of cross-channel interference is that ARCP 6= ALCP , as
can be seen directly from the angular dependences shown in Fig. 4.3. Indeed,
the dichroism observed with unpolarized light would disappear, if ARCP and
ALCP are equivalent (viewing unpolarized light as an incoherent superposition
of RCP and LCP components). At the same time unpolarized excitation, as
was mentioned above, can be regarded as an incoherent superposition of s-
and p-components. Since s-polarized excitation does not contribute to MD, a
vanishing MD would imply that Ap should also be zero. However, in general
this is not the case, i.e. MD for p-light does not vanish due to cross-channel
interference. From all of this it is evident that ARCP and ALCP cannot be
equal.

For the general case one can write

ARCP (900 + η) = ALCP (900 − η) (4.17)

where η denotes the angle of rotation from β = 900.
It can be seen in Fig. 4.3 that MD asymmetry from an experiment

where the photon helicity is reversed deviates in general from the MD
asymmetry obtained from an experiment where the magnetization is
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reversed . Only for β = 00 and 1800 the dichroism is equivalent. For β = 900,
due to symmetry arguments, excitation by RCP and LCP light does not lead
to any difference (Ã = 0).

4.3 Atomic multiplet theory for 4f shells

The quasi-atomic character of the lanthanide 4f shell, spatially localized deep
within the ’xenon’ core, persists even in solids. The 5s and 5d shells provide an
efficient screening for the core-like 4f electrons. A well-known consequence is
that 4f electrons do not participate in chemical bounding. In addition, the ob-
served 4f multiplet structures in spectroscopic investigations are appropriately
described by atomic multiplet theory.

The w electrons of a partially filled shell carry single-particle orbital mo-
menta ~li, with i = 1...w and spins ~si. For the lanthanide 4f electrons, coupling
of the electron momenta is performed according to the LS (Russel-Saunders)
coupling scheme [42], since in the 4f shell of the lanthanides the mutual Coulomb
repulsion is dominating over spin-orbit interaction. It is therefore appropriate
to first couple the orbital angular momenta, ~li, to a total orbital angular mo-
mentum ~L =

∑w
i=1

~li as well as all spins, ~si, to a total spin ~S =
∑w

i=1 ~si. The

angular momenta ~L and ~S are then coupled by spin-orbit interaction to the
total angular momentum, ~J = ~L + ~S. The quantum numbers J, L, S, and
the magnetic quantum number M describe the corresponding quantum states.
Additional quantum numbers, needed for an unambiguous identification of the
state, are represented by γ (see below).

Let us consider an electron with orbital angular momentum l that is photo-
excited from a (localized) partially filled shell into a continuum state with energy
ε and orbital momentum l′. In the photoemission final state w − 1 electrons
remain in the shell. Due to energy conservation, the PE spectrum gives the
replica of the multiplet structure in the PE final state. The electric-dipole
transition can be schematically written in the following form:

| lw〉︸︷︷︸
|J M〉

→
∣∣lw−1

〉
+
∣∣εl′
〉

︸ ︷︷ ︸
|J ′ M ′〉

(4.18)

In this approach the dipole selection rules ∆J = 0,±1; ∆M = 0,±1 on
the total final state govern the transition probabilities. According to Fermi’s
Golden rule the E1 transition probability from the state |JM〉 to the total final
state |J ′M ′〉 can be written as the sum of transition probabilities for different
polarizations q = 0,+1,−1:

σJJ ′ ∝
∑

q

σJJ ′

q =
∑

q

∣∣〈J ′M ′
∣∣Pq |JM〉

∣∣2 , (4.19)

where Pq denotes the electric-dipole operator for light polarization q (Pq =√
4π/3rY q

1 (θ, ϕ)).

The Wigner-Eckart theorem allows us to separate the partial transition
probabilities into radial and angular parts:
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(3j)2 q = 0 q = ±1

J ′ = J − 1 J2 −M2

J(2J − 1)(2J + 1)

J(J − 1)± (2J − 1)M +M2

2J(2J − 1)(2J + 1)

J ′ = J M2

J(J + 1)(2J + 1)

J(J + 1)±M −M2

2J(J + 1)(2J + 1)

J ′ = J + 1 (J + 1)2 −M2

(2J + 3)(J + 1)(2J + 1)

(J + 1)(J + 2)∓ (2J + 3)M +M2

(2J + 3)(J + 1)(2J + 1)

Table 4.2: Expressions for the squared 3j symbols that give the relative weights
of E1 transitions from the state |JM〉.

σJJ ′

q =
∣∣〈J ′M ′

∣∣Pq |JM〉
∣∣2 =

∣∣〈J ′ ‖P‖ J
〉∣∣2

︸ ︷︷ ︸
SJJ′

(
J 1 J ′

−M q M ′

)2

. (4.20)

The expression in the parentheses denotes a 3j-symbol, commonly used to de-
scribe the coupling of angular momenta. Table 4.2 gives the explicit expressions
for the squared 3j symbols of all non-vanishing M →M ′ transitions. One can
see that only transitions with q = M −M ′ are allowed, because the 3j symbol
is zero for all other cases (q 6= M −M ′) . The 3j symbols reveal that the light
polarization q and the ground-state magnetic quantum number M , and hence
the sample magnetization, are directly connected through the dipole selection
rules. This is one example showing that experimental determination of line
intensities for selected q values gives access to important characteristics of the
ground state.

In a simple mean-field picture one can conceive magnetic order to result in
a Zeeman splitting of the magnetic sublevels. Below the Curie point, T ≪ Tc,
this splitting is much bigger than the thermal energy kBT . In this limit, only
the lowest sublevel M = −J is populated; it is referred to as the ground state.
This magnetic splitting of the state |γLSJM〉 is usually small and can often not
be resolved in photoemission; but the unequal population of the M sublevels
can become visible in magnetic dichroism experiments.
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(3j)2 q = −1 q = 0 q = +1

J ′ = J − 1
1

2J + 1
0 0

J ′ = J
1

(J + 1)(2J + 1)

1

(J + 1)(2J + 1)
0

J ′ = J + 1
1

(2J + 3)(J + 1)(2J + 1)

1

(2J + 3)(J + 1)

1

2J + 3

Table 4.4: Relative E1 transitions probabilities given by the squared 3j symbols
for excitation from a fully magnetized 4f ground state |J,−J〉.

The partial transition probabilities from a full-magnetized 4f ground state
|J,−J〉 are given in Table 4.4 for all possible ∆M = −1, 0,+1.

Consider for example an experiment in which the sample is in a single do-
main state |J,−J ′〉, and the incident direction of CP light is chosen collinear
with the magnetization. One can see that a reversal of one of them corresponds
to a change from, let’s say, ∆M = +1 (RCP, ~M parallel to ~q) to ∆M = −1
transitions. The light polarization is defined according to the convention used
in particle physics, i.e. from the point of view of an observer behind the light.
As shown in Table 4.4 only a few total final states can be reached via E1 tran-
sitions: there is only one state |J + 1,M − 1〉 reached via ∆M = −1, there are
two for ∆M = 0 and three for ∆M = +1. The statistical weights are very
different for different J ′. The transitions ∆J = −∆M was found to dominate,
e.g. for ∆M = +1 the |J − 1〉 has the highest weight, for ∆M = −1 only the
|J + 1〉 is nonzero. Thole [33] has identified this as ’motor’ of MD using atomic
multiplet theory.

4.4 Specific cases of Gd 4f, Tb 4f

Magnetic dichroism of Gd-4f shell

Seven electrons occupy the Gd-4f shell in the ground state, i.e. the shell is half
filled. According to Hund’s rules and using the LS coupling scheme (see above),
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the orbital angular momenta are coupled to the total angular orbital momentum
L = 0, and all spins are aligned to give the maximum value of the total spin,
S = 7/2. The total angular momentum is J = 7/2, and the initial state is
described by the common designation 8S7/2. At low temperatures (T → 0),
only the lowest magnetic sublevel M = −7/2 is occupied. The matrix-element
selection rules allow final-state quantum numbers J ′ = 5/2, 7/2, 9/2, and M ′ =
−9/2,−7/2,−5/2. Moreover, the E1 selection rules restrict the allowed final-
state orbital quantum number to L′ = 1, and ignoring the vanishingly small
spin-flip probability in non-resonant 4f PE, there is spin conservation, i.e. S′ =
S = 7/2. Also, according to the one-electron selection rule l′ = l ± 1 there
are only two excitation channels to continuum states. Thus, for an excitation
from an f state, only d (l′ = 2) and g (l′ = 4) channels are available. After
photoionization, the electron configuration of the six electrons left in the 4f shell
is denoted by 7F . In the LS coupling scheme, according to Hund’s rule, six
electrons are coupled to L′

ph = 3, S′
ph = 3, J ′

ph = 0, 1, 2, 3, 4, 5, 6. This means
that, in case of Gd, the final-state multiplet consists of the seven multiplet
components 7F0 ...

7F6.

It can be shown that the polarization q of the radiation field does not af-
fect the overall transition probability to the dipole-allowed total final state
J ′ = J − 1, J, J + 1 because of L = 0 in the Gd 4f ground state [34]. This
means that the overall transition probability for excitation from 8S7/2 does not
depend on the light polarization and, consequently, the total intensity of the 7F
multiplet does not reveal a magnetic dichroism effect. This does not hold for
the photoemission intensity distribution inside the multiplet, where particular
transition probabilities over the seven final-state components J ′

ph depend on the
total angular momentum J ′ of the accessible final states (given by the squared
3j symbols, see Table 4.2). The J ′

ph components cannot be fully resolved exper-
imentally (due to their intrinsic widths) so that the redistribution of the total
intensity over the seven components – the MD effect – is observed as a change
of the multiplet shape. The theoretically expected photoemission intensities
over the 7FJ ′

ph
multiplet are shown in Fig. 4.4 (T=0 K, full light polarization).

There is a convenient description of experimental data using the concept of
the so-called fundamental spectra introduced by Thole and van der Laan [5].
The so-called isotropic spectrum I0, the magnetic-circular-dichroism spectrum
I1, and the octupole spectrum I3, are shown in the Fig. 4.5. I0and I1 are
defined in the following way:

I0 =
∑

J ′

(
σJJ ′

−1 + σJJ ′

0 + σJJ ′

+1

)
, (4.21)

I1 =
∑

J ′

(
σJJ ′

−1 − σJJ ′

+1

)
. (4.22)

It was shown that the magnetic dichroic spectrum I1 is proportional to the
magnetization at any temperature [44]:

I1 ∝ 〈M〉kBT . (4.23)
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Figure 4.4: Relative intensities of the PE final-state multiplet components for
△M = +1, 0, −1; shown transitions are for excitations of d and g waves; from
Ref. [43].

We shall utilize this property in the analysis of the magnetic structure in the
near-surface region of Gd(0001) and the p(1× 1)O/Gd(0001) surface monoxide
(see Chapter. 5).

The MD spectra in PE from the Gd-4f shell can be expressed as linear
combination of the fundamental spectra. A brief review of atomic multiplet
theory describing the PE experiments with circularly and linearly polarized
excitation is given in Appendix B. Here, we just reproduce the final expressions
for the MD spectrum, derived there for CP and LP polarized excitations.

CP light , for coplanar vectors ~q,~k, ~M :

4πJCP ≈ I1[(−3

7
U101 +

30

49
U121) + I3(

10

49
U123 − 24

49
U143)], (4.24)

with the Uabx functions describing the experimental geometry. They can be
expressed in terms of trigonometric functions of the angles α = \( ~M, ~q) and
β = \(− ~M,~k).

LP light , coplanar ~E and ~k, and perpendicular ~M :

4πJLP = −(
27

14
I1 +

3

4
I3 +

15

112
I5)R2R4 sin δ sin 2α, (4.25)
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Figure 4.5: Intensity distribution of the fundamental spectra Ix of the Gd 7FJ ′

final-state multiplet: x=0 - isotropic spectrum, x=1 - MCD spectrum, x=3 -
octupole spectrum; from Ref. [10].

with α = \( ~E,~k). Rc denote radial dipole-matrix elements, the phase shift
difference δ between excited photoelectron waves with angular momenta c =
l ± 1.

For the ratio of the excitation probabilities for the two possible channels εd
and εg, we find (see Ref. [31]):

I0(4f → ǫg) = I0(4f → ǫg) (4.26)

I1(4f → ǫg) = −4

3
I1(4f → ǫg). (4.27)

Magnetic dichroism of Tb 4f shell

In the ground state, the Tb 4f shell is occupied with eight electrons, seven of
them have a parallel spin orientation, and one has the opposite spin orientation.
Similar to Gd, Hund’s rules, in the LS coupling scheme, lead to total angular
momenta L = 3, S = 3, J = 6, with the term notation 7F6. In contrast
to Gd, photoexcitation from the Tb 7F6 initial state leads to a rich PE final-
state multiplet with many components of considerable intensity. Fortunately,
the high-spin final-state component 8S7/2 is well separated from the rest of the
multiplet; it consists of only one line, whose intensity varies strongly for the
different light polarizations.
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At low temperatures, only the lowest of the (magnetically split) ground-
state sublevels M = −6 is occupied. The selection rules allow transitions into
total final states characterized by J ′ = 5, 6, 7 and M ′ = −7,−6,−5. Similar to
the previous case, the selection rule l′ = l± 1 (with initial l = 3) allows the two
channels l′ = 2, 4 for the photoelectron. In the final-state, the atom has one
electron less and is characterized by L′

ph = 0, S′
ph = 7/2, J ′

ph = 7/2. This is
equivalent to the Gd configuration in the initial state. The total orbital angular
momentum is thus L′ = l′, resulting from L′

ph = 0. Moreover, photoexcitation
does not affect the total spin S′ = S = 3 (cf. Gd case, sect.4.4).

J ′ is restricted (according to the third Hund’s rule) by |L′ − S′| ≤ J ′ ≤
|L′ + S′|, i.e. 1 ≤ J ′ ≤ 5 in the present case. Taking into account the dipole
selection rules, only J ′ = 5 is left for the f → d channel; accordingly, the only
final state accessible for absorption of circularly polarized light (q = −1) is
L′ = 2, S′ = 3, J ′ = 5, M ′ = −5. For the f → g channel, all J ′ = 5, 6, 7
are allowed. Altogether, the relative intensities for different △M transitions
are [10]:

I(∆M = +1) = 1
I(∆M = 0) = 0
I(∆M = −1) = 0



 for l′ = 2

I(∆M = +1) = 1/36
I(∆M = 0) = 7/36
I(∆M = −1) = 28/36



 for l′ = 4.
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